
74 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIET Y 074 0 -74 59 /19©2019 I E E E

FEATURE: ANALYSIS OF REAL-WORLD JAVASCRIPT

JavaScript Web
Applications in the Wild
JavaScript was first developed as a sim-
ple scripting language, and, now, it is
the de facto standard language for web
programming. It is highly expressive

thanks to function values and dynamic
code generation; JavaScript func-
tions can take callback functions as
their arguments, and they can gen-
erate code to execute during evalu-
ation. Also, JavaScript is extremely
portable. It can run on any device,
such as smart TVs or smart watches,
without installation of a compiler or

an interpreter if the devices have
a browser.

However, the expressivity and
portability of JavaScript also intro-
duce various errors and vulnerabili-
ties, collectively known as bugs, in
JavaScript web applications. Unlike
statically typed languages, such as
C and Java, JavaScript does not pre-
vent type-related errors, such as call-
ing functions with wrong numbers
or wrong types of arguments, which
results in frequent type-related er-
rors by developers. In addition, be-
cause JavaScript web applications
often use third-party libraries on
browsers, they are vulnerable to se-
curity attacks.

Our long-term goal is to develop a
tool that can analyze and detect bugs
in real-world JavaScript web applica-
tions. This article reports on our
recent significant progress toward
the goal, the SAFE family illustrated
in Figure 1. We put the series of ef-
forts into context, providing a big
picture of the JavaScript analysis for
practitioners. In the rest of this ar-
ticle, we incrementally present each
of the technical challenges and their
proposed solutions, summarized in
Table 1 using the SAFE family, share
our experiences in both academia
and industry, and discuss the current
limitations and the path forward.

Analysis of JavaScript
Programs
JavaScript has various characteris-
tics that make program analysis es-
pecially difficult. It does not have a
compile-time type system. A JavaS-
cript variable may have a value of
any six types—undefined, null, Bool-
ean, number, string, and object—
at any point of program evaluation,
and it may be implicitly converted to
different types depending on its sur-
rounding contexts, according to the

Digital Object Identifier 10.1109/MS.2018.110113408
Date of publication: 16 April 2019

Toward Analysis
and Bug Finding
in JavaScript
Web Applications
in the Wild
Sukyoung Ryu, Jihyeok Park, and Joonyoung Park,
Korea Advanced Institute of Science and Technology

// We present our journey to analyze and find

bugs in JavaScript web applications in the

wild. We describe technical challenges in

analyzing them and our solutions to address

the challenges via a series of open source

analysis frameworks, the scalable analysis

framework for ECMAScript (SAFE) family. //

 MAY/JUNE 2019 | IEEE SOFTWARE 75

language specification. Such behav-
iors give much freedom to JavaScript
developers, but at the same time, they
often introduce type-related errors.
JavaScript provides multiple ways
to generate code at runtime; several
functions, such as eval, take string
arguments that represent JavaScript
code, realize them at runtime, and
run them. Because such dynamically
generated code fragments are not
available at compile time, they are
not in the targets of static analysis. In
addition, JavaScript is not statically
scoped; one language construct, the
with statement, introduces scopes
dy namically, which is a challenge for
static analysis. Because JavaScript
programs use various libraries, such
as jQuery, which use loops and first-
class property names extensively,
precise analysis of loops and string
values becomes critical.

Let us consider the JavaScript
code in Figure 2. The wi th state-
ment on lines 7–9 shows that all of
the properties in the object o (line 7)

become local variables within the
body of the statement (line 8); thus,
the names a, b, and c are dynamically
introduced within the body of the
statement. The eval function call on
line 12 shows that the string literal
’o[name] = o[name]();’ becomes Java-
Script code to evaluate at runtime.

Also, the for-in loop on lines 11–13
reveals that the property names of the
object o are first-class values that are
generated by iteration on the proper-
ties of o.

To address the challenges in stati-
cally analyzing JavaScript programs,
we developed an open source analysis

FIGURE 1. Architectural overview of the SAFE family. API: application programming interface. DOM: Document Object Model.

SAFE

SAFEWApp

SAFEWAPI

CFG
Builder

JavaScript
Code

HTML
Parser

Web
App

Heap
Extractor

Platform
Heap

Spec
Parser

API
Spec

API
Info

Bug
Detector

Bug
Report

Abstract
States

Abstract
Heap

Heap
Modeler

AnalyzerCFG

DOM
Tree

Table 1. An analysis of real-world JavaScript web
applications via the SAFE family.

Analysis Targets Technical Challenges Analysis Techniques

JavaScript
programs

Dynamic code generation

Dynamic scoping via with statements

Join of analysis results for loops

First-class property names

Rewriting simple code

with rewriting

Loop-sensitive analysis

Regular expression domain

Web applications DOM objects and APIs Modeling DOM objects and APIs

Analysis with dynamic browser
information

Dynamic file loading Analysis with dynamically loaded files

Hybrid
applications

Platform APIs Modeling platform APIs

API misuse detection

76 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FEATURE: ANALYSIS OF REAL-WORLD JAVASCRIPT

framework for JavaScript—SAFE.1
The innermost box in Figure 1 illus-
trates an architectural overview of
SAFE. It takes a JavaScript program
and processes it like a conventional
program analysis framework does.
Among others, CFG Builder rewrites
eval-like function calls that have string
literal arguments into JavaScript code
that the arguments represent, and
it replaces most with statements with
other language constructs in a sound
manner.2 The Analyzer performs a
static analysis based on the abstract

interpretation framework using ab-
stract values that can represent all six
kinds of JavaScript value types, and it
provides loop-sensitive analysis3 and
regular expression domains for string
analysis.4 Thus, it can analyze the
code in Figure 2 even in the presence
of the with statement, the eval function
call, and the for-in loop using first-class
property names. Finally, Bug Detec-
tor uses the analysis results to find
type-related bugs, such as undefined
variable accesses that cause the Refer-
enceError exception in JavaScript and

function calls with nonfunction val-
ues that cause the TypeError exception.
Note that SAFE provides “soundy”
analysis.5 It cannot analyze eval func-
tion calls with arguments that are not
string literals, for example.

Analysis of JavaScript
Web Applications
The first step toward analysis of real-
world JavaScript web applications is
to analyze JavaScript code embed-
ded in HTML documents. JavaScript
programs are often executed in

1 /**** Analysis of JavaScript Programs ***************************/
2
3 function f() { return 0; }
4 function g() { return 1; }
5 function h() { return 2; }
6 var o = { a : 0, b : 1, c : 2 };
7 with(o) {
8 a = f; b = g; c = h;
9 };
10
11 for (name in o) {
12 eval(’o[name] = o[name]();’);
13 }
14
15 /**** Analysis of JavaScript Web Applications *******************/
16
17 window.requestAnimationFrame =
18 window.requestAnimationFrame ||
19 window.webkitRequestAnimationFrame || // Chrome, Opera
20 window.mozRequestAnimationFrame || // FireFox
21 window.oRequestAnimationFrame || // Old Opera
22 window.msRequestAnimationFrame || // IE
23 function (callback) {
24 use strict;
25 window.setTimeout(callback, 1000 / 60);
26 };
27
28 function isDiv(elem) {
29 // wrong usage of ’===’
30 return elem.tagName.match(/^\w+/) === ’DIV’;
31 }
32
33 /**** Analysis of JavaScript Hybrid Applications ****************/
34
35 function calendarListCallback(calendars) {
36 calendars.map(calendar => calendar.type);
37 }
38
39 webapis.calendar.getCalendars("EVENT", calendarListCallback);

FIGURE 2. A running example named sample.js for analysis of real-world JavaScript web applications.

 MAY/JUNE 2019 | IEEE SOFTWARE 77

host environments, and the most
widely used host environments are
web browsers. HTML documents
of webpages or web applications
may contain JavaScript code frag-
ments; web browsers represent the
HTML document structures as host
objects called Document Object
Model (DOM), and DOM applica-
tion programming interfaces (APIs)
provide ways for JavaScript code to
use host objects. Thus, the analyz-
ing of JavaScript web applications
requires understanding of not only
the JavaScript semantics but also
the meaning of DOM structures
and the interactions between DOM
and JavaScript. Moreover, web ap-
plications often load JavaScript
files dynamically, and JavaScript
code fragments running on various
browsers use browser-specific APIs,
resulting in static analysis impreci-
sion. In addition, JavaScript web
applications interact with users via
event handling functions. JavaScript
event functions may be registered
to HTML documents as HTML at-
tributes, such as onload or onclick, be-
fore program execution, and they
may be registered via functions, such
as addEventL istener, during program
execution. Then, users can make
 JavaScript event functions called
asynchronously. Similarly, for dy-
namically generated JavaScr ipt
code and dynamically loaded files,
event function calls that are invoked
by user inputs are not available be-
fore program execution. Therefore,
purely static analysis will miss them
from the analysis targets, which re-
sults in unsound analysis results.
To analyze such dynamic event be-
haviors soundly, most existing static
analyzers assume that any event func-
tions may be called in any order.

Consider the code example in
Figure 2 again. Because different

browsers may use different API func-
tions with similar functionalities,
if the global function requestAnima-
tionFrame (line 17) is not yet initial-
ized (line 18), it is initialized to one
of the browser-specific API functions
(lines 19–22) or a default function
(lines 23–26). Although the code
supports browser compatibility be-
tween different versions and differ-
ent browsers, most static analyzers
lose precision by considering all pos-
sible cases to analyze them soundly.
Then, it defines a function named
isDiv (lines 28–31), which takes a
DOM element and checks whether
its tag name is ’DIV’. The function is-
Div is invoked when a user clicks the
DOM elements on lines 3–4 in Fig-
ure 3. The function calls on lines
4 and 5 evaluate to true and false,
respectively.

Note that as the comment on line
29 of Figure 2 states, the function is-
Div contains a bug. Although the value
of elem.tagName.match(/^\w+/) is either
an object or null, the value of DIV is a
string. Because the strict equals op-
erator (===) always returns false if the
types of two operands are different,
the conditional expression always
evaluates to false. Actually, this code
is a simplified version of the Wikipe-
dia webpage. When a user clicks the
language selection button from the
Wikipedia page, a JavaScript func-
tion named setLang is called, which
contains the bug that isDiv replicates.
We reported the bug to the Wikipedia
developers, and they confirmed the

bug and fixed it right away by replac-
ing === with ==. Because various Wi-
kimedia projects share the code, the
same bug existed in many webpages.
A funny thing is that the bug revived
in less than a year! We found the
same bug again while evaluating yet
another analysis technique against
the Wikipedia page and reported it
again. What happened is that a de-
veloper revised some code unrelated
to se tLang , but a simple syntactic
checker, JSHint, warned the devel-
oper to replace == with === because
=== is considered to be better. After
inspecting the situation, the Wiki-
pedia developers revised the code in
another way using === correctly.

Thus, to analyze JavaScript web
applications and to detect bugs in
them, we developed SAFEWApp by
extending SAFE with DOM mod-
eling and analysis with various dy-
namic information. The middle box
in Figure 1 shows our extensions
on SAFE. In addition to analyzing
 JavaScript programs, SAFEWApp
can analyze web appl icat ions;
it takes HTML documents as in-
puts, extracts embedded JavaScript
code fragments, builds their CFGs
using SAFE, constructs DOM mod-
els, analyzes them collectively using
the Analyzer of SAFE, and detects
type-related bugs via the Bug De-
tector. SAFEWApp supports DOM
APIs by providing faithful (par-
tial) DOM models.6 To address
event functions that handle user in-
puts, it also builds CFGs for event

FIGURE 3. The HTML code that interacts with the JavaScript code in Figure 2.

1 <html>
2 <head> <script src="sample.js"></script> </head>
3 <body> <div onclick="isDiv(this)">foo</div>
4 <p onclick="isDiv(this)">bar</p> </body>
5 </html>

78 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FEATURE: ANALYSIS OF REAL-WORLD JAVASCRIPT

functions and passes them together
with JavaScript CFGs to the Ana-
lyzer in SAFE. SAFEWApp utilizes
dynamic information in two ways.7
First, it collects dynamic browser
information, such as concrete values
of built-in properties, to specialize
the Analyzer. For web applications
running on a specific browser, such
as Chrome, the value of the function
requestAnimationFrame (line 17) in Fig-
ure 2 definitely becomes window.web-
kitRequestAnimationFrame, which, in turn,
improves the analysis precision.
Second, SAFEWApp collects dynami-
cally loaded files and includes them
as its analysis targets. To collect
such dynamic information, it in-
struments input JavaScript web
applications so that they can log
necessary information during exe-
cution, and it runs the instrumented
web applications.

Analysis of JavaScript
Hybrid Applications
The prevalence of the HTML5 tech-
nologies widely expands the realm of
JavaScript applications to the Internet

of Things and smart appliances, such
as smart TVs and smart watches,
which introduces new kinds of chal-
lenges in static analysis. To utilize de-
vice-specific features, JavaScript web
applications call native library func-
tions provided by device platforms via
their APIs. For example, JavaScript
code in an Android application run-
ning on an Android phone may invoke
native methods written in Android
Java to access its geographic location.
Thus, analyzing the behaviors of such
 JavaScript applications asks for analy-
sis of function call flows between soft-
ware components written in different
programming languages.

Also, native functions often take
callback functions to communicate
with the application code. For ex-
ample, Figure 4 shows partial speci-
fications of web APIs for calendar
functionalities. The CalendarManager
interface contains several functions,
including getCalendars, and the Calendar
interface contains two attributes, id
and name, and more. The getCalendars
function takes two or three argu-
ments where the second argument

denotes a callback function to be
called by the native code if the exe-
cution of the function succeeds, and
the third optional argument denotes
a callback function to be called oth-
erwise. Figure 2 presents how the
native function may be called from
JavaScript code on line 39; the sec-
ond argument is the function defined
on lines 35–37. Although calls of the
callback function are syntactically
invisible, the function may be called
by getCalendars. Therefore, to detect
the bug on line 36, which accesses
the absent type attribute of a calen-
dar, analysis of JavaScript web ap-
plications requires understanding of
such implicit call behaviors.

Hence, we extended SAFEWApp
to analyze both explicit and implicit
interaction flows between JavaScript
and native code by providing auto-
matic modeling of API functions. We
observed that vendors specify the API
functions they provide in some speci-
fication languages, such as Web IDL
and TypeScript, so that third-party
developers can build web applications
for their devices. Although the JavaS-
cript semantics are wildly dynamic,
JavaScript code interacting with na-
tive code should satisfy the API speci-
fications to behave correctly. Based
on this observation, we developed
SAFEWAPI,

8 which takes the API
specifications of native functions and
builds their abstract models auto-
matically, so that the main Ana-
lyzer can understand the behaviors
of the API functions. The outermost
box in Figure 1 illustrates that Spec
Parser builds API Info from API
Specs, and Heap Modeler integrates
them with DOM models generated
from input applications and passes
the integrated abstract model to the
Analyzer. Because the approach is
parameterized by specification lan-
guages, SAFEWAPI can support any

1 [NoInterfaceObject]
2 interface CalendarManager {
3 void getCalendars(CalendarType type,
4 CalendarArraySuccessCallback successCallback,
5 optional ErrorCallback? errorCallback
6) raises(WebAPIException);
7 ...
8 };
9
10 [Callback=FunctionOnly, NoInterfaceObject]
11 interface CalendarArraySuccessCallback {
12 void onsuccess(Calendar[] calendars);
13 };
14
15 [NoInterfaceObject]
16 interface Calendar {
17 readonly attribute CalendarId id;
18 readonly attribute DOMString name;
19 ...
20 };

FIGURE 4. The specification of a native function getCalendars called by the JavaScript

code in Figure 2.

 MAY/JUNE 2019 | IEEE SOFTWARE 79

RELATED WORK IN THE ANALYSIS TOOL
OF JAVASCRIPT APPLICATIONS

Since its introduction in 1995, the JavaScript programming language has been used widely in industry, and the research com-
munity became interested in JavaScript since 2005. Here, we briefly survey static and dynamic analysis tools of JavaScript
applications.

STATIC ANALYSIS TOOLS OF JAVASCRIPT APPLICATIONS
In addition to the SAFE family, several open source tools can analyze JavaScript applications statically while focusing on different
purposes for their analyses. Type Analyzer for JavaScript (TAJS)S1 is the closest one to the SAFE family. Although the SAFE fam-
ily analyzes more real-world web applications by identifying and resolving concrete issues in the wild, TAJS has been focusing
on devising static analysis techniques that target problems related to the JavaScript semantics. T.J. Watson Libraries for Analysis
(WALA)S2 was originally developed for Java bytecode analysis, and now it supports JavaScript analysis as well. After attempting
several sound static analysis techniques for JavaScript,S2, S3 WALA is leaning toward unsound call graph construction to utilize
its efficiency.S4 JavaScript Abstract Interpreter (JSAI)S5 is a JavaScript analysis framework that supports easy configuration of
analysis sensitivities. Unlike the SAFE family, TAJS, and WALA, JSAI does not construct control flow graphs explicitly. JSAI is
based on the abstract machine semantics, whereas the other tools are based on the big-step operational semantics.

DYNAMIC ANALYSIS TOOLS OF JAVASCRIPT APPLICATIONS
JalangiS6 is an open source dynamic analysis framework for JavaScript. It provides simple dynamic analyzers, such as concolic
testing and dynamic taint analysis, as sample uses of Jalangi, and it has been actively used in several dynamic analyses.S7 Also,
dynamic analyzers can detect event-related errors. WebRacerS8 is the first dynamic race detector for web applications, Even-
tRacerS9 can detect more severe bugs than WebRacer can, with fewer false positives, and R4S10 can distinguish harmful races
from the races reported by EventRacer by using a stateless model checker for event-driven applications.

References
S1. S. H. Jensen, A. Møller, and P. Thiemann, “Type analysis for JavaScript,” in Proc. Int. Symp. on Static Analysis, 2009, pp. 238–255.

S2. M. Sridharan, J. Dolby, S. Chandra, M. Schäfer, and F. Tip, “Correlation tracking for points-to analysis of JavaScript,” in Proc. Eur. Conf.

Object-Oriented Programming, 2012, pp. 435–458.

S3. M. Schäfer, M. Sridharan, J. Dolby, and F. Tip, “Dynamic determinacy analysis,” in Proc. 34th ACM SIGPLAN Conf. Programming Language Design

and Implementation, 2013, pp. 165–174.

S4. A. Feldthaus, M. Schäfer, M. Sridharan, J. Dolby, and F. Tip, “Efficient construction of approximate call graphs for JavaScript IDE services,” in Proc.

2013 Int. Conf. Software Eng., pp. 752–761.

S5. V. Kashyap et al., “JSAI: A static analysis platform for JavaScript,” in Proc. 22nd ACM SIGSOFT Int. Symp. Foundations Software Eng., 2014, pp. 121–132.

S6. K. Sen, S. Kalasapur, T. Brutch, and S. Gibbs, “Jalangi: A tool framework for concolic testing, selective record-replay, and dynamic analysis of

 JavaScript,” in Proc. Int. Symp. Foundations Software Eng., 2013, pp. 615–618.

S7. M. Pradel, P. Schuh, and K. Sen, “TypeDevil: Dynamic type inconsistency analysis for JavaScript,” in Proc. 37th Int. Conf. Software Eng., 2015,

pp. 314–324.

S8. B. Petrov, M. Vechev, M. Sridharan, and J. Dolby, “Race detection for web applications,” in Proc. 33rd ACM SIGPLAN Conf. Programming Language

Des. and Implementation, 2012, pp. 251–262.

S9. V. Raychev, M. Vechev, and M. Sridharan, “Effective race detection for event-driven programs,” in Proc. 2013 ACM SIGPLAN Conf. Object-Oriented

Programming, Syst., Languages, and Appl., pp. 151–166.

S10. C. S. Jensen, A. Møller, V. Raychev, D. Dimitrov, and M. Vechev, “Stateless model checking of event-driven applications,” in Proc. 2015 ACM

 SIGPLAN Conf. Object-Oriented Programming, Syst., Languages, and Appl., pp. 57–73.

80 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FEATURE: ANALYSIS OF REAL-WORLD JAVASCRIPT

RELATED WORK IN THE ANALYSIS
OF WEB APPLICATIONS
Expanding analysis targets, researchers have studied analysis of Document Object Model (DOM)-related behaviors and various
kinds of web applications.

ANALYSIS OF DOM-RELATED BEHAVIORS
Jensen et al.S11 used overapproximation of DOM tree structure and event flows. They analyzed events by considering all possible
combinations of event calls, which is sound but which also makes the analysis results overapproximated. By using dynamic infor-
mation, SAFEWApp can improve the analysis precision. Alimadadi et al.S12, S13 developed various tools to help developers under-
stand complex dynamic behaviors of web applications. They built Clematis,S12 which captures low-level event-based interactions
in web applications and transforms the information to high-level representations that developers can understand. To provide DOM-
sensitive change impact analysis for JavaScript, they developed Tochal,S13 which builds static dependency graphs augmented with
dynamic information for DOM-sensitive changes. Their tools aim to help developers’ in understanding program behaviors rather
than finding bugs.

ANALYSIS OF WEB APPLICATIONS BEYOND JAVASCRIPT
Nguyen et al.S14 studied usage patterns in JavaScript web applications by proposing two approaches: JSModel represents
 JavaScript usages as graphs, and JSMiner mines interprocedural, data-oriented JavaScript usage patterns. They also built HTML/
JavaScript variability-aware parsers so that IDEs can build call graphs for embedded JavaScript code in HTML documents.S15
 Using the parsers, they produced WebSlice, which performs program slicing across different languages for web applications.S16
 Ocariza et al.S18 developed Aurebesh, a tool that detects type inconsistencies in AngularJSS17 applications, which is the most popu-
lar JavaScript MVC framework. Feldthaus and MøllerS19 developed TSCheck, a tool that detects inconsistencies between TypeScript
type declaration files and their corresponding JavaScript library implementation. Finally, Artzi et al.S20 studied fault localization for
Hypertext Preprocessor web applications.

References
S11. S. H. Jensen, M. Madsen, and A. Møller, “Modeling the HTML DOM and browser API in static analysis of JavaScript web applications,” in Proc. 19th

ACM SIGSOFT Symp. and 13th Eur. Conf. Foundations Software Eng., 2011, pp. 59–69.

S12. S. Alimadadi, S. Sequeira, A. Mesbah, and K. Pattabiraman, “Understanding JavaScript event-based interactions,” in Proc. 36th Int. Conf. Software

Eng., 2014, pp. 367–377.

S13. S. Alimadadi, A. Mesbah, and K. Pattabiraman, “Hybrid DOM-sensitive change impact analysis for JavaScript,” in Proc. Eur. Conf. Object-Oriented

Programming, 2015, pp. 321–345.

S14. H. V. Nguyen, H. A. Nguyen, A. T. Nguyen, and T. N. Nguyen, “Mining interprocedural, data-oriented usage patterns in JavaScript web applications,”

in Proc. Int. Conf. Software Eng., 2014, pp. 791–802.

S15. H. V. Nguyen, C. Kästner, and T. N. Nguyen, “Building call graphs for embedded client-side code in dynamic web applications,” in Proc. Int. Symp.

Foundations of Software Eng., 2014, pp. 518–529.

S16. H. V. Nguyen, C. Kaestner, and T. N. Nguyen, “Cross-language program slicing for dynamic web applications,” in Proc. Int. Symp. Foundations Soft-

ware Eng., 2015, pp. 369–380.

S17. AngularJS, 2010. Accessed on: Feb. 1, 2019. [Online]. Available: http://www.angularjs.org

S18. F. Ocariza, K. Pattabiraman, and A. Mesbah, “Detecting inconsistencies in JavaScript MVC applications,” in Proc. Int. Conf. Software Eng., 2015, pp. 325–335.

S19. A. Feldthaus and A. Møller, “Checking correctness of TypeScript interfaces for JavaScript libraries,” in Proc. Conf. Object-Oriented Programming,

Syst., Languages, and Appl., 2014, pp. 1–16.

S20. S. Artzi, J. Dolby, F. Tip, and M. Pistoia, “Practical fault localization for dynamic web applications,” in Proc. Int. Conf. Software Engineering, 2010,

pp. 265–274.

 MAY/JUNE 2019 | IEEE SOFTWARE 81

native APIs if their specifications
provide their names and types. Al-
though the mechanism cannot model
impure behaviors of native functions,
such as input–output and mutation
of global variables, it can model type-
level features, such as numbers and
types of arguments, return types, and
checked exceptions.

Current Status of the
SAFE Family
The SAFE family is publicly available,9
and it has been used in both academia
and industry. Various components of
SAFE are being used in academia, such
as KJS, a complete formal semantics of
JavaScript,10 and JavaScript Abstract
Interpreter, a JavaScript static analy-
sis framework.11 SAFE was also used
to formalize and implement a JavaS-
cript module system,12 whose formal-
ization revealed inconsistent behaviors
between different implementations
from Google and Microsoft.13 Beyond
academia, SAFE has been applied to
several projects in industry, such as
those with Samsung, Oracle, and IBM.
SAFE is integrated in the software de-
velopment kit of Tizen, an open source
software platform for multiple devices,
which is a Linux Foundation project.

As stated previously, because
SAFE provides “soundy” analysis,
it cannot soundly analyze JavaS-
cript applications that use getters
and setters, eval function calls with
arguments that are not string liter-
als, dynamically available code, and
frameworks that are not fully modeled
in SAFE, among others. For example,
although SAFE supports analysis of
jQuery, it also provides partial model-
ing of jQuery to exclude jQuery from
analysis targets while losing sound-
ness. By sacrificing soundness, the
SAFE family provides precise analysis
results. Using SAFEWAPI,

8 which can
detect misuse of native API functions,

we found that four TV applications
and one mobile application out of 43
applications access absent properties of
platform objects. Because SAFEWAPI
reported misuse cases precisely, devel-
opers fixed 80 bug reports out of 88,
which amounts to a 91% fix rate.

Currently, the main challenge of
SAFE is the analysis scalability. Al-
though most web applications ana-
lyzed in academia have fewer than
10,000 lines of JavaScript code (LOC),
real-world web applications in indus-
try have about 700,000 LOC in Oracle
and millions in Facebook. In attempts
to analyze real-world web applica-
tions, the SAFE family has tried vari-
ous approaches to reduce the amount
of computation. For example, because
SAFE focuses on a specific browser
using dynamic information instead of
considering all of the browsers, it re-
duces the amount of execution flows
to analyze, which in turn improves
the analysis precision. In addition, by
supplementing partial modeling with
dynamic information, SAFE ana-
lyzes previously unreachable flows,
which enlarges the coverage of analy-
sis targets. We evaluated the effects of
dynamic information,7 and the experi-
mental results showed that the analy-
sis precision became about twice as
good, although the analysis time in-
creased due to newly analyzed targets.
Finally, we have been integrating the
unsound but efficient T.J. Watson Li-
braries for Analysis (WALA) analysis
with SAFE by selecting analysis targets
via WALA and then analyzing them
via SAFEWApp,14 and we also analyze
flows between JavaScript and Android
Java by extending WALA.15

Analysis of JavaScript web ap-
plications is one of the most
active research areas: see

“Related Work in the Analysis Tool

of JavaScript Applications,” which
summarizes research on static and dy-
namic analysis tools of JavaScript ap-
plications, and “Related Work in the
Analysis of JavaScript Web Applica-
tions,” which discusses analysis of
various web applications. However,
ample open challenges still remain.
First, analyzing information that is
available only at runtime is one of the
fundamental challenges. More aggres-
sive use of dynamic information than
the current approaches for dynamic
code generation and dynamic event
function calls is a promising direction.
Second, one of the practical challenges
is the analysis of frameworks and APIs
implemented in different languages.
On top of many frameworks, such
as Node and Cordova, Samsung and
Oracle have their own in-house frame-
works written in platform-specific
languages. To handle them without
actually analyzing their source code,
a systematic mechanism that models
their behaviors would open up new
horizons, as would sharing and merg-
ing various models developed for dif-
ferent analyzers. Finally, finding the
best configuration for various analysis
techniques supported by analyzers is
a difficult task. To help practitioners
get precise analysis results in a scal-
able manner without too much knowl-
edge of the analyzer details, advanced
mechanisms that automatically con-
figure analysis techniques would be
extremely useful. We believe that anal-
ysis and bug detection of JavaScript
web applications is becoming more
important, and the research commu-
nity is moving forward.

Acknowledgments
We thank Changhee Park, Hongki
Lee, SungGyeong Bae, Sora Bae,
and Yeonhee Ryou for their helpful
 comments. We appreciate the mem-
bers of the Programming Language

82 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FEATURE: ANALYSIS OF REAL-WORLD JAVASCRIPT

Research Group at Korea Advanced
Institute of Science and Technology
and our colleagues at S-Core and
Samsung Electronics who made sub-
stantial contributions to the develop-
ment of the SAFE family. This work
is supported in part by the National
Research Foundation of Korea (grant
NRF-2017R1A2B3012020), the Insti-
tute for Information and Communi-
cations Technology Promotion (grant
R1707711), and Samsung Electronics.

References
1. H. Lee, S. Won, J. Jin, J. Cho, and S.

Ryu, “SAFE: Formal specification and

implementation of a scalable analysis

framework for ECMAScript,” in Proc.

Int. Workshop Foundations Object-

Oriented Languages, 2012.

2. C. Park, H. Lee, and S. Ryu, “All

about the with statement in JavaScript:

Removing with statements in JavaS-

cript applications,” in Proc. Symp. Dy-

namic Languages, 2013, pp. 73–84.

3. C. Park and S. Ryu, “Scalable and

precise static analysis of JavaScript

applications via loop-sensitivity,” in

Proc. Eur. Conf. Object-Oriented

Programming, 2015, pp. 735–756.

4. C. Park, H. Im, and S. Ryu, “Precise

and scalable static analysis of jQuery

using a regular expression domain,”

in Proc. Symp. Dynamic Languages,

2016, pp. 25–36.

5. B. Livshits et al., “In defense of

soundiness: A manifesto,” Commun.

ACM, vol. 58, no. 2, pp. 44–46,

2015. [Online]. Available: https://

dl.acm.org/citation

.cfm?doid=2728770.2644805

6. C. Park, S. Won, J. Jin, and S. Ryu,

“Static analysis of JavaScript web

applications in the wild via practical

DOM modeling,” in Proc. Int. Conf.

Automated Software Eng., 2015, pp.

552–562.

7. J. Park, I. Lim, and S. Ryu, “Battles

with false positives in static analysis

of JavaScript web applications in the

wild,” in Proc. Int. Conf. Software

Eng., 2016, pp. 61–70.

8. S. Bae, H. Cho, I. Lim, and S. Ryu,

“SAFEWAPI: Web API misuse detector

for web applications,” in Proc. Int.

Symp. Foundations of Software Eng.,

2014, pp. 507–517.

9. S. Ryu, “Scalable Analysis Frame-

work for ECMAScript,” GitHub,

2016. [Online]. Available: https://

github.com/sukyoung/safe

10. D. Park, A. Ş tefănescu, and G.

Roşu, “KJS: A complete formal

semantics of JavaScript,” in Proc.

Conf. Programming Language

Des. and Implementation, 2015,

pp. 428–438.

11. V. Kashyap et al., “JSAI: A static

analysis platform for JavaScript,” in

Proc. Int. Symp. Foundations Soft-

ware Eng., 2014, pp. 121–132.

12. S. Kang and S. Ryu, “Formal

specification of a JavaScript module

system,” in Proc. Conf. Object-

Oriented Programming, Syst.,

Languages, and Appl., 2012,

pp. 621–638.

13. J. Cho and S. Ryu, “JavaScript

module system: Exploring the de-

sign space,” in Proc. 13th

Int. Conf. Modularity, 2012,

pp. 229–240.

14. Y. Ko, H. Lee, J. Dolby, and S. Ryu,

“Practically tunable static analysis

framework for large-scale JavaScript

applications,” in Proc. Int. Conf.

Automated Software Eng., 2015,

pp. 541–551.

15. S. Lee, J. Dolby, and S. Ryu,

 “HybriDroid: Static analysis frame-

work for Android hybrid applica-

tions,” in Proc. Int. Conf. Automated

Software Eng., 2016.

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

SUKYOUNG RYU is an associate professor in the School of

Computing at Korea Advanced Institute of Science and Tech-

nology (KAIST). Her research interests include programming

languages, program analysis, and programming environment.

Ryu received a Ph.D. in computer science from KAIST.

She is a Member of the IEEE and ACM. Contact her at

sryu.cs@kaist.ac.kr.

JIHYEOK PARK is a Ph.D. student in the School of Comput-

ing at Korea Advanced Institute of Science and Technology

(KAIST). His research interests include static analysis, memory

abstraction, and formal verification. Park received a B.S. in

computer science from KAIST. Contact him at jhpark0223@

kaist.ac.kr.

JOONYOUNG PARK is a Ph.D. student in the School of Com-

puting at Korea Advanced Institute of Science and Technology

(KAIST). His research interests include dynamic analysis,

bug detection of web applications, and concolic testing. Park

received an M.S. in computer science from KAIST. Contact him

at gmb55@kaist.ac.kr.

