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Abstract

ECMA-262 is the official language specification for JavaScript that
defines the language semantics in detail. However, readers often
struggle to understand the specification due to the intricate edge
cases and lengthy, highly nested explanations. To address this issue,
we present JSSpecVis, an interactive web interface visualizing the
JavaScript language specification. For an intuitive understanding
of edge cases, it provides example programs for each part of the
specification with a call-path context selected by readers. In addi-
tion, it supports the interactive execution of JavaScript programs on
the specification with a new debugging feature called resume and
provenance for advanced debugging of JavaScript programs. Using
these functionalities, JSSpecVis provides an intuitive learning en-
vironment for beginners and a powerful productivity for experts.
Our tool is open at https://github.com/ku-plrg/js-spec-vis, and the
tool demonstration is available at https://youtu.be/xqLPmVVIORQ.

CCS Concepts

« Software and its engineering — Formal language defini-
tions; » Human-centered computing — Visualization systems
and tools.
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1 Introduction

ECMA-262 [5] is the official language specification for JavaScript
that defines the language semantics using pseudo-code algorithms
consisting of structured steps written in English prose. It has been
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annually updated since 2015, and its latest version, ES2024, contains
816 pages with 2,773 algorithms consisting of 20,532 steps. There are
three types of readers who refer to the specification to understand
the language semantics for different purposes:

(1) Language Designers who design new language features
and maintain the specification. The Technical Committee 39
(TC39) is the official committee who maintains ECMA-262.

(2) Language Tool Developers who implement the language
tools. For example, developers of JavaScript engines (e.g., V8),
transpilers (e.g., Babel), and static analyzers (e.g., ESLint).

(3) JavaScript Programmers who write JavaScript programs.
They want to understand why and how JavaScript programs
behave in a certain way to write programs correctly.

However, understanding the JavaScript language semantics with
the specification is often painful for all three types of readers.

First, the most significant challenge is understanding the diverse
and intricate edge cases in the language semantics. In particular,
language designers and tool developers need to grasp all the edge
cases to implement the tools and maintain the specification cor-
rectly. However, language features in JavaScript have a wide range
of edge cases due to its highly dynamic nature with complex im-
plicit type coercion rules. For example, the semantics of addition
operators (+) contain more than 12 non-trivial edge cases that throw
exceptions for different reasons. In addition, the semantics of differ-
ent language features often share the same auxiliary algorithms. It
leads to more challenges in understanding how edge cases in each
auxiliary algorithm affect the semantics of different features.

Second, readers also struggle to follow lengthy and highly nested
algorithm steps to understand the semantics. To understand the full
semantics of a JavaScript program, readers need to follow lengthy
steps across multiple algorithms, making it challenging to under-
stand the semantics of even a simple expression. For example, read-
ers need to follow 121 steps across 10 algorithms in the specifi-
cation to understand why the JavaScript expression 1+1n throws
a TypeError exception. Besides, readers should keep track of not
only the JavaScript program states but also the meta-level states of
the specification when following the steps.

To address these challenges, we present JSSpecVis, an interac-
tive web interface visualizing the JavaScript language specification.
Our key idea is to provide 1) example programs related to each
specification part in Program Visualizer and 2) interactive execution
of JavaScript programs on the specification using Double Debugger.
Example programs help readers intuitively understand edge cases
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Array.prototype.at ( index)

. Let O be ? ToObject(this value).
. Let len be ? LengthOfArrayLike(O).
. Let relativelndex be ? TolntegerOrInfinity(index).
. If relativelndex > 0, then

a. Let k be relativelndex.
. Else,

a. Let k be len + relativelndex.
. If k<0 or k > len, return undefined.
. Return ? Get(O, ! ToString(F(k))).

AW N =

Figure 1: An algorithm for Array.prototype.at in ES2024

in language semantics. Program Visualizer is an interactive web in-
terface, available as a Chrome extension, which provides two types
of example programs for each specification part: 1) synthesized min-
imal programs and 2) official conformance tests from Test262 [6].
Readers can select a call-path context, a sequence of call-sites in
the algorithms, to see more specific example programs under the
selected context. Double Debugger supports interactive execution
of JavaScript programs on the specification. It provides basic debug-
ging features, shows states of both the JavaScript program and the
specification during the execution, and supports novel debugging
features: resume and provenance. Users can resume the execution of
the minimal program starting from the selected step and call-path
context in the visualizer. Moreover, it keeps track of the provenance
(i.e., the allocation site) of each record and allows users to step-back
to its provenance to show the origin of values or exceptions.

In the remainder of this paper, we first introduce the challenges
in understanding the JavaScript language specification (§2). Then,
we present the design and implementation of JSSpecVis (§3), discuss
the related work (§4), and conclude the paper (§5).

2 Background and Motivation

This section explains the basic notations in the JavaScript language
specification and the challenges in understanding the specification.

ECMA-262 is the official language specification for JavaScript
and defines language semantics using pseudo-code algorithms for
each syntactic feature or built-in function. Figure 1 shows an algo-
rithm for the Array.prototype.at! built-in function in ES2024,
which retrieves an element from any array-like object at the given
index. This feature was introduced in ES2022 and supports nega-
tive indices as well. For instance, [3, 7, 11].at(1) returns the
second element 7, and [3, 7, 11].at(-1) returns the last ele-
ment 11. The algorithm consists of seven steps to describe its se-
mantics with the help of auxiliary algorithms (e.g., ToObject and
LengthOfArrayLike).

In the specification, each branch often denotes an edge case in the
semantics. For example, the step 5.a in Figure 1 handles the negative
index case, and the step 6 handles out-of-bound indices. In addition,
the ? operator is another kind of branch for abrupt completions. In
the specification, a completion record is a special type used to explain
runtime propagation of values or control flows, such as break,
return, or exceptions. It is not a JavaScript value and only exists in
the specification. There are two kinds of completions: normal and
abrupt. If a completion is normal, it captures the produced value;

Thttps://tc39.es/ecma262/2024/4sec-array.prototype.at
p y-p yPp!
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Array.prototype.at ( index)
. Let len be ? LengthOfArrayLike(O).
LengthOfArrayLike ( obj)
1. Return R(? ToLength(? Get(obj, "length"))).
ToLength ( argument)
1. Let len be ? TolntegerOrInfinity(argument).
TolIntegerOrInfinity ( argument)

1. Let number be ? ToNumber(argument).

ToNumber ( argument)

. Return ? ToNumber(primValue).

Figure 2: A path from Array.prototype.at to ToNumber that
throws a TypeError exception in ES2024

otherwise, it captures the abrupt reason. The ? operator checks if
the given value is an abrupt completion and directly returns it as
the result of the algorithm. Otherwise, it takes the captured value
from the normal completion. The ! operator is similar to this, but
it assumes the given value is a normal completion. Thus, readers
need to understand four ? operators in the algorithm to understand
the full semantics of Array.prototype.at.

However, understanding the edge cases is often challenging even
for experienced readers. For example, the core-js polyfill library
is essential for uniform JavaScript execution environments, but its
developers introduced a bug® by misunderstanding the edge case
for the ? operator in the step 2 of the algorithm in Figure 1. As a
result, the following JavaScript program returns undefined value
when using the core-js library, even though it should throw a
TypeError exception according to the specification:

// TypeError in ES2024, but undefined in core-js v3.35.0
Array.prototype.at.call({ length: -1n 3}, @);
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One contributing factor to this bug is the absence of a test case
addressing this edge case in Test262 [6], the official conformance
test suite. The coverage information about which edge cases in
each language feature Test262 covers is crucial for both test suite
maintainers and tool developers.

In addition, auxiliary algorithms have their own edge cases and
are used in multiple places in the specification. Thus, readers need to
understand how their edge cases affect the semantics of its caller al-
gorithms. For example, the LengthOfArrayLike algorithm is called
in 55 different places in the ES2024 specification and has two differ-
ent own edge cases. It means that the edge case for the step 2 of the
Array.prototype.at can be triggered by two different edge cases
in the LengthOfArrayLike algorithm. Similarly, the semantics of
the LengthOfArrayLike algorithm is affected by the ToLength and
Get algorithms, which have their own edge cases as well.

A deep path across multiple algorithms makes it difficult to
understand the language semantics as well. The precise reason of
the above bug in the core-js library is related to the branch in
the step 2 of the ToNumber algorithm through the path across five
algorithms from the Array.prototype.at algorithm as depicted
in Figure 2. Besides, readers need to keep track of the states of both
the JavaScript program and the specification when following the

Zhttps://github.com/zloirock/core-js/issues/1318#issue- 2063353379
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Figure 3: Overall structure of JSSpecVis

Execution

steps, which makes it even more burdensome to understand the
language semantics correctly.

3 Tool Design and Implementation

As depicted in Figure 3, JSSpecVis consists of three components:
1) Program Collector as a preprocessor, 2) Program Visualizer for
browsing the collected programs, and 3) Double Debugger for in-
teractive execution of JavaScript programs on the specification.
We extend the ESMeta toolchain [1, 18] to extract the mechanized
specification and use it for all three components. A mechanized
specification is a program written in IRgs, an intermediate repre-
sentation of ECMA-262, and executable as a JavaScript interpreter
to simulate the execution of JavaScript programs on the language
specification. This section explains the design and implementation
of each component of our tool in detail.

3.1 Program Collector

It collects two types of example programs for each node in the
mechanized specification: 1) minimal JavaScript programs and 2)
official conformance tests from Test262. We first explain the concept
of feature-sensitive coverage [16] on the mechanized specification,
and then describe how we synthesize minimal programs and select
example programs using the coverage information.

3.1.1 Feature-sensitive Coverage. A feature-sensitive (FS) coverage
criterion is an extension of a graph coverage criterion that splits
coverage targets with their innermost enclosing language feature.
For example, if a node in the control-flow graph of the mechanized
specification is reachable from two different language features (e.g.,
+and - operators), the coverage criterion considers the node as two
separate coverage targets for each feature. It is possible to further
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13.15.3 ApplyStringOrNumericBinaryOperator ( Ival, opText, rval)

1.If opText is +, then
a. Let lprim be ? ToPrimitive(lval).
b. Let rprim be ? ToPrimitive(rval).
c. If Iprim is a String or rprim is a String, then
i. Let Istr be ? ToString(iprim).

<> Program Run on Double Debugger >

0 + { [ Symbol . toPrimitive ] : 0 } ;

A Test262 7 found (3 Download All
built-ins/String/prototype/valueOf/non-generic.js &
language/expressions/addition/S11.6.1_A2.2_T1.js &
language/expressions/addition/bigint-toprimitive.js &
£ CallPath & Clear
# name step

0 13.15.4 EvaluateStringOrNumericBinaryExpression ( 5

leftOperand, opText, rightOperand)
1 ‘xpression : AdditiveExpression + ipli 'ession 1

Figure 4: A minimal program and Test262 tests under the
selected call-path context in Program Visualizer

extend the FS coverage with k innermost enclosing features, called
k-FS coverage. Furthermore, k-feature-call-path-sensitive (k-FCPS)
coverage is an extension of k-FS coverage that considers not only
features but also the call path from the feature to the target node to
split coverage targets. In this work, we use 1-FCPS node coverage
in the specification because we want to show example programs
under the selected call-path context in the program visualizer.

3.1.2  Synthesizing Minimal JavaScript Programs. Our tool synthe-
sizes minimal JavaScript programs using mutation-based fuzzing. It
starts with the seed programs consisting of 9,092 programs collected
from our previous study [16]. Target Selector randomly selects a
program from the seed programs and Program Mutator mutates the
program to generate new programs. We use five mutation methods:
1) random mutation, 2) random removal, 3) nearest syntax tree
mutation, 4) statement insertion, and 5) string substitution. In 30
hours, our tool synthesizes 10,047 minimal programs that cover
324,518 1-FCPS nodes in the mechanized specification.

3.1.3  Program Selection with 1-FCPS Coverage. We select example
programs for each 1-FCPS node in the mechanized specification
using the coverage information. For each 1-FCPS node, we select
1) a minimal program and 2) a set of official conformance tests
that touch the coverage target. Since conformance tests utilize
harness functions as helpers, we ignore the touching information
for coverage targets when the innermost enclosing syntax tree node
is in the harness functions. As a result, we collect 10,047 minimal
programs and 25,276 official conformance tests from Test262.

3.2 Program Visualizer

Program Visualizer provides an interactive web interface for brows-
ing the collected example programs. It is implemented as a Chrome
extension that extends the online ECMA-262 page. Users can select
interesting parts of the specification by clicking on steps (or ? oper-
ators) and see the minimal JavaScript programs and conformance
tests that cover the selected parts.
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10+ { [ Symbol .
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[ ECMAScript Specification

1. If opText is +, then

a. Let /prin be ? ToPrimitive(/val).
b. Let 1} be ? ToPrimitive(r
c. If Iprin is a String or 77

i. Let /str be ? ToString(/;

ii. Let rs/r be ? ToString(1pr

).
).

iii. Return the string-concatenation of /s and rsfr.

d. Set /1
e. Set 1o

I to Iprim.
1 to rprin,

2. NOTE: At this point, it must be a numeric operation.
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TBACKOUT  dIREWIND Y JSSTEP ~OVER TOUT

{3 State Viewer &3 Heap (® Breaks & Callstack
E Specification Environment

Go back to provenance
« RETURN : Record[CompletionRecord] @

+ Target : ~empty~ provnance
+ Type : ~throw~
« Value : Record[Object]

# lprim : 0

lval : 0

« opText : "+"

« rval : Record[Object]

[ JavaScript Environment

+ AggregateError : Record[PropertyDescriptor]

« Value : Record[BuiltinFunctionObject]

Figure 5: Double Debugger for interactive execution of JavaScript programs on the JavaScript language specification

In addition, if users move to other auxiliary algorithms to see
the detailed semantics of features by clicking call-sites, it saves
the call-path and uses it as a context to filter example programs.
Thus, if users select a step under a call-path context, it automati-
cally filters 1) 1-FCPS nodes matched with the selected step and
2) feature-call-paths ending with the selected call-path. Then, it
shows example programs mapped from the filtered 1-FCPS nodes.
We remove cycles when a user clicks already visited call-sites in
the call-path to prevent infinite length of paths. If a user selects an
infeasible call-site, it clears the call-path and starts a new context.

For example, Figure 4 shows the example programs related to an
edge case in the ApplyStringOrNumericBinaryOperator algorithm
in the context of the addition + operator feature. In this case, the user
first selects the call-path context by clicking 1) step 1 of the + opera-

tor feature and 2) step 5 of EvaluateStringOrNumericBinaryExpression.

Under this selected context, if the user clicks the ? operator at step
1.b of ApplyStringOrNumericBinaryOperator, the visualizer shows
a minimal program and the 7 conformance tests. While 26 confor-
mance tests exist for the ? operator at step 1.b, it shows only 7 tests
related to the selected call-path context.

3.3 Double Debugger

Charguéraud et al. [3] introduced the concept of double debugger
with JSExplain, that shows states of both the program and the
JavaScript reference interpreter. However, it targets an interpreter
written in OCaml rather than the specification and only supports
ES5.1 version and requires manual update for later versions. Instead,
we extract a mechanized specification from the latest ECMA-262.
Our Double Debugger provides specification-level navigation for
algorithm steps (e.g., forward-step, backward-step, breakpoints, and
continue) and also JavaScript-level navigation to focus on program
execution. The call-stack tab highlights dependent parts of call-
sites that affect the current state by calculating the intersection of
dynamically executed and statically control/data dependent parts.
In addition, it provides two novel debugging features: 1) resume
and 2) provenance. A user can execute provided minimal programs
by clicking the Run on Double Debugger button in the visualizer
and resume its execution from the selected context by clicking the
Resume button in the debugger. Internally, it passes the recorded
iteration count for the selected context to the debugger to resume
the execution from the selected context. It helps users to understand
the semantics of the selected part by the step-by-step execution
in the debugger. The debugger keeps track of the provenance (i.e.,
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allocation site) of each record in the specification and allows users
to step-back to there, providing the origin of values or exceptions.
For example, a user can execute the debugger with the minimal
program in Figure 4 by clicking the Run on Double Debugger
button. Then, a user can resume the execution from the selected
context by clicking Resume button in the debugger as shown in
Figure 5. It shows the current return value is an abrupt completion.
If a user clicks the provenance button (i.e. double-left arrow), the
debugger steps-back to its provenance and shows that a TypeError
exception is thrown at the step 3 of the GetMethod algorithm.

4 Related Work

We are inspired by live programming [8, 10, 19, 20], providing visual-
ization for better understanding of programs. To visualize language
specifications with examples, we need an executable specification.
While diverse researchers [2, 4, 7, 9, 11] formalized JavaScript se-
mantics, they mainly focused on ES5.1 and required manual up-
dates. In contrast, ESMeta automatically extracts an executable
specification for the latest ECMA-262 [15] and supports diverse
extensions [12-14, 16]. Thus, we developed JSSpecVis on top of it.
One of the closest works to our approach is MetaData262 [17],
which filters Test262 tests by language features. However, it requires
manual metadata updates and lacks fine-grained selection, such as
steps or edge cases in a single feature. Another one is JSExplain [3]
that introduced a double debugger for JavaScript but relies on an
OCaml-based interpreter for ES5.1, requires manual updates, and
does not support debugging features like resume and provenance.

5 Conclusion

We present JSSpecVis to help users understand the JavaScript lan-
guage specification by visualizing the specification with examples
and interactive execution. Its debugging features support both be-
ginners and experts in exploring JavaScript semantics effectively.
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