
Debun: Detecting Bundled JavaScript Libraries on Web 
using Property-Order Graphs
Seojin Kim*, Sungmin Park*, and Jihyeok Park

 40th IEEE/ACM International Conference on Automated Software Engineering (ASE’25) Email: ryan040@korea.ac.kr

 1. Background
Existing approaches

 2. Key Idea - Property-Order Graph

• Detecting vulnerable JavaScript libraries in web
applications is essential for security.

• Bundlers (i.e., Webpack) modify and compress JS code,
which complicates library detection.

Department of Computer Science and Engineering, Korea University, South Korea

Bundlers with TranspilersWeb App Bundled App

…

user code

libraries

• LDC (Library Detector for Chrome)

- Manually collected property patterns 

and check them at runtime

• PTDetector (ASE’23)

- Automatic extraction of property patterns

• Limitation
- Prior work may miss libraries not revealed to window object

- Prior work does NOT utilize bundled code to detect libraries

- Why? It is difficult to check code equivalence correctly, precisely, and quickly

// loadsh v4.17.21
(function() {
...
loadsh.chain = function () {
 ...
}
...
window._ = loadsh;
...
}.call(this);

typeof (_ = window._) == "function")
typeof (chain = _ && _.chain) == "function"

• Observation - What is preserved after code transpilation through bundlers?

• Property-Order Graph (POG) is a directed graph that represents 1) which property operations
on 2) which property names are executed in 3) which order in a function body

transpile

"remove" function in Lodash.js v4.17.21

function remove(array, predicate) {
 var result = [];
 if (!(array && array.length)) { return result; }
 var index = -1, indexes = [], length = array.length;
 predicate = getIteratee(predicate, 3);
 while (++index < length) {
 var value = array[index];
 if (predicate(value, index, array)) {
 result.push(value);
 indexes.push(index);
 }
 }
 basePullAt(array, indexes);
 return result;
}

#t#f
#t

#f

while

if

.length
.length

.push
.push

Transpiled code

function f(e,r){var t=[];

if(!e||!e.length) return t;

var n=-1,u=[],a=e.length;

for(r=an(r,3);++n<a;){

var h=e[n];

r(h,n,e)&&(t.push(h),u.push(n))}

return bf(e,u),t}

#t

#f #t

#f

for

&&

.length

.push.push

.length

array['len' + 'gth']
// == array.length

obj = {
 get p() { console.log(1); }
 set q() { console.log(2); }
}

obj.p;
// print 1
obj.q = 42;
// print 2

obj.q = 42;
// print 2
obj.p;
// print 1

≠

1.Property names are preserved
to support JavaScript's 
dynamic property access

2.Execution order between
property reads/writes is preserved
for correct side effects

#t
#t#f

#f

.length

.push

.length

.push

#t
#t#f

#f

.length

.push

.length

.push

fingerprint:
0x3FA345B1

fingerprint:
0x3FA345B1=

POG of original code POG of transpiled code

 5. Evaluation
RQ1. Library DetectionTABLE I: Library detection scores when ω = 20%.

Metric LDC PTDETECTOR DEBUN

TP 111 82 195
FP 3 9 7
FN 112 141 28

Precision 97.37% 90.11% 96.53%
Recall 49.78% 36.77% 87.44%
F1-score 65.88% 52.23% 91.76%

(a) Precision (%) (b) Recall (%) (c) F1-score (%)

Fig. 9: Library detection scores with different thresholds ω.

label a library if the code includes library-specific identifiers or
at least five distinct functions, each longer than ten lines. While
distinguishing between libraries was relatively easy, under-
standing and separating all 8,256 library versions was far more
difficult. Thus, we assign version information only when it
appears explicitly in the code (e.g., _.version = "4.17.21"),
license texts, or comments. Based on this process, we construct
a ground truth dataset11 with 223 libraries, of which 105 have
version annotations.

B. RQ1. Library Detection

For comparison with library detection tools, we first collect
the fingerprints using fingerprint collector (§IV). The library
database occupies 31.97MB of memory and was constructed
in 30 minutes. DEBUN detects libraries and their versions
for each website in 1,009 ms on average, and the function
collector consumes the most time due to the massive number
of functions in the websites:

We compare the effectiveness of DEBUN with state-of-
the-art library detection tools, LDC and PTDETECTOR. We
set PTDETECTOR with its default setting, score threshold of
0.5 and depth limit of 3. We determine the optimal score
threshold for DEBUN by varying it from 0% to 30% in 1%
increments. Figure 9 shows the effectiveness by each ω with
true positive (TP), false positive (FP), and false negative (FN)
counts. Note that we omit the true negative (TN) count and
accuracy as they are far exceeded by TP, FP, and FN counts.

11https://zenodo.org/record/15550954

TABLE II: Comparison of the number of detected libraries.
Library LDC ! DEBUN ! PTDETECTOR Ground

React 13 +22 35 +34 1 35
core-js 33 -11 22 -8 30 35
Lodash.js 9 +17 26 +18 8 33
jQuery 27 +3 30 +8 22 30
Preact 3 +7 10 +10 0 10
Zepto 0 +10 10 +10 0 10

Total 111 +84 195 +113 82 223

(a) DEBUN and LDC (b) DEBUN and PTDETECTOR

Fig. 10: Venn Diagram of the number of detected libraries.

The best score is obtained at ω = 20% with the F1-score
of 91.76%, which is 1.39x and 1.76x higher than LDC and
PTDETECTOR, respectively. Table I compares the scores of
all tools at this threshold. DEBUN achieves higher precision
than PTDETECTOR, though slightly lower than LDC, which
is manually tuned. In terms of recall and F1-score, DEBUN
outperforms all tools.

Recall: Table II shows the number of detected li-
braries by each tool, and Figure 10 shows its Venn diagram.
DEBUN detects 84 and 113 more libraries than LDC and
PTDETECTOR because they cannot detect libraries whose top-
level properties are obfuscated (e.g., React) or not exported
to the global object (e.g., Lodash.js). For example, DEBUN
detected both React and Lodash.js in pinterest.com, a design
resource website, but LDC and PTDETECTOR failed to detect
them. On the other hand, LDC and PTDETECTOR are good
at detecting libraries partially imported into the global object
(e.g., core-js and jQuery). For example, DEBUN fails to detect
core-js on several websites where it is partially imported.

Precision: LDC demonstrates the highest precision
due to the inclusion of various manual ad-hoc calculations.
PTDETECTOR exhibits the lowest precision. PTDETECTOR
struggles to distinguish libraries with overlapping property pat-
terns. For example, Lodash.js and Underscore.js share a similar
property pattern, _. Thus, the precision drops to 30% when
evaluated only with Underscore.js. This suggests that property
patterns are not distinguishable enough. While we mitigate the
overlapping function issue by applying a code segmentation
(§IV-B), DEBUN still faces seven false positives. Among them,
five are caused by shared polyfill patterns, and two are caused
by partially imported libraries (e.g., jquery-tools copies several
functions from jQuery).

C. RQ2. Library Version Detection

We evaluate library version detection using two metrics:
exact match and inclusion match. While different libraries
have distinct fingerprints, versions of the same library often
differ only slightly. Tree shaking may remove version-specific

Debun PTDetectorLDC

15 96 99 1270125

LDC vs. Debun Debun vs. PTDetector

12 33 52

DebunLDC

TABLE III: Library version detection scores when ω = 20%.
Metric LDC DEBUN

TP 45 85
FP 0 16
FN 60 20

Precision 100.00% 84.16%
Recall 42.86% 80.95%
F1 score 60.00% 82.52%

(a) Exact match (b) Inclusion match

Fig. 11: Venn Diagram of the number of detected versions.

functions, making distinction harder. Moreover, libraries may
not follow strict semantic versioning. For example, Lodash.js
v4.17.14 and v4.17.15 differ only in version labels without
any code changes. Thus, we consider a detection correct if it
either exactly matches (exact match) or includes (inclusion
match) the ground truth version. We compare the version
detection effectiveness of DEBUN only with LDC because
PTDETECTOR does not support version detection.

Table III shows the comparison of the version detection
effectiveness of LDC and DEBUN. With the exact match,
LDC and DEBUN correctly detect 44 and 43 versions, re-
spectively. LDC detects library versions only if the version
label exists in the code. However, it struggles with libraries
that do not have explicit version labels or have inconsistent
version labels across versions. For example, version label for
core-js is core.version before v0.9.12, but it was changed to
__core-js-shared__.version in v0.9.12. It results in many
false negatives in LDC both in exact and inclusion match.

On the other hand, DEBUN detects 85 versions (1.98x more
than LDC) with the inclusion match, achieving a recall of
80.95% (1.89x higher than LDC). This demonstrates that POG
provides high accuracy for version-unique or library-unique
fingerprints in real-world, enabling accurate version identifica-
tion without explicit version labels. However, challenges such
as tree shaking and duplicated functions still hinder precise
library version detection. Thus, leveraging both tools together,
when possible, can lead to more accurate results.

D. RQ3. Ablation Study

We evaluate the effectiveness of the POG-based function
fingerprints by comparing different fingerprinting models:

• Count – Count per each property operation without order.
• POG – POGs via basic construction algorithm (§III-A).
• POG+F – POG with branch flipping.
• POG+FB – POG+F with branch bypassing.
• POG+FBC – POG+FB with path cloning.

TABLE IV: Scores for each model when LOC → 6.

Metric Count POG POG+F POG+FB POG+FBC

Consistent 47,385 35,370 43,358 45,404 45,522
Functions 54,368 54,368 54,368 54,368 54,368

Consistency 87.16% 65.06% 79.75% 83.51% 83.73%

Functions 55,518 55,518 55,518 55,518 55,518
Duplicated 1,715,034 274,252 273,252 273,678 273,684

Accuracy 3.28% 20.24% 20.32% 20.29% 20.29%

(a) Consistency (b) Accuracy

Fig. 12: Scores for each fingerprinting models with LOC → x.

For each fingerprinting model, we compute two metrics:
consistency, the proportion of functions whose fingerprints
remain unchanged both before and after transpilation, and
accuracy, the ratio of distinct functions to the number of dis-
tinct fingerprints, indicating how well fingerprints differentiate
between different functions.

Consistency =
Consistent
Functions

and Accuracy =
Functions
Duplicated

We collect 256,884 function hashes from the latest versions
of the target libraries. To reduce potential bias, we remove
functions with identical syntax. This preprocessing yields a
final dataset of 91,898 functions. We then transpile them using
Terser and SWC with the most aggressive minify options
except for unsafe options. Figure 12 compares model scores
across different line-of-code (LOC) thresholds x. Table IV
presents the details for LOC → 6 as we collect fingerprints
with LOC → 6 to reduce noise from small functions (§IV-B).

Consistency: The Count model is most consistent, as it
simply counts the number of property operations. In contrast,
the baseline POG model exhibits the lowest consistency due to
the inconsistency of the control flow explained in §II-B. The
consistency continues to improve as control-flow refinement
techniques are progressively applied, and the branch flipping
has the greatest impact.

Accuracy: All POG-based models achieve significantly
higher accuracy than Count, while showing similar effec-
tiveness among themselves. This indicates that preserving
the execution order of property operations, as in POG-based
models, is effective in distinguishing functions after transpi-
lation. In contrast, Count performs the worst, highlighting the
importance of order information.

From the evaluation results, we show that the POG-based
function fingerprints are effective in representing the function
with high consistency and accuracy. Each CFG refinement
steps improve consistency while preserving accuracy.

Debun - A POG-based Library Detector

RQ2. Library Version Detection

Debun - A POG-based Library Detector

Website

tiktok.com

POG-based
Fingerprint

Library
Scorer

<latexit sha1_base64="RiNJnc3YJGBfInu7sfIym4u9tzM=">AAACW3icbVDLTtwwFPUEKJBOWx5i1U1EVInVKKkqYIkKC5ZU6gDSJCDHuQFr/Ijsm7aDlf9gC3/VRf+FJGTRmeFIls499+V7slJwi1H0d+CtrK69W9/Y9N8PP3z8tLW9c2l1ZRiMmRbaXGfUguAKxshRwHVpgMpMwFU2PW3zV7/AWK7VT5yVkEp6p3jBGcVGukkQ/qBl7gyyStW3W2E0ijoEyyTuSUh6XNxuD46SXLNKgkImqLWTOCoxddQgZwJqP6kslJRN6R1MGqqoBJu67tt18KVR8qDQpnkKg079v8NRae1MZk2lpHhvF3Ot+GbOoqRmZvKF/Vgcp46rskJQ7HV9UYkAddA6E+TcAEMxawhlhjcXBOyeGsqw8W9uPvLpw9xsVxqti9r3EwW/mZaSqtwlXBnI60mcOpd0x7k2dmFc163V8aKxy+Ty6yg+HB3++BaefO9N3yCfyT45IDE5IifknFyQMWHEkEfyRJ4H/7wVz/eGr6XeoO/ZJXPw9l4AYya44g==</latexit>

Debun
DB

fingerprint
Lodash v4.17.21

2. Library and Version Detection

fingerprint

fingerprint

jQuery v3.7.1

POG-based
Fingerprint

POG-based
Fingerprint

<latexit sha1_base64="d2mN2xQkpc4LN1AAyJgpw97pUz0=">AAACU3icbVDLTttAFB27QGnKI6HLbiyiSqwiGyHoEsGmS5DIQ4otNB5fw5B5WDPXVOnI/9Bt+18s+i1smDwWTcKRRjr33Nfck1eCW4zjf0H4YWt75+Pup9bnvf2Dw3bnaGB1bRj0mRbajHJqQXAFfeQoYFQZoDIXMMwn17P88BmM5Vrd4bSCTNIHxUvOKHppkD4XGu19uxv34jmiTZIsSZcscXPfCS7SQrNagkImqLXjJK4wc9QgZwKaVlpbqCib0AcYe6qoBJu5+Xeb6JtXiqjUxj+F0Vz9v8NRae1U5r5SUny067mZ+G7OoqRmaoq1/Vh+zxxXVY2g2GJ9WYsIdTRzJCq4AYZi6gllhvsLIvZIDWXofVuZj3zya2W2q4zWZdNqpQp+Mi0lVYVLuTJQNOMkcy6dH+dmsesmTdN4q5N1YzfJ4LSXnPfOb8+6l1dL03fJV3JMTkhCLsgl+UFuSJ8w8kR+kz/kb/ASvIZhuLUoDYNlzxeygnD/DeP8tkA=</latexit>...

<latexit sha1_base64="RiNJnc3YJGBfInu7sfIym4u9tzM=">AAACW3icbVDLTtwwFPUEKJBOWx5i1U1EVInVKKkqYIkKC5ZU6gDSJCDHuQFr/Ijsm7aDlf9gC3/VRf+FJGTRmeFIls499+V7slJwi1H0d+CtrK69W9/Y9N8PP3z8tLW9c2l1ZRiMmRbaXGfUguAKxshRwHVpgMpMwFU2PW3zV7/AWK7VT5yVkEp6p3jBGcVGukkQ/qBl7gyyStW3W2E0ijoEyyTuSUh6XNxuD46SXLNKgkImqLWTOCoxddQgZwJqP6kslJRN6R1MGqqoBJu67tt18KVR8qDQpnkKg079v8NRae1MZk2lpHhvF3Ot+GbOoqRmZvKF/Vgcp46rskJQ7HV9UYkAddA6E+TcAEMxawhlhjcXBOyeGsqw8W9uPvLpw9xsVxqti9r3EwW/mZaSqtwlXBnI60mcOpd0x7k2dmFc163V8aKxy+Ty6yg+HB3++BaefO9N3yCfyT45IDE5IifknFyQMWHEkEfyRJ4H/7wVz/eGr6XeoO/ZJXPw9l4AYya44g==</latexit>

Debun

1. Library Fingerprint Database Construction

jQuery v3.7.1

Lodash v4.17.21

<latexit sha1_base64="d2mN2xQkpc4LN1AAyJgpw97pUz0=">AAACU3icbVDLTttAFB27QGnKI6HLbiyiSqwiGyHoEsGmS5DIQ4otNB5fw5B5WDPXVOnI/9Bt+18s+i1smDwWTcKRRjr33Nfck1eCW4zjf0H4YWt75+Pup9bnvf2Dw3bnaGB1bRj0mRbajHJqQXAFfeQoYFQZoDIXMMwn17P88BmM5Vrd4bSCTNIHxUvOKHppkD4XGu19uxv34jmiTZIsSZcscXPfCS7SQrNagkImqLXjJK4wc9QgZwKaVlpbqCib0AcYe6qoBJu5+Xeb6JtXiqjUxj+F0Vz9v8NRae1U5r5SUny067mZ+G7OoqRmaoq1/Vh+zxxXVY2g2GJ9WYsIdTRzJCq4AYZi6gllhvsLIvZIDWXofVuZj3zya2W2q4zWZdNqpQp+Mi0lVYVLuTJQNOMkcy6dH+dmsesmTdN4q5N1YzfJ4LSXnPfOb8+6l1dL03fJV3JMTkhCLsgl+UFuSJ8w8kR+kz/kb/ASvIZhuLUoDYNlzxeygnD/DeP8tkA=</latexit>...

jQuery v3.7.1

Lodash v4.17.21

<latexit sha1_base64="d2mN2xQkpc4LN1AAyJgpw97pUz0=">AAACU3icbVDLTttAFB27QGnKI6HLbiyiSqwiGyHoEsGmS5DIQ4otNB5fw5B5WDPXVOnI/9Bt+18s+i1smDwWTcKRRjr33Nfck1eCW4zjf0H4YWt75+Pup9bnvf2Dw3bnaGB1bRj0mRbajHJqQXAFfeQoYFQZoDIXMMwn17P88BmM5Vrd4bSCTNIHxUvOKHppkD4XGu19uxv34jmiTZIsSZcscXPfCS7SQrNagkImqLXjJK4wc9QgZwKaVlpbqCib0AcYe6qoBJu5+Xeb6JtXiqjUxj+F0Vz9v8NRae1U5r5SUny067mZ+G7OoqRmaoq1/Vh+zxxXVY2g2GJ9WYsIdTRzJCq4AYZi6gllhvsLIvZIDWXofVuZj3zya2W2q4zWZdNqpQp+Mi0lVYVLuTJQNOMkcy6dH+dmsesmTdN4q5N1YzfJ4LSXnPfOb8+6l1dL03fJV3JMTkhCLsgl+UFuSJ8w8kR+kz/kb/ASvIZhuLUoDYNlzxeygnD/DeP8tkA=</latexit>...

Libraries and Versions

RQ3. Ablation Study - Analysis-based Refinement

 4. Overall Structure

F: Branch Flipping / B: Branch Bypassing / C: Path Cloning
Count: count property names w/o execution order

 3. Path-Sensitive Truthy Analysis

Track truthiness of variables along execution paths!

(Path = Control flow from each branch)

Library
Functions CFG Path-Sensitive

Truthy Analysis

POGRefined
CFG

fingerprint
(hash)

Graphs G ::= {l:i} (lentry, lexit, lexc)
Instructions i ::= if (e) l else l

| x = e; l | x = e.p; l | e.p = e; l
| x = e[e]; l | e[e] = e; l

Expressions e ::= c | x | !e | {} | e(e) | e == e | e === e
| e < e | e > e | e→ e | ↑e | . . .

Constants c ::= b | n | z | s | undefined | null
Variables x ↓ X Properties p ↓ P
Labels l ↓ L Booleans b ↓ B = {#t,#f}
Numbers n ↓ N BigInts z ↓ Z
Strings s ↓ S

Fig. 3: Control-flow graphs of JavaScript functions.

III. CONSTRUCTION OF PROPERTY-ORDER GRAPHS

This section first introduces a basic construction algorithm
of POGs (§III-A). To resolve the inconsistency in the ba-
sic algorithm, we introduce a path-sensitive truthy analysis

(§III-B) and a three-step refinement of control flows in CFGs
for consistent construction of POGs (§III-C).

A. Basic Construction Algorithm

A basic construction algorithm of POGs has two steps: 1)
construct control-flow graphs (CFGs) of given functions, and
2) filter only property operations from CFGs.

1) CFG Construction: We use a standard algorithm to
construct CFGs defined in Figure 3 where A denotes a
sequence of A. All instructions in a CFG are labeled with L,
and three special labels lentry, lexit, and lexc represent the entry,
exit, and exceptional exit points of the function, respectively.
An instruction i is either:

• A conditional instruction with two labels for branches.
• A normal instruction with its next label.

Each JavaScript loop statement (i.e., while/for) is converted
into a conditional instruction whose true branch label points
to its loop body, and the false branch label points to the
instruction following the loop. Additionally, as explained in
§II-B, short-circuit expressions are used as branches. Thus, we
convert the following expressions into conditional instructions
with temporary variables to mimic their evaluation semantics:

%0=e1; if(%0) { %0=e2; } else { } // e1 && e2

%0=e1; if(%0) { } else { %0=e2; } // e1 || e2

%0=e1; if(%0) { %0=e2; } else { %0=e3; } // e1?e2:e3

A normal instruction is either: 1) an assignment instruction,
2) a property read/write operation, or 3) a computed prop-
erty read/write operation. A return or a throw statement is
converted into an assignment instruction to a special variable
%ret or %exc, respectively, and its next label is the exit label
or the enclosing catch block if it exists, or the exceptional
exit label otherwise. Since we construct CFGs to construct
POGs, we convert all property read/write operations into
normal instructions with temporary variables (e.g., %0, %1,
. . .) to explicitly capture the execution order of property
operations. For example, x.p + y.q is converted into two
instructions %0 = x.p; %1 = y.q; and an expression %0 + %1

to represent that x.p is executed before executing y.q. The

Path-Sensitive Results ω̂ ↓ !̂ = (L↔ ”̂) ↗ #̂
Abstract Paths ε̂ ↓ ”̂ = (L↔ B) ↘ {≃}
Abstract States ϑ̂ ↓ #̂ = X ↗ V̂
Abstract Values v̂ ↓ V̂ = {≃, , , N, F ,⇐}

Fig. 4: Abstract domains for path-sensitive truthy analysis.

omitted inequality/comparison operations are converted into
equality/comparison operations with negation operators (e.g.,
x != y to !(x == y)). A constant is a boolean b → B, number
n → N, bigint z → Z, string s → S, undefined, or null.

2) Property Operation Filtering: To construct POGs from
CFGs, we filter only four kinds of property operations and
conditional instructions. We retain only the property names
for property read/write operations; x = e.p and e1.p = e2 are
converted into .p and .p = , respectively. For computed
property operations, we remain only whether they are read
or write operations: x = e1[e2] and e1[e2] = e3 into [] and
[] = , respectively. When the computed properties names

are constant strings, we treat them as property names: x =
e["name"] into .name. For conditional instructions, we keep
only their labels; if (e) l1 else l2 into if () l1 else l2.
Figures 2a and 2c depicts CFGs of the original and bundled
code in Figure 1, and Figures 2b and 2d depicts POGs derived
from the CFGs.

B. Path-Sensitive Truthy Analysis

We introduce a path-sensitive truthy analysis based on
abstract interpretation [14, 15] to refine control-flows in CFGs
for constructing consistent POGs. It analyzes the truthiness of
each variable along each execution path partitioned by the
latest conditional instruction.

1) Abstract Domains: Figure 4 shows the abstract domains
for path-sensitive truthy analysis. A path-sensitive result ω̂ → !̂
is a mapping from pairs of labels and abstract paths to abstract
states. An abstract path ε̂ → ”̂ is either 1) a pair of a label and
a boolean value (l, b) that represents the true or false branch
of the latest conditional instruction labeled by l or 2) ↑ for no
conditional instruction along the execution path. An abstract
state ϑ̂ → #̂ is a mapping from variables to abstract values.

↓
F N

↑

An abstract value v̂ → V̂ denotes 1) its
truthiness (or) or 2) whether it is flipped by
negation operators (F or N). Its partial order
(↔) and join (↗) operations are defined with the

lattice in the left Hasse diagram. All JavaScript values are
either truthy or falsy according to the ToBoolean algorithm
in the language semantics5; false, undefined, null, +0,
-0, NaN, 0n, and "" are falsy values, and all other primitive
values and objects are truthy values. The abstract values and

means that only truthy and falsy values are possible, respec-
tively. On the other hand, the abstract values F and N denote
whether the truthiness is flipped or not, respectively, through
a sequence of variable assignments without any conditional
branches or side effects.

5https://tc39.es/ecma262/2024/#sec-toboolean

Truthiness
Domain

while(x.p) if(!x.q) break; for(;x.p&&x.q;);

#f

#f

#t

#t

%1=!x.q

%0=x.p

!%1

%0 #f

#f

#t

#t

%0=x.q

%0=x.p

%0

%0#f

#f

#t

#t

%0=x.q

%0=x.p

%0

%0

<latexit sha1_base64="MoBdKQ0oiht3Hh1jRSebLhC/kpA=">AAACpnicbVHLbhMxFHWGR8vwSmHJxiJq1VU0g1BBXUUgoa5QkUhTKY6Cx+NJrfgxsu8Ag2W+iK9hh+Bj8KSzIClXsnXuuS/f46KWwkGW/Rokt27fubu3fy+9/+Dho8fDgycXzjSW8Skz0tjLgjouheZTECD5ZW05VYXks2L9tovPPnPrhNEfoa35QtGVFpVgFCK1HL4jBV8J7am1tA3eTvz3wLpLhpQA/woAnhxmAR+dHmGiKFwVhfJVwISkhOuyL1wOR9k42xi+CfIejFBv58uDwRkpDWsU18AkdW6eZzUsYjsQTPI4vHG8pmxNV3weoaaKu4XfLBzwYWRKXBkbjwa8Yf+t8FQ516oiZnZPdruxjvxvzIGitrXlznyoXi+80HUDXLPr8VUjMRjcaYpLYTkD2UZAmRVxA8yuqKUMovJb/UGsv2319rU1ptqmosIhTYnmX5hRikaRidCWl2GeL7wnm2195/tRHkKnfb6r9E1w8WKcn4xPPrwcTd70v7CPnqHn6Bjl6BWaoDN0jqaIoR/oJ/qN/iTHyftkmsyuU5NBX/MUbVny6S/bdtY1</latexit>

%0 :

Analysis

Result

<latexit sha1_base64="CHD+QMvRqygMxstjalYQ9+9LGBE=">AAACaXicbVHLTttAFJ0Y2kL6gMAGwcbCqtRVZFcVZYnohiVI5CHFFhqPr2GUeVgz16B05M/oln4X38BPME6yIIErjXTuue8zeSW4xTh+6gQbmx8+ftra7n7+8vXbzm5vb2h1bRgMmBbajHNqQXAFA+QoYFwZoDIXMMqnf9r46B6M5Vpd46yCTNJbxUvOKHpqkkqKd3kuHTY3u1Hcj+cWvgXJEkRkaZc3vc5FWmhWS1DIBLV2ksQVZo4a5ExA001rCxVlU3oLEw8VlWAzN9+5Cb97pghLbfxTGM7Z1xWOSmtnMveZ7Y52PdaS78YsSmpmplibj+Vp5riqagTFFuPLWoSow1aWsOAGGIqZB5QZ7i8I2R01lKEXb6U/8unfld6uMlqXq5SXtOl2UwUPTEtJVeFSrgwUzSTJnEvn17rWd1HSNK32ybrSb8HwZz856Z9c/YrOzpe/sEWOyDH5QRLym5yRC3JJBoQRTf6RR/K/8xz0goPgcJEadJY1+2TFgugFXXu+mA==</latexit>

: Truthy
<latexit sha1_base64="nCXiA9i7JZq3UC1uaPenKZTQ4Qg=">AAACaXicbVHLTttAFJ0Y2kL6gMAGwcbCqtRVZFcVZYnohiVI5CHFFhqPr2GUeVgz16B05M/oln4X38BPME6yIIErjXTuue8zeSW4xTh+6gQbmx8+ftra7n7+8vXbzm5vb2h1bRgMmBbajHNqQXAFA+QoYFwZoDIXMMqnf9r46B6M5Vpd46yCTNJbxUvOKHpqkkqKd3kuXdnc7EZxP55b+BYkSxCRpV3e9DoXaaFZLUEhE9TaSRJXmDlqkDMBTTetLVSUTektTDxUVILN3HznJvzumSIstfFPYThnX1c4Kq2dydxntjva9VhLvhuzKKmZmWJtPpanmeOqqhEUW4wvaxGiDltZwoIbYChmHlBmuL8gZHfUUIZevJX+yKd/V3q7ymhdrlJe0qbbTRU8MC0lVYVLuTJQNJMkcy6dX+ta30VJ07TaJ+tKvwXDn/3kpH9y9Ss6O1/+whY5IsfkB0nIb3JGLsglGRBGNPlHHsn/znPQCw6Cw0Vq0FnW7JMVC6IXQbO+ig==</latexit>

: Falsy

<latexit sha1_base64="Ui5D1aAlUBUFwRkrn/dJgbAk5O8=">AAACX3icbVHLSgMxFE3Hd31VXYmbwSK4KjMi6lIUxKWCVaEzSCZzR0PzGJI7Sg3zBW7141z6J6a1C1u9EDg55z5yT7JScItR9NkIZmbn5hcWl5rLK6tr662NzVurK8Ogy7TQ5j6jFgRX0EWOAu5LA1RmAu6y/vlQv3sGY7lWNzgoIZX0UfGCM4qeur54aLWjTjSK8C+Ix6BNxnH1sNG4THLNKgkKmaDW9uKoxNRRg5wJqJtJZaGkrE8foeehohJs6kYvrcM9z+RhoY0/CsMR+7vCUWntQGY+U1J8stPakPxXsyipGZh8aj4WJ6njqqwQFPsZX1QiRB0OzQhzboChGHhAmeF+g5A9UUMZessm+iPvv070dqXRupikskzWzWai4IVpKanKXcKVgbzuxalzyWhbN7y7dlzXtfc+nnb6L7g96MRHnaPrw/bp2fgXFskO2SX7JCbH5JRckivSJYwAeSPv5KPxFSwEa0HrJzVojGu2yEQE298smrnX</latexit>

F : Flipped
<latexit sha1_base64="mI0loFc9mISg/WOKRNewScDe8CI=">AAACX3icbVHLSgMxFE3Hd31VXYmbwSK4KjMi6lJ040oUrAqdQTKZOxqax5DcUWqYL3CrH+fSPzGtXdjqhcDJOfeRe5KVgluMos9GMDM7N7+wuNRcXlldW29tbN5aXRkGXaaFNvcZtSC4gi5yFHBfGqAyE3CX9c+H+t0zGMu1usFBCamkj4oXnFH01PXlQ6sddaJRhH9BPAZtMo6rh43GRZJrVklQyAS1thdHJaaOGuRMQN1MKgslZX36CD0PFZVgUzd6aR3ueSYPC238URiO2N8VjkprBzLzmZLik53WhuS/mkVJzcDkU/OxOEkdV2WFoNjP+KISIepwaEaYcwMMxcADygz3G4TsiRrK0Fs20R95/3WityuN1sUklWWybjYTBS9MS0lV7hKuDOR1L06dS0bbuuHdteO6rr338bTTf8HtQSc+6hxdH7ZPz8a/sEh2yC7ZJzE5JqfkglyRLmEEyBt5Jx+Nr2AhWAtaP6lBY1yzRSYi2P4GPHK53w==</latexit>

N : Non-Flipped

1. Branch Flipping - consistently flip branches

2. Branch Bypassing - bypath always truthy/falsy branch conditions

while(x.p) if(!x.q) break; for(;x.p&&x.q;);

3. Path Cloning - clone merged paths

while(x.p) if(!x.q) break; for(;x.p&&x.q;);

Refine

Artifact Video

mailto:ryan040@korea.ac.kr

