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Abstract
While the Scala type system provides expressive features like

objects with type members, the lack of equality checking

between path-dependent types prohibits some programming

idioms. One such an example is abstract domain combinators

in implementing static analyzers. In this paper, we propose

to extend the Scala type system with path-equality, and for-

malize it as a DOT variant, πDOT, which supports records

with type members and fields. We show that πDOT has the

normalization property and prove its type soundness.
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1 Introduction
We have developed static analyzers [Park et al. 2017; Ryu

et al. 2018] based on abstract interpretation [Cousot and

Cousot 1977] by using various Scala features [Odersky et al.

2016]. In Scala, one can represent an abstract domain as trait

AbsDom with one type parameter V for its concrete domain:

trait AbsDom[V] { type Elem <: ElemTrait

trait ElemTrait { this: Elem => } }

The abstract type Elem denotes abstract values. Since Elem

is a subtype of the inner trait ElemTrait and ElemTrait has

Elem as its self-type, methods of ElemTrait denote methods

of abstract values like a greatest lower bound (+). AbsDom also

has methods like an abstraction function (alpha).

Abstract values of different abstract domains may be dis-

tinguished by path-dependent types. Consider the following:
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object A extends AbsDom[Int] { ... }

object B extends AbsDom[Int] { ... }

val a0: A.Elem = A.alpha(0)

val a1: A.Elem = A.alpha(1)

val b0: B.Elem = B.alpha(42)

a0 + a1 // type check

a0 + b0 // type error: A.Elem != B.Elem

For two different abstract domains for integers, A and B, we

cannot use elements of A as elements of B, because they are

different types even though they both extend AbsDom[Int].

This feature ensures the type safety while static analysis

performs diverse operations on abstract values.

Let us consider an abstract domain combinator that com-

bines two or more abstract domains and generates a new

abstract domain. A typical example is an abstract pair do-

main combinator PairDom with two type parameters L and R,

respectively denoting the component types of a tuple:

trait PairDom[L, R] (val domL: AbsDom[L],

val domR: AbsDom[R]) { this: AbsDom[(L, R)] =>

type Elem <: ElemTrait with PairTrait

trait PairTrait { this: Elem =>

def left: domL.Elem = ...

def right: domR.Elem = ... } }

To combine abstract domains, it gets two abstract domains

as arguments. PairTrait has the left and right methods,

which project the first and second components of a tuple,

respectively. Then, by extending PairDom, we can define an

abstract pair domain of A and B as follows:

object P extends PairDom[Int, Int](A, B) { ... }

val p: P.Elem = P.alpha((0, 1))

val left: P.domL.Elem = p.left

a0 + left // type error: A.Elem != P.domL.Elem

When p is an abstract value of the domain, we can get the left

element of p using left. However, we cannot use the left ele-

ment p.left as an element of its original domain A, because

their types P.domL.Elem and A.Elem are different. The main

reason of this problem is because the Scala type system does

not support path-equality between path-dependent types.

The type checker cannot infer that P.domL equals to A.

In this paper, we define πDOT, which provides records

with type members and fields, and prove its type soundness.

2 Formalization of πDOT
We design πDOT based on µDOT [Amin et al. 2014] rather

than DOT [Rompf and Amin 2016] to focus on path-equality.

2.1 Syntax
Figure 1 shows πDOT, which removes self-references and

methods in µDOT but adds fields and let-binding as discussed

https://doi.org/10.1145/3241653.3241657
https://doi.org/10.1145/3241653.3241657
https://doi.org/10.1145/3241653.3241657


Scala ’18, September 28, 2018, St. Louis, MO, USA Jaemin Hong, Jihyeok Park, and Sukyoung Ryu

term s, t ,u ::= x | t . f | new (I ) | let x : T = t in t
member init. I ::= τ | val f = t
type member decl. τ ::= type L = T .. T | type L <: T
type S,T ,U ::= {D} | p.L
member decl. D ::= τ | val f : T
path p,q ::= x | p. f

Figure 1. Syntax of πDOT

Γ;Ψ ⊢ t : T t implies ⟨ρ ≡ π ⟩
expand(Ψ,x , ⟨ρ ≡ π ⟩) = Ψ′ Γ,x : T ;Ψ′ ⊢ s : U Γ;Ψ ⊢ U

Γ;Ψ ⊢ let x : T = t in s : U
Figure 2. Static semantics of let-binding

in Appendix A. Metavariables x and y range over let-bound

variables, f over fields, and L over type members.

A path is a let-bound variable or one or more field accesses

starting from a let-bound variable. For brevity, we assume

that variables are uniquely named. πDOT has two kinds of

types: record types {D} and type selections p.L. A record

type has zero or more member declarations that consist of

type member declarations τ and field declarations. A type

member L is declared with both lower and upper bounds as in
type L =T ..T or only with an upper bound as in type L <: T .
A field declaration specifies the name and type of a field. A

type selection p.L is an access to the type member L in a

record, which is bound to the given path p. Note that fields
enable general paths in type selection.

A term is one of a variable, field access, record initializa-

tion, and let-binding. A record initialization consists of zero

or more member initializations. A member initialization is

either a type member declaration, or a field initialization.

2.2 Dynamic Semantics
Similarly for µDOT, we define the dynamic semantics of

πDOT in a big-step style. We show the total evaluation rules

of form Σ ⊢ t ⇓ r in Figure 7 in Appendix A.2. As usual,

a run-time environment Σ maps variables to their values.

Since only a record initialization generates a value in πDOT,

a value is a record, which maps fields to their values ⟨f : v⟩.
A result r of evaluating a term t is either a value v or stuck.

Because πDOT has the normalization property, we do not

specify numbers of evaluation steps and timeout cases.

Theorem 2.1 (Normalization). For any Σ and t , Σ ⊢ t ⇓ r ,
that is, evaluating t never diverges.

We can prove the normalization theorem by defining sizes

of terms and using induction on sizes of terms.

2.3 Static Semantics
The static semantics of πDOT terms of the form Γ;Ψ ⊢ t : T
describes that under a type environment Γ and a path envi-

ronment Ψ, the type of the term t is T . A type environment

maps variables to their types, and a path environment is a

set of sets of paths, which represents a partition of paths. A

path environment contains all the paths available under the

current type environment, and it partitions the paths using

the equality between the values denoted by the paths as an

equivalence relation. Thus, two paths denoting the same

value belong to the same path set in a path environment.

While constructing path environments, the static seman-

tics uses pseudo paths and nullable paths:

pseudo path ρ ::= · | f , ρ
nullable path π ::= p | null

A pseudo path ρ is a sequence of zero or more fields, which

denotes a postfix of a path; it does not begin with a let-bound

variable. The static semantics uses pseudo paths when it col-

lects path-equality information; because it starts collecting

the information from the end of a path, it extends a pseudo

path by prepending a field in front of the pseudo path. For

example, f1, f2 is a pseudo path, which represents . f1. f2, a
postfix of an ordinary path without showing the prefix of the

path. It represents a postfix of a path like x . f1. f2 or x . f0. f1. f2.
A nullable path π is either a valid path p or null, which is not

a path. The static semantics uses nullable paths to indicate

that a path is equal to some path or is not equal to any path.

Figure 2 shows the typing rule of πDOT for the let-binding

term, which utilizes pseudo paths and nullable paths. Since

the typing rules of the other terms are conventional, we

include them in Appendix A.3. In order to check the type of

let x : T = t in s , the typing rule first checks whether the type
of t is indeed T as annotated in the syntax. Then, it extends

the given path environment Ψ with newly available paths by

using the implies and expand rules discussed below. It then

checks the type of s under the extended type environment

Γ,x : T and the extended path environment. Because the type

of s ,U , should not contain any paths defined in s to prohibit

any leakage of local paths, it checks the well-formedness of

U under the originally given environments Γ and Ψ. Finally,
the type of s becomes the type of the let-binding term.

The implies function collects paths that equal to newly

generated paths. When checking the type of let x : T = t in s ,
the newly generated paths from t are collected by the implies
function: t implies ⟨ρ ≡ π ⟩ where ⟨ρ ≡ π ⟩ denotes a list of
pairs of pseudo paths and nullable paths. Since the implies
function does not consider the name of a binding variable x ,
which is the first component of the newly generated paths,

the collected pseudo paths ρ represent the newly generated

paths without the starting let-bound variable. The collected

nullable paths π denote existing paths that equal to their

corresponding newly generated paths.

Figure 3 defines the implies function mutually inductively

on both terms and member initializations. We classify terms

into four kinds: paths, field accesses on non-path terms,

record initializations, and let-binding. Even though πDOT
is a small language, which allows to fully determine path

information at compile time, we decided not to collect path-

equality information from field accesses on non-path terms
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t implies ⟨ρ ≡ π ⟩

p implies ⟨· ≡ p⟩ [PE-Path]

t , p

t . f implies ⟨· ≡ null⟩ [PE-Field]

I implies ⟨ρ ≡ π ⟩

new (I ) implies ⟨ρ ≡ π , · ≡ null⟩ [PE-New]

let x : T = t in s implies ⟨· ≡ null⟩ [PE-Let]

I implies ⟨ρ ≡ π ⟩

type L = S .. U implies ⟨⟩ [PEI-Type-LU]

type L <: U implies ⟨⟩ [PEI-Type-U]

t implies ⟨ρ ≡ π ⟩ ∀ 1 ≤ i ≤ |ρ |. ρ ′i = f , ρi

val f = t implies ⟨ρ ′ ≡ π ⟩ [PEI-Field]

Figure 3. Collection of equal paths

and let-binding terms. In other words, when a binding term

is a field access, we collect path-equality information only

when the term is a field access on a path. We made this de-

cision to show that one can tune how much path-equality

information to collect. Since we cannot infer all the path-

equality information for languages that contain complex

features like user inputs and side effects anyway, we decided

to collect path-equality information from only trivial cases.

For example, we do not collect path-equality information

from the following expressions:

let x : T = new (val f = z). f in _ and

let x : T = (let y : S = z in y) in _

even though x equals to z in both. On the other hand, we

collect path-equality information from the following:

let x : T = y in _ and

let x : T = y. f in _

to find that x equals to y and y. f , respectively.
For a variable or a field access on a path p, [PE-Path] gen-

erates a singleton list, which describes that p is an equal path.

For a field access on a non-path term and a let-binding term,

[PE-Field] and [PE-Let], respectively, generate a singleton

list, which describes that no existing paths are equal. For

a record initialization, the last [PE-New] rule, inductively

collects equal paths from the member initializations of the

record using the implies function for member initialization.

It concatenates all the resulting lists from the inductive im-
plies functions, and appends the information that the binding

variable is not equal to any existing path. Appending the

empty pseudo path · ≡ null is necessary because every newly
constructed path should be added to a path environment.

The implies function for member initialization collects

equal paths only from field initializations; type member dec-

larations do not provide any information. The [PEI-Field]

expand(Ψ,x , ⟨ρ ≡ π ⟩) = Ψ

expand(Ψ,x , ⟨⟩) = Ψ [Exp-Nil]

[Exp-Eq-Null]make(x ; ρ ′) = p ψ = {p}
Ψ′ = Ψ ∪ {ψ } expand(Ψ′,x , ⟨ρ ≡ π ⟩) = Ψ′′

expand(Ψ,x , ⟨ρ ≡ π , ρ ′ ≡ null⟩) = Ψ′′

[Exp-Eq-Path]make(x ; ρ ′) = p Ψ = {ψ }

∀ 1 ≤ i ≤ |ψ |. ψ ′
i = ψi ∪ {p ′ | make(q; ρ ′′) = q′ ∧ q′ ∈ ψi

∧ make(p; ρ ′′) = p ′}
Ψ′ = {ψ ′} expand(Ψ′,x , ⟨ρ ≡ π ⟩) = Ψ′′

expand(Ψ,x , ⟨ρ ≡ π , ρ ′ ≡ q⟩) = Ψ′′

Figure 4. Expansion of path environment

rule describes that a path may be assigned to a field of a

newly initialized record f . Thus, the rule inductively collects
path-equality information for the field, and prepends the

field to the inductively collected pseudo paths: ∀1 ≤ i ≤ |ρ |.
ρ ′i = f , ρi . For instance, from the following expression:

let x : T = new (val f = y) in _

the rule infers that . f equals to y and also x . f equals to y.
The expand(Ψ,x , ⟨ρ ≡ π ⟩) function in Figure 4 expands

a given path environment Ψ with paths constructed by the

make function defined in Appendix A.3 by prepending the

binding variable x to pseudo paths ρ generated by the implies
function. If a path p is not equal to any existing path, the

[Exp-Eq-Null] rule adds a singleton set {p} to Ψ. Otherwise,
becausep equals to some existing pathsq, the [Exp-Eq-Path]
rule adds p to the path sets that contain q. In addition, it also

propagates the path-equality information to longer paths

that contain p. For example, suppose that x and y are equal,

and the value y refers to is ⟨f : ⟨⟩⟩. Then, not only x and

y are equal, but also x . f and y. f are equal. Therefore, the

expand function searches path sets to check whether they

contain p or a path can be obtained by extending p.
Subtyping rules of πDOT are shown in Figure 5. Since the

subtyping relation between two record types is conventional,

we present only the subtyping rules that involve at least one

type selection. The [Sub-Path] rule specifies that two type

selections have a subtype relation if their paths are equal and

the type members are equal as well. More specifically, the

rule declares that if two paths p and q are in the same path

set, then a type selection of p is a subtype of the same type

selection of q regardless of their lower and upper bounds.

The other three rules compare a type selection and an

arbitrary type. They use not only the lower or upper bound

of a given path p but also the lower or upper bound of a path

that equals to p, which is critical to maintain the subtyping

transitivity. If the rules utilize only the bound of a given path,

it may break the subtyping transitivity. For example, suppose

that x and y denote the same value and the lower bounds of
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Γ;Ψ ⊢ T <: T

[Sub-Path]ψ ∈ Ψ p,q ∈ ψ

Γ;Ψ ⊢ p.L <: q.L
[Sub-Type-LU-L]

ψ ∈ Ψ p,q ∈ ψ
Γ;Ψ ⊢ q : {type L = S .. U } Γ;Ψ ⊢ U <: T

Γ;Ψ ⊢ p.L <: T
[Sub-Type-LU-R]

ψ ∈ Ψ p,q ∈ ψ
Γ;Ψ ⊢ q : {type L = S .. U } Γ;Ψ ⊢ T <: S

Γ;Ψ ⊢ T <: p.L
[Sub-Type-U]

ψ ∈ Ψ p,q ∈ ψ
Γ;Ψ ⊢ q : {type L <: U } Γ;Ψ ⊢ U <: T

Γ;Ψ ⊢ p.L <: T

Figure 5. Subtype relation

let dom : {type E = T .. T } = new (type E = T .. T ) in
let pair : {val domL : {type E <: T }} =

new (val domL = dom) in
let elem : dom.E = new() in

let elemL : pair .domL.E = elem in elemL
where T = {}

Figure 6. Example πDOT code

x .L and y.L are S and U , respectively, where Γ;Ψ ⊢ S <: U
does not hold. Then, while Γ;Ψ ⊢ S <: x .L and Γ;Ψ ⊢ x .L <:
y.L are true, Γ;Ψ ⊢ S <: y.L is not, since S is not a subtype

of U , the lower bound of y.L, which breaks the subtyping

transitivity. In πDOT, we can show that Γ;Ψ ⊢ S <: y.L
holds by replacing y with x , which belongs to the same path

set with y, so that we can have the subtyping transitivity.

2.4 Expressiveness
The code example in Figure 6 shows the expressivity of

πDOT. If πDOT does not support path-equality, then type

checking the code fails because the value of elem of type

dom.E cannot be assigned to elemL of type pair .domL.E. Al-
though dom and pair .domL refer to the same record, if πDOT
does not collect the path information, and the lower bounds

of dom.E and pair .domL.E which are T and Bottom, respec-

tively, it cannot show Γ;Ψ ⊢ dom.E <: pair .domL.E.
However, since the typing rules collect path-equality in-

formation, when we check the type of the innermost let-

binding, the path environment contains a path set that con-

tains both dom.E and pair .domL.E. Thus, by [Sub-Path],

Γ;Ψ ⊢ dom.E <: pair .domL.E holds and type checking of the

entire code succeeds.

2.5 Type Soundness
Now, we formally state the type soundness theorem of πDOT.

Theorem 2.2 (Type Soundness). Let a run-time environ-
ment Σ, a type environment Γ, and a path environment Ψ
are all consistent: Σ : Γ;Ψ. For any term t , if Γ;Ψ ⊢ t : T and
Σ ⊢ t ⇓ r , then r = v for some v and Γ;Ψ ⊢ v : T .

The theorem implies that evaluating a well-typed term does

not go wrong and the type of the evaluation result equals to

the type of the term. Appendix A.4 proves the theorem.

2.6 Discussion
We can encode abstract domain combinators using singleton

types of Scala without extending Scala with path-equality:

trait PairDom[L, R, DL <: AbsDom[L] with Singleton,

DR <: AbsDom[R] with Singleton]

(val domL: DL, val domR: DR)

{ this: AbsDom[(L, R)] =>

type Elem <: ElemTrait with PairTrait

trait PairTrait { this: Elem =>

val left: domL.Elem

val right: domR.Elem } }

object P extends PairDom(A, B) { ... }

(a: A.Elem) + (p.left: P.domL.Elem)

where DL and DR are inferred as A.type and B.type respec-

tively. Where a and p are elements of A and P respectively,

P.domL.Elem is equal to A.type#Elem, which is A.Elem. There-

fore, the code passes type checking.

3 Related Work
In object-oriented languages, objects with type members can

implement modules. In traditional module systems, a module

may be opaque or transparent. For an opaque module, the

type of the module does not reveal the module implementa-

tion; it allows modules as first-class values but restricts uses

of higher-order modules. On the contrary, the type of a trans-

parent module exposes the implementation of the module;

compilers can decide path-equality at compile time, which

enables effective uses of higher-order modules while sacri-

ficing modules as first-class values. Manifest types [Leroy

1994] and translucent sums [Lillibridge 1996] propose to mix

both opaque and transparent approaches: programmers can

choose whether a module exposes its implementation via its

type. In manifest types, modules are second-class entities,

but modules as translucent sums are first-class values.

In DOT, objects are first-class by default, and users can

choose the degree of abstraction as in manifest type and

translucent sums. πDOT additionally offers path-equality

like transparentmodule systems, and fields allow encoding of

submodules. Path-equality also makes higher-order features

like functions and binding objects as fields more useful.
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A Appendix
A.1 Self References
We designed πDOT to exclude self-references, which de-

creases the expressivity of the language but lets us focus on

the main problem, path-equality. Supporting self-references

in the presence of fields introduces an initialization problem.

Unlike methods, fields require evaluation of their initializa-

tion terms when their enclosing record is initialized. Thus, if

the language supports self-references, an initialization term

of a field may refer to other field of the same record, which

requires some specific order between initialization of fields.

We discuss two possible ways to address this problem.

First, the language can provide a default value when a term

refers to an uninitialized field, which is the current approach

of Scala. For example, Scala supports 0 and null as the de-
fault values for integers and strings, respectively. Then, we

would also need to add null to πDOT to provide it as the

default record value, which would require more changes.

Second, we may want to type check record initialization

incrementally: an initialization term can refer to only ini-

tialized fields. Then, the typing rule for record initialization

should check the property additionally, which may affect the

proof of subtyping transitivity as well.

A.2 Total Evaluation
Figure 7 shows the total evaluation rules of πDOT terms.

If a term refers to absent variables or fields, the evaluation

Σ ⊢ t ⇓ r

Σ = _,x : v, _

Σ ⊢ x ⇓ v [TE-Var]

Σ ⊢ t ⇓ ⟨f : v⟩

Σ ⊢ t . fi ⇓ vi [TE-Field]

∀i such that Ii = val fi = ti . Σ ⊢ ti ⇓ vi

Σ ⊢ new (I ) ⇓ ⟨f : v⟩ [TE-New]

Σ ⊢ t ⇓ v Σ,x : v ⊢ s ⇓ v ′

Σ ⊢ let x : T = t in s ⇓ v ′
[TE-Let]

Σ = y : v ∀ 1 ≤ i ≤ |y |. x , yi
Σ ⊢ x ⇓ stuck [TE-Var-Stuck]

Σ ⊢ t ⇓ ⟨f ′ : v⟩ ∀ 1 ≤ i ≤ | f ′ |. f , f ′i
Σ ⊢ t . f ⇓ stuck [TE-Field-Stuck]

Figure 7. Total evaluation

Γ;Ψ ⊢ t : T

Γ = _,x : T , _
Γ;Ψ ⊢ x : T [T-Var]

Γ;Ψ ⊢ t : {val f : T }

Γ;Ψ ⊢ t . f : T [T-Field]

Γ;Ψ ⊢ t : T t implies ⟨ρ ≡ π ⟩
expand(Ψ,x , ⟨ρ ≡ π ⟩) = Ψ′

Γ,x : T ;Ψ′ ⊢ s : U Γ;Ψ ⊢ U

Γ;Ψ ⊢ let x : T = t in s : U [T-New]

Γ;Ψ ⊢ t : T Γ;Ψ ⊢ T <: U
Γ;Ψ ⊢ t : U [T-Sub]

Figure 8. Static semantics of πDOT

of the term becomes stuck, and results in stuck. The [TE-
Var-Stuck] and [TE-Field-Stuck] rules describe such cases.

Evaluation of a term propagates stuck from any of its sub-

terms, so that evaluation of a term gets stuck when eval-

uation of any of its subterm gets stuck. We omit rules for

propagating stuck in this paper. We show that evaluating a

well-typed term never gets stuck in Appendix A.4. If evalu-

ation of a term does not get stuck, it produces a value; the

corresponding rules are conventional.

A.3 Complete Static Semantics
Figure 8 presents a comple static semantics of πDOT and

Figure 9 defines the make function.

A.4 Type Soundness in Detail
Before discussing the type soundness theorem, we define typ-

ing rules of values and run-time environments in Figure 10.

https://doi.org/10.1145/2660193.2660216
https://doi.org/10.1145/2660193.2660216
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make(p; ρ) = p

make(p; ·) = p [MP-Empty]

make(p. f ; ρ) = q
make(p; f , ρ) = q [MP-Seq]

Figure 9. Construction of paths

Γ;Ψ ⊢ v : T

∀ 1 ≤ i ≤ |v |. Γ;Ψ ⊢ vi : Ti

Γ;Ψ ⊢ ⟨f : v⟩ : { f : T } [TV-Record]

Γ;Ψ ⊢ v : S Γ;Ψ ⊢ S <: T
Γ;Ψ ⊢ v : T [TV-Sub]

Σ : Γ;Ψ

· : ·;ϕ [RTP-Empty]

ψ = flatten(Ψ) ψ ′ = flatten(Ψ′) ψ ⊂ ψ ′

ψ ′′ = ψ \ψ ′ x ∈ ψ ′′ Σ′ = Σ,x : v
∀p ∈ ψ . ∄ρ. make(x ; ρ) = p
∀p ∈ ψ ′′. ∃ρ. make(x ; ρ) = p

Σ : Γ;Ψ Γ;Ψ ⊢ v : T
∀ψ ∈ Ψ′. ∀p,p ′ ∈ ψ . ∃n. Σ′ ⊢ p ⇓ v ∧ Σ′ ⊢ p ′ ⇓ v

(Σ,x : v) : (Γ,x : T );Ψ′

[RTP-Nonempty]

Figure 10. Typing rules of values and run-time environ-

ments

The [TV-Record] rule states that the type of a value is a

record type, the fields of which have the types of their initial-

ization values. The [TV-Sub] rule specifies the subsumption

relation for the type of a value.

The Σ : Γ;Ψ judgment states that Γ and Ψ are consistent

with Σ. A type environment Γ is consistent with Σ, if the
domain of Γ contains every variable x in the domain of Σ, and
the type of Σ(x) is Γ(x). A path environment Ψ is consistent

with Σ, if Ψ is a refinement of a partition, whose equivalence

relation is the value equality, of all the paths available under

Σ. In other word, for any two paths, if they are in the same

path set, evaluating them results in the same value.

To prove the type soundness theorem, we first need to

prove the subtyping transitivity.

Lemma A.1 (Subtyping Transitivity). For any type environ-
ment Γ, types S , T , andU , if Γ;Ψ ⊢ S <: T and Γ;Ψ ⊢ T <: U ,
then Γ;Ψ ⊢ S <: U .

Proving subtyping transitivity for πDOT is simpler than for

µDOT, because it does not involve environment narrowing

since records in πDOT cannot refer to themselves. Thus, we

can prove it by straightforward structural induction on the

subtyping rules.

Using subtyping transitivity, we can obtain inversion lem-

mas for terms and values.

Lemma A.2 (Inversion Lemma for Variables). For any vari-
able x , a type environment Γ, and a path environment Ψ, if we
have Γ;Ψ ⊢ x : T , there exists a typeT ′ such that Γ = _,x : T ′_
and Γ;Ψ ⊢ T ′ <: T .

Lemma A.3 (Inversion Lemma for Field Accesses). For any
term t , a field f , a type environment Γ, and a path environment
Ψ, if we have Γ;Ψ ⊢ t . f : T , then there exists a type T ′ such
that Γ;Ψ ⊢ t : {val f : T ′} and Γ;Ψ ⊢ T ′ <: T .

Lemma A.4 (Inversion Lemma for Record Initialization).
For any member initializations I , a type environment Γ, and a
path environment Ψ, if we have Γ;Ψ ⊢ new (I ) : T , then there
exist member declarations D such that for all 1 ≤ i ≤ |D |,
Γ;Ψ ⊢ Ii : Di and Γ;Ψ ⊢ {D} <: T .

Lemma A.5 (Inversion Lemma for Let-Binding). For any
variable x , terms t and s , a type T , a type environment Γ, and
a path environment Ψ, if we have Γ;Ψ ⊢ let x : T = t in S : U ,
Γ;Ψ ⊢ t : T and there exist a typeU ′, pseudo paths ρ, nullable
pathsπ , and a path environmentΨ′ such that t implies ⟨ρ ≡ π ⟩,
expand(Ψ,x , ⟨ρ ≡ π ⟩) = Ψ′, Γ,x : T ;Ψ′ ⊢ s : U ′, Γ;Ψ ⊢ U ′,
and Γ;Ψ ⊢ U ′ <: U .

Lemma A.6 (Inversion Lemma for Values). For any fields f ,
values v , a type environment Γ, and a path environment Ψ, if
we have Γ;Ψ ⊢ ⟨f : v⟩ : T , then there exist types T ′ such that
for all 1 ≤ i ≤ |v |, Γ;Ψ ⊢ vi : T

′
i and Γ;Ψ ⊢ { f : T ′} <: T .

Thanks to subtyping transitivity, we do not need to consider

multiple subsumptions in the inversion lemmas: multiple

subsumptions collapse into a single subsumption because

subtyping is transitive. We use the inversion lemmas during

the inductive proof of the type soundness theorem.

Finally, we should prove that the implies and expand func-

tions are sound. Soundness of the functions denotes that if

Ψ is consistent with Σ, the expanded path environment Ψ′

by the functions is still consistent with its correspondingly

extended run-time environment Σ′
. To prove the soundness

of the entire expansion process, we first prove the sound-

ness of the implies function and then prove the soundness

of πDOT.

Lemma A.7 (Soundness of the implies Function). For any
term t , a variable x , and a run-time environment Σ, sup-
pose that Σ ⊢ t ⇓ v , t implies ⟨ρ ≡ π ⟩, and ∀1 ≤ i ≤ |ρ |.
make(x ; ρi ) = pi . Then, for all 1 ≤ i ≤ |p |, there existsv ′

i such
that Σ,x : v ⊢ pi ⇓ v

′
i . Moreover, if there exists a path qi such

that πi = qi , then Σ ⊢ qi ⇓ v
′
i .

Lemma A.8 (Soundness of Path Environment Expansion).
Let a run-time environment Σ and a path environment Ψ are
consistent: Σ : Ψ. For any term t , pseudo paths ρ, and nul-
lable paths π , if we have Σ ⊢ t ⇓ v , t implies ⟨ρ ≡ π ⟩, and
expand(Ψ,x , ⟨ρ ≡ π ⟩) = Ψ′, then (Σ,x : v) : Ψ′.


	Abstract
	1 Introduction
	2 Formalization of DOT
	2.1 Syntax
	2.2 Dynamic Semantics
	2.3 Static Semantics
	2.4 Expressiveness
	2.5 Type Soundness
	2.6 Discussion

	3 Related Work
	References
	A Appendix
	A.1 Self References
	A.2 Total Evaluation
	A.3 Complete Static Semantics
	A.4 Type Soundness in Detail



