
A Framework for Dynamic Inter-device Task Dispatch with
Eventual Consistency

Jihyeok Park
KAIST

South Korea

Joonyoung Park
KAIST

South Korea

Yoonkyong Lee
Samsung Electronics

South Korea

Chul-Joo Kim
Samsung Electronics

South Korea

Byoungoh Kim
Samsung Electronics

South Korea

Sukyoung Ryu
KAIST

South Korea

ABSTRACT
The Internet of Things (IoT) allows various things like mobile de-
vices and electronic appliances to communicate over network. Inter-
device apps can share data between devices and dispatch specific
tasks to other devices to utilize their resources. The prevalence of
JavaScript web apps that can run anywhere providing any browsers
opens the gate to unanticipated interactions between devices. How-
ever, the current techniques require developers construct tasks to
dispatch statically with strong consistency, and they do not provide
any disciplined way to develop inter-device apps. In this paper,
we propose IDTD (Inter-Device Task Dispatch), a framework that
allows developers to construct and dispatch tasks into multiple de-
vices dynamically with eventual consistency in a systematic manner.
We provide a high-level architecture of IDTD, prove the soundness
and eventual consistency of the framework, and present its practical
usability.

CCS CONCEPTS
• Software and its engineering→ Application specific devel-
opment environments;

KEYWORDS
Eventual consistency, task dispatch, web applications, JavaScript

ACM Reference Format:
Jihyeok Park, Joonyoung Park, Yoonkyong Lee, Chul-Joo Kim, Byoungoh
Kim, and Sukyoung Ryu. 2018. A Framework for Dynamic Inter-device Task
Dispatch with Eventual Consistency. In 2018 : 2nd International Conference
on the Art, Science, and Engineering of Programming 2018, April 9–12, 2018,
Nice, France. ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/
3191697.3191732

1 INTRODUCTION
IoT has come with various devices that communicate and trans-
fer data over network. Not only devices with modest computing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
<Programming’18> Companion, April 9–12, 2018, Nice, France
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5513-1/18/04. . . $15.00
https://doi.org/10.1145/3191697.3191732

powers such as smartphones but also home appliances like vac-
uum cleaners may interact with nearby devices. Such interactions
between multiple devices are performed by inter-device apps. An
inter-device app often starts running on a source device, and sends
data or dispatches tasks to target devices to use their resources
during evaluation.

Current techniques to build inter-device apps belong to two
approaches: “task offloading” [14, 23] and “mirroring” [2]. The task
offloading technique splits a main computation task to sub-tasks,
sends them to other devices that compute them using their own
computational power without communication with other devices,
and receives the results from the devices to finish the main task. The
mirroring technique does not dispatch tasks but sends the screen
of a main device to other devices to mirror the tasks of the main
device.

However, both approaches are not yet ready for the recent break-
throughs in IoT programming. Even though they are quite simple
and perform effectively for traditional programs written in C and
Java, they are not suited for IoT programs empowered by the dy-
namic features and unlimited portability of JavaScript. First, because
they should identify and construct tasks to dispatch statically, they
limit the range of interactions between devices. Moreover, while
JavaScript provides more expressiveness and functionalities than
C and Java, both approaches do not take such advantages. Sec-
ond, their simple communication strategies have strong consistency,
which may be too restrictive for inter-device apps. While the strong
consistency guarantees that replicated data in different devices have
coherent views, providing it in distributed systems that require high
responsiveness like IoT environments is extremely expensive. Third,
there is little support for development of inter-device apps. Devel-
opers implement them in an ad-hoc, labor-intensive, and error-prone
manner. No tools nor theories guide how to build inter-device apps.
Developers implement multiple apps of the same functionality for
various platforms, and end-users should install the same function-
ality multiple times for different devices.

To alleviate this problem, we propose a new framework, IDTD
(Inter-Device Task Dispatch), which allows developers to build
inter-device apps that can construct tasks and dispatch them dy-
namically with eventual consistency in a systematic manner :

• Unlike the current approaches, our framework enables devel-
opers to dynamically generate and send tasks using higher-
order functions in JavaScript.

• To guarantee eventual consistency between devices running
inter-device apps, the framework provides a shared slicing

1

https://doi.org/10.1145/3191697.3191732
https://doi.org/10.1145/3191697.3191732
https://doi.org/10.1145/3191697.3191732

<Programming’18> Companion, April 9–12, 2018, Nice, France J. Park et al.

technique. The technique splits a given app into two stand-
alone subprograms that run on different devices communi-
cating with each other. It constructs a task to dispatch in a
way that the task can share necessary data of the residual
code in the source device from the target device, and enables
communication between devices while preserving eventual
consistency. To dispatch a sliced task to a target device and
run the task on it, the framework should enable the target
device to construct a web app from the task and to execute it
while communicating with the source device over network.
This capability empowers the source device to use resources
of target devices as its own ones. The shared slicing tech-
nique makes it possible to build efficient inter-device apps
correctly.

• The framework provides a high-level, declarative mechanism
to build inter-device apps without considering low-level im-
plementation details of how to communicate between multi-
ple devices.When a user selects a task to send from a running
web app, the framework slices necessary information from
the source device automatically and sends it to a target de-
vice. The target device, then, evaluates the task using its
own resources such as computational power, screen, various
sensors, and private data.

The contributions of this paper are as follows:
• IDTD Framework. This is the first proposal for a frame-
work to build apps that dispatch tasks to different devices
dynamically while preserving eventual consistency.

• Formalization. We are the first to apply eventual consis-
tency to inter-device app development with formal proofs
that it guarantees the soundness and eventual consistency.

• Experiments. We developed a prototype implementation
and made demos of inter-device apps open to the public.

2 EXAMPLE SCENARIOS
Our framework simplifies the development and deployment of web
apps that utilize multiple devices seamlessly. For end-users, it eases
the deployment of such apps by freeing them from multiple instal-
lation. For developers, it mitigates the complexity of developing
inter-device apps.

2.1 Easier Deployment
Devices like simple sensor-based ones (e.g., smart bulb) and wear-
able devices provide limited user interfaces, which often require
users install separate controller apps on different but connectable
devices. To use such devices, end-users have to make sure that they
have installed and maintained the correct version of the controller
app on other devices.

Our framework frees end-users from such cumbersome work
by dispatching a control task from a to-be-controlled device to a
controller device. It assures that the correct control task version
is always dispatched. So, users can use any devices as a controller
without any additional installation. For example, while the current
approaches require users install a controller app for a vacuum
cleaner on multiple devices separately, our framework enables the
vacuum cleaner to dispatch the controller task to a suitable user
device.

Table 1: IDTD supports task construction and dispatch dy-
namically.

Approaches Task Task Resources
to dispatch construction to use

Task offloading closed term static static
Mirroring rendered data static static

IDTD function closures dynamic dynamic

2.2 Simplified Development
Developing inter-device apps consists of several sophisticated steps.
First, developers should decide what resources to use from other
devices in advance, which determines what techniques to use. Then,
they have to extract some code that can be executed on other de-
vices and relevant data to share between devices. To communicate
between devices, they should consider the network layer and imple-
ment suitable communication protocols, which may not be trivial
to most developers. Finally, they should develop several apps—one
for each device—to support various devices.

The IDTD framework simplifies the development in many ways.
First, it provides a unified way to use different resources from other
devices simultaneously in a flexible manner. Instead of contemplat-
ing how to extract and communicate code and data, developers can
focus on the main logic of what to extract utilizing the framework.
Developers do not need to consider specific devices in advance but
simply implement a normal web app that runs on a device; they
only need to specify tasks to dispatch to other devices with specific
resources without implementing multiple apps and communication
protocols. Then, the framework automatically converts such normal
web apps into the ones that can dispatch tasks to other devices.

3 INTER-DEVICE TASK DISPATCH
We propose IDTD, a framework that supports dynamic construc-
tion of tasks as function closures. It provides a systematic way to
build IDTD apps with eventual consistency. While the framework
supports task dispatch between two devices, it can be extended to
support more than two devices.

3.1 Dynamic Inter-Device Task Dispatch
As Table 1 summarizes, traditional approaches construct and slice
tasks statically at development time, and they determine which re-
sources to use statically as well. The task offloading technique [14,
23] constructs tasks as closed terms without sharing data between
the source and target devices. The mirroring technique [2] dis-
patches rendered data to mirror them in target devices.

On the contrary, IDTD extends the realm of tasks to dispatch by
constructing tasks dynamically. Because JavaScript supports higher-
order functions, IDTD slices and constructs tasks as JavaScript func-
tion closures that may capture data to share between the source and
target devices. It constructs tasks and determines which resources
to use dynamically.

3.2 IDTD Framework
The framework consists of two parts: 1) it helps developers by
converting normal web apps into IDTD apps, and 2) it helps users
to execute them easily at run time.

2

A Framework for IDTD with Eventual Consistency <Programming’18> Companion, April 9–12, 2018, Nice, France

Figure 1: IDTD at development time

Developers specify what tasks to dispatch, and IDTD builds IDTD
apps automatically as in Figure 1. It takes two inputs:

• app: a normal web app that its developer intends to convert
into an IDTD app

• config: configuration that specifies what tasks to construct
in what conditions, and resources from what devices to use
for each task

To construct tasks dynamically and to determine resources to use
dynamically, the framework takes config that specifies run-time
conditions to trigger task construction and dispatch. It may specify
to construct a task when a specific device button gets pressed, or
when a user invokes a specific event function. In addition, it may
specify that a given task uses the screen of a source device and the
geographic location of a target device.

Using two inputs, the framework produces an IDTD app. It
rewrites app to rewritten app via code rewriter so that rewritten app
can dynamically access values originally inaccessible from app
such as run-time values of captured variables and event func-
tions attached to DOM objects. The code rewriter rewrites functions
like addEventListener that add or modify event handlers so that
they can record event handler information; it also rewrites func-
tions to record their captured variables. The framework extracts
use-map from the given app by using an off-the-shelf static ana-
lyzer [13, 21, 24], use-map extractor, so that rewritten app can utilize
the information at run time. For each function, use-map extractor
collects the following information in the function body:

• global variables
• names and scopes of captured variables
• DOM APIs

Because the IDTD framework is parameterized by use-map extractor,
the quality of use-map depends on that of use-map extractor. Then,
app constructor builds an IDTD app with rewritten app, use-map, and
config.

Users can run IDTD apps using the IDTD framework as shown
in Figure 2. As long as devices have the IDTD framework, users
can run any new IDTD apps exchanging tasks seamlessly without
extra installation using independent techniques: task dispatch and
task communication. The framework can construct a “task” from
a running IDTD app on a source device and dispatch the task to a
target device. Then, the source device keeps running a remaining
subprogram, and the target device constructs a subprogram from
the dispatched task and runs it. While subprograms are running on
different devices, they can communicate with each other.

3.2.1 Task Dispatch. When a user triggers task dispatch via user
input during evaluation of an IDTD app, the framework collects

Figure 2: IDTD at run time

Figure 3: Shared slicing

necessary information to extract an intended task according to
config. Then, it constructs a task to dispatch and a leftover, and
assigns resources to the task and the leftover according to config. Fi-
nally, the framework converts leftover to an executable subprogram.
When a task is constructed, the IDTD framework in the source
dispatches the task to the target. Then, the IDTD framework in
the target converts the task to an executable subprogram. Now that
both devices have their own subprograms, each subprogram runs
on each device while keeping each other’s device information for
future communication during evaluation.

3.2.2 Task Communication. While subprograms are running
on different devices, they may update shared data on their own
devices and send the updates to other devices to reflect the changes.
When a subprogram makes an update on a device, IDTD in the
device constructs a message with necessary information to make
the update on the other device, and sends it to an appropriate device.
Then, IDTD receives the message and makes the corresponding
update.

3.3 Eventual Consistency
The framework may support various techniques to slice tasks to
dispatch, and we present a shared slicing technique among them.
To maintain task sizes modest, the technique constructs tasks that
share necessary data of the remainder code in the source device
using static analysis results. Figure 3 illustrates how the technique
constructs a task and a leftover from a running web app. For a
given static task, it collects shared data and constructs a task and a
leftover; the task is the union of the static task and the shared data,
and the leftover is the union of the remainder and the shared data.

While subprograms are running on the source and the target
devices, they may update shared data on their own devices, which
may be viewed as replicated data in the distributed algorithms

3

<Programming’18> Companion, April 9–12, 2018, Nice, France J. Park et al.

community. The most widely studied consistency between repli-
cated data is strong consistency [15], which guarantees the same
status over replicated data all the time, but it inherently suffers
from performance issues due to the synchronization bottleneck. An
alternative approach is eventual consistency, which guarantees the
same status over replicated data when no more updates are left.

When a subprogram constructed by the framework updates
shared data in its device, it sends the message to the other devices
and proceeds its computation without waiting for the message to be
reflected in the other devices. Such eventual consistency is surely
weaker than strong consistency in the sense that the shared data
may be in a status which is not possible in the original web app.
However, as the TAO data store of Facebook [12] and theManhattan
system of Twitter [18] witness, eventual consistency is necessary
for some classes of web apps, which should choose availability over
consistency for better user experience [3].

To formally specify the task communication of the shared slicing
technique and its eventual consistency property, we use the formal-
ization mechanism of Burckhardt et al. [6]. In their mechanism, an
object has a (replicated data) type, and the type determines values
of the object and two kinds of operations on them: an update oper-
ation that affects the value of an object, and a query operation that
does not affect the object’s value. A session contains copies of all
the objects, and whenever it has an update operation on an object,
it propagates the message to other sessions so that they can also
update the corresponding object. An action denotes an operation
on an object in a session with a unique id, and all the actions in
a session are in a total order called a session order. Finally, a repli-
cated data type specification declaratively describes the semantics of
each type’s operations using the visibility relation and the arbitra-
tion relation between objects, where the visibility relation denotes
whether an action is visible to another action, and the arbitration
relation denotes the total order between all the actions.

We describe the shared slicing technique in terms of the termi-
nology of [6]. We consider a device as a session because a device
contains copies of shared data, and we consider each component of
shared data as an object.

In addition, we use two different replicated data types; Last-
Writer-Wins Register (LWW-Register) and Observed-Removed Map
(OR-Map). A register type has a memory cell with two operations;
the assign operation stores some value into the cell and the value
operation reads the value from it. LWW-Register proposed in [25]
is a register type with an arbitrary global timestamp and only the
update with highest timestamp wins. In the framework, global and
captured variables have this replicated data type. A map type has a
map structure with three operations: the lookup operation reads the
corresponding value of a given key value, the write operation stores
a given value into a given key value, and the remove operation
deletes a given key from the map structure. We define OR-Map
type adapted from Observed-Removed Set (OR-Set) type proposed
in [25], which also uses timestamps to decide which update wins.
It represents the object relations, objects, and DOM elements in the
framework.

Moreover, since JavaScript event functions are atomic, the times-
tamp used in the algorithms is not the general wall-clock time but
it considers characteristics of JavaScript events: for an action a,
timets(a) is a pair of the time when the JavaScript event that issued

the operation of a starts and the time when the operation of a is
performed1. For comparison of timestamps timets(a) < timets(b),
we compare their JavaScript event start time first, and compare
their operation time when they have the same JavaScript event. Be-
cause we can consider top-level code as an event function that starts
the program, and all the other operations are evaluated via event
function calls in JavaScript web apps, every operation is performed
within a JavaScript event.

Both the session order so and the visibility relation vis are defined
as in the literature [6]. We define the arbitration relation ar using
the timestamp timets defined above to describe the JavaScript web
app semantics more precisely.

4 EVALUATION
In this section, we evaluate the IDTD framework in two respects:
we prove that it guarantees the soundness and eventual consistency
and we show its practicality.

4.1 Properties of the IDTD Framework
Now, we show that a dispatched task in a target device and a leftover
in a source device execute normally without any problems due to
the slicing from the original web app. We also show that they will
have the same shared data on each device when they deliver all the
update messages.

4.1.1 Soundness. We say that a dispatched task in a target de-
vice and its corresponding leftover in a source device are sound
when they do not refer to the parts that are not shared but avail-
able only in the other device. Thus, evaluating them does not get
stuck because of missing references due to the slicing. To construct
tasks and leftovers soundly, the shared slicing technique collects
all the used components from the initial static task transitively
using sound static analysis results. Note that two cases ask for extra
consideration:

• when used components are not accessible dynamically, and
• when used components are determined dynamically.

Examples of the first case are event handler functions attached
to DOM objects and captured variables in function closures. For
such cases, the IDTD framework rewrites corresponding code to be
exposed at source-level so that they are accessible at run time. The
second case is function closures whose used components depend
on their actual arguments. For this case, the framework uses a
sound static analyzer to estimate use-map, a set of all possible used
components in the function bodies regardless of actual arguments
at run time. Thus, as long as the static analyzer used to build use-
map is sound, dispatched tasks and their corresponding leftovers
constructed by using use-map are also sound.

4.1.2 Eventual Consistency. The IDTD framework using the
shared slicing technique provides eventual consistency. To prove
the eventual consistency as defined by Burckhardt et al. [6], we
need to show the following six axioms:

• Well-formedness axioms:
– SOwf so is the union of transitive, irreflexive and total
orders on actions by each session.

1 In this paper, time is computed using Lamport timestamps [15].

4

A Framework for IDTD with Eventual Consistency <Programming’18> Companion, April 9–12, 2018, Nice, France

Figure 4: Static tasks for the Counting Beads app

– VISwf ∀a,b . a vis
−−→ b =⇒ obj(a) = obj(b)

– ARwf ∀a,b . a ar
−−→ b =⇒ obj(a) = obj(b),

ar is transitive and irreflexive, and
ar |vis−1(a) is a total order for all a ∈ A, where ar |vis−1(a)
denotes a set of actions visible from a.

• Data type axiom:
– Rval ∀a ∈ A. rval(a) = Fτ (op(a),V , vis|V , ar|V)
where τ is the type of a and V = vis−1(a).
For each action, its result should be the same as the result
of the specification function of the corresponding repli-
cated data type.

• Basic eventual consistency axioms:
– Eventual
∀a ∈ A. ¬(∃ infinitely many b ∈ A

s.t. obj(a) = obj(b) ∧ ¬(a
vis
−−→ b))

– ThinAir
so ∪ vis is acyclic.

Three well-formedness axioms denote that the relations are well
defined. Because we used the same definitions for so and vis from
the literature, we proved only the arbitration relation case. The key
axiom is Rval: because the specifications of the operations do not
use any session information, even when sessions have actions in
different orders, if all sessions have the same visible action set, they
all return the same value. We also proved Rval to show that our
implementation returns the same values with the specifications
of replicated data types. Among two basic eventual consistency
axioms, the Eventual axiom states that, on an object, there exist
only finitely many actions that a given action is not visible to.
This axiom is satisfied because all the updates will eventually get
delivered to other devices as long as their network connections
are live. Finally, the ThinAir axiom states that a chain of session
orders and visibility relations should be acyclic. This axiom is trivial
because timestamps always get bigger, which cannot make any
cycles. Due to the space limitation, we refer the interested readers
to a companion report [22] for their formal definitions and proofs.

4.2 Practicality of the IDTD Framework
To evaluate the practical usability of IDTD, we selected 5 apps from
20 open-source web apps [11]: Counting Beads, Hang On Man,
Make a Monster, Mancala, and Run Rabbit Run. While the frame-
work is applicable to all 20 web apps, the selected apps have obvious
candidate tasks to dispatch to other devices as we discuss for the
Counting Beads example. We constructed IDTD apps from them

Figure 5: IDTD app constructed from Counting Beads

using the framework, and successfully performed task construction,
dispatch, and communication with them.

We describe howwe performed the experiments using the Count-
ing Beads web app. We constructed an IDTD app by using the
framework with Counting Beads and the following configuration:
cur := [Elmt Id("gpBar1")]
Elmt Id("gpBar1") :: click -> cur := [Elmt Id("gpBar1")]
Elmt Id("gpBars") :: click -> cur := [Elmt Id("gpBars")]
Elmt Id("gpRestart")::click-> cur := [Elmt Id("gpRestart")]
Elmt Id("gpTotal") :: click -> cur := [Elmt Id("quest1"),

Elmt Id("quest2"), Elmt Id("quest3"),
Elmt Id("gpCup"), Elmt Id("gpTotal")]

Button menu -> cur { screen: both, image: source }

The configuration specifies 4 static tasks as shown in Figure 4: “bar
(first)” that corresponds to the first bar, which is the DOM element
of id gpBar1, “bar (total)” containing all 5 bars, “restart button,” and
“scores” containing 3 score windows for the beads, the cup, and
the total score window. It keeps track of a selected static task by
using a variable “cur.” When a user clicks any of the static tasks,
the corresponding DOM element becomes the value of cur. The
menu button triggers task construction by using the value of cur
as a static task. The last line specifies that the tasks use the screens
of both devices and the images of the source device.

We ran the constructed IDTD app using two Tizen phones2 as
shown in Figure 5. The phone on the left is a source and the one on
the right is a target. We dispatched all 5 bars to the target, and we
could play the game seamlessly using two devices. The demonstra-
tion movies of Counting Beads and another sample app are publicly
available3. As the movies show, the performance overhead of IDTD
apps is negligible.

5 RELATEDWORK
Task Offloading: Several terms are used for task offloading such
as computation offloading, cyber foraging, surrogate computing,
and mobile cloud computing [14, 23]. Most of them have focused on
augmenting mobile systems’ restrained capabilities by offloading
computation-intensive tasks to more powerful resources such as
servers. However, offloading a task in the form of web apps that con-
tain closures including free identifiers has not been well-explored.

Sapphire [26] supports the development of apps spanning mo-
bile devices and clouds by proposing a general-purpose distributed
programming platform with an object-based programming model.
It does not support offloading a user interaction task. However,
most web apps are not based on object-oriented languages, and
in most cases user interaction tasks are not easily separable from
other tasks. CloneCloud [7] augments the performance of mobile
apps by offloading tasks on a cloned virtual machine hosted by a
cloud server. However, CloneCloud requires an offline partitioning

2 https://wiki.tizen.org/wiki/Reference_Device-PQ
3http://plrg.kaist.ac.kr/doku.php?id=home:research:idtdmovies

5

https://wiki.tizen.org/wiki/Reference_Device-PQ
http://plrg.kaist.ac.kr/doku.php?id=home:research:idtdmovies

<Programming’18> Companion, April 9–12, 2018, Nice, France J. Park et al.

process, which is not possible for web apps. MAUI [9] considers en-
ergy gains in addition to performance increase to decide what task
to offload. It assumes that functions to be offloaded are statically
annotated, which is not valid in case of web apps. COMET [10]
applies distributed shared memory (DSM) to offloading; using DSM
enables COMET to provide multi-threading support with lazy re-
lease consistency, and to allow for threads to move at any point
during their execution.

Application Migration: In a sense that we delegate tasks from
a device to another device, our work is related to migration mecha-
nisms [17, 19], especially web app migration [4, 16, 20]. But they
consider migration of the whole apps only; they do not support
migrating parts of the apps.

Resource Sharing: Sharing remote resources has been studied
in several work [1, 2, 8]. Most of the work focus on supporting
certain kinds of resources only. For example, Miracast [1] allows
a mobile device to share its screen to another device, and Rio [2]
supports more kinds of I/O sharing. Also, they focus on supporting
I/O sharing in a system level, rather than in a programming level.

EventualConsistency: Since the debut of the CAP (consistency,
availability, and partition tolerance) theorem in 2000 [5], internet
service companies become large-scale, and they often prefer avail-
ability over consistency to support their millions of users [12, 18].
In such distributed systems, eventual consistency may be more
desirable than strong consistency. While most existing work on
eventual consistency are ad-hoc and error-prone, Shapiro et al. [25]
presented a principled way to guarantee eventual consistency by
designing shared data types with formal conditions on them. Using
various replicated data types used in practice as running exam-
ples, they showed how to formally define them and prove that they
satisfy eventual consistency. Then, Burckhardt et al. [6] extended
the work to support different objects with different replicated data
types. They provided a set of axioms, from which one can define
various guarantees that are stronger than the basic eventual consis-
tency. Our IDTD framework was inspired by both work. We use the
register type as it was defined by Shapiro et al. and we extended
their or-set to support JavaScript object values. Also, our proofs are
heavily based on Burckhardt et al.’s.

6 CONCLUSION
We proposed a novel framework to help developers to build web
apps that can dispatch tasks to other devices at run time without
much programming efforts. Developers can build normal web apps
as usual, and the framework automatically converts them to be
executable on multiple devices seamlessly. They can use the same
apps on different devices without any extra work. The framework
can construct tasks dynamically while preserving eventual consis-
tency between replicated data in different devices. We evaluated
the framework using 5 open-source web apps, and our preliminary
experiments showed practical usability of the framework, and we
made demonstration movies of the IDTD apps publicly available.

ACKNOWLEDGMENT
The research leading to these results has received funding from Na-
tional Research Foundation of Korea(NRF) (Grants NRF-2017R1A2B3012020
and 2017M3C4A7068177).

REFERENCES
[1] Miracast. http://www.wi-fi.org/wi-fi-certified-miracast. (????).
[2] Ardalan Amiri Sani, Kevin Boos, Min Hong Yun, and Lin Zhong. 2014. Rio:

A System Solution for Sharing I/O Between Mobile Systems. In Proceedings of
the 12th Annual International Conference on Mobile Systems, Applications, and
Services.

[3] Peter Bailis and Ali Ghodsi. 2013. Eventual Consistency Today: Limitations,
Extensions, and Beyond. Queue 11, 3 (2013).

[4] Federico Bellucci, Giuseppe Ghiani, Fabio Paternò, and Carmen Santoro. 2011.
Engineering JavaScript State Persistence of Web Applications Migrating Across
Multiple Devices. In Proceedings of the 3rd Symposium on Engineering Interactive
Computing Systems.

[5] Eric Brewer. 2012. CAP Twelve Years Later: How the “Rule” Have Changed. IEEE
Computer 45, 2 (Feb. 2012), 23–29.

[6] Sebastian Burckhardt, Alexey Gotsman, and Hongseok Yang. 2013. Understand-
ing Eventual Consistency. Technical Report MSR-TR-2013-39. http://research.
microsoft.com/apps/pubs/default.aspx?id=189249

[7] Byung-Gon Chun, Sunghwan Ihm, Petros Maniatis, Mayur Naik, and Ashwin
Patti. 2011. CloneCloud: Elastic Execution Between Mobile Device and Cloud. In
Proceedings of the 6th Conference on Computer Systems.

[8] Jinyong Chung, Yonsuk Kim, and Donghan Kim. 2012. Portable electric device
and display mirroring method thereof. (2012). US Patent App. 13/177,677.

[9] Eduardo Cuervo, Aruna Balasubramanian, Dae-ki Cho, Alec Wolman, Stefan
Saroiu, Ranveer Chandra, and Paramvir Bahl. 2010. MAUI: Making Smartphones
Last Longer with Code Offload. In Proceedings of the 8th International Conference
on Mobile Systems, Applications, and Services.

[10] Mark S. Gordon, D. Anoushe Jamshidi, Scott Mahlke, Z. Morley Mao, and Xu
Chen. 2012. COMET: Code Offload by Migrating Execution Transparently. In
Proceedings of the 10th USENIX Conference on Operating Systems Design and
Implementation.

[11] Intel Open Source.org. 2015. Web Apps 01.org. https://01.org/html5webapps/
webapps. (2015).

[12] Joab Jackson. 2013. The TAO of Facebook data manage-
ment. http://www.computerworld.com/article/2498193/social-media/
the-tao-of-facebook-data-management.html. (2013).

[13] Simon Holm Jensen, Magnus Madsen, and Anders Møller. 2011. Modeling the
HTML DOM and browser API in static analysis of JavaScript web applications.
In FSE’11.

[14] Karthik Kumar, Jibang Liu, Yung-Hsiang Lu, and Bharat Bhargava. 2013. A Survey
of Computation Offloading for Mobile Systems. Mobile Networks and Applications
18, 1 (2013).

[15] Leslie Lamport. 1978. Time, clocks, and the ordering of events in a distributed
system. Commun. ACM 21, 7 (1978).

[16] James Teng Kin Lo, Eric Wohlstadter, and Ali Mesbah. 2013. Imagen: Runtime
Migration of Browser Sessions for Javascript Web Applications. In Proceedings of
the 22nd International Conference on World Wide Web.

[17] VioletaMedina and JuanManuel García. 2014. A Survey ofMigrationMechanisms
of Virtual Machines. ACM Computing Survey 46, 3 (2014).

[18] Cade Metz. 2014. This Is What You Build to Juggle 6,000 Tweets a Second.
http://www.wired.com/2014/04/twitter-manhattan/. (2014).

[19] Dejan S. Milojičić, Fred Douglis, Yves Paindaveine, Richard Wheeler, and Song-
nian Zhou. 2000. Process Migration. ACM Computing Survey 32, 3 (2000).

[20] JinSeok Oh, Jin-woo Kwon, Hyukwoo Park, and Soo-MookMoon. 2015. Migration
of Web Applications with Seamless Execution. In Proceedings of the 11th ACM
International Conference on Virtual Execution Environments.

[21] Changhee Park, Sooncheol Won, Joonho Jin, and Sukyoung Ryu. 2015. Static
Analysis of JavaScript Web Applications in the Wild via Practical DOMModeling.
In ASE’15.

[22] Jihyeok Park and Sukyoung Ryu. 2016. Inter-Device Task Dispatch Framework
for Web Applications: Supplementary. http://plrg.kaist.ac.kr/lib/exe/fetch.php?
media=research:material:proof.pdf. (2016).

[23] Mahadev Satyanarayanan. 2015. A Brief History of Cloud Offload: A Personal
Journey from Odyssey Through Cyber Foraging to Cloudlets. GetMobile: Mobile
Comp. and Comm. 18, 4 (2015).

[24] Max Schäfer, Manu Sridharan, Julian Dolby, and Frank Tip. 2013. Dynamic
Determinacy Analysis. In PLDI’13.

[25] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. 2011. A com-
prehensive study of Convergent and Commutative Replicated Data Types. Technical
Report RR-7506. INRIA.

[26] Irene Zhang, Adriana Szekeres, Dana Van Aken, Isaac Ackerman, Steven D.
Gribble, Arvind Krishnamurthy, and Henry M. Levy. 2014. Customizable and
Extensible Deployment for Mobile/Cloud Applications. In Proceedings of the 11th
USENIX Conference on Operating Systems Design and Implementation.

6

http://www.wi-fi.org/wi-fi-certified-miracast
http://research.microsoft.com/apps/pubs/default.aspx?id=189249
http://research.microsoft.com/apps/pubs/default.aspx?id=189249
https://01.org/html5webapps/webapps
https://01.org/html5webapps/webapps
http://www.computerworld.com/article/2498193/social-media/the-tao-of-facebook-data-management.html
http://www.computerworld.com/article/2498193/social-media/the-tao-of-facebook-data-management.html
http://www.wired.com/2014/04/twitter-manhattan/
http://plrg.kaist.ac.kr/lib/exe/fetch.php?media=research:material:proof.pdf
http://plrg.kaist.ac.kr/lib/exe/fetch.php?media=research:material:proof.pdf

	Abstract
	1 Introduction
	2 Example Scenarios
	2.1 Easier Deployment
	2.2 Simplified Development

	3 Inter-Device Task Dispatch
	3.1 Dynamic Inter-Device Task Dispatch
	3.2 IDTD Framework
	3.3 Eventual Consistency

	4 Evaluation
	4.1 Properties of the IDTD Framework
	4.2 Practicality of the IDTD Framework

	5 Related Work
	6 Conclusion
	References

