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Abstract—JavaScript is one of the mainstream programming
languages for client-side programming, server-side programming,
and even embedded systems. Various JavaScript engines devel-
oped and maintained in diverse fields must conform to the syntax
and semantics described in ECMAScript, the standard specifica-
tion of JavaScript. Since an incorrect description in ECMAScript
can lead to wrong JavaScript engine implementations, checking
the correctness of ECMAScript is critical and essential. However,
all the specification updates are currently manually reviewed by
the Ecma Technical Committee 39 (TC39) without any automated
tools. Moreover, in late 2014, the committee announced the yearly
release cadence and open development process of ECMAScript to
quickly adapt to evolving development environments. Because of
such frequent updates, checking the correctness of ECMAScript
becomes more labor-intensive and error-prone.

To alleviate the problem, we propose JSTAR, a JavaScript
Specification Type Analyzer using Refinement. It is the first
tool that performs type analysis on JavaScript specifications and
detects specification bugs using a bug detector. For a given spec-
ification, JSTAR first compiles each abstract algorithm written
in a structured natural language to a corresponding function in
IRES, an untyped intermediate representation for ECMAScript.
Then, it performs type analysis for compiled functions with
specification types defined in ECMAScript. Based on the result
of type analysis, JSTAR detects specification bugs using a bug
detector consisting of four checkers. To increase the precision
of the type analysis, we present condition-based refinement for
type analysis, which prunes out infeasible abstract states using
conditions of assertions and branches. We evaluated JSTAR with
all 864 versions in the official ECMAScript repository for the
recent three years from 2018 to 2021. JSTAR took 137.3 seconds
on average to perform type analysis for each version, and detected
157 type-related specification bugs with 59.2% precision; 93 out
of 157 bugs are true bugs. Among them, 14 bugs are newly
detected by JSTAR, and the committee confirmed them all.

Index Terms—JavaScript, mechanized specification, type anal-
ysis, refinement, bug detection

I. INTRODUCTION

JavaScript is one of the most popular programming lan-

guages. According to the 2020 State of the Octoverse1, the

annual report of GitHub, the most dominating programming

language in GitHub repositories was JavaScript since 2014 to

2020. While JavaScript was initially designed for client-side

programming in web browsers, it is now widely used in server-

side programming [1] and even in embedded systems [2]–

1https://octoverse.github.com/

[4]. Developers in diverse fields build and maintain JavaScript

engines conforming to ECMAScript, the JavaScript standard

specification, which describes the syntax and semantics of

JavaScript in a natural language.

The correctness of ECMAScript is critical because an

incorrect description in the specification can lead to wrong im-

plementations of JavaScript engines in various fields. However,

all the specification updates are currently manually reviewed

by the Ecma Technical Committee 39 (TC39) without any

automated tools. Such a manual review process is inherently

labor-intensive and error-prone, making ECMAScript vulnera-

ble to specification bugs. Besides, in late 2014, the committee

announced the yearly release cadence and open development

process of ECMAScript to quickly adapt to evolving devel-

opment environments. According to Park et al. [5], the aver-

age number of updated steps of abstract algorithms between

consecutive releases from ECMAScript 2016 (ES7) to 2019

(ES10) is 9645.5. In the official ECMAScript repository, 1,355

pull requests and 2,005 commits exist in the master branch.

Therefore, manually checking all the frequent specification

updates is a challenging task.

Unfortunately, no existing tools can automatically detect

bugs in rapidly evolving JavaScript specifications written

in English. Thus, the ECMAScript committee has pursued

various manual annotations in abstract algorithms to reduce

specification bugs. First, the committee has introduced two

kinds of annotations: 1) assertions to denote assumptions at

specific points of abstract algorithms and 2) two prefixes ? and

! to represent whether the execution of an abstract algorithm

completes abruptly or not. For example, “Assert: Type(O) is

Object” denotes that the variable O always has an Object

value at the point of the assertion, and “? GetV(V, P)” denotes

that the execution of GetV(V, P) may complete abruptly. Such

annotations help readers understand specifications clearly, and

they are also helpful for specification-based tools2 such as

JavaScript engines [4], [6]–[8], debuggers [9], static analyz-

ers [10]–[13], and verification tools [14], [15]. Second, the

committee has started internal discussions on type annota-

tions for variables, parameters, and return values of abstract

2https://github.com/tc39/ecmarkup/issues/173
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algorithms3. However, any kinds of manual annotations are

labor-intensive and error-prone, and they do not provide any

automatic mechanism to detect specification bugs.

To alleviate this problem, we propose a novel tool JSTAR,

a JavaScript Specification Type Analyzer using Refinement.

The main challenge of ECMAScript type analysis to stati-

cally detect type-related specification bugs automatically is

that ECMAScript describes abstract algorithms in a natural

language, English. While researchers [16]–[18] have formally

defined various JavaScript semantics for different versions of

ECMAScript by hand, manual formalization is not suitable

for automatically detecting bugs in rapidly evolving JavaScript

specifications. Thus, recent approaches in diverse fields such

as system architectures [19], [20], network protocols [21], and

language specifications [22], [23] have utilized information

directly extracted from specifications written in a natural

language to lessen such burdens. Among them, JISET [5] com-

piles ECMAScript abstract algorithms written in a structured

natural language to functions in IRES, an untyped intermediate

representation for ECMAScript. Therefore, JSTAR leverages

JISET to mechanically handle JavaScript specifications.

JSTAR takes mechanized JavaScript specifications from

JISET and performs a type analysis of compiled functions

using specification types defined in ECMAScript. ECMAScript

contains not only JavaScript language types but also specifica-

tion types such as abstract syntax trees (ASTs), internal list-

like structures, and internal records including environments,

completions, and property descriptors. We define their type

hierarchies based on subtype relations. For records and AST

types, we also define their fields. Using such type information,

JSTAR performs a type analysis and detects specification bugs

using a bug detector consisting of four checkers: 1) a reference

checker, 2) an arity checker, 3) an assertion checker, and 4)

an operand checker. JSTAR also uses a condition-based refine-
ment for type analysis, which prunes out infeasible parts in

abstract states by using conditions of assertions and branches

to improve the precision of type analysis. We evaluated JSTAR
with all 864 versions in the official ECMAScript repository

for the recent three years from 2018 to 2021. The experiments

showed that the refinement technique could reduce the number

of false-positive bugs caused by spurious types inferred by

imprecise type analysis.

The main contributions of this paper are as follows:

• We present JSTAR, the first tool that performs a type
analysis on ECMAScript written in a natural language

to check the correctness of JavaScript language specifi-

cations. JSTAR automatically detects type-related spec-

ification bugs such as unknown variables, duplicated

variables, missing parameters, assertion failures, ill-typed

operands, and unchecked abrupt completion bugs.

• We present a condition-based refinement for type analysis

of ECMAScript to reduce the number of false-positive

bugs by enhancing the analysis precision. We show that

the refinement technique increases the analysis precision

3https://github.com/tc39/ecma262/pull/545#issuecomment-559292107

Fig. 1: JSTAR: a type analyzer and a bug detector for mech-

anized specifications extracted from ECMAScript by JISET

from 33.0% to 59.2% by removing 122 false bugs and

detecting one more true bug.

• We demonstrate the practicality of JSTAR. It takes 137.3

seconds on average to perform a type analysis for each

version of ECMAScript and detected 157 type-related

specification bugs with 59.2% precision; 93 out of 157

bugs are true bugs. Among them, JSTAR newly detected

14 bugs, and the ECMAScript committee confirmed them

all.

II. OVERVIEW

In this section, we demonstrate the overall structure of

JSTAR depicted in Figure 1. It consists of three components: 1)

specification extraction, 2) type analysis, and 3) bug detection.

A. Specification Extraction

JSTAR extracts the JavaScript syntax and semantics using

JISET and extracts specification types from ECMAScript.
a) Syntax and Semantics: ECMAScript describes the

JavaScript syntax in an EBNF notation and the semantics using

abstract algorithms written in a structured natural language.

From ECMAScript, JISET synthesizes AST structures for

syntax and compiles the abstract algorithms to IRES functions

with parameters and local variables for semantics. For ex-

ample, the algorithm step “ ”

is compiled to an IRES instruction let baseObj = ↓
ToObject(V.Base). To make it suitable for type analysis,

we modify IRES as formally defined in Section III-A.
b) Types: In addition to JavaScript types, JSTAR repre-

sents three kinds of specification types. First, because ASTs

are values in abstract algorithms, they can be stored in

variables and passed as function arguments. For ASTs, we

use their production names as their types and automatically

link their corresponding syntax-directed algorithms to their

fields. Second, ECMAScript supports various record types and

fields whose possible values are defined in their corresponding

tables. For example, “Table 9: Completion Record Fields” in

the latest ECMAScript describes the fields of the completion

records. Thus, we manually model the fields of record types

based on the tables in the latest version and use them in a type

analysis. Third, for list-like structures, we define the empty list

type [] and parametric list types [τ].

607



Fig. 2: An example JavaScript program with related previous specification bugs and their bug fixes

B. Type Analysis

JSTAR performs a type analysis with flow-sensitivity and

type-sensitivity for arguments. Each function is split into mul-

tiple flow- and type-sensitive views, and an abstract state stores

mapping from views to corresponding abstract environments.

To handle views separately, we use a worklist algorithm.

The type analyzer consists of two sub-modules: an analysis
initializer and an abstract transfer function.

a) Analysis Initializer: It defines the initial abstract state

and the initial set of views for a worklist. ECMAScript

provides three kinds of abstract algorithms: normal, syntax-
directed, and built-in. As for entry points of type analysis,

we use syntax-directed algorithms and built-in algorithms

because they have their parameter types. For each entry point,

the initializer defines its abstract environment with parameter

types and adds the flow- and type-sensitive views of the entry

point to the worklist.

b) Abstract Transfer Function: For each iteration, the

abstract transfer function gets a specific view from the worklist

and updates the abstract environments of the next views based

on the abstract semantics. It adds the next views to the worklist

if it changes their abstract environments, and the iteration

finishes when the worklist becomes empty. To increase the

analysis precision, we perform a condition-based refinement

for an abstract environment when the current control point is

a branch or an assertion as described in Section III-C.

C. Bug Detection

To detect specification bugs utilizing the type analysis, we

develop four checkers in a bug detector. We explain the targets

of the checkers with an example JavaScript program that

contains related previous specification bugs and their bug fixes,

as shown in Figure 2.

a) Reference Checker: The example JavaScript program

first defines a variable f without initialization, which has the

value undefined. It then assigns an anonymous function to f

using the operator ??=. While the corresponding Evaluation

algorithm in Figure 2(a) originally used the GetReferenced-
Name algorithm to get a reference name on line 4.a, a

contributor removed the GetReferencedName algorithm and

replaced all its invocations with accesses of the field [[Refer-

encedName]] on October 28, 2020. However, the contributor

missed several cases including the semantics of ??=, which

was fixed by another contributor on November 3, 2020. Thus,

the unknown variable bug for GetReferencedName lasted for

7 days, which the reference checker can detect.

b) Arity Checker: The program finally calls f with

an argument true. During the initialization of the function

call, IteratorBindingInitialization in Figure 2(b) is executed

with additional parameters iteratorRecord and environment to

assign argument values to parameters. However, a contributor

missed passing additional arguments to them on line 2 in Iter-
atorBindingInitialization of ArrowParameters on September

6, 2018. It caused an arity mismatch bug, which lasted for 533

days until another contributor fixed it on February 20, 2020.

The arity checker can detect such arity mismatches.

c) Assertion Checker: During the initialization of the

function call, IteratorBindingInitialization of FormalParam-
eter in Figure 2(c) contains another bug. Even though the

additional environment parameter may contain undefined, a

contributor did not consider it on line 5 in the initial commit

of the open development process on September 22, 2015.

It caused an assertion failure bug, which lasted for 1,297

days until another contributor fixed it on April 10, 2019. The

assertion checker can detect such assertion failures.

d) Operand Checker: After the function call initializa-

tion, the parameter x has the value true, and Math.round

in Figure 2(d) is invoked with the argument true. The

Math.round built-in library first converts the given parameter

x to its corresponding number value n using ToNumber, and

performs the remaining steps using n. However, a contributor

mistakenly used x instead of n on lines 3 and 4 on September

11, 2020. This bug caused the algorithm to compare the

boolean value true with the numeric value 0.5 or 0 in the
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Fig. 3: Fields of completion records in ECMAScript 2020

example code. This bug lived for two days until another

contributor fixed it, and the operand checker can detect them.

In the remainder of this paper, we explain the details of how

to perform type analysis for IRES functions and how to increase

the analysis precision using the condition-based refinement

(Section III) and how to detect type-related specification bugs

(Section IV). After we evaluate JSTAR (Section V), we discuss

related work (Section VI) and conclude (Section VII).

III. TYPE ANALYZER

This section formally defines a modified IRES and its type

analysis and presents a condition-based refinement of the type

analysis to improve the analysis precision.

A. Intermediate Representation

IRES is an untyped intermediate representation for EC-

MAScript [5]. We modify it as a label-based language to make

it suitable for type analysis as follows:

Functions F � f ::= def x(x∗, [x∗])l
Instructions I � i ::= let x = e | x = (e e∗) | assert e

| if e l l | return e | r = e
References r ::= x | r[e]
Expressions e ::= t {[x : e]∗} | [e∗] | e : τ | r?

| e⊕ e | � e | r | c | p
Primitives P � p ::= undefined | null | b | n | j | s | @s
Types T � τ ::= t | [] | [τ] | js | prim

| undefined | null | bool | numeric
| num | bigint | str | symbol

A modified IRES program P = (func, inst, next) consists of

three mappings; func : L → F maps labels to their functions,

inst : L → I maps labels to their instructions, and next :
L → L maps labels to their next labels, where a label l ∈ L
denotes a program point. A function def f(x∗, [y∗])l ∈ F
consists of its name f, normal parameters x∗, optional parame-

ters y∗, and a body label l . For presentation brevity, we assume

that no global variables exist in this paper. An instruction

i is a variable declaration, a function call, an assertion, a

branch, a return, or a reference update. An invocation of an

abstract algorithm in ECMAScript is compiled to a function

call instruction with a new temporary variable. We represent

loops using branch instructions with cyclic pointing of labels

in next. A reference r is a variable x or a field access r[e].

We write r.f to briefly represent r["f"]. An expression e is

a record, a list, a type check, an existence check, a binary

operation, a unary operation, a reference, a constant, or a

Fig. 4: A graphical representation of the subtype relation <:

primitive, which is either undefined, null, a Boolean b,
a Number n, a BigInt j, a String s, or a Symbol @s.

A type τ ∈ T is either a nominal type t, an empty list type

[], a parametric list type [τ], a JavaScript type js, a primitive

type prim, a numeric type numeric, num, bigint, str, or

symbol. A nominal type t is either 1) an AST type with its

corresponding syntax-directed algorithms as its fields, or 2) a

record type with specific fields as described in ECMAScript.

For example, Figure 3 shows an excerpt from ECMAScript

2020 (ES11) that describes the fields of completion records4,

which we model as follows:

Completion= {

Type : {cnormal, cbreak, ccontinue, creturn, cthrow},
Value : {js, cempty}, Target : {str, cempty}

}

The subtype relation <:⊆ T× T between types is depicted

in Figure 4; a directed edge from τ ′ to τ denotes τ ′ <: τ , and

the relation is reflexive and transitive. The subtype relation

depends on the nominal types defined in ECMAScript. We

extract the subtype relation for AST types from the JavaScript

syntax. For example, consider the syntax-directed abstract

algorithm in Figure 2(c). Because the nonterminal Bindin-
gElement is the unique alternative of the FormalParameter
production, we automatically extract the subtype relation:

BindingElement <: FormalParameter. Using the subtype rela-

tion, the expression e : τ checks whether the evaluation result

of e has type τ ′ satisfying τ ′ <: τ .

We define a denotational semantics of the modified IRES for

instructions �i�i : S → S, references �r�r : S → S × V, and

expressions �e�e : S → S × V where S and V denote states

and values, respectively. For brevity, we omit it in this paper

and refer the interested readers to a companion report [24].

B. Type Analysis

We design a type analysis for the modified IRES based on

the abstract interpretation framework [25], [26] with analysis

sensitivity [27]. We extend types as follows:

T � τ ::= · · · | f | c | ? | b | s | normal(τ) | abrupt
with function types f , constant types c, and the absent type

? representing the absence of variables. Boolean values b,
String values s, normal(τ) denoting normal completions

4https://262.ecma-international.org/11.0/#table-8
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�let x = e�
�
i(l , τ)(d

�) = ({(next(l ), τ) 	→ σ�[x 	→ �e�
�
e(σ

�)]},∅)

�x = (e e1 · · · en)��i(l , τ)(d�) = (m′, r′)

where

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

τ � = �e�
�
e(σ

�) ∧ τ �1 = �e1�
�
e(σ

�) ∧ · · · ∧ τ �n = �en�
�
e(σ

�) ∧
T ′ = {u̇p([τ1, · · · , τn]) | τ1 ∈ τ �1 ∧ · · · ∧ τn ∈ τ �n} ∧
f = def f(p1, · · · , [ · · · , pkf

])lf ∧
σ�
f,τ ′ = [p1 	→ {τ ′[1]}, · · · , pkf

	→ {τ ′[kf ]}] ∧
m′ = {(lf , τ ′) 	→ σ�

f,τ ′ | f ∈ τ � ∧ τ ′ ∈ T ′} ∧
r′ = {(f, τ ′) 	→ {(next(l ), τ , x)} | f ∈ τ � ∧ τ ′ ∈ T ′}

�return e�
�
i(l , τ)(d

�) = ({(lr, τ r) 	→ σ�
r | (lr, τ r, x) ∈ R},∅)

where R = r(func(l ), τ) ∧ σ�
r = m(lr, τ r)[x 	→ �e�

�
e(σ

�)]

�assert e�
�
i(l , τ)(d

�) = ({(next(l ), τ) 	→ pass(e, #t)(σ�)},∅)

�if e lt lf�
�
i(l , τ)(d

�) = ({(lt, τ) 	→ pass(e, #t)(σ�),

(lf, τ) 	→ pass(e, #f)(σ�)},∅)

�x = e�
�
i(l , τ)(d

�) = ({(next(l ), τ) 	→ σ�[x 	→ �e�
�
e(σ

�)]},∅)

�r[e0] = e1�
�
i(l , τ)(d

�) = ({(next(l ), τ) 	→ σ�},∅)

where d� = (m, r) ∧ σ� = m(l , τ)

Fig. 5: Abstract semantics of instructions for a program P = (func, inst, next), �i�
�
i : (L× T∗) → S� → S�

with Value fields of type τ , and abrupt denoting abrupt

completions serve to improve the analysis precision.

Using the extended types, we define abstract states with

flow-sensitivity and type-sensitivity for arguments:

Abstract States d� ∈ S� = M× R
Result Maps m ∈ M = L× T∗ → E�

Return Point Maps r ∈ R = F× T∗ → P(L× T∗ × X)
Abstract Environments σ� ∈ E� = X → T�

Abstract Types τ � ∈ T� = P(T)

An abstract state d� ∈ S� is a pair of a result map and a

return point map. A result map m ∈ M represents an abstract

environment for each flow- and type-sensitive view, and a

return point map r ∈ R represents possible return points of

each function with a type-sensitive context; each return point

consists of a view for the caller function and a variable that

represents the return value. An abstract environment σ� ∈ E�

represents possible types for variables, and σ�(x) = {?} when

x is not defined in σ�. An abstract type τ � ∈ T� is a set of

types. We define the join operator �, the meet operator �, and

the partial order 
 for most of abstract domains in a point-wise

manner, and define the operators for types with a normalization

function norm because of their subtype relations:

τ �0 � τ �1 = norm(τ �0 ∪ τ �1)

τ �0 � τ �1 = norm({τ0 ∈ τ �0 | {τ0} 
 τ �1} ∪ {τ1 ∈ τ �1 | {τ1} 
 τ �0})
τ �0 
 τ �1 ⇔ ∀τ0 ∈ τ �0 . ∃τ1 ∈ norm(τ �1). s.t. τ0 <: τ1

where norm(τ �) = {τ ∈ τ � | �τ ′ ∈ τ � \ {τ}. s.t. τ <: τ ′}.

We now define the abstract semantics of instructions �i�
�
i :

(L × T∗) → S� → S� in Figure 5 and the abstract semantics

of references �r�
�
r : E� → T� and expressions �e�

�
e : E

� → T�

in a companion report [24]. To avoid the explosion of type-

sensitive views, we upcast the argument type before function

calls with the following function:

up(τ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

normal(up(τ ′)) if τ = normal(τ ′)
[up(τ ′)] if τ = [τ ′]
str if τ = s
bool if τ = b
τ otherwise

and u̇p denotes a point-wise extension of up for type se-

quences. For branches and assertions, we use the following

pass function to prevent infeasible control flows:

pass(e, b)(σ�) =

{
refine(e, b)(σ�) if b 
 �e�

�
e(σ

�)
∅ otherwise

where refine prunes out infeasible parts in abstract environ-

ments using their conditions as we describe in Section III-C.

Then, we define the abstract semantics �P �
�

of a program P
as the least fixpoint of the abstract transfer function F � : S� →
S�:

�P �
�
= limn→∞(F �)n(d�ι)

F �(d�) = d� �
(⊔

(l ,τ)∈Domain(m) �inst(l )��i(l , τ)(d
�)
)

where d� = (m, ) and d�ι denotes the initial abstract state.

As described in Section II, d�ι contains the entry points of

all syntax-directed algorithms without additional parameters

and built-in algorithms with appropriate abstract environments.

For a syntax-directed algorithm, we construct its abstract

environment containing the variable this with its production

type and other variables for nonterminals. For example, the

syntax-directed algorithm in Figure 2(a) is initialized with the

following abstract environment:

this 	→ {AssignmentExpression},
LeftHandSideExpression 	→ {LeftHandSideExpression},
AssignmentExpression 	→ {AssignmentExpression}

For built-in algorithms, we assign pre-defined variables this,

args, and NewTarget with their corresponding types and

parameters with js types. For example, the following abstract

environment is for the built-in algorithm Math.round in

Figure 2(d):

this 	→ {js}, args 	→ {[js]},
NewTarget 	→ {Object, undefined}, x 	→ {js}

C. Condition-based Refinement

We present a condition-based refinement of the type analysis

for the modified IRES to enhance the analysis precision. It

prunes out infeasible parts in abstract environments using the

conditions of branches and assertions. We formally define the

refine function as follows:
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TABLE I: Type-related specification bugs fixed by pull re-

quests for the recent three years from 2018 to 2021

Category Bug Kind # Pull Requests # Bug Fixes

Reference
UnknownVar 5 12

DuplicatedVar 2 12

Arity MissingParam 2 4

Assertion Assertion 4 5

Operand
NoNumber 1 2

Abrupt 5 6

Total 19 41

refine(!e, b)(σ�) = refine(e,¬b)(σ�)

refine(e0 || e1, b)(σ
�) =

{
σ�
0 � σ�

1 if b

σ�
0 � σ�

1 if ¬b
refine(e0 && e1, b)(σ

�) =

{
σ�
0 � σ�

1 if b

σ�
0 � σ�

1 if ¬b
refine(x.Type == cnormal, #t)(σ

�) = σ�[x 	→ τ �x � normal(T)]

refine(x.Type == cnormal, #f)(σ
�) = σ�[x 	→ τ �x � {abrupt}]

refine(x == e, #t)(σ�) = σ�[x 	→ τ �x � τ �e ]

refine(x == e, #f)(σ�) = σ�[x 	→ τ �x \ �τ �e�]
refine(x : τ, #t)(σ�) = σ�[x 	→ τ �x � {τ}]
refine(x : τ, #f)(σ�) = σ�[x 	→ τ �x \ {τ ′ | τ ′ <: τ}]

refine(e, b)(σ�) = σ�

where σ�
j = refine(ej , b)(σ

�) for j = 0, 1, τ �e = �e�
�
e(σ

�),

and �τ �� returns {τ} if τ � denotes a singleton type τ , or returns

∅, otherwise.

IV. BUG DETECTOR

We develop a bug detector to statically detect type-related

specification bugs in ECMAScript using an augmented ab-

stract transfer function F �
a with additional checkers. Before

implementing checkers, we manually investigated pull requests

for the recent three years from 2018 to 2021 to identify

important bugs to detect. As summarized in Table I, we found

19 pull requests that fixed 41 type-related specification bugs,

and classified the bugs into four categories with six kinds.

To detect them automatically, we implement four checkers: a

reference checker, an arity checker, an assertion checker, and

an operand checker.

A. Reference Checker
ECMAScript abstract algorithms dynamically introduce

variables in any contexts. A reference bug occurs when trying

to access variables not yet defined (UnknownVar) or to redefine

variables already defined (DuplicatedVar). According to our

manual investigation of the pull requests, the reference bug

is the most prevalent type-related specification bugs; five pull

requests fixed 12 unknown variable bugs and two pull requests

fixed 12 duplicated variable declaration bugs. We implement a

reference checker by adding additional checks to the abstract

semantics of variable lookups and variable declarations as

follows:

�x�
�
e(σ

�) =

{
unknown variable x if �x�

�
r(σ

�) = {?}
· · · otherwise

�let x = e�
�
i(l , τ)(d

�) =

{
already defined variable x if τ � = {#t}
· · · otherwise

where τ � = �x?�
�
e(d

�(l , τ))

If the abstract semantics of a variable lookup for x is a

singleton {?}, x is always an unknown variable. For example,

consider the syntax-directed algorithm in Figure 2(a). Since

the GetReferencedName algorithm is removed, the variable

GetReferencedName does not exist in abstract environments

and its lookup returns {?}. Thus, the reference checker reports

the unknown variable bug for GetReferencedName. For

duplicated variable declarations, the reference checker utilizes

the abstract semantics of the existence check �x?�
�
e to see

whether the variable x of each variable declaration is already

defined.

B. Arity Checker

The arity of a function f = def f(p1, · · · ,pn,[ · · · , pm])l
is an interval [n,m] where n and m− n denote the numbers

of normal and optional parameters, respectively. In function

invocations, an arity bug occurs when the number of argu-

ments does not match with the function arity (MissingParam).

In the last three years, two pull requests fixed four missing

parameter bugs. The arity checker detects them by adding an

additional check to the abstract semantics of the function call

instruction:

�x = (e e1 · · · ek)��i(l , τ)(d�) ={
missing parameters pk+1, · · · , pnf

if ∃f ∈ τ �. s.t. k < nf

· · · otherwise

where f = def f(p1, · · · , pnf
, [ · · · , pmf

])l ∧
τ � = �e�

�
e(d

�(l , τ)).

For each function f in the abstract semantics of the function

expression e, the arity checker compares the number of

arguments with the arity of f to detect missing parameters.

For example, consider the syntax-directed algorithm in Fig-

ure 2(b). The algorithm invocation on line 2 is compiled to

the following function call instruction:

x = (formals.IteratorBindingInitialization formals)

using a temporary variable x. Because it passes only a single

argument formals even though the function arity is [3, 3], the

arity checker reports missing parameter bugs for two additional

parameters iteratorRecord and environment.

C. Assertion Checker

An assertion failure (Assertion) is a specification bug that

occurs when the condition of an assertion instruction is not

true. We found four pull requests that fixed five assertion

failures. The assertion checker detects them using an additional

check in the abstract semantics of the assertion instruction:

�assert e�
�
i(l , τ)(d

�) =

{
assertion failure e if {#t} �
 τ �

· · · otherwise

where τ � = �e�
�
e(d

�(l , τ))

It checks whether the abstract semantics of the condi-

tion expression e subsumes {#t}. For example, consider

the syntax-directed algorithm in Figure 2(c). The parameter

environment of this algorithm has an environment record or

undefined. Since type sensitivity divides the abstract types
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(a) The number of functions (b) The number of views (c) The number of iterations (d) The analysis time

Fig. 6: The statistics of the type analysis using JSTAR for 864 versions of ECMAScript

of arguments to upcasted single types, there are two different

abstract environments whose variable environment points

to {Environment} or {undefined}. When environment

is {Environment}, the abstract semantics of the assertion

condition environment = originalEnv is {bool}. Even

though we know that the type of originalEnv is also

{Environment}, because Environment is not a single-

ton type, we cannot conclude that they are the exactly

same environment. Thus, the assertion checker does not

report any bug for this case. However, if environment

is {undefined}, the abstract semantics of the condition

environment = originalEnv is {#f} because an envi-

ronment is never equal to undefined. Therefore, the as-

sertion checker reports an assertion failure for the condition

environment = originalEnv.

D. Operand Checker

An ill-typed operand bug occurs when the type of an

operand does not conform to its corresponding parameter type.

The operand checker detects such ill-typed operand bugs by

additional checks in the abstract semantics of operations:

�e0 ⊕ e1�
�
e(σ

�) =

⎧⎨
⎩

ill-typed operand e0 if �e0�
�
r(σ

�) �
 τ �0
ill-typed operand e1 if �e1�

�
r(σ

�) �
 τ �1
· · · otherwise

�� e�
�
e(σ

�) =

{
ill-typed operand e if �e�

�
r(σ

�) �
 τ �

· · · otherwise

where τ �0 , τ �1 , and τ � are expected abstract types of e0, e1,

and e, respectively. The additional checks report when a

given operand does not conform to its expected type. Our

manual investigation found two non-numeric operand bugs

(NoNumber) in one pull request and six unchecked abrupt

completion bugs (Abrupt) in five pull requests.

For an example non-numeric operand bug, consider the

built-in algorithm Math.round in Figure 2(d). The types of x

and n are {js} and {num}, respectively, because ToNumber
always returns number values or abrupt completions, and the

prefix ? removes the latter case. The built-in algorithm misuses

x rather than n on lines 3 and 4, and because the expected

abstract type {num, bigint} does not subsume {js}, the

operand checker reports non-numeric operand bugs.

An unchecked abrupt completion bug occurs when an actual

value is necessary but it is an abrupt completion. ECMAScript

has a special implicit conversion for normal completions when

their actual values stored in the Value field are necessary.

An actual value is necessary in various contexts such as

conditions, values of field updates, and operands of operators.

For example, if the variable x has a normal completion with

42 as its actual value, x + 1 should be 43 because the normal

completion gets implicitly converted into its actual value 42.

We define a unary operator ↓ to explicitly represent this

conversion:

↓ v =

⎧⎨
⎩

v if v is not a completion

v.Value if v is normal

unchecked abrupt completion v otherwise

The operand checker detects unchecked abrupt completion

bugs by assuming that the operator ↓ is used when the actual

value is necessary.

V. EVALUATION

We implemented JSTAR as an open-source tool5 in Scala by

extending JISET, a JavaScript IR-based semantics extraction

toolchain [5], with a worklist-based fixpoint algorithm for type

analysis. Thus, JSTAR reports type-related specification bugs

detected in fully compiled abstract algorithms by JISET. For

built-in libraries, JSTAR analyzes the abstract algorithms of the

essential built-in objects: Array, Object, Function, Math,

Proxy, and objects for JavaScript primitive types.

We evaluate JSTAR using the following research questions:

• RQ1. (Performance) How long does JSTAR take to

perform type analysis for JavaScript specifications?

• RQ2. (Precision) How many type-related specification

bugs detected by JSTAR are true bugs?

• RQ3. (Effectiveness of Refinement) Does the condition-

based refinement improve the analysis precision with

modest performance overhead?

• RQ4: (Detection of New Bugs) Does JSTAR detect new

specification bugs in the latest version of ECMAScript?

Because the draft of the next ECMAScript (ES12, 2021) is

fixed on March 9, 2021, we analyzed all 864 versions in

the official ECMAScript repository6 for the last three years

from January 1, 2018 to March 9, 2021. We performed our

experiments on five Ubuntu machines equipped with 4.2GHz

Quad-Core Intel Core i7 and 32GB of RAM.

5https://github.com/kaist-plrg/jstar
6https://github.com/tc39/ecma262
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TABLE II: The analysis precision of JSTAR without refinement (no-refine), with refinement (refine), and their difference (Δ)

Checker Bug Kind Precision = (# True Bugs) / (# Detected Bugs)
no-refine refine Δ

Reference
UnknownVar

62 / 106 ( 58.5%)
17 / 60 ( 28.3%)

63 / 78 ( 80.8%)
17 / 31 ( 54.8%)

+1 / -28 (+22.3%)
/ -29 (+26.5%)

DuplicatedVar 45 / 46 ( 97.8%) 46 / 47 ( 97.9%) +1 / +1 ( +0.1%)
Arity MissingParam 4 / 4 (100.0%) 4 / 4 (100.0%) 4 / 4 (100.0%) 4 / 4 (100.0%) / ( %) / ( %)

Assertion Assertion 4 / 56 ( 7.1%) 4 / 56 ( 7.1%) 4 / 31 ( 12.9%) 4 / 31 ( 12.9%) / -25 ( +5.8%) / -25 ( +5.8%)

Operand
NoNumber

22 / 113 ( 19.5%)
2 / 65 ( 3.1%)

22 / 44 ( 50.0%)
2 / 6 ( 33.3%)

/ -69 (+30.5%)
/ -59 (+30.3%)

Abrupt 20 / 48 ( 41.7%) 20 / 38 ( 52.6%) / -10 (+11.0%)

Total 92 / 279 (33.0%) 93 / 157 (59.2%) +1 / -122 (+26.3%)

(a) Life spans sorted by creation (b) The histogram of life spans

Fig. 7: Life spans of true bugs

A. Performance

Figure 6 shows the statistics of the type analysis using

JSTAR for 864 versions of ECMAScript: (a) the number of

analyzed functions, (b) the number of flow- and type-sensitive

views, (c) the number of worklist iterations, and (d) the analy-

sis time. For each version, JSTAR analyzed 1,696.6 functions

on average. Since ECMAScript has gradually evolved, it ana-

lyzed 1,491 functions for the first version in 2018 but analyzed

1,864 functions in the latest. JSTAR analyzes functions with

flow- and type-sensitive views. On average, each version has

92.0K views and each function has 54.1 views.

We measured the performance of JSTAR with the worklist

iteration number and the analysis time. For each version of

ECMAScript, JSTAR took 137.3 seconds with 301.6K worklist

iterations on average. The average analysis time is 8.0 seconds

for specification extraction (extract), 128.5 seconds for type

analysis (analyze), and 0.8 seconds for bug detection (detect).
The performance overhead is modest enough for JSTAR to be

integrated in the open development process of ECMAScript.

B. Precision

We measured the analysis precision with the ratio of true

bugs in the reported bugs by JSTAR. As summarized in the

refine column of Table II, the analysis precision is 59.2%; 93

out of 157 detected bugs are true bugs. The reference checker

detected the most bugs with 80.8% precision; 17 unknown

variables (UnknownVar) and 46 duplicated variable declara-

tions (DuplicatedVar) are true bugs. We found four missing

parameters (MissingParam) with 100.0% precision and four

assertion failures (Assertion) with 12.9% precision. Finally,

the operand checker detected two non-numeric operand bugs

(NoNumber) with 33.3% precision and 20 unchecked abrupt

completion bugs (Abrupt) with 52.6% precision.

To understand the impact of the detected true bugs, we

extended JSTAR to automatically extract when they are created

and resolved in the ECMAScript official repository. A bug is

created when it exists in a specific version but does not exist in

its previous version, and a bug is resolved vice versa. The life
span of a bug denotes the number of days between the created

date and the resolved date. Figure 7 illustrates the life spans of

true bugs; Figure 7(a) depicts the life spans sorted by creation

and Figure 7(b) depicts the histogram of the life spans in a

logarithmic scale. Among 93 true bugs, 49 bugs are inherited,

which means that they are created before 2018. Moreover, 14

bugs still exist in the latest ECMAScript, which are newly

detected by JSTAR. We discuss the details of 14 newly found

bugs in Section V-D. Even though we assume that 49 inherited

bugs are created on January 1, 2018, the average life span is

422.8 and the maximum life span is 1,164. All the bugs with

the maximum life span are inherited ones and they are all

newly detected.
We manually investigated 64 false-positive bugs to under-

stand why JSTAR detected them. Among them, 17 bugs are

due to extraction failure of mechanized specifications caused

by wrong writing styles. Because ECMAScript is written in

HTML, JISET extracts abstract algorithms using the emu-alg

HTML tag. Unfortunately, several abstract algorithms are

defined with the opening tag <emu-alg> but without the

closing tag </emu-alg>, which causes extraction failure of

mechanized specifications leading to false-positive bugs. The

remaining 47 bugs are due to imprecise analysis. We found

that 28 bugs are due to imprecise analysis of the conditions

of assertions and branches for specific function calls. For

example, consider the following algorithm step for GetValue:

Since IsPropertyReference always returns false when the

Base field of a given reference record is cunresolvable, the

field access V .[[Base]] cannot be cunresolvable on line 4.a.

However, because the type analysis does not compute such in-

formation, cunresolvable is also passed as the argument of

ToObject. We believe that an advanced refinement technique

can resolve this problem by pruning out infeasible field types

depending on specific contexts.

C. Effectiveness of Refinement
We measured the effectiveness of the condition-based refine-

ment by comparing the performance and the analysis precision

of JSTAR without (no-refine) and with refinement (refine).
For performance comparison, Figure 8 presents the iter-

ations and analysis time without and with refinement. Fig-

ures 8(a) and 8(c) are histograms of the iterations and analysis
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TABLE III: Type-related specification bugs newly detected by JSTAR in the official draft of ECMAScript 2021 (ES12)

Name Feature # Description Checker Created Life Span

ES12-1 Switch 3
Variables hasDuplicates and hasUndefinedLabels are already
defined in algorithms for case blocks of switch statements.

Reference 2015-09-22 1,996 days

ES12-2 Try 3
Variables hasDuplicates and hasUndefinedLabels are already
defined in algorithms for try statements.

Reference 2015-09-22 1,996 days

ES12-3 Arguments 1 A variable index is already defined in CreateMappedArgumentsObject. Reference 2015-09-22 1,996 days

ES12-4 Array 2 A variable succeeded is already defined in algorithms for Array objects. Reference 2015-09-22 1,996 days

ES12-5 Async 1 A variable value is already defined in Evaluation for yield expressions. Reference 2015-09-22 1,996 days

ES12-6 Class 1
A variable ClassHeritage is not defined in Contains
for tails of class declarations.

Reference 2015-09-22 1,996 days

ES12-7 Branch 1 A variable Statement is not defined in EarlyErrors for if statement. Reference 2015-09-22 1,996 days

ES12-8 Arguments 2
Abrupt completions are used in DefineOwnProperty and GetOwnProperty
for arguments objects without any checks.

Operand 2015-12-16 1,910 days

(a) The histogram of iterations (b) The ratio of iterations

(c) The histogram of time (d) The ratio of time

Fig. 8: Comparison of iterations and analysis time without

refinement (no-refine) and with refinement (refine)

time, respectively, and Figures 8(b) and 8(d) are scatter charts

for their ratios. Without refinement, the type analysis took

91.9 seconds with 261.5K iterations on average. After applying

refinement, the number of iterations is increased at least 0.99x,

at most 1.36x, and 1.16x on average, and the analysis time is

increased at least 1.05x, at most 1.99x, and 1.41x on average.

Table II shows the analysis precision without refinement,

with refinement, and their difference. The refinement improved

the analysis precision from 33.0% to 59.2% by removing 122

false-positive bugs and detecting one more true bug. Among

six bug kinds, the most significant improvement is for non-

numeric operand bugs (NoNumber) from 3.1% to 33.3% by

removing 59 false-positive bugs. The refinement technique

successfully prunes out non-numeric values for numeric types.

The refinement significantly increased the analysis precision

also for unknown variable bugs (UnknownVar) and assertion

failures (Assertion) by removing 29 and 25 false-positive bugs,

respectively. Because JSTAR can precisely analyze callees

of function invocations without refinement, we found no

improvement for missing parameter bugs (MissingParam).

D. Detection of New Bugs

Among 93 true bugs detected by JSTAR, 14 are newly

detected and still exist in the latest version of ECMAScript.

Table III summarizes the bugs, their related JavaScript lan-

guage features, and their life spans. Except for two bugs in

ES12-8, all bugs were introduced in the initial commit of the

open development on September 22, 2015. Thus, 12 newly

detected bugs last for 1,996 days until March 9, 2021. The two

bugs in ES12-8 were created when a contributor introduced the

prefixes ? and ! on December 16, 2015, and they last for 1,910

days. We reported the newly detected bugs to TC39, and all

of them were confirmed by the committee and will be fixed

in ECMAScript 2022 (ES13).

ES12-1 contains three bugs due to duplicated variable decla-

rations in three syntax-directed algorithms for the case block

of the switch statement: hasDuplicates in Contains-
DuplicateLabels and hasUndefinedLabels in Contain-
sUndefinedBreakTarget and ContainsUndefinedContinue-
Target. A case block optionally contains case clauses.

In the beginning of three algorithms, hasDuplicates or

hasUndefinedLabels is defined if the clauses exist. How-

ever, because the same variable is defined again after the

conditional steps, three algorithms for case blocks with case
clauses always have the duplicated variable declaration bugs

for hasDuplicates or hasUndefinedLabels. Similarly,

ES12-2 contains three bugs caused by the same reason in the

same abstract algorithms for the try statement.

The bug in ES12-3 is a reference bug for a duplicated

declaration of the variable index in the abstract algorithm

CreateMappedArgumentsObject. For each function call in

JavaScript programs, an arguments object is created by Cre-
ateMappedArgumentsObject. In the algorithm, the variable

index is defined to handle the index of a given list of

arguments. However, the variable is defined twice in step 14

and 17 of the algorithm.

ES12-4 contains two reference bugs for the already defined

variable succeeded in DefineOwnProperty of Array objects

and ArraySetLength. The Array objects are not ordinary

objects and have special algorithms for specific behaviors.

Two such algorithms are wrapper algorithms of Ordinary-
DefineOwnProperty, which updates object properties. While
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they define the variable succeeded to represent the result of

OrdinaryDefineOwnProperty, the variable is defined twice

in a specific condition.

The bug in ES12-5 is a reference bug for the already defined

variable value in Evaluation of the yield * expression. In

the evaluation of yield * e, the variable value is defined

twice to represent 1) the evaluation result of the given expres-

sion e in step 3, and 2) the iterator value in step 7.c.viii.1.

The bug in ES12-6 is a reference bug for the unknown

variable ClassHeritage in Contains for the tails of class
declarations. A tail of a class declaration consists of an

optional class extension with the extends keyword and a

class body. When the optional class extension does not exist,

the variable ClassHeritage is not defined but the Contains
algorithm tries to access it without any check of its existence.

The bug in ES12-7 is a reference bug for the unknown

variable Statement in EarlyErrors for the if statement.

In syntax-directed algorithms, when a production produces

multiple sub-ASTs, it uses ordinal numbers as prefixes of

variables. Because the if statement contains two sub-ASTs

produced by the Statement production, the ordinal number

prefixes are necessary for the variable Statement. However,

the EarlyErrors algorithm for the if statement uses the

variable without any ordinal number prefixes.

ES12-8 contains two operand type bugs related to abrupt

completions in DefineOwnProperty and GetOwnProperty
for arguments objects. The two algorithms define or get own

properties of arguments objects. They use the Get algorithm,

which returns JavaScript values stored in object properties

or abrupt completions. Thus, they should check whether the

results of Get are abstract completions or not before using

them but they use the results without any checking of abrupt

completion.

VI. RELATED WORK

Type analysis of JavaScript specifications has three related

topics: JavaScript tools, mechanized specification extraction,

and specification-based testing.

a) JavaScript Tools: ECMAScript is the standard lan-

guage specification for JavaScript maintained by TC39. In

late 2014, the committee announced its plan to release EC-

MAScript annually and adopt the open development process

to quickly adapt to evolving development environments. Var-

ious JavaScript engines such as Google V8 [6], GraalJS [7],

QuickJS [8], and Moddable XS [4] should conform to the syn-

tax and semantics described in annually updated ECMAScript.

Beyond JavaScript engines, diverse research projects use

JavaScript specifications. The main research direction has been

static analyzers such as JSAI [12], SAFE [10], TAJS [11],

and WALA [13] based on the abstract interpretation frame-

work [25], [26] with their own analysis techniques. They

defined abstract semantics of the JavaScript semantics de-

scribed in ECMAScript to statically analyze JavaScript pro-

grams in a finite time. Charguéraud et al. [9] presented

JSExplain, a debugger for JavaScript, by implementing a

reference interpreter in OCaml following the algorithm steps

in ECMAScript closely. For a given JavaScript program, the

debugger interactively produces execution traces investigated

in a browser, with an interface that displays the JavaScript

code and the interpreter’s state. Fragoso Santos et al. [14]

introduced JaVerT, a JavaScript verification toolchain, based

on the separation logic with an intermediate goto language

JSIL. JaVerT 2.0 [15] extends it to support compositional

symbolic execution for JavaScript based on bi-abduction.

However, because all of them manually handle ECMAScript

with their own intermediate representations, most of them still

target ES5.1 released in 2011 instead of the latest one.

b) Mechanized Specification Extraction: Researchers in

various application domains have extracted mechanized spec-

ifications from specifications written in natural languages to

handle the contents in the specifications automatically. For

system architectures, researchers utilized Natural Language

Processing (NLP) and Machine Learning techniques to extract

formal semantics of small-sized low-level assembly languages

for x86 [19] and ARM [20]. For Java API functions, Zhai

et al. [23] presented a technique to automatically extract

models from their documentation using NLP techniques. For

the JavaScript programming language, Park et al. [5] presented

JISET, a tool that extracts a mechanized specification from

ECMAScript. While all the previous JavaScript formal se-

mantics [16]–[18] were manually defined, JISET automatically

extracts formal semantics directly from ECMAScript. We uti-

lized JISET to analyze 864 ECMAScript versions via JSTAR.

c) Specification-based Testing: Recently, researchers

have utilized specifications to test their implementations. For

network protocols, Kim et al. [21] proposed a novel ap-

proach named BASESPEC, which extracts message structures

from tables in cellular specifications for L3 protocols to

perform comparative analysis of baseband software. Schumi

and Sun [22] presented SpecTest, which utilized an executable

language semantics to perform fuzzing for Java and Solidity

compilers. For JavaScript, Ye et al. [28] presented COMFORT,

a compiler fuzzing framework to detect JavaScript engine bugs

using ECMAScript with deep learning-based language models.

Park et al. [29] extended JISET to JEST, which performs N+1-

version differential testing with N different JavaScript engines

and a reference interpreter extracted from ECMAScript. JEST
detects not only engine bugs but also specification bugs in

ECMAScript using the cross-referencing oracle. However, it

requires multiple JavaScript engines and takes dozens of hours

to test a version of ECMAScript. Instead, JSTAR can detect

specification bugs without JavaScript engines in two minutes.

Because JSTAR uses abstract semantics while JEST uses

concrete semantics, JSTAR can quickly analyze more scope

of semantics than JEST.

VII. CONCLUSION

Checking the correctness of ECMAScript is essential be-

cause an incorrect description in ECMAScript can lead to

wrong implementations of JavaScript engines. However, since

ECMAScript is annually released and developed in an open

process, checking its correctness becomes more labor-intensive
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and error-prone. To alleviate the problem, we propose JSTAR,

a JavaScript Specification Type Analyzer using Refinement. It

is the first tool that performs type analysis on JavaScript spec-

ifications and detects specification bugs using a bug detector.

We also present condition-based refinement for type analysis,

which prunes out infeasible abstract states using conditions

of assertions and branches to improve the analysis precision.

We evaluated JSTAR with all 864 versions in the official

ECMAScript repository for the last three years from 2018

to 2021. It took 137.3 seconds on average to perform type

analysis for each version, and detected 157 type-related spec-

ification bugs with 59.2% precision; 93 out of 157 reported

bugs are true bugs. Among them, 14 bugs are newly detected

by JSTAR, and the committee confirmed them all.
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