
DEBUN: Detecting Bundled JavaScript Libraries
on Web using Property-Order Graphs
Seojin Kim∗

Sungkyunkwan University
001106ksj@gmail.com

Sungmin Park∗
Korea University

ryan040@korea.ac.kr

Jihyeok Park†
Korea University

jihyeok park@korea.ac.kr

Abstract—Detecting front-end JavaScript libraries in web ap-
plications is essential for website profiling, vulnerability detection,
and dependency management. However, bundlers like Webpack
transpile code in various ways, altering the original directory
and code structure, which complicates library detection. While
state-of-the-art techniques utilize property pattern-based library
detection at runtime, they face two key limitations: (1) they
cannot detect libraries inaccessible from the global object, and (2)
they have limitations in granular version detection. To address
these challenges, we present DEBUN, a scalable technique for
detecting JavaScript libraries and their versions using function-
level fingerprints. Our key insight is that bundlers preserve the
property names and execution order of property operations, even
after transpilation. To leverage this, we introduce the property-
order graph (POG), which represents the execution order of
property operations within a function body. We evaluate DEBUN
on 68 high-traffic websites with 78 front-end JavaScript libraries.
Our approach outperforms existing tools, achieving a 91.76% F1-
score in library detection (1.39x higher) and an 79.81% F1-score
in version identification with inclusion match (1.36x higher).

I. INTRODUCTION

Detecting front-end JavaScript libraries in web applications
is essential for diverse tasks. Platforms like W3Techs leverage
this data to track JavaScript library usage, and security re-
searchers use it to identify well-known vulnerabilities in third-
party libraries [1, 2]. Static analyzers also enhance precision
and efficiency by incorporating predefined API modeling of
detected libraries [3, 4]. According to W3Techs’ survey, 98.8%
of all websites use JavaScript, and 81.4% use third-party
JavaScript libraries. Such an extensive use of libraries in web
applications necessitates accurate detection techniques.

Challenges: However, detecting libraries in web ap-
plications is challenging because bundlers like Webpack or
Rollup transpile the code and obscure its original structure.
Developers use bundlers to minimize network requests when
loading applications by reducing file size. Bundlers combine
multiple JavaScript files into a single or a few output files
and apply transformations, such as minification, dead-code
elimination, and tree shaking. A recent study reported that
40% of the top 1M websites include at least one bundled
code containing third-party libraries [5]. After bundling, the
original directory structure is lost, making it hard to distinguish
between first-party and third-party code. It also hinders the
use of directory structure-based techniques [6, 7] to detect

∗ These authors contributed equally to this work.
† Corresponding author.

JavaScript libraries in web applications. The transformations
applied by bundlers can mangle variable names, compress the
code, and even significantly alter the code structure through
advanced optimizations. Such complex modifications make
it infeasible to naively use common code clone detection
techniques [8, 9, 10] used in other programming languages
for JavaScript library detection.

Limitations of Existing Techniques: The state-of-the-
art approach for detecting JavaScript libraries relies on pat-
terns of object properties reachable from the global object to
identify libraries at runtime. A popular open-source tool inte-
grated into Chrome Lighthouse, Library Detector For Chrome
(LDC) [11], employs this approach but with a manually
defined set of detection patterns. Liu and Ziarek [12] introduce
PTDETECTOR, a tool that automatically extracts pTree data
structures, which represent the tree of reachable properties,
to detect libraries. However, it has two key limitations: (1) it
cannot detect libraries inaccessible from the global object, and
(2) it lacks extensibility to version-level detection.

Therefore, it is necessary to consider the code structure of
function bodies to accurately detect libraries and their versions.
One possible way is to exhaustively transpile libraries’ code
with all possible configurations of bundlers and collect finger-
prints to detect libraries [13]. It is inefficient because bundlers
generate exponentially many different code depending on the
configuration. If a bundler supports n boolean options, this
approach generates at most 2n fingerprints for each library.

Our Approach: To alleviate these limitations, we pro-
pose DEBUN, a scalable tool for JavaScript library and version
detection using function-level fingerprints. DEBUN extracts
fingerprints by constructing a property-order graph (POG) that
captures the execution order of property operations in function
bodies. This graph represents 1) which property operations on
2) which property names are executed in 3) which order in a
function body, with a consideration of control flow. Our key
observation is that the property names and execution order
of property operations remain after transpilation, although
transpilers often change the control flow of the original code.

We explain when control flows are inconsistent between
the original and transpiled code (§II), and propose how to
construct consistent POGs with a path-sensitive truthy analysis
(§III) based on abstract interpretation frameworks [14, 15].
Then, we detect libraries and versions by comparing POG-

78

2025 40th IEEE/ACM International Conference on Automated Software Engineering (ASE)

2643-1572/25/$31.00 ©2025 IEEE
DOI 10.1109/ASE63991.2025.00015

1 function arrayEach (array, iteratee){
2 var index = -1,
3 length = array == null ? 0 : array.length;
4 while (++index < length) {
5 if (iteratee(array[index],index,array)===false) break;
6 }
7 return array;
8 }

(a) Original arrayEach function in Lodash.js v4.17.21.

1 // npm-596046b7.0a1ae60586ca5609f0c5.js
2 // in tiktok.com
3 ... = function(r, t) {
4 for (var e = -1,
5 n = null == r ? 0 : r.length;
6 ++e < n && !1 !== t(r[e], e, r););
7 return r
8 }

(b) Transpiled arrayEach function in TikTok website.

Fig. 1: The original arrayEach function of Lodash.js v4.17.21 and its transpiled code in TikTok website.

based fingerprints of target applications and libraries. We
implement our approach in DEBUN and evaluate it on 68
high-traffic websites with 78 front-end JavaScript libraries. It
outperforms existing tools, achieving a 91.76% and an 79.81%
F1-score in library and version detection, respectively.

The contributions of this paper are as follows:
• We introduce a property-order graph (POG) to capture

the execution order of property operations in function
bodies, with consideration of control flow.

• We implement DEBUN to detect front-end JavaScript
libraries in web applications by comparing POGs of target
applications and libraries.

• We evaluate DEBUN on 68 high-traffic websites with 78
front-end JavaScript libraries and show that it outper-
forms state-of-the-art tools, achieving a 91.76% and an
79.81% F1-score in library and version detection.

II. MOTIVATION

This section shows the limitations of existing techniques in
detecting libraries and their versions in web applications. It
then presents the insight of our technique and the challenges
with a real-world motivating example in Figure 1, showing
the original arrayEach function in Lodash.js v4.17.21 and its
transpiled code in the TikTok website.

A. Limitations of Existing Techniques

There are two main existing approaches to detect libraries
or their versions in web applications: 1) property pattern-based
detection at runtime and 2) exhaustive transpiled code search.

1) Property Pattern-based Detection at Runtime: The most
common approach relies on patterns of the object properties
reachable from the global object at runtime. Library Detector
For Chrome (LDC) [11] detects Lodash.js1 by checking the
existence of the property _ in the global object win and its
child property _.chain with the following conditions:

typeof (_ = win._) == 'function' && _
typeof (chain = _ && _.chain) == 'function' && chain

After detecting the library, LDC determines its version with
the version-specific property _.VERSION:

return { version: _.VERSION || UNKNOWN_VERSION }

However, it heavily relies on manually defined patterns.

1https://lodash.com/

This limitation is addressed by the pTree data structure
in the tool PTDETECTOR [12]. A pTree represents the tree
structure of all reachable properties from the global object
at runtime. While the tool automatically detects libraries by
comparing them for the web application and libraries, it still
has two key limitations. First, they cannot detect libraries
internally imported by bundlers through inner modules or
immediately-invoked function expressions (IIFEs). For exam-
ple, the arrayEach function of Lodash.js is imported as an
internal module in TikTok website:

(...).push([[3824], { ...,
83271: (e,t,n)=>{ r.exports = /* Fig. 1b */ },
... },]);

Second, property patterns are not sufficient to detect library
versions when no version-specific property exists. Neglecting
the code inside function bodies makes it difficult to distinguish
different versions of the same library. A version update often
changes the internal code structure of the library without
changing the property pattern. For example, compared to
jQuery v3.7.0, its patch version v3.7.1 has the same property
pattern but different bodies of the text and hover functions.2

2) Transpiled Code Detection: Therefore, it is necessary
to consider the code structure of function bodies to detect
libraries and their versions accurately. Most existing code
clone detection techniques only consider a simple syntactic
transformation [16, 17, 18] (e.g., formatting and variable
renaming) or control/data flows [19, 20]. However, JavaScript
significantly alter the code structure as well through advanced
optimizations, which even change the control/data flow of the
code. For example, Figure 1 shows the change of the code
structure after transpilation, making it infeasible to naively
apply existing code clone detection techniques.

Another approach is to exhaustively transpile library code
under all bundler configurations and collect their fingerprints.
However, bundlers support tens of configurable options (e.g.,
Terser alone has 34), the number of possible configurations
grows exponentially (234 for Terser), requiring large memory.
For example, the tool URR [13] suffers from this inefficiency.
Even though they use only 24,576 configurations of Webpack,
their tool requires 2.27GB of memory only for three libraries.
Thus, it is not scalable when detecting a large number of
libraries in web applications.

2https://github.com/jquery/jquery/releases/tag/3.7.1

79

entry

1: index = -1;
2: %0 = array == null;

3: %0

4: length = 0; 5: length = array.length;

6: %1 = ++index < length

7: %1

8: %2 = array[index];
9: %3 = iteratee(%2, index, array)

=== false;

10: %3 11: %ret = array;

exit exc

#t #f

#t

#f

#f

#t

(a) CFG of original code.

entry

_.length

[]

exit exc

#f

#t

#t

#f

#f

#t

(b) POG of (a).

entry

1: e = -1;
2: %0 = null == r;

3: %0

4: n = 0; 5: n = r.length;

6: %1 = ++e < n

7: %1 (1)

8: %2 = r[e];
9: %1 = !1 !==

t(%2, e, r);

10: %1
(2)

11: %ret = r;

exit exc

#t #f

#t

#f

#t

#f

(c) CFG of bundled code.

entry

_.length

[]

exit exc

#f

#t

#t
#f#t

#f

(d) POG of (c).

Fig. 2: CFGs of original and bundled code in Figure 1 and their corresponding POGs constructed by the basic algorithm.

B. Our Approach: Property-Order Graphs

Instead, we focus on what bundlers retain in the code after
transpilation. We first explain our key insight and then the
challenges in applying it to real-world examples.

Key Insight: We observe that property names and ex-
ecution order of property operations remain unchanged after
bundling. It is reasonable because of the nature of JavaScript
semantics regarding computed property names and the get-
ter/setter for property operations. In JavaScript, properties
can be accessed using computed names; obj['h'+'i'] reads
the property hi of the object obj. Thus, bundlers retain the
property names considering the access of properties using
computed names. For example, Figure 1 shows that a property
read operation highlighted in yellow with the name length is
preserved in the transpiled code.

In addition, property reads and writes are often defined as
getter and setters, respectively, with user-defined functions. It
means that property read/write operations may implicitly call
functions. Since the function may have side effects, bundlers
retain their existence and execution orders to maintain the
original behavior of the code. For example, two property read
operations in the original code (Figure 1a) are preserved with
the same execution order in the transpiled code (Figure 1b).
Considering the execution order of property operations in-
creases the precision of library detection. For example, the
following function in can.js v6.6.3 is a false match without
considering the execution order of property operations:

// can.js - false alarm without execution order
function (arr) {
return arr != null && arr[arr.length - 1];

}

because it has the exactly two same property read operations
with the name length and the computed name [_].

To capture this insight, we introduce the property-order
graph (POG) that represents the execution order of property
operations with their names in function bodies. A POG rep-
resents 1) which property operations on 2) which property
names are executed in 3) which order in a function body, with
a consideration of control flow. We construct POGs by filtering
only property operations with their names in the control-flow
graph (CFG) of function bodies. For example, Figures 2a
and 2c depicts CFGs of the original and bundled code in Fig-
ure 1. Each rectangle represents sequential normal instructions,
and each diamond represents conditional instructions. Their
POGs are constructed by filtering property operations from the
CFGs as shown in Figures 2b and 2d. In addition, JavaScript
transpilers heavily utilize the short-circuit evaluation of logical
expressions to reduce code size. To accurately construct POGs,
we explicitly represent these logical expressions as branches.
For example, the combination of while-loop and if-statement
in Figure 1a is converted into a for-loop and a logical AND
expression in Figure 1b.

Challenges – Inconsistent Control Flows: However,
generated POGs in Figures 2b and 2d are still different
(highlighted in thick red lines) because the CFG (Figure 2c)
of the bundled code contains (1) an infeasible execution path
and (2) a flipped conditional branch. First, a path 7 → 10 → 6

is infeasible. The temporary variable %1 is always falsy at 10
when the execution path comes from the false branch of 7.
It means that all the execution paths from the false branch of
7 are always flowed into the false branch of 10, making the
true branch of 10 infeasible. Second, the branches of 10 are
flipped compared to the CFG of the original code in Figure 2a.
It happens because transpilers often negate conditions and flip
branches to minimize the code size. Such inconsistent CFGs
cause different POGs as shown in Figures 2b and 2d and may
cause false negatives in library detection.

80

Graphs G ::= {l:i} (lentry, lexit, lexc)
Instructions i ::= if (e) l else l

| x = e; l | x = e.p; l | e.p = e; l
| x = e[e]; l | e[e] = e; l

Expressions e ::= c | x | !e | {} | e(e) | e == e | e === e
| e < e | e > e | e⊕ e | ⊖e | . . .

Constants c ::= b | n | z | s | undefined | null
Variables x ∈ X Properties p ∈ P
Labels l ∈ L Booleans b ∈ B = {#t,#f}
Numbers n ∈ N BigInts z ∈ Z
Strings s ∈ S

Fig. 3: Control-flow graphs of JavaScript functions.

III. CONSTRUCTION OF PROPERTY-ORDER GRAPHS

This section first introduces a basic construction algorithm
of POGs (§III-A). To resolve the inconsistency in the ba-
sic algorithm, we introduce a path-sensitive truthy analysis
(§III-B) and a three-step refinement of control flows in CFGs
for consistent construction of POGs (§III-C).

A. Basic Construction Algorithm

A basic construction algorithm of POGs has two steps: 1)
construct control-flow graphs (CFGs) of given functions, and
2) filter only property operations from CFGs.

1) CFG Construction: We use a standard algorithm to
construct CFGs defined in Figure 3 where A denotes a
sequence of A. All instructions in a CFG are labeled with L,
and three special labels lentry, lexit, and lexc represent the entry,
exit, and exceptional exit points of the function, respectively.
An instruction i is either:

• A conditional instruction with two labels for branches.
• A normal instruction with its next label.

Each JavaScript loop statement (i.e., while/for) is converted
into a conditional instruction whose true branch label points
to its loop body, and the false branch label points to the
instruction following the loop. Additionally, as explained in
§II-B, short-circuit expressions are used as branches. Thus, we
convert the following expressions into conditional instructions
with temporary variables to mimic their evaluation semantics:

%0=e1; if(%0) { %0=e2; } else { } // e1 && e2
%0=e1; if(%0) { } else { %0=e2; } // e1 || e2
%0=e1; if(%0) { %0=e2; } else { %0=e3; } // e1?e2:e3

A normal instruction is either: 1) an assignment instruction,
2) a property read/write operation, or 3) a computed prop-
erty read/write operation. A return or a throw statement is
converted into an assignment instruction to a special variable
%ret or %exc, respectively, and its next label is the exit label
or the enclosing catch block if it exists, or the exceptional
exit label otherwise. Since we construct CFGs to construct
POGs, we convert all property read/write operations into
normal instructions with temporary variables (e.g., %0, %1,
. . .) to explicitly capture the execution order of property
operations. For example, x.p + y.q is converted into two
instructions %0 = x.p; %1 = y.q; and an expression %0 + %1

to represent that x.p is executed before executing y.q. The

Path-Sensitive Results ξ̂ ∈ Ξ̂ = (L× Π̂) → Σ̂

Abstract Paths π̂ ∈ Π̂ = (L× B) ⊎ {⊥}
Abstract States σ̂ ∈ Σ̂ = X → V̂
Abstract Values v̂ ∈ V̂ = {⊥, t, f, N, F ,⊤}

Fig. 4: Abstract domains for path-sensitive truthy analysis.

omitted inequality/comparison operations are converted into
equality/comparison operations with negation operators (e.g.,
x != y to !(x == y)). A constant is a boolean b ∈ B, number
n ∈ N, bigint z ∈ Z, string s ∈ S, undefined, or null.

2) Property Operation Filtering: To construct POGs from
CFGs, we filter only four kinds of property operations and
conditional instructions. We retain only the property names
for property read/write operations; x = e.p and e1.p = e2 are
converted into .p and .p = , respectively. For computed
property operations, we remain only whether they are read
or write operations: x = e1[e2] and e1[e2] = e3 into [] and
[] = , respectively. When the computed properties names

are constant strings, we treat them as property names: x =
e["name"] into .name. For conditional instructions, we keep
only their labels; if (e) l1 else l2 into if () l1 else l2.
Figures 2a and 2c depicts CFGs of the original and bundled
code in Figure 1, and Figures 2b and 2d depicts POGs derived
from the CFGs.

B. Path-Sensitive Truthy Analysis

We introduce a path-sensitive truthy analysis based on
abstract interpretation [14, 15] to refine control-flows in CFGs
for constructing consistent POGs. It analyzes the truthiness of
each variable along each execution path partitioned by the
latest conditional instruction.

1) Abstract Domains: Figure 4 shows the abstract domains
for path-sensitive truthy analysis. A path-sensitive result ξ̂ ∈ Ξ̂
is a mapping from pairs of labels and abstract paths to abstract
states. An abstract path π̂ ∈ Π̂ is either 1) a pair of a label and
a boolean value (l, b) that represents the true or false branch
of the latest conditional instruction labeled by l or 2) ⊥ for no
conditional instruction along the execution path. An abstract
state σ̂ ∈ Σ̂ is a mapping from variables to abstract values.

⊤
t f F N

⊥

An abstract value v̂ ∈ V̂ denotes 1) its
truthiness (t or f) or 2) whether it is flipped by
negation operators (F or N). Its partial order
(⊑) and join (⊔) operations are defined with the

lattice in the left Hasse diagram. All JavaScript values are
either truthy or falsy according to the ToBoolean algorithm
in the language semantics3; false, undefined, null, +0,
-0, NaN, 0n, and "" are falsy values, and all other primitive
values and objects are truthy values. The abstract values t and
f means that only truthy and falsy values are possible, respec-
tively. On the other hand, the abstract values F and N denote
whether the truthiness is flipped or not, respectively, through
a sequence of variable assignments without any conditional
branches or side effects.

3https://tc39.es/ecma262/2024/#sec-toboolean

81

ĴiKi : (L× Π̂× Σ̂) → Ξ̂

Cond
ξ̂1 = refine(l, π̂, σ̂)(l1, e,#t) ξ̂2 = refine(l, π̂, σ̂)(l2, e,#f)

̂Jif (e) l1 else l2Ki(l, π̂, σ̂) = ξ̂1 ⊔ ξ̂2
Assign

ĴeKe(σ̂) = (v̂, σ̂′)

̂Jx = e; l′Ki(l, π̂, σ̂) = {(l′, π̂) 7→ σ̂′[x 7→ v̂]}
Read

̂Jx = e.p; l′Ki(l, π̂, σ̂) = {(l′, π̂) 7→ σ̂ι}
Write

̂Je1.p = e2; l′Ki(l, π̂, σ̂) = {(l′, π̂) 7→ σ̂ι}
ComputedRead

̂Jx = e1[e2]; l′Ki(l, π̂, σ̂) = {(l′, π̂) 7→ σ̂ι}
ComputedWrite

̂Je1[e2] = e3; l′Ki(l, π̂, σ̂) = {(l′, π̂) 7→ σ̂ι}

ĴeKe : Σ̂ → (V̂× Σ̂)

ĴcKe(σ̂) =

{
(f, σ̂) if c ∈ {false,undefined,null,+0,-0,NaN,0n,""}
(t, σ̂) otherwise

ĴxKe(σ̂) = (σ̂(x), σ̂)

Ĵ!eKe(σ̂) =



(t, σ̂′) if ĴeKe(σ̂) = (f, σ̂′)

(f, σ̂′) if ĴeKe(σ̂) = (t, σ̂′)

(F , σ̂′) if ĴeKe(σ̂) = (N, σ̂′)

(N, σ̂′) if ĴeKe(σ̂) = (F , σ̂′)

ĴeKe otherwise

̂Je1 == e2Ke(σ̂) = (N, σ̂)
̂Je1 === e2Ke(σ̂) = (N, σ̂)

̂Je1 < e2Ke(σ̂) = (N, σ̂)
̂Je1 > e2Ke(σ̂) = (N, σ̂)

Ĵ{}Ke(σ̂) = (t, σ̂)
̂Je(ek)Ke(σ̂) = (N, σ̂ι)
̂Je1 ⊕ e2Ke(σ̂) = (N, σ̂)

Ĵ⊖eKe(σ̂) = (N, σ̂)

Fig. 5: The abstract semantics for instructions Ĵ−Ki and expressions Ĵ−Ke in the path-sensitive truthy analysis.

2) Abstract Semantics: The initial path-sensitive result ξ̂ι
consists of a single mapping from the pair of the entry label
lentry and ⊥ to the initial abstract state σ̂ι initialized with all
variables to N because their truthiness are not yet flipped.

ξ̂ι = {(lentry,⊥) 7→ σ̂ι} σ̂ι = {x 7→ N | x ∈ X}

The abstract semantics ĴGK = lfpF̂ of a given CFG G is the
least fixed point of the abstract transfer function F̂ :

F̂ (ξ̂) = ξ̂ι ⊔

⊔
l∈L

⊔
π̂∈Π̂

̂Jinst(l)Ki(l, π̂, ξ̂(l, π̂))


where inst(l) is the instruction labeled by l in the CFG,
and Ĵ−Ki is the abstract semantics for instructions defined
in Figure 5. The helper function refine : (L × Π̂ × Σ̂) →
(L×X×B) → Ξ̂ refines abstract paths and states where e is
the condition and b denotes the true/false branch as follows:

refine(l, π̂)(l′, e, b) =

{} if (v̂ = ⊥)

{} if (v̂ = t ∧ ¬b) ∨ (v̂ = f ∧ b)

{(l′, π̂) 7→ σ̂} if (v̂ = t ∧ b) ∨ (v̂ = f ∧ ¬b)
{(l′, (l, b) 7→ σ̂ι[x 7→ t])} if v̂ ∈ {F ,N,⊤} ∧ e = x ∧ b

{(l′, (l, b) 7→ σ̂ι[x 7→ f])} if v̂ ∈ {F ,N,⊤} ∧ e = x ∧ ¬b
{(l′, (l, b) 7→ σ̂ι)} if v̂ ∈ {F ,N,⊤}

It preserves the abstract path π̂ and the abstract state σ̂ when
the condition e always holds (or always does not hold) under
the abstract path (l, π̂) (the third case). If the condition e is
a variable x (the fourth and fifth cases), it refines the abstract
value of the variable x to truthy or falsy. Conditional in-
structions refine paths and states, while assignments propagate
the abstract value; instructions with side-effects initialize all
variables to N . A constant or a literal expression produces t

or f according to the language semantics, a negation operator
flips the truthiness, and other expressions produce N by
default. If an expression has a potential side-effect (e.g.,
function call), it initializes the abstract state with N for all
variables.

Example: To illustrate how the path-sensitive truthy
analysis works, we provide a simple example in Figure 6 and
explain the analysis steps.

• (Label 1) The analysis begins with an empty abstract
state at the entry label, associated with the base path ⊥.

• (Label 2) Evaluating x = Math.random() < 0.5 yields
an unknown truthy value; x is mapped to N (not flipped).

• (Label 3) The assignment y = !x flips the truthiness of
x, so y is mapped to F (flipped).

• (Label 4) When x appears in the condition of the if

statement, the analysis refines paths. In the true branch,
the path is (3, #t) with x = t.

• (Label 5) On the other hand, in the false branch, the path
is (3, #f) with x = f .

• (Label 6) Although outside the if statement, the analysis
preserves the refined abstract paths. Here, z is mapped
to f under (3, #t) and to t under (3, #f), respectively,
because null is a falsy value but 42 is a truthy value.

• (Label 7) The assignment z = !z flips the abstract values
of z in each path.

C. Analysis-Based Flow-Refinement

We refine CFGs in three steps using the result of path-
sensitive truthy analysis to construct consistent POGs. Figure 7
shows the step-by-step refinement of the CFG of the bundled
code in Figure 1b using the analysis result. In each step, the
dotted edge denotes the removed original edge, and the thick
red lines denote the modified/added part in each step.

82

/*1*/ x = Math.random() < 0.5;
/*2*/ y = !x;
/*3*/ if (x) /*4*/ z = null;

else /*5*/ z = 42;
/*6*/ z = !z; /*7*/

(a) An example JavaScript code.

L Π̂ Σ̂
1 ⊥
2 ⊥ x 7→ N

L Π̂ Σ̂
3 ⊥ x 7→ N

y 7→ F
4 (3,#t) x 7→ t

y 7→ F
5 (3,#f) x 7→ f

y 7→ F

L Π̂ Σ̂
6 (3,#t) x 7→ t

y 7→ F
z 7→ f

(3,#f) x 7→ f

y 7→ F
z 7→ t

L Π̂ Σ̂
7 (3,#t) x 7→ t

y 7→ F
z 7→ t

(3,#f) x 7→ f

y 7→ F
z 7→ f

(b) The path-sensitive truthy analysis result.

Fig. 6: A simple example and its path-sensitive truthy analysis result.

entry

1: ...

3: %0

4: ... 5: ...;

6: ...

7: %1

8: ...;

10: !%1

11: ...;

exit exc

#t #f

#t
#f

#f

#t

(a) Result of Branch Flipping.

entry

1: ...

3: %0

4: ... 5: ...;

6: ...

7: %1

8: ...;

10: !%1

11: ...;

exit exc

#t #f

#t
#f

#f

#f

#t

(b) Result of Branch Bypassing.

entry

1: ...

3: %0

4: ... 5: ...;

6-1: ...6-2: ...

6-3: ... 7: %1

8: ...;

10: !%1

11-1: ...; 11-2: ...;

exit exc

#t #f

#t

#f

#f

#t

(c) Result of Path Cloning.

entry

_.length

[]

exit exc

#f

#t

#t

#f

#f

#t

(d) POG of (c).

Fig. 7: Step-by-step analysis-based flow refinement of the CFG of bundled code in Figure 2a and its POG.

Step 1: Branch Flipping: To reduce code size, tran-
spilers often flip branches by negating the condition or its
incoming expressions. For example:

// 1 non-flipped (N) and 2 flipped (F) values
var x = y ? e1==e2 : z ? !e3 : !e4;
if (x) { thenStmt; } else { elseStmt; }

The truthiness of e1 == e2 is flowed to the condition x
without flipping, while truthiness of two expressions e3 and
e4 are flipped and flowed into the condition x. SWC flips the
branches (thenStmt and elseStmt) of the if-statement by
negating all expressions flowed into the condition x.

// 2 non-flipped (N) and 1 flipped (F) values
var x = y ? e1 != e2 : z ? e3 : e4;
if (x) { elseStmt; } else { thenStmt; }

For consistent branch flipping status, we flip a branch by
negating the condition e of the branch if more flipped values
are flowed into the branch than non-flipped ones. For example,
to the condition %1 at 10, one flipped value is flowed from
the true branch of 7 but no non-flipped value is flowed:

(%1 7→ F) ∈ ξ̂(10, (7, #t))

Thus, our approach flips the branch at 10 by negating the
condition %1 to !%1 as shown in Figure 7a.

Step 2: Branch Bypassing: If a condition is always
truthy (or falsy) on a path, we bypass the branch by linking
its in-edge directly to the true (or false) out-edge. For instance,

along the path from branch at 7 (false) to branch at 10, the
condition !%1 is always truthy:

(%1 7→ f) ∈ ξ̂(10, (7, #f)) ∧ (%1 7→ f) ⇐⇒ (!%1 7→ t)

Thus, we can bypass the branch at 10 by connecting the false
branch of 7 to 11 directly as shown in Figure 7b. It covers
the common minification pattern using logical expressions:

if(x){ if(y) return z; } → if(x&&y) return z;

Step 3: Path Cloning: If normal instructions are reach-
able from multiple abstract paths, we clone them for each
abstract path. For example, the instructions at 6 are reachable
from three different abstract paths: the false and true branches
of 3 and the true branch of 10 according to the analysis result:

ĴGK(6, (3, #f)) ̸= ⊥
ĴGK(6, (3, #t)) ̸= ⊥ ĴGK(6, (10, #f)) ̸= ⊥

Similarly, the instruction at 11 is reachable from two paths:

ĴGK(11, (7, #f)) ̸= ⊥ ĴGK(11, (10, #t)) ̸= ⊥
Thus, we clone the instruction at 6 and 11 for each abstract
path as shown in Figure 7c. While it does not affect the POG
in this example, path cloning is helpful to construct consistent
POGs for the following minification patterns:

if(y) x.p = e1; else x.p = e2; → x.p=y?e1:e2;

After cloning the path, both have two property write operations
for the property p in each branch, making the POGs consistent.

83

Lodash
v4.17.21: LU(2) 5.25%
...
React
v18.3.1: VU LU(16) 60.52%
v19.0.0: LU(10) 18.53%
...
jQuery
v3.7.1: LU(40) 95.53%
v3.3.5: LU(34) 90.25%
v3.7.0: LU(40) 87.53%
...
core-js
v3.42.0: 94.25%
v3.23.3: 80.53%
...

overall

JS Libraries

Fingerprint
Collector

jQuery v3.7.1

Lodash v4.17.21

<latexit sha1_base64="d2mN2xQkpc4LN1AAyJgpw97pUz0=">AAACU3icbVDLTttAFB27QGnKI6HLbiyiSqwiGyHoEsGmS5DIQ4otNB5fw5B5WDPXVOnI/9Bt+18s+i1smDwWTcKRRjr33Nfck1eCW4zjf0H4YWt75+Pup9bnvf2Dw3bnaGB1bRj0mRbajHJqQXAFfeQoYFQZoDIXMMwn17P88BmM5Vrd4bSCTNIHxUvOKHppkD4XGu19uxv34jmiTZIsSZcscXPfCS7SQrNagkImqLXjJK4wc9QgZwKaVlpbqCib0AcYe6qoBJu5+Xeb6JtXiqjUxj+F0Vz9v8NRae1U5r5SUny067mZ+G7OoqRmaoq1/Vh+zxxXVY2g2GJ9WYsIdTRzJCq4AYZi6gllhvsLIvZIDWXofVuZj3zya2W2q4zWZdNqpQp+Mi0lVYVLuTJQNOMkcy6dH+dmsesmTdN4q5N1YzfJ4LSXnPfOb8+6l1dL03fJV3JMTkhCLsgl+UFuSJ8w8kR+kz/kb/ASvIZhuLUoDYNlzxeygnD/DeP8tkA=</latexit>...

Fingerprints

Fingerprint
Collector

Library
Database

jQuery v3.7.1

Lodash v4.17.21

<latexit sha1_base64="d2mN2xQkpc4LN1AAyJgpw97pUz0=">AAACU3icbVDLTttAFB27QGnKI6HLbiyiSqwiGyHoEsGmS5DIQ4otNB5fw5B5WDPXVOnI/9Bt+18s+i1smDwWTcKRRjr33Nfck1eCW4zjf0H4YWt75+Pup9bnvf2Dw3bnaGB1bRj0mRbajHJqQXAFfeQoYFQZoDIXMMwn17P88BmM5Vrd4bSCTNIHxUvOKHppkD4XGu19uxv34jmiTZIsSZcscXPfCS7SQrNagkImqLXjJK4wc9QgZwKaVlpbqCib0AcYe6qoBJu5+Xeb6JtXiqjUxj+F0Vz9v8NRae1U5r5SUny067mZ+G7OoqRmaoq1/Vh+zxxXVY2g2GJ9WYsIdTRzJCq4AYZi6gllhvsLIvZIDWXofVuZj3zya2W2q4zWZdNqpQp+Mi0lVYVLuTJQNOMkcy6dH+dmsesmTdN4q5N1YzfJ4LSXnPfOb8+6l1dL03fJV3JMTkhCLsgl+UFuSJ8w8kR+kz/kb/ASvIZhuLUoDYNlzxeygnD/DeP8tkA=</latexit>...
Website

tiktok.com

Fingerprint
Collector

Fingerprints

Phase 1. Library Database Construction Phase 2. Library and Version Detection

Library
Scorer

<latexit sha1_base64="d2mN2xQkpc4LN1AAyJgpw97pUz0=">AAACU3icbVDLTttAFB27QGnKI6HLbiyiSqwiGyHoEsGmS5DIQ4otNB5fw5B5WDPXVOnI/9Bt+18s+i1smDwWTcKRRjr33Nfck1eCW4zjf0H4YWt75+Pup9bnvf2Dw3bnaGB1bRj0mRbajHJqQXAFfeQoYFQZoDIXMMwn17P88BmM5Vrd4bSCTNIHxUvOKHppkD4XGu19uxv34jmiTZIsSZcscXPfCS7SQrNagkImqLXjJK4wc9QgZwKaVlpbqCib0AcYe6qoBJu5+Xeb6JtXiqjUxj+F0Vz9v8NRae1U5r5SUny067mZ+G7OoqRmaoq1/Vh+zxxXVY2g2GJ9WYsIdTRzJCq4AYZi6gllhvsLIvZIDWXofVuZj3zya2W2q4zWZdNqpQp+Mi0lVYVLuTJQNOMkcy6dH+dmsesmTdN4q5N1YzfJ4LSXnPfOb8+6l1dL03fJV3JMTkhCLsgl+UFuSJ8w8kR+kz/kb/ASvIZhuLUoDYNlzxeygnD/DeP8tkA=</latexit>...

<latexit sha1_base64="RiNJnc3YJGBfInu7sfIym4u9tzM=">AAACW3icbVDLTtwwFPUEKJBOWx5i1U1EVInVKKkqYIkKC5ZU6gDSJCDHuQFr/Ijsm7aDlf9gC3/VRf+FJGTRmeFIls499+V7slJwi1H0d+CtrK69W9/Y9N8PP3z8tLW9c2l1ZRiMmRbaXGfUguAKxshRwHVpgMpMwFU2PW3zV7/AWK7VT5yVkEp6p3jBGcVGukkQ/qBl7gyyStW3W2E0ijoEyyTuSUh6XNxuD46SXLNKgkImqLWTOCoxddQgZwJqP6kslJRN6R1MGqqoBJu67tt18KVR8qDQpnkKg079v8NRae1MZk2lpHhvF3Ot+GbOoqRmZvKF/Vgcp46rskJQ7HV9UYkAddA6E+TcAEMxawhlhjcXBOyeGsqw8W9uPvLpw9xsVxqti9r3EwW/mZaSqtwlXBnI60mcOpd0x7k2dmFc163V8aKxy+Ty6yg+HB3++BaefO9N3yCfyT45IDE5IifknFyQMWHEkEfyRJ4H/7wVz/eGr6XeoO/ZJXPw9l4AYya44g==</latexit>

Debun
<latexit sha1_base64="RiNJnc3YJGBfInu7sfIym4u9tzM=">AAACW3icbVDLTtwwFPUEKJBOWx5i1U1EVInVKKkqYIkKC5ZU6gDSJCDHuQFr/Ijsm7aDlf9gC3/VRf+FJGTRmeFIls499+V7slJwi1H0d+CtrK69W9/Y9N8PP3z8tLW9c2l1ZRiMmRbaXGfUguAKxshRwHVpgMpMwFU2PW3zV7/AWK7VT5yVkEp6p3jBGcVGukkQ/qBl7gyyStW3W2E0ijoEyyTuSUh6XNxuD46SXLNKgkImqLWTOCoxddQgZwJqP6kslJRN6R1MGqqoBJu67tt18KVR8qDQpnkKg079v8NRae1MZk2lpHhvF3Ot+GbOoqRmZvKF/Vgcp46rskJQ7HV9UYkAddA6E+TcAEMxawhlhjcXBOyeGsqw8W9uPvLpw9xsVxqti9r3EwW/mZaSqtwlXBnI60mcOpd0x7k2dmFc163V8aKxy+Ty6yg+HB3++BaefO9N3yCfyT45IDE5IifknFyQMWHEkEfyRJ4H/7wVz/eGr6XeoO/ZJXPw9l4AYya44g==</latexit>

Debun
Library

Database

<latexit sha1_base64="L9DaD1Tx0QBVY2T89xRj35YGePc=">AAACXnicbVDLThsxFHWmQGl4JJRNJTYWERKraAYh6BK1my5BIoCUGUUez51gxY/BvgMK1nxJt+1HdddPwQlZkMCRLJ177sv35JUUDuP4Xyv6tLa+8XnzS3tre2e30937euNMbTkMuJHG3uXMgRQaBihQwl1lgalcwm0++TnL3z6CdcLoa5xWkCk21qIUnGGQRt1OWjlB0zE80JOYpkejbi/ux3PQ9yRZkB5Z4HK01zpPC8NrBRq5ZM4Nk7jCzDOLgkto2mntoGJ8wsYwDFQzBS7z85839CgoBS2NDU8jnatvOzxTzk1VHioVw3u3mpuJH+YcKmantljZj+X3zAtd1Qiav64va0nR0Jk5tBAWOMppIIxbES6g/J5ZxjFYuDQfxeR5abavrDFl026nGp64UYrpwqdCWyiaYZJ5n86P87PY95KmaYLVyaqx78nNST85659dnfYufixM3yQH5JAck4Sckwvyi1ySAeGkJr/JH/K39T/aiHaizmtp1Fr07JMlRN9eAHalt8Q=</latexit>

ω → 20%

Fig. 8: Overall structure of DEBUN with two phases: 1) library database construction and 2) library (version) detection.

collector

JS Files

Function
Collector

POG
Generator

Hash
Function

POGs

POG
Generator

<latexit sha1_base64="d2mN2xQkpc4LN1AAyJgpw97pUz0=">AAACU3icbVDLTttAFB27QGnKI6HLbiyiSqwiGyHoEsGmS5DIQ4otNB5fw5B5WDPXVOnI/9Bt+18s+i1smDwWTcKRRjr33Nfck1eCW4zjf0H4YWt75+Pup9bnvf2Dw3bnaGB1bRj0mRbajHJqQXAFfeQoYFQZoDIXMMwn17P88BmM5Vrd4bSCTNIHxUvOKHppkD4XGu19uxv34jmiTZIsSZcscXPfCS7SQrNagkImqLXjJK4wc9QgZwKaVlpbqCib0AcYe6qoBJu5+Xeb6JtXiqjUxj+F0Vz9v8NRae1U5r5SUny067mZ+G7OoqRmaoq1/Vh+zxxXVY2g2GJ9WYsIdTRzJCq4AYZi6gllhvsLIvZIDWXofVuZj3zya2W2q4zWZdNqpQp+Mi0lVYVLuTJQNOMkcy6dH+dmsesmTdN4q5N1YzfJ4LSXnPfOb8+6l1dL03fJV3JMTkhCLsgl+UFuSJ8w8kR+kz/kb/ASvIZhuLUoDYNlzxeygnD/DeP8tkA=</latexit>...

Hash
Function

<latexit sha1_base64="d2mN2xQkpc4LN1AAyJgpw97pUz0=">AAACU3icbVDLTttAFB27QGnKI6HLbiyiSqwiGyHoEsGmS5DIQ4otNB5fw5B5WDPXVOnI/9Bt+18s+i1smDwWTcKRRjr33Nfck1eCW4zjf0H4YWt75+Pup9bnvf2Dw3bnaGB1bRj0mRbajHJqQXAFfeQoYFQZoDIXMMwn17P88BmM5Vrd4bSCTNIHxUvOKHppkD4XGu19uxv34jmiTZIsSZcscXPfCS7SQrNagkImqLXjJK4wc9QgZwKaVlpbqCib0AcYe6qoBJu5+Xeb6JtXiqjUxj+F0Vz9v8NRae1U5r5SUny067mZ+G7OoqRmaoq1/Vh+zxxXVY2g2GJ9WYsIdTRzJCq4AYZi6gllhvsLIvZIDWXofVuZj3zya2W2q4zWZdNqpQp+Mi0lVYVLuTJQNOMkcy6dH+dmsesmTdN4q5N1YzfJ4LSXnPfOb8+6l1dL03fJV3JMTkhCLsgl+UFuSJ8w8kR+kz/kb/ASvIZhuLUoDYNlzxeygnD/DeP8tkA=</latexit>...
<latexit sha1_base64="d2mN2xQkpc4LN1AAyJgpw97pUz0=">AAACU3icbVDLTttAFB27QGnKI6HLbiyiSqwiGyHoEsGmS5DIQ4otNB5fw5B5WDPXVOnI/9Bt+18s+i1smDwWTcKRRjr33Nfck1eCW4zjf0H4YWt75+Pup9bnvf2Dw3bnaGB1bRj0mRbajHJqQXAFfeQoYFQZoDIXMMwn17P88BmM5Vrd4bSCTNIHxUvOKHppkD4XGu19uxv34jmiTZIsSZcscXPfCS7SQrNagkImqLXjJK4wc9QgZwKaVlpbqCib0AcYe6qoBJu5+Xeb6JtXiqjUxj+F0Vz9v8NRae1U5r5SUny067mZ+G7OoqRmaoq1/Vh+zxxXVY2g2GJ9WYsIdTRzJCq4AYZi6gllhvsLIvZIDWXofVuZj3zya2W2q4zWZdNqpQp+Mi0lVYVLuTJQNOMkcy6dH+dmsesmTdN4q5N1YzfJ4LSXnPfOb8+6l1dL03fJV3JMTkhCLsgl+UFuSJ8w8kR+kz/kb/ASvIZhuLUoDYNlzxeygnD/DeP8tkA=</latexit>...

<latexit sha1_base64="d2mN2xQkpc4LN1AAyJgpw97pUz0=">AAACU3icbVDLTttAFB27QGnKI6HLbiyiSqwiGyHoEsGmS5DIQ4otNB5fw5B5WDPXVOnI/9Bt+18s+i1smDwWTcKRRjr33Nfck1eCW4zjf0H4YWt75+Pup9bnvf2Dw3bnaGB1bRj0mRbajHJqQXAFfeQoYFQZoDIXMMwn17P88BmM5Vrd4bSCTNIHxUvOKHppkD4XGu19uxv34jmiTZIsSZcscXPfCS7SQrNagkImqLXjJK4wc9QgZwKaVlpbqCib0AcYe6qoBJu5+Xeb6JtXiqjUxj+F0Vz9v8NRae1U5r5SUny067mZ+G7OoqRmaoq1/Vh+zxxXVY2g2GJ9WYsIdTRzJCq4AYZi6gllhvsLIvZIDWXofVuZj3zya2W2q4zWZdNqpQp+Mi0lVYVLuTJQNOMkcy6dH+dmsesmTdN4q5N1YzfJ4LSXnPfOb8+6l1dL03fJV3JMTkhCLsgl+UFuSJ8w8kR+kz/kb/ASvIZhuLUoDYNlzxeygnD/DeP8tkA=</latexit>...
Fingerprints

Fingerprint Collector

Function ASTs

Fig. 9: The fingerprint collector for given JavaScript files.

IV. OVERALL STRUCTURE OF DEBUN

Figure 8 depicts the overall structure of DEBUN with the
core component called fingerprint collector.

A. Fingerprint Collector

The fingerprint collector extracts the fingerprints of all
functions in given JavaScript files with three main components.

Function Collector: It extracts functions from JavaScript
files by traversing the abstract syntax tree (AST) of the
files using the meriyah4 parser. To avoid redundancy, inner
functions are stripped and split into separate functions.
function f(x) { var y = x.p; return () => y; }

For example, the above function splits into two functions: 1)
function f(x) { var y = x.p; return; } and 2) () => y.

POG Generator: It generates a POG for each collected
function using the process described in §III. We support
general JavaScript syntax more than the syntax introduced
in §III. First, we treat nullish coalescing operators (??) as
conditional branches but do not apply branch bypassing and
branch flipping. Property writes are often transpiled to object
literals, so we consider properties in object literals as property
writes (e.g., {a: b} is a property write of a). Since some
expressions (o.p++) often contain both reads and writes, we
treat them as both with regard to their correct execution order.
We omit property operations of built-ins (e.g., Math, Object)
because they have no side effects, allowing transpilers to safely
transform them.

Hash Function: For each generated POG, we hash
it using a fast hash function called rapidhash5 to extract
fingerprints of the functions. It computes the fingerprint of

4https://www.npmjs.com/package/meriyah
5https://gitlab.com/fwojcik/smhasher3/-/tree/main/results

a POG node using its 1) node type, 2) property operations,
and 3) child nodes. It starts with the root node and recursively
hashes the child nodes, with memoization, to prevent redun-
dant computations. To handle loops, visited child nodes are
hashed with unique node id.

B. Phase 1: Library Database Construction

Using the fingerprint collector, we collect fingerprints of
functions whose line of code is greater than five and construct
a library database that maps fingerprints to library versions.
We observe two sources of false positives: (1) overlapping
functions between libraries [7, 21] arising when libraries
partially include others (i.e., shrinkwrapped clones) or share
common code patterns and (2) ubiquitous utility code in-
jected by bundlers and shared across websites (e.g., bundler-
generated loaders or polyfills). To mitigate (1), we apply code
segmentation [21] with a birth (release date of a version). If
more than 30% of functions overlap between two libraries, we
retain the copy from the library version with the earliest birth
date. To address (2) we remove from the database any function
signature that appears on more than 60% of websites.

C. Phase 2: Library and Version Detection

Our tool computes the similarity score for each library
version Lv by matching fingerprints with library database:

(Score of Lv) =
(# Matched Fingerprints of Lv)

(# Fingerprints of Lv)
≥ ψ

Then, we only retain library versions whose scores are greater
than or equal to a given score threshold ψ. If at least one
version of a library remains, we consider that the library
exists. For each detected library, we decide its version based
on unique fingerprints and scores. We compared two types
of unique fingerprints: library-unique fingerprints (marked as
LU in Figure 8), which are not shared with other libraries,
and version-unique fingerprints (marked as VU), which are
not shared with other libraries and versions. We apply the
following rules, in order, moving to the next if the previous
fails:

1) Select a version that contains version-unique fingerprints.
2) Select the version(s) with the highest number of library-

unique fingerprints.
3) Select the version(s) with the highest similarity score.

84

V. EVALUATION

We evaluate DEBUN with the following research questions:
• RQ1. Library Detection: Does DEBUN outperform LDC

and PTDETECTOR in real-world websites?
• RQ2. Library Version Detection: Does DEBUN outper-

form LDC in real-world websites?
• RQ3. Ablation Study: Do POG-based fingerprints con-

sistently and accurately represent functions?
All experiments were conducted on a server running an AMD
Ryzen 9 7950X processor (16 cores, 32 threads, 4.5 GHz) with
128 GB DDR5 RAM. The system was equipped with an SK
Hynix Platinum P41 2TB NVMe SSD and operated under a
stable Linux distribution.

A. Data Collection
We collect JavaScript libraries from Cdnjs6 and crawl

bundled JavaScript files from high-traffic websites. Then, we
manually construct a ground truth dataset indicating which
libraries and versions are used in each website.

1) Library Collection: We collect 78 libraries used in
PTDETECTOR with 8,256 versions, excluding libraries un-
available in Cdnjs and versions marked as pre-releases or
nightly builds as they are rarely used in practice. When
multiple libraries originate from the same GitHub repository,
we treat them as a single library. For example, we treat react
and react-dom as React.

2) Website Collection: From the top 100 high-traffic web-
sites listed by SEMRUSH,7 we selected 68 sites, excluding
those with crawling restrictions (e.g., reCAPTCHA). Then, we
crawl JavaScript files from the websites with Puppeteer.8 All
data was collected on 27 February 2025.

3) Ground Truth Collection: Since no fixed ground truth
dataset exists for library and version detection, we manually
construct our own. We could not reuse PTDETECTOR’s ground
truth dataset because website updates alter the ground truth,
and the websites’ JavaScript codes used during their evaluation
are no longer available. To build a reliable dataset, we combine
the detection results from PTDETECTOR, LDC, and DEBUN
with a conservative threshold (ψ = 0.05), then manually verify
whether these libraries are actually used in the websites. We
label a library if the code includes library-specific identifiers
or at least five distinct functions, each longer than ten lines.
While distinguishing between libraries was relatively easy,
understanding and separating all 8,256 library versions was far
more difficult. Even with careful manual inspection, partially
imported libraries and mixed versions often make the exact
version hard to determine. To ensure reliability, we assign
version information only to libraries whose versions can be
unambiguously verified through explicit indicators in the code
(e.g., _.version = "4.17.21"), license texts, or comments.
Based on this process, we construct a ground truth dataset9

with 223 libraries, of which 105 have version annotations.

6https://cdnjs.com/
7https://www.semrush.com/website/top/
8https://pptr.dev/
9https://zenodo.org/record/15550954

TABLE I: Library detection scores when ψ = 20%.

Metric LDC PTDETECTOR DEBUN

TP 111 82 195
FP 3 9 7
FN 112 141 28

Precision 97.37% 90.11% 96.53%
Recall 49.78% 36.77% 87.44%
F1-score 65.88% 52.23% 91.76%

0

25

50

75

100

0 5 10 15 20 25

DEBUN PTdetector LDC

0

25

50

75

100

0 5 10 15 20 25

(a) Precision (%)

0

25

50

75

100

0 5 10 15 20 25

(b) Recall (%)

0

25

50

75

100

0 5 10 15 20 25

(c) F1-score (%)

Fig. 10: Library detection scores with different thresholds ψ.

B. RQ1. Library Detection

For comparison with library detection tools, we first collect
the fingerprints using fingerprint collector (§IV). The library
database occupies 31.97MB of memory and was constructed
in 30 minutes. DEBUN detects libraries and their versions
for each website in 1,009 ms on average, and the function
collector consumes the most time due to the massive number
of functions in the websites:

Function
Collector

POG
Generator

Hash
Function

Library
Scorer

0
200
400
600
800

1000
1200
1400

Ti
m

e
(m

s)

Total
0

500

1000

1500

2000

2500

3000

We compare the effectiveness of DEBUN with state-of-
the-art library detection tools, LDC and PTDETECTOR. We
set PTDETECTOR with its default setting, score threshold of
0.5 and depth limit of 3. We determine the optimal score
threshold for DEBUN by varying it from 0% to 30% in 1%
increments. Figure 10 shows the effectiveness by each ψ with
true positive (TP), false positive (FP), and false negative (FN)
counts. Note that we omit the true negative (TN) count and
accuracy as they are far exceeded by TP, FP, and FN counts.
The best score is obtained at ψ = 20% with the F1-score
of 91.76%, which is 1.39x and 1.76x higher than LDC and
PTDETECTOR, respectively. Two-tailed paired t-tests confirm
these improvements are statistically significant (p = 1.86e-6
vs LDC, p = 6.10e-12 vs PTDETECTOR). Table I compares
the scores of all tools at this threshold. DEBUN achieves
higher precision than PTDETECTOR, though slightly lower
than LDC, which is manually tuned. In terms of recall and
F1-score, DEBUN outperforms all tools.

85

TABLE II: Comparison of the number of detected libraries.

Library LDC ∆ DEBUN ∆ PTDETECTOR Ground

React 13 +22 35 +34 1 35
core-js 33 -11 22 -8 30 35
Lodash.js 9 +17 26 +18 8 33
jQuery 27 +3 30 +8 22 30
Preact 3 +7 10 +10 0 10
Zepto 0 +10 10 +10 0 10

Total 111 +84 195 +113 82 223

15 96 99

RQ2

1270125

LDC & DEBUN DEBUN & PTDetector

DEBUN PTdetectorLDCLegend

15 96 99

RQ2

1270125

LDC & DEBUN DEBUN & PTDetector

DEBUN PTdetectorLDCLegend

(a) DEBUN and LDC
15 96 99

RQ2

1270125

LDC & DEBUN DEBUN & PTDetector

DEBUN PTdetectorLDCLegend

(b) DEBUN and PTDETECTOR

Fig. 11: Venn Diagram of the number of detected libraries.

Recall: Table II shows the number of detected li-
braries by each tool, and Figure 11 shows its Venn diagram.
DEBUN detects 84 and 113 more libraries than LDC and
PTDETECTOR because they cannot detect libraries whose top-
level properties are obfuscated (e.g., React) or not exported
to the global object (e.g., Lodash.js). For example, DEBUN
detected both React and Lodash.js in pinterest.com, a design
resource website, but LDC and PTDETECTOR failed to detect
them. On the other hand, LDC and PTDETECTOR are good
at detecting libraries partially imported into the global object
(e.g., core-js and jQuery). For example, DEBUN fails to detect
core-js on several websites where it is partially imported.

Precision: LDC demonstrates the highest precision
due to the inclusion of various manual ad-hoc calculations.
PTDETECTOR exhibits the lowest precision. PTDETECTOR
struggles to distinguish libraries with overlapping property
patterns. For example, Lodash.js and Underscore.js share a
similar property pattern, _. Thus, the precision drops to 30%
when evaluated only with Underscore.js. This suggests that
property patterns are not distinguishable enough. While we
mitigate the overlapping function issue by applying code
segmentation (§IV-B), DEBUN still faces seven false positives.
Of these, five stem from shared polyfill patterns and two
from partial library imports (e.g., jquery-tools copies several
functions from jQuery).

C. RQ2. Library Version Detection

We evaluate library version detection using two metrics:
exact match and inclusion match. While different libraries
have distinct fingerprints, versions of the same library often
differ only slightly. Tree shaking may remove version-specific
functions, making distinction harder. Moreover, libraries may
not follow strict semantic versioning. For example, Lodash.js
v4.17.14 and v4.17.15 differ only in version labels without
any code changes. Thus, we consider a detection correct if it
either exactly matches (exact match) or includes (inclusion

TABLE III: Library version detection scores when ψ = 20%.

Exact Inclusion

Metric LDC DEBUN LDC DEBUN

TP 44 43 45 85
FP 0 10 3 23
FN 61 62 60 20

Precision 100.00% 81.13% 93.75% 78.70%
Recall 41.91% 40.95% 42.86% 80.95%
F1 score 59.07% 54.43% 58.82% 79.81%

21 23 20

RQ3

12 33 52

LDC & DEBUN
Exact Version

LDC & DEBUN
Version Range

Legend LDC DEBUN

21 23 20

RQ3

12 33 52

LDC & DEBUN
Exact Version

LDC & DEBUN
Version Range

Legend DEBUN LDC

(a) Exact match
21 23 20

RQ3

12 33 52

LDC & DEBUN
Exact Version

LDC & DEBUN
Version Range

Legend DEBUN LDC

(b) Inclusion match

Fig. 12: Venn Diagram of the number of detected versions.

match) the ground truth version. We compare the version
detection effectiveness of DEBUN only with LDC because
PTDETECTOR does not support version detection.

Table III shows the comparison of the version detection
effectiveness of LDC and DEBUN. With the exact match, LDC
and DEBUN correctly detect 44 and 43 versions, respectively.
Statistical analysis shows no significant difference between the
two approaches for exact matching (p = 0.96). LDC detects li-
brary versions only if the version label exists in the code. How-
ever, it struggles with libraries that do not have explicit version
labels or have inconsistent version labels across versions. For
example, version label for core-js is core.version before
v0.9.12, but it was changed to __core-js-shared__.version

in v0.9.12. It results in many false negatives in LDC both in
exact and inclusion match. On the other hand, DEBUN detects
85 versions (1.98x more than LDC) with the inclusion match,
achieving a recall of 80.95% (1.89x higher than LDC). A two-
tailed paired t-test confirms this improvement is statistically
significant (p = 2.10e-16 < 0.001). This demonstrates that
POG provides high accuracy for version-unique or library-
unique fingerprints in real-world, enabling accurate version
identification without explicit version labels. However, chal-
lenges such as tree shaking and duplicated functions still
hinder precise library version detection. Thus, leveraging both
tools together, when possible, can lead to more accurate
results.

D. RQ3. Ablation Study

We evaluate the effectiveness of the POG-based function
fingerprints by comparing different fingerprinting models:

• Count – Count per each property operation without order.
• POG – POGs via basic construction algorithm (§III-A).
• POG+F – POG with branch flipping.
• POG+FB – POG+F with branch bypassing.
• POG+FBC – POG+FB with path cloning.

86

TABLE IV: Scores for each model when LOC ≥ 6.

Metric Count POG POG+F POG+FB POG+FBC

Consistent 47,385 35,370 43,358 45,404 45,522
Functions 54,368 54,368 54,368 54,368 54,368

Consistency 87.16% 65.06% 79.75% 83.51% 83.73%

Functions 55,518 55,518 55,518 55,518 55,518
Duplicated 1,715,034 274,252 273,252 273,678 273,684

Accuracy 3.28% 20.24% 20.32% 20.29% 20.29%

LOC

0.4

0.6

0.8

1.0

5 10 15 20

Count POG POG+F POG+FB POG+FBC

40

60

80

100

0 5 10 15

(a) Consistency (%)

0

20

40

60

0 5 10 15

(b) Accuracy (%)

Fig. 13: Scores for each fingerprinting models with LOC ≥ x.

For each fingerprinting model, we compute two metrics:
consistency, the proportion of functions whose fingerprints
remain unchanged both before and after transpilation, and
accuracy, the ratio of distinct functions to the number of dis-
tinct fingerprints, indicating how well fingerprints differentiate
between different functions.

Consistency =
Consistent
Functions

and Accuracy =
Functions
Duplicated

We collect 256,884 function hashes from the latest versions
of the target libraries. To reduce potential bias, we remove
functions with identical syntax. This preprocessing yields a
final dataset of 91,898 functions. We then transpile them using
Terser and SWC with the most aggressive minify options
except for unsafe options. Figure 13 compares model scores
across different line-of-code (LOC) thresholds x. Table IV
presents the details for LOC ≥ 6 as we collect fingerprints
with LOC ≥ 6 to reduce noise from small functions (§IV-B).

Consistency: The Count model is most consistent, as it
simply counts the number of property operations. In contrast,
the baseline POG model exhibits the lowest consistency due to
the inconsistency of the control flow explained in §II-B. The
consistency continues to improve as control-flow refinement
techniques are progressively applied, and the branch flipping
has the greatest impact.

Accuracy: All POG-based models achieve significantly
higher accuracy than Count, while showing similar effec-
tiveness among themselves. This indicates that preserving
the execution order of property operations, as in POG-based
models, is effective in distinguishing functions after transpi-
lation. In contrast, Count performs the worst, highlighting the
importance of order information.

From the evaluation results, we show that the POG-based
function fingerprints are effective in representing the function
with high consistency and accuracy. Each CFG refinement

TABLE V: Library detection scores across different models.

Metric Count POG POG+FBC

TP 206 190 195
FP 66 8 7
FN 17 33 28

Precision 75.74% 95.96% 96.53%
Recall 92.38% 85.20% 87.44%
F1-score 83.23% 90.26% 91.76%

TABLE VI: Version detection scores across different models.

Metric Count POG POG+FBC

TP 88 76 85
FP 79 32 23
FN 17 29 20

Precision 52.69% 70.37% 78.70%
Recall 83.81% 72.38% 80.95%
F1-score 64.71% 71.36% 79.81%

steps improve consistency while preserving accuracy. In li-
brary detection, low consistency results in missing matches,
thereby reducing recall, while low accuracy leads to incorrect
matches, decreasing precision but potentially increasing recall.
To validate the effectiveness of our POG-based approach in
real-world websites, we conduct an ablation study comparing
three fingerprinting models: Count (simple property operation
counts), POG (basic POG), and POG+FBC (POG with all
refinements) on actual bundled JavaScript detection tasks.

The results demonstrate how consistency and accuracy
metrics directly impact detection performance. Table V shows
that for library detection, Count achieves high recall but suffers
from low precision due to poor accuracy, resulting in an
F1-score of 83.23%. Conversely, POG shows high precision
but lower recall due to consistency issues, yielding an F1-
score of 90.26%. POG+FBC achieves the optimal balance
with precision and recall, resulting in the highest F1-score of
91.76%. Table VI demonstrates that version detection shows
even more pronounced differences in precision and recall,
where POG+FBC outperforms both baselines with an F1-score
of 79.81%, compared to 64.71% for Count and 71.36% for
POG. These results confirm that our control-flow refinements
effectively address the trade-off between consistency and ac-
curacy, leading to superior detection performance in practice.

VI. DISCUSSION

A. Advantages and Limitations

Advantages of DEBUN and POG: 1) High recall:
While maintaining comparable precision, DEBUN achieves up
to twice the recall of state-of-the-art tools. This indicates that
DEBUN can detect twice as many libraries, demonstrating
the effectiveness of POG as a fingerprint for bundled library
detection. 2) Fully automated library fingerprint collection:
Although PTDETECTOR is a state-of-the-art tool, it requires
manual identification of library dependencies. It relies on
dynamic execution to extract library fingerprints, which would
fail if outer dependencies are missing. Furthermore, failure

87

to identify inner dependencies can result in false positives.
In contrast, DEBUN is a fully automated static analysis-based
approach, eliminating the need for manual efforts when adding
new libraries or versions. 3) Versatility: POG-based function
fingerprints are applicable not only to library detection, but
also to any task requiring the identification of original code
within bundled code (e.g., vulnerable function detection, code
provenance analysis and license compliance checking).

Limitations of POG: In Section V, we observed that the
consistency of POG is not 100%, despite our efforts to refine.
This discrepancy can be attributed to function inlining during
minification, where functions may be eliminated or their body
moved inside other functions. While this transformation does
not change the property access orders, our approach cannot
handle inter-procedural execution paths, which can lead to
false negatives. However, our evaluation shows that the impact
of this limitation is not significant. In path-sensitive truthy
analysis in Section III, the number of flipped and non-flipped
values are used for branch flipping. In special cases where
these numbers are equal, our approach may not effectively
handle branch flipping. However, since transpilers gain no
benefit from flipping when these numbers are equal, such
behavior would be considered unusual.

B. Threats to Validity

1) Internal Validity: Our study has potential internal valid-
ity threats. First, the SEMRUSH top 100 may not represent all
websites. Similarly, the libraries selected for evaluation may
not fully represent all JavaScript libraries. While the moving
target problem is another potential threat, we evaluated all
tools at the same point in time to ensure a fair comparison.
However, it was not feasible to reproduce the exact website
states at the time of the prior work’s evaluation. This mismatch
may partly explain the performance drop of prior tools, both
of which reported strong results in the past.

2) External Validity: We have observed that the same li-
brary can be used in multiple versions within a single website.
For instance, on amazon.com, a comment indicated that jQuery
v1.6.4 was being used, but certain functions had been upgraded
to a newer version. Our current evaluation does not account
for such version heterogeneity. Supporting this scenario would
require additional mechanisms, such as fine-tuning the weights
of version-unique or library-unique fingerprints.

VII. RELATED WORK

JavaScript Library Detection: Property pattern-based
library detection techniques include LDC [11] and PTde-
tector [12]. While LDC requires a manual configuration of
property patterns, PTdetector can automatically collect them.
However, these approaches become entirely infeasible when
runtime property patterns are modified during bundling pro-
cess. Moreover, since these methods do not examine bundled
code, they exhibit limitations in granular version detection.
URR [13] detects vulnerable JavaScript libraries by exhaustive
hash-based matching. To consider all of the possible transfor-
mations by bundlers, URR generates a large number of hashes.

Library Detection: Third-party library detection has
been actively studied in other domains, such as iOS and
Android apps. iOS approaches [22, 23] often rely on class-
dump or binary analysis, which do not apply to JavaScript
libraries. Detection techniques for Android third-party li-
braries [24, 25, 26, 27, 28] use structural features such as class
or method signatures and opcode sequences, which make them
resilient to code obfuscation. Approaches like ATVHunter [29]
extract fingerprints from control flow graphs (CFGs) with
execution order. However, detecting JavaScript libraries, es-
pecially in bundled code, requires refinement for control flow
transformations introduced by JavaScript bundlers.

Code Clone Detection: Code clone detection techniques
include text-based, token-based, tree-based, graph-based, and
measure-based approaches. Text-based detection [16, 30],
token-based detection [17, 31] and tree-based detection [18,
32] compare the similarity of source code text and syntax to-
ken. But they are not suitable for detecting bundled JavaScript
libraries due to syntax transformations by JavaScript bundlers.
Graph-based detection techniques [19, 20] compare the sim-
ilarity of graphs like control flow graphs or program depen-
dency graphs. These approaches assume that the control flow
and data flow are preserved, which is not the case for bundled
JavaScript libraries. Measure-based detection techniques [9,
10, 33, 34], measure the similarity of program features. These
techniques often exhibit higher resilience to syntax changes
but demonstrate lower precision, making them less suitable
for JavaScript library detection in bundled contexts.

VIII. CONCLUSION

Detecting JavaScript libraries in modern web applications is
challenging due to bundler transformations. Existing property
pattern-based techniques fail to detect non-global libraries and
distinguish versions. To address this, we proposed DEBUN,
which utilizes function-level fingerprints from property-order
graphs to identify libraries and their versions, even after code
transpilation. Our evaluation on 68 high-traffic websites and 78
libraries demonstrates that DEBUN significantly outperforms
existing techniques, achieving a 91.76% (1.39x higher) and
an 79.81% (1.36x higher) F1-score in library and version
identification, respectively.

DATA AVAILABILITY

The source code of DEBUN and the package for replicating
the experimental results are available in the public repository:
https://github.com/ku-plrg/debun-ase25.

ACKNOWLEDGEMENTS

This work was supported by the National Research Foun-
dation of Korea(NRF) grant funded by the Korea govern-
ment(MSIT) (No.RS-2024-00344597) and the Institute of In-
formation & Communications Technology Planning & Eval-
uation(IITP) grant funded by the Korea government(MSIT)
(No.RS-2024-00440780, Development of Automated SBOM
and VEX Verification Technologies for Securing Software
Supply Chains)

88

REFERENCES

[1] C.-A. Staicu and M. Pradel, “Freezing the Web:
A Study of ReDoS Vulnerabilities in JavaScript-
based Web Servers,” in 27th USENIX Security
Symposium (USENIX Security 18). Baltimore, MD:
USENIX Association, Aug. 2018, pp. 361–376.
[Online]. Available: https://www.usenix.org/conference/
usenixsecurity18/presentation/staicu

[2] T. Lauinger, A. Chaabane, S. Arshad, W. Robertson,
C. Wilson, and E. Kirda, “Thou Shalt Not Depend
on Me: Analysing the Use of Outdated JavaScript
Libraries on the Web,” in Proceedings 2017 Network
and Distributed System Security Symposium, ser. NDSS
2017. Internet Society, 2017. [Online]. Available:
http://dx.doi.org/10.14722/ndss.2017.23414

[3] S. Bae, H. Cho, I. Lim, and S. Ryu, “SAFEWAPI:
Web API Misuse Detector for Web Applications,” in
Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering, ser.
FSE 2014. New York, NY, USA: Association for
Computing Machinery, 2014, p. 507–517.

[4] J. Park, “JavaScript API Misuse Detection by
Using TypeScript,” in Proceedings of the Companion
Publication of the 13th International Conference
on Modularity, ser. MODULARITY 2014. New
York, NY, USA: Association for Computing
Machinery, 2014, p. 11–12. [Online]. Available:
https://doi.org/10.1145/2584469.2584472

[5] J. Rack and C.-A. Staicu, “Jack-in-the-box: An Empirical
Study of JavaScript Bundling on the Web and its Security
Implications,” in Proceedings of the 2023 ACM SIGSAC
Conference on Computer and Communications Security,
ser. CCS ’23. New York, NY, USA: Association for
Computing Machinery, 2023, p. 3198–3212. [Online].
Available: https://doi.org/10.1145/3576915.3623140

[6] A. Møller, B. B. Nielsen, and M. T. Torp, “Detecting
locations in JavaScript programs affected by breaking
library changes,” Proc. ACM Program. Lang., vol. 4,
no. OOPSLA, Nov. 2020. [Online]. Available: https:
//doi.org/10.1145/3428255

[7] E. Wyss, L. De Carli, and D. Davidson, “What the fork?
finding hidden code clones in npm,” in Proceedings of the
44th International Conference on Software Engineering,
ser. ICSE ’22. New York, NY, USA: Association for
Computing Machinery, 2022, p. 2415–2426. [Online].
Available: https://doi.org/10.1145/3510003.3510168

[8] R. Lin, Y. Fu, W. Yi, J. Yang, J. Cao, Z. Dong,
F. Xie, and H. Li, “Vulnerabilities and Security
Patches Detection in OSS: A Survey,” ACM Comput.
Surv., vol. 57, no. 1, Oct. 2024. [Online]. Available:
https://doi.org/10.1145/3694782

[9] S. Woo, H. Hong, E. Choi, and H. Lee,
“MOVERY: A Precise Approach for Modified
Vulnerable Code Clone Discovery from Modified
Open-Source Software Components,” in 31st USENIX

Security Symposium (USENIX Security 22). Boston,
MA: USENIX Association, Aug. 2022, pp. 3037–3053.
[Online]. Available: https://www.usenix.org/conference/
usenixsecurity22/presentation/woo

[10] Y. Xiao, B. Chen, C. Yu, Z. Xu, Z. Yuan,
F. Li, B. Liu, Y. Liu, W. Huo, W. Zou, and
W. Shi, “MVP: Detecting Vulnerabilities using
Patch-Enhanced Vulnerability Signatures,” in 29th
USENIX Security Symposium (USENIX Security 20).
USENIX Association, Aug. 2020, pp. 1165–1182.
[Online]. Available: https://www.usenix.org/conference/
usenixsecurity20/presentation/xiao

[11] GitHub, “Library detector for chrome (ldc),” 2025,
accessed: 14-Mar-2025. [Online]. Available: https:
//github.com/johnmichel/Library-Detector-for-Chrome/

[12] X. Liu and L. Ziarek, “PTDETECTOR: An Automated
JavaScript Front-end Library Detector,” in Proceedings
of the 38th IEEE/ACM International Conference on Au-
tomated Software Engineering (ASE), 2023, pp. 649–660.

[13] M. M. Ali, P. Snyder, C. Kanich, and H. Haddadi,
“Unbundle-Rewrite-Rebundle: Runtime Detection and
Rewriting of Privacy-Harming Code in JavaScript
Bundles,” in Proceedings of the 2024 on ACM SIGSAC
Conference on Computer and Communications Security,
ser. CCS ’24. New York, NY, USA: Association for
Computing Machinery, 2024, p. 2192–2206. [Online].
Available: https://doi.org/10.1145/3658644.3690262

[14] P. Cousot and R. Cousot, “Abstract Interpretation: A
Unified Lattice Model for Static Analysis of Programs
by Construction or Approximation of Fixpoints,” in Pro-
ceedings of the 4th ACM SIGACT-SIGPLAN Symposium
on Principles of Programming languages (POPL), 1977.

[15] ——, “Abstract Interpretation Frameworks,” Journal of
Logic and Computation (JLC), vol. 2, no. 4, pp. 511–547,
1992.

[16] S. Kim, S. Woo, H. Lee, and H. Oh, “VUDDY: A Scal-
able Approach for Vulnerable Code Clone Discovery,”
in 2017 IEEE Symposium on Security and Privacy (SP),
2017, pp. 595–614.

[17] L. Li, H. Feng, W. Zhuang, N. Meng, and B. Ryder,
“CCLearner: A Deep Learning-Based Clone Detection
Approach,” in 2017 IEEE International Conference on
Software Maintenance and Evolution (ICSME), 2017, pp.
249–260.

[18] J. Zhang, X. Wang, H. Zhang, H. Sun, K. Wang, and
X. Liu, “A Novel Neural Source Code Representation
Based on Abstract Syntax Tree,” in 2019 IEEE/ACM
41st International Conference on Software Engineering
(ICSE), 2019, pp. 783–794.

[19] G. Zhao and J. Huang, “DeepSim: deep learning code
functional similarity,” in Proceedings of the 2018 26th
ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of
Software Engineering, ser. ESEC/FSE 2018. New
York, NY, USA: Association for Computing Machinery,
2018, p. 141–151. [Online]. Available: https://doi.org/

89

10.1145/3236024.3236068
[20] Y. Zou, B. Ban, Y. Xue, and Y. Xu,

“CCGraph: a PDG-based code clone detector with
approximate graph matching,” in Proceedings of
the 35th IEEE/ACM International Conference on
Automated Software Engineering, ser. ASE ’20.
New York, NY, USA: Association for Computing
Machinery, 2021, p. 931–942. [Online]. Available:
https://doi.org/10.1145/3324884.3416541

[21] S. Woo, S. Park, S. Kim, H. Lee, and H. Oh, “CENTRIS:
A precise and scalable approach for identifying modified
open-source software reuse,” in 2021 IEEE/ACM 43rd In-
ternational Conference on Software Engineering (ICSE),
2021, pp. 860–872.

[22] Orikogbo, Damilola and Büchler, Matthias and Egele,
Manuel, “Crios: Toward large-scale ios application
analysis,” in Proceedings of the 6th Workshop on Security
and Privacy in Smartphones and Mobile Devices, ser.
SPSM ’16. New York, NY, USA: Association for
Computing Machinery, 2016, p. 33–42. [Online].
Available: https://doi.org/10.1145/2994459.2994473

[23] D. Domı́nguez-Álvarez, A. de la Cruz, A. Gorla, and
J. Caballero, “LibKit: Detecting Third-Party Libraries
in iOS Apps,” in Proceedings of the 31st ACM
Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering,
ser. ESEC/FSE 2023. New York, NY, USA: Association
for Computing Machinery, 2023, p. 1407–1418. [Online].
Available: https://doi.org/10.1145/3611643.3616344

[24] M. Backes, S. Bugiel, and E. Derr, “Reliable Third-
Party Library Detection in Android and its Security
Applications,” in Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security,
ser. CCS ’16. New York, NY, USA: Association
for Computing Machinery, 2016, p. 356–367. [Online].
Available: https://doi.org/10.1145/2976749.2978333

[25] Y. Wang, H. Wu, H. Zhang, and A. Rountev, “ORLIS:
obfuscation-resilient library detection for Android,”
in Proceedings of the 5th International Conference
on Mobile Software Engineering and Systems, ser.
MOBILESoft ’18. New York, NY, USA: Association
for Computing Machinery, 2018, p. 13–23. [Online].
Available: https://doi.org/10.1145/3197231.3197248

[26] Y. Zhang, J. Dai, X. Zhang, S. Huang, Z. Yang, M. Yang,
and H. Chen, “Detecting third-party libraries in Android
applications with high precision and recall,” in 2018
IEEE 25th International Conference on Software Anal-
ysis, Evolution and Reengineering (SANER), 2018, pp.
141–152.

[27] J. Zhang, A. R. Beresford, and S. A. Kollmann,
“LibID: reliable identification of obfuscated third-party
Android libraries,” in Proceedings of the 28th ACM
SIGSOFT International Symposium on Software Testing
and Analysis, ser. ISSTA 2019. New York, NY,
USA: Association for Computing Machinery, 2019,
p. 55–65. [Online]. Available: https://doi.org/10.1145/

3293882.3330563
[28] Y. Wu, C. Sun, D. Zeng, G. Tan, S. Ma, and P. Wang,

“LibScan: Towards more precise Third-Party library
identification for android applications,” in 32nd USENIX
Security Symposium (USENIX Security 23). Anaheim,
CA: USENIX Association, Aug. 2023, pp. 3385–3402.
[Online]. Available: https://www.usenix.org/conference/
usenixsecurity23/presentation/wu-yafei

[29] X. Zhan, L. Fan, S. Chen, F. We, T. Liu, X. Luo,
and Y. Liu, “ATVHunter: Reliable Version Detection of
Third-Party Libraries for Vulnerability Identification in
Android Applications,” in 2021 IEEE/ACM 43rd Interna-
tional Conference on Software Engineering (ICSE), 2021,
pp. 1695–1707.

[30] G. Mathew, C. Parnin, and K. T. Stolee, “SLACC:
simion-based language agnostic code clones,” in
Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering, ser. ICSE ’20.
New York, NY, USA: Association for Computing
Machinery, 2020, p. 210–221. [Online]. Available:
https://doi.org/10.1145/3377811.3380407

[31] H. Sajnani, V. Saini, J. Svajlenko, C. K. Roy, and
C. V. Lopes, “SourcererCC: scaling code clone detection
to big-code,” in Proceedings of the 38th International
Conference on Software Engineering, ser. ICSE ’16.
New York, NY, USA: Association for Computing
Machinery, 2016, p. 1157–1168. [Online]. Available:
https://doi.org/10.1145/2884781.2884877

[32] D. Zou, H. Qi, Z. Li, S. Wu, H. Jin, G. Sun, S. Wang, and
Y. Zhong, “SCVD: A New Semantics-Based Approach
for Cloned Vulnerable Code Detection,” in Detection of
Intrusions and Malware, and Vulnerability Assessment,
M. Polychronakis and M. Meier, Eds. Cham: Springer
International Publishing, 2017, pp. 325–344.

[33] Z. Li, D. Zou, S. Xu, H. Jin, H. Qi, and J. Hu,
“VulPecker: an automated vulnerability detection system
based on code similarity analysis,” in Proceedings of
the 32nd Annual Conference on Computer Security
Applications, ser. ACSAC ’16. New York, NY,
USA: Association for Computing Machinery, 2016,
p. 201–213. [Online]. Available: https://doi.org/10.1145/
2991079.2991102

[34] V. Saini, F. Farmahinifarahani, Y. Lu, P. Baldi, and C. V.
Lopes, “Oreo: detection of clones in the twilight zone,”
in Proceedings of the 2018 26th ACM Joint Meeting
on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering,
ser. ESEC/FSE 2018. New York, NY, USA: Association
for Computing Machinery, 2018, p. 354–365. [Online].
Available: https://doi.org/10.1145/3236024.3236026

90

