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ABSTRACT

JavaScript was initially designed for client-side programming in

web browsers, but its engine is now embedded in various kinds of

host software. Despite the popularity, since the JavaScript semantics

is complex especially due to its dynamic nature, understanding and

reasoning about JavaScript programs are challenging tasks. Thus,

researchers have proposed several attempts to define the formal

semantics of JavaScript based on ECMAScript, the official JavaScript

specification. However, the existing approaches are manual, labor-

intensive, and error-prone and all of their formal semantics target

ECMAScript 5.1 (ES5.1, 2011) or its former versions. Therefore,

they are not suitable for understandingmodern JavaScript language

features introduced since ECMAScript 6 (ES6, 2015). Moreover,

ECMAScript has been annually updated since ES6, which already

made five releases after ES5.1.

To alleviate the problem, we propose JISET, a JavaScript IR-based

Semantics Extraction Toolchain. It is the first tool that automatically

synthesizes parsers and AST-IR translators directly from a given lan-

guage specification, ECMAScript. For syntax, we develop a parser

generation technique with lookahead parsing for BNFES, a variant

of the extended BNF used in ECMAScript. For semantics, JISET

synthesizes AST-IR translators using forward compatible rule-based

compilation. Compile rules describe how to convert each step of ab-

stract algorithms written in a structured natural language into IRES,

an Intermediate Representation that we designed for ECMAScript.

For the four most recent ECMAScript versions, JISET automatically

synthesized parsers for all versions, and compiled 95.03% of the

algorithm steps on average. After we complete the missing parts

manually, the extracted core semantics of the latest ECMAScript

(ES10, 2019) passed all 18,064 applicable tests. Using this first formal

semantics of modern JavaScript, we found nine specification errors

in ES10, which were all confirmed by the Ecma Technical Commit-

tee 39. Furthermore, we showed that JISET is forward compatible by

applying it to nine feature proposals ready for inclusion in the next

ECMAScript, which let us find three errors in the BigInt proposal.
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Figure 1: Existing approaches: Manually built parsers and

AST-IR translators for JavaScript IR-based semantics
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1 INTRODUCTION

JavaScript is one of the most widely used programming languages

not only for client-side but also for server-side programming [5, 6]

and even for small embedded systems [3, 9]. It is the top-ranked

language used in active GitHub repositories1, and #7 in the TIOBE

Programming Community index2. According toW3Techs3, 95.0% of

websites use JavaScript as their client-side programming language.

Despite its popularity, JavaScript developers often suffer from

its intricate semantics, which may cause unexpected behaviors. For

example, the following function may seem to always return false:

function f(x) { return x == !x; }

Unfortunately, it returns true when its argument is an empty ar-

ray []. To correctly understand and reason about such a complex

behavior, the formal semantics of JavaScript is necessary.

Researchers have defined various JavaScript formal semantics [17,

18, 21, 25] suitable for static analysis [19, 20, 23, 29] and formal veri-

fication [17] by referring to ECMAScript. ECMAScript is the official

specification that describes the JavaScript syntax using a variant of

the extended BNF (EBNF) notation, and its semantics using abstract

algorithms written in English in a clear and structured manner.

IR-based semantics extraction is a traditional way to define the for-

mal semantics of a language by building a compiler front-end that

takes programs and produces their Intermediate Representations

(IRs) to indirectly represent the semantics of the given programs.

As illustrated in Figure 1, a compiler front-end consists of a parser

that constructs Abstract Syntax Trees (ASTs) of given JavaScript

programs, and an AST-IR translator that converts ASTs to their

own IRs. It helps researchers focus on IRs without worrying about

1https://githut.info/
2https://www.tiobe.com/tiobe-index/
3https://w3techs.com/technologies/details/cp-javascript/all/all

647

2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE)



diverse and enormous features of JavaScript in developing new

techniques for static analysis and formal verification.

However, to the best of our knowledge, all existing approaches

to JavaScript IR-based semantics extraction manually build parsers

and translators. Although manually building them was reason-

able until ECMAScript 5.1 (ES5.1, 2011) [1], it is too tedious, labor-

intensive, and error-prone to deal with the large size of modern

JavaScript since ECMAScript 6 (ES6, 2015) [2]. ES6 introduced nu-

merous significantly new features such as lexical binding via let,

the spread ... operator, classes, the for-of operator, the async

functions, and generators. For example, consider KJS [25], one of

formal semantics of ES5.1 defined on top ofK, which is a framework

for defining language semantics. According to an author of KJS,

it took four months to implement an AST-IR translator for 1,370

steps out of 2,932 steps in 368 abstract algorithms [24]. However,

the most recent version of ECMAScript (ES10, 2019) [7] has 2,026

abstract algorithms consisting of 10,101 steps. Thus, the manual

approaches do not seem to be scalable enough to build an AST-IR

translator for modern JavaScript, and indeed no formal semantics

exists for ES6 to ES10.

Moreover, JavaScript syntax and semantics are annually updated.

Until ES5.1, JavaScript was a stable language because the specifica-

tion was rarely updated. However, the Ecma Technical Committee

39 (TC39) [8] decided to release the specification annually in late

2014. After this official announcement, several syntax features and

roughly 1,000 to 3,000 steps of abstract algorithms have been mod-

ified or newly added in the specification every year. To handle

these frequent and massive updates of ECMAScript, the manual

approaches require researchers to manually update parsers and

AST-IR translators, which incurs tremendous efforts.

To alleviate this problem, we propose a technique to automati-

cally synthesize parsers and AST-IR translators directly from EC-

MAScript with forward compatibility. There are several technical

challenges in synthesizing parsers and translators. For syntax, EC-

MAScript utilizes its own variant of EBNF with parametric non-

terminals, conditional alternatives, and various special terminal

symbols. Thus, no existing parser generation technique is directly

applicable for this variant. Moreover, JavaScript provides auto-

matic semicolon insertion in its parsing algorithm with several

complex rules, not in a lexer. For semantics, abstract algorithms in

ECMAScript are written in English. Besides, a general and forward

compatible representation of abstract algorithms is necessary to

support future versions of ECMAScript.

Our contribution is JISET, a JavaScript IR-based Semantics Ex-

traction Toolchain:

• JISET is the first tool that automatically extract IR-based

semantics froma language specification, ECMAScript. For

syntax, we formally introduce a variant of EBNF, BNFES, and

propose a parser generation technique with lookahead pars-

ing for BNFES, which supports automatic semicolon insertion.

For semantics, we propose semi-automatic synthesis of AST-IR

translators assisted by compile rules. Compile rules describe

how to convert each step of abstract algorithms into our in-

termediate representation IRES designed for ECMAScript. We

evaluated JISET with the four most recent ECMAScript ver-

sions (ES7 to ES10). JISET automatically generated parsers for

Figure 2: Overall structure of JISET: Automatically synthe-

sized JavaScript Parser and AST-IRES Translator for JavaScript

IR-based semantics

all versions, and automatically compiled 95.03% of the steps in

abstract algorithms on average.

• JISET bridges gaps between the specification written in a

natural language and tests. To evaluate the correctness of

JISET, we checked the extracted semantics with the official test

conformance suite, Test262 [10]. By manually completing miss-

ing parts of the AST-IR translator for the latest ECMAScript

(ES10, 2019), we defined the first IR-based formal semantics of

modern JavaScript. It failed for 1,709 tests because of specifica-

tion errors in ES10. Using the tests, we found eight specification

errors, three of which had not been reported before. They were

all confirmed by TC39 and will be fixed in the next release. After

fixing them, the formal semantics passed all 18,064 applicable

tests.

• JISET is also forward compatible with new language fea-

tures proposed for future ECMAScript specifications.We

evaluated the forward compatibility of JISET by applying it to

all nine proposals that are ready for inclusion in the next EC-

MAScript (ES11, 2020). It automatically synthesized parsers and

compiled 560 out of 595 algorithm steps for all the proposals.

After completion of the missing parts, we found three specifica-

tions errors in BigInt proposal by executing the corresponding

tests in Test262. After fixing them, the extracted semantics

passed all applicable ES10 tests and 303 new applicable tests.

2 OVERVIEW

In this section, we introduce the overall structure of JISET depicted

in Figure 2. Compared to the existing approaches shown in Figure 1,

our tool automatically synthesizes JavaScript Parser and AST-IRES
Translator directly from ECMAScript. The motivation of this work

is twofold: 1) ECMAScript is written in a well-organized style, and

2) the writing style is converged since ES7 in 2016. We explain

how JISET utilizes such common patterns in the writing style to
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(a) ArrayLiteral production in ES10

val ArrayLiteral: List[Boolean] => LAParser[T] = memo {
case List(Yield, Await) =>
"[" ~ opt(Elision) ~ "]" ^^ ArrayLiteral0 |
"[" ~ ElementList(Yield,Await) ~ "]" ^^ ArrayLiteral1 |
"[" ~ ElementList(Yield,Await) ~ ","

~ opt(Elision)~ "]" ^^ ArrayLiteral2
}

(b) Generated parser for the ArrayLiteral production

Figure 3: ArrayLiteral production in ES10 and its parser

synthesize JavaScript Parser and AST-IRES Translator using the

syntax and semantics in JSON format extracted from ECMAScript

by Spec Extractor.

Syntax. ECMAScript provides the lexical and syntactic gram-

mars in Appendix A using a variant of EBNF for ECMAScript. We

dub it BNFES and formally define it in Section 3. Our Spec Extractor

reads the grammars written in BNFES and converts them into JSON

files. For example, Figure 3(a) shows the ArrayLiteral production

in ES10. It takes two boolean parameters Yield and Await and has

three alternatives. The first alternative consists of three symbols:

two terminal symbols [ and ], and one non-terminal symbol Eli-

sionopt. The opt subscript denotes that it is optional. In the second

and third alternatives, ElementList[?Yield, ?Await] denotes a paramet-

ric non-terminal symbol ElementList with the parameters Yield and

Await of ArrayLiteral as its two arguments. The prefix ? of a symbol

denotes that the symbol is passed as an argument.

To generate JavaScript Parser from a given BNFES grammar, we

construct Parser Generator in Scala. It synthesizes a JavaScript

parser according to the given BNFES, and the generated parser is

defined with Scala parser combinators [12]. Moreover, in order

to parse BNFES grammars correctly and efficiently, we propose

lookahead parsers, which keep track of lookaheads, sets of possible

next tokens. With lookahead parsing, generated parsers now have

one-to-one mapping to their corresponding grammar productions,

improving readability. For example, Figure 3(b) shows the gener-

ated parser for the ArrayLiteral production in Figure 3(a). Each

parser has the List[Boolean] => LAParser[T] type because each

production in BNFES is parametric with boolean values. The memo is

a memoization function for pairs of boolean parameters and result-

ing parsers for performance optimization. The value ArrayLiteral

corresponds to the ArrayLiteral production. In the parser, each

string literal such as "[" or "]" denotes a parser for a terminal

symbol. The opt helper function creates optional parsers. The para-

metric non-terminal ElementList with arguments Yield and Await

is represented as a function call ElementList(Yield, Await). The

~ operator combines two parsers and the ˆˆ operator describes how

to construct ASTs. When the left-hand side of ˆˆ is matched, its

right-hand side shows a corresponding AST constructor, where

the name of each constructor has a number denoting the order

(a) Evaluation abstract algorithm for the third alternative

ArrayLiteral[2].Evaluation (ElementList, Elision) => {
let array = ! (ArrayCreate 0)
let len = (ElementList.ArrayAccumulation array 0)
? len
if (= Elision absent) let padding = 0
else let padding = Elision.ElisionWidth
(Set array "length" (ToUint32 (+ padding len)) false)
return array

}

(b) The generated IRES function

Figure 4: Evaluation abstract algorithm for the third alterna-

tive of ArrayLiteral in ES10 and its generated IRES function

among alternatives. For example, the ArrayLiteral0 constructor

corresponds to the first alternative of the ArrayLiteral production.

Semantics. ECMAScript describes the language semantics as

abstract algorithms in English. While they are written in a natural

language, the writing style is well-organized with ordered steps and

tagged tokens. Spec Extractor reads abstract algorithms with HTML

tags and converts them into JSON files. For example, Figure 4(a)

presents the Evaluation abstract algorithm of the third alterna-

tive of the ArrayLiteral production in ES10, and it has seven steps.

In the HTML files describing the abstract algorithms, each non-

terminal symbol (e.g. ElementList), local variable (e.g. array), code

(e.g. "length"), or value (e.g. false) has the <nt>, <var>, <code>, or

<emu-val> tag, respectively.

To translate such abstract algorithms into representations suit-

able for manipulation, we define IRES, a specialized intermediate

representation for ECMAScript. Then, we develop Algorithm Com-

piler in Scala using Scala parser combinators again to convert given

abstract algorithms to IRES functions. It also takes Compile Rules

as another input, which has two parts: parsing rules and conver-

sion rules. They are manually specified for ECMAScript; we ex-

plain them in detail in Section 4. Thus, each abstract algorithm

is converted into a function written in IRES via Algorithm Com-

piler. For example, Figure 4(b) presents the generated IRES function

for the Evaluation abstract algorithm shown in Figure 4(a). The

ArrayLiteral[2].Evaluation function takes two parameters for

two non-terminal symbols: ElementList and Elision. The param-

eter Elision has a special value absent when the non-terminal

symbol Elisionopt is not present. Thus, we convert the condition

in step 4, “if Elision is not present,” into the equality check with

absent: if (= Elision absent). Codes are represented as string

values and values are represented as corresponding IRES values. For
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instance, the code "length" and the value false are converted into
the string value "length" and the boolean value false, respectively.

Finally, JISET constructs AST-IRES Translator with the given

IRES functions and manually specified Global Setting, which has

minor but necessary information to evaluate JavaScript programs

described in ECMAScript such as the structure of the standard built-

in objects and ECMAScript data types. Putting them all together,

we can translate a given JavaScript program into IRES via generated

JavaScript Parser and AST-IRES Translator by JISET. Even though

JISET is not fully automatic because of Compile Rules and Global

Setting, it could dramatically reduce the efforts to building parsers

and translators from scratch.

In the remainder of this paper, we explain the details of how

to automatically generate parsers (Section 3) and how to compile

abstract algorithms (Section 4). After evaluating JISET (Section 5),

we discuss related work (Section 6), and conclude (Section 7).

3 PARSER GENERATOR

In this section, we explain how to automatically generate JavaScript

parsers from a given ECMAScript.

3.1 BNFES: Grammar for ECMAScript

ECMAScript describes the JavaScript syntax using a variant of the

extended BNF. We formally define the notation and dub it BNFES.

It consists of a number of productions with the following form:

A(p1, · · · ,pk ) ::= (c1 ⇒)?α1 | · · · | (cn ⇒)?αn

The left-hand side of ::= represents a parametric non-terminal A
with multiple boolean parameters p1, · · · ,pk . If a non-terminal
takes no parameter, parentheses are omitted for brevity. A produc-

tion has multiple alternatives separated by | with optional condi-

tions. A condition c is either a boolean parameter p or its negation
!p. An alternative α is a sequence of symbols, where a symbol s is
one of the following:

• ϵ : the empty sequence, which passes without any conditions
• a: a terminal, which is any token

• A(a1, · · · ,ak ): a non-terminal, which takes multiple argu-
ments where each argument ai is either a boolean value #t
or #f, or a parameter pi

• s?: option, which is the same with s | ϵ
• +s (−s) : positive (negative) lookahead, which checkswhether
s succeeds (fails) and never consumes any input

• s�s ′: exclusion, which first checks whether s succeeds and
then checks whether the parsing result does not correspond

to s ′

• 〈¬LT〉: no line-terminator, which is a special symbol that

restricts the white spaces between two different symbols

For example, consider the following production:

A(p) ::= p ⇒ a | !p ⇒ b | c

Then, A(#t) means a | c and A(#f) means b | c.

3.2 Lookahead Parsing

To support BNFES correctly, we extend PEG-based parser genera-

tion techniques with lookahead parsing.

Background: ParsingExpressionGrammar.Most parser gen-

erators target context-free languages with specific parsing algo-

rithms for Context-Free Grammar (CFG): JavaCC with LL(k) [13],

Bison with GLR [30], and ANTLR with ALL(*) [26]. However, they

are not directly applicable for the ECMAScript syntax because EC-

MAScript lexical and syntactic grammars require context-sensitive

lexers and parsers:

• Context-sensitive tokens: ECMAScript tokens are context-

sensitive because of JavaScript regular expressions and tem-

plate strings. For example, /x/g could be a single regular

expression token or four tokens that represent division by

variables x and g depending on enclosing contexts. Thus, lex-

ers should be evaluated during parsing not before parsing.

• Context-sensitiveBNFES symbols:BNFES supports context-

sensitive symbols, which are positive (negative) lookahead

+s (−s), exclusion s�s ′, and no line-terminator 〈¬LT〉. They
are highly expressive and they can even represent the clas-

sic non-context-free language {anbncn : n ≥ 1} with the

following productions:

S ::= +(X c) A Y X ::= a X? b
A ::= a A? Y ::= b Y? c

However, it is not trivial to support such BNFES symbols in

CFG-based parser generators.

Unlike CFG-based parser generators, parser generators based

on Parsing Expression Grammar (PEG) [16] can easily resolve these

problems. PEGs are defined with a top-down (LL-style) recursive

descent parser with backtracking. It visits each alternative of a

production in order and backtracks to its previous production when

parsing fails. PEG-based parser generators treat lexers as parsers,

thus we can use appropriate lexers depending on parsing contexts.

Moreover, PEGs support and-predicate (&) and not-predicate (!)

operators that denote the samemeaning of the positive and negative

lookahead symbols in BNFES, respectively. Therefore, we can easily

support context-sensitive tokens and BNFES symbols in PEG-based

parser generators.

Problem: Prioritized Choices.While PEG-based parser gen-

erators support the context-sensitivity, PEGs have one fundamental

difference with BNFES: prioritized choices. PEGs use the prioritized

choice operator ‘/’ instead of the unordered pipe operator ‘|’ in

BNFES; even when multiple alternatives are applicable, PEGs al-

ways pick the first successful alternative. For example, consider the

following BNFES:

S ::= E + E
E ::= x | x.p

(1)

As expected, this grammar accepts the string x+x.p. However, the

following PEG:

S ::= E + E
E ::= x / x.p

(2)

does not accept the same string x+x.p. Because the first alternative

x of E is chosen whenever an input string starts with x, the second

alternative x.p of E is always unreachable. A simple solution to

accept the string is just to change the order of alternatives of E like

E ::= x.p / x.
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firstα (s1 · · · sn ) = firsts (s1) :+ firstα (s2 · · · sn )

where x :+ y =

{
x ∪ y if ◦ ∈ x

x otherwise

firsts (ϵ ) = {◦}

firsts (a) = {a}

firsts (A(a1, · · · , ak )) = firstα (α1) ∪ · · · ∪ firstα (αn )

where A(a1, · · · , ak ) = α1 | · · · | αn

firsts (s?) = firsts (s) ∪ {◦}

firsts (+s) = firsts (s)

firsts (−s) = {◦}

firsts (s�s′) = firsts (s)

firsts (〈¬LT〉) = {◦}

Figure 5: Over-approximated first tokens of BNFES symbols

Unfortunately, simple reordering is not a general solution for all

cases. Consider the following BNFES:

S ::= A b

A ::= a | ab
(3)

It accepts both strings ab and abb. However, the following PEG:

S ::= A b

A ::= a / ab
(4)

accepts only ab, and another PEG with reordered productions as

follows:

S ::= A b

A ::= ab / a
(5)

accepts only abb.

Solution: Lookahead Tokens. To alleviate the problem, we

propose lookahead parsing, which is an extended parsing algorithm

for PEGs with lookahead tokens. The key idea of lookahead parsing

is to keep track of the next possible tokens by statically calculating

a set of first tokens for each symbol using the algorithm in Figure 5.

For example, the following steps explain how to utilize lookahead

tokens during parsing of the string x+x.p with the PEG in Equa-

tion (1):

x[+]

+[x] E[◦]E[+]

S[◦]

����x[◦]

x+x.p

x+x.p x+x.p

x+x.p x+x.p

x+x.p

x+x.p x+x.p x+x.p

x[.] .[p] p[◦]

x + . px

Each node s[L] denotes a symbol s with a set of lookahead tokens
L. The underlined character in the string of each node denotes the
current position in the parsing process that follows a pre-order

traversal. The parser starts from the starting non-terminal S with
the special lookahead ◦, which denotes the end of inputs. Then, it

visits the first alternative E + E with the same lookahead ◦. Each

symbol is visited with its corresponding lookahead, which is the

(s1 · · · sn )[L] = s1[firsts (s2 · · · sn ) :+ L] (s1 · · · sn )[L]

ϵ [L] = +get
s
(L)

a[L] = a + get
s
(L)

A(a1, · · · , ak )[L] = α1[L] | · · · | αn [L]

where A(a1, · · · , ak ) = α1 | · · · | αn

s?[L] = s[L] | ϵ [L]

(±s)[L] = ±(s[L])

(s�s′)[L] = s[L]�s′

〈¬LT〉 = 〈¬LT〉 + get
s
(L)

Figure 6: Formal semantics of lookahead parsers

first tokens of the right next symbol. For example, for the second

symbol + in E + E, the next symbol is E and its first tokens are:

firsts (E) = firstα (x) ∪ firstα (x.p)
= firsts (x) ∪ (firsts (x) :+ firstα (.p)) = {x}

Thus, the parser visits + with the lookahead x. The most important

point here is the difference between two visits of the non-terminal

E in E + E. The first visit of E has the lookahead + and the actual

next character after matching x is also +. Thus, the first alternative

x of E is chosen for the first visit. However, in the second visit of
E, the lookahead is the end of inputs ◦ but the next character after
matching x is the dot character (.) instead of the end of inputs.

Therefore, the second alternative x.p is chosen in the second visit

and the parser now successfully parses the input x+x.p.

We formally define the semantics of lookahead parsers in Fig-

ure 6. The helper function gets (L) generates a parser by combining
all tokens in the lookahead L using prioritized choices. In this case,
the order does not change the semantics of lookahead parsers be-

cause gets (L) just checks the existence of a given token.

3.3 Implementation

We implemented the lookahead parsing technique by extending

the Scala parser combinators library, which is a Scala library for

PEG-based parser generation. We developed Parser Generator to

synthesize PEG-based parsers with lookahead parsing for BNFES.

AST Generation. Parser Generator first automatically synthe-

sizes ASTs as Scala classes from a given BNFES grammar. Because

the structure of lexical productions do not affect the ECMAScript

semantics, we represent lexical non-terminals as string values. For

each syntactic production A(p1, · · · ,pk ) ::= (c1 ⇒)?α1 | · · · |

(cn ⇒)?αn , the generator synthesizes a trait A and its multiple sub-
classes Ai for 0 ≤ i ≤ n − 1 that represent its alternatives. Each

class Ai has non-terminals in its corresponding alternative as its

fields. For instance, the ArrayLiteral production in Figure 3 gets
automatically translated to the following Scala classes:

trait ArrayLiteral extends AST
case class ArrayLiteral0(x1: Option[Elision])
case class ArrayLiteral1(x1: ElementList)
case class ArrayLiteral2(x1: ElementList, x3: Option[Elision])

Parser Generation. The next step is to automatically synthe-

sizes parsers for each production in BNFES. We extended Scala

parser combinators to support lookahead parsing and BNFES no-

tations. For example, the synthesized parser from the production
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Figure 7: Overall structure of Algorithm Compiler

ArrayLiteral in Figure 3(a) is the one in Figure 3(b). A naïve im-

plementation of lookahead parsing would take exponential time

because of backtracking. To reduce it to linear time, we applied the

memoization technique introduced in Packrat parsing [15]. More-

over, we also implemented the growing the seed technique presented

byWarth et al. [32] to support direct and even indirect left recursive

productions. It enables the synthesis of parsers without changing

the structure of each production in BNFES.

The synthesized parsers also support the automatic semicolon

insertion algorithm, which is one of the most distinctive parsing

features in ECMAScript.We extended our parsing algorithm to keep

track of the right-most position that fails to be parsed in a given

input. In ECMAScript, the token at that position is defined as an

offending token and the automatic semicolon insertion algorithm is

defined with such tokens. The algorithm is simple when we already

have the positions of offending tokens. Thus, we just manually

supported them by following the rules defined in Section 11.94 in

ES10. The automatic semicolon insertion rules rarely change; since

ES5.1 written in 2011, only one sub-rule was added.

4 ALGORITHM COMPILER

In this section, we explain Algorithm Compiler that compiles ab-

stract algorithms to IRES functions as illustrated in Figure 7.

4.1 Tokenizer

Before compiling abstract algorithms, Tokenizer first tokenizes each

abstract algorithm into a list of tagged tokens. An algorithm con-

sists of ordered steps, and a step may contain sub-steps as well. For

example, the Evaluation abstract algorithm in Figure 4(a) has seven

steps. Moreover, the tokens of each step have their own HTML

tags and each tag has a meaning. We keep such HTML tag infor-

mation for each token to construct more precise Compile Rules.

If an HTML element is just a text without any explicit tags, it is

divided into multiple tokens and each token becomes a sequence

of alphanumeric characters or a single non-alphanumeric charac-

ter. For example, in the Evaluation algorithm, "length" is a single

token with the HTML tag <code> and Perform Set( is divided into

three text tokens Perform, Set, and (.

Moreover, Tokenizer flattens a structured step to a single to-

ken list to handle multi-step statements easily. Some statements

in abstract algorithms consist of multiple steps. For example, the

if−then−else statement often consists of two steps: one for the

then-branch and the other for the else-branch. To treat them as a

4https://www.ecma-international.org/ecma-262/#sec-automatic-semicolon-insertion

linear structure, we introduce three special tokens to break down

structured algorithms: ↓ denotes the end of a single step, and↘

and↙ denote the start and the end of nested steps, respectively.

For example, the following left abstract algorithm is tokenized to

the right token list.

1. A

2. B =⇒ A ↓ B ↘ C ↓↙↓

a. C

After tokenizing abstract algorithms, Algorithm Compiler com-

piles token lists into IRES functions using Token List Parser and

Token AST Converter. They depend on Compile Rules and each

compile rule consists of a parsing rule and a conversion rule:

val CompileRule = ParsingRule ^^ ConversionRule

For each compile rule, its parsing rule describes how to parse a

given token list into a structured token AST, and its conversion rule

describes how to convert the given token AST structure into an IRES
component. Now, we explain the token list parser and token AST

converter with parsing rules and conversion rules, respectively.

4.2 Token List Parser

The token list parser is defined with parsing rules. A parsing rule

is a basic parsing rule or a composition of multiple parsing rules.

The composition A | B of two parsing rules A and B parses an input

using both rules and collects the longest matched results. If both

rules fail or match the same length of the input, the composition

fails.

We provide two kinds of basic parsing rules: tag-based rules

and content-based rules. A tag-based rule just checks whether the

next token has a given tag. For example, the tag-based parser varT

and codeT check whether the next token has the tag <var> and

<code>, respectively. A content-based parser checks whether the

next token is a text token and its content passes a given condition.

For example, the string literal "Perform" denotes a content-based

parser that checks whether the next token is a text token with

the content Perform. We also define two content-based parsers

word and number that check whether the content of the next token

consists of only alphabets or numbers, respectively. In addition,

we provide several helper functions such as the optional rule A?

and the positive(negative) predicate +A(-A). For instance, the helper

function repsep(A, B) generates a new parsing rule that denotes

zero or more repetition of the parsing rule A using another parsing

rule B as a separator.

Consider the following example parsing rule for the step 5 of

the Evaluation algorithm in Figure 4(a).

// statements
val Stmt = "Perform" ~ Expr ~ "." ^^ ...
// expressions
val Expr =
// codes // false literal
codeT ^^ ... | "false" ^^ ... |
// variables // additions
varT ^^ ... | Expr ~ "+" ~ Expr ^^ ... |
// function calls
word ~ "(" ~ repsep(Expr, ",") ~ ")" ^^ ...
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We omit the conversion rule for each compile rule for brevity. The

Stmt compile rule describes how to compile statements with a single

parsing rule, and the Expr compile rule describes how to compile

expressions with five parsing rules. A token parser with the above

rules parses the step 5 of Evaluation to the following token AST:

4.3 Token AST Converter

Conversion rules describe how to generate an IRES function for a

given token AST. Each conversion rule is defined with its corre-

sponding parsing rule. For basic parsing rules, their conversion

rules always return the string values of the contents in parsed to-

kens. For example, the following conversion rules are the omitted

parts in the previous example for the step 5 of Evaluation:

// statements
val Stmt = ... ^^ { case _ ~ e ~ _ => IExpr(e) }
// expressions
val Expr =
// codes // false literal
... ^^ EStr | ... ^^ { _ => EBool(false) } |
// variables // additions
... ^^ EId | ... ^^ { case x ~ _ ~ y => EAdd(x, y) } |
// function calls
... ^^ { case x ~ _ ~ y ~ _ => ECall(x, y) }

)

The conversion rule of the Stmt compile rule uses only the second

sub tree and constructs an IExpr IRES instruction. For the second

sub-tree, the conversion rule of the fifth Expr compile rule is applied.

It constructs ECall IRES expression with the string value of the

first sub-tree and the sequence of the expressions of the third sub-

tree. In this way, the step 5 of Evaluation is converted to the

following IRES instruction whose beautified form is the seventh

line in Figure 4(b).

IExpr(ECall(EId("Set"), List(
EId(array), EStr("length"), ECall(EId(ToUint32), List(
EAdd(EId("padding"), EId("len")))), EBool(false))))

We define IRES to represent abstract algorithms as its functions

with the following design choices:

• Dynamic typing: Because each variable in abstract algorithms

is not statically typed, variables do not have their own static

types while each value of IRES has its dynamic type.

• Imperative style: IRES represents algorithm steps as impera-

tive instructions in the sense that each instruction changes the

current state consisting of an environment and a heap.

Table 1: General compile rules for ECMAScript

Name Stmt Expr Cond Value Ty Ref

# Rules 21 27 16 11 34 9

• Higher-order functionswith restricted scopes: In each func-

tion of IRES, only global variables, parameters, and its local vari-

ables are available, whichmeans that a function closure does not

capture its current environment. We use such restricted scopes

because they are enough to represent abstract algorithms.

• Primitive values: IRES supports ECMAScript primitive values

except “symbols” because symbols can be represented as sin-

gleton objects. Also, IRES provides the unique absent value to

represent the absence of parameters. For example, when the

optional second parameter Elision of Evaluation in Figure 4(a)

is absent, the parameter has the absent value.

• Abstract data types: IRES supports only three abstract data

types: Record for mappings from values to values, List for

sequential data, and Symbol for singleton data. For example,

ECMAScript environment records are represented as Record

from string values to addresses that represent the bindings of

the string values.

We define the syntax of IRES that has 15 kinds of instructions and 26

kinds of expressions with the notation i and e , respectively. We also

formally define its operational semantics σ � i ⇒ σ for instructions

and σ � e ⇒ (v,σ ) for expressions, where σ denotes a state and v
denotes a value. For presentation brevity, we omit the formalization

of IRES in this paper and include it in a companion report [14].

4.4 Implementation

We implemented Algorithm Compiler by extending the Packrat

parsing [15] library in Scala parser combinators. We modified the

meaning of the composition operator ( | ) to collect all the longest

matched results. If a parser detects a step that cannot be parsed or

is parsed in multiple ways, it reports the step with parsing results.

Compile Rules. Algorithm Compiler requires compile rules to

compile given abstract algorithms to IRES functions. As already

explained in Section 2, we found common patterns in the writing

style of abstract algorithms. We manually defined general compile

rules to represent such a writing style with six different kinds as

summarized in Table 1. The compile rule for statements, Stmt, gen-

erates IRES instructions. The Expr, Cond, and Value compile rules

generate IRES expressions, but they represent different contexts

in ECMAScript; Expr represents a context where any expression

can appear, Cond denotes a context where any boolean-valued ex-

pression can appear, and Value represents a context where a fully

evaluated value can appear. The Ty compile rule denotes type names

and generates string primitives used in object constructions. The

Ref compile rule represents references such as identifier lookup

and member accesses of objects, and it generates IRES references.

Global Setting. AST-IRES Translator uses global settings consist-

ing of ECMAScript data types and built-in objects. Unlike compile

rules, global settings depend on ECMAScript versions. In this paper,

we construct global settings only for the latest ECMAScript, ES10.
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Table 2: Syntax coverage: Number of productions in each

specification and in each update between adjacent versions,

from all of which JISET automatically generated parsers

Version ES7 ES8 ES9 ES10 Average

# Lexical productions 78 78 78 81 78.75

# Syntactic productions 157 167 167 174 166.25

Old version ES7 ES8 ES9
Average

New version ES8 ES9 ES10

Δ # Lexical productions 3 5 6 4.67

Δ # Syntactic productions 140 15 8 54.33

ECMAScript describes data types with some fields and meth-

ods. While the methods are like abstract algorithms, their seman-

tics are slightly different from abstract algorithms. They implic-

itly get their receiver objects as arguments at callsites. To mimic

such an implicit behavior, we added a special variable this as the

first parameter of each method, and passed a receiver object at its

callsite by modifying Algorithm Compiler. For example, an Envi-

ronment Record type has the DeleteBinding (N) method. Thus,

its corresponding IRES function has two parameters, the special

parameter this and a normal parameter N, and the method call

in an abstract algorithm is compiled to the

IRES instruction: (DclRec.DeleteBinding DclRec N).

In ECMAScript, built-in objects are pre-defined functions with

several built-in functions. For example, Array is the constructor

of array objects, and its prototype Array.prototype has built-in

functions for array objects. For instance, [1,2,3].flat() calls the

Array.prototype.flat built-in functionwith the array [1,2,3]. Be-

cause built-in functions are also abstract algorithms, each of them

is automatically converted to an IRES function. However, the struc-

tures of built-in objects should be manually implemented. Thus, we

implemented built-in objects in Scala and connected their proper-

ties with the extracted IRES functions. Some built-in objects that

are explicitly referenced in abstract algorithms are intrinsic objects,

which have their own aliased names summarized in Table 75 of

Section 6.1.7.4Well-Known Intrinsic Objects in ES10. We extracted

the alias into Global Setting to utilize it during evaluation.

5 EVALUATION

We developed JISET as an open-source tool6, and evaluated the tool

based on the following research questions:

• RQ1. Coverage: How much percentage of the syntax and se-

mantics does JISET automatically extract from ES7 to ES10?

• RQ2. Correctness: Does JISET extract an IR-based formal se-

mantics from ECMAScript correctly?

• RQ3. Forward Compatibility: Is JISET applicable to language

features ready for inclusion in the next ECMAScript (ES11)?

We performed our experiments on a machine equipped with 4.2GHz

Quad-Core Intel Core i7 and 64GB of RAM. On the machine, JISET

took less than one minute to extract IR-based semantics from a

given ECMAScript.

5https://www.ecma-international.org/ecma-262/10.0/#sec-well-known-intrinsic-
objects
6https://github.com/kaist-plrg/jiset

(a) For each ECMAScript version from ES7 to ES10

(b) For each update between adjacent versions

Figure 8: Semantics coverage: Number of algorithm steps in

specifications, from which JISET generated the semantics

5.1 Coverage

We evaluated the coverage of JISET in two respects: syntax and se-

mantics. For syntax, we measured how many grammar productions

in specifications JISET automatically generated parsers from, and

for semantics, we measured how many abstract algorithm steps in

specifications it automatically generated the JavaScript semantics

from. Because JISET utilizes common patterns in the converged

writing style since ES7 as we discussed in Section 2, we evaluated its

coverage using the most recent four versions of ECMAScript, ES7

to ES10. We measured the numbers for each ECMAScript version

and for each update between adjacent versions.

For syntax, JISET automatically generated parsers for all the

lexical and syntactic productions. As Table 2 shows, the average

numbers of lexical and syntactic productions are 78.75 and 166.25,

respectively. Also, the average numbers of annually updated lexical

and syntactic productions between adjacent versions are 4.67 and

54.33, respectively.

For semantics, Figure 8 shows that JISET automatically compiled

algorithm steps to corresponding IRES instructions with the success

rate of 95.03% on average for each ECMAScript version from ES7

to ES10, and 94.31% for each update between adjacent versions.
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Table 3: Specification errors in ES10 and the BigInt proposal ready for inclusion in ES11

Name Feature Description Known Created Resolved Existed # Fails

ES10-1 Iteration
Missing the async-iterate case in the assertion of
ForIn/OfHeadEvaluation

X 2018-02-16 2020-03-25 768 days 1,116

ES10-2 Condition
Ambiguous grammar production for the dangling else problem in

IfStatement
X 2015-06-01 TBD TBD 1

ES10-3 String Wrong use of the = operator in StringGetOwnProperty X 2015-06-01 2020-05-07 1,802 days 7

ES10-4 Completion Unhandling abrupt completion in Abstract Equality Comparison X 2015-06-01 2020-04-28 1,793 days 9

ES10-5 Completion Unhandling abrupt completion in Evaluation of EqualityExpression O 2015-06-01 2019-05-02 1,431 days 2

ES10-6 Await
Passing a value of wrong type to the second parameter of

PromiseResolve
O 2019-02-27 2019-04-13 45 days 1,294

ES10-7 Function No semantics of IsFunctionDefinition for function(...){...} O 2015-10-30 2020-01-18 1,541 days 306

ES10-8 Function
No semantics of ExpectedArgumentCount for the base case of

FormalParameters
O 2016-11-02 2020-02-20 1,205 days 81

ES10-9 Iteration
Two semantics of VarScopedDeclarations for

for await(var x of e){...}
O 2018-02-16 2019-10-11 602 days 0

BigInt-1 Expression
Using the wrong variable oldvalue instead of oldValue in
Evaluation of UpdateExpression

X 2019-09-27 2020-04-23 209 days 533

BigInt-2 Number
Using ToInt32 instead of ToUint32 in

Number::unsignedRightShift
X 2019-09-27 2020-04-23 209 days 2

BigInt-3 Number Unhandling BigInt values in the Number constructor O 2019-09-27 2019-11-19 53 days 1

Table 4: Test results for Test262

All Test262 Tests 35,990

Annexes 1,060

Internationalization 640

In-progress features 5,338

ES10 Tests 28,952

Non-strict mode 1,150

Modules 918

Early errors before actual execution 2,288

Inessential built-in objects 6,532

Applicable Tests 18,064

Passed tests 16,355

Failed tests 1,709

ECMAScript abstract algorithms describe not only core language

semantics but also built-in libraries with various helper functions.

Note that built-in libraries are written in more diverse styles than

core language semantics due to their own specific functionalities.

Therefore, built-in libraries have lower success rates (92.55% for

specifications and 91.50% for updates) than core language semantics

(97.06% for specifications and 97.14% for updates).

Because JISET automatically extracts the syntax and semantics

from specifications and updates with high coverage rates, it reduces

efforts not only in developing JavaScript tools from scratch from

specifications but also in evolving existing tools for updates.

5.2 Correctness

To evaluate the correctness of JISET, we tested the extracted seman-

tics from the latest ECMAScript (ES10) by executing Test262 as of

February 28, 2019, when ES10 was branched out. To focus on the

core language semantics of JavaScript, we completed only necessary

parts missing from the extracted AST-IR translator. As Figure 8(a)

shows, for the abstract algorithms in ES10, 9,627 steps out of 10,101

steps are automatically compiled by Algorithm Compiler. It fully

covers 1,783 algorithms out of 2,026 abstract algorithms and 243

algorithms are partially covered. Among the remaining 474 steps,

we manually implemented all missing steps for the core language

semantics (137 steps) and the essential parts of the built-in libraries

(140 steps out of 337). Based on this manual implementation, 146

more abstract algorithms are fully covered. We also manually im-

plemented Global Setting as described in Section 4.4 for the core

language features. Note that we do not support minor language

features such as the non-strict mode, modules, early errors before

actual execution, and inessential built-in objects. Among 35,990

tests in Test262, we filtered out 17,926 tests as summarized in Table 4.

To focus on ES10, we excluded 7,038 tests for annexes, internation-

alization, and in-progress features. We also filted out 10,888 tests

that use minor language features. Finally, the extracted semantics

took about three hours to evaluate 18,064 applicable tests and failed

for 1,709 tests.

We investigated the failed tests and found out that they failed

due to specification errors in ES10. Using the failed tests, we dis-

covered nine errors: ES10-1 to ES10-9 in Table 3. Among them, five

errors (ES10-5 to ES10-9) were previously reported and fixed in the

current draft of the next ECMAScript, and the remaining four errors

(ES10-1 to ES10-4) were never reported before. All four errors were

confirmed by TC39, and will be fixed in the next ECMAScript, ES11.

The specification error ES10-1 is due to a wrong assertion. While

ES9 introduced the for await iteration statement with a new iter-

ationKind tag, async-iterate, the ForIn/OfHeadEvaluation algo-

rithm missed the async-iterate case in an assertion, which caused

1,120 tests failed. We reported the error and proposed a specifica-

tion fix to include the async-iterate case, and TC39 accepted it

on March 25, 2020. Because the error was created on February 16,

2018, it existed for 768 days.

ES10-2 comes from the well-known dangling else problem intro-

duced in ALGOL 60 [11]. ES10 describes how to parse it in prose: the

else statement should be associated with the nearest if statement.
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Table 5: Proposals that will be included in ES11

Proposal
Δ # Prod.

Δ#Steps Δ#Tests # Tests
Lex. Syn.

matchAll of String 0 0 9/9 5/5 18,064/18,064

import() 0 2 38/38 0/0 18,064/18,064

BigInt 4 0 298/326 196/207 17,539/18,064

Promise.allSettled 0 0 79/85 50/50 18,064/18,064

globalThis 0 0 1/1 1/1 18,064/18,064

for-in mechanics 0 0 36/37 0/0 18,064/18,064

Optional Chaining 3 3 74/74 19/19 18,064/18,064

Nullish Coalescing Op. 1 4 10/10 21/21 18,064/18,064

import.meta 0 2 15/15 0/0 18,064/18,064

Total 8 11 560/595

Because it is written in prose rather than in the ES10 grammar

productions, it caused one failed test. We proposed a fix to revise

the ambiguous grammar production, and TC39 confirmed it on

April 23, 2020.

ES10-3 is due to a misuse of the = operator for numbers. In

abstract algorithms, “x = y” denotes equality testing for double-

precision 64-bit binary format IEEE 754-2008 values; thus, “+0 = -0”

evaluates to true. However, to check whether index is exactly the

same with -0, StringGetOwnProperty used “index = -0”, which is

true even when index is +0. It caused seven failed tests. We proposed

a fix accepted on May 7, 2020. Thus, ES10-3 existed for 1,802 days.

ES10-4 and ES10-5 happened because ES10 did not handle abrupt

completion from function calls. Our proposed fix to ES10-4 was

accepted on April 28, 2020, and ES10-5 was resolved on May 2, 2019

after existing for 1,431 days.

ES10-6 is due to incorrect uses of an abstract algorithm. While

PromiseResolve(C, x) expects a JavaScript object for its second

argument, ES10 passed a list of values rather than an object in three

invocations of PromiseResolve. The wrong invocations were in-

troduced on February 27, 2019 and caused 1,294 tests failed. They

were fixed on April 13, 2019 after existing 45 days.

ES10-7 and ES10-8 happened because ES10 missed semantics for

some cases. They both existed for more than 1,200 days.

ES10-9 is due to multiple semantics. While no tests in Test262

fail with any of the semantics, we could detect this error via Spec

Extractor even before executing the semantics. It is supplementary

merit of the mechanization of IR-based semantics extraction.

After resolving the nine specification errors in ES10, we extracted

a semantics from the revised specification. The extracted semantics

from the revised ES10 passed all 18,064 applicable tests in Test262,

which shows that JISET extracts an IR-based formal semantics from

ECMAScript correctly. In addition, the evaluation witnesses that

JISET can detect specification errors effectively. We could detect

not only five previously-known errors but also four new errors. We

believe that JISET bridges gaps between ECMAScript written in a

natural language and executable tests in Test262.

5.3 Forward Compatibility

We evaluated whether JISET is forward compatible by applying it

to the proposals ready for inclusion in ES11. Because ECMAScript

is an open-source project, various proposals for new features are

available with their own specification changes and tests. A separate

repository [4] maintains them in six stages: Stage 0 to Stage 3,

Finished, and Inactive. A proposal starts with Stage 0, and the TC39

committee examines proposals in Stage 3. If a proposal is confirmed,

the committee changes its stage to Finished and integrates it into

the next ECMAScript. Otherwise, its stage becomes Inactive.

We applied JISET to all nine Finished proposals as shown in

Table 5. Collectively, the proposals modified eight lexical and 11

syntactic productions, and JISET successfully synthesized parsers

for them. The synthesized parsers parse all applicable tests for all

proposals. For abstract algorithms, 560 steps out of 595 are automat-

ically converted to corresponding IRES instructions by Algorithm

Compiler without changing Compile Rules. Thus, JISET has the

success rate of 94.12% on average for forthcoming proposals.

We checked the extracted semantics from the proposals by im-

plemented missing parts of the AST-IR translator for each proposal

and checking the semantics with Test262. All of them passed all

applicable tests except the semantics from the BigInt proposal. It

failed for 11 tests out of 207 applicable tests for the proposal and

525 tests out of 18,064 applicable tests for ES10.

Using the failed tests, we discovered three errors in the BigInt

proposal: two new errors (BigInt-1 and BigInt-2) and one known

error (BigInt-3) as summarized in Table 3. All of them were con-

firmed by TC39 and will be fixed in ES11. The proposal added

two new types: BigInt as a new type of primitives and Numeric

as a unified type of the original Number type and the new BigInt

type. Therefore, it not only added new algorithms for BigInt but

also modified all existing algorithms for Number values. The error

BigInt-1 is due to a misuse of the variable oldValue in Evaluation

of UpdateExpression. BigInt-2 breaks the backward compatibility be-

cause of misusing ToInt32 instead of ToUint32 in unsigned right

shift operators. BigInt-3 is due to missing BigInt primitives in the

Number constructor. On average, three errors existed for 157 days

in the proposal.

After fixing the errors in the proposal, we extracted a semantics

from the revised specification. The extracted semantics passed all

207 applicable tests for the proposal and 18,064 applicable tests

for ES10. Thus, JISET also correctly extracts an IR-based semantics

from future proposals, which implies that it is forward compatible.

6 RELATEDWORK

Our technique is closely related to three fields: parser generation,

automatic semantics extraction, and formal semantics of JavaScript.

Parser Generation: From Packrat parsing [15] with PEG [16],

recursive-descent parsers with backtracking support linear-time

parsing. However, it has the fundamental problem of ordered choices:

ab is silently unmatched with a / ab. While Generalized LL (GLL)

parsing [28] is basically recursive-descent with backtracking that

can support general context-free grammars even in the presence

of ambiguous grammars, its worst-time complexity is O(n3) for
the input size n and it does not support context-sensitive fea-

tures. Unlike GLL parsing, our lookahead parsing is applicable

for JavaScript parsers with context sensitive features such as posi-

tive/negative lookaheads. Moreover, the complexity of lookahead

parsing is O(k · n) for the constant number of tokens k . We experi-

mentally showed that it can generate parsers for the most recent

four versions of ECMAScript.
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Automatic Semantics Extraction: The closest work to ours is

the formal semantics extraction for x86 [22] and ARM [31]. They

utilized complex Natural Language Processing (NLP) and Machine

Learning (ML) to extract formal semantics of small-sized low-level

assembly languages. Another related work is Zhai et al. [33]’s auto-

matic model generation, which generates Java code from Javadoc

comments for API functions. Using NLP techniques and heuristic

methods, it produces candidate code and removes wrong ones by

testing them with actual implementation. Unlike their approach,

we introduce a semi-automatic synthesis using general compile

rules that represent common writing patterns of specifications. The

extracted semantics by JISET is also executable, which allows to

bridge gaps between the specification written in a natural language

and executable tests.

Several approaches defined the formal semantics of JavaScript.

Guha et al. [18] defined a core calculus of JavaScript expressing

non-core features using desugaring, but its correspondence with

ECMAScript is not obvious. KJS [25] and JaVerT [17] defined the

JavaScript semantics by manually converting ECMAScript to their

own formal languages. KJS mapped ES5.1 in the K framework [27]

and JaVerT converts the specification to their own IR. However,

they all target only ES5.1 or former and they do not provide any

solution for annual updates of ECMAScript. Our approach provides

a mechanized framework to synthesize JavaScript parsers and to

automatically extract semantics using a rule-based compilation

technique, which significantly reduces human efforts.

7 CONCLUSION

Annual updates of ECMAScript make it difficult to build program

analysis or formal verification of JavaScript due to the required hu-

man efforts in modeling a moving target. In this paper, we proposed

JISET, a tool that automatically extracts the syntax and semantics

as a parser and an AST-IR translator from ECMAScript written in

English. The tool automatically extracts all the syntax and 95.03%

of the semantics for the most recent four versions of ECMAScript

(ES7 to ES10). We evaluated the correctness of the tool by testing

the extracted semantics from ES10 with Test262, the official confor-

mance suite. Using 1,709 failed tests, we found nine specification

errors, four of which are newly discovered, confirmed by TC39,

and planned to be integrated in ES11. After fixing the errors, the

extracted semantics passed all 18,064 applicable tests in Test262. We

also showed that JISET is forward compatible by applying it to nine

proposals to be included in ES11, which let us find three errors in

the BigInt proposal. We believe that JISET can dramatically reduce

human efforts in building various JavaScript tools correctly.
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