
Verification and Classification of Exploits for
Node.js Vulnerabilities

Sungmin Park
Korea University

ryan040@korea.ac.kr

Abstract—Vulnerabilities in the Node.js ecosystem pose serious
security threats. Generating exploits for such vulnerabilities is
a critical and essential step for fixing the vulnerabilities and
understanding attack vectors. To address this need, prior work
has proposed a range of methods, including static analysis
approaches, dynamic analysis approaches, and LLM-based tech-
niques. However, most studies verify only at the end of execution
whether the expected effect of each vulnerability has occurred.
This approach does not confirm whether the exploit actually
reaches the target vulnerable sinks. As a result, it may fail
to exercise the intended vulnerability or inadvertently trigger
a different sink.

In this study, we propose a method for validating and clas-
sifying exploits related to Node.js vulnerabilities. Our method
instruments sink APIs and related objects prior to execution
to capture sink APIs calls and their arguments when a sink is
triggered at runtime. This lets us verify that an exploit reaches
the intended sink and classify exploits by the point at which the
sink is triggered.

I. INTRODUCTION

JavaScript is used across browsers, servers, desktop, and
mobile environments, and Node.js has become a general-
purpose runtime spanning these domains. The npm reg-
istry that underpins this ecosystem hosts more than three
million packages, which accelerates development but also
greatly expands the attack surface. In npm’s dense dependency
graphs [1], transitive vulnerabilities mean that a flaw in a
single dependency can ripple outward and expose thousands
of downstream applications.

Generating exploits is essential for both remediation and
understanding real attack vectors. Earlier work SecBench.js [2]
was based on a corpus of exploits that had been manually
crafted and curated. However, the growing volume of disclosed
vulnerabilities has driven automation, FAST [3] proposed a
static analysis framework, NodeMedic [4, 5] applied dynamic
analysis, Explode.js [6] employed symbolic execution, and
most recently PoCGen [7] introduced an LLM-based exploit
generation approach. These approaches target some or all of
the five vulnerability categories prototype pollution, command
injection, code injection, regular expression denial of service
(ReDoS), and path traversal. They have contributed signifi-
cantly to advancing exploit generation. However, most of these
approaches verify only whether the effects associated with
each vulnerability occur at the end of execution. As shown in
Fig. 1, SecBench.js [2] evaluates success using an end-state
oracle. For the sahmat library case, an exploit is deemed

Fig. 1: Simplified Mislabeled Prototype Pollution Exploit
console.log({}.polluted); // "undefined"

const pkg = require("sahmat");
let obj = { tmp: "" };
pkg(obj, "", obj.__proto__.polluted = "yes");

console.log({}.polluted); // "yes"

successful when, at the end of execution, an unmodified object
exposes the injected property polluted.

In this example, however, the pollution occurs during argu-
ment evaluation rather than via the intended sink, the third ar-
gument obj.__proto__.polluted = "yes" pollutes
the global object prototype before the function containing the
sink even executes. Therefore, the presence of {}.polluted
at the end, which is only a check of a property on an
unmodified object, is insufficient to demonstrate that the sink
under test caused the observed effect, and hence cannot by
itself justify the mislabeling. Because this procedure inspects
only the end-state, the observed effect may arise from a
different sink or from side effects that bypass the intended
sink altogether. This risk is amplified with LLM-generated
exploits hallucinations may cause the exploit itself to produce
the desired effect, and although such cases can be filtered post
hoc, complete elimination is difficult in practice.

To address these limitations, we instrument sink APIs and
related objects with lightweight runtime hooks that intercept
invocations and capture the called API and its arguments
when a sink is triggered. Using this event-level evidence,
we verify sink reachability and classify each exploit by the
concrete trigger point rather than inferring from end-state
effects, reducing false positives from look-alike effects that
do not trigger the intended sink.

II. APPROACH

In this section, we present our method for validating and
classifying exploits targeting Node.js vulnerabilities. We ag-
gregate exploits from existing tools and normalize them to
be executed in a Node.js environment without any other li-
braries. For each of the four vulnerability categories (prototype
pollution, command injection, code injection, and ReDoS),
we instrument lightweight runtime hooks prior to execution,
without incurring parsing overhead, to bind each exploit to a
concrete sink.

4121

2025 40th IEEE/ACM International Conference on Automated Software Engineering (ASE)

2643-1572/25/$31.00 ©2025 IEEE
DOI 10.1109/ASE63991.2025.00390

TABLE I: Vulnerability categories and sink APIs

Category Sink APIs
Command injection child_process.{exec[Sync],

execFile[Sync], spawn[Sync],
fork}

Code injection global.eval; Function (constructor);
vm.{runIn*, compileFunction,
Script}

Prototype pollution Object.{defineProperty,
defineProperties}

ReDoS RegExp.{exec, test, compile};
String.{match, replace, split,
matchAll}

Below we detail the instrumentation strategy, first distin-
guishing API-centric and object-centric sinks, then describing
per-category instantiations and the resulting validation/classi-
fication logic.

a) API-centric sinks: We wrap selected sink APIs prior
to execution so that upon invocation the wrapper logs the
function identifier, arguments, and call-site location. In ad-
dition, we extract attacker-controlled key candidates from
the exploit and check whether these tokens appear in the
arguments observed at the sink call site. This lightweight
content matching links the observed invocation to the exploit
payload, providing precise, low-overhead evidence that an
exploit actually triggered the intended sink. As shown in
Table I, we identify four categories of sinks.

• Command injection: arises when attacker-controlled input is
forwarded to child_process.* (e.g., exec, spawn),
enabling unintended shell execution.

• Code injection: occurs when attacker-controlled code is evalu-
ated via eval, the Function constructor, or vm.* (includ-
ing string-based timers), thereby executing injected code.

• Prototype pollution: results from writing attacker-
controlled keys to Object.prototype, for example via
Object.{defineProperty,defineProperties},
which then surface as unexpected properties on objects.

• ReDoS: stems from inefficient regular expressions applied
to attacker-controlled input, causing catastrophic backtracking
and CPU exhaustion.

b) Object-centric sinks: For prototype pollution, rely-
ing solely on Object.defineProperty is insufficient
as dynamic writes to Object.prototype may invoke
only a setter and thus evade detection. Importantly, replacing
Object.prototype itself is not permitted by the EC-
MAScript specification accordingly, we augment specific prop-
erties rather than overwriting the prototype object. To address
this, we extract candidate property names from the exploit and
pre-install setters on Object.prototype for those keys,
making subsequent writes observable. This instrumentation
slightly affects the behavior of hasOwnProperty for the
affected keys (they become inherited accessor properties), but
the impact on verification was minimal a principled treatment
is left to future work.

c) Validation and classification.: We retrieve the file and
line at which a sink is triggered. Based on this evidence, we
classify outcomes into four categories:

(i) In-library sink: a hook event is observed at a sink within
the target library.

(ii) Third-party sink: a hook event is observed in a depen-
dency (e.g., call-site paths under node_modules/).

(iii) Self-effect: a hook event is observed in the exploit itself
(e.g., see Fig. 1).

(iv) No effect: no hook event is observed.
For cases (i) and (ii), we further classify exploits by call-
site path:line which exploits by the precise point of sink
occurrence and enables consistent labeling across tools.

III. CASE STUDY

In this section, we present a case study of hoek v5.0.0,
which contains a prototype-pollution vulnerability CVE-2018-
3728, to demonstrate our classification technique. CVE reports
typically identify sinks at the level of entry-point functions,
for example by stating that merge and applyToDefaults
in hoek are vulnerable. However, multiple such entry points
can map to the same concrete sink (a specific file and line); in
CVE-2018-3728 both merge and applyToDefaults lead
to the sink at line 137 of hoek/lib/index.js.

Fig. 2: Exploit from SecBench.js
const pkg = require("hoek");
obj = {};
let malicious_payload =

'{"__proto__":{"polluted":"yes"}}';
pkg.merge({}, JSON.parse(malicious_payload));

Fig. 3: Exploit from Explode.js
const pkg = require("hoek/merge");
var dst_obj = {};
var src_obj =

{ ["__proto__"]: { polluted: "yes" } };
pkg(dst_obj, src_obj);

Fig. 4: Simplified Exploit from PoCGen
const pkg = require("hoek");
const opts =

{ __proto__: { polluted: "yes" } };
const keys = ["__proto__.polluted"];
pkg.applyToDefaultsWithShallow({}, opts, keys);

Figs. 2, 3, and 4 show exploits generated by SecBench.js,
Explode.js, and PoCGen, respectively. Although all three were
intended to target the same CVE, our classification shows
they actually reach different sinks in hoek/lib/index.js:
line 137 for SecBench.js and Explode.js, and line 221 for
PoCGen. Notably, this means PoCGen exercises a different
vulnerability from the one described in the CVE report (CVE-
2018-3728 at line 137). As this case illustrates, our technique
classifies exploits by the exact sink that an exploit reaches,
even when the end state appears the same. While this enables
more precise vulnerability analysis, a limitation remains. Many
vulnerabilities lack assigned CVE numbers or detailed reports
that specify precise sink locations, and when such information
is absent our technique cannot conclusively link a PoC to
the reported vulnerability. Addressing this limitation is left
to future work.

4122

ACKNOWLEDGEMENTS

This work was supported by the National Research Foun-
dation of Korea(NRF) grant funded by the Korea govern-
ment(MSIT) (No.RS-2024-00344597) and the Institute of In-
formation & Communications Technology Planning & Eval-
uation(IITP) grant funded by the Korea government(MSIT)
(No.RS-2024-00440780, Development of Automated SBOM
and VEX Verification Technologies for Securing Software
Supply Chains)

REFERENCES

[1] N. Zahan, T. Zimmermann, P. Godefroid, B. Murphy,
C. Maddila, and L. Williams, “What are weak links in
the npm supply chain?” in Proceedings of the 44th Inter-
national Conference on Software Engineering: Software
Engineering in Practice, ser. ICSE-SEIP ’22. New York,
NY, USA: Association for Computing Machinery, 2022,
p. 331–340.

[2] M. H. M. Bhuiyan, A. S. Parthasarathy, N. Vasilakis,
M. Pradel, and C.-A. Staicu, “SecBench.js: An Executable
Security Benchmark Suite for Server-Side JavaScript,”
in 2023 IEEE/ACM 45th International Conference on
Software Engineering (ICSE), 2023, pp. 1059–1070.

[3] M. Kang, Y. Xu, S. Li, R. Gjomemo, J. Hou, V. N.
Venkatakrishnan, and Y. Cao, “Scaling JavaScript Abstract
Interpretation to Detect and Exploit Node.js Taint-style
Vulnerability,” in 2023 IEEE Symposium on Security and
Privacy (SP), 2023, pp. 1059–1076.

[4] D. Cassel, W. T. Wong, and L. Jia, “NodeMedic: End-to-
End Analysis of Node.js Vulnerabilities with Provenance
Graphs,” in 2023 IEEE 8th European Symposium on
Security and Privacy (EuroS&P), 2023, pp. 1101–1127.

[5] D. Cassel, N. Sabino, M. Hsu, R. Martins, and L. Jia,
“NodeMedic-FINE: Automatic Detection and Exploit
Synthesis for Node.js Vulnerabilities,” in 32nd Annual
Network and Distributed System Security Symposium,
NDSS 2025, San Diego, California, USA, February 24-
28, 2025. The Internet Society, 2025.

[6] F. Marques, M. Ferreira, A. Nascimento, M. E. Coimbra,
N. Santos, L. Jia, and J. Fragoso Santos, “Automated
Exploit Generation for Node.js Packages,” Proc. ACM
Program. Lang., vol. 9, no. PLDI, Jun. 2025. [Online].
Available: https://doi.org/10.1145/3729304

[7] D. Simsek, A. Eghbali, and M. Pradel, “PoCGen: Generat-
ing Proof-of-Concept Exploits for Vulnerabilities in Npm
Packages,” arXiv preprint arXiv:2506.04962, 2025.

4123

