A Meta-Level Static Analysis for JavaScript

Jihyeok Park Seungmin An Sukyoung Ryu
Oracle Labs KAIST School of Computing
Brisbane, Australia Daejeon, South Korea KAIST

jihyeok.park@oracle.com

In this report, we formalize a meta-level static analysis for
JavaScript as a defined-language with IRgs as a defining-
language. We first define IRgs and a JavaScript definitional
interpreter as an IRgs program. Then, we define a meta-level
static analysis for JavaScript with the abstract semantics of
IRgs in the abstract interpretation framework [2, 3]. In addi-
tion, we explain how to indirectly express abstract domains
and analysis sensitivities for JavaScript.

1 IRgs: An IR for ECMAScript Specification

We first define IRgs, an Intermediate Representation for EC-
MAScript, with its collecting and restricted semantics.

Programs P>Pu=f"

Functions F > f == syntax’ def x(x*) {[[:i]*}
Variables X >x

Labels Lo/

Instructions 7 3 iu=r:i=e|x:={}]|x:=e(e")
| ifel (| returne

E>eu=0P|op(e”) |r

R>ru=x|elel]|elels

Expressions
References

Syntax and Notations. An IRgs program P is a sequence
of functions. A function f is defined with its name, parame-
ters, and body instructions with labels. If it is defined with
the prefix syntax, it is a syntax-directed function, otherwise,
a normal function. An instruction i is a reference update,
an object allocation, a function call, a branch, or a return
instruction. An expression e is a primitive value, a primitive
operation, or a reference expression. A reference is a vari-
able, an internal field access, or an external field access. For
a given program P, three helper functions func : £ — ¥,
inst : £ — 71,and next : £ — L return the function,
instruction, and next label, respectively, of a given label.

States ceS =LXEXC*xXH
fi
Environments peE =X v
Calling Contexts ceC =LXxE
fi
Heaps heH :A—H>LXMXMjS
fi
Internal Field Maps meM = Vst,—nW’
fi
External Field Maps mjs € Mjs = Vstr—n>V
Values veYV =AWVPYTWF
Primitive Values WP eVP = Voo W Vit @ Vg, & - -+
JS ASTs teT

h2oche@kaist.ac.kr

Daejeon, South Korea
sryu.cs@kaist.ac.kr

Concrete States. An IRgg state o € S consists of a label,
an environment, a stack of calling contexts, and a heap. An
environment p € E is a finite mapping from variables to
values. A calling context ¢ € C consists of a label and an
environment of the caller. A heap h € H is a finite map-
ping from addresses to labels for allocation sites and two
finite mappings from strings to values. The former mapping
represents internal fields accessible by e[e], and the latter
represents external fields accessible by e[e]js. A value v € V
is an address, a primitive value (e.g., a boolean b, an integer k,
and a string s), a JavaScript AST ¢ € T, or a function f € F.

Since IRgg treats JavaScript ASTs as its values, we define
them with tree nodes @ as follows:

Tot u=1(p*)
Oo¢pu=s|t

A JavaScript AST (¢, -, ¢n) denotes k-th alternative
in the syntactic production of nonterminal symbol 7 with
multiple tree nodes ¢y, - - - , ¢,. A tree node is a string for a
terminal symbol or another tree for a nonterminal symbol.
We define several notations to easily deal with JavaScript
ASTs. The notation 7x.eval denotes an Evaluation function of
k-th alternative in the production 7. Similarly, the notation
t.eval denotes the Evaluation function of the AST t, and it
is same with 7x.eval when t = (-). The Evaluation of
each AST takes the AST itself and its tree nodes that are
nonterminals as arguments. The notation subs(t) denotes
tree nodes that are subtrees of .

Collecting Semantics. We define denotational semantics
of instructions [i] : S — S and expressions [e] : S — V in
Section 1.1 and Section 1.2, respectively. Then, the collecting
semantics [P] of an IRgg program P is a set of reachable states
P (S) from the initial states S* C S. We can compute it using
a fixpoint algorithm:

[P] = lim F"(S")
with a transfer function F : P(S) — P(S):
F(S)=SU{c'€S|ceSAc~po'}

where o ~>p ¢’ denotes the one-step transition of a state o
to another state ¢’ in the program P:

oc~po = o=(,___)A[inst(()](c) =0’

Restricted Semantics. Moreover, the restricted semantics
[PIR : P(S) — P(S) is a set of reachable states from the
initial states restricted by a given set of states:

[PIR(S) = lim F"(S' N'S)

1.1 Instructions
e Variable Assignments:
[x = e] (o) = (next({), p[x > v],c, h)

where o = (£, p,c,h) and [e] = v
e Internal Field Assignments:

leoler] = ex] (o) = (next([), p,c,hla — (L',m’, mjs)])

where
o= (lp,ch)
((1, S, U) = ([[e()]](o—)s [[elﬂ(o')! [[62]](0'))
({',m,mjs) = h(a)
m’ =m[s — o]

e External Field Assignments:

leoLe1djs = ez (o) = (next((), p, ¢, hla > (L', m,m)])

where
o =(l,p,c, h)
(a,5,0) = ([eo] (0), [er](0), [e2] ()
(L', m, mjs) = h(a)
mj'S = mjs[s — 0]

e Field Mapping Allocations:

[x = {3](0) = (next(£), p[x > al, ¢, h[a — ([, €)])

where o = ([, p,c, h) and a ¢ Domain(h)
e Function Calls:

[x = ees - e)](0) = (£, psc & h)

where
o =(l,p,c.h)
[[6]](0')=f:...(xl’...’xn) oy
p/ = J_[Xl = [[elﬂ(o-)’ e X [[en]](O')]
c =(L,p)

e Branches:

. | (&peh) if[e](o) =#t
lif e & [fﬂ(")‘{ (G.peh) if[e](o) = #f

e Returns:
[return e] (o) = (next((), p[x > v],c, h)
where

=G (Lp)=ch)

[e](0) =0

inst({) =x:=---

o

1.2 Expressions

e Primitive Values:
[P] (o) =P

e Primitive Operations:

[opCer, -+, en)](0) = op(of, -+ ,0p)
where V1 < j < n. [ex](0) = of
e Varjable Lookups:
[x(e) = p(x)

where o = (_, p,_,_)
e Internal Field Lookups:

[6’0[61]]](0') =0

where
o=(,__h)
Uy = [[eoﬂ(a)
o1 = [ei] (o)

m(s) if (vg,v1) = (a,8) Ah(a) =(_,m,_)
U = t] if (UO,UI) = (Tk<t1>"' ’tn>’j)
tr.eval if (vg,01) = (ti(t1, -+, tn), "eval™)

e External Field Lookups:
II@O [61 :IJS]] (O') =0

where

o =0GLoh

(a.5) = ([eo] (0). [e1] (o))
h(a) = (L _ mjs)

v = mjs(s)

2 JavaScript Definitional Interpreter

In a similar way to [P], the collecting semantics [Pj]js of
a JavaScript program Pjs is a set of all reachable JavaScript
states P (Sjs) from the initial JavaScript states st C Sjs. Then,
we define a definitional interpreter for JavaScript as an IRgg
program:

Definition 2.1 (JavaScript Definitional Interpreter). AnIRgg
program P is a JavaScript definitional interpreter if and only
if the following condition holds for each JavaScript program
Pjs € ;‘Bjs:

[Pis]js = decode o [P]R o encode(P;s)

where encode : PBj; — P(S) encodes a JavaScript program
to IRgs states and decode : P(S) — P(Sjs) decodes IRgs
states to JavaScript states.

Thus, a restricted semantics of the definitional interpreter
with a JavaScript program P indirectly represents the col-
lecting semantics [Pjs]js of the JavaScript program Pjs. We

utilize JISET to automatically extract such JavaScript defini-
tional interpreters from ECMA-262, the standard specifica-
tion of ECMAScript (the official name of JavaScript) written
in English.

3 JavaScript Meta-Level Static Analysis

For a JavaScript meta-level static analysis, we define an ab-
stract semantics of IRgg in the abstract interpretation frame-
work with view-based analysis sensitivities [5, 7].

Abstract Domains. We first define the abstract domain
for each structure. We define an analysis sensitivity as a view
abstraction § : II — P(S), a function from finite views to
sets of states. Thus, a sensitive abstract state is defined as a
function from pairs of labels and views to abstract states:

e Sensitive Abstract States:]]55 =LXxII—S
y : Ds — P(S)
y(ds) = {oe€S|V¥n=0.caller' (o) =0"= (
V(({,7) e L XIIL

o=(,__,_)edlnr)=>0c €yo (Zs(]'[)
)}
& V(L 1) e L ds(l,) C dj(L, n)
= Ml x) € L ds((, m) U dj((,)
= M, n) € IL ds((,) N dj(L,)

S8
JCn
mai)aqa:)g,&:)

e Abstract States: S = E x C x H

y : S5 P(S)

y@ ={oceS|pey()rocy@A(h_)eyh)}
whereo—(p,c h)ando-(,ps_h)

GCo ©pCp ACCTARCH
cuo = (ﬁuﬁ’,?u?,huh’
ong’ = (pnp.ecnc,hnhk

)

)
)

y : E- PE)

y(p) ={peB|V¥Vx—>ove€p.veyop(x)}
PCp ©V¥xeX p(x)Cp'(x)

pUp ©AxeX. p(x)up’(x)

prp e AxeX. p(x)Np’(x)

e Abstract Contexts: C = P(L xII)

y = CoP(@)
y@© ={oceS|caller(c)=0c"=(,_,_,)=
A(L,r) ec. o’ € 5(n)}

cCcoecc?
cue =cuce
cne =¢cne

e Abstract Heaps: H=A—>Mx MIS

y . H- P(H)

y(ﬁ) = {heH|Var ([,mmj) €h. [=n(a)A

o (7%, 753) = h(£) Am € y (i) A mys € y ()}
hCh' ©VYaeA mCm AmgCmy

hUR = AaeA. (mum',msUmy)

hOh = AdeA. (mnm,m,Nms)

where E(@ = (m, mjs) and E’(@

(m’, mjs,)

e Abstract Internal Field Maps: M = Vetr — \Y

Y . M > P(M)

yim) ={meM|Vsovem.
veyom(s)}

mEm Vs € Vg, m(s) E m'(s)

mum’ = As € Vg,. m(s) U m'(s)

mnm' = As € V.. m(s) Mm’(s)

e Abstract External Field Maps: l\’/lis = Vsir — \'Z

: Mjs — P(Mjs)
y(mjs) = {mjs € Mjs | Vs = 0 € mjs.
v €yoims(s)}
mJS C mJS & Vs € V. mjs(s) T mys'(s)
mJS L mJS = As € V. mjs(s) U ms”(s)
mjs Mmys’ = As € V. mys(s) M mys’ (s)

e Abstract Values: V = P(A WVPWUTWF)

y Vo Pw)

y(@ = @\A)w{acAln(a) v}
L0 ©0CD

TUD =UD

7Ny =oN7

An abstract state G € S consists of an abstract environ-
ment, an abstract context, and an abstract heap. An abstract
environment p € E maps variables to abstract values. An
abstract context ¢ € C is a set of pairs of labels and views
for callers. An abstract heap h € H is a function from ab-
stract addresses to pairs of abstract internal and external
field maps. An abstract field map is a function from strings
to abstract values. An abstract address @ € A is defined with
the allocation-site abstraction [1], which partitions concrete
addresses A based on their allocation sites L. An abstract
value 3 € V is a set of abstract addresses and non-address
values. While we use concrete strings in abstract field maps
and sets of primitive values in abstract values in this formal-
ization for brevity, we abstract them to bound the height of
their lattices as finite in the implementation. We define a par-
tial order C, a join operator L, and a meet operator M. Then,
we define the concretization function y for each abstract
domain with the following a helper function caller : S »» S

to get callers’ states:
oc=(,_(lp):=ch) = caller(c) = ({,p,c, h)

and a valuation[4]n : A — Ato correctly concretize abstract
addresses.

Abstract Semantics. Using abstract domains, we define
the abstract semantics [P] of an IRgg program P:

[P] = lim F"(d})
n—oo
with an initial sensitive abstract state Eﬁs (ie.,S' C y(c’fg)) and

an abstract transfer function F:Ds — Ds:

F(ds)=dsu | | s[inst(D](L, m ds(L,)
(f,m)€ LXII

where 5m . £ XTI xS — Dy is an abstract semantics of a
view abstraction § : IT — P(S).

Restricted Abstract Semantics. Then, we also define
the restricted abstract semantics [P]R : Ds — Ds of an IRgg
program P with a given sensitive abstract state:

[PIR(ds) = lim F"(d% nds)
n—oo
Meta-Level Static Analysis. Finally, we define a JavaScript

meta-level static analysis using the restricted abstract seman-

tics [P]R of a JavaScript definitional interpreter P:

Definition 3.1 (JavaScript Meta-Level Static Analysis). A
JavaScript meta-level static analysis is a way to indirectly
analyze a JavaScript program Pjs using a restricted abstract

semantics [P]R of a JavaScript definitional interpreter P:
[Pi]js € decode o [P]R o encode(P;)

where encode : Bjs —]]55 encodes a JavaScript program to a

sensitive abstract state and decode : Ds — P (Sjs) decodes
a sensitive abstract state to JavaScript states.

3.1 Flow-Sensitivity for IRgg

We define the flow-sensitivity for IRgs with a view abstrac-

tion 57V : {7} — P(S):
5f|0w(ﬂ,) =S

We define the abstract semantics of the flow-sensitivity for
IRgs as follows:

5”‘“"’[@ L Lx{r} xS > Dstiow

e Variable Assignments:

§TV[x = e] (£, m,5) = L[([',) —]

where

[’ =next([)
G =(pah
v =[e](o)

& = (plx > 3.5 h)

o Internal Field Assignments:

51V [egler] = e (£, 7,5) = L[((', 7)) — 7]

where
[’ = next(/[)
G =(p,c.h)
(00,01,02) = ([eo] (0), [e1](0). [e2] (@)
0 NA ={ay, - ,an}
W =hl@ v (M), i), -, @ > (7, mgs,)]
01 N Vg ={31"" ,Sm}
Vi<j<n.
(ﬁj, 77175]) = h(aj)
i =m; U L[s; > 0y, 5 > 0p)
5 — (ﬁ’ai{/)

e External Field Assignments:

5" [eoler] = e2] (£, 7,5) = L[({', 1) — &

where
[= next(/)
a =(p,c.h)
(00,91,02) = ([eo] (0). [e1] (0). [e2] ()
500A ={51,---,5n}
h = hla; — (ﬁlﬁtj\s;) I (ﬁnrﬁj\s;)]
01 NVer ={s1,~"*,Sm}
Vi<j<n
’;’LJ\S; =”7l-j\5j|—|J—[51'_>62,"’,5m'_>62]
o’ =(p.c k')

e Object Allocations:

51V = (L7.5) = L[({, 1) > 7]

where
[" =next(l)
G = (p.eh)
a =
P =plx
K =hla— (1, 1)]
&' =(p.ch)

e Function Calls:

5f|0w[[x = 6(61 .o .en)]]([, ﬂ',b:) = a:;flow

where

5 =(pah)
7 =[]®
6} = [[eJH(E) [Vl <] < I’l]
F =un¥F

dsiion = A([',7) € L X {r}.
G HfAfEF f= (X %) {11}
{ 1 otherwise
P’ = L[x1 01, X B U]
o’ (p" AL, m)} k)
[=next(/)
& = (B 1)

Jéflow = Jéflow [([,/,) [rd 8/’]
e Branches:
5flow[[im]]([, T, E) = %flow
where
G =(pch
v =[el(o)
Joo | Lk o] ifwco
L otherwise
= ds[l 5] ifsfed
d flow — - .
d 5 otherwise
e Returns:
s"%[return e](f, 7,5) = dgtion
where
G =(pch
v =[e](o)

dstow = A(L',-) € L x {r}.
1L{xmo] if3(,)ecAinst([)=x:="---
1 otherwise

where [e] : S — V is an abstract semantics of expressions:

e Primitive Values:

[0)](®) = {2}

e Primitive Operations:

[

[opCer -+ .en)](0) =0

where
lejl(0) =0; [V1 < j <n]
) =op(o; NVP,--- .0, NVP)

e Variable Lookups:

X1 = p(x)

where 7 = (p,_,_)

e Internal Field Lookups:

[eoLe1](P) =T

where
lp) - o
les]J(p) = w
v = (apoint-wise internal field lookup definition

with 7y and ;)

e External Field Lookups:

[eole1](p) =

where
M (P) = o
les](P) = @
v = (apoint-wise external field lookup definition

with 9y and 27)

3.2 Callsite-Sensitivity for IRgg

We define the callsite-sensitivity [8, 9] for IRgs with a view
abstraction ¥ : £k — P(S):

S ([h,-- D) = {o = (e el) €S|
(n=k<mvVvn=m)AV1i<i<n.c;=(4_)}

We define the abstract semantics of the callsite-sensitivity
for IRgs by modifying that of the flow-sensitivity for IRgs as
follows:

5k_Cfam : -L X LSk X g el]]’jé‘kfcfa

e Function Calls:

S Rx ="eCer e[(L [.) = dipes

where

dsica = AL, [+ [1]) € £ x LK,
6 f3feF. f=-(Xy - %p) {L i3

n=k=mA y
[[/)[19“"&]:[[l,’.”’[nll’gi]
m=n+1A

[[/,[1,... ’[n] — [[1/’... ’[r;l]
1 otherwise

4 Analysis Sensitivities for JavaScript

In a JavaScript meta-level static analysis, analysis sensitivi-
ties for JavaScript are different from those for IRgg. For ex-
ample, let us explain the analysis of the following JavaScript
code with the flow-sensitivity for IRgs:

let x =1, y = 2; x +y; // 3

W N =

13.1.3 Runtime Semantics: Evaluation
IdentifierReference : Identifier
1. Return ? ResolveBinding(StringValue of Identifier).

(a) Evaluation algorithm for identifier references

syntax def IdentifierReference[@].Evaluation(
this, Identifier
) A
return [? (ResolveBinding
(Identifier.StringValue))]

(b) Extracted IRgs function for identifier references

this ‘@,
i .
Identifier : @ ". Environment
'
v g
J
AdditiveExpression R Abstract Syntax Tree
1 " ‘\
.t \J
P I
IdentifierReference - : @ IdentifierReference
S
Identifier @€=--=-=--= Seee Identifier

(c) Result of x + y via a definitional interpreter

Figure 1. A JavaScript meta-level static analysis with the
flow-sensitivity for IRgg

Figure 1 shows (a) the Evaluation algorithm of identifier refer-
ences, (b) its extracted IRgs function, and (c) the parsing re-
sult of x + y and the initial local environment of the IRgg func-
tion. Since the flow-sensitivity merges states on the same la-
bels, contexts for the evaluation of both identifier references x
and y are merged. Thus, the IRgg variable Identifier points
to their ASTs as illustrated at the bottom of Figure 1(c). Due
to the imprecise merge of contexts, StringValue of Identifier
returns "x" and "y", and ResolveBinding with them returns
both 1 and 2. Finally, the analysis result of x + y becomes
{2,3, 41

4.1 Flow-Sensitivity for JavaScript

To resolve this problem, we present an AST sensitivity for
IRgs as a variant of object sensitivity [6, 10] to represent
flow-sensitivity for JavaScript. The object sensitivity uses
abstract addresses A of receiver objects as views. However,
the AST sensitivity utilizes JavaScript ASTs T stored in this

parameter for syntax-directed functions as views with a view
abstraction §51°% : Tw {1} — P(S):

Sflowvry={oc=(, ¢, _)eS|ast(c) =t.}

where ast : C* — Tw{L} denotes the JavaScript AST stored
in this parameter of the top-most syntax-directed function

for a given calling context stack:

tifdc.c=cru-rnepucn-cAc=(Lp)A
func(f) = syntax def--- A p(this) = tA
Vi<j<n.cj=(f,_) Afunc(fj) = def---
1 otherwise

ast(c) =

Note that the number of views for the AST sensitivity is finite
as well because JavaScript ASTs are finite in a JavaScript
program. We define the flow-sensitivity for JavaScript using
the AST sensitivity for IRgg. It successfully divides contexts
for the evaluation of JavaScript identifiers x and y in the
example even though their labels in IRgg are the same.

We define the abstract semantics of the flow-sensitivity
for JavaScript as follows:

5jsfflowm LX (T (O] {J_}) X § — 155js—f|ow

e Function Calls:
5j5’f|0W IIX = e(el e en)]]([s tJ_a E) = a:;‘js—flow
where
dgiorion = A(L", 1)) € L x (T {L}).

& HIfEF oo (Xt xn) (5o}
(f:syntaxdef---/\)V

t) €y
f=def---A
tp =t

1 otherwise

4.2 Callsite-Sensitivity for JavaScript

We also formally define the callsite-sensitivity for JavaScript
by extending the AST sensitivity for specific normal IRgg
functions. In ECMA-262, all explicit and even implicit JavaScript
function calls invoke normal IRgg functions Call and Construct.
Thus, we define the callsite-sensitivity for JavaScript by ex-
tending the AST sensitivity with two normal IRgs functions
with a view abstraction &k<fa . T<k 5 P(S):

5j5-k-efa([t1, cee tn]) = {o' = (_,_,E,_) €S |
n<kA(n=kVjsctxt"™(c) = L)A
V1<i<n. ast o js-ctxt!(c) = t;}

where js-ctxt : C* — C* @ {1} pops out calling contexts
until the function of the top-most context is Call or Construct:

c ifc=(l,p)=_A
(func(f) = def Call---V

js-ctxt(c) = func(/) = def Construct---)
jsctxt(¢’) ifc=_=7¢
1 otherwise

Using this callsite-sensitivity for JavaScript, the meta-level
static analyzer can discriminate not only explicit JavaScript
function calls (e.g. f()) but also implicit JavaScript function

calls, including getters/setters, user-defined implicit conver- 1990 Conference on Programming Language Design and Implementa-
sions, and implicit function calls in built-in libraries. tion (PLDI) (White Plains, New York, USA) (PLDI ’90). Association
We define the abstract semantics of the callsite-sensitivity for Computing Machinery, New York, NY, USA, 296-310. https:

£ Script foll . //doi.org/10.1145/93542.93585
or JavaScript as follows: Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A

ikecfar T %o ~ Unified Lattice Model for Static Analysis of Programs by Construction
& [[l]] : LXT XS — Dgissecta or Approximation of Fixpoints. In Proceedings of the 4th ACM SIGACT-
SIGPLAN Symposium on Principles of Programming languages (POPL).
https://doi.org/10.1145/512950.512973

[2

—

e Function Calls:

Sisk-capy . ;\ e [[t . t,],5) = n [3] Patrick Cousot and Radhia Cousot. 1992. Abstract Interpretation
[[(er n)ﬂ([t nl-0) Sistk-cfa Frameworks. Journal of Logic and Computation (JLC) 2, 4 (1992),

where 511-547. https://doi.org/10.1093/logcom/2.4.511
[4] Arlen Cox, Bor-Yuh Evan Chang, and Xavier Rival. 2014. Automatic

o o , <k Analysis of Open Objects in Dynamic Language Programs. In Pro-
dgistecta = A(L7, [tl’ coetp]) € LXTSE ceedings of the 21st International Symposium on Static Analysis (SAS).
o if3feF f=- (X, Xp) {L" -} https://doi.org/10.1007/978-3-319-10936-7_9
t’ = (an AST of the flow-sensitivity [5] Se-Won Kim, Xavier Rival, and Sukyoung Ryu. 2018. A Theoretical
for JavaS cript) Foundation of Sensitivity in an Abstract Interpretation Framework.
(f def Call v ACM Transactions on Programming Languages and Systems (TOPLAS)
= all - - -

[

40, 3, Article 13 (2018), 44 pages. https://doi.org/10.1145/3230624
f = def Construct - - -)/\ v [6] Ana Milanova, Atanas Rountev, and Barbara G. Ryder. 2005. Parame-
n=k=mA terized Object Sensitivity for Points-to Analysis for Java. ACM Trans-
[t/ t, - ty] = [tll’ cee t”w tn] actions on Software Engineering and Methodology (TOSEM) 14, 1 (Jan.
(f = def Call--- v 2005), 1-41. https://doi.org/10.1145/1044834.1044335
B [7] Jihyeok Park, Hongki Lee, and Sukyoung Ryu. 2021. A Survey of
f = def Construct---)A v Parametric Static Analysis. ACM Computing Surveys (CSUR) 54, 7
m=n+1A (2021), 1-37. https://doi.org/10.1145/3464457
[t/ t1,- - ta] = [tl/’ e t"n] [8] Micha Sharir and Amir Pnueli. 1981. Two Approaches to Interprocedural
_‘(f —def Call---V Data Flow Analysis.
_ [9] Olin Grigsby Shivers. 1991. Control-Flow Analysis of Higher-Order
f = def Construct -~)A Languages. Carnegie Mellon University.
m=nA [10] Yannis Smaragdakis, Martin Bravenboer, and Ondrej Lhotak. 2011. Pick
1L, tnl = U our Contexts Well: Understandin, ject-Sensitivity. In Proceedings
t t t] t, Your C Well: Und ding Object-S ity. In Proceeding
1 otherwise of the 38th Annual ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages (POPL) (Austin, Texas, USA). Association for
Computing Machinery, New York, NY, USA, 17-30. https://doi.org/

10.1145/1926385.1926390
References

[1] David R. Chase, Mark Wegman, and F. Kenneth Zadeck. 1990. Anal-
g
ysis of Pointers and Structures. In Proceedings of the ACM SIGPLAN

https://doi.org/10.1145/93542.93585
https://doi.org/10.1145/93542.93585
https://doi.org/10.1145/512950.512973
https://doi.org/10.1093/logcom/2.4.511
https://doi.org/10.1007/978-3-319-10936-7_9
https://doi.org/10.1145/3230624
https://doi.org/10.1145/1044834.1044835
https://doi.org/10.1145/3464457
https://doi.org/10.1145/1926385.1926390
https://doi.org/10.1145/1926385.1926390

	1 IRES: An IR for ECMAScript Specification
	1.1 Instructions
	1.2 Expressions

	2 JavaScript Definitional Interpreter
	3 JavaScript Meta-Level Static Analysis
	3.1 Flow-Sensitivity for IRES
	3.2 Callsite-Sensitivity for IRES

	4 Analysis Sensitivities for JavaScript
	4.1 Flow-Sensitivity for JavaScript
	4.2 Callsite-Sensitivity for JavaScript

	References

