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Abstract—Modern programming follows the continuous inte-
gration (CI) and continuous deployment (CD) approach rather
than the traditional waterfall model. Even the development of
modern programming languages uses the CI/CD approach to
swiftly provide new language features and to adapt to new devel-
opment environments. Unlike in the conventional approach, in the
modern CI/CD approach, a language specification is no more the
oracle of the language semantics because both the specification
and its implementations (interpreters or compilers) can co-evolve.
In this setting, both the specification and implementations may
have bugs, and guaranteeing their correctness is non-trivial.

In this paper, we propose a novel N+1-version differential
testing to resolve the problem. Unlike the traditional differential
testing, our approach consists of three steps: 1) to automatically
synthesize programs guided by the syntax and semantics from a
given language specification, 2) to generate conformance tests by
injecting assertions to the synthesized programs to check their
final program states, 3) to detect bugs in the specification and
implementations via executing the conformance tests on multiple
implementations, and 4) to localize bugs on the specification
using statistical information. We actualize our approach for the
JavaScript programming language via JEST, which performs
N+1-version differential testing for modern JavaScript engines
and ECMAScript, the language specification describing the
syntax and semantics of JavaScript in a natural language. We
evaluated JEST with four JavaScript engines that support all
modern JavaScript language features and the latest version of
ECMAScript (ES11, 2020). JEST automatically synthesized 1,700
programs that covered 97.78% of syntax and 87.70% of semantics
from ES11. Using the assertion-injected JavaScript programs,
it detected 44 engine bugs in four different engines and 27
specification bugs in ES11.

Index Terms—JavaScript, conformance test generation, mech-
anized specification, differential testing

I. INTRODUCTION

In Peter O’Hearn’s keynote speech in ICSE 2020, he quoted
the following from Mark Zuckerberg’s Letter to Investors [1]:

The Hacker Way is an approach to building that in-
volves continuous improvement and iteration. Hack-
ers believe that somethings can always be better, and
that nothing is ever complete.

Indeed, modern programming follows the continuous integra-
tion (CI) and continuous deployment (CD) approach [2] rather
than the traditional waterfall model. Instead of a sequential
model that divides software development into several phases,
each of which takes time, CI/CD amounts to a cycle of quick

software development, deployment, and back to development
with feedback. Even the development of programming lan-
guages uses the CI/CD approach.

Consider JavaScript, one of the most widely used pro-
gramming languages for client-side and server-side program-
ming [3] and embedded systems [4]–[6]. Various JavaScript
engines provide diverse extensions to adapt to fast-changing
user demands. At the same time, ECMAScript, the offi-
cial specification that describes the syntax and semantics of
JavaScript, is annually updated since ECMAScript 6 (ES6,
2015) [7] to support new features in response to user demands.
Such updates in both the specification and implementations in
tandem make it difficult for them to be in sync.

Another example is Solidity [8], the standard smart contract
programming language for the Ethereum blockchain. The
Solidity language specification is continuously updated, and
the Solidity compiler is also frequently released. According to
Hwang and Ryu [9], the average number of days between
consecutive releases from Solidity 0.1.2 to 0.5.7 is 27. In
most cases, the Solidity compiler reflects updates in the
specification, but even the specification is revised according to
the semantics implemented in the compiler. As in JavaScript,
bidirectional effects in the specification and the implementa-
tion make it hard to guarantee their correspondence.

In this approach, both the specification and the implemen-
tation may contain bugs, and guaranteeing their correctness
is a challenging task. The conventional approach to build
a programming language is uni-directional from a language
specification to its implementation. The specification is be-
lieved to be correct and the conformance of an implementation
to the specification is checked by dynamic testing. Unlike in
the conventional approach, in the modern CI/CD approach,
the specification may not be the oracle, because both the
specification and the implementation can co-evolve.

In this paper, we propose a novel N+1-version differential
testing, which enables testing of co-evolving specifications
and their implementations. The differential testing [10] is a
testing technique, which executes N implementations of a
specification concurrently for each input, and detects a prob-
lem when the outputs are in disagreement. In addition to N
implementations, our approach tests the specification as well
using a mechanized specification. Recently, several approaches
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to extract syntax and semantics directly from language specifi-
cations are presented [11]–[13]. We utilize them to bridge the
gap between specifications and their implementations through
conformance tests generated from mechanized specifications.
The N+1-version differential testing consists of three steps: 1)
to automatically synthesize programs guided by the syntax and
semantics from a given language specification, 2) to generate
conformance tests by injecting assertions to the synthesized
programs to check their final program states, 3) to detect
bugs in the specification and implementations via executing
the conformance tests on multiple implementations, and 4) to
localize bugs on the specification using statistical information.

Given a language specification and N existing real-world
implementations of the specification, we automatically gen-
erate a conformance test suite from the specification with
assertions in each test code to make sure that the result of
running the code conforms to the specification semantics.
Then, we run the test suite for N implementations of the
specification. Because generated tests strictly comply with the
specification, they reflect specification errors as well, if any.
When one of the implementations fails in running a test, the
implementation may have a bug, as in the differential testing.
When most of the implementations fail in running a test, it is
highly likely that the specification has a bug. By automatically
generating a rich set of test code from the specification and
running them with implementations of the specification, we
can find and localize bugs either in the specification written
in a natural language or in its implementations.

To show the practicality of the proposed approach, we
present JEST, which is a JavaScript Engines and Specification
Tester using N+1-version differential testing. We implement
JEST by extending JISET [11], a JavaScript IR-based se-
mantics extraction toolchain, to utilize the syntax and se-
mantics automatically extracted from ECMAScript. Using the
extracted syntax, our tool automatically synthesizes initial
seed programs and expands the program pool by mutating
specific target programs guided by semantics coverage. Then,
the tool generates conformance tests by injecting assertions to
synthesized programs. Finally, JEST detects and localizes bugs
using execution results of the tests on N JavaScript engines.
We evaluate our tool with four JavaScript engines (Google V8
[14], GraalJS [15], QuickJS [16], and Moddable XS [17]) that
support all modern JavaScript language features and the latest
ECMAScript (ES11, 2020).

The main contributions of this paper include the following:
• Present N+1-version differential testing, a novel solution

to the new problem of co-evolving language specifica-
tions and their implementations.

• Implement N+1-version differential testing for JavaScript
engines and ECMAScript as a tool called JEST. It is
the first tool that automatically generates conformance
tests for JavaScript engines from ECMAScript. While
the coverage of Test262, the official conformance tests,
is 91.61% for statements and 82.91% for branches, the
coverage of the conformance tests generated by the tool
is 87.70% for statements and 78.30% for branches.

(a) The Abstract Equality Comparison abstract algorithm in ES11

// JavaScript engines: exception with "err"
// ECMAScript (ES11) : result === false
var obj = { valueOf: () => { throw "err"; } };
var result = 42 == obj;

(b) JavaScript code using abstract equality comparison

try {
var obj = { valueOf: () => { throw "err"; } };
var result = 42 == obj;
assert(result === false);

} catch (e) {
assert(false);

}

(c) JavaScript code with injected assertions

Fig. 1: Abstract algorithm in ES11 and code example using it

• Evaluate JEST with four modern JavaScript engines
and the latest ECMAScript, ES11. Using the generated
conformance test suite, the tool found and localized 44
engine bugs in four different engines and 27 specification
bugs in ES11.

II. N+1-VERSION DIFFERENTIAL TESTING

This section introduces the core concept of N+1-version
differential testing with a simple running example. The overall
structure consists of two phases: a conformance test generation
phase and a bug detection and localization phase.

A. Main Idea

Differential testing utilizes the cross-referencing oracle,
which is an assumption that any discrepancies between pro-
gram behaviors on the same input could be bugs. It compares
the execution results of a program with the same input on N
different implementations. When an implementation produces
a different result from the one by the majority of the imple-
mentations, differential testing reports that the implementation
may have a bug.

On the contrary, N+1-version differential testing utilizes not
only the cross-referencing oracle using multiple implementa-
tions but also a mechanized specification. It first generates test
code from a mechanized specification, and tests N different
implementations of the specification using the generated test
code as in differential testing. In addition, it can detect possible
bugs in the specification as well when most implementations
fail for a test. In such cases, because a bug in the specification
could be triggered by the test, it localizes the bug using
statistical information as we explain later in this section.
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Fig. 2: Overall structure of N+1-version differential testing for N implementations (engines) and one language specification

B. Running Example
We explain how N+1-version differential testing works with

a simple JavaScript example shown in Figure 1.
Figure 1(a) is an excerpt from ECMAScript 2020 (ES11),

which shows some part of the Abstract Equality Compar-
ison abstract algorithm. It describes the semantics of non-
strict equality comparison such as == and !=. For example,
null == undefined is true because of the algorithm step 2.
According to the steps 10 and 11, if the type of a value is
String, Number, BigInt, or Symbol, and the type of the other
value is Object, the algorithm calls ToPrimitive to convert
the JavaScript object to a primitive value. Note that this is a
specification bug caused by unhandled abrupt completions! To
express control diverters such as exceptions, break, continue,
return, and throw statements in addition to normal values,
ECMAScript uses “abrupt completions.” ECMAScript anno-
tates the question mark prefix (?) to all function calls that
may return abrupt completions to denote that they should be
checked. However, even though ToPrimitive can produce an
abrupt completion, the calls of ToPrimitive in steps 10 and
11 do not use the question mark, which is a bug.

Now, let’s see how N+1-version differential testing can
detect the bug in the specification. Consider the example
JavaScript code in Figure 1(b), which triggers the above
specification bug. In the Abstract Equality Comparison algo-
rithm, variables x and y respectively denote 42 and an object
with a property named valueOf whose value is a function
throwing an error. Step 10 calls ToPrimitive with the object as
its argument, and the call returns an abrupt completion because
the call of valueOf throws an error. However, because the call
of ToPrimitive in step 10 does not use the question mark, the
specification semantics silently ignores the abrupt completion
and returns false as the result of comparison. Using the
specification semantics, we can inject assertions to check that
the code does not throw any errors as shown in Figure 1(c).
Then, by running the code with the injected assertions on N
JavaScript engines, which throw errors, we can find that the
specification may have a bug. Moreover, we can localize the
bug using statistical information: because most conformance
tests that go through steps 10 and 11 of the algorithm would
fail in most of JavaScript engines, we can use the information
to localize the bug in the steps 10 and 11 of Abstract Equality
Comparison with high probability.

C. Overall Structure

Figure 2 depicts the overall structure of N+1-version dif-
ferential testing for N different implementations (engines) and
one language specification. It takes a mechanized specification
extracted from a given language specification, it first performs
the conformance test generation phase, which automatically
generates conformance tests that reflect the language syntax
and semantics described in the specification. Then, it performs
the bug detection and localization phase, which detects and
localizes bugs in the engines or the specification by comparing
the results of the generated tests on N engines.

The functionalities of each module in the overall structure
are as follows:

1) Seed Synthesizer: The first module of the conformance
test generation phase is Seed Synthesizer, which synthesizes
an initial seed programs using the language syntax. Its main
goal is to synthesize (1) a few number of (2) small-sized
programs (3) that cover possible cases in the syntax rules as
many as possible.

2) Target Selector: Starting from the seed programs gener-
ated by Seed Synthesizer as the initial program pool, Target
Selector selects a target program in the program pool that
potentially increases the coverage of the language semantics by
the pool. From the selected target program, Program Mutator
constructs a new mutated program and adds it to the program
pool. When specific criteria, such as an iteration limit, are
satisfied, Target Selector stops selecting target programs and
returns the program pool as its result.

3) Program Mutator: The main goal of Program Mutator is
to generate a new program by mutating a given target program
in order to increase the coverage of the language semantics
by the program pool. If it fails to generate a new program
to increase the semantics coverage, Target Selector retries to
select a new target program and repeats this process less than
a pre-defined iteration limit.

4) Assertion Injector: Finally, the conformance test gen-
eration phase modifies the programs in the pool to generate
conformance tests by injecting appropriate assertions reflecting
the semantics described in the specification. More specifically,
Assertion Injector executes each program in the pool on the
mechanized specification and obtains the final state of its exe-
cution. It then automatically injects assertions to the program
using the final state.
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Algorithm 1: Worklist-based Shortest String
Input: R - syntax reduction rules
Output: M - map from non-terminals to shortest

strings derivable from them
Function shortestStrings(R):

M = ∅,W = a queue that contains R
while W 6= ∅ do

pop (A,α)←W
if update(A,α) then propagate(W,R, A)

Function update(A,α):
str = an empty string
forall s ∈ α do

if s is a terminal t then str = str + t
else if s is a non-terminal A′ ∧A′ ∈M then

str = str +M [A′]

else return false

if ∃M [A] ∧ ||str|| ≥ ||M [A]|| then return false
M [A] = str
return true

Function propagate(W,R, A):
forall (A′, α′) ∈ R do

if A ∈ α′ then push (A′, α′)→W

5) Bug Localizer: Then, the second phase executes the
conformance tests on N engines and collects their results.
For each test, if a small number of engines fail, it reports
potential bugs in the engines that fail the test. Otherwise,
it reports potential bugs in the specification. In addition, its
Bug Localizer module uses Spectrum Based Fault Localization
(SBFL) [18], a localization technique utilizing the coverage
and pass/fail results of test cases, to localize potential bugs.

III. N+1-VERSION DIFFERENTIAL TESTING FOR
JAVASCRIPT

We actualize N+1-version differential testing for the
JavaScript programming language as JEST, which uses mod-
ern JavaScript engines and ECMAScript.

A. Seed Synthesizer

JEST synthesizes seed programs using two synthesizers.
1) Non-Recursive Synthesizer: The first synthesizer aims to

cover as many syntax cases as possible in two steps: 1) to find
the shortest string for each non-terminal and 2) to synthesize
JavaScript programs using the shortest strings. For presen-
tation brevity, we explain simple cases like terminals and
non-terminals, but the implementation supports the extended
grammar of ECMAScript such as parametric non-terminals,
conditional alternatives, and special terminal symbols.

The shortestStrings function in Algorithm 1 shows the
first step. We modified McKenize’s algorithm [19] that finds
random strings to find the shorted string. It takes syntax reduc-
tion rules R, a set of pairs of non-terminals and alternatives,

Algorithm 2: Non-Recursive Synthesize
Input: R - syntax reduction rules, S - start symbol
Output: D - set of strings derivable from S
Function nonRecSynthesize(R, S):

V = ∅,M = shortestStrings(R)
return getProd(M,V,R, S)

Function getProd(M,V,R, A):
if A ∈ V then return {M [A]}
D = ∅, V = V ∪ {A}
forall (A′, α) ∈ R s.t. A′ = A do

D = D ∪ getAlt(M,V,R, A, α)
return D

Function getAlt(M,V,R, A, α):
L = an empty list
forall s ∈ α do

if s is a terminal t then
append ({t}, t) to L

else if s is a non-terminal A′ then
append (getProd(M,V,R, A′),M [A]) to L

D = point-wise concatenation of first elements of
pairs in L using second elements as default ones.

return D

and returns a map M from non-terminals to shortest strings
derivable from them. It utilizes a worklist W , a queue structure
that includes syntax reduction rules affected by updated non-
terminals. The function initializes the worklist W with all the
syntax reduction rules R. Then, for a syntax reduction rule
(A,α), it updates the map M via the update function, and
propagates updated information via the propagate function.
The update function checks whether a given alternative α of
a non-terminal A can derive a string shorter than the current
shortest one using the current map M . If possible, it stores the
mapping from the non-terminal A to the newly found shortest
string in M and invokes propagate. The propagate function
finds all the syntax reduction rules whose alternatives contain
the updated non-terminal A and inserts them into W . The
shortestStrings function repeats this process until the worklist
W becomes empty.

Using shortest strings derivable from non-terminals, the
nonRecSynthesize function in Algorithm 2 synthesize pro-
grams. It takes syntax reduction rules R and a start symbol S.
For the first visit with a non-terminal A, the getProd function
returns strings generated by getAlt with alternatives of the
non-terminal A. For an already visited non-terminal A, it
returns the single shortest string M [A]. The getAlt function
takes a non-terminal A with an alternative α and returns a set
of strings derivable from α via point-wise concatenation of
strings derived by symbols of α. When the numbers of strings
derived by symbols are different, it uses the shortest strings
derived by symbols as default strings.

For example, Figure 3 shows a simplified MemberExpres-
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Fig. 3: The MemberExpression production in ES11

sion production in ES11. For the first step, we find the shortest
string for each non-terminal: () for Arguments and x for the
other non-terminals. Note that we use pre-defined shortest
strings for identifiers and literals such as x for identifiers and
0 for numerical literals. In the next step, we synthesize strings
derivable from MemberExpression. The first alternative is a
single non-terminal PrimaryExpression, which is never visited.
Thus, it generates all cases of PrimaryExpression. The fourth
alternative consists of one terminal new and two non-terminals
MemberExpression and Arguments. Because MemberExpres-
sion is already visited, it generates a single shortest string x.
For the first visit of Arguments, it generates all cases: (), (x),
(...x), and (x,). Note that the numbers of strings generated
for symbols are different. In such cases, we use the shortest
strings for symbols like x for MemberExpression as follows:

2) Built-in Function Synthesizer: JavaScript supports di-
verse built-in functions for primitive values and built-in ob-
jects. To synthesize JavaScript programs that invoke built-
in functions, we extract the information of each built-in
function from the mechanized ECMAScript. We utilize the
Function.prototype.call function to invoke built-in func-
tions to easily handle the this object in Program Mutator;
we use a corresponding object or null as the this object by
default. In addition, we synthesize function calls with optional
and variable number of arguments and built-in constructor
calls with the new keyword.

Consider the following Array.prototype.indexOf function
for JavaScript array objects that have a parameter searchEle-
ment and an optional parameter fromIndex:

the synthesizer generates the following calls with an array
object or null as the this object as follows:

Array.prototype.indexOf.call(new Array(), 0);
Array.prototype.indexOf.call(new Array(), 0, 0);
Array.prototype.indexOf.call(null, 0);
Array.prototype.indexOf.call(null, 0, 0);

Moreover, Array is a built-in function and a built-in construc-
tor with a variable number of arguments. Thus, we synthesize
the following six programs for Array:

Array(); Array(0); Array(0, 0);
new Array(); new Array(0); new Array(0, 0);

B. Target Selector

From the synthesized programs, Target Selector selects a
target program to mutate to increase the semantics coverage
of the program pool. Consider the Abstract Equality Com-
parison algorithm in Figure 1(a) again where the first step has
the condition “If Type(x) is the same as Type(y).” Assuming
that the current pool has the following three programs:

1 + 2; true == false; 0 == 1;

because later two programs that perform comparison have
values of the same type, the pool covers only the true
branch of the condition in the algorithm. To cover its false
branch, Target Selector selects any program that covers the true
branch like true == false; and Program Mutator mutates it to
42 == false; for example. Then, since the mutated program
covers the false branch, the pool is extended as follows:

1 + 2; true == false; 0 == 1; 42 == false;

which now covers more steps in the algorithm. This process
repeats until the semantics coverage converges.

C. Program Mutator

JEST increases the semantics coverage of the program pool
by mutating programs using five mutation methods randomly.

1) Random Mutation: The first naı̈ve method is to ran-
domly select a statement, a declaration, or an expression
in a given program and to replace it with a randomly se-
lected one from a set of syntax trees generated by the non-
recursive synthesizer. For example, it may mutate a program
var x = 1 + 2; by replacing its random expression 1 with a
random expression true producing var x = true + 2;.

2) Nearest Syntax Tree Mutation: The second method tar-
gets uncovered branches in abstract algorithms. When only
one branch is covered by a program, it finds the nearest syntax
tree in the program that reaches the branch in the algorithm,
and replaces the nearest syntax tree with a random syntax
tree derivable from the same syntax production. For example,
consider the following JavaScript program:

var x = "" + (1 == 2);

While it covers the false branch of the first step of Abstract
Equality Comparison in Figure 1(a), assume that no program
in the program pool can cover its true branch. Then, the
mutator targets this branch, finds its nearest syntax tree 1 == 2

in the program, and replaces it with a random syntax tree.
3) String Substitutions: We collect all string literals used in

conditions of the algorithms in ES11 and use them for random
expression substitutions. Because most string literals in the
specification represent corner cases such as -0, Infinity, and
NaN, they are necessary for mutation to increase the semantics
coverage. For example, the semantics of the [[DefineOwn-
Property]] internal method of array exotic objects depends on
whether the value of its parameter P is "length" or not.
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4) Object Substitutions: We also collect string literals
and symbols used as arguments of object property access
algorithms in ES11, randomly generate objects using them,
and replace random expressions with the generated objects.
Because some abstract algorithms in the specification access
object properties using HasProperty, GetMethod, Get, and
OrdinaryGetOwnProperty, objects with such properties are
necessary for mutation to achieve high coverage. Thus, the
mutator mutates a randomly selected expression in a program
with a randomly generated object that has properties whose
keys are from collected string literals and symbols.

5) Statement Insertion: To synthesize more complex pro-
grams, the mutator inserts random statements at the end of
randomly selected blocks like top-level code and function bod-
ies. We generate random statements using the non-recursive
synthesizer with pre-defined special statements. The special
statements are control diverters, which have high chances
of changing execution paths, such as function calls, return,
break, and throw statements. The mutator selects special state-
ments with a higher probability than the statements randomly
synthesized by the non-recursive synthesizer.

D. Assertion Injector

After generating JavaScript programs, Assertion Injector
injects assertions to them using their final states as specified in
ECMAScript. It first obtains the final state of a given program
from the mechanized specification and injects seven kinds
of assertions in the beginning of the program. To check the
final state after executing all asynchronous jobs, we enclose
assertions with setTimeout to wait 100 ms when a program
uses asynchronous features such as Promise and async:

... /* a given program */
setTimeout(() => { ... /* assertions */ }, 100)

1) Exceptions: JavaScript supports both internal exceptions
like SyntaxError and TypeError and custom exceptions with
the keyword throw. Note that catching such exceptions using
the try-catch statement may change the program semantics.
For example, the following does not throw any exception:

var x; function x() {}

but the following:

try { var x; function x() {} } catch (e) {}

throws SyntaxError because declarations of a variable and a
function with the same name are not allowed in try-catch.

To resolve this problem, we exploit a comment in the first
line of a program. If the program throws an internal exception,
we tag its name in the comment. Otherwise, we tag //Throw

for a custom exception and //Normal for normal termination.
Using the tag in the comment, JEST checks the execution
result of a program in each engine.

2) Aborts: The mechanized semantics of ECMAScript can
abort due to unspecified cases. For example, consider the
following JavaScript program:

var x = 42; x++;

The postfix increment operator (++) increases the number value
stored in the variable x. However, because of a typo in the
Evaluation algorithm for such update expressions in ES11, the
behavior of the program is not defined in ES11. To represent
this situation in the conformance test, we tag Abort in the
comment as follows:

// Abort
var x = 42; x++;

3) Variable Values: We inject assertions that compare the
values of variables with expected values. To focus on variables
introduced by tests, we do not check the values of pre-defined
variables like built-in objects. For numbers, we distinguish
-0 from +0 using division by zero because 1/-0 and 1/+0

produce negative and positive infinity values, respectively. The
following example checks whether the value of x is 3:

var x = 1 + 2;
$assert.sameValue(x, 3);

4) Object Values: To check the equality of object values,
we keep a representative path for each object. If the injector
meets an object for the first time, it keeps the current path
of the object as its representative path and injects assertions
for the properties of the object. Otherwise, the injector adds
assertions to compare the values of the objects with the current
path and the representative path. In the following example:

var x = {}, y = {}, z = { p: x, q: y };
$assert.sameValue(z.p, x);
$assert.sameValue(z.q, y);

because the injector meets two different new objects stored in
x and y, it keeps the paths x and y. Then, the object stored
in z is also a new object but its properties z.p and z.q store
already visited objects values. Thus, the injector inserts two
assertions that check whether z.p and x have the same object
value and z.q and y as well. To handle built-in objects, we
store all the paths of built-in objects in advance.

5) Object Properties: Checking object properties involves
checking four attributes for each property. We implement
a helper $verifyProperty to check the attributes of each
property for each object. For example, the following code
checks the attributes of the property of x.p:

var x = { p: 42 };
$verifyProperty(x, "p", {

value: 42.0, writable: true,
enumerable: true, configurable: true

});

6) Property Keys: Since ECMAScript 2015 (ES6), the
specification defines orders between property keys in objects.
We check the order of property keys by Reflect.ownKeys,
which takes an object and returns an array of the object’s
property keys. We implement a helper $assert.compareArray
that takes two arrays and compares their lengths and contents.
For example, the following program checks the property keys
and their order of the object in x:
var x = {[Symbol.match]: 0, p: 0, 3: 0, q: 0, 1: 0}
$assert.compareArray(

Reflect.ownKeys(x),
["1", "3", "p", "q", Symbol.match]

);
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7) Internal Methods and Slots: While internal methods and
slots of JavaScript objects are generally inaccessible by users,
the names in the following are accessible by indirect getters:

Name Indirect Getter
[[Prototype]] Object.getPrototypeOf(x)
[[Extensible]] Object.isExtensible(x)
[[Call]] typeof f === "function"
[[Construct]] Reflect.construct(function(){},[],x)

The internal slot [[Prototype]] represents the prototype
object of an object, which is available by a built-in function
Object.getPrototypeOf. The internal slot [[Extensible]] is
also available by a built-in function Object.isExtensible.
The internal methods [[Call]] and [[Construct]] represent
whether a given object is a function and a constructor, re-
spectively. Because the methods are not JavaScript values, we
simply check their existence using helpers $assert.callable

and $assert.constructable. For [[Call]], we use the typeof

operator because it returns "function" if and only if a given
value is an object with the [[Call]] method. For [[Construct]]
method, we use the Reflect.construct built-in function that
checks the existence of the [[Construct]] methods and invokes
it. To avoid invoking [[Construct]] unintentionally, we call
Reflect.construct with a dummy function function(){} as
its first argument and a given object as its third argument. For
example, the following code shows how the injector injects
assertions for internal methods and slots:

function f() {}
$assert.sameValue(Object.getPrototypeOf(f),

Function.prototype);
$assert.sameValue(Object.isExtensible(x), true);
$assert.callable(f);
$assert.constructable(f);

E. Bug Localizer

The bug detection and localization phase uses the execution
results of given conformance tests on multiple JavaScript
engines. If a small number of engines fail in running a specific
conformance test, the engines may have bugs causing the test
failure. If most engines fail for a test, the test may be incorrect,
which implies a bug in the specification.

When we have a set of failed test cases that may contain
bugs of an engine or a specification, we classify the test cases
using their failure messages and give ranks between possible
buggy program elements to localize the bug. We use Spectrum
Based Fault Localization (SBFL) [18], which is a ranking
technique based on likelihood of being faulty for each program
element. We use the following formula called ER1b, which is
one of the best SBFL formulae theoretically analyzed by Xie
et al. [20]:

nef −
nep

nep + nnp + 1

where nef , nep , nnf , and nnp represent the number of test
cases; subscripts e and n respectively denote whether a test
case touches a relevant program element or not, and subscripts
f and p respectively denote whether the test case is failed or
passed.

We use abstract algorithms of ECMAScript as program
elements used for SBFL. To improve the localization accu-
racy, we use method-level aggregation [21]. It first calculates
SBFL scores for algorithm steps and aggregates them up to
algorithm-level using the highest score among those from steps
of each algorithm.

IV. EVALUATION

To evaluate JEST that performs N+1-version differential
testing of JavaScript engines and its specification, we applied
the tool to four JavaScript engines that fully support modern
JavaScript features and the latest specification, ECMAScript
2020 (ES11, 2020). Our experiments use the following four
JavaScript engines, all of which support ES11:

• V8(v8.3)1: An open-source high-performance engine for
JavaScript and WebAssembly developed by Google [14]

• GraalJS(v20.1.0)2: A JavaScript implementation built on
GraalVM [15], which is a Java Virtual Machine (JVM)
based on HotSpot/OpenJDK developed by Oracle

• QuickJS(2020-04-12)3: A small and embedded
JavaScript engine developed by Fabrice Bellard
and Charlie Gordon [16]

• Moddable XS(v10.3.0)4: A JavaScript engine at the
center of the Moddable SDK [17], which is a combination
of development tools and runtime software to create
applications for micro-controllers

To extract a mechanized specification from ECMAScript,
we utilize the tool JISET, which is a JavaScript IR-based
semantics extraction toolchain, to automatically generate a
JavaScript interpreter from ECMAScript. To focus on the
core semantics of JavaScript, we consider only the semantics
of strict mode JavaScript code that pass syntax checking
including the EarlyError rules. To filter out JavaScript code
that are not strict or fail syntax checking, we utilize the
syntax checker of the most reliable JavaScript engine, V8.
We performed our experiments on a machine equipped with
4.0GHz Intel(R) Core(TM) i7-6700k and 32GB of RAM
(Samsung DDR4 2133MHz 8GB*4). We evaluated JEST with
the following four research questions:

• RQ1 (Coverage of Generated Tests) Is the semantics
coverage of the tests generated by JEST comparable to
that of Test262, the official conformance test suite for
ECMAScript, which is manually written?

• RQ2 (Accuracy of Bug Localization) Does JEST local-
ize bug locations accurately?

• RQ3 (Bug Detection in JavaScript Engines) How many
bugs of four JavaScript engines does JEST detect?

• RQ4 (Bug Detection in ECMAScript) How many bugs
of ES11 does JEST detect?

1https://v8.dev/
2https://github.com/graalvm/graaljs#current-status
3https://bellard.org/quickjs/
4https://blog.moddable.com/blog/xs10/
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(a) Statement coverage (b) Branch coverage

Fig. 4: The semantics coverage changes during the test generation phase

TABLE I: Number of generated programs and covered
branches of mutation methods

Mutation Method Program Branch (Avg.)
Nearest Syntax Tree Mutation 459 1, 230(2.68)
Random Mutation 337 1, 153(3.42)
Statement Insertion 209 650(3.11)
Object Substitution 169 491(2.91)
String Substitution 3 3(1.00)

Total 1, 177 3, 527(3.00)

A. Coverage of Generated Tests

JEST generates the seed programs via Seed Synthesizer,
which synthesizes 1,125 JavaScript programs in about 10
seconds and covers 97.78% (397/406) of reachable alternatives
in the syntax productions of ES11. Among them, we filtered
out 602 programs that do not increase the semantics coverage
and started the mutation iteration with 519 programs. Figure 4
shows the change of semantics coverage of the program pool
during the iterative process in 100 hours. The left and right
graphs present the statement and branch coverages, respec-
tively, and the top red line denotes the coverage of Test262. We
generated conformance tests two times before and after fixing
bugs detected by JEST because the specification bugs affected
the semantics coverage. In each graph, dark gray X marks and
blue O marks denote the semantics coverage of generated tests
before and after fixing bugs. The semantics that we target in
ES11 consists of 1,550 algorithms with 24,495 statements and
9,596 branches. For the statement coverage, Test262 covers
22,440 (91.61%) statements. The initial program pool covers
12,768 (52.12%) statements and the final program pool cov-
ers 21,230 (86.67%) and 21,482 (87.70%) statements before
and after fixing bugs, respectively. For the branch coverage,
Test262 covers 7,956 (82.91%) branches. The initial program
pool covers 3,987 (41.55%) branches and the final program
pool covers 7,480 (77.95%) and 7,514 (78.30%) branches
before and after fixing bugs, respectively.

Table I shows the number of synthesized programs and
covered branches for each mutation method during the test
generation phase. In total, JEST successfully synthesize 1,177
new programs that cover 3,527 more branches than the initial
program pool. Among five mutation methods, the nearest
syntax tree mutation is the most contributed method (459
programs and 1,230 covered branches) and the least one is

Fig. 5: Ranks of algorithms that caused the bugs detected by
JEST

the string substitution (3 programs and 3 covered branches).
On average, 3.00 branches are covered by a new program.

Finally, JEST generates 1,700 JavaScript programs and their
average number of lines is 2.01. After injecting assertions,
their average number of lines becomes 8.45. Compared to
Test262, the number of generated tests are much smaller and
their number of lines are also shorter than those of tests in
Test262. Test262 provides 16,251 tests for the same range of
semantics and their average number of lines is 49.67.

B. Accuracy of Bug Localization

To detect more bugs using more diverse programs, we re-
peated the conformance test generation phase for ten times. We
executed the generated conformance tests on four JavaScript
engines to find bugs in the engines and the specification.
After inferring locations of the bugs in the engines or the
specification based on the majority of the execution results, we
manually checked whether the bugs are indeed in the engines
or the specification. The following table shows that our method
works well:

# Failed Engines 1 2 3 4 Total Average
Engine Bugs 38 6 0 0 44 1.14
Specification Bugs 0 0 10 17 27 3.63

For engine bugs, the average number of engine failures is 1.14
while the average number of failed engines for specification
bugs is 3.63. As we expected, when most engines fail for a
test, the specification may have a bug.

Based on the results of conformance tests on four JavaScript
engines, we localized the specification or engine bugs on the
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TABLE III: Specification bugs in ECMAScript 2020 (ES11) detected by JEST
Name Feature # Description Assertion Known Created Resolved Existed
ES11-1 Function 12 Wrong order between property keys for functions Key O 2019-02-07 2020-04-11 429 days
ES11-2 Function 8 Missing property name for anonymous functions Key O 2015-06-01 2020-04-11 1,776 days

ES11-3 Loop 1 Returning iterator objects instead of iterator records
in ForIn/OfHeadEvaluation for for-in loops Exc O 2017-10-17 2020-04-30 926 days

ES11-4 Expression 4 Using the wrong variable oldvalue instead of
oldValue in Evaluation of UpdateExpression Abort O 2019-09-27 2020-04-23 209 days

ES11-5 Expression 1 Unhandling abrupt completion
in Abstract Equality Comparison Exc O 2015-06-01 2020-04-28 1,793 days

ES11-6 Object 1 Unhandling abrupt completion in Evaluation of
PropertyDefinition for object literals Exc X 2019-02-07 TBD TBD

TABLE II: The number of engine bugs detected by JEST

Engines Exc Abort Var Obj Desc Key In Total
V8 0 0 0 0 0 2 0 2
GraalJS 6 0 0 0 2 8 0 16
QuickJS 3 0 1 0 0 2 0 6
Moddable XS 12 0 0 0 3 5 0 20

Total 21 0 1 0 5 17 0 44

semantics of ES11. Among 71 bugs, we excluded 7 syntax
bugs and localized only 64 semantics bugs. Figure 5 shows
the ranks of algorithms that caused the semantics bugs. The
average rank is 3.19, and 82.8% of the algorithms causing the
bugs are ranked less than 5, 93.8% less than 10, and 98.4%
less than 15. Note that the location of one bug is ranked 21
because of the limitation of SBFL; its localization accuracy
becomes low for a small number of failed test cases.

C. Bug Detection in JavaScript Engines

From four JavaScript engines, JEST detected 44 bugs: 2
from V8, 16 from GraalJS, 6 from QuickJS, and 20 from
Moddable XS. Table II presents how many bugs for each
assertion are detected for each engine. We injected seven
kinds of assertions: exceptions (Exc), aborts (Abort), variable
values (Var), object values (Obj), object properties (Desc),
property keys (Key), and internal methods and slots (In). The
effectiveness of bug finding is different for different assertions.
The Exc and Key assertions detected engine bugs the most; out
of 44 bugs, the former detected 21 bugs and the latter detected
17 bugs. Desc and Var detected 5 and 1 bugs, respectively, but
the other assertions did not detect any engine bugs.

The most reliable JavaScript engine is V8 because JEST
found only two bugs and the bugs are due to specification
bugs in ES11. Because V8 strictly follows the semantics
of functions described in ES11, it also implemented wrong
semantics that led to ES11-1 and ES11-2 listed in Table III.
The V8 team confirmed the bugs and fixed them.

We detected 16 engine bugs in GraalJS and one of them
caused an engine crash. When we apply the prefix incre-
ment operator for undefined as ++undefined, GraalJS throws
java.lang.IllegalStateException. Because it crashes the
engine, developers even cannot catch the exception as follows:

try { ++undefined; } catch(e) { }

The GraalJS team has been fixing the bugs we reported and
asked whether we plan to publish the conformance test suite,

because the tests generated by JEST detected many semantics
bugs that were not detected by other conformance tests: “Right
now, we are running Test262 and the V8 and Nashorn unit test
suites in our CI for every change, it might make sense to add
your suite as well.”

In QuickJS, JEST detected 6 engine bugs, most of which
are due to corner cases of the function semantics. For example,
the following code should throw a ReferenceError exception:

function f (... { x = x }) { return x; } f()

because the variable x is not yet initialized when it tries to
read the right-hand side of x = x. However, since QuickJS
assumes that the initial value of x is undefined, the function
call f() returns undefined. The QuickJS team confirmed our
bug reports and it has been fixing the bugs.

JEST found the most bugs in Moddable XS; it detected 20
bugs for various language features such as optional chains,
Number.prototype.toString, iterators of Map and Set, and
complex assignment patterns. Among them, optional chains
are newly introduced in ES11, which shows that our approach
is applicable to finding bugs in new language features. We
reported all the bugs found, and the Moddable XS team has
been fixing them. They showed interests in using our test suite:
“As you know, it is difficult to verify changes because the
language specification is so big. Test262, as great a resource
as it is, is not definitive.”

D. Bug Detection in ECMAScript

From the latest ECMAScript ES11, JEST detected 27
specification bugs. Table III summarizes the bugs categorized
by their root causes. Among them, five categories (ES11-1 to
ES11-5) were already reported and fixed in the current draft of
the next ECMAScript but ES11-6 was never reported before.
We reported it to TC39; they confirmed it and they will fix it
in the next version, ECMAScript 2021 (ES12).

ES11-1 contains 12 bugs; it is due to a wrong order between
property keys of all kinds of function values such as async

and generator functions, arrow functions, and classes. For
example, if we define a class declaration with a name A

(class A {}), three properties are defined in the function
stored in the variable A: length with a number value 0,
prototype with an object, and name with a string "A". The
problem is the different order of their keys because of the
wrong order of their creation. From ECMAScript 2015 (ES6),
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the order between property keys is no more implementation-
dependent but it is related to the creation order of properties.
While the order of property keys in the class A should
be [length, prototype, name] according to the semantics
of ES11, the order is [length, name, prototype] in three
engines except V8. We found that it was already reported as a
specification bug; we reported it to V8 and they fixed it. This
bug was created on February 7, 2019 and TC39 fixed it on
April 11, 2020; the bug lasted for 429 days.

ES11-2 contains 8 bugs that are due to the missing property
name of anonymous functions. Until ES5.1, anonymous func-
tions, such as an identity arrow function x => x, had their own
property name with an empty string "". While ES6 removed the
name property from anonymous functions, three engines except
V8 still create the name property in anonymous functions. We
also found that it was reported as a specification bug and
reported it to V8, and it will be fixed in V8.

The bug in ES11-3 comes from the misunderstanding of
the term “iterator object” and “iterator record”. The algorithm
ForIn/OfHeadEvaluation should return an iterator record,
which is an implicit record containing only internal slots.
However, In ES11, it returns an iterator object, which is a
JavaScript object with some properties related to iteration.
It causes a TypeError exception when executing the code
for(var x in {}); according to ES11 but all engines execute
the code normally without any exceptions. This bug was
resolved by TC39 on April 30, 2020.

ES11-4 contains four bugs caused by a typo for the variable
in the semantics of four different update expressions: x++,
x--, ++x, and --x. In each Evaluation of four kinds of
UpdateExpression, there exists a typo oldvalue in step 3
instead of oldValue declared in step 2. JEST could not execute
the code x++ using the semantics of ES11 because of the typo.
For this case, we directly pass the code to Bug Localizer to test
whether the code is executable in real-world engines and to
localize the bug. Of course, four JavaScript engines executed
the update expressions without any issues and this bug was
resolved by TC39 on April 23, 2020.

Two bugs in ES11-5 and ES11-6 are caused by unhandling
of abrupt completions in abstract equality comparison and
property definitions of object literals, respectively. The bug
in ES11-5 was confirmed by TC39 and was fixed on April 28,
2020. The bug in ES11-6 was a genuine one, and we reported
it and received a confirmation from TC39 on August 18, 2020.
The bug will be fixed in the next version, ES12.

V. RELATED WORK

Our technique is related to three research fields: differential
testing, fuzzing, and fault localization.

Differential Testing: Differential testing [10] utilizes mul-
tiple implementations as cross-referencing oracles to find se-
mantics bugs. Researchers applied this technique to various ap-
plications domain such as Java Virtual Machine (JVM) imple-
mentations [22], SSL/TLS certification validation logic [23]–
[25], web applications [26], and binary lifters [27]. Moreover,
NEZHA [23] introduces a guided differential testing tool with

the concept of δ-diversity to efficiently find semantics bugs.
However, they have a fundamental limitation that they cannot
test specifications; they use only cross-referencing oracles and
target potential bugs in implementations. Our N+1-version
differential testing extends the idea of differential testing with
not only N different implementations but also a mechanized
specification to test both of them. In addition, our approach
automatically generates conformance tests directly from the
specification.

Fuzzing: Fuzzing is a software testing technique for de-
tecting security vulnerabilities by generating [28]–[30] or
mutating [31]–[33] test inputs. For JavaScript [34] engines,
Patrice et al. [35] presented white-box fuzzing using the
JavaScript grammar, Han et al. [36] presented CodeAlchemist
that generates JavaScript code snippets based on semantics-
aware assembly, Wang et al. [37] presented Superion using
Grammar-aware greybox fuzzing, Park et al. [38] presented
DIE using aspect-preserving mutation, and Lee et al. [39]
presented Montage using neural network language models
(NNLMs). While they focus on finding security vulnerabilities
rather than semantics bugs, our N+1-version differential test-
ing focuses on finding semantics bugs by comparing multiple
implementations with the mechanized specification, which was
automatically extracted from ECMAScript by JISET. Note
that JEST can also localize not only specification bugs in
ECMAScript but also bugs in JavaScript engines indirectly
using the bug locations in ECMAScript.

Fault Localization: To localize detected bugs in EC-
MAScript, we used Spectrum Based Fault Localization
(SBFL) [18], which is a ranking technique based on likelihood
of being faulty for each program element. Tarantula [40], [41]
was the first tool that supports SBFL with a simple formula
and researchers have developed many formulae [42]–[45] to
increase the accuracy of bug localization. Sohn and Yoo [21]
introduced a novel approach for fault localization using code
and change metrics via learning of SBFL formulae. While we
utilize a specific formula ER1b introduced by Xie et al. [20],
we believe that it is possible to improve the accuracy of bug
localization by using more advanced SBFL techniques.

VI. CONCLUSION

The development of modern programming languages fol-
lows the continuous integration (CI) and continuous deploy-
ment (CD) approach to instantly support fast changing user
demands. Such continuous development makes it difficult to
find semantics bugs in both the language specification and its
various implementations. To alleviate this problem, we present
N+1-version differential testing, which is the first technique
to test both implementations and its specification in tandem.
We actualized our approach for the JavaScript programming
language via JEST, using four modern JavaScript engines and
the latest version of ECMAScript (ES11, 2020). It automat-
ically generated 1,700 JavaScript programs with 97.78% of
syntax coverage and 87.70% of semantics coverage on ES11.
JEST injected assertions to the generated JavaScript programs
to convert them as conformance tests. We executed generated
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conformance tests on four engines that support ES11: V8,
GraalJS, QuickJS, and Moddable XS. Using the execution re-
sults, we found 44 engine bugs (16 for GraalJS, 6 for QuickJS,
20 for Moddable XS, and 2 for V8) and 27 specification
bugs. All the bugs were confirmed by TC39, the committee of
ECMAScript, and the corresponding engine teams, and they
will be fixed in the specification and the engines. We believe
that JEST takes the first step towards co-evolution of software
specifications, tests, and their implementations for CI/CD.
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