
Analysis of JavaScript Web Applications
Using SAFE 2.0

Jihyeok Park

KAIST

jhpark0223@kaist.ac.kr

Yeonhee Ryou

KAIST

ryou770@kaist.ac.kr

Joonyoung Park

KAIST

gmb55@kaist.ac.kr

Sukyoung Ryu

KAIST

sryu.cs@kaist.ac.kr

Abstract—JavaScript has been the language for web appli-
cations, and the growing prevalence of web environments in
various devices makes JavaScript web applications even more
ubiquitous. However, because JavaScript and web environments
are extremely dynamic, JavaScript web applications are of-
ten vulnerable to type-related errors and security attacks. To
lessen the problem, researchers have developed various analysis
techniques in different analyzers, but such analyzers are not
especially aimed for ease of use by analysis developers. In this
paper, we present SAFE 2.0, a scalable analysis framework for
ECMAScript especially designed as a playground for advanced
research in JavaScript web applications. SAFE 2.0 is light-weight,
which supports pluggability, extensibility, and debuggability.

Demo video: https://youtu.be/ZI_emiRMoxQ

I. INTRODUCTION

JavaScript has become the language for web applications, but

JavaScript web applications are often vulnerable to program-

mer errors and security attacks. Because JavaScript provides

extremely functional and dynamic features and high portability

with web environments, web developers build web applications

mostly in JavaScript these days. However, the characteristics

that brought the prevalent uses of JavaScript web applications

also introduce difficulties in building correct web applications.

The extremely functional and dynamic features make programs

hard to write correctly and hard to reason about. Also, the

dynamism and portability of web environments make web

applications vulnerable to security attacks.

To help JavaScript developers build correct programs, re-

searchers have developed analyzers that support various analysis

techniques, but they are not especially designed for usability.

SAFE1 [6] is a scalable analysis framework for ECMAScript,

and it has adopted recent research results incrementally. While

more analysis techniques make SAFE more featureful, they

make the code base of SAFE large and complex, which makes

it difficult for new users to understand the code base. TAJS2 [1]

is a dataflow analysis for JavaScript that infers type information

and call graphs. Even though it provides a large collection of

analysis techniques like SAFE, it does not provide a facility

to understand the analysis status during analysis. Similarly

for SAFE, it is not easy for a novice user to extend TAJS to

experiment with new analysis techniques. WALA3 [14] was

1https://github.com/sukyoung/safe/tree/SAFE1.0
2https://github.com/cs-au-dk/TAJS
3http://wala.sourceforge.net/wiki/index.php

originally developed for pointer analysis of Java programs, and

it also supports flow-insensitive pointer analysis of JavaScript

programs. Because WALA aims to support analysis of multiple

programming languages, the source code repository is gigantic

with many packages, which incurs a huge learning curve.

The more advanced analysis techniques are integrated, the

more difficult it is for analyzer users to understand the code

base. For example, SAFE was first designed to analyze pure

JavaScript benchmarks [6]. It provides a default static analyzer

based on the abstract interpretation framework, and it performs

several preprocessing steps on JavaScript code to address

quirky semantics of JavaScript such as the with statement [9].

It was then extended to model web application execution

environments of various browsers [11] with HTML/DOM tree

abstraction, and it supports analysis of interactions between

JavaScript code and native functions in platform-specific

libraries by using automatic modeling of library functions

from API specifications [2]. Recent extensions of SAFE

include aggressive integration of soundy [7] analysis. Instead of

analyzing the entire concrete behaviors of programs, it supports

an analysis of partial programs by using approximate call

graphs from WALA [5]. It also utilizes dynamic information

statically to focus on specific environments like specific browser

versions [12]. The more features are integrated, the more

complicated the SAFE code base gets.

In this paper, we present SAFE 2.04, a playground for

advanced research in JavaScript web applications5. We designed

it to be light-weight, highly parametric, and modular. SAFE 2.0

has the following main features:

• Pluggability: To help developers experiment with analysis

techniques easily, SAFE 2.0 enables analysis sensitivities

and even abstract domains to be selected at run time.

• Extensibility: In order for researchers to implement their

new ideas easily or to reproduce research achievements

from the literature quickly, SAFE 2.0 supports well-

designed APIs for adding new phases or options.

• Debuggability: To aid SAFE 2.0 users to understand and

reason about analysis results easily, it supports HTML
Debugger, which lets users investigate analysis status from

browsers. Users can also test their analysis implementation

with Test262, the official ECMAScript conformance suite.

4https://github.com/sukyoung/safe (BSD license)
5We call SAFE “SAFE 1.0” from now on to distinguish it from SAFE 2.0.

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

DOI 10.1109/ICSE-C.2017.4

59

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.4

59

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.4

59

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.4

59

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.4

59

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.4

59

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.4

59

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.4

59

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.4

59

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.4

59

val commands: List[Command] = List(CmdParse, CmdASTRewrite, CmdCompile, CmdCFGBuild, CmdAnalyze,
CmdBugDetect, CmdHelp)

var phases: List[Phase] = List(Parse, ASTRewrite, Compile, CFGBuild, Analyze, BugDetect, Help)

(a) Add a new command and a new phase to the lists of available commands and phases, respectively, in Safe.scala

case object CmdBugDetect extends CommandObj("bugDetect", CmdAnalyze >> BugDetect)

(b) Add the new command by specifying its name and phases in Command.scala

case object BugDetect extends PhaseObj[(CFG, Int, CallContext), BugDetectConfig, CFG] {
val name: String = "bugDetector"
val help: String = "Detect possible bugs in JavaScript source files."
def defaultConfig: BugDetectConfig = BugDetectConfig()
val options: List[PhaseOption[BugDetectConfig]] = List(
("silent", BoolOption(c => c.silent = true), "messages during analysis are muted.")

)

def apply(in: (CFG, Int, CallContext), safeConfig: SafeConfig, config: BugDetectConfig): Try[CFG] = {
val (cfg, _, _) = in
// Bug detector implementation here.
Success(cfg)

}
}

case class BugDetectConfig(var silent: Boolean = false) extends Config
(c) Implement the new phase in phase/BugDetect.scala

Fig. 2. Extension of SAFE 2.0 with a bug detector [11]

{
"analyzer": {
"callsiteSensitivity": 1

},
"file": ["wikipedia.org.htm"]

}

(a) Specifies selected analysis sensitivity

{
"analyzer": {
"number": "flat",
"maxStrSetSize": 10

},
"file": ["wikipedia.org.htm"]

}

(b) Specifies selected abstract domains

Fig. 1. SAFE 2.0 analysis configuration files in JSON format

II. SAFE 2.0 FEATURES

A. Pluggability

SAFE 2.0 is designed to support selection of analysis

sensitivities and abstract domains at run time. A large body of

research on program analysis has been designing, developing,

and evaluating various analysis techniques like analysis sensi-

tivities and abstract domains. For example, researchers have

evaluated the analysis precision and scalability with different

n for n-depth loop unrolling or different k for k-CFA, which

distinguishes the same function body from its different call

sites using k call history [10]. Moreover, various abstract

domains for JavaScript string analysis have been proposed

such as a regular expression domain [8] and a string automata

domain [4]. However, with existing analyzers, it is not easy to

configure analysis sensitivities and abstract domains without

recompilation of the analyzers.

In order to help analysis researchers experiment with differ-

ent analysis techniques easily, SAFE 2.0 provides APIs that

support pluggable analysis sensitivities and abstract domains.

The APIs enable SAFE 2.0 users to select specific analysis

techniques. For example, while the default abstract domain

for strings in SAFE 2.0 is a string set domain, one can use

a regular expression domain or a string automata domain.

Because specifying various selection as command-line options

multiple times is tedious and error-prone, we provide an easy

way to specify them in a configuration file in JSON format.

The configuration file shown in Figure 1(a) specifies that it

uses the 1-CFA analysis sensitivity, and the one in Figure 1(b)

specifies that it uses a flat number domain and a string set

domain of maximum size 10.

B. Extensibility

Researchers may devise new analysis techniques or they may

want to reproduce analysis results reported in the literature. In

either way, depending on which analysis technique is being

implemented, one may have to add a new phase or it may

suffice to add one option to an existing phase. For example,

when a researcher wanted to add a simple symbolic executor

to SAFE 1.0, the researcher had to modify many functions in

different files without much help from API functions. In order

to add a command, a phase, an option, a help message, and

an implementation of the new functionality, the researcher had

to understand many low-level details of SAFE 1.0.

Based on our own painful experiences, we revamped the

structures of the main SAFE 2.0 driver, commands, phases,

options, and configurations, and provide well-designed APIs

60606060606060606060

(a) Use of dynamic heap information to reduce false positives [12]

def addSnapshot(st: AbsState,
snapshot: String): AbsState = {

val concreteHeap = Heap.parse(snapshot)
val abstractHeap = AbsHeap.alpha(concreteHeap)
AbsState(st.heap + abstractHeap, st.context)

}
(b) Implement the new technique

("snapshot",
StrOption((c, s) => c.snapshot = Some(s)),
"analysis with an initial heap generated \
from a dynamic snapshot(*.json)."),

config.snapshot.map(str =>
initSt = Initialize.addSnapshot(initSt, str))

(c) Add a new option in Analyze.scala

Fig. 3. Extension of SAFE 2.0 with dynamic heap information [12]

for adding new commands, phases, and options. For example,

when we extended SAFE 2.0 with a bug detector [11], all

we had to do was to make small modifications in two files

and to implement the bug detector. Figure 2(a) shows how

we added a new command CmdBugDetect and a new phase

BugDetect in the main driver file Safe.scala. Figure 2(b)

presents that we added the new command CmdBugDetect

with a name bugDetect and its phases CmdAnalyze >>

BugDetect, which denotes that the new phase BugDetect is

added to the end of the phases of the command CmdAnalyze.

Then, Figure 2(c) shows the implementation of the bug detector.

While the actual implementation is omitted, simply providing

its name, help message, configuration, and possible options

all in one single file is enough for SAFE 2.0 to plug the

information into appropriate places. In this way, users do not

need to understand how SAFE 2.0 handles commands, phases,

options, and help messages, but they can simply specify what

they are for the new command.

Figure 3 illustrates another example extending SAFE 2.0

with dynamic heap information as specified in the literature [12].

The technique is to capture the initial concrete heap for each

browser called snapshot, to transform it to its corresponding

abstract heap, to merge the resulting abstract heap with the

default initial heap, and to use the merged heap for the analysis.

Thus, the implementation of the technique consists of two parts:

a capturing app of dynamic heap, and code that transforms

the captured dynamic heap to an abstract heap and merges

it with another abstract heap. By using a browser-specific

information instead of a sound approximation of all browsers,

the technique reduces many false positives from analysis results.

When applying the technique to SAFE 2.0, we had to implement

only Heap.parse that parses a snapshot and constructs a

concrete heap in SAFE 2.0, and we could reuse the capturing

app in tact and existing SAFE 2.0 APIs for the remaining

tasks. As Figure 3(b) shows, for a given snapshot from the

capturing app, Heap.parse constructs a concrete heap from

the snapshot. Then, we can use the existing abstraction function

for heaps AbsHeap.alpha and the join operation on heaps

+ in SAFE 2.0. As Figure 3(c) shows, one can add a new

technique to the existing analysis by simply adding one option.

C. Debuggability

While many programming language environments provide

debugging facilities, most static analysis frameworks do not

provide such utilities for analysis developers. Because under-

standing and reasoning about analysis status are extremely

difficult, tracking the causes of analysis imprecision is one

of the active research topics. However, existing JavaScript

analyzers are still in pre-mature stages. SAFE 1.0 provides a

console debugger, which allows users to investigate the analysis

status during analysis with stepwise execution of the underlying

analyzer. It indeed helps SAFE 1.0 users debug the analyzer

behaviors, but it lacks documentation and it requires knowledge

of the underlying analyzer.

To help SAFE 2.0 users to easily understand and reason

about analysis results, it now supports HTML Debugger, which

enables users to investigate analysis status from browsers.

During analysis, a user can write the current analysis status into

an HTML file and investigate it from a browser as illustrated

in Figure 4. It shows the current CFG in the middle. Nodes in

black lines denote the blocks that are analyzed, those in gray

lines denote the blocks not yet being analyzed, and colored

nodes denote the blocks that are currently in the worklist of

the analyzer. One can toggle whether to show the nodes in

the worklist by the menu button on the top right. When a user

selects a block from the CFG, the list of the instructions in

the block and the state just before analyzing the block are

displayed on the left.

SAFE 2.0 has been tested using Test262, the official

ECMAScript conformance suite6, which helped us find and fix

bugs in our modeling of builtin functions specified in chapter

15 of the ECMAScript specification [3]. Our regression test

suite checks whether the analysis results soundly approximate

their corresponding concrete values. It also measures how

many tests are being analyzed precisely. This test infrastructure

with Test262 will aid SAFE 2.0 users who build new analysis

techniques to “test” the soundness and precision of their new

analysis implementation.

6https://github.com/tc39/test262

61616161616161616161

Fig. 4. HTML Debugger

III. FUTURE DIRECTIONS

Since the release of SAFE 2.0 in early October 2016 [13], we

have been extending SAFE 2.0 with various features. Among

others, the following features will be supported in near future:

• Easier addition of sensitivities

• More support for abstract domain APIs

• Improvements in HTML Debugger
We are working on integration of the SAFE 2.0 analyzer

and HTML Debugger, which would allow stepwise execu-

tion and more interactive debugging from browsers. We

plan to use a database for analysis results for scalability.

In addition, we plan to provide basic modeling supports for

HTML/DOM tree abstraction and the jQuery library, which

has more than 90% of market share. We believe SAFE 2.0 will

let us explore more easily the remaining challenges in analysis

of JavaScript web applications like event handling, modeling

framework, and compositional analysis.

IV. CONCLUSION

We present SAFE 2.0, a tool that analyzes JavaScript web

applications with supports for analyzer users in mind. On top

of the well-tested core features of SAFE 2.0 based on the

prior experiences from building SAFE 1.0, it also provides

mechanisms for analysis developers to experiment with their

novel ideas without too much implementation burden. It allows

users to specify target phases and options in a declarative

manner, which can configure even abstract domains and

analysis sensitivities. Analyzer developers can add new analysis

techniques into SAFE 2.0 without too much understanding of

the implementation details of SAFE 2.0 via its extensible APIs.

Finally, SAFE 2.0 provides a debugging support for analysis

developers with visualization and interactive investigation of the

analysis status. The tool was motivated by the pain the authors

themselves experienced with SAFE 1.0, which was greatly

relieved by the HTML Debugger. Also, analysis developers can

test their new analysis techniques with extensive Test262, the

official ECMAScript conformance suite.

REFERENCES

[1] E. Andreasen and A. Møller. Determinacy in static analysis for jQuery.
In Proceedings of OOPSLA, 2014.

[2] S. Bae, H. Cho, I. Lim, and S. Ryu. SAFEWAPI: Web API misuse
detector for web applications. In Proceedings of FSE. ACM, 2014.

[3] ECMA. ECMA-262: ECMAScript Language Specification. Edition 5.1,
2011.

[4] S.-W. Kim, W. Chin, J. Park, J. Kim, and S. Ryu. Inferring grammatical
summaries of string values. In Proceedings of APLAS, pages 372–301.
Springer International Publishing, 2014.

[5] Y. Ko, H. Lee, J. Dolby, and S. Ryu. Practically tunable static analysis
framework for large-scale JavaScript applications. In Proceedings of
ASE, pages 541–551. IEEE, 2015.

[6] H. Lee, S. Won, J. Jin, J. Cho, and S. Ryu. SAFE: Formal specification
and implementation of a scalable analysis framework for ECMAScript.
In Proceedings of FOOL, 2012.

[7] B. Livshits, M. Sridharan, Y. Smaragdakis, O. Lhoták, J. N. Amaral, B.-
Y. E. Chang, S. Z. Guyer, U. P. Khedker, A. Møller, and D. Vardoulakis.
In defense of soundiness: A manifesto. Communication of ACM, 58(2):44–
46, 2015.

[8] C. Park, H. Im, and S. Ryu. Precise and scalable static analysis of jQuery
using a regular expression domain. In Proceedings of DLS, pages 25–36.
ACM, 2016.

[9] C. Park, H. Lee, and S. Ryu. All about the with statement in JavaScript:
Removing with statements in JavaScript applications. In Proceedings
of DLS, pages 73–84. ACM, 2013.

[10] C. Park and S. Ryu. Scalable and precise static analysis of JavaScript
applications via loop-sensitivity. In Proceedings of the European
Conference on Object-Oriented Programming, 2015.

[11] C. Park, S. Won, J. Jin, and S. Ryu. Static analysis of JavaScript web
applications in the wild via practical DOM modeling. In Proceedings of
ASE, 2015.

[12] J. Park, I. Lim, and S. Ryu. Battles with false positives in static analysis
of JavaScript web applications in the wild. In Proceedings of ICSE,
pages 61–70. ACM, 2016.

[13] J. Park, Y. Ryou, and S. Ryu. Safe 2.0 is now avail-
able! https://www.mail-archive.com/types-announce@lists.seas.upenn.
edu/msg05947.html.

[14] M. Schäfer, M. Sridharan, J. Dolby, and F. Tip. Dynamic determinacy
analysis. In Proceedings of PLDI, 2013.

62626262626262626262

