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Understanding program behaviors is important to verify program properties or to optimize programs. Static

analysis is a widely used technique to approximate program behaviors via abstract interpretation. To evalu-

ate the quality of static analysis, researchers have used three metrics: performance, precision, and soundness.

The static analysis quality depends on the analysis techniques used, but the best combination of such tech-

niques may be different for different programs. To find the best combination of analysis techniques for specific

programs, recent work has proposed parametric static analysis. It considers static analysis as black-box pa-

rameterized by analysis parameters, which are techniques that may be configured without analysis details.

We formally define the parametric static analysis, and we survey analysis parameters and their parameter

selection in the literature. We also discuss open challenges and future directions of the parametric static

analysis.
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1 INTRODUCTION

Program comprehension is one of the most important topics in software maintenance. It helps
developers understand program behaviors to refactor existing code for removing bugs or optimiz-
ing programs. However, it is time-consuming: More than 60 percent of manpower in software
engineering is invested in program understanding [100]. Thus, researchers have proposed various
ways to mechanically extract program behaviors such as static analysis and dynamic analysis.

Static analysis is based on abstract interpretation [13] and approximately estimates program
behaviors using abstract semantics. While dynamic analysis [61] collects runtime behaviors of
instrumented code, static analysis over-approximates all program behaviors without actually exe-
cuting programs. The static analysis quality is often evaluated by three criteria:

Jihyeok Park and Hongki Lee contributed equally to the article.

Authors’ addresses: J. Park, H. Lee, and S. Ryu, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea;

emails: {jhpark0223, petitkan, sryu.cs}@kaist.ac.kr.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2021 Association for Computing Machinery.

0360-0300/2021/07-ART149 $15.00

https://doi.org/10.1145/3464457

ACM Computing Surveys, Vol. 54, No. 7, Article 149. Publication date: July 2021.

https://doi.org/10.1145/3464457
mailto:permissions@acm.org
https://doi.org/10.1145/3464457


149:2 J. Park et al.

— Performance denotes how fast static analysis analyzes programs. The literature compared analysis time to

measure the analysis performance. The less the analysis time, the more efficient the analysis is.

— Precision stands for accuracy of analysis results. Because static analysis performs over-approximation, its

results may contain infeasible behaviors. Thus, static analysis may report false positives. To measure the

analysis precision, the literature uses the ratio of true positives over the total alarms. The higher the ratio

of true positives, the more precise analysis results.

— Soundness represents whether analysis results cover all possible program behaviors at runtime. Thus, a

sound analysis should not report false negatives. However, practical static analyzers intentionally assume

that several complex features, such as reflection in Java and dynamic code generation in JavaScript, do not

exist in programs. In such cases, static analysis guarantees soundness only for certain behaviors. When

a static analysis allows unsoundness for well-identified features, the analysis ensures soundiness [55].

Diverse analysis techniques have been proposed to enhance performance and precision of static
analysis while preserving soundness. Several researchers configured them as analysis parameters

to find the best analysis result depending on the analysis purpose. However, three criteria often
compete with each other according to the selected analysis parameters. In most cases, analysis
parameters are for the balance between performance and precision. For example, flow-sensitivity
is one of the most popular analysis sensitivity techniques. A flow-insensitive analysis maintains
a universal abstract state to represent the abstract semantics of the entire program. However, a
flow-sensitive analysis stores a local abstract state for each program point. It usually increases
the analysis precision but degrades the analysis performance because of abundant abstract states.
While most analysis techniques configure the balance between performance and precision, some
techniques sacrifice soundness for better precision or performance. When a static analysis approx-
imates complex behaviors using the� abstract value to preserve soundness, it degrades both preci-
sion and performance due to the propagation of imprecise values. Thus, researchers have unsound
analyzed real-world programs using features such as dynamic code generation or reflection.

To mechanically select analysis parameters depending on given programs and analysis purposes,
researchers have proposed parametric static analysis. The parametric static analysis considers a
static analyzer as a black box configurable with analysis parameters and focuses on how to select
the best analysis parameter. For the parameter selection, existing techniques utilize extracted pro-
gram properties and feedback from the previous or intermediate results of static analysis for the
iterative strategy. In this article, we formally define parametric static analysis for the first time, and
we survey the analysis parameters used for parametric static analysis and how existing research
selects them depending on given programs and analysis purposes. In Section 2, we formalize the
definition of parametric static analysis. We categorize analysis parameters and describe their ef-
fects during static analysis in Section 3, and we introduce how to select analysis parameters in
Section 4. We discuss open challenges and future research directions in Section 5 and conclude in
Section 6.

2 FORMAL DEFINITION OF PARAMETRIC STATIC ANALYSIS

In this section, we formally define which parts of static analysis are parameterizable and explain
the overall structure of parametric static analysis.

2.1 Programs and Collecting Semantics

We represent a program P = (Σ,�, Σι ) as a state transition system. A state σ ∈ Σ represents
a status of the program and Σι denotes the initial state set. The transition relation �⊆ Σ × Σ
describes how states are transformed to other states. The notation�∗ is zero or more repetitions
of�.
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Fig. 1. Conditional branch.

We define the set of reachable states of P as its collecting semantics �P� = {σ ∈ Σ | σι ∈ Σι ∧
σι �∗ σ }. One way to systematically evaluate it is to define a step-by-step iteration to collect
next reachable states. For such iterations, we define a concrete domain D as a lattice whose ele-
ments are sets of states P (Σ), the partial order is the subset relation ⊆, and the least upper bound
and the greatest lower bound between sets of states are the set union ∪ and the set intersection
∩, respectively. Then, we define a transfer function F : D → D to gradually collect reachable
states:

F (d ) = d ∪ step(d ),

where the one-step execution step : D → D transforms each element of the given set of states d
using the transition relation�: step(d ) = {σ ′ | σ ∈ d ∧ σ � σ ′}. The transfer function F merges
the given set of states d with the next reachable states step(d ). Finally, we define the collecting
semantics using the iteration of the transfer function F with the initial set of state dι = Σι :

�P� = lim
n→∞

Fn (dι ).

For example, consider the simple code with a conditional branch in Figure 1. In this case, we
define states as pairs of control states and the values of the variable x: Σ = L × Z. A control state
l ∈ L denotes a program point and Z denotes the set of integers. The initial states are dι = Σι =

{(l0, 0)}, which means that the program point is l0 and the variable x has the initial value 0. We
use the trivial transition relation corresponding to each program instruction. The question mark
denotes a random input of integers; it represents any integer. Thus, the first iteration becomes
F (dι ) = {(l0, 0)} ∪ {(l1,n) | n ∈ Z}. After the third iteration F 3 (dι ), it converges to the following:

�P� = {(l0, 0)} ∪ {(l1,n) | n ∈ Z} ∪ {(l2,n) | n ≥ 0} ∪ {(l3,n) | n < 0} ∪ {(l4,n) | n ≥ 0}.

The randomness of the question mark generates an infinite number of reachable states. In general,
the lengths of iterations could be also infinite when programs have infinite loops. Thus, it is difficult
to acquire finite representation of collecting semantics of complex programs.

2.2 Abstract Interpretation

Abstract interpretation [13] presents a way to over-approximate the collecting semantics �P� to

an abstract semantics �P�� using an abstract domain D� and an abstract transfer function F � :

�P�� = lim
n→∞

(F � )n (d�
ι ).

We define a state abstraction usingD� and a concretization functionγ :D�
γ
−→ D. The abstract domain

D
� is a lattice whose elements are abstract states d� ∈ D� with a partial order  between abstract

states. The join � and the meet � operators denote the least upper bound and the greatest lower

bound, respectively. Each abstract state represents a set of states using γ : D� → D. The initial

abstract state d�
ι ∈ D� represents an abstraction of the initial state set; dι ⊆ γ (d�

ι ).
We define an abstract transfer function F � : D� → D� as F � (d� ) = d� � step� (d� ) with an

abstract one-step execution step� : D� → D� . For a sound abstraction, the following conditions
should hold:
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• a sound join �: ∀d�
0 ,d

�
1 ∈ D� . γ (d�

0 ) ∪ γ (d�
1 ) ⊆ γ (d�

0 � d
�
1 ),

• a sound abstract one-step execution step� : ∀d� ∈ D� . step ◦ γ (d� ) ⊆ γ ◦ step� (d� ),

where f ◦д denotes the composition of functions f andд. Then, for any stepn ∈ N0, the proposition

Fn (dι ) ⊆ γ ◦ (F � )n (d�
ι ) holds, thus �P� ⊆ γ (�P�� ).

Consider the state abstraction with abstract states D� = {�,⊥, ⊕,−} and the concretization:

γ (�) = Σ γ (⊕) = L × {n ∈ Z | n ≥ 0} γ (−) = L × {n ∈ Z | n < 0} γ (⊥) = ∅.

For an abstract transfer function F � , assume that it soundly abstracts a transfer function F in

the most precise way. Under this abstract interpretation, the initial abstract state d�
ι is ⊕ because

the initial value of the variable x is 0. The concretization γ (⊕) contains the state (l0, 0) whose

next reachable states are {(l1,n) | n ∈ Z}. Thus, γ (step� (⊕)) should contain {(l1,n) | n ∈ Z}
and step� (⊕) must be the top abstract state �. Therefore, the first iteration becomes F � (d�

ι ) =

d�
ι � step� (d�

ι ) = ⊕ � � = �, which makes �P�� converge to the top abstract state �. However,
this analysis result contains many false positives such as (l3, 42). One option is to use analysis
sensitivities to increase the precision.

2.3 Abstract Interpretation with Analysis Sensitivity

Abstract interpretation often uses analysis sensitivity techniques to achieve precise analysis results.

We define a sensitive abstract domain D
�
δ

using a view abstraction [42] δ and describe an abstract

transfer function F � with the analysis sensitivity. A view abstraction Π
δ−→ D provides multiple

points of views for reachable states during static analysis. It maps a finite number of views Π to sets

of states D. Each view π ∈ Π represents a set of states δ (π ). A sensitive state abstraction D
�
δ

γδ−−→ D
is defined with a given view abstraction δ . Its abstract domain D

�
δ
= Π → D� maps views Π to a

view-wise abstract domainD� , and its operators δ , �δ , and �δ are defined in a pointwise manner

for each view π ∈ Π. The concretization function γδ : D
�
δ
→ D is as follows:

γδ (d�
δ

) = {σ ∈ Σ | ∀π ∈ Π. σ ∈ δ (π ) ⇒ σ ∈ γ ◦ d�
δ

(π )}.

With analysis sensitivities, we define an abstract one-step execution step
�
δ

: D
�
δ
→ D

�
δ

as
follows:

step
�
δ

(d�
δ

) = λπ ∈ Π.
⊔

π ′ ∈Π

�π ′ → π �� ◦ d�
δ

(π ′),

where �π ′ → π �� : D� → D� is the abstract semantics of a view transition from a view π ′ to
another view π . It should satisfy the following condition for the soundness of the analysis:

∀d� ∈ D� . step(γ (d� ) ∩ δ (π ′)) ∩ δ (π ) ⊆ γ ◦ �π ′ → π �� (d� ).

For example, one of the most popular sensitivity techniques is flow-sensitivity. We define it with

a flow-sensitive view abstraction δFS : L→ D. It discriminates states using their control states:

∀l ∈ L. δFS (l ) = {σ ∈ Σ | σ = (l , _)}.
It partitions reachable states of the program in Figure 1 into five cases based on their control
states: l0, . . . , l4. We define the abstract semantics of each view transition in the most precise way.
For instance, we define the abstract semantics of a view transition from l1 to l2 as follows:

∀d� ∈ D� . �l1 → l2�� (d� ) =

{
⊕ if d� ∈ {�, ⊕},
⊥ if d� ∈ {⊥,−}.
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Fig. 2. Structure of parametric static analysis.

Since the view transition l1 → l2 passes the condition x ≥ 0, it refines � to the non-negative

integer abstract state ⊕ and the negative integer abstract state − to ⊥ in �l1 → l2�� . With such
abstract semantics of view transitions, the final analysis result of the program becomes:

�P�� (l0) = ⊕ �P�� (l1) = � �P�� (l2) = ⊕ �P�� (l3) = − �P�� (l4) = ⊕.

It produces a more precise analysis result than without using the sensitivity.

2.4 Parametric Static Analysis

Static analysis techniques are often evaluated by three metrics: performance, precision, and sound-
ness. Performance denotes how fast static analysis can analyze programs. Precision denotes how
precisely static analysis can approximate program behaviors; if the analysis precision is low, then
analysis results may contain many infeasible states resulting in many false alarms. In most cases,
precision competes with performance. The more precise analysis performs, the more information
it manipulates, which degrades the performance. For soundness, the abstract semantics computed

by a static analysis should include the concrete semantics: �P� ⊆ γ (�P�� ). However, it may not
be because of the difficulties in safe approximation or real-world features such as dynamic code
generation in JavaScript and reflection in Java.

Parametric static analysis considers a static analyzer as a black-box and focuses on how to im-
prove analysis results by configuring its parameters. We dub such parameters that can be config-
ured without knowing the details of static analysis analysis parameters. As illustrated in Figure 2,
a parametric static analysis consists of two modules: a parameter selector and a static analyzer.

The parameter selector sel : P → δ × D� × d�
ι × F � selects analysis parameters. It utilizes the

extracted program properties or feedback from previous or intermediate analysis results in the
parameter selection process. We explain the detail of the parameter selector in Section 4.

The static analyzer produces an abstract semantics of the given program P via a static analysis
based on the abstract interpretation framework. The abstract semantics depends on four analysis
parameters selected via the parameter selector sel: a view abstraction δ , a state abstract domain

D
� , an initial abstract state d�

ι , and an abstract transfer function F � :

�P�� = lim
n→∞

(F � )n (d�
ι ) where

⎧⎪⎨⎪⎩
d�

ι ∈ D�
δ
,

F � ∈ D�
δ
→ D�

δ
.

The initial abstract state d�
ι should be an element of the sensitive abstract domain D

�
δ

and the

abstract transfer function F � should have the type D
�
δ
→ D�

δ
.

3 ANALYSIS PARAMETERS

In parametric static analysis, we can specialize analyzers for a given program by selecting appro-
priate analysis parameters. In this section, we explain existing analysis techniques in terms of
analysis parameters: analysis sensitivity using a view abstraction δ (Section 3.1), state abstraction
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Fig. 3. Categories of analysis parameters utilized in parametric static analysis.

with an abstract domain D� (Section 3.2), initial abstract state d�
ι (Section 3.3), and abstract trans-

fer function F � (Section 3.4). We also discuss their effects on the quality of static analysis. Figure 3
depicts the overview of this section.

3.1 Analysis Sensitivity

In static analysis, more sensitivities often provide opportunities to achieve more precise analysis
and to verify stronger properties. As described in Section 2, a sensitivity is defined with a view
abstraction δ : Π → D, which divides states using a finite set of views Π. With a given view ab-

straction δ , a sensitive static analysis extends the original abstract domainD� to a sensitive abstract

domain D
�
δ

, which maps views Π to the abstract domain D� . Using views, it can enhance analysis
precision by preventing merging different abstract states. However, more sensitive static analysis
may lead to worse performance. To maintain more sensitivity, view abstractions become more fine-
grained. The more fine-grained view abstractions, the more views static analysis should manage,
which may degrade the analysis performance. To find a balance between precision and perfor-
mance, researchers have sought for appropriate sensitivities for different program characteristics
and analysis purposes. We explain intra-procedural (Section 3.1.1), inter-procedural (Section 3.1.2),
and advanced inter-procedural (Section 3.1.3) sensitivities used in parametric static analysis.

3.1.1 Intra-procedural Sensitivity. One simple way to increase precision of intra-procedural
analysis is to distinguish analysis results depending on control flows of a given program. For ex-
ample, Figure 4(a) is a slight variant of the program in Figure 1 with a while loop. In the program,
the variable x could be any integer, because the question mark denotes a random integer. However,
depending on program points, we can get more information about the value of x than any integer.
In the control point l2, because the condition x ≥ 0 holds, the value of x should be a non-negative
integer. However, the value of x should be a negative integer in the control point l6.

To consider such flows, static analysis often uses flow sensitivity. We formally define it with a

flow sensitive view abstraction δFS : L→ D, which divides states based on their control states:

∀l ∈ L. δFS (l ) = {σ ∈ Σ | σ = (l , _)}. (1)

A flow-sensitive abstract domain L → D� is a map from control states L to abstract values of the

basic abstract domain D� . The example code in Figure 4(a) has eight control states: L = {l0, . . . , l7}.

ACM Computing Surveys, Vol. 54, No. 7, Article 149. Publication date: July 2021.



A Survey of Parametric Static Analysis 149:7

Fig. 4. View abstractions for intra-procedural sensitivity.

Figure 4(b) illustrates the control states and control flows between them; a node denotes a control
state and a directed edge denotes a control flow from a control state to another one. With flow-
sensitivity, static analysis can distinguish different abstract values of x for different control states.
Thus, we can verify that the value of x is non-negative in l2 and negative in l6, respectively.

One way to configure flow-sensitivity in intra-procedural analysis is a partial flow-sensitivity,
which partially applies flow-sensitivity for specific control states. A partition of control states L/≡
represents which control states require flow- sensitivity. Thus, we define a partial flow-sensitive

view abstraction δFS[L/≡] : L/≡ → D as follows:

∀X ∈ L/≡. δFS[L/≡] (X ) = {σ ∈ Σ | σ = (l , _) ∧ l ∈ X }. (2)

For example, if we do not want to precisely analyze the true branch in the previous example, then
we could merge the control states inside the true branch but distinguish all the other control states
using the partition: {{l0}, {l1}, {l6}, {l7}, {l2, l3, l4, l5}}. Figure 4(c) depicts partitioned control states
and their control flows. Using partial flow-sensitivity, analysis becomes faster than using full flow-
sensitivity with the cost of the precision loss in the true branch. Since the numbers of control
states could be huge for large-scale programs, researchers have used partial flow-sensitivity. Wei
and Ryder [111] apply flow-sensitivity only for heap-update statements in JavaScript, because they
are critical parts that degrade the analysis precision in JavaScript points-to analysis.

Another way to achieve more precision while sacrificing performance is to use a more fine-
grained sensitivity for loops. Park and Ryu [69] formally defined loop sensitivity to configure anal-
ysis sensitivity for loops without unrolling them. We extend their formalization with a finite set

of loop context representations L and define a loop sensitive view abstraction δLS : L × L → D:

∀l ∈ L. ∀l ∈ L. δLS ((l , l )) = {σ ∈ Σ | σ = (l , _) ∧ l = getLoopCtxt(σ )}, (3)

where loop context representationsL are any features of loops and getLoopCtxt : Σ→ L returns
a loop context representation for a given state. For example, Figure 4(d) depicts control flows of
a loop-sensitive analysis where loop context representations are loop iteration numbers. In the
graph, each node li, j denotes the control point li in the jth iteration of the while loop and li denotes
a control point without any loop contexts. Since for-in loops are JavaScript-specific features that
degrade analysis precision, researchers have parameterized loop sensitivity to partially apply it
to selected loop contexts. Sridharan et al. [90] identify correlated dynamic property accesses and
apply iteration-based loop sensitivity only for loops that affect the correlations. Ko et al. [45, 46]
syntactically define field-copy or transformation patterns and they apply loop sensitivity using
field existence and variable values as representations only for loops that have such patterns.

3.1.2 Inter-procedural Sensitivity. Inter-procedural sensitivities are also called context sensitiv-

ities, because they distinguish analysis results depending on calling contexts of functions. Since
a function has one definition site but multiple call sites, analysis often merges abstract values of
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Fig. 5. View abstractions for context sensitivity.

given arguments or calling contexts from different call sites, which makes function calls a root
cause of analysis imprecision. For example, the code in Figure 5(a) has three calls of A.f on lines 9,
10, and 11, and the parameter x on line 2 receives three different objects. However, when using
only flow-sensitivity as in Figure 5(b), the entry point of A.f has a unique view leading to precision
loss.

To resolve such precision loss, static analysis generally uses context sensitivity. We define con-
text sensitivity by extending states into tuples of control states, calling contexts, and memories
(will be described in Section 3.2): Σ = L × C × M where C = Σ � {⊥}. A calling context c ∈ C
is a state right before calling the current function, or ⊥ when the current state does not have any
calling contexts. For example, the following table describes state transitions of the program in
Figure 5(a):

Σ σ0 σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9 σ10 σ11 σ12 σ13

L l4 l5 l1 l3 l2 l6 l1 l3 l2 l7 l1 l3 l2 l8
C ⊥ ⊥ σ1 σ2 σ1 ⊥ σ5 σ6 σ5 ⊥ σ9 σ10 σ9 ⊥
M m0 m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11 m12 m13

The initial state σ0 has⊥ as its calling context, because there is no calling context in the beginning.
For the state transition σ1 � σ2, the calling context of σ2 is σ1, since the transition represents
the function call on line 9. The state σ4 also has the exactly same calling context σ1. Because the

number of calling contexts could be infinite, the context sensitive view abstraction δCS : R → D
utilizes a finite number of context representations R as views instead of calling contexts C:

∀r ∈ R. δCS (r ) =
{
σ ∈ Σ | σ = (_, c, _) ∧ r = ρ (c )

}
, (4)

where a representation extractor ρ : C → R returns the representation of each calling context
c ∈ C.

Moreover, selective context sensitivity allows to selectively apply context sensitivity for specific
calling contexts. For context selection, it restricts the representation extractor ρ as ρ |Csel

with a
selected set of contexts Csel. If a calling context c is not in Csel, then it is not selected and represented
as the context insensitive view⊥. In general, calling contexts are selected based on callee functions:

Csel = {c ∈ C | Callee(c ) ∈ Fsel}, (5)
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where Callee : C → F takes a calling context and returns its callee function. In parametric static
analysis, selective context sensitivity is commonly used for three basic context sensitivities: call-

site sensitivity, object sensitivity, and type sensitivity with corresponding context representations.

• Call-site Sensitivity: One of the most widely used context sensitivities is call-site sensitiv-

ity [81] that represents calling contexts as their call-sites:

∀c ∈ C. ρ (c ) = l where c = (l , _, _).

For example, Figure 5(c) shows call-site sensitivity of the program in Figure 5(a). The main
function does not have any calling context ⊥, A.f has three call-sites l5, l6, and l7, and
A.g has one call-site l1. The call-site sensitivity distinguishes three call sites of A.f and the
variable x has a single object in each view precisely. However, the variable y still has an im-
precise abstract value, because three different calling contexts of A.g are merged to one single
call-site l1. Researchers [25, 26, 41, 67, 85] selectively apply the call-site sensitivity for specific
callee functions to balance between precision and performance.
• Object Sensitivity: Another approach to represent calling contexts is object sensitivity [58],

which uses abstract addresses of receiver objects as calling contexts:

∀c ∈ C. ρ (c ) = a� where a� ∈ A� is the abstract address of the receiver object in c .

Thus, it depends on abstraction of the addresses of receiver objects, and we explain abstract

addresses A� in Section 3.2.2. In object sensitivity, the allocation-site abstraction (will be ex-
plained in Section 3.2.2 in detail), which divides addresses using their allocation sites, is the
most used one. For example, the program in Figure 5(a) generates three objects and they all
have different allocation sites: s1, s2, and s3. Because receiver objects of A.f at three call sites
are all s1, their calling contexts are all merged to the representation s1, as shown in Figure 5(d).
Thus, the variable x has an imprecise abstract value. However, since three function calls of A.g
has three different receiver objects created at s1, s2, and s3, the variable y of each view has
a precise object in each context view. Smaragdakis et al. [41, 50, 85] selectively apply object
sensitivity for Java program analysis.
• Type Sensitivity: The type sensitivity is a variant of the object sensitivity. It uses types of

receiver objects instead of their allocations sites:

∀c ∈ C. ρ (c ) = τ where τ is the type of the receiver object in c .

Compared to object sensitivity, type sensitivity reduces the number of context representations
without a huge loss of precision for type information. In Figure 5(e), the type sensitivity divides
states into four cases: ⊥ for main, A for A.f, and A and B for A.g. Thus, objects created at s1
and s2 are merged to a single view A, and the object created at s3 is represented as B in
the type sensitivity. Smaragdakis et al. [41, 85] also selectively apply type sensitivity for Java
analysis.

Beyond receiver objects, several researchers utilize arguments as context representations. For
JavaScript, Wei et al. [113] selectively apply 1st-argument sensitivity [112], which distinguishes
calling contexts using the abstract values of first arguments instead of receiver objects. For Java,
Thakur and Nandivada [103, 104] propose a level-summarized relevant value-contexts (LSRV-

contexts) to which reduces the size of value-contexts by using pre-analysis.
Furthermore, researchers proposed to use different context sensitivities for different callee func-

tions. For example, consider static analysis of the example in Figure 5(a) that uses object sensitivity
for A.f and type sensitivity for A.g. Then, the calling contexts of A.f are merged into a single ob-
ject sensitive view s1 but calling contexts of A.g are divided into two different type sensitive views
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Fig. 6. View abstractions for advanced context sensitivity.

A and B. Kastrinis and Smaragdakis [41] apply call-site sensitivity for Java static method calls but
object/type sensitivity for the others. Wei and Ryder [112] select one of call-site, object, and 1st-
parameter sensitivity for each function using ML-based heuristics for function characteristics in
JavaScript static analysis. Li et al. [51] select object or type sensitivity for each function by predict-
ing its analysis time with object allocation graphs for Java static analysis.

3.1.3 Advanced Inter-procedural Sensitivity. Several approaches utilize k-context sensitivity for
parametric static analysis. Instead of abstracting the last call context, it abstracts k the recent
calling contexts as a sequence of context representations. For the k-context sensitivity, the context
sensitive view abstraction in Equation (4) is extended as follows:

∀r ∈ R≤k . δCS[k] (r ) =
{
σ ∈ Σ | σ = (_, c, _) ∧ ρk (c ) = r

}
, (6)

where the k-representation extractor ρk : C → R≤k is defined as follows:

∀c ∈ C. ρk (c ) =

{
ϵ if ρ (c ) = ⊥ ∨ k = 0,

ρk−1 (c ) :+ ρ (c ) otherwise,
(7)

where a :+ b denotes a appended with b. Consider 2-call-site sensitivity, which is k-context sen-
sitivity for call-site sensitivity with k = 2, for the code in Figure 6(a). For the function foo, it
distinguishes calling contexts of foo in main using the call-sites l5 and l6 as in the basic call-site
sensitivity. However, while the basic call-site sensitivity distinguishes calling contexts of foo in
itself using the call-site l1, 2-call-site sensitivity divides them into three representations using two
the recent call-sites: [l5, l1], [l6, l1], and [l1, l1], as shown in Figure 6(b).
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Moreover, it is possible to selectively apply context sensitivity for specific calling contexts by
modifying the k-representation extractor ρk to ρk

Csel
with a selective set of contexts Csel:

∀c ∈ C. ρk
Csel

(c ) =

{
ϵ if c = ⊥ ∨ k = 0 ∨ c � Csel,

ρk−1
Csel

(c ) :+ ρ (c ) otherwise.
(8)

If a calling context c is not in Csel, then it is not selected and produces just the empty sequence
of context representation ϵ . For parametric static analysis, researchers have extended k-context
sensitivity in three ways: call-edge selection, different k per function, and context tunneling.

• Call-edge Selection: Instead of selecting callee functions Fsel for selected calling contexts Csel

as described in Equation (5), we can select call-edges E = P (R × F ) from context represen-
tations for callers to callee functions. This approach provides more fine-grained choices for
selection of calling contexts via both callee functions and calling context representations of
callers. It defines the selected calling contexts Csel using selected call-edges Esel ⊆ E as follows:

Csel = {c ∈ C | (ρ (c ),Callee(c )) ∈ Esel}.

For example, if we define Esel = {(l1, foo), (l8, bar)}, then it distinguishes only calling contexts
whose call-site and callee function are (l1, foo) or (l8, bar), as shown in Figure 6(c). Thus, calling
contexts of foo at l5 and l6 are merged as ϵ and also calling contexts of bar at l1 and l7 are
merged as ϵ . Researchers [23, 38, 54, 65, 66, 75, 114, 119] have adjusted the analysis precision
and performance using selected call-edges Esel. While most works apply the technique for call-
site sensitivity, several works [38, 54, 75] apply it for object or type sensitivities. In addition,
Whaley and Lam [114] utilize Binary Decision Diagrams (BDDs) to indirectly merge calling
contexts with same abstract states, which enhances the analysis performance without precision
degradation.
• Different k per Function: Another way to parameterize k-context sensitivity is to assign

different k for each function. It modifies Equation (8) with a depth map K : F → N from
functions to their depths for k as follows:

∀c ∈ C. ρk
Csel

(c ) =

{
ϵ if c = ⊥ ∨ k ′ = 0 ∨ c � Csel,

ρk ′−1
Csel

(c ) :+ ρ (c ) otherwise,

where k ′ = min(k,K ◦ Callee(c )). For example, let us apply 1-callsite-sensitivity for foo and
2-callsite-sensitivity for bar to the code in Figure 6(a). Then, all calling contexts of foo at l1 is
merged into a single view [l1] as shown in Figure 6(d) instead of three different views [l1, l1],
[l5, l1], and [l6, l1] in Figure 6(b). For Java static analysis, Jeong et al. [39] assign different k
for each method using machine-learning algorithms. Moreover, Rama et al. [75] configure k
for different context representations instead of functions using backward analysis.
• Context Tunneling: Another approach to selectively apply k-context sensitivity is context

tunneling, which conveys the current context to unselected calling contexts:

∀c ∈ C. ρk
Csel

(c ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

ϵ if c = ⊥ ∨ k = 0,

ρk−1
Csel

(c ) if c � Csel,

ρk−1
Csel

(c ) :+ ρ (c ) otherwise.

For example, let us apply context tunneling to the sensitivity shown in Figure 6(c). Without
context tunneling, the calling context of bar at l1 through l8 should be ϵ because (l1, bar) is
not in Esel. However, with context tunneling, it is represented as [l8] as shown in Figure 6(e),
because the second most call-site l8 is conveyed. Tan et al. [101] first introduce a way to remove
redundant contexts via object allocation graph (OAG) to improve the precision of k-object
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Fig. 7. Concrete memory representation.

sensitivity for Java. Jeon et al. [38] formally define context tunneling and select target functions
for context tunneling using machine learning algorithm.

3.2 State Abstraction

The second analysis parameter is a state abstraction with an abstract domain D� . A state abstrac-
tion describes how to abstract a set of states. A program is a state transition system and each state
represents the program’s properties. Because the number of reachable states of a program could
be infinite, computing the exact set of reachable states may be infeasible. To alleviate this problem,

static analysis over-approximates them to an abstract state d� ∈ D� . The abstract state domain

(D� , ) is a lattice and the concretization function γ : D� → D defines the meaning of abstract
states.

While state abstractions work for various data types such as numeric values, strings, and com-
plex data structures, existing parametric static analysis has focused on configuring memory ab-

stractions. A memory m ∈ M consists of an environment and a heap, M = E × H, where an
environment e ∈ E is a finite mapping from variables to values, a heap h ∈ H is a finite mapping
from addresses to objects, and each object o ∈ O is a finite mapping from fields to values:

e ∈ E = X fin−−→ V h ∈ H = A fin−−→ O o ∈ O = F fin−−→ V.
For example, Figure 7 shows an example code and its environment and heap at the end of the

example. At lines 2 and 3, the constructor calls of the class Obj at line 1 generate concrete objects
with their corresponding addresses a1 and a2, respectively. As described in Figure 7(b), the envi-
ronment has variables x that points to the concrete address a1, and y with a2. The assignment
statement at line 4 updates the field f of the variable x to the integer value 42. Figure 7(c) depicts
the heap structure at the end of the program; the addresses a1 and a2 point to objects that have
the field f with the value 42 and 0, respectively.

Among various memory abstraction techniques, we study memory abstractions that parametric
static analysis have used and categorize them into three kinds based on their abstraction targets:
variables (Section 3.2.1), addresses (Section 3.2.2), and fields (Section 3.2.3).

3.2.1 Variable Abstraction. Environments E = X
fin−−→ V are finite maps from variables to their

values. In programs, a variable denotes a memory location that points to its value. The variable
assignment x = v updates the memory location of x to point to the new value v ∈ V.

To abstract such environments, static analysis defines an abstract environment domain E� . One

of basic abstract environment domains is E� = X
fin−−→ V� , which is a finite map from variables to

their abstract values. Let us assume that an abstract value in V� is a set of concrete values. For
example, Figure 8(a) shows a simple example code and Figure 8(b) presents its analysis result with
the basic environment abstraction and flow-insensitivity. The abstract value of the variable a is
{1, 2} and the variable b has the same abstract value with a. The abstract value of the variable c
initially is {3}, and it gets increased by adding the abstract value of the variable a. Because the
variable b points to {1, 2} and the analysis is flow-insensitive, c points to {n ∈ Z | n ≥ 3}.
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Fig. 8. Variable abstractions.

Parametric static analysis has used three kinds of parametric variable abstraction:

• Variable Partition: While the basic environment abstraction uses variables themselves as
keys of an abstract environment, several researchers [27, 78] use a partition of variables X/≡
instead of concrete variables X:

E
� = X/≡

fin−−→ V�,

where X/≡ is a partition of X based on the equivalence relation ≡. It is often called off-line

variable substitution (OVS) [78], because it substitutes equivalent variables to an equivalence
class representation before analysis. For example, Figure 8(c) shows an abstract environment
based on flow-insensitive analysis with a variable partition X/≡ = {{a, b}, {c}}, which divides
the set of variables to two partitions for the example code in Figure 8(a). After applying this
variable partition, we can get the same precision as the one without applying it while the num-
ber of keys of the abstract environment gets reduced. Therefore, since it reduces the number
of abstract memory locations that static analysis manages, it can improve the performance of
static analysis. However, note that inappropriate variable partitions may decrease the analy-
sis precision. Assume that a variable partition divides variables to X/≡ = {{a}, {b, c}}. Then,
the abstract value of {b, c} becomes {n ∈ Z | n ≥ 1} while the analysis with concrete variables
computes the abstract value of b as {1, 2}. Thus, finding an appropriate equivalence relation for
given programs is important for variable partition. Hardekopf and Lin [27] extend OVS using
Hash-based Value Numbering (HVN) with dereference, union, and location equivalence.
• Variable Selection: To balance the analysis performance and precision, an analysis can apply

specific analysis techniques to only target variables X ⊆ X. The most representative variable
selection is selective flow-sensitivity [12, 25, 34, 56, 67]. For the example code in Figure 8(a),
Figure 8(d) shows the selective flow-sensitivity for a set of selected variables X = {c}. Because
it analyzes variables a and b in a flow-insensitive way, they have the same abstract values as in
Figure 8(b). With a flow-sensitive analysis, the variable c does not exist from l1 to l4 and it is de-
fined at l5 with the initial value 3. At the program point l6, the abstract value of c gets increased
by adding the abstract value of the variable a, and c points to {4, 5}. Besides the selective flow-
sensitivity, restricting must-alias sets of abstract states during type-state analysis [120] is also
variable selection. To select a set of flow-sensitive variables, Guyer and Lin [25] use fast and
low-precision pointer analysis as pre-analysis. Lu and Xue [56] select context-sensitive vari-
ables by reasoning about context-free-language (CFL) reachability at the level of variables
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in programs using a new CFL-reachability formulation of k-object sensitivity. Guyer and Lin
[26] use backward analysis, and Oh et al. [12, 34, 67] use machine learning to find variables
that require precise analysis results in pointer analysis for C.
• Variable Relation Selection: Another approach is to selectively apply state abstraction tech-

niques to specific variable relations RX×X ⊆ X × X such as octagon packing [59]. The octagon

domain is a relational abstract domain for numerical values defined with conjunction of invari-
ants of the form ±x ± y ≤ c where x and y are variables and c is a constant. Because using
the octagon domain for all variable relations is costly, octagon packing uses it selectively only
for target variable relations. For example, Figure 8(e) uses the octagon domain only for the
relations between a and b. It increases the analysis precision for a and b, since it excludes im-
possible cases such as (a, b) = (1, 2) and (a, b) = (2, 1) without much overhead. Blanchet et al.
[10] first introduce packing for the octagon domain, which restricts variable relations on the
octagon domain only between variables in the same packs. Miné [59] and Oh et al. [64] syn-
tactically pack variables based on program blocks, and Heo et al. [33] utilize machine learning
to cluster variables. Beyond octagon packing, several researchers directly configure the set of
variable relations in the octagon domain in a more fine-grained way. Oh et al. [65, 66] perform
impact analysis, and Chae et al. [12] utilize machine learning for variable relation selection.

3.2.2 Address Abstractions. Heaps H = A
fin−−→ O are finite maps from addresses to objects. A

heap stores objects at their corresponding addresses.
To abstract heaps, static analysis defines abstraction of addresses. The most widely used address

abstraction is allocation-site abstraction. A program point that creates objects has its own unique
allocation-site s ∈ S, and the allocation-site abstraction uses them as abstract addresses:

H
� = A� → O�

A
� = S.

Thus, in the allocation-site abstraction, a single allocation-site s ∈ S represents all concrete ad-
dresses allocated at s. For example, Figure 9(b) shows the allocation-site abstraction for the exam-
ple code in Figure 9(a). The code has three allocation-sites: s1 at top level, s2 in function f, and s3
in function g. While a single object is allocated at s1, two different objects are allocated at both s2
and s3 because of two function calls of f and g, respectively. Thus, addresses pointed by variables
b and c are merged to a single abstract address s2 and addresses pointed by d and e are merged to

s3. We show the abstract value of the field k of each abstract address a� in Figure 9(b).
Parametric static analysis has used two kinds of parametric address abstraction:

• Partitioned Allocation-site Abstraction: Similarly for variable partition in the variable ab-
straction (Section 3.2.1), researchers also use partitions of allocation-sites as abstract addresses:

A
� = S/≡.

For example, Figure 9(c) shows the partitioned allocation-site abstraction with the equivalence
class S/≡ = { { s1, s2 }, { s3 } }. It merges s1 and s2 to a single abstract address. Guyer and Lin
[25] use fast and low-precision pointer analysis as pre-analysis to merge allocation sites. Naik
et al. [62] and Zhang et al. [120] merge allocation-sites to two different partitions L for “thread-
local” addresses and E for “possibly thread-escaping” addresses in parameterized thread-escape
analysis. Tan et al. [102] selectively partition allocation-sites using their types.
• Selective Heap Cloning: To improve the analysis precision, heap cloning refines allocation-

sites using calling contexts:

A
� = S × R⊥,
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Fig. 9. Address abstractions.

where R is a set of context representations and R⊥ = R ∪ {⊥}. For example, Figure 9(d)

shows heap cloning with call-site sensitivity. The abstract addresses A� = S × L⊥ are pairs
of allocation-sites and either call-sites or ⊥. Since s1 does not have any calling contexts, it
is refined to (s1, ⊥). On the contrary, since s2 has two call-sites l1 and l2, it gets split to two
different abstract addresses (s2, l1) and (s2, l2) }. Similarly, s3 gets split to (s3, l3) and (s3, l4).
Selective heap cloning [56, 85, 94] selectively applies heap cloning to target allocation-sites S :

A
� = (S\S ) ∪ (S × R⊥).

For example, Figure 9(e) shows selective heap cloning with target allocation-sites S = { s3 }
with call-site sensitivity. The allocation-site s3 is divided to (s3, l3) and (s3, l4), but the other
allocation-sites s1 and s2 are not affected by the heap cloning technique.

Another parameter of selective heap cloning is k for each function when using k-context
sensitivity described in Section 3.1.3. Hassanshahi et al. [29] perform backward analysis to
configure k for each allocation site.

A
� = S × R≤k .

3.2.3 Field Abstraction. Static analysis with object abstraction often uses field-sensitive abstrac-

tion, which uses concrete fields as keys of abstract objects in memory abstractions. A concrete
object o ∈ O is a finite map from fields F to their concrete values V and field-sensitive abstract

objects O� map fields to their abstract values V� :

O
� = F→ V� .

By using concrete fields as keys, it can precisely analyze points-to relations between addresses.
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Fig. 10. Field abstractions with access-path based memory abstraction.

In addition, static analysis with object abstraction also frequently uses flow-sensitivity to im-
prove the precision of pointer analysis by performing strong updates. If an analysis finds that the
abstract object of a field update denotes a single concrete address, then it can perform a strong
update by replacing the old value with a new value. Otherwise, it cannot perform strong updates,
and the analysis performs a weak update, which merges the old value and a new value to a single
abstract value. Thus, weak updates may degrade the precision of pointer analysis.

For example, Figure 10 shows a simple code example and the points-to graph of flow-sensitive
and field-sensitive pointer analysis at the end of the example code. The variables p and q have
different concrete addresses but the same allocation-site s1 in the function create. Thus, it points
to the same abstract address represented by the allocation-site s1. The variables x and y point
to different abstract address s2 and s3, respectively. However, the field updates q.f = y; and
p.f = x; should perform weak updates instead of strong updates, because the allocation site s1
represents multiple concrete addresses. Such weak updates decrease the precision of static analysis
by producing spurious points-to relations. For instance, the following three points-to relations are
all spurious points-to relations but the analysis includes all of them:

p.f �→ s3 q.f �→ s2 x.f.f �→ s3. (9)

To improve the analysis precision by reducing weak updates, De and D’Souza [15] introduce
an approach to configure abstract memories based on access paths [48]. An access path is a pair
of a variable and a sequence of fields: x(.f)∗ ∈ X × F∗. The access-path based memory abstraction

abstracts concrete memories to a map from access-paths to their abstract values:

M
� = X × F∗ → V� .

It allows strong updates for field updates p.f = x; regardless of whether the variable p points to
a single address or not. However, a program may have an infinite number of access paths because
of recursive data structures or pointers. For example, objects pointed by variables p and x point
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Fig. 11. A browser-specific JavaScript code example in React.js.

to each other via the field f. It means that infinitely many access paths from them such as x, x.f,
and x.f.f exist. Thus, a mechanism to make the number of access paths finite is necessary.

De and D’Souza [15] also utilize a k-limiting approach [47] for access-path based memory ab-
straction, which considers only access paths that consist of less than or equal to k fields:

M
� = X × F≤k → V� .

Because it does not contain the points-to relations of access paths that consist of more than k
fields (X × F>k ), it can serve as an additional memory abstraction to increase the precision of
another memory abstraction. For example, Figure 10(c) shows the abstract memory at the end of
the program with a 2-limiting access-path based memory abstraction with flow-sensitivity. We
use a flow-sensitive points-to analysis to supplement missing access paths. Under this memory
abstraction, it removes two spurious points-to relations p.f �→ s3 and x.f.f �→ s3 that exist in
the previous memory abstraction, which improves the analysis precision.

3.3 Initial Abstract State

The third analysis parameter is the initial abstract state d�
ι , which is an abstraction of the set of

the possible initial states Σι . In general, d�
ι is the minimum abstraction of the possible set of con-

crete initial states Σι . However, researchers have adjusted the initial abstract states (1) to increase
precision by focusing on specific initial states while sacrificing soundness or (2) to increase per-
formance by enduring slight precision degradation. The unsoundness in the second case is often
called soundiness [55], which is mostly sound but with specific and well-identified unsound choices.
For example, let us assume that the possible initial states are Σι = {3, 5, 7}. If we use the interval

domain D� = {[a,b] | a,b ∈ Z}, then the most tight initial abstract state d�
ι is [3, 7]. For better

performance, we may use over-approximated abstract states [1, 10] as the initial abstract state. To
focus on the initial input 5, we may use a soundy abstraction [5, 5] as the initial abstract state.

We survey initial abstract states used as parameters of static analysis in the literature. In this
section, we classify them into three categories based on their abstract domains: abstract memory
(Section 3.3.1), facts in Datalog (Section 3.3.2), and graphs in CFL-reachability (Section 3.3.3).

3.3.1 Initial Abstract Memory. The first case is to configure the initial abstract states in abstract
memory domains. As described in Section 3.2, a memory is a pair of an environment for variables
and a heap for objects. At the beginning of program execution, the memory initialization depends
on the execution contexts. While most static analysis aims to cover all the possible initial memories
for sound abstraction, various dynamic features of programming languages often prohibit sound
approximation of initial memories, which leads to excessive precision degradation in static analysis.
Such dynamic features include reflection and native code interfaces in Java and dynamic code
generation and browser-specific APIs in JavaScript.

For example, Figure 11 presents a JavaScript code excerpt from React.js, which is one of the
popular JavaScript libraries for building user interfaces. The code detects a user’s browser and
performs browser-specific actions. The global variable navigator is a web API and it represents
the status and the identity of a user agent. The property navigator.userAgent is a getter of
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Fig. 12. Datalog program that computes all root nodes that the node 3 is reachable from.

navigator, which returns a string that contains the current browser information. JavaScript de-
velopers frequently use navigator.userAgent when they need a client’s browser information
as presented in Figure 11. Because the structure of navigator depends on specific browsers,
soundly approximating its structure for all the browsers with reasonable analysis precision is
unrealistic.

To address such a low precision problem, Park et al. [72] parameterize the initial abstract mem-
ory only for specific browsers to analyze JavaScript programs in a soundy manner. They first
extract the concrete memory structure from a target browser using dynamic analysis and then
abstract it as the initial abstract memory. For example, assume that the initial abstract memory is
constructed from a Chrome browser. Then, the property navigator.userAgent has a string value
containing "Chrome". If the analyzer uses the flat string domain that has concrete strings with ⊥
and � as abstract strings, then the analyzer decides that the condition of the branch on line 2 is
always true. Therefore, it successfully enhances the analysis performance by eliminating spurious
control flows when programs are executed in a Chrome browser.

3.3.2 Initial Facts in Datalog. Another target of configurable initial abstract states is the abstract
domain for Datalog, which is one of the most widely used programming languages to implement
static analysis in a declarative style. Datalog has three basic components: constants like 3 ∈ C,
variables like x ,y ∈ X, and relations like root ∈ R. A term t is r(a1, . . . ,an ) consisting of a relation
r with zero or more arguments a1, . . . an where ai is either a variable or a constant. A term whose
arguments are all constants is a fact. A Datalog program takes a set of initial facts and computes
all the possible facts based on the rules between facts. A rule t ← t1∧· · ·∧tn defines the derivation
of a target term t from a set of source terms t1, . . . , tn . Thus, a Datalog interpreter is like abstract

interpretation that computes sets of possible facts (abstract semantics �P��) from the initial facts

(initial abstract state d�
ι ). For example, consider the example in Figure 12. It starts with six facts

from root(1) to parent(5, 3) and derives 16 new facts from ancestor(1, 1) to root-of(4, 4) using
two rules for ancestor and one rule for root-of.
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Fig. 13. A simple graph for CFL-reachability.

Liang and Naik [53] present a technique to prune unnecessary initial facts to answer a given
query. In the example Datalog program, the query is represented as a term root-of(x, 3). To
answer this query, only three underlined facts in the initial facts are enough to answer the
query. With that three initial facts, the Datalog program produces only nine new facts that
are underlined, which can accelerate the analysis without breaking soundness. Liang and Naik
performed pre-analysis with more coarse-abstractions to quickly find soundly removable initial
facts and repeatedly applied this technique with a sequence of abstractions ordered by granularity.
Pruning initial facts is generally applicable to any static analysis implemented in Datalog.

3.3.3 Initial Graphs in CFL-reachability. Reps [77] introduces a new perspective
of points-to analysis by converting them to Context-Free-Language reachability (CFL-

reachability) problems. CFL-reachability is a variant of the traditional graph reachability
problem. For a directed graph G whose edges are labeled with alphabets A and a context-free
language L over A, CFL-reachability is to determine whether there exists an L-path between
two given nodes, where a path p is an L-path if s (p), the sequence of alphabets over p, is in the
language L. For instance, consider the graph in Figure 13 and the context-free language L that
satisfies the grammar S = SS | (S) | ϵ over alphabets A = {(, )}. Then, there exists an L-path from

the node a to b because the string of the path p = a
(
→Y

)
→b is in the language L: s (p) = () ∈ L.

However, no L-paths exist from x to b or from y to b. For each non-terminal S , a path p is an
S-path if and only if the non-terminal S generates the string s (p).

The core idea to convert points-to static analysis to CFL-reachability is to represent field updates
and field accesses as open and close parentheses, which shows aliases between pointers as matched
parentheses. Thus, graphs are abstract states of the CFL-reachability based points-to static analysis.

It starts with a given initial graph (initial abstract state d�
ι ) and performs the fixed-point algorithm

that converges to a graph (abstract semantics �P��) with additional edges representing analysis
results. For example, the points-to information of the code in Figure 14(a) is represented as the
graph in Figure 14(b). The new edge from s1 to x denotes an object allocation x = new A();
where s1 stands for the allocation site of the newly allocated object. The assign edge from x to y
denotes a variable assignment y = x;, and the put[f] and get[f] edges from w to v and from z to
y parameterized by a field name f denote a field update v.f = w; and a field access v = w.f;,
respectively. In addition, graphs also use reversed edges labeled with the over-line notation. For
instance, the label of an edge from x to s1 is new, because the label of its corresponding original
edge from s1 to x is new. Then, we define a context-free language L with three non-terminals:

alias, flowsTo, and flowsTo:

alias ::= flowsTo flowsTo

flowsTo ::= new (assign | put[f] alias get[f])∗

flowsTo ::= (assign | get[f] alias put[f])∗ new

.

A flowsTo-path from a variable x to an allocation-site s means that the variable x points-to s.

An alias-path is a concatenation of a flowsTo-path and a flowsTo-path where flowsTo denotes the
reverse of flowsTo. Thus, Figure 14(b) shows the final graph of the CFL-reachability based static
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Fig. 14. An example points-to static analysis using CFL-reachability.

analysis where dashed arrows denote flowsTo-paths, that is, the newly added edges during the
analysis.

Sridharan et al. [91] introduce a technique to configure the initial graph of CFL-reachability
using match edges. The following revised grammar with match:

flowsTo ::= new (assign | put[f] alias get[f] | match)∗

flowsTo ::= (assign | get[f] alias put[f] | match)∗ new

enables selectively drawing match edges between variables that update and access values of the
same field name. For example, let us analyze the example code with the modified graph in Fig-
ure 14(c) and the modified context-free language. Then, an alias-path from z to v becomes:

z
new−−−→ s2

new−−−→ z
match−−−−→ v,

while its corresponding original alias-path is:

z
new−−−→ s2

new−−−→ z
put[f]
−−−−−→ y

assign
−−−−−→ x

new−−−→ s1
new−−−→ x

assign
−−−−−→ w

get[f]
−−−−→ v.

Thus, using match edges makes static analysis efficient by reducing the lengths of alias-paths.
However, abusing match edges may decrease analysis precision because of false relations. For
example, consider removing the variable assignment y = x; on line 5. Then, the edge from x to
y labeled with assign is removed and no alias-path exists from z to v. However, in the modified
graph in Figure 14(c), an alias-path from z to v still exists because of the match edge, which
is a false relation. Therefore, finding an appropriate balance between the analysis performance
and precision caused by match edges is an important task. Sridharan et al. [89, 91] propose to
start analysis with the initial graph having all match edges and to gradually refine them using
previous analysis results. Xu et al. [115] optimize this approach using context-sensitive must-not-

alias information by constructing Interprocedural Symbolic Points-to Graph. Dietrich et al. [16]
introduce bridge edges based on transitive-closure data-structures unlike field-based match edges.

Instead of over-approximation of the initial graph with match edges, researchers accelerate
CFL-reachability-based points-to analysis without any precision loss. Vedurada and Nandivada
[106] utilize caches called batches extracted from previous analysis with different queries. Among
newly added edges during previous analysis with different queries, a subset of them relevant to the
current query is loaded to the initial graph. However, Li et al. [52] introduce a graph simplification
algorithm for Dyck-reachability, which includes CFL-reachability. Therefore, in addition to CFL-
reachability, it supports static analysis based on other Dyck-reachability such as Synchronized
Pushdown Systems reachability [87] and Linear-Conjunctive-Language reachability [118].
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Fig. 15. Selected view transitions.

3.4 Abstract Transfer Function

The last analysis parameter is the abstract transfer function F � . A program is a transition system
and its collecting semantics �P� is computed by iterations over the concrete transfer function F .

Static analysis over-approximates F to an abstract transfer function F � to compute an abstract

semantics �P�� . The precision and performance of static analysis depend on how to define the

abstract transfer functions. The abstract transfer function F � consists of two orthogonal parts: an

abstract one-step execution step� and the join operator �:

∀d� ∈ D� . F � (d� ) = d� � step� (d� ). (10)

Moreover, the abstract one-step execution step
�
δ

under the analysis sensitivity δ is defined with

the view transition �π ′ → π �� for views π ′ and π :

step
�
δ

(d�
δ

) = λπ ∈ Π.
⊔

π ′ ∈Π

�π ′ → π �� ◦ d�
δ

(π ′). (11)

In this section, we describe how the existing research configures abstract transfer functions for
parametric static analysis. We first explain how researchers configure the abstract semantics of
view transitions to define abstract one-step executions in two ways: pruning specific view transi-
tions (Section 3.4.1) and modifying the abstract semantics of view transitions (Section 3.4.2). Then,
we survey the join operator � for parametric static analysis (Section 3.4.3).

3.4.1 Selected View Transition. The abstract semantics of a view transition �π ′ → π �� approx-
imates all the possible behaviors of a view transition from π ′ to π . However, a sound abstraction
of all program behaviors may not be the best solution for static analysis with specific goals. For
example, the example code in Figure 15(a) includes an assert statement. If the goal of a static
analysis is to prove the assertion, then it does not need to analyze some program parts. To focus
on only relevant parts of a given program for static analysis, researchers have proposed refined
abstract transfer functions by pruning out irrelevant view transitions:

�π ′ → π ��sel (d� ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⊥ if π ′ → π ∈ Rblock,

d� if π ′ → π ∈ Rbypass,

�π ′ → π �� (d� ) otherwise,

where Rblock and Rbypass are sets of selected view transitions to refine the abstract semantics by
blocking or bypassing analysis flows, respectively. We categorize them to two approaches.

• Program Slicing: Program slicing techniques focus on analyzing specific parts of programs by
using selection of view transitions. For example, Figure 15(b) shows a sliced program that is
necessary to prove the assertion assert(d < 42). Because the assertion uses only the variable d,
data flow information only for the variable d is enough to prove the assertion. Thus, a program
slicing technique can soundly remove the statements on lines 3 and 5, which do not affect the
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Fig. 16. Modified view transitions.

value of d. Researchers have utilized concrete executions to filter target files [72], functions [17],
and blocks [18, 107, 110] in a soundy manner. However, several researchers introduce statement-
level program slicing for dataflow analysis using value flow graphs [1], pointer analysis using
deductive reachability formulation [31], and set-based reasoning [84]. Moreover, Heo et al. [35]
use machine learning to selectively skip library calls in a soundy way.
• Program Clustering: Program clustering aims for high performance by dividing a given pro-

gram to multiple sub-programs and to analyze them in parallel or using lower sensitivity. For
example, let us analyze the example code in Figure 15(a) using program clustering for parallel
computation. Because the variable d depends on only the variables a and b, and e depends on
only a and c, we can divide the code to two sub-programs shown in Figure 15(c). Even though it
analyzes two sub-programs separately, its analysis result is exactly the same as the analysis re-
sult of a whole program analysis. Thus, by leveraging parallel computation, program clustering
can accelerate static analysis without losing analysis precision. Kahlon [40] utilize Steensgaard

partitions [92] to divide given programs and Zhang et al. [121] use a pre-processor to construct
weighted inter-procedural CFGs of given binary programs and sample multiple paths to be an-
alyzed in parallel. However, Yu et al. [116] propose a technique called level-by-level strategy to
utilize flow-insensitive analysis with the same precision of flow-sensitive analysis. They first
partition given programs based on points-to levels and flow-insensitively analyze them in de-
creasing order of their levels, which results in high performance of flow-insensitivity and high
precision of flow-sensitivity.

3.4.2 Modified View Transition. Existing work on parametric static analysis configures abstract
transfer functions not only by pruning out view transitions but also by modifying them. We cat-
egorize modified view transitions used in previous work to four approaches: variable localization,
function call localization, semantics refinement, and opaque function modeling.

• Variable Localization: While flow-sensitivity enables precise static analysis by distinguish-
ing states with view abstraction using control states L, it may cause explosion of the number
of abstract states by making each view have its own abstract state. To alleviate the problem,
variable localization [21, 28, 64, 82, 95–97] prunes out abstract states and connects necessary
ones using def-use relations. For example, Figure 16(a) shows an example code with a function
f and Figure 16(b) depicts the main idea of variable localization for f. We use the interval
domain to approximate numbers; an abstract value is an interval represented as [a,b] for two
numbers a and b. At the entry of the function f, the abstract state consists of mappings for the
global variable p and the parameter x. The statement a = x + 2; produces only a mapping
for the local variable a, a �→ [5,7], which is not passed to the next statement y = x - p; but
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directly passed to b = x - a; that is a use-site of the variable a. In a similar way, the mapping
y �→ [2,4] in the abstract state at l3 is directly passed to r = y - 1;. This technique signifi-
cantly reduces the size of each abstract state and increases analysis performance. Researchers
perform Sparse Value-Flow Analysis [95–97] to construct Sparse Value-Flow Graphs (SVFGs)

for data dependency. In addition, Shi et al. [82] use Symbolic Expression Graphs, which are intra-
procedural SVFGs, and Fan et al. [21] use Use-Flow Graphs, which encode both definitions and
uses of heap objects.
• Function Call Localization: Localization techniques are also applicable to function calls. Fig-

ure 16(c) shows function call localization [63, 68] for calls of f on lines 8 and 9 of the example
code. Because some information in abstract states like the mapping for the global variable q
is not necessary to analyze the body of f, a function localization technique prunes out the
mappings q �→ [2,2] and q �→ [3,3] at the call-sites of f, and directly passes them to their
corresponding return-sites. At the entry of the function f, the abstract state consists of only
the global variable p and the parameter x without q. Finally, the abstract value of r becomes
[1,3] at the exit point of the function body, and it merges with q �→ [2,2] and q �→ [3,3],
respectively. Such localization for function calls not only reduces the sizes of abstract states of
function bodies but also increases the analysis precision of function calls. Without call context
sensitivity, two abstract values of q at two call-sites of f should be merged as [2,3], which
maps q to [2,3] at the return-sites, even though the body of f does not use q. Then, the ar-
guments of two function calls of write have [2,3]. However, the localization technique for
function calls directly passes the irrelevant parts of abstract states to the corresponding return-
sites, which keeps the mapping for the variable q precisely. Now, the arguments of two function
calls of write have more precise abstract values [2,2] and [3,3], respectively. Oh et al. [63]
perform function call localization using an efficient pre-analysis to estimate the set of locations
that are to be accessed during the analysis of each code block. Oh and Yi [68] optimize the tech-
nique with bypassing, which localizes input memory states only with memory locations that
the function directly accesses and bypasses the other locations to transitively called functions.
• Semantics Refinement: Researchers [4, 14, 22, 35, 37, 44, 79, 86, 88, 93, 109] have enhanced

the performance or precision of static analysis by semantics refinement, which is a technique
to restrict or refine a view transition in a various way:

∀d� ∈ D� . �π ′ → π ��ref (d� )  �π ′ → π �� (d� ).

Jensen et al. [37] present a technique to replace JavaScript eval call with a single concrete
string value. Schäfer et al. [79] extend it to enhance the analysis precision by replacing deter-

minate expressions, which always have the same value at a given program point, with their
corresponding concrete values. In the example code, because a’s value is x + 2, b’s value is
always 2. Thus, we can replace the statement b = a - x; with b = 2; and it increases the
analysis precision at l4 from b �→ [0,4] to b �→ [2,2]. While they use dynamic information
to detect determinacy in a soundy way, Andreasen and Møller [4] present a sound technique
to detect them. Researchers also perform backward analysis before [9, 88] or during [93] static
analysis to refine abstract values. Beyond abstract values, researchers refine control flows or ab-
stract states. For control flows, Grech et al. [22] use dynamic information to refine code loaded
at runtime, Heo et al. [35] leverage machine learning for unsound loop unrolling, Sotiropou-
los and Livshits [86] refine asynchronous event loops via callback graphs, and Cyphert et al.
[14] refine path expressions, which are regular expressions that recognize all feasible execu-
tion paths. For abstract states, Ko et al. [44] present a sound way to restrict abstract states
for each control point using other analysis results. Wei et al. [109] apply Futamura projection
to specialize abstract semantics using deterministic program parts, and He et al. [30] remove
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Fig. 17. Widening with thresholds Zsel = {0, 20, 50, 100,+∞}.

redundant constraints in polyhedra and octagon domains during view transitions via machine
learning.
• Opaque Function Modeling: Real-world programs often use opaque libraries in binary or

different language. For such opaque functions, static analysis often ignores them by sacrificing
soundness, or uses manually constructed models to mimic their behaviors with excessive labors.
To overcome these problems, researchers present techniques to automatically model their be-
haviors. One approach is to infer their behaviors using their uses [57] or types extracted from
library specifications [6, 70]. Recent work leverages machine learning [8, 36], natural language
processing [117], or dynamic information [7, 71, 105] to automatically model them.

3.4.3 Join Operator. As described in Section 2, with analysis sensitivities, an abstract one-step

execution step
�
δ

: D
�
δ
→ D�

δ
merges abstract states via the join operator (�) for each control state

after executing view transitions:

step
�
δ

(d�
δ

) = λπ ∈ Π.
⊔

π ′ ∈Π

�π ′ → π �� ◦ d�
δ

(π ′).

Analysis performance heavily depends on the order of views visited during join in each abstract
one-step execution: the traversal strategy or worklist algorithm. Ramu et al. [76] selected an optimal
traversal strategy for each program using analysis properties and control flow graph properties.

Also, the tight definition of the join operator in the abstract transfer function F � : D� → D� :

F � (d� ) = d� � step� (d� )

increases analysis precision, but it also incurs performance degradation. Consider the code in
Figure 17(a) where the abstract values of the variable x in the interval domain are abstract states:

D
� = {[a,b] | a,b ∈ Z}. At l2, the initial abstract state is d� = [0, 0]. After finishing the first itera-

tion of the loop, the new abstract state becomes step� (d� ) = [1, 1] and it is merged with the old

one: F � (d� ) = d� � step� (d� ) = [0, 0] � [1, 1] = [0, 1]. Because the join operator � is the least
upper bound of two abstract states, the fixpoint computation for the example code requires 100
iterations.

To address such a performance problem, the abstract transfer function can use a widening oper-

ator ∇, which returns a coarser upper bound of two abstract states than their least upper bound:

F � (d� ) = d� ∇ step� (d� )

Parametric static analysis can use a widening operator as an analysis parameter in two ways:

• Widening with Thresholds: The first approach restricts the expressiveness of ∇with a set of
thresholds Zsel [10, 11, 49, 83] for the interval domain. For an abstract state [a,b] in the interval
domain, thresholds Zsel restrict the widening operator results as follows:

[a,b] ∇ [c,d] = [max{n ∈ Zsel | n ≤ min(a, c )},min{n ∈ Zsel | max(b,d ) ≤ n}].
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Fig. 18. Delayed widening.

For example, Figure 17(b) describes the results of the widening operator with thresholds
Zsel = {0, 20, 50, 100,+∞} for the interval domain of the variable x in the example code. For

the first iteration, the old abstract state is d� = [0, 0] and the next one is step� (d� ) = [1, 1]
because of the statement x++;. Thus, the widening of two abstract states becomes [0, 20], be-
cause 20 is the smallest threshold greater than or equal to 1. In the second and third iterations,
the abstract states grow to [0, 50] and [0, 100]. Then, the iteration converges to [0, 100] and it
takes only four iterations to reach the fixpoint. The performance and precision of the analysis
using ∇ with thresholds highly depend on selection of the thresholds. Thus, researchers uti-
lize machine learning to select thresholds of ∇. Cha et al. [11] leverage a Bayesian optimized
machine learning algorithm to select thresholds of ∇ for the interval domain. Singh et al. [83]
select thresholds of ∇ for the polyhedra domain with various constraint removal and merge
strategies for approximations via Reinforcement Learning (RL).
• Delayed Widening: Another approach delays the time to apply ∇ in the abstract transfer

function F � . With a parameter n, we can refine F � to delay ∇ until n iterations:

F � (d� ) =

{
d� � step� (d� ) if (# of iterations) ≤ n,

d� ∇ step� (d� ) otherwise.

We dub this technique delayed widening and Gulavani and Rajamani [24] applied it for the
relational domain. For example, Figure 18(a) shows an example code with assumptions on the
variables x and y. An abstract state of the relational domain is a set of linear relations between
variables and it represents the conjunction of the relations. The widening operator between
two abstract states is not commutative but focuses on the left one:

d� ∇ d ′� = {r ∈ d� | r covers d ′� }.

Thus, the widening operation removes several relations in the left abstract state d� when they

do not cover all the relations in the right abstract state d ′� . For example, the upper part in
Figure 18(b) describes the analysis result of the example code with the widening operator. In

the first iteration, the old abstract state is d� = {x ≥ 0, x ≤ 1, y ≥ 0, y ≤ 1} and the new one is
step� (d� ) = {x ≥ 1, x ≤ 2, y ≥ 1, y ≤ 2}. Among the relations in d� , x ≤ 1 and y ≤ 1 do not

cover step� (d� ) such as (x, y) = (2, 2) in step� (d� ). Therefore, the widening operator removes

them and the result is the fixpoint of the analysis: F � (d� ) = d� ∇ step� (d� ) = {x ≥ 0, y ≥ 0}.
Unfortunately, the analysis result is quite imprecise, because it does not provide any relations
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Fig. 19. Selection of analysis parameters in parametric static analysis.

between the variables x and y. On the contrary, the delayed widening technique can resolve this
problem via the combination of the� and∇ operators. The lower part in Figure 18(b) depicts the
analysis result of the example code with the delayed widening technique. The analysis applies
∇ after one iteration, which means that the first abstract transfer function uses � instead of ∇:
F � (d� ) = d� � step� (d� ) = {x ≥ 0, x ≤ 2, y ≥ 0, y ≤ 2, y ≤ x + 1, y ≥ x − 1}. In the graph, the

area tagged with F � (d� ) depicts this abstract state. In the next iteration, the new abstract state

step� ◦ F � (d� ) becomes {x ≥ 1, x ≤ 3, y ≥ 1, y ≤ 3, y ≤ x + 1, y ≥ x − 1}. Now, the abstract
transfer function uses ∇ and it removes only two relations x ≤ 2 and y ≤ 2. Thus, the result

of the second iteration becomes (F � )2 (d� ) = F � (d� ) ∇ step� ◦ F � (d� ) = {x ≥ 0, y ≥ 0, y ≤
x + 1, y ≥ x − 1}, which is the fixpoint of the analysis. Finally, we efficiently compute a more
precise analysis result than simply using the join operator by delaying the widening operator.

4 PARAMETER SELECTION

In parametric static analysis, the parameter selector selects analysis parameters for analysis pur-
poses using program properties, as shown in Figure 19. We describe ways to extract program prop-
erties (Section 4.1) to obtain feedback from previous analysis results (Section 4.2) or intermediate
analysis results (Section 4.3), and to select parameters using properties and feedback (Section 4.4).

4.1 Property Extraction

In this section, we explain how to extract program properties used in parametric static analysis.

Syntactic Analysis. Various techniques extract properties via syntactic analysis. Block-level
octagon packing [10, 59] applies octagon packing to variables in the same program blocks.
Correlation-tracking by Sridharan et al. [90] and composite abstraction by Ko et al. [45, 46] in-
troduce their own syntactic patterns to adjust loop sensitivity. Wei and Ryder [111] apply partial
flow-sensitivity to syntactically determined state-update statements. Kastrinis and Smaragdakis
[41] use call-site sensitivity for static method calls and object or type sensitivity for the others.
Zhang et al. [121] extract weighted inter-procedural control-flow graphs from binary programs
using syntactic analysis.

Dynamic Analysis. Another approach to extract program properties is dynamic analysis.
Researchers [17, 18, 107, 110] utilize multiple concrete execution traces to focus on or to exclude
program parts covered by them in static analysis. Execution traces are also useful to construct
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modeling of opaque functions [7, 71, 105]. During concrete execution, collecting dynamically
loaded code such as dynamic file loading [72] in Node.js or Java reflections [22] also lessens the
soundness problem of static analysis. In addition, Naik et al. [62] keep whether each address is
thread-local or thread-escaping during dynamic analysis to use the information when partitioning
allocation sites. Schäfer et al. [79] detect determinacy using concrete execution, and Wei and
Ryder [111] use dynamic analysis as well as syntactic analysis to detect state-update statements.

Specification Analysis. Researchers extract behaviors of opaque functions from their specifica-
tions. Bae et al. [6] introduce a technique to automatically model behaviors of vendor-specific Web
APIs using their types in specifications written in Web IDL, and Park [70] uses type information in
TypeScript declaration files. Zhai et al. [117] leverage natural language processing techniques to
extract behaviors of Java API functions from their documentation written in a natural language.

Access Analysis. Access analysis identifies which variables or paths are accessible in a given
program. Function call localization techniques [63, 68] perform static analysis only for accessible
variables in each function call via access analysis. De and D’Souza [15] pre-calculate access paths
of fields to limit their lengths in field abstraction with a pre-defined upper-bound k .

Dataflow Analysis. Dataflow analysis tracks value flows through control flows. Sparse value-flow

analysis tracks value flows sparsely through def-use chains or SSA forms. Variable localization
techniques [21, 28, 64, 82, 95–97] utilize it to refine intra-procedural view transitions using value
flows of variables. Adams et al. [1] slice programs in a statement level by using value-flow graphs
constructed by flow-insensitive dataflow analysis. Li et al. [50] detect value flow patterns of im-
precise context-insensitive pointer analysis to select functions to analyze with context sensitivity.

Equivalence-based Analysis. Steensgaard [92] uses equivalence constraints to divide variables to
Steensgaard partitions instead of subset constraints in Andersen’s points-to analysis to enhance
analysis performance. Kahlon [40] divides a given program based on variable partitions and per-
forms Andersen’s points-to analysis for each sub-program. Yu et al. [116] and Sui et al. [98] extend
it to assign a points-to level for each variable partition and flow-insensitively analyze sub-programs
in decreasing order of their levels while preserving the precision of flow-sensitivity. Another use
of equivalence-based analysis is variable substitutions [27, 78] or statement-level program slic-
ing [84].

Impact Analysis. Oh et al. [65, 66] first perform impact analysis of a given context sensitivity
using a simple abstract domain quickly. Using the pre-analysis results, they perform main analysis
using a more complex interval domain with high sensitivity for functions with high impacts.

Points-to Analysis. Points-to analysis infers relations between program components. Object allo-
cation graphs represent relations between object allocations for call-edge selection [101] or differ-
ent context sensitivity per function [51]. Tan et al. [102] construct field points-to graphs (FPGs)

and check the equivalence between FPGs to partition allocation sites. The sizes of points-to sets
relevant to functions, variables, and locations are also useful [29, 85]. Ko et al. [44] use the result of
another points-to analyzer as an upper bound of its main analysis to provide better performance.

Graph Analysis. Researchers often use CFL-reachability analysis as a pre-analysis. It obtains
must-not-alias information [115] to find imprecision of context-insensitive pointer analysis [56]
or to add bridge edges to another CFL-reachability analysis [16]. Ramu et al. [76] perform graph
analysis to detect cyclicity of control flow graphs when selecting a traverse strategy for the join
operator. Li et al. [52] perform graph simplification algorithms to reduce the sizes of the initial
abstract states in CFL-reachability analysis.
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4.2 Feedback from Previous Analysis Results

Iterative parametric static analysis repeatedly performs static analysis by updating analysis param-
eters using previous analysis results until a specific condition is satisfied.

Client-driven Feedback. Researchers use backward analysis to localize program parts parts that
cause failures of client analysis such as variables [25, 120], allocation sites [88], and function
calls [26, 75]. CFL-reachability based analysis [89, 91] repeatedly remove match edges to increase
analysis precision when client analysis uses match edges. Gulavani and Rajamani [24] localize the
widening operator ∇ relevant to failures of client analysis and replace it with the join operations
�. For Datalog-based analysis, researchers localize call-sites maximally relevant to failed parts of
client analysis based on a heuristic model [119] and a learnt probabilistic model [23].

Refinement of Initial Abstract States. Datalog-based analysis refines the initial abstract states of
subsequent analysis using previous analysis results. When analysis does not use some initial facts,
its subsequent analysis does not use them either [53]. In addition, Vedurada and Nandivada [106]
use previous analysis results as caches to avoid redundant analysis in subsequent analysis. They
construct caches called batches extracted from the previous analysis with different queries in CFL
reachability-based analysis and lift up the initial graphs the next analysis using batches.

4.3 Feedback from Intermediate Analysis Results

To avoid restarting static analysis multiple times, researchers propose techniques to configure anal-
ysis parameters on-the-fly using intermediate analysis results and continue the analysis iteration
with different analysis parameters. One exception is Wei et al. [113], who restart the analysis with
new analysis parameters when intermediate analysis results become too imprecise.

Optimization for Redundant Analysis. One approach to utilize intermediate analysis results is
to reduce redundant analysis. Whaley and Lam [114] utilize BDDs to merge calling contexts of
redundant function call analysis to improve the analysis performance without any precision loss.

Semantics Refinement. Semantics refinement techniques may get feedback from intermediate
analysis results. Several researchers collect determinacy information during JavaScript static anal-
ysis to modify eval function calls with concrete string values [37] and to modify determinate
expressions with their corresponding values [4]. Heintze and Tardieu [31] use deductive reacha-
bility to slice programs, Stein et al. [93] perform on-demand backward analysis to refine abstract
values, and Sotiropoulos and Livshits [86] modify callback graphs for asynchronous event loops
during static analysis. For algebraic program analysis, Cyphert et al. [14] refine path expressions
in intermediate analysis results. Wei et al. [109] specialize abstract semantics using deterministic
parts in intermediate analysis results inspired by partial evaluation using Futamura projection.

Opaque Function Modeling. Madsen et al. [57] use intermediate analysis results to model the
behaviors of opaque functions automatically. They detect use patterns of opaque functions during
static analysis and automatically infer their modeling.

4.4 Parameter Selection

Parametric static analysis selects analysis parameters using program properties and feedback from
analysis results. Because selecting and configuring the best combination of analysis parameters
manually is difficult [25, 26, 56, 64–67, 72, 85, 89], recent researchers have taken data-driven ap-
proaches for selection of analysis parameters using various statistical learning or machine learning
models. They view parametric static analysis as a search problem to find the best analysis parameter
from a specific set of analysis parameters explained in Section 3. The score of analysis parameters
is defined with a function score : Ψ → R from parameters Ψ to real values depending on analysis
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purposes. For example, when an analysis purpose is to increase analysis performance while pre-
serving the analysis precision, the score score(ψ ) of a parameter ψ would be 0 when the analysis
withψ degrades analysis precision, otherwise, 1/t where t is the analysis time. For this search prob-
lem on a search space Ψ with the score function score, researchers utilize guided random search,
statistical classification, reinforcement learning, and learnt probabilistic model.

4.4.1 Guided Random Search. A naïve solution is to exhaustively or randomly traverse candi-
dates in a given search space. However, it is infeasible when the the search space size is excessively
large: |Ψ| � 1. Thus, researchers perform guided random search. Heule et al. [36] perform a local
search inspired by Markov chain Monte Carlo sampling and the Metropolis-Hastings algorithm [5]
to find modeling of JavaScript built-in functions. They randomly search the space near the current
analysis parameter ψ by randomly mutating it and pick the next parameter whose score is the
highest:

argmax
ψ ′ ∈M

score(ψ ′),

where M = {ψ ′1, . . . ,ψ ′n } is a set of n analysis parameters mutated fromψ .
Another solution is to leverage statistical learning for program components Ψ = P (J) in analysis

parameters. A component j ∈ J may be a function for partial context sensitivity in Section 3.1.2
or a variable for variable selection in Section 3.2.1. To refine analysis parameters, Liang et al. [54]
first sample n analysis parameters M = {ψ ′1, . . . ,ψ ′n } by randomly adding new components to the
current parameter ψ with the selection probability α : mutate(ψ ) = ψ ∪ {j | randomly select j ∈
J\ψ with α }. Then, they insert the best component toψ using the statistical information extracted
from M :

argmax
j ∈J\ψ

∑
{score(ψ ′) | ψ ′ ∈ M ∧ j ∈ ψ ′}.

Thus, it changes the search space from analysis parameters Ψ to program components J.
Using features of components to indirectly find the best component by searching the best weight

vector w, the search space once more changes from components to weight vectors. A feature vector

f (j ) of a component j is defined with n different feature functions f = 〈f1, . . . , fn〉 that represent
whether components have the features. For a given weight vector w ∈ [0, 1]n , a component j is
selected when its estimated score f (j ) ·w is the highest. This approach is efficient, because it infers
the weight vectors using information from different programs, and it selects analysis parameters
without additional searching after learning weight vectors. Oh et al. [67] use Bayesian optimization

in a random search algorithm for weight vectors, and Cha et al. [11] present an oracle-guided
random search to utilize a standard gradient decent algorithm to select a threshold of ∇.

Boolean formulas defined over features can replace weight vectors. Since such Boolean formulas
are non-linear while weight vectors are linear, the random search using Boolean formulas is more
expressive than using weight vectors. Jeong et al. [39] use vectors ofk Boolean formulas as learning
targets to determine different k per function for k-context sensitivity. While they use a greedy
algorithm to learn Boolean formulas, because target analysis parameters are monotone in terms
of precision and performance, the context tunneling technique is not monotone. Thus, Jeon et al.
[38] present a non-greedy algorithm for such non-monotone analysis parameters.

4.4.2 Statistical Classification. Statistical classification is a supervised learning that classifies
given input vectors. A classifier classify : {0, 1}k → {0, 1} takes a feature vector f (j ) for each
component j ∈ J and classifies whether it is selected or not for the analysis parameter ψ :
classify ( f (j )) = 1⇔ j ∈ ψ and classify ( f (j )) = 0⇔ j � ψ .

Decision tree learning is one of the most popular classification techniques. It constructs a deci-
sion tree using training data and classifies inputs according to the constructed decision tree. Wei
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and Ryder [112] first use a C4.5 classifier [74] to learn relationships between function features
and precision of context-sensitivity and design heuristics based on the constructed decision tree
to select different context sensitivity per function. Bielik et al. [8] extend ID3 [73] algorithm to
automatically infer abstract semantics of JavaScript built-in functions. To select variable relations
for octagon domain, Heo et al. [33] utilize logistic regression [60], which is a statistical model that
uses logistic functions to model binary dependent variables. They use the impact analysis for oc-
tagon domain introduced by Oh et al. [65] to generate labels with 30 features for relations of two
variables. For selectively unsound analysis with harmless unsoundness, Heo et al. [35] leverage
One-Class Support Vector Machine (OC-SVM) classifier [80]. They select loops for unsound
unrolling and library function calls to skip using the OC-SVM classifier learned with 22 loop fea-
tures and 15 library function call features. He et al. [30] utilize Graph Convolutional Network

(GCN) [43] to over-approximate the join operator for polyhedra and octagon domains. After join
operation, they construct graphs with constraints in abstract states as nodes and relationships be-
tween them as edges. Over the graphs, they train the model using GCN to decide which constraints
to remove.

Unfortunately, the quality of parametric static analysis using classification is highly dependent
on the quality of features. To tackle this problem, Chae et al. [12] automate the feature design pro-
cess by using reduced and abstracted programs as features. They apply this technique to interval,
pointer, and octagon analysis, and the average numbers of generated features are 38, 45, and 44.

4.4.3 Reinforcement Learning. RL [99] is a machine learning technique with an agent learning
by interacting with its environment to reach a goal. The agent starts from an initial environment
state s0 ∈ S where S is a set of environment states. At each time t = 0, 1, 2, . . . , the agent performs
an action p (st ) = at ∈ A at state st using the policy p : S → A, which is a mapping from states to
actions. Then, it moves to the next state st+1 depending on the action at and receives a real-value
reward r (st ,at , st+1) via a black-box reward function r : S × A × S → R. The agent repeatedly
performs actions until reaching the final state. The key concept of RL is to learn a policy that max-
imizes a cumulative reward for its actions. Instead of directly learning the policy, Q-learning [108]
learns the quality function (Q-function) over state-action pairs. Using a long-term cumulative re-
ward Q-function Q : S ×A→ R, the policy function p is defined as follows:

p (s ) = argmax
a∈A

Q (s,a).

Because explicitly computing Q-function is infeasible, Q-learning learns its approximation.
Singh et al. [83] leverage RL with Q-learning to find the best choices of a threshold, a split-

ting method, and a merge algorithm of ∇ in interval domain. A static analyzer becomes an agent,
their actions are analysis parameters for ∇, and a reward function represents the precision and
performance of the join operation. Heo et al. [34] present RL-based static analysis inspired by
batch-mode reinforcement learning [20] to consider resource constraints during static analysis
with interval domain. They reduce the number of selected variables for flow-sensitive views by
continuous learning with analysis results.

4.4.4 Learnt Probabilistic Model. Grigore and Yang [23] propose a technique to utilize learnt
probabilistic model to an abstraction refinement algorithm introduced by Zhang et al. [119]. They
consider facts and rules in Datalog as nodes and edges of hypergraphs and define a probabilistic
model that predicts how a hypergraph would change if a new and more precise analysis parameters
are used. The probabilistic model is a variant of the Erdős-Rényi random graph model [19] defined
on hypergraphs.
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5 OPEN CHALLENGES AND FUTURE RESEARCH DIRECTIONS

Parameterizing Abstract Values. We introduced research on how to parameterize abstract states
for parametric static analysis in Section 3.2. While they focus on configuring abstraction of memo-
ries such as variables, addresses, and fields, no work addresses parameterizing abstraction of values
such as numbers or strings. A possible approach is to use different abstract number domains for
different variables to adjust the balance between performance and precision. While it still has a
challenge that the abstract semantics of operators for abstract values in different domains is not
well defined yet, we believe that it is a promising research direction of parametric static analysis.

Using Different Opaque Function Modeling. As we explained in Section 3.4.2, several researchers
have modified view transitions of opaque functions by automatically modeling their semantics
in a soundy way. While all of them focus on how to automatically model their behaviors, no
research studies use of different modeling depending on given programs. For example, consider
three different modeling for JavaScript built-in functions: (1) type-guided automatic modeling [6,
70] has high performance but low precision; (2) ML-based modeling [36] has high precision but low
performance; and (3) partial modeling using concrete execution [105] has both high precision and
performance but it is only partially applicable. Instead of using only one modeling, using different
modeling for different conditions may produce better results. When the third modeling is possible,
it is the best option to choose. In other cases, we can select one of the first and second modeling
while considering the balance between performance and precision.

Advanced Machine Learning-based Parametric Static Analysis. Recent studies on parametric static
analysis take advantage of machine learning techniques in parameter selection, depending on
given program properties and feedback from previous or intermediate analysis results, as explained
in Section 4.4. Many of them perform analysis for a huge number of training data with various
configuration of analysis parameters to identify relationships between given program properties
(or feedback) and the best choice of analysis parameters. Thus, they are time-consuming to handle
such big training data. Future research directions may include developing more efficient machine
learning algorithms to reduce learning cost. Moreover, most of existing ML-based parametric static
analysis exploits only restricted properties such as syntactic properties and sizes of points-to sets.
Fortunately, recent studies on machine learning for programs [2, 3, 32] provide helpful directions
to alleviate this problems. Allamanis et al. [2] present a technique to construct graphs from source
code, Henkel et al. [32] use abstract symbolic traces of given programs as a representation for
learning word embeddings, and Alon et al. [3] represent code snippets as single fixed-length code
vectors. We believe that such learning-based code embedding approaches can enhance the quality
of parameter selection for parametric static analysis.

6 CONCLUSION

We introduce research on parametric static analysis, which parameterizes static analysis to im-
prove analysis quality. According to the parameterized components of static analysis, we classify
the literature in four analysis parameters: analysis sensitivity, state abstraction, initial abstract
state, and abstract transfer function. Parametric static analysis considers a static analyzer as a
black-box and focuses on finding the best combination of analysis parameters in parameter se-
lection. It utilizes the extracted program properties or feedback from previous or intermediate
analysis results in the parameter selection process. Although parametric static analysis has ad-
dressed various challenges in balancing three metrics of the static analysis quality, we observed
that there still remain several open challenges: (1) parameterizing abstract values, (2) using differ-
ent opaque function modeling, and (3) advanced machine learning-based parametric static analysis.
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We believe that parametric static analysis opens the gate to interesting research topics for future
research directions.
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