
Revisiting Recency Abstraction for JavaScript
Towards an Intuitive, Compositional, and Efficient Heap Abstraction

Jihyeok Park
KAIST

jhpark0223@kaist.ac.kr

Xavier Rival
CNRS, ENS, INRIA Paris, PSL*

Research University
Xavier.Rival@ens.fr

Sukyoung Ryu
KAIST

sryu.cs@kaist.ac.kr

Abstract
JavaScript is one of the most widely used programming lan-
guages. To understand the behaviors of JavaScript programs and
to detect possible errors in them, researchers have developed sev-
eral static analyzers based on the abstract interpretation frame-
work. However, JavaScript provides various language features
that are difficult to analyze statically and precisely such as dy-
namic addition and removal of object properties, first-class prop-
erty names, and higher-order functions. To alleviate the problem,
JavaScript static analyzers often use recency abstraction, which
refines address abstraction by distinguishing recent objects from
summaries of old objects. We observed that while recency ab-
straction enables more precise analysis results by allowing strong
updates on recent objects, it is not monotone in the sense that it
does not preserve the precision relationship between the underly-
ing address abstraction techniques: for an address abstraction A
and a more precise abstraction B, recency abstraction on B may
not be more precise than recency abstraction on A.
Such an unintuitive semantics of recency abstraction makes its
composition with various analysis sensitivity techniques also un-
intuitive. In this paper, we propose a new singleton abstraction
technique, which provides a monotone refinement relationship of
the underlying address abstraction. We prove the monotonicity
of singleton abstraction and our prototype implementation shows
promising results.

CCS Concepts •Software and its engineering → General
programming languages; •Theory of computation → Pro-
gram analysis

Keywords Address abstraction, recency abstraction, address
partition

1. Introduction
JavaScript is one of the most widely used programming lan-
guages. It is now the 7th popular language [1] and it becomes
the de facto language for web programming. In the ever-growing

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

CONF’yy Month d–d, 20yy, City, ST, Country

c© 20yy Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-nnnn-nnnn-n/yy/mm. . . $15.00

DOI: http://dx.doi.org/10.1145/nnnnnnn.nnnnnnn

IoT era, the realm of JavaScript may expand even more [2] and
understanding and detecting bugs in JavaScript programs are get-
ting more important.
Recently, researchers have presented several static analyzers for
JavaScript programs. SAFE [9], TAJS [6], and WALA [11] stat-
ically analyze JavaScript programs based on the abstract inter-
pretation framework. Because they aim for sound static analysis,
their analysis results are often imprecise. Thus, each analyzer de-
velops its own analysis techniques to improve the analysis preci-
sion [3, 10–12].
For JavaScript static analysis, analyzing “object properties” pre-
cisely serves an important role in improving the analysis preci-
sion. First, because property names themselves are first-class val-
ues, imprecise analysis of property names lead to imprecise anal-
ysis of property accesses. Second, since object properties may be
added or removed dynamically, precisely analyzing the existence
of object properties is challenging. Imprecisely analyzing that a
specific property may not exist in an object may result in report-
ing a false type error. Third, because JavaScript supports higher-
order functions, the values of object properties may be functions,
which implies that building control flow graphs precisely requires
precise analysis of property accesses.
To analyze object properties more precisely, JavaScript static an-
alyzers often use recency abstraction [4]. Note that one of main
causes of the analysis imprecision is weak update, which updates
the value of an object property to a join of its old value and a new
value. To analyze such updates more precisely, recency abstrac-
tion distinguishes the most recently allocated objects from joined
old objects and performs weak updates on joined old objects and
strong updates that replace old values with new values on the re-
cently allocated objects. Thus, recency abstraction enhances the
analysis precision for the most recently allocated objects.
Recency abstraction is yet another address abstraction that di-
vides a given (underlying) partition-based address abstraction
into two parts: old and recent addresses. A partition-based ad-
dress abstraction divides addresses into partitions and uses their
powersets as its abstract domain. One example partition-based
address abstraction is the allocation-site abstraction, which cre-
ates partitions by merging all objects created at the same allo-
cation sites. For each partition, recency abstraction distinguishes
a recent address that points to the most recently created objects
and an old address that points to old objects, and it allows strong
updates only on recent addresses. Consider the following code:

l0 : function f() { return {}; };
l1 : var x = f();
l2 : var y = f();
l3 : x.p = 1;
l4 : y.p = 2;
l5 : x.p+ y.p

Though it is contrived for the presentation brevity, it shows how
recency abstraction for the allocation-site abstraction works suc-
cinctly. Since the values of x and y are objects created at the same
allocation site, l0, both x and y have the same partition l0 in the
allocation-site abstraction. Thus, at the end of the above code,
both x.p and y.p have undefined (the default value for an ab-
sent property), 1, and 2 as their values. On the contrary, recency
abstraction splits l0 into two parts: (l0,o) for joined old addresses
and (l0, r) for a recent address. At the end of the above code, x
has the old abstract address (l0,o) and y has the recent abstract
address (l0, r). Thus, x.p has both undefined and 1 as its values
because of weak updates on the old address, but y.p has only 2
as its value because of the strong update on the recent address.
While recency abstraction provides more precise analysis than
its underlying address abstraction, it is not monotone in the
sense that it does not preserve the refinement relationship be-
tween its underlying address abstraction techniques. We say that
a partition-based address abstraction A1 with a partition δ1 is
a refinement of another partition-based address abstraction A2

with a partition δ2, if the partition δ1 is finer than the partition
δ2. We prove that the refinement relationship is proportional to
the analysis precision. Unfortunately, recency abstraction on A1,
which is a refinement of A2, may not be a refinement of recency
abstraction on A2. Thus, it is unclear which address abstraction
would provide the most precise analysis in conjunction with re-
cency abstraction, which denotes that recency abstraction is not
compositional with other analysis techniques.
In this paper, we present a singleton abstraction, which improves
the analysis precision of its underlying address abstraction with-
out the aforementioned problems of recency abstraction. The
contributions of this paper include the following:
• We formally define recency abstraction on a partition-based

address abstraction such as the allocation-site abstraction, and
describes how it interferes with address partitioning and anal-
ysis sensitivities.
• We propose a singleton abstraction, which enhances the anal-

ysis precision while preserving the refinement relationship of
its underlying address abstraction. Therefore, it is composi-
tional with other analysis techniques.
• Our preliminary experimental results show that the singleton

abstraction provides similar analysis precision as recency ab-
straction.

In the remaining of this paper, we present the concrete semantics
of a simplified variant of JavaScript (Section 2), formally define
recency abstraction, and show two code examples illustrating un-
intuitive behaviors of recency abstraction (Section 3). Then, we
propose a new singleton abstraction, which improves the analy-
sis precision without changing its underlying address abstraction
(Section 4). After evaluating the analysis precision of the single-
ton abstraction compared to recency abstraction (Section 5), we
discuss related work (Section 6) and conclude (Section 7).

l0 : var obj = {};
l1 : if (?) {
l2 : obj.a = 1;
l3 : obj = {};
l4 : }

Figure 1. A simple example program

2. Concrete Semantics
In this section, we define the concrete semantics of a simplified
variant of JavaScript. It contains essential constructs for address
abstraction, and we augment the standard concrete semantics
with time information to identify recently created objects. We call
such time information a date, which is a non-negative integer.

2.1 Notations and Syntax
We use the following notations:

l ∈ L : control states
x, y ∈ X : variables
a ∈ A : addresses

Vp : primitive values
V : values (V = A] Vp)
D : dates (non-negative integers)
P : property names of objects (strings)

We let � denote the JavaScript undefined value (� ∈ Vp). A
date denotes when an object is created, which is used for recency
abstraction. Property names are string values. We consider the
following abstract syntax as a simplified variant of JavaScript:

Program ::= Func∗ Stmt∗

Func ::= function Id ([Id [, Id]∗]?) { Stmt∗ }
Stmt ::= var Id [= Expr]?;

| Id = Expr; | Expr.Prop = Expr;
| if (Expr) { Stmt∗ } else { Stmt∗ }
| return Expr;

Expr ::= Expr (Expr∗) | Expr [Expr] | Expr.Prop | {}
| Id |? | 0 | 1 | + | − | · · · (values or operators)

Id ::= x | y | · · · (variable names)
Prop ::= a | p | · · · (property names of objects)

We use ? to denote unknown values such as dynamically gen-
erated values. Figure 1 shows an example code in this syntax.
Given a statement s, we write l0 : s; l1, if l0 is the control state
right before the statement and l1 is the control state right after it.

2.2 States and Traces
A state σ = (σL, σC, σH, σD) ∈ S consists of a control state, a
context, a heap, and a date:

S = L× C×H× D : states
C = E×K : contexts
E = X� V : environments
K = {ε}] (L× C) : call contexts
H = A� (O× L× D) : heaps
O = P� V : objects

A context consists of an environment and a call context. An
environment is a partial map from variables to values. A call
context in top-level is ε; in a function f, a call context is a pair of
the control point and the context of the call-site of f. A heap is

a partial map from addresses to objects with their allocation sites
and dates. An object is a partial map from property names to their
values.
A trace τ ∈ T is a finite sequence of states 〈σ0, . . . , σn−1〉.
The date of a state captures the number of program execution
steps so far: in a well-formed trace 〈σ0, . . . , σn−1〉, the date of
σi is i and the transition rules in the concrete semantics defined
in Section 2.3 ensure this. The following table represents sample
traces for the example code in Figure 1. A trace executing the
true branch is as follows:

σL
i σE

i (obj) σH
i σD

i

l0 � ∅ 0

l1 at0 at0 7→ ({}, l0, 0) 1

l2 at0 at0 7→ ({}, l0, 0) 2

l3 at0 at0 7→ ({a : 1}, l0, 0) 3

l4 at1
at0 7→ ({a : 1}, l0, 0) 4
at1 7→ ({}, l3, 3)

and another trace executing the false branch is as follows:

σL
i σE

i (obj) σH
i σD

i

l0 � ∅ 0

l1 af0 af0 7→ ({}, l0, 0) 1

l5 af0 af0 7→ ({}, l0, 0) 2

2.3 Concrete Semantics
We define a small-step semantics characterized by a transition re-
lation →, and use the finite trace semantics induced by →. The
initial state is (l0, (∅, ε), ∅, 0) where l0 is the start control point
of a given program. The helper function eval(e, σE) evaluates
an expression e with an environment σE. For instance, the transi-
tions for simple variable creation and object allocation statements
have the following semantics:
• Simple variable creation without initialization

l0 : var x;
l1 : . . .

(l0, (σE
0 , σ

K
0), σH

0 , σ
D
0)→ (l1, (σE

1 , σ
K
0), σH

0 , σ
D
1) where

σE
1 = σE

0 [x 7→ �] and σD
1 = σD

0 + 1
• Object allocation

l0 : x = {};
l1 : . . .

(l0, (σE
0 , σ

K
0), σH

0 , σ
D
0) → (l1, (σE

1 , σ
K
0), σH

1 , σ
D
1) where a is a

fresh address, σE
1 = σE

0 [x 7→ a], σH
1 = σH

0 [a 7→ ({}, l0, σD
0)],

and σD
1 = σD

0 + 1.
The remaining rules are available in Appendix A. Generally,
the transition relation → should ensure that, for each transition
(σL

0 , σ
C
0 , σ

H
0 , σ

D
0)→ (σL

1 , σ
C
1 , σ

H
1 , σ

D
1), σD

1 = σD
0 + 1.

3. Recency Abstraction
We formally define a series of abstractions towards recency ab-
straction on top of a given partition-based address abstraction.
Then, we illustrate unintuitive behaviors of recency abstraction
using two code examples.

3.1 Abstractions
We define a program abstraction by composing a series of ab-
stractions:

• a classical flow-sensitive abstraction that maps each control
state to the set of states that are observed at that location; and
• an abstraction of sets of states by collapsing addresses accord-

ing to an address abstraction given as a parameter of the pro-
gram abstraction.

Address abstraction An address abstraction is defined by:
• a set of abstract addresses A] (we note a] for an element of

this set); and
• a function φA : A −→ A] that maps each address into the

abstract address that represents it.
In the following, we consider several choices of this address
abstraction. In each case, it fixes fully for each state the mapping
between concrete addresses and abstract addresses.

State abstraction based on address abstraction Given a pair
(A], φA), we can define abstract domains and abstraction func-
tions for the state abstraction as shown in Figure 2. Abstractions
of control states and primitive values are their powersets. Because
a power set of primitive values could be an infinite set, we should
define its finite abstraction in real analysis, but we use powersets
in this paper for the presentation brevity. Abstractions of states
are a pair of abstractions of environments and heaps. An abstract
environment is a map from variables to pairs of abstract addresses
and sets of primitive values. An abstract heap is a map from ab-
stract addresses to abstract objects. In the heap abstraction, we
merge all the abstract objects corresponding to a given abstract
address. Finally, an abstract object is a map from property names
to pairs of abstract addresses and sets of primitive values or the
special consider ~; when an abstract object o] has a mapping
from p to ~, it denotes that p may not exist in o]. Since abstract
domains are complete lattices, we define at each step an element-
wise abstraction function φ, that maps each element to its best
abstraction. Such functions implicitly define Galois connections.
For instance, A, φA defines P(A)

α−⇀↽−
γ

A] by:

α(A′) =
⊔
a∈A′ φ

A(a), γ(a]) = {a ∈ A | φA(a) v a]}

Recency abstraction Recency abstraction is a commonly used
address abstraction for JavaScript analysis, which is often de-
fined on top of the allocation-site abstraction. We generalize the
allocation-site abstraction as a partition-based address abstrac-
tion, and define recency abstraction on it. Thus, our formalization
can represent recency abstraction on heap cloning [8], which is
yet another partition-based address abstraction.
A partition-based address abstraction (A]δ, φAδ) is defined with a
partition δ : A → Π where A]δ = P(Π) and φAδ (a) = {δ(a)}.
We could simplify the heap abstraction using the partition δ as
follows:
• H]δ = Π −→ O]
• φHδ (h) = λ(π ∈ Π) ·

⊔
{φO(o) | ∃a ∈ A, δ(a) = π ∧

h(a) = (o, ,)}
Given a partition-based address abstraction with a partition δ :
A→ Π, and a corresponding state (l , c, h, n), we define recency
abstraction as follows:
• A]r[δ] = P(Π× {r,o});

• φAr[δ](a) =

{
{(π, r)} if h(a) = (o, l , nr)
{(π,o)} otherwise

Concrete domain Abstract domain Element-wise abstraction function
S S] = E] ×H] φS((, (e,), h,)) = (φE(e), φH(h))

E E] = X −→ A] × P(Vp) φE(e) = λ(x ∈ Domain(e)) ·

{
(φA(e(x)), {}) if e(x) is an address
(⊥, {e(x)}) if e(x) is a primitive value

H H] = A] −→ O] φH(h) = λ(a] ∈ A]) ·
⊔
{φO(o) | ∃a ∈ A, φA(a) = a] ∧ h(a) = (o, ,)}

O O] = P −→ A] × P(Vp] {~}) φO(o) = λ(p) ·

(φA(o(p)), {}) if o(p) is an address
(⊥, {o(p)}) if o(p) is a primitive value
(⊥, {~}) if p 6∈ Domain(o)

Figure 2. Abstractions based on the address abstraction (A], φA)

where π = δ(a)
and nr = max{n′ | ∃a′ ∈ A, o′ ∈ O, l ′ ∈ L,

δ(a′) = π ∧ h(a′) = (o′, l ′, n′)}.
This allows to abstract sets of states similarly as above except
that the address abstraction function depends on states.

3.2 Unintuitive Behaviors of Recency Abstraction
Now, we illustrate unintuitive behaviors of recency abstraction
using two examples.

Example 1 The code in Figure 1 contains two allocation-sites
l0 and l3. Let us consider two partition-based address abstrac-
tions: the allocation-site abstraction with δid : A → L, which
divides addresses based on their allocation sites and a crude one
with δ> : A → {π} for some π, which does not partition at all.
Clearly, the abstraction (A]δid , φ

A
δid

) defines a more precise ad-
dress partition than (A]δ> , φ

A
δ>

). Unfortunately, recency abstrac-
tion does not preserve this “more precise than” relationship. Let’s
look at the analysis results at the control state l4. The abstraction
with recency abstraction (A]r[δid], φ

A
r[δid]

) produces the following
result:

e] h]

true branch obj 7→ {(l3, r)}
(l0, r) 7→ {a 7→ {1}}
(l3, r) 7→ {}

false branch obj 7→ {(l0, r)} (l0, r) 7→ {}

join
obj 7→ {(l0, r), (l0, r) 7→ {a 7→ {~, 1}}

(l3, r)} (l3, r) 7→ {}

The joined result of both true and false branches shows that obj.a
may have values {~, 1}. On the contrary, the abstraction with
(A]r[δ>], φ

A
r[δ>]

) produces the following:

e] h]

true branch obj 7→ {(π, r)} (π, r) 7→ {}
(π,o) 7→ {a 7→ {1}}

false branch obj 7→ {(π, r)} (π, r) 7→ {}

join obj 7→ {(π, r)} (π, r) 7→ {}
(π,o) 7→ {a 7→ {1}}

The joined result of both branches shows that a does not exist
in obj; thus, the value of obj.a is {~}. This example shows
that (A]r[δ>], φ

A
r[δ>]

) is more precise than (A]r[δid], φ
A
r[δid]

) while

(A]δid , φ
A
δid

) is more precise than (A]δ> , φ
A
δ>

). Therefore, the pre-
cision relationship of the underlying address abstraction is not
preserved with recency abstraction.

Example 2 The code in Figure 3 shows that recency abstraction
may interfere with analysis sensitivities. Let us consider two

l0 : function g(z){
l1 : var result = z.p;
l2 : }
l3 : function f(){
l4 : var obj = {};
l5 : var a = g(obj);
l6 : obj.p = 3;
l7 : return obj;
l8 : }
l9 : var x = f();
l10 : var y = f();
l11 :

Figure 3. Recency abstraction interfering with sensitivities

analysis sensitivities: 1-CFA that distinguishes the same function
from its different call sites using its caller, and 0-CFA that does
not distinguish different call sites of the same function. Then,
we consider the allocation-site abstraction refined by different
sensitivities. With 1-CFA, the partition is δ : A → {l4/9, l4/10}
where l4/9 means that the allocation-site l4 with the call-site l9
and l4/10 means that the allocation-site l4 with the call-site l10. In
this case, we get the following result at the control state l1:

e] h]

call l9, l5 z 7→ {(l4/9, r)} (l4/9, r) 7→ {}

call l10, l5 z 7→ {(l4/10, r)}
(l4/9, r) 7→ {p 7→ {3}}
(l4/10, r) 7→ {}

join
z 7→ {(l4/9, r), (l4/9, r) 7→ {p 7→ {~, 3}}

(l4/10, r)} (l4/10, r) 7→ {}

With 0-CFA, the partition is δ : A → {l4}. Thus, it has only one
partition and we get the following result at the control state l1:

e] h]

call l9, l5 z 7→ {(l4, r)} (l4, r) 7→ {}

calll10, l5 z 7→ {(l4, r)} (l4, r) 7→ {}
(l4,o) 7→ {p 7→ {3}}

join z 7→ {(l4, r)} (l4, r) 7→ {}
(l4,o) 7→ {p 7→ {3}}

This example shows that a more precise 1-CFA may produce less
precise results than 0-CFA when combined with recency abstrac-
tion. Therefore, the precision relationship of analysis sensitivities
is not preserved when combined with recency abstraction.

4. Singleton Abstraction
In this section, we explain the unintuitive behaviors of recency
abstraction in terms of the refinement relationship between

partition-based address abstractions. Then, we present singleton
abstraction, a new heap abstraction based on a given partition-
based address abstraction, which preserves the refinement re-
lationship of its underlying address abstraction and moreover
allows strong updates on singleton addresses.

4.1 Refinement of Address Abstraction
We first define terminologies to discuss the behaviors of recency
abstraction. A partition-based address abstractions (A]δi , φ

A
δi

) is
defined with a partition δi : A → Πi. A partition-based address
abstraction is a refinement of another, if and only if their parti-
tions have the refinement relationship accordingly.

Definition 1 (�). (A]δ1 , φ
A
δ1

) � (A]δ2 , φ
A
δ2

) iff δ1 is a refinement
partition of δ2.

An address abstraction (A]1, φA1) is more precise than (A]2, φA2) if
and only if the concretization of the former is a subset of that of
the latter.

Definition 2 (�p). (A]1, φA1) �p (A]2, φA2) iff γ1 ◦ α1 ⊆ γ2 ◦ α2.

Then, we prove that the refinement relation implies the precision
relation.

Theorem 1 (Implication of precision from refinement).

(A]δ1 , φ
A
δ1) � (A]δ2 , φ

A
δ2)⇒ (A]δ1 , φ

A
δ1) �p (A]δ2 , φ

A
δ2)

Proof. Let us consider the Galois connections P(A)
α1−⇀↽−
γ1

A]δ1
and P(A)

α2−⇀↽−
γ2

A]δ2 defined as above. Given A′ ⊆ A, there exists

Π′1 ⊆ Π1 s.t. γ1(Π′1) = γ2(Π′2) where Π′2 = α2(A′) because
(A]δ1 , φ

A
δ1

) � (A]δ2 , φ
A
δ2

). It means that α1(A′) v Π′1. Therefore,
γ1 ◦ α1(A′) ⊆ γ1(Π′1) = γ2(Π′2) = γ2 ◦ α2(A′).

Now, let us revisit the first example in Section 3.2 with the
refinement relation. Because δid is a partition of δ>, we have
(A]δid , φ

A
δid

) � (A]δ> , φ
A
δ>

). The recency abstraction with a cruder
partition (A]r[δ>], φ

A
r[δ>]

) has two partitions (π, r) and (π,o):
γ((π, r)) = {at1 , af0} and γ((π,o)) = {at0} where at0 and
at1 are concrete addresses created at l0 and l3, respectively, for
the true branch, and af0 is a concrete address created at l0 for
the false branch. The other recency abstraction (A]r[δid], φ

A
r[δid]

)

has four partitions, and only two partitions (l0, r) and (l3, r)
have elements: γ((l0, r)) = {at0 , af0} and γ((l3, r)) = {at1}.
Thus, (A]r[δid], φ

A
r[δid]

) 6� (A]r[δ>], φ
A
r[δ>]

), which illustrates a case
where recency abstraction does not preserve the refinement rela-
tion of its underlying address abstraction, which in turn does not
preserve their precision relation. Similarly, the second example
shows that recency abstraction with a more precise 1-CFA anal-
ysis sensitivity does not always produce more precise analysis
results than recency abstraction with a less precise 0-CFA.

4.2 Singleton Abstraction
To alleviate the problem, we decide not to divide a given parti-
tion but to simply perform strong updates on singleton objects.
Thus, we propose singleton abstraction, a new heap abstraction
that preserves the refinement relationship of its underlying ad-
dress abstraction. It can provide more precise analysis results

Bench Program LOC Recency Singleton Total

JSAI

adn-chess.js 234 90 55 127
adn-coffee pods deals.js 367 45 37 141
adn-less spam please.js 759 213 143 432
adn-live pagerank.js 882 132 117 323
adn-odesk job watcher.js 168 56 52 71
adn-pinpoints.js 548 58 57 232
adn-tryagain.js 929 103 72 525

SunSpider

3d-morph.js 23 1 1 4
access-binary-trees.js 38 14 10 16
access-fannkuch.js 51 1 1 19
access-nbody.js 142 32 15 78
access-nsieve.js 28 2 0 4
bitops-3bit-bits-in-byte.js 13 0 0 0
bitops-bits-in-byte.js 14 0 0 0
bitops-bitwise-and.js 3 0 0 0
bitops-nsieve-bits.js 22 1 1 7
controlflow-recursive.js 18 0 0 0
math-cordic.js 53 4 4 6
math-partial-sums.js 25 4 4 4
math-spectral-norm.js 41 2 1 16
string-fasta.js 70 15 10 18

V8
navier-stokes.js 331 36 17 92
richards.js 288 119 117 197
splay.js 205 108 108 132

Total 1036 831 2, 444

Ratio (%) 42.39 33.63 −

Table 1. Numbers of object property loads that have more
precise results with recency or singleton abstraction than the
allocation-site abstraction.

with more precise underlying address abstractions and with more
precise analysis sensitivities.
Given a partition-based address abstraction (A]δ, φAδ) with a par-
tition δ = A→ Π, we define singleton abstraction as follows:
• H]s[δ] = Π −→ O] × {s,m};

• φHs[δ](h) = λ(π ∈ Π) · (φHδ (π),

{
s if |U | = 1
m otherwise)

where U = {a′ ∈ A | δ(a′) = π ∧ a′ ∈ Domain(h)}.
It distinguishes partitions with only one address as s and maps
the other partitions to m. Merging two mappings from the same
partition to both singleton (s) and multiple (m) results in m.
Unlike recency abstraction, the singleton abstraction preserves
the refinement relation of its underlying address abstraction be-
cause they use the same partition from the underlying address
abstraction. While the expressive power of the singleton abstrac-
tion is the same as its partition-based address abstraction, single-
ton abstraction allows strong updates for address partitions that
map to s. It permits strong updates on objects created at specific
allocation sites.

5. Evaluation
We evaluate the precision of singleton abstraction in compari-
son with recency abstraction. We conducted experiments with 3
sets of benchmarks—JSAI, SunSpider, and V8—consisting of 24
programs on a 2.8 GHz Intel Core i5 iMac with 16GB memory.
We implemented 3 address abstractions—allocation-site abstrac-
tion, recency abstraction, and singleton abstraction—on an open-

source JavaScript static analysis framework, SAFE [9]. The im-
plemented recency abstraction and singleton abstraction are built
on top of the allocation-site abstraction.
The analyses took on average 86.92, 122.73, and 79.77 sec-
onds for the allocation-site, recency, and singleton abstractions,
respectively. It means that singleton abstraction does not incur
much performance overhead like recency abstraction while pro-
viding comparable analysis precision with recency abstraction.
We observed that the more complex benchmark programs get,
the more performance overhead recency abstraction causes.
For the analysis precision, we compare the numbers of object
property loads like obj.p that have more precise results with re-
cency or singleton abstraction compared with just the allocation-
site abstraction. Table 1 summarizes the experimental results; the
3rd column shows the lines of code, the 4th and the 5th columns
show the numbers of more precise property loads by recency and
singleton abstractions, respectively, and the last column shows
the total number of property loads in each program. For exam-
ple, the first program in the JSAI benchmarks, adn-chess.js, has
127 property loads, among which recency abstraction analzyes
90 property loads more precisely than the allocation-site abstrac-
tion. In summary, recency and singleton abstractions analyze
about 42.39% and 33.63% of property loads more precisely on
average, respectively. Note that recency abstraction divides par-
titions into two parts: recent and old. Therefore, recency abstrac-
tion provides more precise analysis results than singleton abstrac-
tion when programs update recent addresses and their allocation
sites also have old addresses pointing to different shapes of ob-
jects. We plan to extend the set of benchmark programs to under-
stand the relationships between recency and singleton abstrac-
tions more clearly.

6. Related Work
Among various research directions on heap abstraction, store-
based heap models are the abstractions that represent abstract
addresses as graph nodes [7]. The allocation-site abstraction is
the most commonly used store-based heap model and recency
abstraction is also store-based. In addition, our singleton abstrac-
tion is also a store-based heap model.
Recency abstraction was first proposed by Balakrishnan et al. [4]
in 2006 to resolve virtual function calls in C++ by supporting
strong updates. While existing approaches allow only weak up-
dates on abstract malloc blocks because they may represent sum-
mary blocks containing multiple blocks, recency abstraction per-
mits strong updates for malloc blocks, which could resolve 55%
of virtual function calls in their experiments. However, they use
only the allocation-site address abstraction as the underlying ad-
dress abstraction for recency. On the contrary, we generalized the
underlying address abstraction to partition-based address abstrac-
tion that includes the allocation-site abstraction.
Heidegger et al. applied recency abstraction for JavaScript analy-
sis [5]. While they captured recency information in a type system
and developed an inference algorithm using a constraint solver
for it, we defined recency abstraction entirely based on the ab-
stract interpretation framework.
Most JavaScript static analyzers now use recency abstraction
based on the allocation-site abstraction [6, 9], and they provide
an option to use heap cloning [8]. The heap cloned allocation-site

abstraction is also a partition-based address abstraction, which
is a refinement of the allocation-site abstraction. Because we
defined recency abstraction on top of a partition-based address
abstraction, our formalization of the recency abstraction covers
the recency abstraction implementation in real-world JavaScript
analyzers.

7. Conclusion
We revisited recency abstraction, a typical address abstraction
technique for static analysis of JavaScript programs. We formally
defined it on a partition-based address abstraction, and we used
the formalization to describe unintuitive behaviors of recency ab-
straction. We explained the behaviors by showing that recency
abstraction does not preserve the refinement relationship between
its underlying address abstractions. Thus, it is difficult to predict
which address abstraction would provide the most precise analy-
sis result for recency abstraction.
Thus, we proposed singleton abstraction, a new heap abstraction
using a partition-based abstraction. It preserves the refinement
relationship of the underlying address abstractions. Therefore, it
is compositional with other analysis techniques. Moreover, our
preliminary experiments showed that it provides similar analy-
sis precision with recency abstraction while reducing the perfor-
mance overhead.

Acknowledgment. The research leading to these results has
received funding from the European Research Council under the
EU FP 7, grant Agreement 278673, Project MemCAD.

References
[1] TIOBE Index for February 2017. http://www.tiobe.com/

tiobe-index.

[2] Iot.js: A framework for Internet of Things.
http://samsung.github.io/jerryscript/, 2015.

[3] E. Andreasen and A. Møller. Determinacy in static analysis for
jQuery. In OOPSLA, 2014.

[4] G. Balakrishnan and T. Reps. Recency-abstraction for heap-
allocated storage. In SAS, 2006.

[5] P. Heidegger and P. Thiemann. Recency types for analyzing script-
ing languages. In ECOOP, 2010.

[6] S. H. Jensen, A. Møller, and P. Thiemann. Type analysis for
JavaScript. In SAS, 2009.

[7] V. Kanvar and U. P. Khedker. Heap abstractions for static analysis.
In ACM Computing Surveys (CSUR), 2016.

[8] C. Lattner, A. Lenharth, and V. Adve. Making context-sensitive
points-to analysis with heap cloning practical for the real world. In
PLDI, 2007.

[9] H. Lee, S. Won, J. Jin, J. Cho, and S. Ryu. SAFE: Formal spec-
ification and implementation of a scalable analysis framework for
ECMAScript. In FOOL, 2012.

[10] C. Park and S. Ryu. Scalable and precise static analysis of
JavaScript applications via loop-sensitivity. In ECOOP, 2015.

[11] M. Schäfer, M. Sridharan, J. Dolby, and F. Tip. Dynamic determi-
nacy analysis. In PLDI, 2013.

[12] M. Sridharan, J. Dolby, S. Chandra, M. Schäfer, and F. Tip. Cor-
relation tracking for points-to analysis of JavaScript. In ECOOP,
2012.

A. Semantics of “→”
We define the semantics of→ for the simplified JavaScript. For
each statement or expression that changes a state, we provide its
state transition rule. In the rules, the special variable RET initial-
ized to the undefined value � denotes return values. The helper
function eval(e, σ) evaluates an expression e with a state σ. We
write σi to denote the state at the control state li.

1. Simple variable creation without initialization

l0 : var x;
l1 : . . .

(l0, (σE
0 , σ

K
0), σH

0 , σ
D
0)→ (l1, (σE

1 , σ
K
0), σH

0 , σ
D
1) where

σE
1 = σE

0 [x 7→ �]
σD
1 = σD

0 + 1

2. Variable creation with initialization

l0 : var x = e;
l1 : . . .

(l0, (σE
0 , σ

K
0), σH

0 , σ
D
0)→ (l1, (σE

1 , σ
K
0), σH

0 , σ
D
1) where

eval(e, σ0) = v
σE
1 = σE

0 [x 7→ v]
σD
1 = σD

0 + 1

3. Function call statement

l0 : function f(p0, . . . , pn−1){
l1 : . . .
l2 : }
l3 : x = f(e0, . . . , en−1);
l4 : . . .

(l3, (σE
3 , σ

K
3), σH

3 , σ
D
3)→ (l1, (σE

1 , σ
K
1), σH

3 , σ
D
1) where

eval(ei, σ3) = vi
σE
1 = {RET 7→ �, pi 7→ vi}
σK
1 = (l3, (σE

3 , σ
K
3))

σD
1 = σD

3 + 1

(l2, (σE
2 , σ

K
2), σH

2 , σ
D
2)→ (l4, (σE

4 , σ
K
4), σH

2 , σ
D
4) where

σK
2 = (, , (e, k)), σE

2 (RET) = v, and:

σE
4 = e[x 7→ v]
σK
4 = k
σD
4 = σD

2 + 1

4. Allocation statement

l0 : x = {};
l1 : . . .

(l0, (σE
0 , σ

K
0), σH

0 , σ
D
0) → (l1, (σE

1 , σ
K
0), σH

1 , σ
D
1) where a is a

fresh address, and:

σE
1 = σE

0 [x 7→ a]
σH
1 = σH

0 [a 7→ ({}, l0, σD
0)]

σD
1 = σD

0 + 1

5. Assignment statement

l0 : x = e;
l1 : . . .

(l0, (σE
0 , σ

K
0), σH

0 , σ
D
0)→ (l1, (σE

1 , σ
K
0), σH

0 , σ
D
1) where

eval(e, σ0) = v
σE
1 = σE

0 [x 7→ v]
σD
1 = σD

0 + 1

6. Property store statement

l0 : x.p = e;
l1 : . . .

(l0, (σE
0 , σ

K
0), σH

0 , σ
D
0)→ (l1, (σE

0 , σ
K
0), σH

1 , σ
D
1) where

σE
0 (x) = a, σH

0 (a) = o, eval(e, σ0) = v, and:

σH
1 = σH

0 [a 7→ o[p 7→ v]]
σD
1 = σD

0 + 1

7. Branch statement

l0 : if (e) {
l1 : . . .
l2 : } else {
l3 : . . .
l4 : }

If eval(e, σ0) is true,
(l0, (σE

0 , σ
K
0), σH

0 , σ
D
0)→ (l1, (σE

0 , σ
K
0), σH

0 , σ
D
1) where

σD
1 = σD

0 + 1

and (l2, (σE
2 , σ

K
2), σH

2 , σ
D
2)→ (l4, (σE

2 , σ
K
2), σH

2 , σ
D
4) where

σD
4 = σD

2 + 1

Otherwise, (l0, (σE
0 , σ

K
0), σH

0 , σ
D
0) → (l3, (σE

0 , σ
K
0), σH

0 , σ
D
3)

where
σD
3 = σD

0 + 1

8. Return statement

l0 : return e;
l1 : . . .

(l0, (σE
0 , σ

K
0), σH

0 , σ
D
0)→ (l1, (σE

1 , σ
K
0), σH

0 , σ
D
1) where

eval(e, σ0) = v
σE
1 = σE

0 [RET 7→ v]
σD
1 = σD

0 + 1

