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The conformance testing of programming language implementations is crucial to support correct and consistent
execution environments. Because manually maintaining conformance tests for real-world programming
languages is cumbersome and labor-intensive, researchers have presented various ways to make conformance
tests effective and efficient. One such approach is to use graph coverage, one of the most widely-used
coverage criteria, to generate tests that reach different parts of a mechanized language specification. Since
mechanized specifications use functions or inductive definitions to describe the semantics of language features,
traditional graph coverage criteria for software work as they are. However, they may not produce high-quality
conformance tests because language implementations often have specialized execution paths for different
features, even when their semantics descriptions use the same functions. Traditional graph coverage may not
distinguish test requirements of such language features, which degrades the quality of conformance testing.
Similarly, it may not distinguish test requirements of different parts of the same language feature when their
semantics descriptions use the same functions.

We present feature-sensitive (FS) coverage as a novel coverage criterion to generate high-quality conformance
tests for language implementations. It is a general extension of graph coverage, refining conventional test
requirements using the innermost enclosing language features. We also introduce feature-call-path-sensitive
(FCPS) coverage, a variant of FS coverage, and extend both coverage criteria using the k-limiting approach.
To evaluate the effectiveness of the new coverage criteria for language implementations, we apply them to
a mechanized specification of JavaScript. We extend JEST, the state-of-the-art JavaScript conformance test
synthesizer using coverage-guided mutational fuzzing, with various FS and FCPS coverage criteria. For the
latest JavaScript language specification (ES13, 2022), our tool automatically synthesizes 237,981 conformance
tests in 50 hours with five coverage criteria. We evaluated the conformance of eight mainstream JavaScript
implementations (four engines and four transpilers) with the synthesized conformance tests and discovered
bugs in all of them. The tool detected 143 distinct conformance bugs (42 in engines and 101 in transpilers), 85
of which were confirmed by the developers and 83 of which were newly discovered bugs.
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1 INTRODUCTION

The conformance testing of programming language implementations is essential to provide cor-
rect and consistent implementations of the language semantics. Many programming languages
have multiple implementations rather than a single reference implementation. For example, Java
uses a Java Virtual Machine (JVM) to compile Java programs into JVM bytecode and execute
them. Developers are free to choose one of the existing JVM implementations, such as Open]J9,
GraalVM, HotSpot, Zulu, and Corretto. Python has the reference interpreter, CPython, in addition
to diverse interpreters, including PyPy, Jython, and IronPython. Therefore, ensuring correct and
consistent execution environments in different implementations of the same language becomes
crucial. However, since manually maintaining conformance test suites for real-world programming
languages is cumbersome and labor-intensive, only a small number of programming languages,
such as JavaScript [ECMA International 2022b] and XML [XMLTestSuite 2011], provide their official
conformance test suites. Thus, researchers have presented ways to test the conformance of multiple
implementations using differential testing [McKeeman 1998] for compilers [Cummins et al. 2018;
Ofenbeck et al. 2016; Tu et al. 2022; Yang et al. 2011], interpreters [Bernhard et al. 2022; Ye et al.
2021], virtual machines [Chen et al. 2019], and debuggers [Lehmann and Pradel 2018]. To make
differential testing for language implementations effective, researchers have proposed various
techniques to synthesize diverse programs, such as generation-based fuzzing [Bernhard et al. 2022;
Lehmann and Pradel 2018; Ofenbeck et al. 2016; Yang et al. 2011], mutation-based fuzzing [Chen
et al. 2019; Tu et al. 2022], and deep learning [Cummins et al. 2018; Ye et al. 2021].

Graph Coverage. Graph coverage [Ammann and Offutt 2008] is one of the most widely-used
coverage criteria in evaluating the quality of conformance tests. Higher coverage of a conformance
test suite denotes that it covers more test requirements (TRs) of a given coverage criterion for
language implementations. Graph coverage helps generate tests that reach uncovered parts of
software; coverage-guided fuzzing (CGF) [Michal Zalewski 2007] improves mutation-based fuzzing
by selecting mutation target programs using coverage information. It also helps avoid an excessive
number of conformance tests; researchers have presented various test minimization techniques [Yoo
and Harman 2012] to reduce the number of tests, and Wong et al. [1997] present coverage-guided
test minimization.

Graph Coverage for Mechanized Language Specifications. One approach to making high-
quality conformance tests is to use graph coverage to generate tests for mechanized language
specifications. While we can use code coverage to generate tests for “actual language implementa-
tions,” it leads to different coverage information for different implementations. On the contrary,
graph coverage for mechanized language specifications leads to uniform coverage for multiple
implementations. Various programming languages, such as OCaml [Owens 2008], C [Blazy and
Leroy 2009], C++[Ramananandro et al. 2012], Java [Bogdanas and Rosu 2015], JavaScript [Park et al.
2020a], and POSIX shell [Greenberg and Blatt 2019], have mechanized specifications that describe
their semantics using diverse metalanguages and frameworks, such as Ott [Sewell et al. 2010],
Skel [Bodin et al. 2019], and the K framework [Rosu and Serbanuta 2010]. Mechanized specifications
use functions or inductive definitions to describe the semantics of language features. Thus, it is
possible to convert them as directed graphs and adapt them to apply traditional graph coverage
criteria for software. For example, K-Java [Bogdanas and Rosu 2015] is a mechanized specification
for Java defined with the K framework, which describes language semantics as a set of reduction
rules. Consider a directed graph whose nodes are reduction rules and edges are their dependencies
in K-Java. Then, we can measure the coverage of a test suite in the directed graph denoting K-Java
based on whether each test covers the test requirements of a graph coverage criterion.
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Challenges. However, graph coverage may not produce high-quality conformance tests for
mechanized language specifications. Mechanized specifications are usually written in a modular
way with helper functions. Such a modular definition has the advantages of preventing duplicated
or similar definitions of language semantics, reducing the size of a mechanized specification, and
enhancing its readability. Despite its usefulness, reusing the same helper function for different
parts may degrade the quality of conformance testing in two ways.

First, traditional graph coverage may not distinguish test requirements of different language
features when their semantics descriptions use the same functions, degrading conformance testing
quality. For example, consider a mechanized specification for JavaScript that represents the abstract
algorithms described in the official language specification, ECMA-262 [ECMA International 2022a].
Here, most of the semantics for the addition and subtraction operators are defined using the same
EvaluateStringOrNumericBinaryExpression algorithm as a helper function. If conformance
tests for the addition operator already cover the test requirements in the algorithm, most confor-
mance tests for the subtraction operator are removed after the coverage-guided test minimization
process. However, real-world JavaScript engines are highly optimized and often have specialized
execution paths for different language features, even when their semantics descriptions use the
same functions. Therefore, we need to test possible edge cases for the subtraction operator as well,
even though similar edge cases for the addition operator are already tested.

Furthermore, it may not distinguish test requirements of different parts of the same language
feature when their semantics descriptions use the same functions, degrading the quality of con-
formance testing. For example, consider the mechanized specification for JavaScript again. In
JavaScript, the String.prototype.normalize built-in API normalizes a given string into a normal-
ization form named by a given argument. The definition of the semantics for this built-in API
feature uses the ToString algorithm as a helper function twice to represent conversions to strings
for 1) this value and 2) the first argument of the API call. Assume that a conformance test suite
already covers the test requirements in the ToString algorithm thanks to various values for this
value. Then, there is no chance to generate new conformance tests that check edge cases of the
conversion from the first argument to string when performing coverage-guided fuzzing.

This Work. To alleviate this problem, we introduce feature-sensitive (FS) coverage, a novel cover-
age criterion to generate high-quality conformance tests for programming language implementa-
tions. It is a general extension of graph coverage, refining test requirements using the innermost
enclosing language features. FS coverage resolves the problem of sharing the same helper functions
for the semantics of different language features. We also present a feature-call-path-sensitive (FCPS)
coverage, a variant of FS coverage with feature-call-paths from language features to test require-
ments. FCPS coverage resolves the problem of sharing the same helper functions for the semantics
of different parts of the same language feature. In addition, we extend both coverage criteria using
the k-limiting approach as k-FS coverage and k-FCPS coverage. To evaluate the effectiveness of the
new coverage criteria, we apply them to a real-world programming language, JavaScript. We select
JavaScript as the evaluation target language because 1) it has the most up-to-date mechanized
specification and 2) it has the official conformance test suite, Test262 [ECMA International 2022b].
We extend JEST [Park et al. 2021b], the state-of-the-art JavaScript conformance test synthesizer
using coverage-guided mutational fuzzing, with various FS and FCPS coverage criteria. For the
latest language specification (ES13, 2022), our tool automatically synthesizes 237,981 conformance
tests in 50 hours with five coverage criteria. We evaluated the conformance of eight mainstream
JavaScript implementations (four engines and four transpilers) with the synthesized conformance
tests and discovered bugs in all of them. The tool detected 143 distinct conformance bugs, 85 of
which were confirmed by the developers and 83 of which were newly discovered bugs.
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AdditiveExpression|yic|d Await] *
MultiplicativeExpressionyiclq 2await]
AdditiveExpressionyiclq rawait] + MultiplicativeExpressionsyiciq »

?Await]
AdditiveExpression|yyiclq 2awair] = MultiplicativeExpressionyyiciq 2await]

Fig. 1. Syntax of AdditiveExpressionin ES13

Contributions. We summarize our contributions as follows:

e We introduce novel feature-sensitive (FS) coverage to discriminate test requirements with the
innermost enclosing language features to enhance the quality of conformance testing for
programming language implementations. It can resolve the problem of sharing the same
helper functions for the semantics of different language features.

o We also present feature-call-path-sensitive (FCPS) coverage as its variant to distinguish different
parts in the semantics of the same language feature.

e We experimentally show that the new coverage criteria outperform the traditional coverage
criteria in the context of conformance bug detection in eight mainstream JavaScript imple-
mentations (four engines and four transpilers) with the latest ECMA-262 (ES13, 2022). The
tool uncovered 83 brand-new bugs.

2 BACKGROUND AND MOTIVATION

In this section, we explain why traditional graph coverage may not produce high-quality confor-
mance tests using JavaScript as an example language. We select JavaScript because its mechanized
specifications are actively maintained, while most mechanized specifications of other languages
are outdated. Since all the existing JavaScript mechanized specifications [Fragoso Santos et al.
2018; Khayam et al. 2022; Park et al. 2015, 2020a] closely capture the abstract algorithms in ECMA-
262 [ECMA International 2022a], we show how JavaScript mechanized specifications describe the
JavaScript syntax and semantics using ECMA-262. Then, we explain the control-flow graph (CFG)
of abstract algorithms in ECMA-262 and how to use the CFG in coverage-guided fuzzing. Finally,
we demonstrate why a simple node coverage criterion cannot fully discriminate different semantics
in different language features or even in the same language feature.

2.1 JavaScript Language Specification (ECMA-262)

Now, we explain how the latest version of ECAM-262 (ES13, 2022) describes the syntax and
semantics of JavaScript language features with simple examples.

2.1.1 Syntax. ECMA-262 defines the JavaScript syntax with a variant of the extended Backus-Naur
form (EBNF). It consists of syntactic productions defined with multiple alternatives; each alternative
is a sequence of symbols. Unlike the original EBNF, its nonterminals are parametric with boolean
arguments: ? denotes passing the argument as is, and + and ~ denote passing true and false,
respectively. In addition, it supports various extensions, including context-sensitive symbols and
conditional alternatives. For example, consider the following simple additive expression:

1+2 (1)

It computes the addition of two Number values, 1 and 2. Figure 1 describes its syntax with the
production of AdditiveExpression®. It requires two boolean parameters, Yield and Await, and consists
of three alternatives. The second (or third) alternative consists of three symbols: a nonterminal
AdditiveExpression, a terminal + (or -), and a nonterminal MultiplicativeExpression.

https://262.ecma-international.org/13.0/#prod- AdditiveExpression
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Syntax-directed operations (SDOs)

Evaluation of AdditiveExpression : AdditiveExpression + MultiplicativeExpression
1. Return ?2 EvaluateStringOrNumericBinaryExpression(AdditiveExpression, +, MultiplicativeExpression).3

Evaluation of AdditiveExpression : AdditiveExpression = MultiplicativeExpression

1. Return ?° EvaluateStringOrNumericBinaryExpression*(AdditiveExpression, -, MultiplicativeExpression).5

Fig. 2. Semantics of AdditiveExpression defined with two syntax-directed operations (SDOs) in ES13

2.1.2  Semantics. ECMA-262 defines the JavaScript semantics using abstract algorithms, and there
are three kinds of abstract algorithms:

e Syntax-directed operations (SDOs) (e.g., Evaluation of AdditiveExpression : -- - in Figure 2)
e Normal algorithms (e.g., ToNumeric in Figure 3)
o Built-in methods (e.g., Number in Figure 4)

A syntax-directed operation (SDO) defines the semantics of each alternative in syntactic produc-
tions. It consists of its 1) target alternative, 2) name, 3) optional parameters, and 4) body. Each
algorithm body is a pseudo-code consisting of well-organized steps written in a natural language,
English. For example, two abstract algorithms in Figure 2 are SDOs whose target alternatives are the
second and third alternatives of AdditiveExpression production for addition (+) and subtraction (-)
operators, respectively. Their names are Evaluation with no optional parameters, and the bodies
consist of a single step that invokes another normal algorithm EvaluateStringOrNumericBina-
ryExpression”. Note that JavaScript ASTs are values, and the metavariables AdditiveExpression
and MultiplicativeExpression in these SDOs store abstract syntax trees (ASTs) of the left-hand and
right-hand sides of given additive expressions, respectively. For instance, if the first SDO in Figure 2
takes the additive expression in (1), the two metavariables store ASTs of two Number literals, 1 and
2, respectively. The “?” operator is a shorthand to handle control flows by following the steps:

1. If argument is an abrupt completion, return Completion(argument).
2. Else if argument is a Completion Record, set argument to argument.[[Value]].

where a completion record is abrupt when it represents exceptional control flows, such as throw,
return, break, and continue. In other words, the “?” operator is a branch that checks whether given
values are abrupt completions and directly returns them if so.

A normal algorithm is the primary form of an abstract algorithm defined by its 1) name, 2)
parameters, and 3) body. It is commonly used as a helper function, and multiple normal algorithms
are used when defining the semantics of language features. Hence, the semantics of different
language features often share the same normal algorithms. For example, both SDOs in Figure 2
invoke the same normal algorithm EvaluateStringOrNumericBinaryExpression with different
second arguments + and -, respectively. Then, they transitively invoke other normal algorithms, Ap-
plyStringOrNumericBinaryOperator® and ToNumeric*. Thus, at least three normal algorithms
are shared in the semantics of the addition and subtraction expressions.

JavaScript provides diverse built-in APIs as opaque functions, such as Object.getPrototype0f and
Number.prototype.toString. A built-in method defines the semantics of a built-in API. For example,
Figure 4 describes the semantics of the Number® built-in API. Since its primary functionality is
to convert a given JavaScript value to its corresponding Number value, it also uses the normal
algorithm ToNumeric as a helper function.

Zhttps://262.ecma-international.org/13.0/#sec-evaluatestringornumericbinaryexpression
Shttps://262.ecma-international.org/13.0/#sec-applystringornumericbinaryoperator
4https://262.ecma-international .org/13.0/#sec-tonumeric
Shttps://262.ecma-international.org/13.0/#sec-number-constructor-number-value
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Normal algorithms

EvaluateStringOrNumericBinaryExpression ( leftOperand, opText, rightOperand )
7

5. Return ?° ApplyStringOrNumericBinaryOperator®(lval, opText, rval).1®
ApplyStringOrNumericBinaryOperator ( [val, opText, rval)
11

3. Let [num be ?13 ToNumeric!?(lval).

4. Let rnum be 215 ToNumeric(rval).

5. If Type(Inum) is different from Type(rnum)'®, ‘ throw a TypeError exception. |7
18

ToNumeric ( value)
19

2. If Type(primValue) is BigInt?%, | return primValue. 2!

22

Fig. 3. Three normal algorithms transitively used in the semantics of AdditiveExpressionin ES13

Built-in methods

Number ( value)
1. If value is present23, then

a. Let prim be 225 ToNumeric?*(value).
26

Fig. 4. Built-in method Number in ES13

2.1.3 Language Features. In JavaScript, a language feature is 1) a syntactic feature or 2) a built-in
API feature. A syntactic feature is related to a specific JavaScript syntax consisting of an alternative
in a syntactic production and its corresponding SDO. On the other hand, a built-in API feature
is related to a built-in API instead of a specific syntax. For example, the + and - operators are
syntactic features (f,4q and fs,p) defined by the second and third alternatives of AdditiveExpression
and their corresponding Evaluation SDOs. The Number built-method describes the semantics of
the built-in Number API feature (fz:Number)-

2.2 Control Flow Graph (CFG) of ECMA-262

To define the coverage of a conformance test suite using graph coverage criteria, we need a directed
graph of the JavaScript mechanized specification. CFG is the most common way to construct a
directed graph from a mechanized language specification. In a CFG, a node denotes a sequence of
instructions, and an edge indicates a control flow in the mechanized specification. An edge often
has an annotation to represent a specific control flow, such as conditional branches (#t or #f) and
function calls (call) and returns (ret).

For example, Figure 5 depicts a CFG of the abstract algorithms in Figures 2, 3, and 4. In this
figure, circles (or diamonds) denote nodes (or branches), arrows denote edges, and boxes indicate
algorithms. The labels inside nodes match the labels annotated in the algorithms in Figures 2, 3,
and 4. Let us apply coverage-guided fuzzing [Michal Zalewski 2007] with a node coverage criterion
in the CFG and assume that a simple JavaScript program, 1 + 2, exists in the program pool. The
program does not satisfy the condition in the branch labeled 20 because the left-hand and right-hand
sides of 1 + 2 are both Number values rather than BigInt values. Thus, it does not cover the red
node labeled 21. Now assume that another program, 3n + 4n, is generated by mutating the previous
program. Then, it covers the red node labeled 21 because it satisfies the condition in the branch
labeled 20 with BigInt values on both sides of the + operator.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 126. Publication date: June 2023.
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Syntactic Feature Syntactic Feature

Evaluation of Evaluation of
AdditiveExpression :
AdditiveExpression +

MultiplicativeExpression

(fadd)

AdditiveExpression :
AdditiveExpression —
MultiplicativeExpression

__;__;_;_
&
]
Iﬁl

PR

EvaluateStringOr-
NumericBinaryExpression

ApplyStringOr-
NumericBinaryOperator

ToNumeric

Built-in API Feature — 4
............... : node : branch
! #t
call
D ralgo —— :call

ret
—> flow —= :return

Fig. 5. Control-flow graph (CFG) of abstract algorithms in Figures 2, 3, and 4

2.3 Motivation

Unfortunately, a simple node coverage criterion in CFGs of mechanized specifications cannot fully
discriminate different semantics in different language features or even in the same feature. We
explain such cases with simple examples using the CFG in Figure 5.

2.3.1 Different Semantics in Different Language Features. The semantics of different language
features may use the same abstract algorithms as helper functions. For example, the semantics of
+ and - operators transitively use ApplyStringOrNumericBinaryOperator. In the algorithm,
the red node labeled 17 represents throwing TypeError exception. If the program pool contains a
program 2n + 1, it covers the red node labeled 17 because it has different types of numeric values, a
BigInt 2n and a Number 1, as the left-hand and right-hand sides of the + operator. Similarly, another
program 2n - 1 using the - operator covers the node. However, 2n - 1 will not be added to the
program pool because the node labeled 17 is already covered by 2n + 1, even though 2n - 1 may
reveal a different implementation of the semantics. For a higher quality of conformance testing, a
more fine-grained definition of graph coverage is necessary to discriminate 2n + 1 and 2n - 1.

2.3.2 Different Semantics in the Same Language Feature. In addition, different parts in the semantics
of the same language feature may use the same algorithm more than once. For example, the seman-
tics of the + operator uses ApplyStringOrNumericBinaryOperator, and it invokes ToNumeric
twice in the nodes labeled 12 and 14. Now, assume that the current program pool contains a program
2n + 1 again. Then, the red node labeled 21 is covered by the program 2n + 1 because the left-hand
side is a BigInt 2n. It means that another similar program 1 + 2n would not be added to the program
pool because the test requirement for the node labeled 21 is already covered by 2n + 1. However,
1 + 2nis also a meaningful test case because it checks the edge case when the right-hand side of
the + operator is a Biglnt value.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 126. Publication date: June 2023.
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In the remainder of the paper, we formally define a feature-sensitive coverage criterion and its
variants to resolve the problems (Section 3). Then, we explain how to implement a conformance
test synthesizer with feature-sensitive coverage criteria (Section 4). Finally, after evaluating feature-
sensitive coverage criteria with mainstream JavaScript implementations (Section 5), we discuss
related work (Section 6) and conclude (Section 7).

3 FEATURE-SENSITIVE COVERAGE CRITERIA

This section formulates a general definition of graph coverage for a directed graph and explains
representative coverage criteria as examples. Then, we introduce feature-sensitive (FS) coverage
criteria as general extensions of graph coverage criteria to discriminate semantics between different
language features. Finally, we define feature-call-path-sensitive (FCPS) coverage criteria as variants
of FS coverage criteria to distinguish different parts in the semantics of the same language feature.

3.1 Notations

First, we define notations used in the definition of graph coverage criteria. A directed graph
G = (N,N,,Ny, E) consists of:

eN: asetof nodes oN, CN: asetofinitial nodes oNy CN: asetof final nodes

o ECNXNX(AwW{L}): aset of edges optionally annotated with annotations A

The notation n — n’ denotes an edge from a node n to a node n’ with an annotation a € A. If an
edge has an empty annotation L, we omit the annotation: n — n’. In a given directed graph G, a
path p € Pg is a sequence of one or more nodes, where each pair of adjacent nodes is an edge:

ay Am-1 . ai
Pg={ng— -+ —— ny | Vi<m.n — ny € EAn, € N} (2)

Am-1

The length of a path is defined as ||ng ol =m A path p is a subpath (C) of a path p’
when p is a subsequence of p’. We use the notation < for a prefix relation, and first(p) and last(p)
denote the first and last nodes of the path p, respectively. A path p is a test path when it starts at
an initial node and ends at a final node: first(p) € N, A last(p) € N¢. Then, pathg : T — Pgisa
mapping from a test t € T to a test path in G, and we call path(t) the execution path of t.

Example. Consider the CFG G in Figure 5 and the following JS programs as a test set T C T:

T={--,2n+12n-1,---} (3)
tadd tsub

Then, pathg(t.44), the execution path of t,44, is depeicted as follows:

Evaluation of AdditiveExpression + MultiplicativeExpression
EvaluateStringOrNumericBinaryExpression
ApplyStringOrNumericBinaryOperator

ToNumeric

call call call call #t ret #f
= 1— 7>:-->58— 11> -5 12— 19> -5 20— 21 22 — 13 — 14

ToNumeric

call #f ret #f #t ret #t ret #t ret
— 19> .--2520—:-+>22 —515—16—/17 518 —9—> 10 —2—>3 — .-

And, pathg (ts,p) is equal to pathg(tadq) except for nodes labeled 1, 2, and 3 in the Evaluation
SDO for addition replaced with nodes labeled 4, 5, and 6 in the Evaluation SDO for subtraction.
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Note that the following path p is a subpath of both pathg(tadq) and pathg (tsub):

ret #f #t
p=22-5155 16 — 17 (4)

whose length is |[p|| = 3.

3.2 Graph Coverage Criteria

We formulate graph coverage criteria by referring to their well-known definitions [Ammann and
Offutt 2008], and they are defined by 1) a set of test requirements and 2) a cover relation between
paths and test requirements:

Definition 3.1 (Graph Coverage Criteria). A graph coverage criterion Cg = (Rg, “~) for a given
directed graph G is defined with:
o a set of test requirements (IRs) Rg
e a cover relation “~"'C Pg X Rg between paths and TRs

In a specific graph coverage criterion Cg, we say that a path p covers a TR r € Rg when p “~X r.

A test t € T covers the TR r if there exists a prefix path p of its execution path that covers the TR:

cover cover r (5)

t ~ r & 3JpePg. st p<pathg(t)Ap ~
Atest set T C T satisfies (+) the criterion Cg when it covers all feasible TRs:
T+Cs & VreRg. risfeasible = 3t e T.st.t " r (6)

where a TR r is feasible if there exists a possible test t € T that covers r. If T + Cg = T + C for any
test set T, we say that Cc subsumes C{, and use the notation: Cg > Cj,. The subsumption relation
between graph coverage criteria is a preorder.

Definition 3.2 (Node Coverage). In a node coverage criterion C&Ode,

e the set of TRs Rg is a set of nodes: Rg = N

e apath p covers a node n when it ends with the node n: p “~*'

n & last(p)=n®
The node coverage criterion is the most common graph coverage criterion whose test requirements
are nodes, and we can generalize it into k-limiting path coverage criteria using paths:

Definition 3.3 (k-Limiting Path Coverage). In a k-limiting path coverage criterion Cgpath,

o the set of TRs Rg is a set of paths whose lengths are bounded by k: Rg = {p € Pz | |Ip|l < k}
e a path p covers a path p’ when their last nodes are equal and the path p’ is a subpath of p:
R p = last(p) = last(p’) Ap' Cp

Now, the node coverage criterion can be redefined as the 0-limiting path coverage criterion

(Cg path _ C&Ode), and other graph coverage criteria match with k-limiting path coverages as well:
o The edge coverage criterion is Cgpath

. I . ~2-path
e The edge-pair coverage criterion is Cg;

o . . -path
e The complete path coverage criterion is Cg pat

%Another way to define node coverage is using a visit relation between paths and any nodes in the paths. However, we use a
cover relation between paths and the last nodes in the paths because it is suitable for further extensions of graph coverage.
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Note that k-limiting path coverage criteria utilize the inequality for path lengths ||p|| < k rather

than equality ||p|| = k. Thus, if i < j, the set of TRs in Cgpath is always a subset of that in C(g path, and

i-path . . . . . .
subsumes CGp . The branch coverage criterion is a variant of the edge coverage criterion

that treats only out-edges of conditional branches as TRs. It is possible to merge multiple coverage
criteria by defining unions of their TRs and cover relations. For example, a node-or-branch coverage
criterion is a merge of node and branch coverage criteria.

The complete path coverage criterion might have infinite TRs because of recursions and loop
structures. To resolve this problem, Ammann and Offutt [2008] have presented a simple path
coverage criterion or a prime path coverage criterion. However, even such advanced structural
coverage criteria still need many TRs for the entire control-flow graphs. Hence, they are usually
used for unit testing [Li et al. 2009] in practice with intra-procedural control-flow graphs.

J-path
CG

Example. Consider the CFG G in Figure 5 and the test set T in (3). If we measure the 3-limiting
path coverage Cg Path for T, both the node labeled 17 and the path p in (4) are test requirements Rg.
First, the prefix path, whose last node is 17, of pathg(t.qq) covers both TRs: the node labeled 17
and p. Thus, the test t,4q4 for addition covers both of them. Similarly, the test ¢, for subtraction
covers both of them for the same reason. Unfortunately, either t,44 or 5, might be removed in the
program pool because they cover the same TRs, the node labeled 17 and the path p.

3.3 Feature-Sensitive (FS) Coverage Criteria
To alleviate the problem introduced in Section 2.3.1, we present feature-sensitive (FS) coverage criteria
as general extensions of any graph coverages depending on the following three components:

e a given graph coverage criterion Cg

e a set of language features F

o a feature mapping feat : N — F & {1}, a partial mapping from nodes to language features
where feat(n) = L means that there is no language feature for the node n.

We first define the call-site stack p |.a1€ N* of a path p as a sequence of nodes constructed by:

€ ifp=n
call
D leati= [n1, -+ nm, last(p’)] ifp=p" — nAp|can=[n1,- - nm] )
call— ret
[n1, - ] ifpzp’ i>n/\p/|caII: [, nm]
P |call ifp=p’ % n where a ¢ {call, ret}

In other words, p |1 keeps only call-sites not matched with return-sites in the path p; a call-site is

[ t
a node having a call edge (E—>) as its out-edge, and a return-site is a node having a return edge (L)
as its in-edge. Then, we define the feature extractor extg : Pg |cay— F W {1} as a partial mapping
from call-site stacks to the innermost enclosing language features F:

fif Ji. st feat(n;) = f AVj > i. feat(n;) = L
1 otherwise

extg([ny, - ,nm]) = { (®)

Similarly, extg(p |cail) = L means that there is no language feature for the path p.

Definition 3.4 (Feature-Sensitive (FS) Coverage Criteria). For a given graph coverage criterion

Co = (Rg, ‘%), the feature-sensitive (FS) coverage criterion C&S = (Rg, “X) is defined as follows:

o the set of feature-sensitive test requirements (FS-TRs) R&S is a set of original TRs
optionally with language features: Rés =Rg X (Fw{L})

e a path p covers a FS-TR (r, f) when p covers the original TR r and f is the innermost

cover cover

enclosing language feature of p: p "~ (r,f) & p ~ r Aextp(plean) = f
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Example. For the CFG G in Figure 5, assume that the feature mapping is as follows:

fadd ifne{1,2,3} fa:Number  1f 1 € {23, 24, 25, 26}

feat(n) = { foub  ifne{4,56} L otherwise ©)

Consider two tests t,qq and tgyp in the test set T (3), and the following two prefix paths p,qq and
Psub> Whose last nodes are labeled 17, of their execution paths:

call call call call ret #f call ret #f #t
pad:ir—1l—->8— - >12—-+—>13>514—---—15—>16 > 17
call call call call ret #f call ret #f #t

First, the call-site stack of padd iS pPadd |cali= [ - - , 1, 8] because other call-sites labeled 12 and 14 are
removed by matched return-sites labeled 13 and 15, respectively. Since there is no feature mapping
for the call-site labeled 8, the innermost enclosing feature of padd is extr(padd |call) = feat(1) = fadd.
Hence, if we use a FS node coverage criterion Cgslmdej, the path p,qq covers a FS-TR (17, faqq), and
the test t,44 for addition covers it as well. In a similar way, we know that the innermost enclosing
language feature of pgyp is extp(psub |call) = feat(4) = foup. It means that ¢y, covers a new FS-TR
(17, faub) instead of (17, f,d4) and remains in the program pool.

In addition, we extend extr to apply the k-limiting approach to FS coverage criteria. The extended

feature extractor extI’; : Pg |ca— F=F collects at most k enclosing language features:

€ ifk=0vm=0
exth([ny, - nm]) = exti!([ny, - nma]) - f if feat(ny) = f (10)
ext]’;([nl, S Nme1]) otherwise

Definition 3.5 (k-Limiting Feature-Sensitive (k-FS) Coverage Criteria). For a given Cg = (Rg, “~),

the k-limiting feature-sensitive (k-FS) coverage criterion CE'FS = (REFS, X is defined as follows:

o the set of k-feature-sensitive test requirements (k-FS-TRs) Rg FS is a set of original TRs

with at most k language features: ]R(’é’ S = Rg x F=k

e apath p covers a k-FS-TR (r, ]_”) when p covers the original TR r andf is the k-most enclosing
cover e cover k -
~(rnf) &= p ~rA eXt]F(P|caII) =f

Example. Consider a JavaScript program [] - (2n + 1) as a test ¢ with the graph in Figure 5. It

throws a TypeError exception in the node labeled 17 during the execution of its sub-expression

2n + 1. Let p be a prefix path, whose last node is labeled 17, of the execution path of ¢. Then,
ext]%(p) = [ fsub» fadd] because the innermost enclosing feature is f,44, and the next enclosing one

language features of p: p

is fuup for the path p. If we use 2-FS node coverage criterion Cé;FS["Ode], the set of 2-FS-TRs is
REFS = (N, F=%), and the test t covers a 2-FS-TR (17, [ foub, fadd])-

The k-FS coverage criteria divide TRs using each combination of different language features.
Especially, the k-FS coverage criteria with k > 2 are helpful to cover edge cases in JavaScript engines
and transpilers because they are heavily optimized and handle even the same language features
differently depending on which language features are used together. For example, a destructuring
pattern’ helps developers easily declare variables with the values stored in the properties of an
object or an array. However, JavaScript engines and transpilers often have a different execution
path to handle the pattern when it is declared in a for-in/of statement. Actually, the Graal]S
engine and the Babel transpiler contain conformance bugs and crashing bugs, respectively, that are
reproducible only with a combination of a destructuring pattern and a for-in/of statement.®

Thttps://262.ecma-international.org/13.0/#sec-destructuring-assignment
8https://github.com/oracle/graaljs/issues/656 and https://github.com/babel/babel/issues/15100
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Fig. 6. Excerpt from the CFG of abstract algorithms for IdentifierReference
3.4 Feature-Call-Path-Sensitive (FCPS) Coverage Criteria

As explained in Section 2.3.2, a more fine-grained set of test requirements is necessary to distinguish
different parts of the semantics in the same language feature. Thus, we define feature-call-path-
sensitive (FCPS) coverage criteria as variants of FS coverage criteria. The core idea is to distinguish
TRs using paths from the innermost enclosing language features. However, if we keep paths as they
are, the number of TRs exponentially increases because of the path explosion caused by sequential
branches. Hence, we abstract a path p to a corresponding feature-call-path fc, € Fc, = F X Pg|cal,
which consists of the innermost enclosing feature and a subsequence of the call-site stack p |cai
from the feature. We define the feature-call-path extractor extg,, : Pg |cat— (Fep {1}):

L ifm=0
(f> [nm]) if feat(ny,) = f
ext]Fcp([m,... m]) =19 Jop if fp=1 (11)

(fs [ng, -+ .ni]) if fop = (f, [ng, - -+, nl, 1) A i st nf = ny,
(fin-nm) if fop = (f.7)
where fo, = extg,, ([n1, -+, nm-1]). The algorithm starts with 1, denoting no feature-call-path
for p, because no enclosing feature exists in the beginning (m = 0). It then recursively keeps the
call-sites in a given call-site stack p |.,;. However, it refreshes the result when there exists a mapping
from the current call-site to a language feature (feat(n,,) = f). It also removes cycles to prevent a
possibly infinite length of feature-call-path and removes duplicated cases (3i. s.t. n} = ny,).

cover)
~ 3

Definition 3.6 (Feature-Call-Path-Sensitive (FCPS) Coverage Criteria). For a given Cg = (Rg,

the feature-call-path-sensitive (FCPS) coverage criterion C&CPS = (RECPS, “X" is defined as follows:

o the set of feature-call-path-sensitive test requirements (FCPS-TRs) R&CPS is a set of
original TRs optionally with feature-call-paths: Récps =Rg x (Fep W {L})
e apath p covers a FCPS-TR (r, fcp) when p covers the original TR r and f,, is the feature-call-

path extracted from p: p “~X (r, fp) = p LA extg,, (P lcall) = fop
Example. We show two examples for FCPS node coverage criteria. First, consider the two JS
programs, tp = 2n + land ¢ =1 + 2n, as tests with the CFG in Figure 5. If we use FS node coverage

criterion C(gs[mde], both tests ty and t; cover the same FS-TR (21, fadd), and one of them might be

removed in the program pool. However, if we use FCPS node coverage criterion C&CPS[nOde], to

and t; cover different FCPS-TRs (21, (fadds [1,8, 12])) and (21, (fadd, [1, 8, 14])), respectively. The
other example is about the cycles in the call-site stacks with the graph in Figure 6. It depicts an
excerpt from the CFG of abstract algorithms in ES13 transitively used in fi4, a syntactic feature
defined by the first alternative of IdentifierReference and its Evaluation SDO. Assume that we
do not remove cycles in the feature-call-paths F, during the extraction algorithm extg,,. Then,
since the algorithm GetldentifierReference contains a self-recursion, there exists an infinite
number of possible feature-call-paths from fiq to the node labeled 29: (fiq, [27, 28]), (fi4, [27, 28, 30]),
(fid [27,28,30,30]), and so on. Thus, we remove cycles in feature-call-paths to resolve this issue,
and there exists only two possible feature-call-paths: (fi4, [27, 28]) and (fi4, [27, 28, 30]).
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Fig. 7. Subsumption relations between k-FS and k-FCPS coverage criteria

Similar to the extension of FS coverage criteria to k-FS coverage criteria, we define k-FCPS
coverage criteria by extending extg,, into ext{é : PG |can— ]Ffpk :
<p

(i,e) ifk=0vm=0 3
(f - f, [nm]) if feat(ny,) = f A ext]];;l([nl,~~- sim-1]) = (f,_)
extf ([n,,nml) =14 fop if Fop = (e.6)

(]_’ [ng, -+, ni]) if&: (]_” [ng, - .n, 1) AJi.st.n)=ny,
(fin-nm) if fop = (f.7)
(12)
where ]Ffpk = F=k X Pg |can is a set of extended feature-call-paths, and ]Tp = ext]llécp ([n, -+ s nm-1]).
Definition 3.7 (k-Limiting Feature-Call-Path-Sensitive (k-FCPS) Coverage Criteria). For a given
Cs = (Rg, "X, the k-limiting feature-call-path-sensitive (k-FCPS) coverage criterion CE’FCPS =
(R(’é‘ FCPS €9X) is defined as follows:
o the set of k-feature-call-path-sensitive test requirements (k-FCPS-TRs)
of original TRs with the extended feature-call-paths bounded by k: Rg FCPS = Rg x ]Ffpk

e apath p covers a k-FCPS-TR (7, ]Tp) when p covers the original TR r and ]Tp is the extended
feature-call-path extracted from p bounded by k:

» cover (ﬂ]?p) = p rA eXt]];cp (P |call) = ]TP

We prove Theorem 3.9 for the subsumption relations between k-FS and k-FCPS coverage criteria.
Figure 7 illustrates the relations using edges annotated with equations in Theorem 3.9.

REFCPS is a set

cover

LeEmMA 3.8. Consider two graph coverage criteria Cg = (Rg, X" and C; = (RG, C%er,). If there
exists a feasible TRr € R that satisfies the following condition for each feasible TRr’ € R

cover cover’ r,. (13)

VieT.t ~r=t ~
Then, Cg subsumes C{, (Cg > C(,).
Proor. Assume T + Cg. For a given feasible TR v’ € R., let r € Rg be the feasible TR satisfying

cover

(13). Then, there exists a test t € T such thatt "~ r because r is feasible and T + Cg. Finally,
¢ cover v O
THEOREM 3.9 (SUBSUMPTION RELATION). For a given integerk > 0, the following three subsumption
relations (>) between k-FS and k-FCPS coverage criteria satisfy:
(A) C(Ié—FS > C(E(}k—l)‘FS (B) C(é—FCPS > C(((}k—l)‘FCPS (C) C(Ié-FCPS > CE-FS

Proor. We prove (A) using Lemma 3.8, and omit the other cases because their proofs are similar.
Let k > 0. For a given feasible (k — 1)-FS-TR (r, J_‘) there exists a test t € T such that t “~X (r, ]_”)
because (7, ]_”) is feasible. There exists a prefix path p of pathg(t) such that p “~ (r, ]_”) (. (5)).
Then, a k-FS-TR (r, ext]’]; (plcan)) satisfies the condition (13) because of the inductive definition of
ext]lg in (10). Finally, k-FS coverage criteria subsume (k — 1)-FS coverage criteria. o
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Fig. 8. Overall structure of JEST

4 IMPLEMENTATION

This section introduces JEST,, our JavaScript conformance test synthesizer supporting k-FS and
k-FCPS coverage criteria, and explains how it can detect conformance bugs in JavaScript implemen-
tations. Figure 8 illustrates its overall structure. JEST¢ takes 1) a mechanized specification extracted
by ESMeta’ and 2) a coverage criterion Cg and performs coverage-guided fuzzing using the CFG of
the mechanized specification. It uses the following four modules from JEST [Park et al. 2021b]:

e Seed Synthesizer: As the first step, Seed Synthesizer automatically synthesizes a set of
JavaScript programs as the initial program pool. It uses the JavaScript syntax described in the
language specification to cover diverse alternatives in syntactic productions. JEST¢g uses two
existing synthesizers: 1) a non-recursive synthesizer and 2) a built-in synthesizer.

e Target Selector: To measure the coverage in the CFG, Target Selector extracts the execution
path of each program in the pool by interpreting it using the abstract algorithms in the
specification. While the baseline tool supports only a node-or-branch coverage criterion, we
extend it to support k-FS and k-FCPS node-or-branch coverage criteria as well. If a program
does not cover new TRs, it removes the program from the pool. Then, it selects a program in
the pool as a mutation target that potentially increases the coverage or stops the iteration
when the current status satisfies the termination condition.

e Program Mutator: To increase the coverage in the CFG, Program Mutator repeatedly tries to
mutate a JavaScript program to a new one using mutation methods. JEST¢; uses five mutation
methods: 1) random mutation, 2) nearest syntax tree mutation, 3) string substitution, 4) object
substitution, and 5) statement insertion.

e Assertion Extractor: After the mutation iteration, Assertion Extractor automatically extracts
seven kinds of assertions from each program in the pool. The assertions represent the expected
final state of each program according to the semantics described in the specification. As a
result, each pair of a program and the corresponding extracted assertions is a conformance
test for JavaScript.

A synthesized conformance test consists of a JavaScript program and corresponding assertions.
To check a JavaScript engine’s conformance, it is enough to run the program in the test and
assertions together using the target engine. If at least one assertion fails, the target engine has a
conformance bug related to the test. To check a JavaScript transpiler’s conformance, we should
transpile the program in the test using the target transpiler. If the transpiler abnormally terminates,
it has a conformance bug because programs in conformance tests are valid. Otherwise, we should
run the transpiled program and assertions together using a trusted engine. If at least one assertion
fails, the target transpiler has a conformance bug related to the test.

%https://github.com/es-meta/esmeta
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Table 1. Detected conformance bugs in JavaScript engines and transpilers

# Detected Unique Bugs

Kind Name Version Release #New | # Confirmed | # Reported
\'%% v10.8.121 | 2022.10.06 0 0 4

JsC v615.1.10 | 2022.10.26 15 15 24

Engine Graal]S v22.2.0 2022.07.26 9 9 10
SpiderMonkey | v107.0b4 | 2022.10.24 1 3 4

Total 25 27 42

Babel v7.19.1 2022.09.15 30 30 35

SWC v1.3.10 2022.10.21 27 27 41

Transpiler | Terser v5.15.1 2022.10.05 1 1 18
Obfuscator v4.0.0 2022.02.15 0 0 7

Total 58 58 101

Total 83 85 143

5 EVALUATION
This section evaluates feature-sensitive coverage criteria with the following research questions:

¢ RQ1 (Conformance Bug Detection): How many conformance bugs in JavaScript imple-
mentations are detected by synthesized conformance tests? (Section 5.1)

¢ RQ2 (Effectiveness of k-FS Coverage Criteria): Are higher k-FS coverage criteria more
effective than lower k-FS coverage criteria in detecting conformance bugs? (Section 5.2)

¢ RQ3 (Effectiveness of k-FCPS Coverage Criteria): Are k-FCPS coverage criteria more
effective than k-FS coverage criteria in detecting conformance bugs? (Section 5.3)

¢ RQ4 (Comparison with Test262): Can conformance tests synthesized by JEST¢; complement
Test262, the official JavaScript conformance suite maintained manually? (Section 5.4)

We apply JEST¢, to the latest language specification (ES13, 2022) [ECMA International 2022a],
which synthesized 237,981 conformance tests in 50 hours with five graph coverage criteria: 1) 0-FS,
2) 1-FS, 3) 2-FS, 4) 1-FCPS, and 5) 2-FCPS node-or-branch coverage. We performed our experiments
with five Ubuntu machines with a 4.0GHz Intel(R) Core(TM) i7-6700k and 32GB of RAM (Samsung
DDR4 2133MHz 8GB*4).

Using the synthesized JavaScript conformance tests, we check the conformance of eight main-
stream implementations listed in Table 1. We select them as evaluation targets because they support
all the language features in ES13. V8, JSC, and SpiderMonkey are JavaScript engines used in web
browsers, Google Chrome, Apple Safari, and Mozilla Firefox, respectively, and GraalJS is a JavaScript
engine by Oracle. Babel and SWC are transpilers that desugar new language features into old ones,
usually ES5.1 features, for legacy host environments. Terser is a code compressor that reduces
code size, and Obfuscator obfuscates code to make it hard to understand and reverse-engineering.
For the transpiler conformance check, we use V8 as the default engine to execute transpiled code
with assertions. If a test fails on V8, we use another engine that passes the test; if a test fails on all
engines, we do not use the test.

5.1 Conformance Bug Detection

Table 1 summarizes the conformance bugs detected by JEST¢ in all the evaluation targets. We
manually inspected the failed conformance test cases, found 143 distinct conformance bugs, and
reported them to the corresponding developers. As a result, 85 out of 143 bugs were officially
confirmed, and 83 were newly discovered bugs. The other 47 reported bugs are still under review,
or developers have not yet responded. Among 143 detected bugs, 42 are engine bugs, and 101 are
transpiler bugs. We present two real-world bug examples.
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Table 2. Comparison of synthesized conformance tests guided by five graph coverage criteria

L. # Covered k-F(CP)S-TR (k
Coverage Criteria Cg FNode | # Brailch) p Tf)t?il #Syn. Test | # Bug
0-FS node-or-branch (0-fs) 10.0 5.6 15.6 2,111 55
1-FS node-or-branch (1-fs) 79.3 45.7 125.0 6,766 83
2-FS node-or-branch (2-fs) 1,199.8 696.3 1,896.1 97,423 102
1-FCPS node-or-branch (1-fcps) 179.7 97.6 277.3 9,092 87
2-FCPS node-or-branch (Z—prS) 2,323.1 1,297.6 3,620.7 122,589 111

Order of Execution. JavaScript engines must follow the execution order of each language feature
described in the language specification. However, we found a bug!? related to the execution order
of the delete operation that causes the execution of originally unreachable code in GraalJS. For
example, while the following code should return false, it throws an exception with "ERR" by
executing the originally unreachable code inside the arrow function in Graal]S:

false && delete (() => { throw "ERR"; 3})(); // Expected: false

In addition, we detected another bug'! related to the execution order of property reads in all
target engines. ECMA-262 may consider changing the semantics according to the one used in most
implementations.

Asynchronous Function / Generator. One of the complex language features in JavaScript is
asynchronous functions and generators introduced in ES6 (2015). We detected a bug!? in Spider-
Monkey that breaks the logic of asynchronous function calls. For example, the following code must
return a rejected Promise object because a non-iterable value undefined is assigned to an array
destructuring pattern [] in the async arrow function:

(async function ([]1) {})(); // Expected: A rejected Promise object

However, it unexpectedly terminates with a TypeError exception in SpiderMonkey. A developer
of SpiderMonkey explained it as follows:

“The async-function spec was changed at some point [...]
this is also not covered by test262”

5.2 Effectiveness of k-FS Coverage Criteria

Table 2 shows the result of conformance test synthesis via JEST¢s with five graph coverage criteria.
Note that 0-FS node-or-branch coverage criterion is the same with the node-or-branch coverage
criterion. To evaluate the effectiveness of k-FS coverage criteria, we compare the synthesized
conformance tests guided by different k-FS node-or-branch coverage criteria (0-fs, 1-fs, and 2-fs in
Table 2). The second to the fourth columns denote the numbers of covered k-FS- or k-FCPS-TRs
for nodes (# Node), branches (# Branch), and both (# Total), respectively. The fifth and the sixth
columns denote the numbers of synthesized conformance tests (# Syn. Test) and detected distinct
bugs (# Bug), respectively.

The results show that higher k-FS coverage criteria are more effective than lower k-FS. On
average, 8.03 (125.0K / 15.6K) 1-FS-TRs exist per each 0-FS-TR, and 15.17 (1,896.1K / 125.0K) 2-FS-
TRs exist per each 1-FS-TR. It means that each node or branch is used in 8.03 different language
features, and each language feature could be used in 15.17 other language features on average. For
a more detailed information, we draw a histogram of the number of covered 1-FS-TRs (or 2-FS-TRs)

Ohttps://github.com/oracle/graaljs/issues/671
Mhttps://github.com/tc39/ecma262/issues/2659
Zhttps://bugzilla.mozilla.org/show_bug.cgi?id=1799288
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per each covered 0-FS-TR (or 1-FS-TR) in Figures 9 (a) and (b). The largest number of covered
1-FS-TRs per each covered 0-FS-TR is 303 for a node in the [[GetOwnProperty]] algorithm. In
other words, this algorithm is used in 303 different language features, because the semantics of
many syntactic or built-in API features use this algorithm to access object properties. The largest
number of covered 2-FS-TRs per each covered 1-FS-TR is 116 for a node whose innermost enclosing
feature is the syntactic feature fiy for identifier references explained in Section 3.4. In other words,
the syntactic feature fiq is used in 116 different language features, because identifier references
can be used in diverse syntactic features, such as function names, destructuring patterns, and
property definitions. The number of synthesized tests increased 3.21x (6,766 / 2,111) from 0-FS to
1-FS coverage criteria and 14.4x (97,423 / 6,766) from 1-FS to 2-FS coverage criteria. In addition, the
number of detected unique bugs also increased when using higher k-FS node-or-branch coverage
criteria. The baseline with 0-FS coverage criterion detects 55 conformance bugs in engines and
transpilers. The conformance tests synthesized with 1-FS coverage criterion detect 28 (83 - 55) more
conformance bugs, and tests synthesized with 2-FS coverage criterion detect 19 (102 - 83) more
bugs. Now, we present two bug examples that show the effectiveness of k-FS coverage criteria.

Empty Name Binding for let in for-Loop. JavaScript provides diverse shapes of for-loops
as syntactic features defined with the ForStatement production. Among them, a for-loop with a
let-binding is its third alternative. While it normally has one or more name bindings, we can pass
an empty list of name bindings using an empty object destructuring pattern{} . However, Babel
crashes when transpiling a for-loop with empty name bindings for let:!3

for (let {} = @; ©; ) ; // Expected: Normally terminates

Because the CreatePerlterationEnvironment algorithm that checks the empty name bindings
is used for other language features, the tests synthesized with a 0-FS coverage criterion failed to
detect this conformance bug. On the other hand, feature-sensitive coverage criteria can discriminate
the usage of the empty name binding checking semantics in different language features. Thus, we
successfully detected this conformance bug with 1-FS, 2-FS, 1-FCPS, and 2-FCPS coverage criteria.

Computed Property for async Method in class. JavaScript provides computed properties to
allow defining property names using any expressions. For example, let’s define an object using a
computed property:let x = { ["a"+"b"1() { return 42 } }.Then,xis an object having a property
ab that stores a function as a method of the object: x.ab() === 42. In addition, it also assigns the
name property of the function as the property name: x.ab.name === "ab". However, JSC does not
follow this semantics when the computed property is used for an async method inside classes. For
example, the following program checks whether the name property of the async method in the class
Cis "f":!4

class C { async ["f"] () {} } // Expected: C.prototype.f.name === "f"

However, the name property is "async" instead of "f" in the JSC engine. Since it is a combination
of a class, an async method, and a computed property, 0 or 1-FS coverage criteria may not keep
it in the final program pool. On the other hand, 2-FS coverage criterion can discriminate it with
other tests. If a conformance test covers 2-FS-TR consisting of two syntactic features AsyncMethod
production with PropMethod SDO and ComputedProeprtyName production with PropMethod
SDO, it can find this conformance bug. Our experiment successfully detected this conformance bug
with tests synthesized with 2-FS and 2-FCPS coverage criteria.

Bhttps://github.com/babel/babel/issues/15100
4https://github.com/babel/babel/issues/15100
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Fig. 9. The histogram of numbers of k-FS or k-FCPS TRs per less sensitive k-FS or k-FCPS TR

5.3 Effectiveness of k-FCPS Coverage Criteria

We evaluate the effectiveness of k-FCPS coverage criteria compared to k-FS coverage criteria.
According to Table 2, the number of covered 1-FCPS- and 2-FCPS-TRs are 277.3K and 3,620.7K,
respectively. Thus, 2.22 (277.3K / 125.0K) 1-FCPS-TRs exist per each 1-FS-TR, and 1.91 (3,620.7K /
1,896.1K) 2-FCPS-TRs exist per each 2-FS-TR on average. It means that 2.22 and 1.91 feature-call-
paths exist from the innermost language features to nodes or branches in each 1-FS-TR and 2-FS-TR,
respectively. We also draw a histogram of the number of covered 1-FCPS-TRs (or 2-FCPS-TRs)
per each covered 1-FS-TR (or 2-FS-TR) in Figures 9 (c) and (d). The largest number of covered
1-FCPS-TRs per 1-FS-TR is 70 for a node in the Array.prototype.splice built-in method. It is a
powerful built-in API feature that changes the contents of an array having quite complex semantics.
Thus, the number of possible feature-call-paths in this feature is much larger than the others. The
largest number of 2-FCPS-TRs per 2-FS-TR is 53 for a node whose innermost enclosing feature is a
syntactic feature for yield expressions because it touches various helper functions for asynchronous
behaviors. Because of the increased number of TRs, the number of synthesized tests also increased
1.34x (9,092 / 6,766) from 1-FS to 1-FCPS coverage criteria and 1.26x (122,589 / 97,423) from 2-FS to
2-FCPS coverage criteria. In addition, the number of detected unique bugs also increased when
using k-FCPS coverage criteria than k-FS coverage criteria. The conformance tests synthesized
with 1-FCPS and 2-FCPS coverage criteria detected 4 (87 - 83) and 9 (111 - 102) more conformance
bugs than 1-FS and 2-FS coverage criteria, respectively. Now, we introduce a conformance bug that
show the effectiveness of k-FCPS coverage criteria compared to the k-FS coverage criteria.

String.prototype.normalize. The String.prototype.normalize built-in API normalizes a given
string into the normalization form named by a given argument. For example, "abc".normalize("NFC")
produces the NFC normalization form of "abc". If an invalid name, such as an empty string "", is
given as the argument, it should throw a RangeError exception. However, the following program
noramlly terminates in GraalJS:

String.prototype.normalize.call(e, ""); // Expected: RangeError

As we discussed in Section 1, k-FS coverage criteria even with a high k value cannot detect this
bug, while 1-FCPS and 2-FCPS coverage criteria can.

5.4 Comparison with Test262

We compare the coverage of automatically synthesized conformance tests with that of Test262, the
official JavaScript conformance test suite. As described in Section 4, the baseline tool JEST relies on
the mechanized specification extracted by ESMeta. Thus, we filter out conformance tests in Test262
that utilize language features not supported in the extracted mechanized specification. We use the
conventional methodology in the literature [Fragoso Santos et al. 2018; Park et al. 2015, 2020a] to
remove inapplicable tests in Test262. Then, we measured the coverage of 23,910 applicable Test262
conformance tests with five k-FS and k-FCPS node-or-branch coverage criteria.
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Fig. 10. Covered k-FS-TRs and k-FCPS-TRs for synthesized tests via JEST¢g and Test262

Figure 10 shows (a) Venn diagrams of the numbers of covered k-FS-TRs and k-FCPS-TRs for the
synthesized conformance tests (syn-test) via JEST¢; and applicable conformance tests in Test262
(test262) and (b) their changes over time. Without any feature-sensitive coverages, the coverage of
synthesized tests is less than that of Test262, and only 5.2% (0.9K) 0-FS-TRs are newly covered by
the synthesized tests. On the other hand, the numbers of k-FS-TRs covered by only synthesized
tests increase when using higher k: 28.7K (19.0%) for 1-FS-TRs and 1.65M (80.8%) for 2-FS-TRs. In
addition, the number of 1-FCPS-TRs (or 2-FCPS-TRs) covered by only synthesized tests is higher
than the number of 1-FS-TRs (or 2-FS-TRs) covered by only synthesized tests: 80.0K (21.6%) for
1-FCPS-TRs and 3.26M (82.0%) for 2-FCPS-TRs. Figure 10(b) also shows that the coverage of Test262
is better than that of synthesized tests without any feature-sensitive coverages, but the coverage of
synthesized tests outperforms that of Test262 with 2-FS-TRs and 2-FCPS-TRs.

6 RELATED WORK

Coverage Criteria in Software Testing. Coverage criteria in software testing are essential in
measuring the quality of test inputs. The most common coverage criteria are structural coverages
in a given program’s control-flow graph (CFG) [Ammann and Offutt 2008; Chilenski and Miller
1994] also utilizing data-flow information [Herman 1976] and type information [Bae et al. 2017].
On the other hand, model-based coverage [Utting and Legeard 2010] criteria consider specialized
abstract behavior models and define the test requirements in the model. Such models include state
transitions [Artho et al. 2017], autonomous driving systems [Laurent et al. 2022], deep neural
networks (DLLs) [Ma et al. 2018; Odena et al. 2019; Pei et al. 2017; Sun et al. 2018; Xie et al. 2019].
However, there are no specialized coverage criteria for programming language tools, such as
compilers, interpreters, and transpilers. In this paper, we first presented feature-sensitive coverages
as general extensions of graph coverages for programming language tools to discriminate test
requirements based on enclosing language features or feature-call-paths.

Mechanized Specification. Researchers have presented mechanized specifications to formally
describe the semantics of diverse programming languages, such as OCaml [Owens 2008], C [Blazy
and Leroy 2009], C++[Ramananandro et al. 2012], Java [Bogdanas and Rosu 2015], and POSIX
shell [Greenberg and Blatt 2019]. At the same time, general metalanguages or frameworks for
mechanized language specifications have also emerge as. For example, Sewell et al. [2010] presented
Ott as a tool that compiles language semantics into proof assistant code and supports a metalanguage
used in defining language semantics as inference rules. The K framework [Rosu and Serbanuta
2010] proposed a formalism for writing operational semantics and provides a derivation of verifiers
directly from the semantics. Bodin et al. [2019] developed a skeletal semantics framework in Coq
for creating big-step semantics by focusing on the structure of the semantics.
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For JavaScript, diverse mechanized specifications have been presented based on ECMA-262 [ECMA
International 2022a]. KJS [Park et al. 2015] utilizes the K framework, and Fragoso Santos et al. [2018]
presented a metalanguage, JSIL, for ES5.1. Researchers have used such mechanized specification in
diverse fields: verification [Fragoso Santos et al. 2018], symbolic execution [Fragoso Santos et al.
2019], abstract interpretation-based static analysis [Jensen et al. 2009; Kashyap et al. 2014; Lee et al.
2012; Park et al. 2017; Schifer et al. 2013], and double debugger [Charguéraud et al. 2018]. However,
most JavaScript mechanized specifications focused on only ES5.1, released in 2011, and required
manual description of the semantics. On the other hand, ESMeta supports a metalanguage IRgg
for the latest version of ECMA-262 and the automatic extraction of mechanized specification used
in conformance test synthesis [Park et al. 2021b], specification type analysis [Park et al. 2021a],
and static analyzer derivation [Park et al. 2022]. Hence, we implemented JEST¢; based on ESMeta to
synthesize conformance tests from the latest version (ES13, 2022) with feature-sensitive coverages.

Conformance Testing for JavaScript. Diverse host environments support JavaScript engines,
and even JavaScript transpilers become essential tools in the deployment process of JavaScript
applications. Therefore, ensuring the conformance of engines and transpilers according to the
language specification is crucial to consistent execution environments for JavaScript. The current
solution is to maintain conformance tests by hand, and engine and transpiler developers com-
monly utilize Test262 [ECMA International 2022b], the official JavaScript conformance test suite.
Researchers have focused on testing JavaScript engines to detect bugs using generation-based
fuzzing [Dinh et al. 2021; Han, HyungSeok and Oh, DongHyeon and Cha, Sang Kil 2019; He et al.
2021] and mutation-based fuzzing [Park et al. 2020b; Veggalam et al. 2016; Wang et al. 2019]. In
addition, they often utilize deep learning [Lee, Suyoung and Han, HyungSeok and Cha, Sang Kil
and Son, Sooel 2020; Ye et al. 2021] to generate JavaScript programs in advance and differential
testing [Bernhard et al. 2022] to check the correctness of execution results. However, most existing
techniques focused on detecting crashing bugs or security vulnerabilities rather than conformance
bugs. While CoMFORT [Ye et al. 2021] targets conformance bugs, it heavily relies on the results of
differential testing instead of the language semantics. On the other hand, JEST [Park et al. 2021b] is
the first tool that automatically synthesizes JavaScript conformance tests according to the language
semantics described in the language specification. We implemented JEST¢; by augmenting it with
k-FS and k-FCPS coverages and outperformed the ability of conformance bug detection of the JEST.

7 CONCLUSION

Conformance testing using graph coverage has been one of the most promising approaches to
support correct and consistent implementations of programming language semantics. However,
because language implementations often utilize different execution paths even for the same func-
tionalities, traditional graph coverage does not produce high-quality conformance tests. In this
paper, we present novel coverage criteria especially designed for language implementations: feature-
sensitive (FS) coverage and feature-call-path-sensitive (FCPS) coverage by refining conventional test
requirements using enclosing language features and call paths. Our experiments show that the new
coverage criteria outperform the traditional coverage criteria in the context of conformance bug
detection in real-world JavaScript implementations.
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