
research

DOI: 10.1145/3624723

BY SUKYOUNG RYU AND JIHYEOK PARK

JavaScript Language Design
and Implementation in
Tandem
Key Insights

• JavaScript is the first programming language for which each change to its prose language•
specification is both “type checked” and “tested” to identify bugs and inconsistencies.

• The primary enabler is the automatic extraction of a “mechanized specification” from•
a language specification written in prose, which allows the generation of a reference
implementation of the language from the specification.

• In addition to reference implementations, mechanized specifications can be used to detect•
conformance bugs between language specifications and existing JavaScript engines in major
Web browsers, and generate more special-purpose JavaScript implementations, such as
static analyzers, in a correct-by-construction manner.

• A promising approach to programming language development is to first design the language•
in a mechanized specification and then generate both human-friendly specifications written
in a variety of natural languages and correct-by-construction implementations from the
mechanized specification.

Programming languages have been specified using a wide variety of approaches. Most
programming language specifications are written in unstructured prose, but some are written
rigorously to help developers build correct language implementations. For example, Standard
ML (SML) was first designed with a formal specification that defined the language syntax and
semantics in mathematical notation, followed by a reference implementation of the specification.
JavaScript is well known for its language specification, which is written in highly structured prose
at the level of pseudocode algorithms. Finally, the specification of WebAssembly provides the
syntax and semantics of the language in both highly structured prose and mathematical notation.

Unfortunately, rigorous language specifications do not prevent bugs in language
implementations. SML maintains a list of reported bugs, and different implementations have
different sets of bugs. JavaScript has many implementation bugs in the JavaScript engines of
various Web browsers.

Rigorous language specifications do not prevent bugs in
language implementations.

COMMUNICATIONS OF THE ACM 1

http://10.1145/3624723
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3624723&domain=pdf&date_stamp=2024-04-19

More importantly, it is difficult to get a rigorous language specification right. Despite its complete
formal semantics, the WebAssembly 1.0 specification had bugs detected by mechanized proofs
of Conrad Watt.35 The developers of the Verse programming language2 described the language
semantics in rewriting rules and opened a call for participation to the PL community for confluence
proofs.

In this article, we present how to automatically extract a mechanized specification from a prose
specification and how useful it can be in practice. Using the example of JavaScript, we show
how mechanized specifications can be used to (1) detect conformance bugs between language
specifications and existing JavaScript engines in major Web browsers, and (2) generate more
special-purpose JavaScript implementations, such as static analyzers, in a correct-by-construction
manner. We propose a new approach to programming language development as a promising
direction for the future: first design the language in a mechanized specification and then generate
both human-friendly specifications written in diverse natural languages and correct-by-construction
implementations and tools from the mechanized specification.

We propose a new approach to programming language
development: design the language in a mechanized
specification, then generate both human-friendly
specifications written in diverse natural languages and
correct-by-construction implementations and tools from the
mechanized specification.

History of JavaScript

JavaScript is the most actively used programming language on GitHub.17 All Web browsers include
a JavaScript engine. It was initially designed and implemented by Brendan Eich in May 1995 as a
simple dynamic language that allowed code snippets to be interpreted by Web browsers. In early
1996, companies including Netscape and Microsoft were frequently releasing browser technology,
but language standardization was slow and often contentious. To ensure interoperability between
different browsers, TC39, the Ecma Technical Committee responsible for standardizing JavaScript,
had meetings to create the JavaScript language specification.

Unlike programming languages that “grow up” via a single implementation, JavaScript began with
multiple implementations, which guided its specification:36

Richard Gabriel, who attended some of the working group meetings, recalled in a
personal communication a not uncommon interaction during these meetings. Guy Steele
would ask a question about some edge-case feature behavior. Sometimes Brendan Eich
would say “I don't know,” and sometimes Eich and Shon Katzenberger would be unsure or
disagree; in such cases, they would each turn to their respective implementation and try a
test case. If they got the same answer, that became the specified behavior. If there were a
difference, they would discuss the issue until they reached an agreement.

The history of JavaScript is described in great detail in Wirfs-Brock and Eich.36 The first edition
of its language specification ECMA-262, abbreviated ES1, was released in 1997, edited by Guy L.
Steele, Jr, in 95 pages. JavaScript developers continued to demand more advanced language features,
so ES2 and ES3 were released in 1998 and 1999, respectively. However, attempts to define a fourth
edition were eventually abandoned due to the radical changes in a single update that included a
variety of new language features, and ES5 was finally released in 2009. Starting with the sixth edition,
TC39 adopted the practice of using the year of publication as an abbreviation. Thus, both “ES6”
and “ES2015” are informal abbreviations for “ECMA-262, 6th edition.” TC39 also decided to release
ECMA-262 annually, starting with ES2015 to ensure rapid adoption of new language features. The
latest ECMA-26210 is a much larger specification at 827 pages.

COMMUNICATIONS OF THE ACM2

Now, ECMA-262 is maintained as an open source project11 and follows the TC39 process14 for
handling proposals for new language features. JavaScript contributors propose new features along
with specification changes and tests, which are maintained in a separate repository6 over six stages.
Since 2015, TC39 has successfully published an updated edition of the ECMAScript specification
every June, following the TC39 process.

As with the language specification, various companies, including Microsoft and Google, have
released their own open source test suites for JavaScript. In 2010, TC39 decided to maintain
Test262,15 an open source JavaScript implementation conformance test suite. After working through
many policy and licensing issues, Test262 is now an integral part of TC39’s development process.
Every new ECMAScript feature must be accompanied by its tests before it is incorporated into the
ECMAScript standard. At the time of writing, Test262 consists of 48,854 tests.

Correctness and Conformance of the Specification and Implementations

Along with its reputation as the most widely used language, JavaScript is also well-known for its
unintuitive semantics due to its highly dynamic nature and extensive use of implicit type conversion.
As a result, there are many sophisticated JavaScript examples. Consider the following JavaScript code:

function f(x) { return x == !x; }

Even for this simple function, it is not easy to understand exactly what its behavior is: the function
f simply compares the given argument x with its negation, so it looks like it returns false. However,
when an empty array is given as an argument, it returns true due to a number of implicit conversions
for the negation and equality operators. More specifically, when f([]) evaluates [] == ![], the
negation of the empty array ![] evaluates to false because any object represents true. The
operands [] and false of the equality operator are then both converted to values of the same
type according to the implicit conversion rules defined in ECMA-262. In this example, they both get
converted into the same Number type value, 0, so the final result becomes true.

Such counterintuitive semantics often leads to various bugs and security vulnerabilities in
implementations. Experienced JavaScript developers often introduce bugs that are difficult to
catch due to the extremely dynamic nature of JavaScript. Mainstream JavaScript engines like V8,
JavaScriptCore, SpiderMonkey, and Chakra had various bugs that were more harmful than bugs in
JavaScript programs.34 They also had security vulnerabilities that could lead to remote attacks. For
example, a high-severity bug in V8, tracked as CVE-2021-21224, was widely exploited in April 2021.33

Besides, it is more challenging to correctly develop special-purpose JavaScript implementations
that require a deeper understanding of the specification for specialized language semantics. For
example, most existing JavaScript static analyzers19,20,23 require a sound abstraction of the language
semantics to guarantee the soundness of their analysis. However, because they need to consider not
only concrete semantics but also how to abstract them soundly, they have been plagued by soundness
bugs25 for unusual edge cases in language semantics.

ECMA-262 also had a number of bugs. Consider the following Math.round built-in library function
(specified in Section 20.3.2.28 of an ECMA-262 internal version):7

20.3.2.28 Math.round (x)
1. Let n be ? ToNumber (x).1.
2. If n is an integral Number, return n.2.
3. If x < 0.5 and x > 0, return + 0.3.
4. If x < 0 and x ≥ − 0.5, return − 0.4.

COMMUNICATIONS OF THE ACM 3

5. Return the integral Number closest to n, preferring the Number closer to +∞ in the case of a5.
tie.

It first converts the given parameter x to its numeric value n using ToNumber. The remaining steps
should be performed using n, but the specification writer of this section mistakenly used x instead of
n in steps 3 and 4. This bug was introduced in ECMA-262 on September 11, 2020 and was later fixed
by another contributor.

In addition, keeping a rapidly evolving language specification up to date and managing the many
different language implementations that conform to the specification is challenging even with a large
test suite. The three editors of ECMA-262 had to manually review new proposals and changes to the
specification. In addition to Test262, various browsers maintain their own test suites, but they may
still behave differently. Therefore, Ficarra,16 an editor of ECMA-262, said, “one of my primary goals
has been to make the specification easier to consume for automated analysis tools.”

Academic Research into the CI Systems

We helped Ficarra achieve his goal in November 2022: each ECMA-262 pull request (PR) runs a
type checker against the prose specification, and all new or changed tests in Test262 PRs are run
using an interpreter extracted directly from the text of ECMA-262. For example, if one sends a
PR of the Math.round function, the type checker will detect a bug and reject the PR. First, note
that the parameter x can accept any JavaScript value: string, boolean, number, object, and so on.
Applying ToNumber to x in step 1 converts x to a number or an exception. Exception cases are
filtered out using the question mark operator, so n always points to a number. Because x is compared
to several numbers with inequality operators on lines 3 and 4, the type checker reports them as
type mismatch bugs because non-numeric values are not valid arguments for inequality operators.
Whenever a language feature is added to ECMA-262, it must be accompanied by its corresponding
tests in Test262, which now leverage interpreters extracted from ECMA-262, always checking for
conformance to ECMA-262. These automated tools, heavily used in the continuous integration (CI)
system of ECMA-262 and Test262, are based on a series of academic papers.

How have ideas from academia been integrated into real-world industry? How did researchers
convince the TC39 committee to use their ideas?

The KAIST Programming Language Research Group (PLRG) has been researching JavaScript since
2011. Initially, we mainly formalized the semantics of the JavaScript language with various features,
but now our research focuses on program analysis and bug finding in JavaScript applications. Our
research problems are often motivated by real-world customers in companies such as Samsung
Electronics and IBM. This work had been challenging, interesting, rewarding, and fun until TC39
decided in 2015 to release ECMA-262 annually. As the JavaScript language has evolved more rapidly,
developing and maintaining JavaScript analysis tools has become increasingly difficult.

As the JavaScript language has evolved, developing
and maintaining JavaScript analysis tools has become
increasingly difficult.

In March 2019, Ph.D. candidate Jihyeok Park cautiously shared an outlandish idea. ECMA-262
had been released annually since 2015, but existing JavaScript analyzers, including our own, were
still based on ES5, which was released in 2009. It is impossible to manually keep up with the
changes in an 800-page specification every year. Then he realized something: the English phrases in
the specification had common patterns. It might be possible to “parse” the English sentences and
“compile” them into abstract algorithms in an intermediate language. We considered this a clever
engineering hack, which could help us generate more tests for features of ECMA-262 that Test262
does not cover.

COMMUNICATIONS OF THE ACM4

In essence, it was the primary enabler; the direct extraction of “mechanized specifications”
from prose-written language specifications has opened the door to the automatic generation of
language-manipulating tools. To bridge the gap between ECMA-262 and its implementations,
ESMeta21 extracts mechanized specifications to automatically generate a variety of language-based
tools from a given version of ECMA-262. It is based on several papers. JISET28 extracts a mechanized
specification from ECMA-262. A mechanized specification consists of two parts: a JavaScript parser
constructed from the syntax written in a variant of the extended BNF (EBNF) notation, and functions
in an intermediate representation (IR) compiled from abstract algorithms written in English for
the language semantics. JEST27 synthesizes conformance test programs and checks discrepancies
between JavaScript engines and the specification. Using this tool, we detected 44 bugs in four
engines (V8, GraalJS, QuickJS, and Moddable XS) and 27 bugs in ES2020. JSTAR26 analyzed the
types of English sentences in ECMA-262 and detected 93 type-related specification bugs, which were
confirmed by TC39. JSAVER25 automatically generates a JavaScript static analyzer from ECMA-262,
which outperforms the state-of-the-art JavaScript static analyzers that were manually developed. The
next section offers a description of the technical details behind them.

The direct extraction of “mechanized specifications” from
prose-written language specifications has opened the door
to the automatic generation of language-manipulating tools.

Because the papers presented various new techniques using mechanized specifications, we used
their bug-finding capabilities to evaluate the effectiveness of the techniques. Thus, we submitted
many bug reports to mainstream JavaScript engine developers and the TC39 committee for
confirmation. They kindly confirmed the bugs and expressed a lot of curiosity. Then, the ECMA-262
editors invited us to a TC39 meeting.

The presentation was very well received. All the excitement from the TC39 committee and the
detailed discussion can be found in the meeting note.13 After mutually exciting meetings with the
TC39 committee, we decided to integrate JSTAR and JISET into the CI systems of ECMA-262 and
Test262, respectively. Since these tools were prototype implementations to see their feasibility in
academic publications, we reimplemented all the tools and rebranded them as ESMeta to make them
practically available to all PRs in the ECMA-262 and Test262 repositories.

After the first meeting with ECMA-262 editors on Nov. 24, 2021, we gave a presentation at the TC39
meeting on Jan. 27, 2022. ESMeta was then integrated into ECMA-262's CI system on Nov. 3, 202212

and Test262's CI system on Nov. 25, 2022.9 This was about a year after the first meeting with the TC39
committee. This is how the initial outlandish idea and subsequent academic papers were integrated
into real-world programming language development.

Technical Details

Researchers have proposed various approaches to help developers build correct JavaScript
applications.1,32

One approach is to formalize the JavaScript language semantics described in ECMA-262. Because
ECMA-262 defines semantics in prose, it is sometimes ambiguous and contains bugs and infeasible
behavior. Researchers have proposed formal specifications for JavaScript semantics to provide a solid
foundation for JavaScript research. Maffeis et al.22 proposed a small-step operational semantics for
ES3; Guha et al.18 used a desugaring process to develop λJS, a core calculus of ES3; and Park et al.24

defined ES5 using the K framework.30

Another approach is to analyze JavaScript programs to reason about their behavior or detect bugs
and security vulnerabilities. WALA19 was initially developed for Java pointer analysis and has been
extended to support more languages, including Android Java and JavaScript. TAJS23 is a dataflow
analysis for JavaScript that uses a model of ES3 and a partial model of ES5. It provides partial support
for the latest ECMAScript language features with Babel,3 which compiles the latest features down to
lower versions. SAFE20 is a general analysis framework for JavaScript web applications. These are all

COMMUNICATIONS OF THE ACM 5

Figure 1. Overall structure of ESMeta.

open source projects for static analysis of JavaScript. In contrast, Jalangi31 is a general framework
for JavaScript dynamic analyzers such as memory profilers and dynamic JIT-unfriendly code snippet
detectors.

While most of the research on JavaScript is for ES3 and ES5, ECMA-262 has been released every year
since 2015. Thus, manually updating the semantic formalizations and analysis implementations is
tedious, labor-intensive, and error-prone.

To bridge the gap between the rapidly evolving ECMA-262 and its implementations, ESMeta
generates various tools directly from ECMA-262. Figure 1 illustrates the overall structure of ESMeta.
The first step is to extract a mechanized specification from an input ECMA-262 via JISET. Once a
mechanized specification is available, it can be used to check the validity of ECMA-262. We can use
JEST to synthesize new kinds of conformance tests and JSTAR to analyze the types of English phrases
in the specification. Finally, we can use JSAVER to derive a static analyzer for a given version of
ECMA-262. We will describe them in order.

Extraction of Mechanized Specifications

ECMA-262 defines the language syntax using a variant of EBNF and the semantics using abstract
algorithms in a clear and structured manner. For example, the following production shows the syntax
of ArrayLiteral in ES2022:

ArrayLiteral[Yield, Await] :

[Elisionopt]

[ElementList[?Yield, ?Await]]

[ElementList[?Yield, ?Await] , Elisionopt]

It takes two boolean parameters Yield and Await, and has three alternatives. The following
abstract algorithm defines the semantics of the third alternative:

ArrayLiteral : [ElementList , Elisionopt]

1. Let array be ! ArrayCreate(0).1.
2. Let nextIndex be ? ArrayAccumulation of ElementList with arguments array and 0.2.
3. If Elision is present then:3.

◦ Perform ? ArrayAccumulation of Elision with arguments array and nextIndex.◦

4. Return array.4.

COMMUNICATIONS OF THE ACM6

It has four steps. In the HTML files describing ECMA-262, each nonterminal, such as ElementList,
or local variable, such as array, has a <nt> or <var> tag, respectively. From the above production, the
lookahead parsing technique28 generates a parser in Scala code as follows:

 val ArrayLiteral: List[Boolean] => LAParser[T] = memo {
 case List(Yield, Await) =>
 "[" ~ opt(Elision) ~ "]" ^^ ArrayLiteral0 |
 "[" ~ ElementList(Yield,Await)
 ~ "]" ^^ ArrayLiteral1 |
 "[" ~ ElementList(Yield,Await)
 ~ "," ~ opt(Elision) ~ "]" ^^ ArrayLiteral2
 }

Each parser has the List[Boolean] => LAParser[T] type because each production is
parametric with boolean values. Similarly, the algorithm compiler28 translates the above abstract
algorithm to the following function in a domain-specific intermediate representation, IRES:

 syntax def ArrayLiteral[2].Evaluation(
 this, ElementList, Elision
) {
 let array = [! (ArrayCreate 0)]
 let nextIndex =
 [? (ElementList.ArrayAccumulation array 0)]
 if (! (= Elision absent))
 [? (Elision.ArrayAccumulation array nextIndex)]
 return array
 }

We evaluated the correctness of the semantics extracted from ES20195 by running Test262. It took
about three hours to evaluate 18,064 applicable tests; 1,709 tests failed due to nine specification bugs
in ES2019. Four of these bugs were newly reported and confirmed by TC39.

Synthesis of Conformance Tests

In addition to the annual updates to ECMA-262, the various JavaScript engines continue to provide
various extensions to the specification to meet rapidly changing user needs. Unfortunately, these
updates, both in the specification and in implementations, make synchronization difficult, leading to
unexpected behavior.

Inspired by the ECMA-262 bugs detected by the extracted semantics, we devised an N +1-version
differential testing.27 Traditional differential testing runs N implementations of a specification
simultaneously for each input and detects problems when the outputs do not match. N +1-version
differential testing also tests the specification using a mechanized specification extracted from the
specification.

It consists of four steps:

1. Automatically synthesize programs according to the syntax and semantics from a given1.
language specification.

2. generate conformance tests by injecting assertions into the synthesized programs to check2.
their final program states.

COMMUNICATIONS OF THE ACM 7

3. Run the conformance tests against multiple implementations to detect bugs in the3.
specification and implementations

4. Use statistical information to localize bugs in the specification.4.

We evaluated the effectiveness of the synthesized tests with ES2020 and four JavaScript engines
that fully support modern JavaScript features in ES2020: V8, GraalJS, QuickJS, and Moddable XS. For
evaluation, we injected seven kinds of assertions: exception, abort, variable value, object value, object
property, property key, and internal method and slot. For example, to check whether a final program
state has the correct value for each object property, we implemented a helper $verifyProperty,
which checks the attributes of each property for each object. Thus, the following code checks the
attributes of the property of x.p:

 var x = { p: 42 };
 $verifyProperty(x, "p", {
 value: 42.0, writable: true,
 enumerable: true, configurable: true
 });

The bug detection and localization phase then uses the results of running given conformance tests
on multiple JavaScript engines. If a small number of engines fail in each test, it reports a potential
bug in the engines that failed the test. If a large number of engines fail, it reports a potential bug
in the specification. It uses spectrum-based fault localization (SBFL),37 a localization technique that
leverages the coverage of test cases and pass/fail results, to localize potential bugs. We detected
44 bugs in the engines and 27 bugs in ES2020. One of the ES2020 bugs was a newly detected bug
confirmed by TC39, caused by not handling abrupt completions in property definitions of object
literals.

Type Analysis of Specifications

Manually reviewing every specification update is inherently labor-intensive and error-prone, making
ECMAScript vulnerable to specification bugs. Because the average number of updated steps of
abstract algorithms between consecutive releases from ECMAScript 2016 to 2019 was 9,645.5,28

manually checking for every update is a daunting task. Thus, TC39 pushed to add various manual
annotations to the abstract algorithms to reduce specification bugs. First, it introduced two kinds
of annotations: assertions, which indicate assumptions at specific points in abstract algorithms,
and the prefixes ? and !, which indicate whether the execution of an abstract algorithm completes
abruptly. For example, “Assert: Type(O) is Object” denotes that the variable O always has an Object
value at the point of the assertion, and “? GetV(V , P)” denotes that the execution of GetV(V , P)
can complete abruptly. These annotations help readers understand specifications clearly. Second,
the committee decided to support type annotations for variables, parameters, and return values of
abstract algorithms. However, manual annotations of any kind are laborious, prone to mistakes, and
do not provide an automatic mechanism for detecting specification bugs.

Manual annotations of any kind are laborious, prone to
mistakes, and do not provide an automatic mechanism for
detecting specification bugs.

To alleviate this problem, we developed JSTAR,26 which takes a mechanized JavaScript
specification from JISET and performs type analysis of compiled functions using the specification
types defined in ECMA-262. ECMA-262 contains not only JavaScript language types, but also
specification types such as abstract syntax trees (ASTs), internal list-like structures, and internal

COMMUNICATIONS OF THE ACM8

Figure 2. Subtype relation <:

records including environments, completions, and property descriptors. For records and AST types,
we also defined their fields. We defined their type hierarchies based on subtype relations. The subtype
relation between types is shown in Figure 2; a directed edge from τ′ to τ denotes a subtype
relation (that is, τ′ <: τ), and the relation is reflexive and transitive. The subtype relation depends
on the nominal types defined in ECMAScript. We extract the subtype relation for AST types from the
JavaScript syntax. For example, consider the following syntax:

FormalParameter[?Yield, ?Await]] : BindingElement[?Yield, ?Await]]

Because the nonterminal BindingElement is the unique alternative of the production
FormalParameter, we automatically extract the subtype relation: BindingElement <: FormalParameter.
Using the subtype relation, the expression e : τ checks whether the evaluation result of e has type
τ′ satisfying τ′ <: τ. These subtype relations help enhance the precision of type analysis by
keeping track of the precise types of variables and expressions.

Using such type information, JSTAR performs type analysis and detects specification bugs using
a bug detector consisting of four checkers: 1) reference checker, 2) arity checker, 3) assertion
checker, and 4) operand checker. JSTAR also uses condition-based refinement for type analysis,
which improves the precision of type analysis by using conditions on assertions and branches to
eliminate infeasible parts. We evaluated JSTAR with all 864 versions in the official ECMAScript
repository from 2018 to 2021. The evaluation showed that the refinement technique can reduce
the number of false-positive bugs due to spurious types inferred by imprecise type analysis. JSTAR
detected 14 type-related bugs in ES2021,8 which were confirmed by TC39.

Derivation of Static Analyzers

Finally, we developed JSAVER,25 which automatically generates a JavaScript static analyzer from
ECMA-262. First, JSAVER extracts definitional interpreters29 from ECMA-262. A definitional
interpreter provides a way to represent the language semantics of a defined language using its
interpreter written in a defining language. We extract a JavaScript definitional interpreter from JISET.
In the extracted definitional interpreter, the defined language is JavaScript, and the defining language
is IRES. We then present meta-level static analysis, which uses the extracted interpreter to indirectly

analyze JavaScript programs. Meta-level static analysis is an interpreter-based approach for static
analysis of a defined language L1 using the static analyzer of a defining-language L2, as depicted

in Figure 3. Since an L1 interpreter is an L2 program, we can indirectly analyze an L1 program by

taking the L1 program as input and using the static analyzer of L2 to analyze the interpreter. Thus,

COMMUNICATIONS OF THE ACM 9

Figure 3. Interpreter-based static analysis approach.

Figure 4. Analysis results of TAJS and SAFE without and with Babel and JSAES2021 for applicable tests

we developed a static analyzer of IRES for a meta-level static analysis of JavaScript and showed that it

can indirectly analyze JavaScript programs effectively. We also presented ways to indirectly configure
abstract domains and analysis sensitivities for JavaScript in the static analysis of IRES. First, we

provide a method to configure abstract domains for JavaScript values and structures. Second, we
present AST sensitivities to express analysis sensitivities for JavaScript, such as flow-sensitivity and
k-callsite-sensitivity.

Figure 4 shows the analysis results of existing static analyzers (TAJS and SAFE) without and
with Babel, and JSAES2021, the JavaScript static analyzer derived from ES2021 via JSAVER, for the

applicable tests. In each chart, the x-axis represents the point in time when the tests were generated
and the y-axis represents the number of tests generated before that point in time. The mark
sound (green, filled) denotes a sound analysis, unsound (red, striped) denotes an unsound analysis,
and error (white, blank) denotes an unexpected error. Figures 4(a) and 4(b) show that TAJS and SAFE
analyzed most tests generated before 2015 in a sound way. However, the number of tests that cannot
be soundly analyzed has been steadily increasing since 2015. As shown in Figures 4(d) and 4(e), Babel
transpiles ES2015+ features to ES5.1 to mitigate this issue and increase the number of programs
that TAJS and SAFE analyze soundly. However, TAJS and SAFE still failed to soundly analyze more
than half of the Test262 test programs, while JSAES2021 succeeded in soundly analyzing all applicable

test programs without the need for Babel. The figures show that JSAVER can reduce the burden of
defining the abstract semantics of ES2015+ features for static analysis.

COMMUNICATIONS OF THE ACM10

Figure 5. ECMAScript double debugger.

A Promising New Approach to Programming Language Development

Designing and implementing real-world programming languages is challenging. The ability to reason
about program behavior often comes from a formal specification of the language's semantics, but
the time-consuming effort of formalizing the semantics often falls behind actual implementation.
For example, Rust is actively developed by a large and diverse community of contributors and is
used in real-world software such as the Linux kernel and Mozilla Firefox. However, it has not
resolved soundness bugs reported years ago4 because its strong, static type system does not yet
cover various language features and APIs. Applying the ESMeta approach to Rust can help efficiently
generate machine-checkable proof sketches, especially with mechanized semantics extracted from
mechanized specifications.

Along with formalizing the semantics of the language, it would be helpful to perform extensive
testing of the semantics using implementations extracted from the mechanized specification. Watt
et al.35 presented two mechanizations of WebAssembly 1.0 and found bugs in it, but mechanization
of WebAssembly 2.0 will still be quite time-consuming because the entire mechanization process
is done manually. Applying the ESMeta approach to WebAssembly can reduce the burden of such
manual mechanization.

A promising new approach to programming language development is to design languages with
mechanized specifications from the beginning. For developers, mechanized specifications can be
easier to understand than specifications in natural language because they are unambiguous and
always executable. For non-developers, mechanized specifications can be translated into diverse,
human-friendly natural languages. Furthermore, implementations and tools that are extracted
directly from mechanized specifications are correct by construction.

A promising new approach to programming language
development is to design languages with mechanized
specifications from the beginning.

Designing a new programming language by writing a mechanized specification that correctly
describes the language's intended behavior can seem daunting, but it is possible because
mechanized specifications allow us to create a variety of tools. For example, one can run the

COMMUNICATIONS OF THE ACM 11

specification interactively. Figure 5 shows another ESMeta tool, the ECMAScript Double Debugger.21

This tool extends the interpreter extracted from ECMA-262 to help users understand how JavaScript
programs are executed according to ECMA-262. It supports step-by-step execution of ECMA-262
abstract algorithms, line-by-line execution of JavaScript code, breakpoints by abstract algorithm
name in ECMA-262, and visualization of ECMA-262 internal states. Language designers can use
the debugger to run example code to debug their mechanized specifications. For instance, Verse
introduced new features such as logical variables, equality constraints between variables, and choice
that allows multiple alternatives. Describing the intended behavior precisely is cumbersome, but a
double debugger can ease the burden on language designers.

Conclusion

JavaScript is the first programming language for which each change to its prose language
specification is both “type checked” and also “tested” to identify bugs and inconsistencies. In this
article, we presented our story of applying various ideas from academic papers to the continuous
design and implementation process of the real-world programming language in the wild. As one of
the reviewers of the JISET paper suggested, we believe that:

This is the right order to design and document languages: first the semantics, then the
implementation and documentation, ideally generated from the semantics.

Acknowledgments

We would like to thank all members of the KAIST Programming Language Research Group (PLRG) for
their collaboration, especially Jaemin Hong for his insightful feedback. This research was supported
by National Research Foundation of Korea (NRF) (2022R1A2C200366011 and 2021R1A5A1021944),
Institute for Information & communications Technology Promotion (IITP) grant funded by the
Korea government (MSIT) (2022-0-00460 and 2023-2020-0-01819), and Samsung Electronics Co.,
Ltd (G01210570).

References

1. Andreasen, E. et al. A survey of dynamic analysis and test generation for JavaScript. Comput. Surveys 50,1.
5 (2017), 66:1–66:36.

2. Augustsson, L., Breitner, J. et al. The Verse calculus: A core calculus for deterministic functional logic2.
programming. In Proceedings of ACM Program. Lang. 7, ICFP, Article 203 (Aug. 2023), 31; 10.1145/3607845

3. Babel Team. Babel is a Javascript compiler. Babel Community, 2022; https://babeljs.io/3.
4. Ben-Yehuda, A. Coherence Can Be Bypassed by an Indirect Impl for a Trait Object(2019); https://bit.ly/4.

4bqvoAB.
5. Ecma International. ECMA-262, 10th Edition, ECMAScript®2019 Language Specification (June 2019); https://5.

bit.ly/488c9J9
6. Ecma International. Github Repository for ECMAScript Proposals (2019); https://bit.ly/48az6M16.
7. Ecma International. Github Repository for an Internal Version of ECMA-262 (2020); https://bit.ly/3Uzf8Y1.7.
8. Ecma International. ECMA-262, 12th Edition, ECMAScript®2021 Language Specification; https://bit.ly/3OzoHCo8.
9. Ecma International. CI: Integrate ESMeta #3730 (2022); https://bit.ly/3HQcLJ1.9.

10. Ecma International. ECMA-262, 14th Edition, ECMAScript®2023 Language Specification; https://bit.ly/10.
3ODWNVX

11. Ecma International. ECMAScript Repository (2022); https://bit.ly/49sM88x11.
12. Ecma International. Meta: Integrate ESMeta Type Checker into CI #2926 (2022); https://bit.ly/3Us6smm.12.
13. Ecma International. Tc39: 26 January 2022 Meeting Notes; https://bit.ly/489mGnu.13.
14. Ecma International. The Tc39 Process (2022); https://bit.ly/42BnEYK14.
15. Ecma International. Test262: ECMAScript Test Suite (2022); https://bit.ly/3w9BQfj15.
16. Ficarra, M. Personal Communication (2021).16.
17. GitHub. The Top Programming Languages (2022); https://bit.ly/3utUMF1.17.
18. Guha, A., Saftoiu, C., and Krishnamurthi, S. The essence of JavaScript. In Proceedings of the European Conf.18.

on Object-Oriented Programming. Springer Berlin Heidelberg (2010), 126–150.
19. IBM Research. T.J. Watson Libraries for Analysis (WALA), 2006; http://wala.sf.net.19.

COMMUNICATIONS OF THE ACM12

20. KAIST PLRG. SAFE: Javascript Analysis Framework, 2012; http://safe.kaist.ac.kr.20.
21. KAIST PLRG. ESMeta (2022); https://bit.ly/48YjA77.21.
22. Maffeis, S., Mitchell, J.C., and Taly, A. An operational semantics for JavaScript. In Proceedings of the22.

Asian Symp. on Programming Languages and Systems. Springer Berlin Heidelberg (2008), 307–325.
23. Møller, A. et al. TAJS: Type Analyzer for JavaScript (2012); https://bit.ly/3HRyMHb.23.
24. Park, D., Stefănescu, A., and Roşu, G. KJS: A complete formal semantics of JavaScript. In24.

Proceedings of the 36th ACM SIGPLAN Conf. on Programming Language Design and Implementation.
Association for Computing Machinery (2015), 346–356.

25. Park, J., An, S., and Ryu, S. Automatically deriving JavaScript static analyzers from specifications using25.
meta-level static analysis. In Proceedings of the 30th ACM Joint European Software Engineering Conf.
and Symp. on the Foundations of Software Engineering. Association for Computing Machinery (2022),
1022–1034.

26. Park, J. et al. JSTAR: JavaScript specification type analyzer using refinement. In Proceedings of the 36th IEEE/26.
ACM Intern. Conf. on Automated Software Engineering. Association for Computing Machinery (2021),
606–616.

27. Park, J. et al. JEST: N+1-version differential testing of both JavaScript engines and specification. In27.
Proceedings of IEEE/ACM 43rd Intern. Conf. on Software Engineering. IEEE, Association for Computing
Machinery (2021), 13–24.

28. Park, J., Park, J., An, S., and Ryu, S. JISET: JavaScript IR-based semantics extraction toolchain. In28.
Proceedings of the 35th IEEE/ACM Intern. Conf. on Automated Software Engineering. IEEE, Association for
Computing Machinery, (2020), 647–658.

29. Reynolds, J.C. Definitional interpreters for higher-order programming languages. In29.
Proceedings of the ACM Annual Conf. 2. Association for Computing Machinery (1972), 717–740.

30. Roşu, G. and Şerbănuţă, T.F. K overview and SIMPLE case study. In Proceedings of the 2nd Intern.30.
Workshop on the K Framework and Its Applications 304. Elsevier (2014), 3–56.

31. Sen, K., Kalasapur, S., Brutch, T., and Gibbs, S. Jalangi: A tool framework for concolic testing, selective31.
record-replay, and dynamic analysis of JavaScript.
In Proceedings of the 30th ACM Joint European Software Engineering Conf. and Symp. on the Foundations of Software Engineering,
Association for Computing Machinery (2013), 615–618.

32. Sun, K. and Ryu, S. Analysis of JavaScript programs: Challenges and research trends. ACM Computing Survvey32.
50, 4 (Aug. 2017), 34.

33. Tung, L. Bugs in Chrome’s Javascript Engine Can Lead to Powerful Exploits (2021); https://zd.net/3HS2lbJ33.
34. Wang, Z. et al. An empirical study on bugs in JavaScript engines. Information and Software Technology 15534.

(2023), 107105.
35. Watt, C. et al. Two mechanisations of WebAssembly 1.0. In Formal Methods. M. Huisman, C. Păsăreanu, and N.35.

Zhan (eds). Springer Intern. Publishing, Cham, (2021), 61–79.
36. Wirfs-Brock, A. and Eich, B. JavaScript: The first 20 years. Proceedings of the ACM on Programming Languages36.

4, HOPL, Article 77 (June 2020), 189.
37. Wong, W. et al. A survey on software fault localization. IEEE Transactions on Software Engineering 42,37.

8 (2016), 707–740.

Sukyoung Ryu is a professor at KAIST, Daejeon, Republic of Korea.
Jihyeok Park is an assistant professor at Korea University, Seoul, Republic of Korea.

COMMUNICATIONS OF THE ACM 13

