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FEATURE: ANALYSIS OF REAL-WORLD JAVASCRIPT

JavaScript Web 
Applications in the Wild
JavaScript was first developed as a sim-
ple scripting language, and, now, it is 
the de facto standard language for web 
programming. It is highly expressive 

thanks to function values and dynamic 
code generation;  JavaScript func-
tions can take callback functions as 
their arguments, and they can gen-
erate code to execute during evalu-
ation. Also,  JavaScript is extremely 
portable. It can run on any device,  
such as smart TVs or smart watches, 
without installation of a compiler or 

an interpreter if the devices have 
a browser.

However, the expressivity and 
portability of JavaScript also intro-
duce various errors and vulnerabili-
ties, collectively known as bugs, in 
JavaScript web applications. Unlike 
statically typed languages, such as 
C and Java, JavaScript does not pre-
vent type-related errors, such as call-
ing functions with wrong numbers 
or wrong types of arguments, which 
results in frequent type-related er-
rors by developers. In addition, be-
cause JavaScript web applications 
often use third-party libraries on 
browsers, they are vulnerable to se-
curity attacks.

Our long-term goal is to develop a 
tool that can analyze and detect bugs 
in real-world JavaScript web applica-
tions. This article reports on our 
recent significant progress toward 
the goal, the SAFE family illustrated 
in Figure 1. We put the series of ef-
forts into context, providing a big 
picture of the JavaScript analysis for 
practitioners. In the rest of this ar-
ticle, we incrementally present each 
of the technical challenges and their 
proposed solutions, summarized in 
Table 1 using the SAFE family, share 
our experiences in both academia 
and industry, and discuss the current 
limitations and the path forward.

Analysis of JavaScript 
Programs
JavaScript has various characteris-
tics that make program analysis es-
pecially difficult. It does not have a 
compile-time type system. A JavaS-
cript variable may have a value of 
any six types—undefined, null, Bool-
ean, number, string, and object—
at any point of program evaluation, 
and it may be implicitly converted to 
different types depending on its sur-
rounding contexts, according to the 
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language specification. Such behav-
iors give much freedom to JavaScript 
developers, but at the same time, they 
often introduce type-related errors. 
JavaScript provides multiple ways 
to generate code at runtime; several 
functions, such as eval, take string 
arguments that represent JavaScript 
code, realize them at runtime, and 
run them. Because such dynamically 
generated code fragments are not 
available at compile time, they are 
not in the targets of static analysis. In 
addition, JavaScript is not statically 
scoped; one language construct, the 
with statement, introduces scopes 
dy    namically, which is a challenge for 
static analysis. Because  JavaScript 
programs use various libraries, such 
as jQuery, which use loops and first-
class property names extensively, 
precise analysis of loops and string 
values becomes critical.

Let us consider the  JavaScript 
code in Figure 2. The wi th state-
ment on lines 7–9 shows that all of 
the properties in the object o (line 7)  

become local variables within the 
body of the statement (line 8); thus, 
the names a, b, and c are dynamically 
introduced within the body of the 
statement. The eval function call on 
line 12 shows that the string  literal 
’o[name] = o[name]();’ becomes Java-
Script code to evaluate at runtime. 

Also, the for-in loop on lines 11–13 
reveals that the property names of the 
object o are first-class values that are 
generated by iteration on the proper-
ties of o.

To address the challenges in stati-
cally analyzing JavaScript programs, 
we developed an open source analysis 

FIGURE 1. Architectural overview of the SAFE family. API: application programming interface. DOM: Document Object Model. 
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Table 1. An analysis of real-world JavaScript web 
applications via the SAFE family.

Analysis Targets Technical Challenges Analysis Techniques

JavaScript 
programs

Dynamic code generation

Dynamic scoping via with statements

Join of analysis results for loops

First-class property names

Rewriting simple code

with rewriting 

Loop-sensitive analysis

Regular expression domain

Web applications DOM objects and APIs Modeling DOM objects and APIs

Analysis with dynamic browser 
information

Dynamic file loading Analysis with dynamically loaded files

Hybrid 
applications

Platform APIs Modeling platform APIs

API misuse detection
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framework for  JavaScript—SAFE.1 
The innermost box in Figure 1 illus-
trates an architectural overview of 
SAFE. It takes a  JavaScript program 
and processes it like a conventional 
program analysis framework does. 
Among others, CFG Builder rewrites 
eval-like function calls that have string 
literal arguments into JavaScript code 
that the arguments represent, and 
it replaces most with statements with 
other language constructs in a sound 
manner.2 The Analyzer performs a 
static analysis based on the abstract 

interpretation framework using ab-
stract values that can represent all six 
kinds of  JavaScript value types, and it 
provides loop-sensitive analysis3 and 
regular expression domains for string 
analysis.4 Thus, it can analyze the 
code in Figure 2 even in the presence 
of the with statement, the eval function 
call, and the for-in loop using first-class 
property names. Finally, Bug Detec-
tor uses the analysis results to find 
type-related bugs, such as undefined 
variable accesses that cause the Refer-
enceError exception in  JavaScript and 

function calls with nonfunction val-
ues that cause the TypeError exception. 
Note that SAFE provides “soundy” 
analysis.5 It cannot analyze eval func-
tion calls with arguments that are not 
string literals, for example.

Analysis of JavaScript 
Web Applications
The first step toward analysis of real-
world JavaScript web applications is 
to analyze JavaScript code embed-
ded in HTML documents.  JavaScript 
programs are often executed in 

1   /**** Analysis of JavaScript Programs ***************************/
2
3   function f() { return 0; }
4   function g() { return 1; }
5   function h() { return 2; }
6   var o = { a : 0, b : 1, c : 2 };
7   with(o) {
8     a = f; b = g; c = h;
9   };
10
11   for (name in o) {
12     eval(’o[name] = o[name]();’);
13   }
14
15   /**** Analysis of JavaScript Web Applications *******************/
16
17   window.requestAnimationFrame =
18     window.requestAnimationFrame ||
19     window.webkitRequestAnimationFrame || // Chrome, Opera
20     window.mozRequestAnimationFrame ||   // FireFox
21     window.oRequestAnimationFrame ||     // Old Opera
22     window.msRequestAnimationFrame ||    // IE
23     function (callback) {
24     use strict;
25     window.setTimeout(callback, 1000 / 60);
26     };
27
28   function isDiv(elem) {
29  // wrong usage of ’===’
30  return elem.tagName.match(/^\w+/) === ’DIV’;
31   }
32
33   /**** Analysis of JavaScript Hybrid Applications ****************/
34
35   function calendarListCallback(calendars) {
36     calendars.map(calendar => calendar.type);
37   }
38
39   webapis.calendar.getCalendars("EVENT", calendarListCallback);

FIGURE 2. A running example named sample.js for analysis of real-world JavaScript web applications.
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host environments, and the most 
widely used host environments are 
web browsers. HTML documents 
of webpages or web applications 
may contain JavaScript code frag-
ments; web browsers represent the 
HTML document structures as host 
objects called Document Object 
Model (DOM), and DOM applica-
tion programming interfaces (APIs) 
provide ways for  JavaScript code to 
use host objects. Thus, the analyz-
ing of  JavaScript web applications 
requires understanding of not only 
the  JavaScript semantics but also 
the meaning of DOM structures 
and the interactions between DOM 
and  JavaScript. Moreover, web ap-
plications often load  JavaScript 
files dynamically, and  JavaScript 
code fragments running on various 
browsers use browser-specific APIs, 
resulting in static analysis impreci-
sion. In addition,  JavaScript web 
applications interact with users via 
event handling functions.  JavaScript 
event functions may be registered 
to HTML documents as HTML at-
tributes, such as onload or onclick, be-
fore program execution, and they 
may be registered via functions, such 
as addEventL istener, during program 
execution. Then, users can make 
 JavaScript event functions called 
asynchronously. Similarly, for dy-
namically generated JavaScr ipt 
code and dynamically loaded files, 
event function calls that are invoked 
by user inputs are not available be-
fore program execution. Therefore, 
purely static analysis will miss them 
from the analysis targets, which re-
sults in unsound analysis results. 
To analyze such dynamic event be-
haviors soundly, most existing static 
analyzers assume that any event func-
tions may be called in any order.

Consider the code example in 
Figure 2 again. Because different 

browsers may use different API func-
tions with similar functionalities, 
if the global function requestAnima-
tionFrame (line 17) is not yet initial-
ized (line 18), it is initialized to one 
of the browser-specific API functions 
(lines 19–22) or a default function 
(lines 23–26). Although the code 
supports browser compatibility be-
tween different versions and differ-
ent browsers, most static analyzers 
lose precision by considering all pos-
sible cases to analyze them soundly. 
Then, it defines a function named 
isDiv (lines 28–31), which takes a 
DOM element and checks whether 
its tag name is ’DIV’. The function is-
Div is invoked when a user clicks the 
DOM elements on lines 3–4 in Fig-
ure 3. The function calls on lines 
4 and 5 evaluate to true and false, 
respectively.

Note that as the comment on line 
29 of Figure 2 states, the function is-
Div contains a bug. Although the value 
of elem.tagName.match(/^\w+/) is either 
an object or null, the value of DIV is a 
string. Because the strict equals op-
erator (===) always returns false if the 
types of two operands are different, 
the conditional expression always 
evaluates to false. Actually, this code 
is a simplified version of the Wikipe-
dia webpage. When a user clicks the 
language selection button from the 
Wikipedia page, a JavaScript func-
tion named setLang is called, which 
contains the bug that isDiv replicates. 
We reported the bug to the Wikipedia 
developers, and they confirmed the 

bug and fixed it right away by replac-
ing === with ==. Because various Wi-
kimedia projects share the code, the 
same bug existed in many webpages. 
A funny thing is that the bug revived 
in less than a year! We found the 
same bug again while evaluating yet 
another analysis technique against 
the Wikipedia page and reported it 
again. What happened is that a de-
veloper revised some code unrelated 
to se tLang , but a simple syntactic 
checker, JSHint, warned the devel-
oper to replace == with === because 
=== is considered to be better. After 
inspecting the situation, the Wiki-
pedia developers revised the code in 
another way using === correctly.

Thus, to analyze JavaScript web 
applications and to detect bugs in 
them, we developed SAFEWApp by 
extending SAFE with DOM mod-
eling and analysis with various dy-
namic information. The middle box 
in Figure 1 shows our extensions 
on SAFE. In addition to analyzing 
 JavaScript programs, SAFEWApp 
can analyze web appl icat ions; 
it takes HTML documents as in-
puts, extracts embedded  JavaScript 
code fragments, builds their CFGs 
using SAFE, constructs DOM mod-
els, analyzes them collectively using 
the Analyzer of SAFE, and detects 
type-related bugs via the Bug De-
tector. SAFEWApp supports DOM 
APIs by providing faithful (par-
tial) DOM models.6 To address 
event functions that handle user in-
puts, it also builds CFGs for event 

FIGURE 3. The HTML code that interacts with the JavaScript code in Figure 2.

1   <html>
2     <head> <script src="sample.js"></script> </head>
3     <body> <div onclick="isDiv(this)">foo</div>
4     <p  onclick="isDiv(this)">bar</p> </body>
5   </html>
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functions and passes them together 
with  JavaScript CFGs to the Ana-
lyzer in SAFE.  SAFEWApp utilizes 
dynamic information in two ways.7 
First, it collects dynamic browser 
information, such as concrete values 
of built-in properties, to specialize 
the Analyzer. For web applications 
running on a specific browser, such 
as Chrome, the value of the function 
requestAnimationFrame (line 17) in Fig-
ure 2 definitely becomes window.web-
kitRequestAnimationFrame, which, in turn, 
improves the analysis precision. 
Second,  SAFEWApp collects dynami-
cally loaded files and includes them 
as its analysis targets. To collect 
such dynamic information, it in-
struments input  JavaScript web 
applications so that they can log 
necessary information during exe-
cution, and it runs the instrumented 
web applications.

Analysis of JavaScript 
Hybrid Applications
The prevalence of the HTML5 tech-
nologies widely expands the realm of 
JavaScript applications to the Internet 

of Things and smart appliances, such 
as smart TVs and smart watches, 
which introduces new kinds of chal-
lenges in static analysis. To utilize de-
vice-specific features, JavaScript web 
applications call native library func-
tions provided by device platforms via 
their APIs. For example, JavaScript 
code in an Android application run-
ning on an Android phone may invoke 
native methods written in Android 
Java to access its geographic location. 
Thus, analyzing the behaviors of such 
 JavaScript applications asks for analy-
sis of function call flows between soft-
ware components written in different 
programming languages.

Also, native functions often take 
callback functions to communicate 
with the application code. For ex-
ample, Figure 4 shows partial speci-
fications of web APIs for calendar 
functionalities. The CalendarManager 
interface contains several functions, 
including getCalendars, and the Calendar 
interface contains two attributes, id 
and name, and more. The getCalendars 
function takes two or three argu-
ments where the second argument 

denotes a callback function to be 
called by the native code if the exe-
cution of the function succeeds, and 
the third optional argument denotes 
a callback function to be called oth-
erwise. Figure 2 presents how the 
native function may be called from 
JavaScript code on line 39; the sec-
ond argument is the function defined 
on lines 35–37. Although calls of the 
callback function are syntactically 
invisible, the function may be called 
by getCalendars. Therefore, to detect 
the bug on line 36, which accesses 
the absent type attribute of a calen-
dar, analysis of JavaScript web ap-
plications requires understanding of 
such implicit call behaviors.

Hence, we extended SAFEWApp 
to analyze both explicit and implicit 
interaction flows between JavaScript 
and native code by providing auto-
matic modeling of API functions. We 
observed that vendors specify the API 
functions they provide in some speci-
fication languages, such as Web IDL 
and TypeScript, so that third-party 
developers can build web applications 
for their devices. Although the JavaS-
cript semantics are wildly dynamic, 
JavaScript code interacting with na-
tive code should satisfy the API speci-
fications to behave correctly. Based 
on this observation, we developed 
SAFEWAPI,

8 which takes the API 
specifications of native functions and 
builds their abstract models auto-
matically, so that the main Ana-
lyzer can understand the behaviors 
of the API functions. The outermost 
box in Figure 1 illustrates that Spec 
Parser builds API Info from API 
Specs, and Heap Modeler integrates 
them with DOM models generated 
from input applications and passes 
the integrated abstract model to the 
Analyzer. Because the approach is 
parameterized by specification lan-
guages,  SAFEWAPI can support any 

1   [NoInterfaceObject]
2   interface CalendarManager {
3     void getCalendars(CalendarType type,
4     CalendarArraySuccessCallback successCallback,
5     optional ErrorCallback? errorCallback
6     ) raises(WebAPIException);
7     ...
8   };
9
10   [Callback=FunctionOnly, NoInterfaceObject]
11   interface CalendarArraySuccessCallback {
12     void onsuccess(Calendar[] calendars);
13   };
14
15   [NoInterfaceObject]
16   interface Calendar {
17     readonly attribute CalendarId id;
18     readonly attribute DOMString name;
19     ...
20   };

FIGURE 4. The specification of a native function getCalendars called by the JavaScript 

code in Figure 2.
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RELATED WORK IN THE ANALYSIS TOOL  
OF JAVASCRIPT APPLICATIONS

Since its introduction in 1995, the JavaScript programming language has been used widely in industry, and the research com-
munity became interested in JavaScript since 2005. Here, we briefly survey static and dynamic analysis tools of JavaScript 
applications.

STATIC ANALYSIS TOOLS OF JAVASCRIPT APPLICATIONS
In addition to the SAFE family, several open source tools can analyze JavaScript applications statically while focusing on different 
purposes for their analyses. Type Analyzer for JavaScript (TAJS)S1 is the closest one to the SAFE family. Although the SAFE fam-
ily analyzes more real-world web applications by identifying and resolving concrete issues in the wild, TAJS has been focusing 
on devising static analysis techniques that target problems related to the JavaScript semantics. T.J. Watson Libraries for Analysis 
(WALA)S2 was originally developed for Java bytecode analysis, and now it supports JavaScript analysis as well. After attempting 
several sound static analysis techniques for JavaScript,S2, S3 WALA is leaning toward unsound call graph construction to utilize 
its efficiency.S4 JavaScript Abstract Interpreter (JSAI)S5 is a JavaScript analysis framework that supports easy configuration of 
analysis sensitivities. Unlike the SAFE family, TAJS, and WALA, JSAI does not construct control flow graphs explicitly. JSAI is 
based on the abstract machine semantics, whereas the other tools are based on the big-step operational semantics.

DYNAMIC ANALYSIS TOOLS OF JAVASCRIPT APPLICATIONS
JalangiS6 is an open source dynamic analysis framework for JavaScript. It provides simple dynamic analyzers, such as concolic 
testing and dynamic taint analysis, as sample uses of Jalangi, and it has been actively used in several dynamic analyses.S7 Also, 
dynamic analyzers can detect event-related errors. WebRacerS8 is the first dynamic race detector for web applications, Even-
tRacerS9 can detect more severe bugs than WebRacer can, with fewer false positives, and R4S10 can distinguish harmful races 
from the races reported by EventRacer by using a stateless model checker for event-driven applications.
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RELATED WORK IN THE ANALYSIS  
OF WEB APPLICATIONS
Expanding analysis targets, researchers have studied analysis of Document Object Model (DOM)-related behaviors and various 
kinds of web applications.

ANALYSIS OF DOM-RELATED BEHAVIORS
Jensen et al.S11 used overapproximation of DOM tree structure and event flows. They analyzed events by considering all possible 
combinations of event calls, which is sound but which also makes the analysis results overapproximated. By using dynamic infor-
mation, SAFEWApp can improve the analysis precision. Alimadadi et al.S12, S13 developed various tools to help developers under-
stand complex dynamic behaviors of web applications. They built Clematis,S12 which captures low-level event-based interactions 
in web applications and transforms the information to high-level representations that developers can understand. To provide DOM-
sensitive change impact analysis for JavaScript, they developed Tochal,S13 which builds static dependency graphs augmented with 
dynamic information for DOM-sensitive changes. Their tools aim to help developers’ in understanding program behaviors rather 
than finding bugs. 

ANALYSIS OF WEB APPLICATIONS BEYOND JAVASCRIPT
Nguyen et al.S14 studied usage patterns in JavaScript web applications by proposing two approaches: JSModel represents 
 JavaScript usages as graphs, and JSMiner mines interprocedural, data-oriented JavaScript usage patterns. They also built HTML/
JavaScript variability-aware parsers so that IDEs can build call graphs for embedded JavaScript code in HTML documents.S15 
 Using the parsers, they produced WebSlice, which performs program slicing across different languages for web applications.S16 
 Ocariza et al.S18 developed Aurebesh, a tool that detects type inconsistencies in AngularJSS17 applications, which is the most popu-
lar JavaScript MVC framework. Feldthaus and MøllerS19 developed TSCheck, a tool that detects inconsistencies between TypeScript 
type declaration files and their corresponding JavaScript library implementation. Finally, Artzi et al.S20 studied fault localization for 
Hypertext Preprocessor web applications.
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native APIs if their specifications 
provide their names and types. Al-
though the mechanism cannot model 
impure behaviors of native functions, 
such as input–output and mutation 
of global variables, it can model type-
level features, such as numbers and 
types of arguments, return types, and 
checked exceptions.

Current Status of the 
SAFE Family
The SAFE family is publicly available,9 
and it has been used in both academia 
and industry. Various components of 
SAFE are being used in academia, such 
as KJS, a complete formal semantics of 
JavaScript,10 and JavaScript Abstract 
Interpreter, a JavaScript static analy-
sis framework.11 SAFE was also used 
to formalize and implement a JavaS-
cript module system,12 whose formal-
ization revealed inconsistent behaviors 
between different implementations 
from Google and Microsoft.13 Beyond 
academia, SAFE has been applied to 
several projects in industry, such as 
those with Samsung, Oracle, and IBM. 
SAFE is integrated in the software de-
velopment kit of Tizen, an open source 
software platform for multiple devices, 
which is a Linux Foundation project.

As stated previously, because 
SAFE provides “soundy” analysis, 
it cannot soundly analyze JavaS-
cript applications that use getters 
and setters, eval function calls with 
arguments that are not string liter-
als, dynamically available code, and 
frameworks that are not fully modeled 
in SAFE, among others. For example, 
although SAFE supports analysis of 
jQuery, it also provides partial model-
ing of jQuery to exclude jQuery from 
analysis targets while losing sound-
ness. By sacrificing soundness, the 
SAFE family provides precise analysis 
results. Using  SAFEWAPI,

8 which can 
detect misuse of native API functions, 

we found that four TV applications 
and one mobile application out of 43 
applications access absent properties of 
platform objects. Because SAFEWAPI 
reported misuse cases precisely, devel-
opers fixed 80 bug reports out of 88, 
which amounts to a 91% fix rate.

Currently, the main challenge of 
SAFE is the analysis scalability. Al-
though most web applications ana-
lyzed in academia have fewer than 
10,000 lines of JavaScript code (LOC), 
real-world web applications in indus-
try have about 700,000 LOC in Oracle 
and millions in Facebook. In attempts 
to analyze real-world web applica-
tions, the SAFE family has tried vari-
ous approaches to reduce the amount 
of computation. For example, because 
SAFE focuses on a specific browser 
using dynamic information instead of 
considering all of the browsers, it re-
duces the amount of execution flows 
to analyze, which in turn improves 
the analysis precision. In addition, by 
supplementing partial modeling with 
dynamic information, SAFE ana-
lyzes previously unreachable flows, 
which enlarges the coverage of analy-
sis targets. We evaluated the effects of 
dynamic information,7 and the experi-
mental results showed that the analy-
sis precision became about twice as 
good, although the analysis time in-
creased due to newly analyzed targets. 
Finally, we have been integrating the 
unsound but efficient T.J. Watson Li-
braries for Analysis (WALA) analysis 
with SAFE by selecting analysis targets 
via WALA and then analyzing them 
via  SAFEWApp,14 and we also analyze 
flows between JavaScript and Android 
Java by extending WALA.15

Analysis of JavaScript web ap-
plications is one of the most 
active research areas: see 

“Related Work in the Analysis Tool 

of JavaScript Applications,” which 
summarizes research on static and dy-
namic analysis tools of  JavaScript ap-
plications, and “Related Work in the 
Analysis of  JavaScript Web Applica-
tions,” which discusses analysis of 
various web applications. However, 
ample open challenges still remain. 
First, analyzing information that is 
available only at runtime is one of the 
fundamental challenges. More aggres-
sive use of dynamic information than 
the current approaches for dynamic 
code generation and dynamic event 
function calls is a promising direction. 
Second, one of the practical challenges 
is the analysis of frameworks and APIs 
implemented in different languages. 
On top of many frameworks, such 
as Node and Cordova, Samsung and 
Oracle have their own in-house frame-
works written in platform-specific 
languages. To handle them without 
actually analyzing their source code, 
a systematic mechanism that models 
their behaviors would open up new 
horizons, as would sharing and merg-
ing various models developed for dif-
ferent analyzers. Finally, finding the 
best configuration for various analysis 
techniques supported by analyzers is 
a difficult task. To help practitioners 
get precise analysis results in a scal-
able manner without too much knowl-
edge of the analyzer details, advanced 
mechanisms that automatically con-
figure analysis techniques would be 
extremely useful. We believe that anal-
ysis and bug detection of JavaScript 
web applications is becoming more 
important, and the research commu-
nity is moving forward.
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