
Accelerating JavaScript Static Analysis via Dynamic Shortcuts

Joonyoung Park∗

Korea Advanced Institute of Science and Technology
Daejeon, South Korea
gmb55@kaist.ac.kr

Jihyeok Park∗

Korea Advanced Institute of Science and Technology
Daejeon, South Korea
jhpark0223@kaist.ac.kr

Dongjun Youn
Korea Advanced Institute of Science and Technology

Daejeon, South Korea
f52985@kaist.ac.kr

Sukyoung Ryu
Korea Advanced Institute of Science and Technology

Daejeon, South Korea
sryu.cs@kaist.ac.kr

ABSTRACT

JavaScript has become one of the most widely used programming

languages for web development, server-side programming, and

even micro-controllers for IoT. However, its extremely functional

and dynamic features degrade the performance and precision of

static analysis. Moreover, the variety of built-in functions and host

environments requires excessive manual modeling of their behav-

iors. To alleviate these problems, researchers have proposed various

ways to leverage dynamic analysis during JavaScript static analysis.

However, they do not fully utilize the high performance of dynamic

analysis and often sacrifice the soundness of static analysis.

In this paper, we present dynamic shortcuts, a new technique

to flexibly switch between abstract and concrete execution dur-

ing JavaScript static analysis in a sound way. It can significantly

improve the analysis performance and precision by using highly-

optimized commercial JavaScript engines and lessen the modeling

efforts for opaque code. We actualize the technique via SAFEDS, an

extended combination of SAFE and Jalangi, a static analyzer and a

dynamic analyzer, respectively. We evaluated SAFEDS using 269 of-

ficial tests of Lodash 4 library. Our experiment shows that SAFEDS
is 7.81x faster than the baseline static analyzer, and it improves the

precision to reduce failed assertions by 12.31% on average for 22

opaque functions.

CCS CONCEPTS

· Software and its engineering → Software testing and de-

bugging.

KEYWORDS

JavaScript, static analysis, dynamic analysis, dynamic shortcut,

sealed execution

∗Both authors contributed equally to the paper.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ESEC/FSE ’21, August 23ś28, 2021, Athens, Greece

© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8562-6/21/08. . . $15.00
https://doi.org/10.1145/3468264.3468556

ACM Reference Format:

Joonyoung Park, Jihyeok Park, Dongjun Youn, and Sukyoung Ryu. 2021.

Accelerating JavaScript Static Analysis via Dynamic Shortcuts. In Pro-

ceedings of the 29th ACM Joint European Software Engineering Conference

and Symposium on the Foundations of Software Engineering (ESEC/FSE ’21),

August 23ś28, 2021, Athens, Greece. ACM, New York, NY, USA, 12 pages.

https://doi.org/10.1145/3468264.3468556

1 INTRODUCTION

Over the past decades, the rise of JavaScript as the de facto lan-

guage for web development has expanded its reach to diverse

fields. Node.js [5] supports server-side programming, React Na-

tive [6] and Electron [1] produce cross-platform applications, and

Moddable [4] and Espruino [2] provide JavaScript environments in

micro-controllers for IoT. Such wide prevalent uses place JavaScript

at #7 programming language in the TIOBE Programming Commu-

nity index1. Thus, researchers have developed static analyzers such

as JSAI [20], TAJS [19], WALA [41], and SAFE [25, 37] to under-

stand behaviors of JavaScript programs and to detect their bugs in

a sound manner.

However, static analysis of real-world JavaScript programs suf-

fers from immensely functional and dynamic features of JavaScript

such as callback functions, first-class property names, and dynamic

code generation. While they provide flexibility in software devel-

opment, it is challenging to statically analyze such features. To

overcome these problems, researchers have proposed several anal-

ysis techniques: advanced string domains [10, 26, 29], loop sensi-

tivity [30, 31], analysis based on property relations [23, 24, 28, 41],

and on-demand backward analysis [42].

At the same time, JavaScript host environments require excessive

manual modeling of their behaviors for static analysis. Because

built-in functions and host-dependent functions are implemented

in native languages like C and C++ instead of JavaScript, their code

is opaque during static analysis. Thus, static analyzers often model

their behaviors manually, which is error-prone, tedious, and labor-

intensive. While researchers have proposed automatic modeling

techniques [11, 32], since they utilize only type information, they

generate imprecise models compared with the manual approach.

To alleviate these problems, researchers have leveraged dynamic

analysis during static analysis. Unlike static analyzers that run on

their own interpreters, dynamic analyzers such as Jalangi [40] and

DLint [17] run on highly-optimized commercial JavaScript engines,

whichmakes themmuch faster than static analyzers. Figure 1 shows

1https://www.tiobe.com/tiobe-index/

1129

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3468264.3468556
https://doi.org/10.1145/3468264.3468556


ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Joonyoung Park, Jihyeok Park, Dongjun Youn, and Sukyoung Ryu

Figure 1: Performance of a dynamic analyzer and a static an-

alyzer for a subset of the SunSpider benchmark

that the dynamic analyzer Jalangi is 34.8x faster than the static

analyzer SAFE for a subset of the SunSpider [8] benchmark that

is input-independent and deterministic. Using high performance

dynamic analysis, researchers have reduced the scope of static

analysis [39, 44] and constructed initial abstract states [34, 38] and

automatic modeling of opaque code [33].

Unfortunately, existing techniques using dynamic analysis for

static analysis have two limitations: 1) they do not fully utilize

the high performance of dynamic analysis, and 2) they sacrifice

the soundness of static analysis. Most of them are staged analyses,

which first extract specific information via dynamic analysis and

utilize it in static analysis. Schäfer et al. [39] identify determinate

expressions that always have the same values at given program

points, Wei and Ryder [44] extract dynamic values to change ex-

pressions to certain literals, and Park et al. [34, 38] dump the initial

states of a certain host environment or the entry of an event handler.

However, because they do not utilize dynamic analysis as soon as

static analysis begins, they do not get performance benefits since

then. Moreover, they sacrifice the soundness of static analysis by

performing dynamic analysis. For example, the SRAmodel [33] uses

dynamic analysis for opaque code with abstract arguments during

static analysis. When the abstract arguments represent an infinite

number of values, it randomly samples finite concrete values for

the abstract arguments, which makes the analysis result unsound

due to missing concrete values.

In this paper, we present dynamic shortcuts, a new technique

to flexibly switch between abstract and concrete execution during

JavaScript static analysis in a sound way. During static analysis,

one can take a dynamic shortcut, which consists of three parts: 1)

converting the current abstract state to its corresponding sealed

state, 2) performing sealed execution on the sealed state, and 3)

converting the result of the sealed execution to its corresponding

abstract state. Our key observation is that we can use the fast

concrete execution for specific program parts while preserving the

soundness if they do not use abstract values. For example, consider

static analysis of the following JavaScript code:

var v = ... // an abstract value

var obj = { p1: v }, y = "p";

x = obj[y + 1];

Because y stores a string "p", the expression y + 1 evaluates to a

string "p1" and x = obj[y + 1] assigns the abstract value of v stored

in obj.p1 to the variable x. Note that even though obj contains an

abstract value v, because the third line does not łusež the value of

v but only łpassesž it to the variable x, we can concretely execute

the code. Based on this observation, we introduce sealed execution,

which is concrete execution using sealed values. A sealed value is

a symbol that represents an abstract value in sealed execution; it

signals the end of the current dynamic shortcut when the sealed

execution tries to access its value. To evaluate our technique, we

implemented SAFEDS using SAFE and Jalangi and analyzed 269

official tests of Lodash 4 library.

The contributions of this paper include the following:

• We present a novel technique for JavaScript static analysis

to leverage the high performance of dynamic analysis using

dynamic shortcuts. We formally define the technique and

prove its soundness and termination.

• We actualize the proposed technique in SAFEDS, an extended

combination of SAFE and Jalangi.

• For empirical evaluation, we analyzed 269 official tests of

Lodash 4 library. The experiment shows that SAFEDS outper-

forms SAFE 7.81x on average. Moreover, by using dynamic

shortcuts instead of manual modeling for 22 opaque func-

tions, SAFEDS improves the analysis precision to reduce

failed assertions by 12.31% on average.

In the remainder of this paper, Section 2 explains the motiva-

tion of this work with a simple example. Section 3 formalizes the

language-agnostic part of the technique in the abstract interpreta-

tion framework. Then, we extend the formalization with JavaScript

specific features in Section 4. Section 5 describes important details

of the SAFEDS implementation. We explain the evaluation results

of SAFEDS with real-world benchmarks in Section 6. Section 7

discusses related work and Section 8 concludes.

2 MOTIVATION

This section explains the motivation of dynamic shortcuts using

real-world examples in Figure 2. We describe their behaviors and

explain how we can utilize dynamic shortcuts during static analysis.

Figure 2(a) shows the concat function defined in Lodash library [3]

(v4.17.20); it is the most popular npm package2 and 131,517 npm

packages have a dependency on it. The concat function creates a

new array concatenating given arrays or values. It first checks the

length of arguments on lines 1ś3. Then, it stores the first argument

to array on line 4 and copies the remaining arguments to args on

lines 5ś8. On line 9, it checks whether array is an array object using

the built-in function isArray. If so, it creates a new array by copying

the given array via copyArray; otherwise, it creates a singleton array

[array]. Finally, it flattens args via baseFlatten and pushes the result

to the new array on line 11.

Figure 2(b) and Figure 2(c) show use cases of the concat function in

the zoom.us [9] site. It is the homepage of Zoom, a videotelephony

software by Zoom Video Communications and it is ranked as the

15th popular web site according to Alexa3 in February 2021.

Dynamic shortcuts with concrete values. When a function is called

with concrete values, we can perform dynamic analysis instead of

static analysis. For example, changeCountry in Figure 2(b) is invoked

2https://www.npmjs.com/browse/depended
3https://www.alexa.com/siteinfo/zoom.us

1130



Accelerating JavaScript Static Analysis via Dynamic Shortcuts ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

1 function concat () {

2 var length = arguments.length;

3 if (! length) return [];

4 var array = arguments [0],

5 args = Array(length - 1),

6 index = length;

7 while (index --)

8 args[index -1] = arguments[index];

9 return arrayPush(isArray(array) ?

10 copyArray(array) : [array],

11 baseFlatten(args , 1));

12 }

(a) Lodash’s concat function

13 function changeCountry(G) { ...

14 if (G.selectedVal === "US" && state) {

15 // deterministic arguments of `concat `

16 state.items = _.concat ([["Other", "Other"]],

17 WebinarBase.questions.state.items);

18 state.selectedVal = _.head(_.head(C.items));

19 }

20 }

(b) Call of concat with concrete values

22 function getData(e) {

23 var option = ... // option for server connection

24 post(option).then(function(e) {

25 if (e.total_records && e.total_records > 0) {

26 // non -deterministic arguments of `concat `

27 this.pastEvents =

28 _.concat(this.pastEvents , e.events);

29 this.total = e.total_records;

30 } else this.noPastData = !0

31 })

32 }

(c) Call of concat with abstract values

Figure 2: Lodash library function and its uses in zoom.us

when a user selects a country from a drop-down list in the regis-

tration page. It calls the concat function to update the drop-down

list of states or provinces on lines 16ś17. However, when the user

selects łUnited States of America,ž which is "US", two arguments

are pre-defined with deterministic values; the first one is an array

literal [["Other", "Other"]] and the second one is an array of pairs

of abbreviations and names of the states defined as follows:

WebinarBase.questions.state.items =

[["AL","Alabama"], ..., ["WY", "Wyoming"]]

Moreover, this also has a concrete value, the Lodash top-level ob-

ject _. Thus, we can perform dynamic analysis by invoking concat

with _ as its this value and the above concrete values as arguments.

By skipping the analysis of the function call on lines 17ś18 and

utilizing the result of dynamic analysis, it improved the analysis

performance.

Dynamic shortcuts with abstract values. Even when a function is

called with abstract values, we can still perform dynamic analysis

using sealed execution. For example, getData in Figure 2(c) is invoked

when a user clicks the łLoadMorež button to loadmore Zoom events

in the łWebinars & Eventsž page. It sends a POST request to a server

and receives additional events e on line 24. Then, eight events in

Property Value

⊤ ωevt

"length" ωint

(a) this.pastEvents

Property Value

0 ωevt

· · · · · ·

7 ωevt

"length" 8

(b) e.events

Figure 3: Concrete objects with sealed values

e.events are appended to this.pastEvents using concat on lines 27ś28.

However, the arguments of concat are not deterministic because 1)

the event list stored in this.pastEvents is continuously grown for

each load and 2) the events stored in e.events are dependent on the

data given from the server.

To perform dynamic analysis with abstract values, we seal ab-

stract values with sealed values as in Figure 3. Two sealed values

ωevt andωint represent an event object and an integer, respectively.

Then, we can perform dynamic analysis successfully until line 9. On

line 2, length is 2; on line 4, array points to this.pastEvents; on lines

5ś8, args stores an array with a single object stored in e.events; and

on line 9, isArray(array) is true. However, dynamic analysis fails for

copyArray(array) on line 10 because the value of the length property

of array is the sealed value ωint. Then, we stop the sealed execu-

tion, convert the current sealed state to its corresponding abstract

state, and resume the static analysis from line 10. Because sealed

execution leverages fast dynamic analysis as long as possible, the

overall analysis becomes more scalable.

Dynamic shortcuts for opaque functions. As the previous two

examples additionally show, using dynamic shortcuts lessens the

burden of modeling opaque functions from static analysis, and it

can even improve the analysis precision. On line 9, since the isArray

function is a JavaScript built-in library function, it is implemented

in a native language of the host environment, which often requires

manual modeling of its behaviors for JavaScript static analysis.

Assuming that a static analyzer models isArray to return the boolean

top value ⊤b that encompasses both true and false, static analysis

of the ternary conditional expression on lines 9ś10 analyzes both

branches copyArray(array) and [array], even though [array] is never

reachable in the example code. On the contrary, using dynamic

shortcuts, static analysis does not need to model isArray. It can

perform sealed execution for isArray, which returns a more precise

result true than ⊤b .

3 DYNAMIC SHORTCUTS

In this section, we formally define static analysis using dynamic

shortcuts by introducing sealed execution in the abstract interpre-

tation framework. We extend the formalization of abstract inter-

pretation of Cousot and Cousot [13, 14] and views-based analysis

sensitivity of Kim et al. [21]. For dynamic shortcuts, we define sealed

execution with a sealed domain and abstract instantiation maps. To

combine sensitive abstract interpretation and sealed execution, we

define a combined domain of sensitive abstract domain and sealed

domain and explain it with a simple example. Finally, we prove

the soundness and termination property of abstract interpretation

using the combined domain.

1131



ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Joonyoung Park, Jihyeok Park, Dongjun Youn, and Sukyoung Ryu

•l0
if ( x ≥ 0 ) •l1

x = x;

else •l2
x = −x;

•l3
x = −x; •l4

Figure 4: Negation of the absolute value of x

3.1 Concrete Semantics

We define a program P as a state transition system (S,{, Sι ). A

program starts with an initial state in Sι and the transition relation

{⊆ S × S describes how states are transformed to other states. A

collecting semantics JPK = {σ ∈ S | σι ∈ Sι ∧ σι {
∗ σ } consists

of reachable states from initial states of the program P . We can

compute it using a transfer function F : D→ D as follows:

JPK = lim
n→∞

Fn (dι ) F (d) = d ⊔ step(d)

where the concrete domain D = P(S) is a complete lattice with ∪,

∩, and ⊆ as its join(⊔), meet(⊓), and partial order(⊑) operators. The

set of states dι denotes the initial states Sι . The one-step execution

step : D → D transforms states using the transition relation {:

step(d) = {σ ′ | σ ∈ d ∧ σ { σ ′}.

For example, the code in Figure 4 is a simple program that calcu-

lates the negation of the absolute value of the variable x. States are

pairs of labels and integers stored in x: S = L ×N. Assume that the

initial states are Sι = {(l0,−42)}, which denotes that the program

starts at l0 with the variable x of value −42. Then, it executes with

the following trace:

(l0,−42) { (l2,−42) { (l3, 42) { (l4,−42)

3.2 Abstract Interpretation

Abstract interpretation [13, 14] over-approximates the transfer func-

tion F as an abstract transfer function F # : D# → D# to get an

abstract semantics JPK# in finite iterations as follows:

JPK# = lim
n→∞
(F #)n (d#ι )

We define a state abstraction D −−−→←−−−α

γ
D
# as a Galois connection

between the concrete domain D and an abstract domain D# with a

concretization function γ and an abstraction function α . The initial

abstract state d#ι ∈ D
# represents an abstraction of the initial state

set: dι ⊆ γ (d#ι ). The abstract transfer function F # : D# → D
#

is defined as F #(d#) = d# ⊔ step#(d#) with an abstract one-step

execution step# : D# → D#. For a sound state abstraction, the join

operator and the abstract one-step execution should satisfy the

following conditions:

∀d#0,d
#
1 ∈ D

#
. γ (d#0) ∪ γ (d

#
1) ⊆ γ (d

#
0 ⊔ d

#
1) (1)

∀d# ∈ D#. step ◦ γ (d#) ⊆ γ ◦ step#(d#) (2)

A simple example abstract domain is D#± = P({−,+, 0}) with

set operators as domain operators; − denotes negative integers,

+ positive integers, and 0 zero. Assume that we analyze the code

in Figure 4 with the abstract domain and the initial abstract state

d#ι = {−}. Then, the analysis result is {−,+} because x can have

a positive value by executing x = −x but there is no way for x to

have 0 in this program.

3.3 Analysis Sensitivity

Abstract interpretation is often defined with analysis sensitivity to

increase the precision of static analysis. A sensitive abstract domain

D
#
δ
: Π → D# is defined with a view abstraction δ : Π → D that

provides multiple points of views for reachable states during static

analysis. It maps a finite number of views Π to sets of statesD. Each

view π ∈ Π represents a set of states δ (π ) and each state is included

in a unique view: ∀σ ∈ S. σ ∈ δ (π ) ⇒ ∀π ′ ∈ Π.σ ∈ δ (π ′) ⇒ π =

π ′. A sensitive state abstraction D −−−−→←−−−−αδ

γδ
D
#
δ
is a Galois connection

between the concrete domain D and the sensitive abstract domain

D
#
δ
with the following concretization function:

γδ (d
#
δ
) =

⋃

π ∈Π

δ (π ) ∩ γ ◦ d#
δ
(π )

With analysis sensitivities, the abstract one-step execution step#
δ
:

D
#
δ
→ D#

δ
is defined as follows:

step#
δ
(d#
δ
) = λπ ∈ Π.

⊔

π ′∈Π

Jπ ′ → πK# ◦ d#
δ
(π ′)

where Jπ ′ → πK# : D# → D# is an abstract semantics of a view

transition from a view π ′ to another view π . It should satisfy the

following condition for the soundness of the analysis:

∀d# ∈ D#. step(γ (d#) ∩ δ (π ′)) ∩ δ (π ) ⊆ γ ◦ Jπ ′ → πK#(d#)

One of the most widely-used analysis sensitivity is flow sensi-

tivity defined with a flow-sensitive view abstraction δFS : L → D

where:

∀l ∈ L. δFS(l ) = {σ | σ = (l , _)}

If we apply the flow sensitivity for the above examplewith the initial

abstract state [l0 7→ {−, 0,+}], the analysis result is as follows:

L l0 l1 l2 l3 l4

D
#
± −, 0,+ 0,+ − 0,+ −, 0

3.4 Sealed Execution

We define sealed execution by extending the transition relation

{ as a sealed transition relation {ω on sealed states. First, we

extend concrete states S to sealed states Sω by extending values V

with sealed values Ω. We also define the sealed transition relation

{ω ⊆ Sω × Sω . We use the notation{k
ω for k repetition of{ω ,

and write σω{ω⊥ when σω does not have any sealed transitions

to other sealed states. We define the validity of sealed execution as

follows:

Definition 3.1 (Validity). The sealed transition relation is valid

when the following condition is satisfied for any sealed states σω
and σ ′ω :

σω{ωσ
′
ω ⇔ ∀m ∈ M. {σ

′ | σω |m { σ ′} = {σ ′ω |m }

whereM : Ω → V represent instantiation maps from sealed values

to concrete values, and σω |m denotes a state produced by replacing

each sealed value ω in σω with its corresponding valuem(ω) using

the instantiation mapm ∈ M.

Sealed execution is different from traditional symbolic execu-
tion [22] in that it supports only sealed values instead of symbolic
expressions and path constraints. For example, the following trace

1132



Accelerating JavaScript Static Analysis via Dynamic Shortcuts ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

represents traditional symbolic execution of the running example
in Figure 4:

(l1, ω)[ω ≥ 0]{ (l3, ω)[ω ≥ 0]{ (l4, −ω)[ω ≥ 0]
{

(l0, ω)[�] {
(l2, ω)[ω < 0]{ (l3, −ω)[ω < 0]{ (l4, ω)[ω < 0]

It first assigns a symbolic value ω to the variable x at l0. For the

conditional branch, it creates two symbolic states with different

path conditions ω ≥ 0 and ω < 0 for true and false branches,

respectively. After executing statements x = x and x = −x, the

variable x stores symbolic expressions ω and −ω at l3, respectively.

Similarly, x stores −ω and ω at l4. However, sealed execution stops

at l0 as follows:

(l0,ω) {ω ⊥

because the branch requires the actual value of the sealed value ω.

To define an abstract domain that contains sealed states, we

define abstract instantiation mapsM# : Ω → V# from sealed values

to abstract values. Its concretization function γm : M# → P(M)

is defined with the concretization function γv : V# → P(V) for

values as follows:

γm (m
#) = {m | ∀ω ∈ Ω.m(ω) ∈ γ ◦m#(ω)}

The instantiation of a given sealed state σω ∈ Sω with an abstract

instantiation mapm# ∈ M# is defined as follows:

σω |m# = {σω |m | m ∈ γm (m
#)}

Now, we define a sealed domain as follows:

Definition 3.2 (Sealed Domain). A sealed domain Dω : P(M# ×

Sω ) is defined with the concretization function γω : Dω → D and

the sealed one-step execution stepω : Dω → Dω such that

γω (dω ) =
⋃
{σω |m# | (m#

,σω ) ∈ dω } (3)

stepω (dω ) = {(m
#
,σ ′ω ) | (m

#
,σω ) ∈ dω ∧ σω{ωσ

′
ω } (4)

3.5 Combined Domain

We now define a combined domain of a given sensitive abstract

domain with the sealed domain and its one-step execution.

Definition 3.3 (Combined Domain). A combined domain is D̃ =

D
#
δ
× Dω and its concretization function γ̃ : D̃ → D and join

operator are defined as follows:

γ̃ ((d#
δ
,dω )) = γδ (d

#
δ
) ∪ γω (dω ) (5)

(d#
δ
,dω ) ⊔ (d

#
δ

′
,dω
′) = (d#

δ
⊔ d#

δ

′
,dω ∪ dω

′) (6)

Before defining the one-step execution for the combined domain,

we introduce analysis elements to easily configure different types

of abstract states in the sensitive abstract domain and the sealed

domain.

Definition 3.4 (Analysis Elements). An analysis element ϵ ∈ E =

(Π × D#) ⊎ (M# × Sω ) is either 1) a pair of a view and an abstract

state in a sensitive abstract domain D#
δ
, or 2) a pair of an abstract

instantiation map and a sealed state in a sealed domain Dω . Its

concretization function γϵ : E→ D is defined as follows:

γϵ (ϵ) =

{
δ (π ) ∩ γ (d#) if (π ,d#) = ϵ

σω |m# if (m#
,σω ) = ϵ

Moreover, to freely convert between different kinds of analysis

elements, we define two converters:

τω : (Π × D#) ֒→ (M# × Sω ) (7)

τ # : (Π × D#) ← (M# × Sω ) (8)

While the converter τ # is total, the other one τω is partial. Thus,

it is possible to convert an analysis element (π ,d#) in a sensitive

abstract domain to another analysis element in a sealed domain only

if the convert τω is defined: (π ,d#) ∈ Dom(τω ). In addition, they

should convert given analysis elements without loss of information

for all ϵ ∈ E:

τω (ϵ) = ϵ ′ ⇒

{
ϵ = τ #(ϵ ′)

γϵ (ϵ) = γϵ (ϵ
′)

Now, we define the combined one-step execution s̃tep : D̃→ D̃

with two converters τω and τ #. It consists of two steps: 1) the reform

step converts analysis elements if a new sealed execution starts or

an existing one stops, and 2) the execution step performs execution

of each analysis element using the abstract one-step execution step#
δ

in the sensitive abstract domain and the sealed one-step execution

stepω in the sealed domain.

Definition 3.5 (Combined One-Step Execution). A combined one-

step execution s̃tep : D̃→ D̃ is define as follows:

s̃tep(d̃) = (step#
δ
(d#
δ
), stepω (dω ))

where (d#
δ
,dω ) = reform(d̃).

From a given combined state d̃ , the reform function makes anal-

ysis elements and converts them if a new sealed execution be-

gins or an existing sealed execution terminates. Specifically, for

an analysis element (π ,d#) in the sensitive abstract domain, if the

converter τω is defined for it, reform introduces a new sealed exe-

cution by converting the analysis element to its corresponding one

(m#
,σω ) = τω ((π ,d

#)) in the sealed domain. On the other hand,

for an analysis element (m#
,σω ) in the sealed domain, if it does

not have any sealed states to transit to, σω{ω⊥, the sealed execu-

tion for (m#
,σω ) terminates. It converts the analysis element to its

corresponding one (π ,d#) = τ #((m#
,σω )) in the sensitive abstract

domain and merges the current abstract state stored in π with d#.

To formally define the reform function, we first define a reformϵ

function for analysis elements using two converters.

Definition 3.6 (reformϵ ). The function reformϵ : E → E for

analysis elements is defined as follows:

reformϵ (ϵ) =




τω (ϵ) if ϵ = (π ,d#) ∧ ϵ ∈ Dom(τω )

τ #(ϵ) if ϵ = (m#
,σω ) ∧ σω{ω⊥

ϵ Otherwise

Definition 3.7 (reform). The reform function reform : D̃→ D̃ for

combined states is defined as follows:

reform((d#
δ
,dω )) =

(
λπ .

⊔
{d# | (π ,d#) ∈ E}, E ∩ (M# × Sω )

)

where

E = Ûreformϵ ({(π ,d
#
δ
(π )) | π ∈ Π} ∪ dω )

and the dot notation Ûf denotes the element-wise extended function

of a function f .

1133



ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Joonyoung Park, Jihyeok Park, Dongjun Youn, and Sukyoung Ryu

(a) Notations (b) x = 0 (c) x > 0 (d) x ∈ N

Figure 5: Abstract interpretation using a combined domain for the running example with different initial values for x.

3.6 Examples

Now, we show examples of abstract interpretation with a combined

domain. Figure 5 depicts the flow of analysis for the running ex-

ample in Figure 4 with three different initial sets of values for the

variable x. In this example, we use the abstract domain {−, 0,+} for

integers stored in x as introduced in Section 3.2, and the flow sensi-

tivity that utilizes the labels of states as their views as introduced

in Section 3.3. For brevity, we use concatenation of abstract values

so that −0 denotes the set {−, 0}.

Figure 5(a) presents notations used in each graph. A solid box

denotes an analysis element that is a pair of a label l and an abstract

state d#. A pair enclosed by angle brackets denotes an analysis

element that is a pair of an abstract instantiation map m# and a

sealed state σω . In fact, the sealed state part (right) of each pair in

graphs contains only the value of the variable of x without its label.

For brevity, we represent its label by locating it next to a node with

its label. A solid line is a view transition Jl → l
′K# from a label l

to another one l
′. A dotted line is a sealed transition{ω . Three

solid lines with circled labels denote two converters τ #, τω and the

join operator ⊔.

Figure 5(b) shows the analysis with the combined domain when

the initial value of x is 0. First, in the reform step, the converter τω
converts the analysis element (l0, 0) to another analysis element

⟨�, 0⟩ with the label l0. It does not introduce any sealed values

because the value represents only a single value. Until the end of the

program, the sealed execution from ⟨�, 0⟩ successfully continues.

Because there is no more possible sealed transition for the sealed

state ⟨�, 0⟩ with l4, it is converted to (l4, 0) via the converter τ
#.

Instead of a single value, assume that the initial value of x is

one of any positive integers. Figure 5(c) describes the analysis flow

for the case. The initial abstract value at the label l0 is + and it

is impossible to convert it to any sealed values because the next

program statement requires the actual value stored in the variable

x for the branch condition x ≥ 0. Thus, it performs view transition

Jl0 → l1K
# from the label l0 to another one l1 for the abstract value

+ and the result is also +. Now, the analysis element (l1,+) can be

converted to ⟨ω 7→ +,ω⟩ with the label l1. This sealed execution

step terminates in the label l3 because the next statement is x =

−x and the negation operator requires the actual value of x. It is

converted to (l3,+) via τ
#, performs the view transition, and results

in (l4,−).

For the last case, we assume that all integers are possible for

the initial value of the variable x as described in Figure 5(d). While

it reaches the false branch in the label l2 unlike previous cases, it

cannot perform dynamic shortcuts because the statement in the

false branch is x = −x, which requires the actual value of x. At the

label l3, there are two analysis elements: 1) (l3,+) introduced by

the view transition from the label l2 with −, and 2) ⟨ω 7→ 0+,ω⟩

with l3 introduced by sealed execution started at l1. Since it is not

possible to perform sealed execution for both elements, the second

one is converted to (l3, 0+) and merged with + at l3 via the join

operator ⊔. Finally, the view transition Jl3 → l4K
# from l3 to l4 is

performed to the merged abstract state 0+ and the result is −0.

3.7 Soundness and Termination

The converter τω and the sealed transition{ω are keys to config-

ure the introduction and termination of sealed execution. To ensure

the soundness and termination of an abstract interpretation defined

with a combined domain of a sensitive abstract domain and a sealed

domain, the following conditions should hold.

Theorem 3.8 (Soundness and Termination). An abstract in-

terpretation with dynamic shortcuts is sound and terminates in a

finite time if:

• the abstract transfer function F # is sound,

• the sensitive abstract domain D#
δ
has a finite height,

• the sealed transition{ω is valid, and

• there exists N < ∞ such that

∀ϵ ∈ E. τω (ϵ) = (m
#
,σω ) ⇒ σω{

k
ω⊥ ∧ 1 < k ≤ N

For soundness proof, we should prove two conditions presented

in Section 3.2: (1) for the join operator ⊔ and (2) for the combined

one-step execution. The core idea of the proof is to use Lemma 3.9

and Lemma 3.10 for the sealed one-step execution stepω and the

reform function, respectively.

Lemma 3.9. Assume that the following condition holds:

∀(m#
,σω ) ∈ dω . ∃σ

′
ω ∈ Sω . σω{ωσ

′
ω

then the following property holds:

step ◦ γω (dω ) ⊆ γω ◦ stepω (dω )

Lemma 3.10. For a given combined state d̃ ∈ D̃, the reform function

satisfies the following two properties:

• γ̃ (d̃) ⊆ γ̃ ◦ reform(d̃)

• ∀(m#
,σω ) ∈ dω . ∃σ

′
ω ∈ Sω . σω{ωσ

′
ω

where (d#
δ
,dω ) = reform(d̃)

1134



Accelerating JavaScript Static Analysis via Dynamic Shortcuts ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

The core idea of the termination proof is to use the property

that the second and the fourth conditions provide upper bounds of

the number of sensitive abstract states and the number of sealed

states, respectively. We formally define and prove the property

using time to live (TTL) functions of sealed states, TTLi for each

iteration i ≥ 0, and prove the termination using them. Due to the

page limitation, we omit the proof in this paper and present it in a

companion report [35].

4 DYNAMIC SHORTCUTS FOR JAVASCRIPT

In this section, we introduce the core language of JavaScript that

supports first-class functions, open objects, and first-class property

names, and define sealed execution of the core language for dynamic

shortcuts. Due to the space limitation, we present the main design

of the language in this paper and refer the interested readers to a

companion report [35].

4.1 Core Language of JavaScript

Programs P ::= (l : i)∗

Labels l ∈ L

Instructions i ::= r = e | r = {} | r = e(e) | ret e | if e l

References r ::= x | e[e]

Expressions e ::= vp | λx . l | r | op(e∗)

A program P is a sequence of labeled instructions. An instruction

i is an expression assignment, an object creation, a function call,

a return instruction, or a branch. A reference r is a variable or a

property access of an object. An expression e is a primitive, a lambda

function, a reference, or an operation between other expressions.

States σ ∈ S = L ×M × C × Aenv

Memories M ∈ M = L
fin
−−→V

Contexts c ∈ C = Aenv
fin
−−→(Aenv × L × L)

Locations l ∈ L = (Aenv × X) ⊎ (Aobj × Vstr)

Values v ∈ V = Vp ⊎ Aobj ⊎ F

Primitives vp ∈ Vp = Vstr ⊎ · · ·

Addresses a ∈ A = Aenv ⊎ Aobj
Functions λx .l ∈ F = X × L

States S consist of labels L, memoriesM, contexts C, and en-

vironment addresses Aenv. A memoryM ∈ M is a finite mapping

from locations to values. A context c ∈ C is a finite mapping from

environment addresses to tuple of environment addresses, return

labels, and left-hand side locations. A location l ∈ L is a variable or

an object property; a variable location consists of an environment

address and its name, and an object property location consists of an

object address and a string value. A value v ∈ V is a primitive, an

address, or a function value. An address a ∈ A is an environment

address or an object address. A function value λx .l ∈ F consists of

a parameter name and a body label. In the core language, the closed

scoping is used for functions for brevity, thus only parameters and

local variables are accessible in a function body.

We formulate the concrete semantics of the core language. The

transition relation between concrete states is defined with the se-

mantics of references and expressions using two different forms

σ ⊢r r ⇒ l and σ ⊢e e ⇒ v , respectively. The initial states are

Sι = {(lι ,�, ϵ,atop)} where lι denotes the initial label, ϵ empty map,

and atop the top-level environment address.

4.2 Abstract Semantics

In the abstract semantics of the core language, we use the flow

sensitivity with a flow sensitive view abstraction δFS : L → D that

discriminates states using their labels: ∀l ∈ L. δFS(l ) = {σ ∈ S |

σ = (l , _, _, _)}. Thus, the sensitive abstract domain is defined as

D
#
δ
= L → D#. We define an abstract state d# ∈ D# as a tuple of

an abstract memory, an abstract context, an abstract address, and

an abstract counter as follows:

Abstract states d# ∈ D# =M# × C# × A# × N#

Abstract memoriesM# ∈ M#
= L

# fin
−−→V#

Abstract locations l# ∈ L# = (A# × X) ⊎ (A# × Vstr)

Abstract addresses a# ∈ A# = L

Abstract contexts c# ∈ C# = A#
fin
−−→P(A# × Π × P(L#))

Abstract counters n# ∈ N# = A# → {0#, 1#, ≥2#}

Abstract values v# ∈ V# = P(Vp ⊎ A
# ⊎ F)

An abstract memoryM# ∈ M# is a finite mapping from abstract

locations L# to abstract values V#. Abstract locations L# are pairs

of abstract addresses with variable names or string values. Abstract

addresses A# are defined with the allocation-site abstraction that

partitions concrete addresses A based on their allocation sites L.

Abstract contexts C# are finite maps from abstract addresses to

powersets of triples of abstract addresses, views, and powerset of

abstract locations. For abstract counting [27, 36] in static analysis,

we define abstract counters N# that are mappings from abstract

addresses to their abstract counts representing how many times

each abstract address has been allocated; 0# denotes that it has

never been allocated, 1# once, and ≥2# more than or equal to twice.

We define the semantics of the view transition for the core lan-

guage. For abstract memories, we use the notation M#[L Û7→ v#]

to represent the update of multiple abstract locations in L with

the abstract value v#. It performs the strong update if the abstract

address for an abstract location (a#, _) ∈ L is singleton: n#(a#) = 1#.

Otherwise, it performs the weak update for the analysis soundness.

We use the increment function inc : N# × A# → N# of the abstract

counter defined as follows:

inc(n#)(a#0) = λa# ∈ A#.




1# if a# = a#0 ∧ n
#(a#0) = 0#

≥2# if a# = a#0 ∧ n
#(a#0) = 1#

n#(a#) otherwise

4.3 Sealed Execution

We define sealed states by not only extending the concrete values

V with sealed values Ω but also adding the abstract counters N#:

Sω = L ×M × C × Aenv × N
#

C = Aenv
fin
−−→((Aenv × L × L) ⊎ Ω)

V = Vp ⊎ Aobj ⊎ F ⊎ Ω

N
#
= Aobj → {0

#
, 1#, ≥2#}

Because JavaScript provides open objects, the properties of ob-

jects can be dynamically added or deleted. Moreover, since object

properties are string values that can be constructed at run time, it

is difficult to perform sound strong updates in static analysis. To

1135



ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Joonyoung Park, Jihyeok Park, Dongjun Youn, and Sukyoung Ryu

check the possibility of strong updates during sealed execution, we

augment its states with the abstract counters N#.

For each abstract value in a given abstract state, if the abstract

value denotes a single concrete value, the converter τω : (Π×D#) →

(M# × Sω ) keeps it; otherwise, τω replaces the abstract value with

its unique identifier and maintains the mapping from the unique

identifier to the abstract value to construct an abstract instantiation

map. The opposite converter τ # : (M# × Sω ) → (Π × D
#) recovers

abstract values from their unique identifiers using the abstract

instantiation map. We define the sealed transition relation {ω

only if the next step does not require actual values of any sealed

values. Otherwise, a given sealed state does not have any sealed

transitions to apply. For example, we add the following rule:

P(l ) = ret e σω ⊢e e ⇒ v c(a) ∈ Ω

σω = (l ,M, c,a,n
#){ω⊥

for the ret statement.We extend each rule of the concrete semantics

to support such behaviors of sealed values.

5 IMPLEMENTATION

We implemented JavaScript static analysis using dynamic short-

cuts presented in Section 4 in a prototype implementation dubbed

SAFEDS. The tool is an extension of an existing state-of-the-art

JavaScript static analyzer SAFE [25, 37] with a dynamic analyzer

Jalangi [40], and it is an open-source project and available online 4.

In this section, we introduce challenges and solutions in implement-

ing dynamic shortcuts on existing JavaScript analyzers.

Sealed Values. The main challenge of implementing dynamic

shortcuts is to support sealed execution on an existing JavaScript

engine. To represent an abstract value, we use the Proxy object intro-

duced in ECMAScript 6 (2015, ES6) [7], which allows developers to

handle internal behaviors of specific objects such as property reads

and writes and implicit conversions. We are inspired byMimic [18],

which used Proxy to capture accesses from internals of opaque func-

tions. When the dynamic analyzer constructs an execution environ-

ment at the start of a dynamic shortcut, it creates Proxy objects to

represent abstract values via the following getSealedValue function:

1 function getSealedValue () {

2 function detect () { /* access detection */ }

3 return new Proxy(function () {}, {

4 getPrototypeOf: detect , ...

5 construct : detect

6 }); }

7 var x = getSealedValue ();

8 var y = x;

9 var z = x + 1;

The function creates a sealed value as a proxy object with a dummy

function object and a handler for all 13 traps using an access de-

tection function detect. A sealed value invokes the function detect

when any of 13 pre-defined traps are operated on the object, which

enables us to determine whether an object is sealed or not. For

example, the variable y successfully points to the same sealed value

stored in x, but the program invokes the function detect on line

9 because x + 1 requires the actual value of the sealed value. In

addition, we instrument unary and binary operations in Jalangi so

4https://github.com/kaist-plrg/safe-ds

that we can detect all the accesses on the sealed value beyond the 13

traps provided by Proxy. Using this idea, we successfully extended

the JavaScript engine to support sealed execution.

Synchronization of Control Points. For seamless interaction be-

tween static analysis and sealed execution, synchronization of con-

trol points in both sides is necessary. The SAFE static analyzer and

the Jalangi dynamic analyzer have their own notations for control

points that are not directly compatible. We use the source-code loca-

tion of a target program as a key to synchronize. Even though they

use different parsers and we faced numerous location mismatches

for corner cases, we could synchronize control points of two an-

alyzers by using the closest match of their source-code locations

rather than using their exact match.

Function-Level Dynamic Shortcut. A dynamic shortcut is acti-

vated when the current abstract state passes the filter checker.

Because SAFE and Jalangi are implemented in different languages,

Scala and JavaScript, respectively, we represent abstract states as

JSON objects and communicate between analyzers by passing JSON

objects through a localhost server. If the filter admits dynamic short-

cuts generously, the analysis may suffer from frequent communi-

cations between static and dynamic analyzers. To adjust such a

burden, SAFEDS supports only function-level dynamic shortcuts by

activating dynamic shortcuts in function entries and deactivating

them in their corresponding function exits.

Termination. To guarantee the termination of static analysis

using dynamic shortcuts, the converter τω should pass an analysis

element (π ,d#) only when it terminates in a time bound N . Since

statically checking the termination property is difficult, we simply

perform sealed execution with a pre-determined time limit of 5

seconds. When it times out, we treat it as a failure in conversion;

otherwise, we use the result of sealed execution.

6 EVALUATION

We evaluate SAFEDS using the following research questions:

• RQ1) Analysis Speed-up: How much analysis time is re-

duced by using dynamic shortcuts?

• RQ2) Precision Improvement: How much analysis preci-

sion is improved by using dynamic shortcuts?

• RQ3) Opaque Function Coverage: How many opaque

functions are covered only by dynamic shortcuts?

We selected the official 306 tests of Lodash 4 (v.4.17.20)5 used in the

examples in Section 2 as our evaluation target. Recent work [28, 42]

also used the tests to evaluate their techniques. Among them, we

filtered out 37 tests that use JavaScript language features SAFE does

not support such as dynamic code generation using Function, getters

and setters, and browser-specific features like __proto__. Thus, we

used 269 out of 306 tests for the evaluation of SAFEDS and compared

its evaluation results with those of the baseline analyzer, SAFE.

For both SAFE and SAFEDS, we used 400-depth, 10-length loop

strings and 30-length call strings for precise analysis, and added

some incomplete models for opaque functions to soundly analyze

Lodash tests. We performed our experiments on a Ubuntu machine

equipped with 4.2GHz Quad-Core Intel Core i7 and 32GB of RAM.

5https://github.com/lodash/lodash/blob/4.17.20/test/test.js

1136



Accelerating JavaScript Static Analysis via Dynamic Shortcuts ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

Figure 6: Analysis time for Lodash 4 original tests without

(no-DS) and with (DS) dynamic shortcuts within 5 minutes

Figure 7: Analysis time for Lodash 4 abstracted tests without

(no-DS) and with (DS) dynamic shortcuts within 5 minutes

6.1 Analysis Speed-up

We evaluated the effectiveness of dynamic shortcuts by static anal-

ysis of 269 Lodash 4 tests with and without dynamic shortcuts.

Figure 6 depicts cumulative distribution charts for their analysis

time and a box plot in a logarithmic scale for speed up after ap-

plying dynamic shortcuts. In the upper chart, the x-axis is time

and the y-axis shows the number of tests within the time. While

the baseline analysis (no-DS) finished analysis of 200 out of 269

tests within 5 minutes, our tool (DS) finished analysis of 265 tests

using dynamic shortcuts. For finished tests, the average analysis

time is 49.46 seconds for no-DS and 3.21 seconds for DS. Among

200 tests analyzed by no-DS, one test is timeout in DS, thus 199

tests are analyzable by both analyzers. For them, we depict the box

plot for analysis speed up by dynamic shortcuts. It shows that DS

outperforms no-DS up to 83.71x and 22.30x on average. Only for

one test using _.sample, which randomly samples a value from a

given array, DS showed 0.36x speed of no-DS due to 24 times uses

of dynamic shortcuts.

Note that since most tests use concrete values instead of non-

deterministic inputs, they can be analyzed by a few number of dy-

namic shortcuts. In fact, among 269 tests, 259 tests are analyzed by a

single dynamic shortcut without using abstract semantics. However,

in real-world JavaScript programs, arguments of library functions

may include non-deterministic inputs. To evaluate SAFEDS in a

real-world setting, we modified the tests to use abstract values. We

made abstract values by randomly selecting literals and replacing

one of them with its corresponding abstract value. For example,

if we select a numeric literal 42, we modified it to the abstract nu-

meric value ⊤num, which represents all the numeric values. In the

remaining section, we evaluated SAFEDS using the original tests

and the abstracted tests.

Figure 8: Analysis time ratio for 156 abstracted tests

For abstracted tests as well, DS outperformed no-DS. Figure 7

shows the analysis time of the abstracted tests. Among 269 ab-

stracted tests, no-DS finished analysis of 158 tests within 5 minutes,

but DS finished analysis of 193 tests. For finished tests, the average

analysis time is 44.88 seconds for no-DS and 19.05 seconds for DS.

Among 158 tests analyzed by no-DS, DS timed-out for 2 tests. For

156 tests analyzable by both analyzers, DS outperformed no-DS

up to 78.07x and 7.81x on average. Except for 9 test cases, using

dynamic shortcuts did show speed-ups.

Unlike for the original tests, analysis of 156 abstracted tests in-

voked 20.35 dynamic shortcuts. Because taking a dynamic shortcut

requires conversion between abstract states and sealed values and

their exchanges between the static analyzer and the dynamic an-

alyzer, using dynamic shortcuts multiple times may incur more

performance overhead than performance benefits by using sealed

execution. One conjecture is that the communication cost between

the static analyzer and the dynamic analyzer may be proportional

to the number of dynamic shortcuts.

To experimentally evaluate the conjecture, we investigated the

relationship between the communication cost (Comm. Cost) be-

tween analyzers and the number of dynamic shortcuts. For 199

original tests, Comm. Cost was only 1.58% compared to the analysis

time of no-DS. However, for 156 abstracted tests, Comm. Cost was

31.06% compared to the analysis time of no-DS. Figure 8 presents

the analysis time ratio for 156 abstracted tests. The x-axis repre-

sents the time ratio normalized by the total analysis time of no-DS

and the y-axis denotes the number of dynamic shortcuts and the

number of corresponding tests. For all 156 tests, Comm. Cost is

larger than both the static analysis time (Static) and the dynamic

analysis time (Dynamic). When dynamic shortcuts are performed

less than 10 times, Comm. Cost is modest compared to the base-

line static analysis time. However, the more dynamic shortcuts

are performed, the less the performance benefits by using dynamic

shortcuts. Specifically, when dynamic shortcuts are performedmore

than 30 times, Comm. Cost is even larger than half of cost of no-DS.

Based on this evaluation result, we believe that we can leverage

dynamic shortcuts by optimizing Comm. Cost between the static

analyzer and the dynamic analyzer. One possible approach is to

reduce the sizes of JSON objects that represent abstract and sealed

states by representing only their updated parts. Another approach

could be to use a communication system faster than a localhost

server for passing JSON objects.

6.2 Precision Improvement

To evaluate the analysis precision improvement of dynamic short-

cuts, we measured the number of failed assertions produced by

1137



ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Joonyoung Park, Jihyeok Park, Dongjun Youn, and Sukyoung Ryu

Table 1: Number of original (orig.) and abstracted (abs.) tests using dynamic shortcuts only for each JavaScript built-in library

Object Function
# Replaced

Object Function
# Replaced

Object Function
# Replaced

orig. abs. orig. abs. orig. abs.

Array 204 / 205 119 / 141 String 20 / 20 13 / 14 Object 265 / 265 181 / 193

new Array 0 / 0 0 / 7 toString 0 / 0 0 / 14 getPrototypeOf 56 / 56 34 / 35

isArray 264 / 265 181 / 193 valueOf 0 / 0 0 / 20 create 265 / 265 193 / 193

concat 265 / 265 189 / 193 charAt 8 / 8 6 / 6
Object

defineProperty 265 / 265 190 / 193

join 265 / 265 193 / 193 charCodeAt 15 / 15 8 / 8 freeze 1 / 1 1 / 1

pop 25 / 25 14 / 14 indexOf 2 / 2 1 / 1 keys 265 / 265 191 / 193

Array
push 265 / 265 186 / 193

String
match 26 / 26 16 / 18 toString 264 / 265 138 / 193

reverse 10 / 10 6 / 6 replace 56 / 56 31 / 37 hasOwnProperty 265 / 265 190 / 193

shift 3 / 3 2 / 2 slice 265 / 265 191 / 193 JSON stringify 1 / 1 1 / 1

slice 265 / 265 193 / 193 split 5 / 5 2 / 2 parseInt 2 / 2 1 / 2

sort 69 / 69 38 / 39 substring 214 / 214 136 / 145 Global isNaN 15 / 15 11 / 40

splice 25 / 25 9 / 12 toLowerCase 215 / 215 135 / 146 isFinite 3 / 3 1 / 1

unshift 2 / 2 2 / 2 toUpperCase 11 / 11 6 / 7 RegExp 265 / 265 193 / 193

indexOf 94 / 94 61 / 66 fromCharCode 1 / 1 1 / 1
RegExp

new RegExp 0 / 0 0 / 1

every 92 / 92 43 / 47 Date new Date 0 / 1 0 / 1 exec 265 / 265 193 / 193

ceil 37 / 38 20 / 21 Number 2 / 2 2 / 2 test 264 / 265 185 / 193

floor 16 / 18 8 / 10 Number toFixed 1 / 1 0 / 0 Error 1 / 1 0 / 1

Math
max 264 / 265 179 / 193 valueOf 0 / 0 0 / 28 Error new RangeError 0 / 0 0 / 2

min 64 / 64 31 / 44 toString 265 / 265 193 / 193 new TypeError 0 / 0 0 / 7

pow 11 / 11 6 / 6 Function apply 263 / 265 133 / 193
Boolean

Boolean 3 / 3 2 / 2

round 2 / 2 1 / 1 call 259 / 265 50 / 193 valueof 0 / 0 0 / 7

(a) 199 original tests (b) 156 abstracted tests

Figure 9: Failed assertions of analysis without (no-DS) and

with (DS) dynamic shortcuts

no-DS and DS. Because both no-DS and DS are sound, high (low)

number of failed assertions denotes low (high) analysis precision.

Figure 9 depicts the comparison of the analysis precision be-

tween no-DS and DS. The x-axis and the y-axis denote the number

of failed assertions produced by no-DS and DS, respectively. For

example, if both DS and no-DS failed 4 assertions in an original test,

the figure shows a circle at the point (4, 4). Since multiple circles

can be at the same point if both DS and no-DS failed the same

number of assertions, we use darker gray to denote a larger number

of tests in a heat-map form. The darker the circle is, the more tests

it indicates. The dotted line denotes they = x line and all the circles

are below or on the line, which means DS produces less or equal

numbers of assertions compared to no-DS for all tests. On the other

hand, the solid line denotes the average improvement, which is the

ratio of the total number of failed assertions produced by no-DS

to that produced by DS. For 199 original tests that are analyzable

by both analyzers, Figure 9(a) shows that dynamic shortcuts re-

duced the number of failed assertions by 92.79% on average. For 156

abstracted tests that are analyzable by both analyzers, Figure 9(b)

shows that dynamic shortcuts successfully cut down the number of

failed assertions by 12.31% on average. Thus, on average, dynamic

shortcuts removed analysis of 92.79% and 12.31% failed assertions

for original and abstracted tests, respectively.

6.3 Opaque Function Coverage

To evaluate how much manual modeling efforts of opaque func-

tions are reduced by dynamic shortcuts, we measured the number

of tests for which opaque functions are analyzed only by dynamic

analysis not by static analysis. Table 1 summarizes the result. For

265 original tests and 193 abstracted tests that DS finished analysis,

we measured the number of tests that use only dynamic shortcuts

instead of manual modeling for each JavaScript built-in library

function. For each row, Object column denotes a built-in object,

Function a function name, and # Replaced the number of tests

successfully replacing manual modeling via dynamic shortcuts over

the total number of tests using the target function. For example,

the first row in the leftmost side describes that Array is used in 205

original tests and 141 abstracted tests. Among them, 204 original

tests and 119 abstracted tests are successfully analyzed by using

dynamic shortcuts instead of manual modeling of Array. Each filled

cell describes a fully replaceable case. Therefore, dynamic shortcuts

effectively lessen the burden of manual modeling for JavaScript

built-in functions. For the original tests, 45 out of 63 built-in func-

tions are replaceable for them. For the abstracted tests, 22 built-in

functions are analyzed by only dynamic shortcuts.

7 RELATED WORK

Combined Analysis. The most related previous work is combined

analysis that utilizes dynamic analysis during Java static analy-

sis introduced by Toman and Grossman [43]. They proved that

their combined analysis is sound and showed that it could signifi-

cantly improve the precision and performance of Java static analysis

by evaluating their tool, Concerto. However, their approach has

several limitations compared with dynamic shortcuts. First, it syn-

tactically divides a given program to applications parts for static

analysis and frameworks parts for dynamic analysis. Thus, it cannot

freely switch between static analysis and dynamic analysis. It is

even impossible to perform both static and dynamic analysis of the

same program part in different contexts. In addition, while they

introduced mostly-concrete interpretation similar to our sealed exe-

cution, it supports only a special unknown value that represents any

1138



Accelerating JavaScript Static Analysis via Dynamic Shortcuts ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

possible value. Thus, it cannot preserve the precision of complex

abstract domains [23, 24, 29, 36] frequently used in JavaScript static

analysis. On the contrary, sealed execution automatically detects

when to switch to static analysis to use abstract semantics for ab-

stract values. Finally, Concerto preserves the soundness when a

program satisfies the state separation hypothesis. It assumes that the

states of application parts and framework parts are not interrogated

or manipulated by each other. While the assumption may be reason-

able for static analysis of Java applications using external libraries,

it is not satisfied for JavaScript programs in general. Unlike their

approach, our approach does not have any assumptions between

static and dynamic analysis parts.

Concolic Execution. Concolic execution [15] is closely related to

dynamic shortcuts because it also leverages concrete execution for

symbolic execution. Symbolic execution [22] is an execution of a

program with symbolic values, and it can be treated as an abstract

interpretation with symbolic expressions and path constraints. To

resolve path constraints with symbolic expressions, symbolic execu-

tion engines such as KLEE [12] and SAGE [16] utilize Satisfiability

Modulo Theory (SMT) solvers as back-end modules. On the con-

trary, we formalized dynamic shortcuts as a technique to combine

concrete execution with a general abstract interpretation, not only

with symbolic execution. Thus, dynamic shortcuts are theoretically

applicable to any kind of abstract interpretation, including symbolic

execution, and it is a more general definition of concolic execution.

Automatic Modeling. For static analysis of JavaScript programs,

modeling behaviors of built-in libraries or host-dependent func-

tions is necessary because they are opaque code. Since manual

modeling is error-prone and labor-intensive, researchers [11, 32]

have utilized type information to automatically model their behav-

iors. However, type is not enough to reflect complex semantics and

side-effects. To alleviate the problem, Heule et al. [18] introduced a

technique to infer JavaScript code for opaque code using concrete

execution. They leveraged ES6 Proxy objects to collect partial execu-

tion traces from opaque code and synthesized JavaScript code using

the extracted behaviors. Instead of synthesizing JavaScript code,

Park et al. [33] presented a Sample-Run-Abstract (SRA) approach

for on-demand modeling focusing on the current abstract states

during static analysis by sampling well-distributed concrete states.

However, all the previous work sacrifice the soundness of static

analysis. On the contrary, while dynamic shortcuts is not always

applicable to opaque functions, it is sound if it is applicable.

Pruning Analysis Scope. Another approach to utilize dynamic

analysis for JavaScript static analysis is to prune the scope of anal-

ysis. Schäfer et al. [39] proposed dynamic determinacy analysis.

They specialized target source code with determinacy facts so that

static analysis can get benefits from elimination of eval and con-

stant property names. Wei and Ryder [44] introduced blended taint

analysis, which specializes JavaScript dynamic language features

such as dynamic code generation or variadic function calls. It first

performs dynamic analysis to collect traces with concrete values

used in dynamic language features and restricts the semantics of

features based on the collected traces during static analysis. Park

et al. [34, 38] utilize three points to reduce analysis scope: initial

states, dynamically loaded files, and event handlers. Unfortunately,

all the above approaches except [39] do not preserve soundness of

static analysis unlike our approach using dynamic shortcuts.

8 CONCLUSION

We presented a novel technique for JavaScript static analysis using

dynamic shortcuts. It can significantly accelerate static analysis and

lessen the modeling efforts for opaque code by freely leveraging

high performance of dynamic analysis for concretely executable

program parts. To maximize such benefits, we proposed sealed exe-

cution, which performs concrete execution using sealed values for

abstract values. We formally defined static analysis using dynamic

shortcuts in the abstract interpretation framework and proved its

soundness and termination. We developed SAFEDS as a prototype

implementation of the proposed approach by extending a combi-

nation of the state-of-the-art static and dynamic analyzers SAFE

and Jalangi. Our tool accelerates the speed of static analysis 22.30x

for original tests and 7.81x for abstracted tests of Lodash 4 library.

Moreover, it reduces the number of failed assertions by 12.31% by

using sealed execution instead of manual modeling for 22 opaque

functions on average.

ACKNOWLEDGEMENTS

This work was supported by National Research Foundation of Korea

(NRF) (Grants NRF-2017R1A2B3012020 and 2017M3C4A7068177).

REFERENCES
[1] 2020. Electron - A framework for cross-platform desktop apps with JavaScript,

HTML, and CSS. Retrieved May 25, 2021 from https://www.electronjs.org/
[2] 2020. Espruino - An open-source JavaScript interpreter for microcontrollers. Re-

trieved May 25, 2021 from https://www.espruino.com/
[3] 2020. Lodash - A modern JavaScript library delivering modularity, performance,

and extras. Retrieved May 25, 2021 from https://lodash.com/
[4] 2020. Moddable - Tools to create open IoT products using standard JavaScript on low

cast microcontrollers. Retrieved May 25, 2021 from https://www.moddable.com/
[5] 2020. Node.js - A JavaScript runtime built on Chrome’s V8 JavaScript engine.

Retrieved May 25, 2021 from https://nodejs.org/
[6] 2020. React Native - A framework for building native apps using React. Retrieved

May 25, 2021 from https://reactnative.dev/
[7] 2020. Standard ECMA-262 6th Edition, ECMAScript 2015 Language Specification.

Retrieved May 25, 2021 from https://262.ecma-international.org/6.0/
[8] 2020. SunSpider Javascript Benchmark. Retrieved May 25, 2021 from https:

//webkit.org/perf/sunspider/sunspider.html
[9] 2020. Zoom - A videotelephony software program developed by Zoom Video Com-

munications. Retrieved May 25, 2021 from https://zoom.us/
[10] Roberto Amadini, Alexander Jordan, Graeme Gange, François Gauthier, Peter

Schachte, Harald Sùndergaard, Peter J Stuckey, and Chenyi Zhang. 2017. Com-
bining String Abstract Domains for JavaScript Analysis: An Evaluation. In Pro-
ceedings of the 23rd International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS). https://doi.org/10.1007/978-3-
662-54577-5_3

[11] SungGyeong Bae, Hyunghun Cho, Inho Lim, and Sukyoung Ryu. 2014. SAFE-
WAPI: Web API Misuse Detector for Web Applications. In Proceedings of the 22nd
ACM SIGSOFT International Symposium on Foundations of Software Engineering
(FSE). https://doi.org/10.1145/2635868.2635916

[12] Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008. KLEE: Unassisted and
Automatic Generation of High-Coverage Tests for Complex Systems Programs.
In Proceedings of the 8th USENIX Symposium on Operating Systems Design and
Implementation (OSDI), Vol. 8. 209ś224. https://dl.acm.org/doi/10.5555/1855741.
1855756

[13] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Unified
Lattice Model for Static Analysis of Programs by Construction or Approximation
of Fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming languages (POPL). https://doi.org/10.1145/512950.
512973

[14] Patrick Cousot and Radhia Cousot. 1992. Abstract interpretation frameworks.
Journal of Logic and Computation (JLC) 2, 4 (1992), 511ś547. https://doi.org/10.
1093/logcom/2.4.511

1139

https://www.electronjs.org/
https://www.espruino.com/
https://lodash.com/
https://www.moddable.com/
https://nodejs.org/
https://reactnative.dev/
https://262.ecma-international.org/6.0/
https://webkit.org/perf/sunspider/sunspider.html
https://webkit.org/perf/sunspider/sunspider.html
https://zoom.us/
https://doi.org/10.1007/978-3-662-54577-5_3
https://doi.org/10.1007/978-3-662-54577-5_3
https://doi.org/10.1145/2635868.2635916
https://dl.acm.org/doi/10.5555/1855741.1855756
https://dl.acm.org/doi/10.5555/1855741.1855756
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/512950.512973
https://doi.org/10.1093/logcom/2.4.511
https://doi.org/10.1093/logcom/2.4.511


ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Joonyoung Park, Jihyeok Park, Dongjun Youn, and Sukyoung Ryu

[15] Patrice Godefroid, Nils Klarlund, and Koushik Sen. 2005. DART: Directed auto-
mated random testing. In Proceedings of the ACM SIGPLAN conference on Pro-
gramming language design and implementation (PLDI). https://doi.org/10.1145/
1065010.1065036

[16] Patrice Godefroid, Michael Y Levin, and David Molnar. 2012. SAGE: Whitebox
Fuzzing for Security Testing. Communications of the ACM (CACM) 55, 3 (2012),
40ś44. https://doi.org/10.1145/2093548.2093564

[17] Liang Gong, Michael Pradel, Manu Sridharan, and Koushik Sen. 2015. DLint:
Dynamically Checking Bad Coding Practices in JavaScript. In Proceedings of the
24th International Symposium on Software Testing and Analysis (ISSTA). https:
//doi.org/10.1145/2771783.2771809

[18] Stefan Heule, Manu Sridharan, and Satish Chandra. 2015. Mimic: Computing
Models for Opaque Code. In Proceedings of the 10th Joint Meeting of the European
Software Engineering Conference and the ACM SIGSOFT Symposium on the Founda-
tions of Software Engineering (ESEC/FSE). https://doi.org/10.1145/2786805.2786875

[19] Simon Holm Jensen, Anders Mùller, and Peter Thiemann. 2009. Type Analysis for
JavaScript. In Proceedings of the 16th International Symposium on Static Analysis
(SAS). https://doi.org/10.1007/978-3-642-03237-0_17

[20] Vineeth Kashyap, Kyle Dewey, Ethan A. Kuefner, John Wagner, Kevin Gib-
bons, John Sarracino, Ben Wiedermann, and Ben Hardekopf. 2014. JSAI: A
Static Analysis Platform for JavaScript. In Proceedings of the 22nd ACM SIG-
SOFT International Symposium on Foundations of Software Engineering (FSE).
https://doi.org/10.1145/2635868.2635904

[21] Se-Won Kim, Xavier Rival, and Sukyoung Ryu. 2018. A Theoretical Foundation
of Sensitivity in an Abstract Interpretation Framework. ACM Transactions on
Programming Languages and Systems (TOPLAS) 40, 3 (2018), 1ś44. https://doi.
org/10.1145/3230624

[22] James C King. 1976. Symbolic execution and program testing. Communications
of the ACM (CACM) 19, 7 (1976), 385ś394. https://doi.org/10.1145/360248.360252

[23] Yoonseok Ko, Xavier Rival, and Sukyoung Ryu. 2017. Weakly Sensitive Analysis
for Unbounded Iteration over JavaScript Objects. In Proceedings of the 15th Asian
Symposium on Programming Languages and Systems (APLAS). https://doi.org/10.
1007/978-3-319-71237-6_8

[24] Yoonseok Ko, Xavier Rival, and Sukyoung Ryu. 2019. Weakly sensitive analysis
for JavaScript object-manipulating programs. Software: Practice and Experience
(SPE) 49, 5 (2019), 840ś884. https://doi.org/10.1002/spe.2676

[25] Hongki Lee, Sooncheol Won, Joonho Jin, Junhee Cho, and Sukyoung Ryu. 2012.
SAFE: Formal Specification and Implementation of a Scalable Analysis Framework
for ECMAScript. In Proceedings of 19th International Workshop on Foundations of
Object-Oriented Languages (FOOL).

[26] Magnus Madsen and Esben Andreasen. 2014. String Analysis for Dynamic
Field Access. In Proceedings of the 23rd International Conference on Compiler
Construction (CC). https://doi.org/10.1007/978-3-642-54807-9_12

[27] Matthew Might and Olin Shivers. 2006. Improving Flow Analyses via ΓCFA:
Abstract Garbage Collection and Counting. In Proceedings of the 11th ACM
SIGPLAN International Conference on Functional Programming (ICFP). https:
//doi.org/10.1145/1159803.1159807

[28] Benjamin Barslev Nielsen and Anders Mùller. 2020. Value Partitioning: A
Lightweight Approach to Relational Static Analysis for JavaScript. In Proceed-
ings of the 34th European Conference on Object-Oriented Programming (ECOOP).
https://doi.org/10.4230/LIPIcs.ECOOP.2020.16

[29] Changhee Park, Hyeonseung Im, and Sukyoung Ryu. 2016. Precise and Scalable
Static Analysis of jQuery using a Regular Expression Domain. In Proceedings
of the 12th Symposium on Dynamic Languages (DLS). https://doi.org/10.1145/
2989225.2989228

[30] Changhee Park, Hongki Lee, and Sukyoung Ryu. 2018. Static analysis of JavaScript
libraries in a scalable and precise way using loop sensitivity. Software: Practice
and Experience (SPE) 48, 4 (2018), 911ś944. https://doi.org/10.1002/spe.2676

[31] Changhee Park and Sukyoung Ryu. 2015. Scalable and Precise Static Analysis of
JavaScript Applications via Loop-Sensitivity. In Proceedings of the 29th European
Conference on Object-Oriented Programming (ECOOP). https://doi.org/10.4230/
LIPIcs.ECOOP.2015.735

[32] Jihyeok Park. 2014. JavaScript API misuse detection by using typescript. In
Proceedings of the companion publication of the 13th international conference on
Modularity. https://doi.org/10.1145/2584469.2584472

[33] Joonyoung Park, Alexander Jordan, and Sukyoung Ryu. 2019. Automatic Mod-
eling of Opaque Code for JavaScript Static Analysis. In Proceedings of the 22nd
International Conference on Fundamental Approaches to Software Engineering
(FASE). https://doi.org/10.1007/978-3-030-16722-6_3

[34] Joonyoung Park, Inho Lim, and Sukyoung Ryu. 2016. Battles with False Positives
in Static Analysis of JavaScript Web Applications in the Wild. In Proceedings of
the 38th IEEE/ACM International Conference on Software Engineering Companion
(ICSE-C). https://doi.org/10.1145/2889160.2889227

[35] Joonyoung Park, Jihyeok Park, Dongjun Youn, and Sukyoung Ryu. 2021. Ac-
celerating JavaScript Static Analysis via Dynamic Shortcuts (Extended Version).
Technical Report. https://arxiv.org/abs/2105.13699

[36] Jihyeok Park, Xavier Rival, and Sukyoung Ryu. 2017. Revisiting Recency Abstrac-
tion for JavaScript: Towards an Intuitive, Compositional, and Efficient Heap Ab-
straction. In Proceedings of the 6th ACM SIGPLAN International Workshop on State
Of the Art in Program Analysis (SOAP). https://doi.org/10.1145/3088515.3088516

[37] Jihyeok Park, Yeonhee Ryou, Joonyoung Park, and Sukyoung Ryu. 2017. Anal-
ysis of JavaScript Web Applications Using SAFE 2.0. In Proceedings of the 39th
IEEE/ACM International Conference on Software Engineering Companion (ICSE-C).
https://doi.org/10.1109/ICSE-C.2017.4

[38] Joonyoung Park, Kwangwon Sun, and Sukyoung Ryu. 2018. EventHandler-
Based Analysis Framework for Web Apps Using Dynamically Collected States.
In Proceedings of the 21st International Conference on Fundamental Approaches to
Software Engineering (FASE). https://doi.org/10.1007/978-3-319-89363-1_8

[39] Max Schäfer, Manu Sridharan, Julian Dolby, and Frank Tip. 2013. Dynamic
Determinacy Analysis. In Proceedings of the 34th annual ACM SIGPLAN conference
on Programming Language Design and Implementation (PLDI). https://doi.org/10.
1145/2499370.2462168

[40] Koushik Sen, Swaroop Kalasapur, Tasneem Brutch, and Simon Gibbs. 2013.
Jalangi: A Selective Record-Replay and Dynamic Analysis Framework for
JavaScript. In Proceedings of the 10th Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of
Software Engineering (ESEC/FSE). https://doi.org/10.1145/2491411.2491447

[41] Manu Sridharan, Julian Dolby, Satish Chandra, Max Schäfer, and Frank Tip. 2012.
Correlation Tracking for Points-To Analysis of JavaScript. In Proceedings of the
26th European Conference on Object-Oriented Programming (ECOOP). https:
//doi.org/10.1007/978-3-642-31057-7_20

[42] Benno Stein, Benjamin Barslev Nielsen, Bor-Yuh Evan Chang, and Anders Mùller.
2019. Static Analysis with Demand-Driven Value Refinement. In Proceedings
of the 34th ACM SIGPLAN conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA). https://doi.org/10.1145/3360566

[43] John Toman and Dan Grossman. 2019. Concerto: A Framework for Combined
Concrete and Abstract Interpretation. In Proceedings of the 46th ACM SIGPLAN
Symposium on Principles of Programming Languages (POPL). https://doi.org/10.
1145/3290356

[44] Shiyi Wei and Barbara G Ryder. 2013. Practical Blended Taint Analysis for
JavaScript. In Proceedings of the 22th International Symposium on Software Testing
and Analysis (ISSTA). https://doi.org/10.1145/2483760.2483788

1140

https://doi.org/10.1145/1065010.1065036
https://doi.org/10.1145/1065010.1065036
https://doi.org/10.1145/2093548.2093564
https://doi.org/10.1145/2771783.2771809
https://doi.org/10.1145/2771783.2771809
https://doi.org/10.1145/2786805.2786875
https://doi.org/10.1007/978-3-642-03237-0_17
https://doi.org/10.1145/2635868.2635904
https://doi.org/10.1145/3230624
https://doi.org/10.1145/3230624
https://doi.org/10.1145/360248.360252
https://doi.org/10.1007/978-3-319-71237-6_8
https://doi.org/10.1007/978-3-319-71237-6_8
https://doi.org/10.1002/spe.2676
https://doi.org/10.1007/978-3-642-54807-9_12
https://doi.org/10.1145/1159803.1159807
https://doi.org/10.1145/1159803.1159807
https://doi.org/10.4230/LIPIcs.ECOOP.2020.16
https://doi.org/10.1145/2989225.2989228
https://doi.org/10.1145/2989225.2989228
https://doi.org/10.1002/spe.2676
https://doi.org/10.4230/LIPIcs.ECOOP.2015.735
https://doi.org/10.4230/LIPIcs.ECOOP.2015.735
https://doi.org/10.1145/2584469.2584472
https://doi.org/10.1007/978-3-030-16722-6_3
https://doi.org/10.1145/2889160.2889227
https://arxiv.org/abs/2105.13699
https://doi.org/10.1145/3088515.3088516
https://doi.org/10.1109/ICSE-C.2017.4
https://doi.org/10.1007/978-3-319-89363-1_8
https://doi.org/10.1145/2499370.2462168
https://doi.org/10.1145/2499370.2462168
https://doi.org/10.1145/2491411.2491447
https://doi.org/10.1007/978-3-642-31057-7_20
https://doi.org/10.1007/978-3-642-31057-7_20
https://doi.org/10.1145/3360566
https://doi.org/10.1145/3290356
https://doi.org/10.1145/3290356
https://doi.org/10.1145/2483760.2483788

	Abstract
	1 Introduction
	2 Motivation
	3 Dynamic Shortcuts
	3.1 Concrete Semantics
	3.2 Abstract Interpretation
	3.3 Analysis Sensitivity
	3.4 Sealed Execution
	3.5 Combined Domain
	3.6 Examples
	3.7 Soundness and Termination

	4 Dynamic Shortcuts for JavaScript
	4.1 Core Language of JavaScript
	4.2 Abstract Semantics
	4.3 Sealed Execution

	5 Implementation
	6 Evaluation
	6.1 Analysis Speed-up
	6.2 Precision Improvement
	6.3 Opaque Function Coverage

	7 Related Work
	8 Conclusion
	References

