
Jihyeok Park
KAIST

jhpark0223@kaist.ac.kr

JavaScript API Misuse Detection
by Using TypeScript

Static analysis of JavaScript programs to detect errors in them is a challenging task. Especially when the program imports massive JavaScript 
libraries such as jQuery and ExtJS, analyzing the whole program and the libraries is expensive and extremely degrades the analysis efficiency. In 
this paper, we introduce a novel approach to solve the problem by modularizing the analysis. We separate the analysis of JavaScript libraries by 
using types extracted from their corresponding specifications in TypeScript and the analysis of JavaScript applications by a static analysis 
framework. We use DefinitelyTyped, an open-source repository that provides TypeScript declaration files of over 300 popular JavaScript libraries, 
and we extend SAFE, an open-source analysis framework for JavaScript.

Abstract

[1] Microsoft. TypeScript. http://www.typescriptlang.org.
[2] ECMAScript® Language Specification. Edition 5.1. http://www.ecma-interfnational.org/publications/standards/Ecma-262.htm.
[3] DefinitelyTyped. https://github.com/borisyankov/DefinitelyTyped.
[4] Hongki Lee, et al., SAFE: Formal Specification and Implementation of a Scalable Analysis Framework for ECMAScript, In FOOL, 2012.
[5] SAFE, http://safe.kaist.ac.kr.

Reference

• Open-source repository that provides TypeScript declaration files of 
over 300 popular JavaScript libraries.

• TypeScript Declaration files assign types to API objects with newly 
defined types as interfaces, classes, and enums

• Example :

DefinitelyTyped [3]

Extend SAFE (Scalable Analysis Framework for ECMAScript) [4, 5]

• DefinitelyTyped [3] to get TypeScript declaration files of over 300 
popular JavaScript libraries

• TypeScript parser to parse TypeScript declaration files
• Mock-up objects to model every interface, class, and enum 

defined in TypeScript declaration files
• Misuse detection by using mock-up objects and the analysis 

results from SAFE

Methodology

AbsObj - Access to absent objects/functions in APIs
AbsProp - Access to absent properties of API objects
WrongArgNum - Wrong number of arguments
WrongArgTyp - Wrong type of arguments

JavaScript API Misuses

• Strict superset of JavaScript
• Static typing
• Class-based object-oriented language
• TypeScript declaration file

TypeScript [1]

• Scripting language
• Dynamic language
• Prototype-based object-oriented language
• Implicit type conversion

JavaScript [2]

This work is supported in part by Korea Ministry of Education, Science and Technology(MEST) / National Research Foundation of Korea(NRF)
(Grants NRF-2011-0016139 and NRF-2008-0062609).


