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ABSTRACT

JavaScript is one of the most dominant programming languages.

However, despite its popularity, it is a challenging task to correctly

understand the behaviors of JavaScript programs because of their

highly dynamic nature. Researchers have developed various static

analyzers that strive to conform to ECMA-262, the standard specifi-

cation of JavaScript. Unfortunately, all the existing JavaScript static

analyzers require manual updates for new language features. This

problem has become more critical since 2015 because the JavaScript

language itself rapidly evolves with a yearly release cadence and

open development process.

In this paper, we present JSAVER, the first tool that automatically

derives JavaScript static analyzers from language specifications.

The main idea of our approach is to extract a definitional interpreter

from ECMA-262 and perform a meta-level static analysis with the

extracted interpreter. A meta-level static analysis is a novel tech-

nique that indirectly analyzes programs by analyzing a definitional

interpreter with the programs. We also describe how to indirectly

configure abstract domains and analysis sensitivities in a meta-level

static analysis. For evaluation, we derived a static analyzer from

the latest ECMA-262 (ES12, 2021) using JSAVER. The derived ana-

lyzer soundly analyzed all applicable 18,556 official conformance

tests with 99.0% of precision in 590 ms on average. In addition, we

demonstrate the configurability and adaptability of JSAVER with

several case studies.
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(a) A compiler-based approach (existing)

(b) An interpreter-based approach (ours)

Figure 1: Two approaches of static analysis for a language 𝐿1
using a static analyzer of another language 𝐿2

1 INTRODUCTION

Researchers have presented JavaScript static analyzers to rea-

son about the complex behaviors of JavaScript programs. Exist-

ing JavaScript static analyzers, such as JSAI [21], SAFE [26, 45],

TAJS [20], and WALA [52], over-approximate the semantics de-

scribed in ECMA-262, the standard specification of ECMAScript

(the official name of JavaScript) written in English. Moreover, vari-

ous JavaScript static analysis techniques have been presented and

implemented on these tools: loop sensitivity [32], advanced string

domains [3, 31], analysis based on property relations [24, 30, 52],

on-demand backward analysis [53], and combined analysis with

dynamic analysis [42, 46, 48, 56].

Existing JavaScript static analyzers take a compiler-based ap-

proach with intermediate representations (IRs). To reduce the bur-

den of handling numerous language features, most analyzer de-

velopers design an IR with a compiler that translates a program-

ming language to its IR to indirectly represent the language seman-

tics [14, 54, 55]. For example, Figure 1(a) depicts a compiler-based

approach for static analysis of a source-language 𝐿1 using a static

analyzer of a target-language 𝐿2. It first compiles an 𝐿1 program

to an 𝐿2 program using an 𝐿1-𝐿2 compiler that conforms to the

semantics described in the specification of 𝐿1. Then, it analyzes the

compiled 𝐿2 program using a static analyzer of 𝐿2. For a JavaScript

static analyzer, JavaScript and its own IR are 𝐿1 and 𝐿2, respectively.
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(a) Evaluation algorithm for the logical OR assignment

1 syntax def AssignmentExpression [8]. Evaluation(

2 this , LeftHandSideExpression , AssignmentExpression

3 ) { /* entry */

4 let lref = (LeftHandSideExpression.Evaluation)

5 let lval = [? (GetValue lref)]

6 let lbool = [! (ToBoolean lval)] /* #1 */

7 if (= lbool true) { /* #2 */ return lval } else {} /* #3 */

8 if (&& (IsAnonymousFunctionDefinition AssignmentExpression)

9 (LeftHandSideExpression.IsIdentifierRef)) { /* #4 */

10 let rval = (AssignmentExpression.NamedEvaluation

11 lref.ReferencedName)

12 } else { /* #5 */

13 let rref = (AssignmentExpression.Evaluation)

14 let rval = [? (GetValue rref)]

15 } /* #6 */

16 [? (PutValue lref rval)]

17 return rval

18 } /* exit */

(b) Extracted IRES function for the logical OR assignment

Figure 2: Evaluation algorithm for the eighth alternative of AssignmentExpression in ES12 and its extracted IRES function

However, static analyzers with the compiler-based approach

are unable to keep up with fast-evolving JavaScript because they

requiremanual updates for new language semantics. The JavaScript

language itself is rapidly evolving nowadays. Since 2015, the Ecma

Technical Committee 39 (TC39) has maintained the specification

as an open-source GitHub project and released its official versions

annually. The specification size has been getting bigger as well, and

the latest version of ECMA-262 (ES12, 2021) [19] is 879 pages. Since

existing JavaScript static analyzers cannot update JavaScript-IR

compilers automatically, they still focus on ES5.1 and only support

a few ES6 features manually. Because recent JavaScript programs

often use new features like arrow functions, and promises, the lack

of their support becomes increasingly problematic.

To alleviate this problem, we present JSAVER, a JavaScript Static

Analyzer via ECMAScript Representations. It is the first tool that

automatically derives JavaScript static analyzers from language

specifications. The main idea of JSAVER is to shift the paradigm

from compiler-based approaches to interpreter-based ones to uti-

lize łthe interpreter-based nature” of JavaScript. The history of

JavaScript [57] testifies that the working group designing JavaScript

in the 1990s defined the semantics using reference interpreters:

Guy Steele would ask a question about some edge-

case feature behavior. [. . .] they would each turn to

their respective implementation and try a test case. If

they got the same answer, that became the specified

behavior.

The interpreter-based nature also affects the writing style of the

specifications. ECMA-262 describes the language semantics with

pseudocode algorithms consisting of sequentially numbered steps to

represent program executions. To fully utilize this interpreter-based

nature of JavaScript, JSAVER derives a static analyzer by 1) extracting

a definitional interpreter [47] from ECMA-262 and 2) performing a

meta-level static analysis with the extracted interpreter.

First, JSAVER extracts definitional interpreters from ECMAScript

language specifications. A definitional interpreter provides a way

to represent the language semantics of a defined-language using its

interpreter written in a defining-language. We extract a JavaScript

definitional interpreter from ECMA-262 using JISET [43], which

automatically extracts a definitional interpreter from ECMA-262

taking advantage of its writing style. In the extracted definitional

interpreter, the defined-language is JavaScript, and the defining-

language is IRES, which is an intermediate representation for EC-

MAScript language specifications. JISET shows its adaptability by

extracting definitional interpreters from future versions of ECMA-

262 without extending IRES.

Then, we present ameta-level static analysis to analyze JavaScript

programs indirectly using the extracted interpreters. A meta-level

static analysis is an interpreter-based approach for static analy-

sis of a defined-language 𝐿1 using a static analyzer of a defining-

language 𝐿2 as depicted in Figure 1(b). Since an 𝐿1 interpreter is an

𝐿2 program, it indirectly analyzes an 𝐿1 program by analyzing the

interpreter using a static analyzer of 𝐿2 with the 𝐿1 program as the

input. Thus, we develop a static analyzer of IRES for a meta-level

static analysis for JavaScript and experimentally show that it can

indirectly analyze JavaScript programs effectively. Moreover, for

its expressivenss, we present ways to indirectly configure abstract

domains and analysis sensitivities for JavaScript in the static analysis

of IRES. First, we provide a method to configure abstract domains

for JavaScript values and structures. Second, we present the AST

sensitivity to express analysis sensitivities for JavaScript such as

flow-sensitivity and 𝑘-callsite-sensitivity.

The contributions of this paper are as follows:

• We propose a novel meta-level static analysis technique. It

indirectly analyzes a defined-language program by analyz-

ing its definitional interpreter using a static analyzer of the

defining-language with the program as the input.

• We present JSAVER, the first tool that derives JavaScript static

analyzers from language specifications by 1) extracting a

definitional interpreter from ECMA-262 and 2) performing a

meta-level static analysis with the extracted interpreter.

• We derive a static analyzer JSAES12 from the latest ECMA-

262, ES12, to evaluate JSAVER. The derived analyzer JSAES12

soundly analyzes all applicable 18,556 official conformance

tests with 99.0% of precision in 590 ms on average. More-

over, we demonstrate the configurability and adaptability of

JSAVER with several case studies.
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1 let f = /* a random integer from 0 to 99 */;

2 f ||= x => x; // f: {name: "f", ...} or [1, 99]

3 let y = f.name; // x: "f" or undefined

Figure 3: JavaScript code using the logical OR assignment

2 BACKGROUND

In this section, we briefly explain ECMA-262 and introduce JISET,

which extracts a definitional interpreter from ECMA-262. Since we

perform meta-level static analysis for JavaScript using extracted

definitional interpreters, it is essential to understand how ECMA-

262 describes the JavaScript semantics and how JISET extracts a

definitional interpreter from it.

As a running example, we use the łlogical OR assignment” in-

troduced in ES12. Figure 2(a) shows its semantics described as an

algorithm in English, Figure 2(b) shows an IRES function extracted

from the algorithm, and Figure 3 presents an example JavaScript

program using a logical OR assignment.

2.1 JavaScript Semantics in ECMA-262

ECMA-262 is the official specification of JavaScript, which describes

its syntax in a variant of the extended BackusśNaur form (EBNF)

and its semantics as algorithms in English. For example, consider

the example code in Figure 3. It uses the logical OR assignment

newly introduced in ES12. Its syntax is defined by the eighth of

nine alternatives of the syntactic production of AssignmentExpression,

and their semantics is defined by the algorithm in Figure 2(a). The

algorithm first evaluates LeftHandSideExpression to get a reference lref

and its value lval in steps 1 and 2, respectively. Then, it checks its

boolean value lbool for short-circuiting in steps 3-4. In step 5, if the

left- and right-hand-side is an identifier and an anonymous function,

it defines the name of the function as the identifier name in step 5-a.

In step 6, otherwise, the algorithm evaluates the right-hand-side

expression to the value rval. It then puts rval to the reference lref

and returns rval.

While the operator seems to be the same as combining the logical

OR operator (||) with the assignment operator (=), they have differ-

ent semantics. Consider the example code. It first defines a variable

f with a random integer from 0 to 99. Then, it uses a logical OR as-

signment to update f with an arrow function whose name becomes

"f" only if f’s value is 0 because 0 represents false, but the other

integers represent true. Finally, it defines a variable y with f.name,

whose value is "f" if f’s value is the arrow function, but undefined,

otherwise. If the statement on line 2 is f = f || (x => x);, the

value of y is undefined or "" instead of "f". Thus, to construct a

sound static analyzer, one should consider such detailed semantics

by referring to all the algorithms in ECMA-262.

ECMA-262 uses two kinds of algorithms: syntax-directed algo-

rithms and normal algorithms. A syntax-directed algorithm consists

of 1) its corresponding alternative of a syntactic production, 2) its

name, 3) parameters, and 4) body steps. For example, the algo-

rithm in Figure 2(a) is a syntax-directed algorithm consisting of the

eighth alternative of AssignmentExpression, Evaluation as its name, no

parameters, and the body consisting of eight steps. Unlike syntax-

directed algorithms, a normal algorithm is defined with only its

Figure 4: Result of f ||= x => x in a definitional interpreter

name, parameters, and body steps. Their invocations are like func-

tion calls with parentheses: GetValue(lref ) in step 2. Finally, each

algorithm always returns a completion record to handle different

kinds of JavaScript control flows. The prefixes ł?” or ł!” converts

them to their containing values with or without checking for abrupt

completions, respectively.

2.2 JavaScript Definitional Interpreter

Several researchers have presented JavaScript definitional inter-

preters [1, 2, 5, 6, 16, 43] instead of the compiler-based approaches [13,

15, 20, 26, 34]. A definitional interpreter is written in a defining-

language to describe the language semantics of a defined-language.

Among them, we utilize JISET [43] to automatically extract a defi-

nitional interpreter from a given version of ECMA-262. The tool

JISET 1) generates a parser for syntax and 2) transforms algorithms

to corresponding IRES functions for semantics. For example, when

JISET takes ES12 as an input, it generates a parser that supports

logical OR assignments according to the syntactic production of As-

signmentExpression. It then transforms the syntax-directed algorithm

in Figure 2(a) into the IRES function in Figure 2(b).

The defining-language of a definitional interpreter often treats

abstract syntax trees (ASTs) of the defined-language as values. The

defining-language IRES also treats ASTs of the defined-language

JavaScript as its values. For example, the parser generated from

ES12 parses the second statement in Figure 3 and produces an

AST shown at the bottom of Figure 4. Then, the extracted IRES
function in Figure 2(b) takes the AST and its left and right sub-

trees as its arguments and defines three IRES local variablesthis ,

LeftHandSideExpression , and AssignmentExpression , as de-

picted at the top of Figure 4.

3 OVERVIEW

In this section, we explain the overall structure of JSAVER as depicted

in Figure 5. It performs a meta-level static analysis with JavaScript

as its defined-language and IRES as its defining-language. Thus,

JSAVER indirectly analyzes a JavaScript program by analyzing IRES
functions with the AST of the program as an argument. For a more

detailed explanation, we describe how it performs a meta-level

static analysis for the code in Figure 3 with ES12.
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Figure 5: Overall structure of JSAVER

JSAVER first utilizes JISET to extract a definitional interpreter

from ES12. As explained in Section 2, it generates a JavaScript

parser supporting new language features, including the logical OR

assignment, and extracts IRES functions, including the function in

Figure 2(b), by compiling algorithms. The generated parser parses

the example code to produce anAST, which contains the AST shown

at the bottom of Figure 4 as a subtree. Then, Analysis Initializer

constructs an initial abstract state with the extracted IRES functions

and the produced AST. Finally, JSAVER computes the fixpoint of

Abstract Transfer Function with the initial abstract state, and the

fixpoint is the analysis result of the example code.

Now, let us explain how we analyze the IRES function in Fig-

ure 2(b). We support view-based analysis sensitivities [23, 41] and

utilize a worklist algorithm to perform view-wise updates of analy-

sis results. In this example, we perform flow-sensitive analysis by

splitting views based on program points annotated in comments of

the IRES function: entry , exit , and from #1 to #6.

Figure 6 shows a control flow graph of the IRES function with its

flow-sensitive analysis results. In the graph, each node and arrow

denotes a program point and a control flow, respectively. If nodes

or arrows are dotted, they are unreachable. In this example, we

use the interval domain [9] for integers. At the entry point, three

parameters point to three ASTs, respectively, as shown at the top of

Figure 4. At point #1, new local variables are defined: lref , lval ,

and lbool . Since the variable LeftHandSideExpression points

to the AST of the JavaScript variable f, lref points to its refer-

ence and lval points to the interval [0, 99]. Moreover, lbool

points to the top boolean value ⊤bool because lval contains 0

representing false and [1, 99] representing true. Therefore, both

points #2 and #3 are reachable. At point #2, it returns lval ; thus,

the return value @return at the exit point becomes [0, 99]. At

point #3, the condition is always true; thus, only point #4 is reach-

able, and it assigns a new variable rval with a JavaScript function

object whose name property is a string "f". At point #6, it updates

the reference of the JavaScript variable f with rval and returns it.

Thus, the return value @return at the exit point is merged with the

function object stored in rval . Finally, the IRES function returns

the abstract value representing both [0, 99] and the JavaScript

function object.

Figure 6: Control flow graph of the IRES function in Fig-

ure 2(b) with its flow-sensitive analysis results

Finally, we can automatically derive a JavaScript static analyzer

for a specific version of ECMA-262 using JSAVER. For example, if we

want to derive a JavaScript static analyzer for ES12, it is sufficient

to fix the first argument of JSAVER as ES12 and passes a given

JavaScript program as the second argument.

In the remainder of this paper, we formally define the meta-level

static analysis for JavaScript with abstract domains and analysis

sensitivities (Section 4). Then, we explain how to implement JSAVER

with several optimization and analysis techniques (Section 5). After

evaluating JSAVER (Section 6), we discuss related work (Section 7)

and conclude (Section 8).

4 META-LEVEL STATIC ANALYSIS

In this section, we formalize ameta-level static analysis for JavaScript

as a defined-language with IRES as a defining-language. We first

define a JavaScript definitional interpreter as an IRES program. Then,

we define ameta-level static analysis for JavaScript with the abstract

semantics of IRES in the abstract interpretation framework [8, 10].

In addition, we explain how to indirectly express abstract domains

and analysis sensitivities for JavaScript.

4.1 JavaScript Definitional Interpreter

We first define IRES, an Intermediate Representation for ECMA-262,

with its collecting and restricted semantics.

4.1.1 Syntax and Notations. An IRES program 𝑃 is a sequence of

functions. A function 𝑓 is defined with its name, parameters, and

body instructions with labels. If it is defined with the prefix syntax,

it is a syntax-directed function, otherwise, a normal function. An

instruction 𝑖 is a reference update, an object allocation, a function

call, a branch, or a return instruction. An expression 𝑒 is a primitive

value, a primitive operation, or a reference expression. A reference

is a variable, an internal field access, or an external field access.

For a given program 𝑃 , three helper functions func : L → F ,

inst : L → I, and next : L → L return the function, instruction,

and next label, respectively, of a given label.

𝔓 ∋ 𝑃 ::= 𝑓 ∗ X ∋ x L ∋ l

F ∋ 𝑓 ::= syntax? def x(x∗) {[l : 𝑖]∗}

I ∋ 𝑖 ::= 𝑟 ≔ 𝑒 | x ≔ {} | x ≔ 𝑒(𝑒∗) | if 𝑒 l l | return 𝑒

E ∋ 𝑒 ::= 𝑣p | op(𝑒∗) | 𝑟 R ∋ 𝑟 ::= x | 𝑒[𝑒] | 𝑒[𝑒]js
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4.1.2 Concrete States. An IRES state 𝜎 ∈ S consists of a label, an

environment, a stack of calling contexts, and a heap. An environ-

ment 𝜌 ∈ E is a finite mapping from variables to values. A calling

context 𝑐 ∈ C consists of a label and an environment of the caller.

A heap ℎ ∈ H is a finite mapping from addresses to labels for al-

location sites and two finite mappings from strings to values. The

former mapping represents internal fields accessible by 𝑒[𝑒], and

the latter represents external fields accessible by 𝑒[𝑒]js. A value

𝑣 ∈ V is an address, a primitive value (e.g., a boolean 𝑏, an integer

𝑘 , and a string 𝑠), a JavaScript AST 𝑡 ∈ T, or a function 𝑓 ∈ F .

S = L × E × C∗ × H

E = X
fin
−−→V C = L × E H = A

fin
−−→L ×M ×Mjs

M = Vstr
fin
−−→V Mjs = Vstr

fin
−−→V V = A ⊎ Vp ⊎ T ⊎ F

4.1.3 Restricted Semantics. We first define a collecting semantics

J𝑃K = lim𝑛→∞ 𝐹𝑛 (S𝜄 ) using a transfer function 𝐹 : P(S) → P(S).

While we formally define the transfer function 𝐹 in a companion

report [36], we omit it in this paper for brevity. Then, we define

a restricted semantics J𝑃KR : P(S) → P(S) as a set of reachable

states from the initial states restricted by a given set of states 𝑆 :

J𝑃KR (𝑆) = lim
𝑛→∞

𝐹𝑛 (S𝜄 ∩ 𝑆).

4.1.4 Definitional Interpreter. We define a definitional interpreter

for JavaScript as an IRES program to indirectly represent the col-

lecting semantics J𝑃jsKjs of the JavaScript program 𝑃js using the

restricted semantics J𝑃KR:

Definition 4.1 (JavaScript Definitional Interpreter). An IRES pro-

gram 𝑃 is a JavaScript definitional interpreter if and only if the

following condition holds for each JavaScript program 𝑃js ∈ 𝔓js:

J𝑃jsKjs = decode ◦ J𝑃KR ◦ encode(𝑃js)

where encode : 𝔓js → P(S) encodes a JavaScript program to

IRES states and decode : P(S) → P(Sjs) decodes IRES states to

JavaScript states.

4.2 JavaScript Meta-level Static Analysis

For a JavaScript meta-level static analysis, we define an abstract

semantics of IRES in the abstract interpretation framework with

view-based analysis sensitivities [23, 41].

4.2.1 Abstract Domains. We first define the abstract domain for

each structure. We define an analysis sensitivity as a view abstrac-

tion 𝛿 : Π → P(S), a function from finite views to sets of states.

Thus, a sensitive abstract state is defined as a function from pairs

of labels and views to abstract states:

D̂𝛿 = L × Π → Ŝ Ŝ = Ê × Ĉ × Ĥ Â = L

Ê = X → V̂ Ĉ = P(L × Π) Ĥ = Â→ M̂ × M̂js

M̂ = Vstr → V̂ M̂js = Vstr → V̂ V̂ = P(Â ⊎ Vp ⊎ T ⊎ F )

We use allocation-site abstraction [7] to define abstract addresses Â

as partitions of concrete addresses A based on their allocation sites

L. We define a partial order ⊑, a join operator ⊔, a meet operator

⊓, and a concretization function 𝛾 for each abstract domain using a

valuation [11] 𝜂 : A→ Â to correctly concretize abstract addresses.

4.2.2 Restricted Abstract Semantics. We first define the abstract

semantics Ĵ𝑃K = lim𝑛→∞ 𝐹𝑛 (𝑑𝜄
𝛿
) of an IRES program 𝑃 with an

initial sensitive abstract state 𝑑𝜄
𝛿
(i.e., S𝜄 ⊆ 𝛾 (𝑑𝜄

𝛿
)) and an abstract

transfer function 𝐹 : D̂𝛿 → D̂𝛿 . While we formally define the

abstract transfer function 𝐹 in a companion report [36], we omit

them in this paper for brevity. Then, we also define the restricted

abstract semantics �J𝑃KR : D̂𝛿 → D̂𝛿 of an IRES program 𝑃 with a

given sensitive abstract state 𝑑𝛿 :

�J𝑃KR (𝑑𝛿 ) = lim
𝑛→∞

𝐹𝑛 (𝑑𝜄
𝛿
⊓ 𝑑𝛿 )

4.2.3 Meta-level Static Analysis. Finally, we define a JavaScript

meta-level static analysis using the restricted abstract semantics
�J𝑃KR of a JavaScript definitional interpreter 𝑃 :

Definition 4.2 (JavaScriptMeta-level Static Analysis). A JavaScript

meta-level static analysis is a way to indirectly analyze a JavaScript

program 𝑃js using a restricted abstract semantics�J𝑃KR of a JavaScript

definitional interpreter 𝑃 :

J𝑃jsKjs ⊆ �decode ◦ �J𝑃KR ◦�encode(𝑃js)

where �encode : 𝔓js → D̂𝛿 encodes a JavaScript program to a

sensitive abstract state and �decode : D̂𝛿 → P(Sjs) decodes a

sensitive abstract state to JavaScript states.

4.3 Abstract Domains for JavaScript

Since the configuration of abstract domains in static analyzers

allows fine-tuning the quality of analysis results, we provide a way

to indirectly configure abstract domains for JavaScript values and

data structures in a JavaScript meta-level static analysis.

4.3.1 Values. Since a JavaScript value is also an IRES value 𝑣 ∈ V,

we can configure V̂ for JavaScript values. For example, recall that

Figure 6 shows the flow-sensitive analysis results of the code in

Figure 3 using the interval domain. Assume that we desire to use

the flat domain whose elements are concrete integer values, the

bottom value ⊥int for nothing, and the top value ⊤int for JavaScript

integers. Then, it is sufficient to use the flat domain for integers in

the IRES abstract values V̂. In this setting, the IRES local variable

lval points to ⊤int at point #1. At the exit point, the IRES function

returns ⊤int and the function object whose name property is "f".

4.3.2 Data Structures. In JavaScript, data structures including envi-

ronment records and objects have external fields directly accessible

by JavaScript syntax. For example, an environment record has vari-

ables as external fields, accessible by identifier references. Similarly,

an object has properties as external fields accessible by property

read expressions. However, they also have internal fields, which

are not directly accessible by JavaScript syntax, and one should

update them only indirectly. For example, [[ HasBinding ]] in

environment records or [[ Prototype ]] in objects. While such

internal fields are pre-defined and the number of possible internal

fields is finite, the number of external fields could be infinite. Thus,

we provide a way to configure them differently. In Section 4.2, we

define an abstract heap ℎ ∈ H as a finite mapping from abstract

addresses Â to pairs of two different abstract fields maps M̂ and

M̂js for internal and external fields, respectively.
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1 syntax def IdentifierReference [0]. Evaluation(

2 this , Identifier) {

3 return [? (ResolveBinding (Identifier.StringValue))]

4 }

(a) Extracted IRES function for identifier references

(b) Result of x + y via a definitional interpreter

Figure 7: A JavaScriptmeta-level static analysis with the flow-

sensitivity for IRES

4.4 Analysis Sensitivities for JavaScript

In a JavaScript meta-level static analysis, analysis sensitivities for

JavaScript are different from those for IRES. Consider the analysis

of the following JavaScript code with the flow-sensitivity for IRES:

let x = 1, y = 2; x + y; // 3

Figure 7 shows (a) its extracted IRES function and (b) the parsing

result of x + y and the initial local environment of the IRES func-

tion. Since the flow-sensitivity merges states on the same labels,

contexts for the evaluation of both identifier references x and y

are merged. Thus, the IRES variable Identifier points to their

ASTs as illustrated at the right of Figure 7(b). Due to the imprecise

merge of contexts, StringValue of Identifier returns "x" and

"y", and ResolveBinding with them returns both 1 and 2. Finally,

the analysis result of x + y becomes { 2, 3, 4 }.

4.4.1 Flow-Sensitivity. To resolve this problem, we present an AST

sensitivity for IRES as a variant of object sensitivity [29, 51] to rep-

resent flow-sensitivity for JavaScript. It utilizes JavaScript ASTs T

stored in this parameter for syntax-directed functions as views

with a view abstraction 𝛿 js-flow : T ⊎ {⊥} → P(S):

𝛿 js-flow (𝑡⊥) = {𝜎 = (_, _, 𝑐, _) ∈ S | ast(𝑐) = 𝑡⊥}

where ast : C
∗ → T ⊎ {⊥} denotes the JavaScript AST stored

in this parameter of the top-most syntax-directed function for a

given calling context stack:

ast(𝑐) =




𝑡 if ∃𝑐. 𝑐 = 𝑐1 :: · · · :: 𝑐𝑛 :: 𝑐 :: · · · ∧ 𝑐 = (l , 𝜌)∧

func(l ) = syntax def · · · ∧ 𝜌 (this) = 𝑡∧

∀1≤ 𝑗 ≤𝑛. 𝑐 𝑗 = (l𝑗 , _) ∧ func(l𝑗 ) = def · · ·

⊥ otherwise

Note that the number of views for the AST sensitivity is finite as

well because JavaScript ASTs are finite in a JavaScript program.

We define the flow-sensitivity for JavaScript using the AST sensi-

tivity for IRES. It successfully divides contexts for the evaluation

of JavaScript identifiers x and y in the example even though their

labels in IRES are the same.

4.4.2 Callsite-Sensitivity. We define the callsite-sensitivity [49, 50]

for JavaScript by extending the AST sensitivity for specific nor-

mal IRES functions. In ECMA-262, all explicit and even implicit

JavaScript function calls invoke normal IRES functions Call and

Construct. Thus, we define the callsite-sensitivity for JavaScript by

extending the AST sensitivity with two normal IRES functions with

a view abstraction 𝛿 js-𝑘-cfa : T≤𝑘 → P(S):

𝜎 = (_, _, 𝑐, _) ∈ 𝛿 js-𝑘-cfa ( [𝑡1, · · · , 𝑡𝑛])

⇐⇒




𝑛 ≤ 𝑘 ∧

𝑛 = 𝑘 ∨ js-ctxt𝑛+1 (𝑐) = ⊥ ∧

∀1≤ 𝑖 ≤𝑛. ast ◦ js-ctxt𝑖 (𝑐) = 𝑡𝑖




where js-ctxt : C∗ → C∗ ⊎ {⊥} pops out calling contexts until the

function of the top-most context is Call or Construct:

js-ctxt(𝑐) =




𝑐 if 𝑐 = (l , 𝜌) :: _∧

(func(l ) = def Call · · · ∨

func(l ) = def Construct · · · )

js-ctxt(𝑐′) if 𝑐 = _ :: 𝑐′

⊥ otherwise

Using this callsite-sensitivity for JavaScript, the meta-level static

analyzer can discriminate implicit JavaScript function calls, includ-

ing getters/setters, user-defined implicit conversions, and implicit

function calls in built-in libraries.

We also formally define their abstract semantics 𝛿 js-flowĴ𝑖K and

𝛿 js-𝑘-cfaĴ𝑖K in the companion report [36].

5 IMPLEMENTATION

In this section, we describe the challenges in implementing a meta-

level static analyzer and present our solutions for them. The source

code of JSAVER and the dataset of our study are publicly available

at https://doi.org/10.5281/zenodo.6906415, and the latest version is

maintained as a GitHub repository.1

Layered Abstract States. Unlike traditional JavaScript static anal-

yses, a meta-level static analysis for JavaScript should track analysis

results not only for JavaScript but also for IRES. Thus, the sizes of

abstract states are much larger than those of traditional analyzers.

We implement layered abstract states to maintain only updated anal-

ysis results compared to the initial abstract state. It can reduce the

time to perform the join ⊔, meet ⊓, and partial order ⊑ operations

by considering only the updated parts in abstract states.

Heap Cloning and Abstract Counting. JavaScript Object proper-

ties could be dynamically added, modified, or deleted and even

accessible by first-class property names. Thus, in JavaScript static

analysis, performing strong updates rather than weak updates for

object properties as many as possible is critical for precise analy-

sis results. It becomes more important in our approach because it

should track even internal fields for IRES. Therefore, we implement

heap cloning [25] and abstract counting [28] to increase the chances

of performing strong updates for internal and external fields.

1https://github.com/kaist-plrg/jsaver
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Table 1: Applicable conformance tests in Test262

All Test262 Conformance Tests 41,415

Inapplicable Tests 22,859

Web Browsers / Internationalization 2,036
In-Progress Features 5,719
Non-Strict / Module 2,625
Early Errors 2,949
Inessential Built-in Objects (e.g. JSON, Atomics) 9,530

Applicable Tests 18,556

Loop Sensitivity. Since merged loop contexts often cause impre-

cise relations between JavaScript object properties, researchers

presented diverse techniques to resolve this problem [24, 30, 52, 53].

Among them, we implement the loop sensitivity [32, 33] to increase

the analysis precision by discriminating loop contexts. Therefore,

derived analyzers via JSAVER can discriminate contexts for explicit

loops such as for-in and for-of and even implicit loops such as

the assignment of arguments or the length property of arrays.

6 EVALUATION

We evaluate JSAVER using JSAES12, the JavaScript static analyzer de-

rived from ES12 via JSAVER, with the following research questions:

• RQ1: Soundness. Can JSAES12 analyze JavaScript programs

using new language features in a sound way?

• RQ2: Precision. Can JSAES12 precisely analyze JavaScript pro-

grams compared to the existing static analyzers?

• RQ3: Configurability. Can we configure abstract domains

and analysis sensitivities for JavaScript in JSAES12?

• RQ4: Adaptability. Can JSAVER adapt to new language fea-

tures not yet introduced in ES12?

We performed experiments on an Ubuntu machine equipped with

4.2GHz Quad-Core Intel Core i7 and 32GB of RAM.

6.1 Soundness

To evaluate the soundness of JSAES12, we used Test262, the offi-

cial conformance test suite. Since ES12 was officially released in

June 2021, we used Test262 as of June 20212. While it consists of

41,415 tests, it even contains tests using additional features for

web browsers, in-progress features, modules, or early errors for

the parsing process. To focus on the core language semantics of

JavaScript in ES12, we excluded 22,859 tests for such features, as

summarized in Table 1 using JISET. Therefore, we analyzed 18,556

applicable Test262 tests, each of which is 235.5 lines on average.

Furthermore, we compared the soundness of JSAES12 with that of

the existing JavaScript static analyzers, TAJS and SAFE. We used

their default context sensitivities: the object sensitivity for TAJS

and 20-callsite-sensitivity for SAFE. For a fair comparison, we used

20-callsite-sensitivity for JSAES12 as well.

In addition, we compared the soundness of JSAES12 with that of

the existing analyzers after transpiling Test262 tests via Babel3,

a hand-written transpiler from ES6+ to ES5.1. We used the latest

Babel v7.17.6 (February 21, 2022). While Babel is often used with

core-js4, a third-party polyfill library implementing ES6+ built-in

2https://github.com/tc39/test262/tree/aaf4402b4ca9923012e6
3https://babeljs.io/
4https://github.com/zloirock/core-js

functions in ES5.1, we did not use core-js in the evaluation because

it significantly increases code size. For example, the latest core-js

v3.21.1 (February 17, 2022) increases the number of code lines in

harness/sta.js, which is executed before each Test262 test, from

28 to 3,364. Even before analyzing any Test262 test, TAJS and SAFE

failed to analyze harness/sta.js in 60 seconds due to the bloated

code size. As a result, we used Babel without any polyfill libraries;

on average, each transpiled Test262 test is 361.6 lines.

For each test program, we evaluated the soundness of an ana-

lyzer by comparing its analysis result with the final state of the

program in concrete execution. The comparison targets are 1) the

reachability of the exit and the exceptional exit points and 2) primi-

tive values stored in variables and object properties at the exit point.

We checked whether the analyzer over-approximates the expected

values of comparison targets. For example, in the JavaScript pro-

gram, let x = 42; x++;, only the exit point is reachable, and the

variable x points to 43. Thus, the analysis result should cover the

reachability of the exit point and 43 in x for a sound result.

Figure 8 shows the analysis results of existing static analyzers

(TAJS and SAFE) without or with Babel and the derived analyzer

JSAES12 for 18,556 applicable tests. In each chart, the 𝑥-axis denotes

when tests are created, and the 𝑦-axis denotes the number of tests

created before the time. The mark sound (green, filled) denotes a

sound analysis, unsound (red, stripe) an unsound analysis, and error

(white, blank) an unexpected error. Figures 8(a) and 8(b) show that

TAJS and SAFE analyzed most tests created before 2015 in a sound

way. However, the number of tests that they cannot soundly analyze

has consistently increased from 2015. TAJS and SAFE can soundly

analyze only 4,763 (25.7%) and 5,741 (30.9%) programs, respectively.

As depicted in Figures 8(d) and 8(e), Babel mitigates this problem by

transpiling ES6+ features to ES5.1, and it increases the number of

programs soundly analyzed by TAJS and SAFE to 6,942 (37.4%) and

8,462 (45.6%), respectively. However, TAJS and SAFE still cannot

soundly analyze more than half of Test262 test programs. On the

other hand, JSAES12 successfully analyzes all 18,556 applicable test

programs in a sound way, even without Babel.

6.2 Precision

We measured the analysis precision by counting how many com-

parison targets were precisely analyzed. For all applicable 18,556

Test262 test programs, JSAES12 analyzed them with a high analysis

precision of 99.0% in 590 ms on average. Then, we compared its anal-

ysis precision with that of TAJS and SAFE. For a fair comparison,

we measured the analysis precision for 3,878 test programs soundly

analyzable by all of five analyzers: TAJS, TAJS with Babel, SAFE,

SAFE with Babel, and JSAES12. Figure 9(a) depicts the average and

distribution of the analysis precision in violin plots [18]. TAJS and

SAFE analyzed 3,878 test programs with 85.1% and 89.9% precision

on average, respectively. While Babel increased the number of test

programs soundly analyzed by existing analyzers, it decreased the

average analysis precision of TAJS to 84.9% and had no effect on

SAFE. It is due to that Babel transpiles simple ES6+ features into a

more complex combination of ES5 features even though TAJS di-

rectly supports a small part of the ES6 features like arrow functions

or Symbol. However, JSAES12 has the highest analysis precision of

99.5% on average.

1028



ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore Jihyeok Park, Seungmin An, and Sukyoung Ryu

(a) Analysis results of TAJS (b) Analysis results of SAFE (c) Analysis results of JSAES12

(d) Analysis results of TAJS with Babel (e) Analysis results of SAFE with Babel

Figure 8: Analysis results of TAJS and SAFE without and with Babel and JSAES12 for 18,556 applicable tests

(a) The analysis precision (b) The analysis performance

Figure 9: The analysis precision and performance for 3,878

tests soundly analyzable by all of five analyzers

On the other hand, the analysis speed of JSAES12 is slower than

that of TAJS and SAFE, and Figure 9(b) depicts them in violin

plots on a logarithmic scale. TAJS and SAFE took 139 ms and 181

ms, respectively, to analyze 3,878 test programs on average. Babel

increases their average analysis time to 169 ms and 199 ms, respec-

tively, because it transpiles all ES6+ features in test programs to

verbose ES5.1 features. However, JSAES12 took 357 ms on average to

analyze them because JSAVER derives precise abstract semantics for

all language features. On the contrary, TAJS and SAFE developers

often imprecisely or even unsoundly model the abstract semantics

of specific language features to increase the analysis speed. For ex-

ample, TAJS does not discriminate positive/negative infinity values

or positive/negative zeros to reduce the number of possible cases

in abstract values. Similarly, SAFE ignores the semantics of getters

and setters to analyze object property reads quickly.

Table 2: Definitions of three string abstract domains String

Set (SS𝑘 ), Character Inclusion (CI), and Prefix-Suffix (PS)

Domain Definition

SS𝑘

SS𝑘 = {⊤} ∪ {𝑆 ⊆ Σ
∗ | |𝑆 | ≤ 𝑘 }

𝛾 (𝑆 ) = 𝑆
𝑆 · 𝑆 ′ = {𝑠 · 𝑠′ | 𝑠 ∈ 𝑆 ∧ 𝑠′ ∈ 𝑆 ′ }

CI
CI = {⊥} ∪ {[𝐿,𝑈 ] | 𝐿,𝑈 ⊆ Σ ∧ 𝐿 ⊆ 𝑈 }
𝛾 ( [𝐿,𝑈 ] ) = {𝑤 ∈ Σ

∗ | 𝐿 ⊆ chars(𝑤 ) ⊆ 𝑈 }
[𝐿,𝑈 ] · [𝐿′,𝑈 ′ ] = [𝐿 ∪ 𝐿′,𝑈 ∪𝑈 ′ ]

PS
PS = {⊥} ∪ (Σ∗ × Σ

∗ )
𝛾 (⟨𝑝, 𝑠 ⟩) = {𝑝 · 𝑤 | 𝑤 ∈ Σ

∗ } ∩ {𝑤 · 𝑠 | 𝑤 ∈ Σ
∗ }

⟨𝑝, 𝑠 ⟩ · ⟨𝑝′, 𝑠′ ⟩ = ⟨𝑝, 𝑠′ ⟩

1 let x = /* "a" or "b" */;

2 let y = `c${x}d`; // "cad" or "cbd"

3 let z = `${x}e${x}`; // "aea" or "beb"

Figure 10: A JavaScript program using template literals

6.3 Configurability

We demonstrate the configurability of JSAVER with several case

studies for abstract domains and analysis sensitivities. We discuss

how different abstract domains or analysis sensitivities affect anal-

ysis results of JSAES12 with examples.

6.3.1 Abstract Domains. As explained in Section 4.3, we can config-

ure abstract domains for JavaScript values by configuring those for

IRES values. In JavaScript static analysis, researchers have presented

diverse string domains to precisely analyze object property names.

Among them, we implemented three representative string abstract

domains [3]: the String Set (SS𝑘 ) domain, the Character Inclusion
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Figure 11: The Analysis precision of JSAES12 with different

𝑘-callsite-sensitivities for all 18,556 applicable test programs

(CI) domain, and the Prefix-Suffix (PS) domain. Table 2 summarizes

formal definitions of their elements, concretization functions, and

concatenation operations. In the table, Σ denotes a set of charac-

ters, and the set of strings is Vstr = Σ
∗. We analyzed a JavaScript

program in Figure 10 using JSAES12 with different string abstract

domains. The program uses a new language feature introduced

in ES6 called a template literal, which is a literal delimited with

backticks (`), allowing embedded expressions called substitutions.

For example, the template literal `c${x}d` on line 2 concatenates

a string "c", the value in the variable x, and a string "d". Since x

points to "a" or "b" on line 1, the variable y points to "cad" or "cbd".

Similarly, z points to "aea" or "beb" by concatenating x, "e", and x.

First, the String Set (SS𝑘 ) domain represents a set of strings whose

size is bounded by 𝑘 as an abstract string. Therefore, JSAES12 with

SS5 produced the following analysis results:

x ↦→ {"a", "b"}

y ↦→ {"c"} · {"a", "b"} · {"d"} = {"cad", "cbd"}

z ↦→ {"a", "b"} · {"e"} · {"a", "b"} = {"aea", "aeb", "bea", "beb"}

It produced precise analysis results for x and y. However, the result

for z has spurious values "aeb" and "bea" because it does not keep

the information that the left and right strings of "e" are the same.

The Character Inclusion (CI) domain tracks the lower and upper

bounds of characters occurring in strings. The analysis with this

domain produced the following analysis results:

x ↦→ [∅, {a, b}]

y ↦→ [{c}, {c}] · [∅, {a, b}] · [{d}, {d}] = [{c, d}, {a, b, c, d}]

z ↦→ [∅, {a, b}] · [{e}, {e}] · [∅, {a, b}] = [{e}, {a, b, e}]

This domain ignores structures of strings, but it is a cheap abstract

domain to check only the inclusion of characters in strings. For

example, it can say that the string in y always includes c and d, and

the string in z always includes e.

The last domain, Prefix-Suffix (PS) keeps prefixes and suffixes of

strings. JSAES12 produced the following analysis results with PS:

x ↦→ ⟨"", ""⟩

y ↦→ ⟨"c", "c"⟩ · ⟨"", ""⟩ · ⟨"d", "d"⟩ = ⟨"c", "d"⟩

z ↦→ ⟨"", ""⟩ · ⟨"e", "e"⟩ · ⟨"", ""⟩ = ⟨"", ""⟩

This domain is also cheap but focuses on prefixes and suffixes. Thus,

the analysis results cannot say anything about the strings in x or z,

but it says that the string in y starts with "c" and ends with "d".

Therefore, we showed that one can freely configure string ab-

stract domains for JavaScript in the derived analyzer JSAES12.

6.3.2 Analysis Sensitivities. As explained in Section 4.4, we for-

mally define the flow- and 𝑘-callsite-sensitivity for JavaScript using

the AST-sensitivity for IRES. In JSAES12, we can freely configure

the value 𝑘 of the 𝑘-callsite-sensitivity. In Section 6.2, we showed

(a) Syntactic production for the pipeline operator

1 let add = y => x => x + y;

2 let double = z => z * 2;

3 let n = /* any integer from 0 to 99 */;

4 let a = n |> add(1) // [1, 100]

5 |> double; // [2, 200]

6 let b = n |> add(1n) // TypeError for `+`

7 |> unknown; // unreachable

(b) A JavaScript program using the pipeline operator

Figure 12: Syntax and use of the pipeline operator |>

that JSAES12 with the 20-callsite-sensitivity can precisely analyze

18,556 applicable tests in Test262 with a high analysis precision of

99.0%. Now, we analyze them with different 𝑘-callsite-sensitivities

to understand how different 𝑘 values affect the analysis results. We

started from the context-insensitive analysis (𝑘 = 0) and increased

𝑘 of the 𝑘-callsite-sensitivity until their analysis precision is sim-

ilar to that of the 20-callsite-sensitivity as depicted in Figure 11.

As expected, the context-insensitive analysis has the lowest anal-

ysis precision of 52.2%. Then, the analysis precision consistently

increases with a higher 𝑘 value, and it reaches 99.0% when 𝑘 = 4.

Therefore, we showed that one can configure the analysis preci-

sion of JSAES12 by using different𝑘-callsite-sensitivities for JavaScript.

6.4 Adaptability

We evaluated the adaptability of JSAVER using two case studies

with new language features. TC39 maintains proposals for future

language features in GitHub repositories. In the order of the most

GitHub stars, the top three features are the pipeline operator |>5

with 6.1K stars, the pattern matching6 with 4.1K stars, and the

Observable library7 with 2.8K stars. Because the pattern matching

proposal is in an early stage with only basic concepts without

any detailed semantics, we evaluated the adaptability of JSAVER

with two proposals for the pipeline operator |> and the Observable

library.

6.4.1 Pipeline Operator (|>). The pipeline operator is typically sup-

ported in functional programming languages, such as F# and OCaml.

Its behavior is almost the same with a syntactic sugar of a func-

tion call with a single argument. To support this operator, we first

applied its proposal, which contains the syntactic production in

Figure 12(a) and algorithms, to ES12. Then, we derived a JavaScript

static analyzer from the updated ES12 via JSAVER. Finally, we an-

alyzed the example JavaScript program in Figure 12(b) with the

interval domain for integers using the derived analyzer.

First, the derived analyzer successfully analyzes the stored value

in the variable a. The program defines two functions: add receives

a value in y and adds it to the second argument in x, and double

multiplies the argument z by 2. The analyzer first analyzes that the

5https://github.com/tc39/proposal-pipeline-operator
6https://github.com/tc39/proposal-pattern-matching
7https://github.com/tc39/proposal-observable
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1 let x = /* 1 or 2 */;

2 let y = /* any str */;

3 let o = new Observable(subscriber => {

4 subscriber.next (1);

5 subscriber.next (2);

6 subscriber.next (3);

7 });

8 o.subscribe(k => x *= k); // x: 6 or 12

9 o.subscribe(k => y += k); // y: any str + "123"

Figure 13: An example of the Observable built-in library

variable n points to the interval [0, 99] on line 3. Then, the abstract

value is updated to [1, 100] and [2, 200] by analyzing |> add(1)

on line 4 and |> double on line 5, respectively. Therefore, the de-

rived analyzer successfully analyzes that the variable a stores the

interval [2, 200]. The derived analyzer also correctly analyzes the

execution order of the pipeline operator on lines 6ś7. The pipeline

operator first executes the argument part rather than the function

part. Thus, the original program throws a TypeError exception on

line 6 because the addition of the BigInt value 1n with another nu-

meric value is ill-typed. The derived analyzer successfully analyzes

that the program terminates on line 6 with a TypeError exception by

correctly considering the execution order of the pipeline operator.

6.4.2 Observable Library. JSAVER can support not only a new syn-

tactic feature but also a new built-in library. Using the Observable

library, we can model push-based data sources, such as DOM events,

timer intervals, and sockets. Consider an example program in Fig-

ure 13. On lines 1ś2, the program first randomly defines variables

x with 1 or 2 and y with a random string. Then, it registers an ar-

row function subscriber => { ... } to a new Observable object

and assigns it to the variable o on lines 3ś7. On line 8, it subscribes

k => x *= k via subscribe to invoke the registered arrow function.

Then, the arrow function k => x *= k is synchronously invoked

three times with multiple values 1, 2, and 3. Therefore, the variable

x points to 6 or 12 because the initial value of x is 1 or 2, and it

is multiplied by 1, 2, and 3. Similarly, the variable y points to any

string ending with "123" because its initial value is a random string,

and it is updated by concatenating string values of 1, 2, and 3, on

line 9.

To analyze the example program, we applied the proposal of the

Observable library to ES12 and derived a JavaScript static analyzer

from it. We used the interval domain for integers and the Prefix-

Suffix (PS) domain explained in Section 6.3 for strings. On lines 1ś2,

the derived analyzer first assigns [1, 2] and ⟨"", ""⟩ to the variables

x and y, respectively. Then, it assigns the new abstract Observable

object with the arrow function subscriber => { ... } to o by ana-

lyzing the invocation of the constructor of Observable on lines 3ś7.

On line 8, the analyzer analyzes that an arrow function k => x *= k

is subscribed, and the variable x is updated to the interval [6, 12].

Similarly, it analyzes that another arrow function k => y += k is

subscribed on line 9, and the variable y is updated to the abstract

value ⟨"", "123"⟩. Thus, the derived analyzer successfully analyzes

the example program and precisely represents the possible values

of x and y at the end of the program.

6.5 Discussion

In this section, we discuss promising directions for the improvement

of JSAVER and limitations of JISET, the tool used in the extraction of

definitional interpreters from ECMA-262.

6.5.1 Promising Directions of JSAVER. The analyzer JSAES12 auto-

matically derived from ES12 via JSAVER has two directions for

improvement compared to existing hand-written JavaScript static

analyzers.

First, because our approach considers only the semantics de-

scribed in ECMA-262, JSAES12 does not support host environments

such as DOM and Node.js used in modern JavaScript applications.

However, just like existing analyzers, JSAES12 can utilize manual

modeling of host environments to analyze real-world applications.

Second, as described in Section 6.2, JSAES12 is slower than ex-

isting analyzers. While JSAVER derives precise abstract semantics

for all language features, developers of existing analyzers often

model the abstract semantics of specific language features impre-

cisely or even unsoundly to enhance the analysis performance. A

promising direction is to support host environments efficiently,

possibly semi-automatically, and optimize derived analyzers for

better performance and memory use.

6.5.2 Limitations of JISET. In this work, we utilized another tool

JISET to extract a JavaScript definitional interpreter from ECMA-262.

It has two limitations; it 1) covers only about 95% of the algorithm

steps and 2) generates a JavaScript parser slower than hand-written

parsers. Thus, a manual effort is still required for about 5% of the

steps, and JSAVER slows down because of the longer parsing time.

Nevertheless, we believe that JISET significantly reduces the burden

of manual approaches and could generate a faster parser using more

advanced parsing techniques.

7 RELATED WORK

JavaScript Static Analysis. Researchers have proposed JavaScript

static analyzers, such as JSAI [21], SAFE [26, 45], TAJS [20], and

WALA [52], to detect program bugs without concrete execution

and to understand program behaviors. They also presented and

implemented various JavaScript static analysis techniques on these

tools. Since string values of arbitrary expressions can be used in

property accesses, a precise string analysis is more critical for

JavaScript than static analysis for other programming languages.

Thus, several advanced string abstract domains [3, 22, 27, 31] have

been presented for JavaScript. Several researchers presented anal-

ysis techniques [24, 30, 32, 52, 53] to increase imprecise relations

between object properties. Moreover, due to the highly dynamic

nature of JavaScript, static analyzers suffer from heavy computa-

tions as well as imprecise analysis results. Hence, combined analy-

ses [42, 44, 46, 48, 56] with dynamic analyses have been proposed

to enhance analysis performance by leveraging highly optimized

commercial JavaScript engines.

However, all of the existing JavaScript static analyzers cannot

support language features of ES6 or later versions, including let

bindings, arrow functions, generators, and promises. JSAVER re-

solves this problem by automatically deriving JavaScript static ana-

lyzers from language specifications. Xu et al. [58] recently presented

a technique to synthesize data-flow analyzers, but they focused on
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only Java-like languages, and the technique does not guarantee the

soundness of synthesized analyzers. Note that the soundness of the

meta-level static analysis for JavaScript comes from the soundness

of the static analysis for IRES.

Definitional Interpreter. Reynolds [47] first introduced the con-

cept of definitional interpreters to describe the semantics of defined-

languages using their interpreters written in defining-languages.

Darais et al. [12] extended them to a definitional abstract interpreter,

representing the abstract semantics of a defined-language using its

abstract interpreter written in a defining-language. However, unlike

a meta-level static analysis, it directly describes the abstract seman-

tics of the defined-language without using a static analyzer of the

defining-language. Therefore, it still requires manual updates when

the defined-language evolves. For the JavaScript programming lan-

guage, Herman and Flanagan [16] proposed the first definitional

interpreter written in ML to represent the JavaScript semantics.

Then, Bodin et al. [5] manually defined the JavaScript semantics in

JSCert using the Coq proof assistant and extracted a definitional

interpreter from Coq to OCaml. However, they require manual up-

dates when JavaScript evolves. On the other hand, Park et al. [43]

presented JISET, which automatically extracts a JavaScript defini-

tional interpreter from ECMA-262. Because JISET provides a way to

deal with the JavaScript semantics mechanically, researchers have

developed several tools on top of it, such as a test synthesizer [39]

and a specification type analyzer [38]. Similarly, we developed

JSAVER by extending JISET to automatically derive a static analyzer

via a meta-level static analysis for JavaScript.

Automatic Modeling. For JavaScript static analysis, modeling the

behaviors of built-in library functions is essential because their im-

plementations are usually in other programming languages, such

as C++, rather than in JavaScript. Because it is labor-intensive to

manually model them, several researchers [4, 35] utilized type infor-

mation to automatically model them. However, they oversimplify

complex behaviors and miss side-effects. On the other hand, sev-

eral researchers utilized concrete executions to model them using

program synthesis [17] or input/output abstractions [40]. However,

they do not guarantee the soundness of the generated abstract

semantics. Unlike existing approaches, JSAVER automatically trans-

lates the abstract algorithms in ECMA-262 to IRES functions and

utilizes them in JavaScript static analysis. Therefore, the analyzer

derived by JSAVER can soundly analyze the built-in library functions

without any manual modeling.

8 CONCLUSION

The fast evolution and massive size of ECMA-262 make it difficult to

develop and update JavaScript static analyzers manually. To resolve

this problem, we present JSAVER, the first tool that automatically

derives JavaScript static analyzers from the language specifications.

The main idea of JSAVER is to shift the paradigm from compiler-

based approaches to interpreter-based approaches to fully utilize

łthe interpreter-based nature” of JavaScript. It extracts a definitional

interpreter from ECMA-262 and performs a meta-level static analy-

sis to indirectly analyze JavaScript programs using the extracted

interpreter. We also present how to configure abstract domains and

analysis sensitivities for JavaScript indirectly in the meta-level static

analysis. We evaluated JSAVER by using a derived static analyzer

JSAES12 from the latest ECMA-262, ES12. It soundly analyzes all ap-

plicable 18,556 official conformance tests with 99.0% of precision in

590 ms on average. We also demonstrated the configurability and

adaptability of JSAVER with several case studies. We believe that

JSAVER can reduce the burden of defining the abstract semantics of

diverse language features for static analysis of evolving JavaScript.

9 DATA-AVAILABILITY STATEMENT

The source code of JSAVER and the dataset of our study are publicly

available at https://doi.org/10.5281/zenodo.6906415 [37], and the

latest version is maintained as a GitHub repository: https://github.

com/kaist-plrg/jsaver.
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