Toward building memory-safe network functions
with modest performance overhead

Keunhong Lee*, Shinae Woo*, Sanghyeon Seof, Jihyeok Park*, Sukyoung Ryu*, Sue Moon*
KAIST* Hyperconnect, Inc.t

1. INTRODUCTION

For the past few decades network functions have evolved
much in variety and complexity. Contributing factors
behind are ever-increasing link speeds, novel hardware
features, and new network designs (e.g., datacenters),
just to name a few [4, 6]. In order to deliver high per-
formance in network I/O, network functions rely heavily
on low-level memory management. Yet, such memory
management is error-prone. Among the Linux CVEs
(Common Vulnerabilities and Exposures) for network
functionality with CVSS(Common Vulnerability Scor-
ing System) score 7.5 or higher, more than 30% are
due to memory management faults: buffer overflow,
null pointer dereferences, use-after-free, and double free.
Table 1 shows some examples of critical vulnerabili-
ties from memory-related bugs on the kernel’s network
stack. Such bugs often lead system crash, systems being
compromised, or leakage of secret information.

In traditional type-safe languages (e.g., ML, Haskell,
Scala), memory-safety is preserved by disallowing pointer
manipulation; they automatically manage memory re-
sources without explicit malloc()/free(), restrict ac-
cesses beyond memory bound, and have no null pointer
dereferences. There are notable projects of implement-
ing network function using type-safe languages [5, 2,
1]. Yet for performance-critical network functions, in-
termittent execution of a garbage collector incurs un-
bearable performance penalty.

Rust [3], a recently developed language for safe sys-
tem programming, aims to support memory-safety with-
out garbage collection via its advanced type system.
However, the type system restricts programmability; even
frequently used data structure implementations such as
doubly linked lists cannot satisfy the type system.

In this work, we report that network functions’ archi-
tectures have specific features that suit well with the
Rust type system. We illustrate how the Rust type
system supports real-world network functionality intu-
itively using concrete code examples. Our prototype im-
plementation also shows that the Rust implementation
has comparable run-time performance to a correspond-
ing C implementation.

2. RUST: ZERO-COST MEMORY-SAFETY

Rust’s [3] type system guarantees memory-safety with-

out run-time overhead. Rust developers manipulate low-
level memory without garbage collection as in C/C++,
while the strongly-typed memory segment and the own-
ership abstraction enables compile-time verification of
memory-safety. In Rust, only a single variable has an
ownership of a memory segment, which allows an exclu-
sive update access to it. The ownership linearly moves
among variables and multiple immutable borrowing ref-
erences (read-only) for the memory segment enables high
concurrency whenever possible.

This restricted programming model makes certain data
structures hard to implement. For example, every ele-
ment of a doubly-linked list requires at least two writable
references and does not fit Rust’s ownership. Therefore,
in addition to the default type system, Rust developers
need to add unsafe code blocks (e.g., calling native C
functions, doing pointer arithmetic) or low-performance

abstractions such as reference counting wrappers Rc<RefCell>>

requiring C-like pointer semantics.

We compare the performance of Rust and C imple-
mentations of an IPv4 reassembler. It is a simple net-
work function, yet only with per-flow state management.
The Rust implementation shows only 17% performance
degradation in throughput, while it guarantees memory
safety. This performance gap may shrink if we optimize
common data structures (e.g., hash table) like C.

3. NETWORKFUNCTION ARCHITECTURE

We argue that the core architecture of network func-
tions fits well with Rust’s type system such that network
functions should reap the benefit of zero-cost abstrac-
tion for memory safety as shown in Figure 1.
Rust-friendly RW patterns Network functions man-
age a b-tuple context of network flows. To exploit the
parallelism in the multicore architecture, input packets
are evenly distributed to multiple cores preserving flow
affinity. Then, network function’s data can be classified
into two categories: Per-flow data accessed within a sin-
gle network flow, and global data accessed across differ-
ent network flows. The per-flow data is frequently read
and updated, but exclusively within a single thread.
The ownership of per-flow data is assigned when its
flow context is assigned to a thread. The global data is
shared among multiple threads. Since it is mostly read
and rarely updated, there is enough possibility of paral-



CVE item CVSS Function Ken'lel Description
Score version
CVE-2014-2523 | 10 NetFilter | 3.13.6 Incorrect use of pointers which allows remotely crash system or execute arbitrary code
CVE-2015-1421 | 10 SCTP < 3.28.8 | Use-after-free which allows remote DoS attack or possible other impacts
CVE-2015-8787 | 10 NetFilter | < 4.4 NULL pointer dereference which allows remotely crash system
CVE-2016-7117 | 10 Socket < 4.5.2 User-after-free which allows remotely execute arbitrary code
CVE-2016-9555 | 10 SCTP < 4.8.8 No memory bound check which allows remote DoS or possible other impacts

Table 1: Examples of critical CVEs of memory-related bugs on network stack.
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Figure 1: Network Function Architecture exploiting Rust’s type system
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Figure 2: Performance of NAT on Rust

lelism by having read-only references. Such use of sin-
gle ownership without reference counting delivers Rust’s
memory-safety with low overhead to network functions.

4. EXPERIENCES OF IMPLEMENTING NAT

USING RUST

We implement NAT (Network Address Translator)
using Rust. NAT has a address mapping table that
is globally shared among threads. For every packet ar-
rival, the table is accessed for read, and updated when
there is a new outgoing flow. Our NAT implementation
consists of two types of packet handlers: one that reads
the table and performs the address translation (Per-flow
threads in Figure 1 ), and the other that updates the ta-
ble when there is a new network flow (Aggregate thread
in Figure 1).

Each per-flow thread access the global data includ-
ing the address lookup table as a read-only reference,
and the per-flow data as a writable reference, result-
ing in exclusive access. The aggregate thread requires
a writable reference to both global data and per-flow
data to perform the lookup table update. Thus, when
the need for aggregation arises, the parallelism collapses
and only a single aggregation thread accesses the global
data. However, this aggregation happens only when a

new flow is created and the per-flow handlers can run
in parallel most of the time.

We evaluated our NAT implementation on 24-core
Xeon E5-2670v3 machine connected with two Mellanox
ConnextX-3 40G NICs. One NIC is used for the inter-
nal network and the other for the external network. The
input workload is 100k UDP flows with 512B packets.
Figure 2 shows the performance of our implementation
with varing numbers of CPU cores. Our implementa-
tion scales well when the number of core increases and
almost saturates the 40G link with 16 cores.

S. FUTURE WORK

In this work we have built network functions in Rust,
with type-safe guarantees and modest performance over-
head. We plan to investigate other characteristics of
network functions — layered architectures, (de-) multi-
plexing of data flows — and seek additional optimization
opportunities in Rust’s type system.
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