
JavaScript API Misuse Detection by Using TypeScript
[Extended Abstract]

Jihyeok Park
KAIST

jhpark0223@kaist.ac.kr

Abstract
Static analysis of JavaScript programs to detect errors in them is
a challenging task. Especially when the program imports massive
JavaScript libraries such as jQuery and MooTools, analyzing the
whole program and the libraries is expensive and extremely de-
clines the analysis efficiency. In this paper, we introduce a novel
approach to solve the problem by modularizing the analysis. We
separate the analysis of JavaScript libraries by using types ex-
tracted from their corresponding specifications in TypeScript and
the analysis of JavaScript applications by a static analysis frame-
work. We use DefinitelyTyped, an open-source repository that pro-
vides TypeScript declaration files of over 300 popular JavaScript
libraries, and we extend SAFE, an open-source analysis framework
for JavaScript.

1. Introduction
JavaScript [1] is the most prevalent language for client-side script-
ing of web pages. It allows developers to build dynamic web pages
by interacting with users and altering document contents in real
time. Thanks to these features, 98 out of the 100 most visited web-
sites according to Alexa [5] use JavaScript for client-side program-
ming. Furthermore, the range of JavaScript applications extends to
outside of client-side programming for web pages. For example,
node.js enables server-side programming in JavaScript to build gen-
eral scalable network applications for example, and Samsung Smart
TV SDK provides support for TV applications in JavaScript. Be-
cause of the wide usage of JavaScript, error detection in JavaScript
applications has become an important problem recently.

Analysis of JavaScript applications is more challenging than
analysis of programs in other programming language such as C
or Java because JavaScript does not have a static type system.
Although JavaScript is an object-oriented language, objects instead
of classes are bases of the JavaScript object-oriented system. Thus,
objects are able to inherit properties from others or to add and
delete some methods. Moreover, the types of object members are
not fixed. Such flexible type structures of JavaScript hinder error
detection of JavaScript applications.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
MODULARITY ’14, April 22–26, 2014, Lugano, Switzerland.
Copyright is held by the owner/author(s).
ACM 978-1-4503-2773-2/14/04.
http://dx.doi.org/10.1145/2584469.2584472

We develop a new analysis to detect misuses of JavaScript APIs
in JavaScript applications by using their specifications written as
TypeScript [12] types in a modular manner. To support various
JavaScript APIs in TypeScript, a GitHub repository, Definitely-
Typed 1, provides TypeScript type definitions for over 300 fre-
quently used JavaScript libraries. We build a tool to parse and ana-
lyze these specifications to check whether JavaScript programs use
the libraries as specified by their corresponding specifications.

2. Misuse Detection by TypeScript
We take account of common cases of JavaScript API misuses in
JavaScript applications:

1. Accesses to absent objects or functions in APIs
2. Accesses to absent member properties of API objects
3. Wrong number of arguments to function calls
4. Wrong types of arguments to function calls

Microsoft has developed TypeScript, an open-source program-
ming language that is a strict superset of JavaScript with static typ-
ing and class-based object-oriented programming. Thus, any exist-
ing JavaScript programs are also valid TypeScript programs. Using
TypeScript, static typing via type annotations enables type check-
ing at compile time. TypeScript provides both declarations with
the extension .d.ts and implementations with the extension .ts,
where the former include interfaces and the latter include concrete
code. The declaration files assign types to API objects with newly
defined types as interface, class, and enum. To allow Type-
Script programs to use existing JavaScript libraries, the Definite-
lyTyped project provides a set of TypeScript declaration files for
frequently used JavaScript libraries.

We develop a tool to detect misuses of JavaScript APIs in
JavaScript applications by using TypeScript declaration files of
JavaScript libraries as semantic criteria. We build the tool as an
extension of SAFE [9, 10], a scalable analysis framework for
JavaScript. Therefore, we focus on extending SAFE with type def-
initions for JavaScript APIs. Because the default static analyzer in
SAFE is not yet scalable to analyze huge JavaScript libraries such
as jQuery and MooTools, we use TypeScript specifications of such
libraries as modeling of them for the static analyzer in SAFE.

Figure 1 describes the overall structure of our tool. The shaded
box denotes a simplified structure of SAFE; solid boxes denote
data and dashed boxes denote modules that transform data. SAFE
takes a JavaScript web application; PreProcessor parses the appli-
cation into JavaScript files and HTML files; HTML Parser gener-
ates DOM Trees from HTML files; Parser parses JavaScript pro-
grams and translates them into Abstract Syntax Trees (ASTs).
We extend SAFE first with TypeScriptRewriter, which substitutes
AST nodes relevant to libraries into different AST nodes specially

1 https://github.com/borisyankov/DefinitelyTyped



Figure 1. Flow graph of SAFE with TypeScript

marked for later analysis. The main component, Analyzer, receives
a CFG and InitHeap including the initial information for analysis
of any applications, and analyzes the target JavaScript application.
Heap Builder in SAFE builds InitHeap from a DOM Tree and we
extend it to take the TypeScript declarations into account. Type-
Script Parser parses TypeScript declaration files into TypeScript
ASTs and stores them as database files for later uses by the ana-
lyzer. Info Extractor builds type information and declaration infor-
mation from the database files and Heap Builder uses them to build
InitHeap. Finally, Bug Detector reports misuses of libraries in the
JavaScript application using the analysis results.

Our tool checks whether a JavaScript program correctly uses el-
ements of JavaScript libraries as described by their corresponding
specifications in TypeScript. TypeScript declaration files consist of
definitions of new types and declarations of variables. Our tool uti-
lizes such information to detect misuses of library elements. For ex-
ample, a declaration file of jQuery defines ‘$’ as JQueryStatic,
an interface representing static members of jQuery in the same file:

interface JQueryStatic { ...
get(url: string,

success?: (data: any, textStatus: string,
jqXHR: JQueryXHR) => any,

dataType?: string): JQueryXHR;
... }
declare var $: JQueryStatic;

When a JavaScript code calls the get function as follows:

var x = ’test’, y = 42;
$.get(x, y);

our tool checks the call using its declaration, which can take 1 to
3 arguments. The first and the third arguments should have the
string type, and the second argument should have a function.
The SAFE Analyzer analyzes that x has the string type and y
has the number type. Therefore, our tool reports a bug that the
second argument does not have a function type. If the code passes
the arguments checking, the return type of the function is analyzed
to have the type interface JQueryXHR. This analysis is simpler
and faster than analyzing the library itself as in the original SAFE
analysis.

Researchers have studied syntactic checks [4], type systems [2,
7], static analyses [6, 8], and hybrids of static and dynamic analy-
ses [3, 11] of JavaScript programs. Unfortunately, syntactic checks
detect only simple errors, type systems are too strict to develop
JavaScript programs freely, and static and dynamic analyses cannot

analyze massive JavaScript APIs. However, our tool can check not
only syntactic errors, but also semantic errors. It can verify misuses
of JavaScript APIs without analyzing such APIs themselves.

3. Conclusion
We propose a new approach to detect misuses of JavaScript li-
braries by using two separate tools, DefinitelyTyped and SAFE
modularly. We build a tool to parse and analyze TypeScript dec-
larations of JavaScript libraries from DefinitelyTyped to store in
database files. We extend SAFE to recognize the library type
information from the pre-analyzed TypeScript declarations in
the database files and add them into the initial information for
JavaScript program analysis. Our tool traverses JavaScript pro-
grams to find out library API uses to check whether they use the
APIs correctly, and reports bugs for misuses of JavaScript libraries.

Acknowledgments
This work is supported in part by the National Research Foundation of Korea (NRF)
(Grants 2012-0000469 and 2012-0005256), Microsoft Research Asia, Samsung Elec-
tronics, S-Core, and Google.

References
[1] ECMAScript Language Specification. Edition 5.1. http:

//www.ecma-international.org/publications/standards/
Ecma-262.htm.

[2] Christopher Anderson, Paola Giannini, and Sophia Drossopoulou. To-
wards type inference for JavaScript. In ECOOP 2005.

[3] Ravi Chugh, Jeffrey A. Meister, Ranjit Jhala, and Sorin Lerner. Staged
information flow for JavaScript. In PLDI 2009.

[4] Douglas Crockford. JSLint. http://www.jslint.com.
[5] Salvatore Guarnieri, Marco Pistoia, Omer Tripp, Julian Dol-

byand Stephen Teilhet, and Ryan Berg. Saving the world wide web
from vulnerable JavaScript. In ISSTA 2011.

[6] Arjun Guha, Shriram Krishnamurthi, and Trevor Jim. Using static
analysis for Ajax intrusion detection. In WWW 2009.

[7] Phillip Heidegger and Peter Thiemann. Recency types for analyzing
scripting languages. In ECOOP 2010.

[8] Simon Holm Jensen, Anders Møller, and Peter Thiemann. Type
analysis for JavaScript. In SAS 2009.

[9] PLRG @ KAIST. SAFE: Scalable Analysis Framework for EC-
MAScript. http://safe.kaist.ac.kr.

[10] Hongki Lee, Sooncheol Won, Joonho Jin, Junhee Cho, and Sukyoung
Ryu. SAFE: Formal specification and implementation of a scalable
analysis framework for ECMAScript. In FOOL 2012.

[11] Sergio Maffeis, John C. Mitchell, and Ankur Taly. Isolating JavaScript
with filters, rewriting, and wrappers. In ESORICS 2009.

[12] Microsoft. TypeScript. http://www.typescriptlang.org.


