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초 록

자바스크립트의 동적인 성질과 복잡한 의미론은 자바스크립트 프로그램들의 행동을 정확하게 이해하기 어

렵게 만든다. 연구자들은 이를 해결하고자 다양한 자바스크립트 정적 분석기들을 개발해왔지만, 이들은
모두 수동으로 설계가 되었기에 노동집약적이고 오류에 취약하다. 또한, 2014년 말부터 자바스크립트의
언어 명세가 매년 갱신되기 시작하면서 이 문제는 더 심각해졌다. 본 학위 논문에서는 자바스크립트 언어
명세로부터 자동으로 자바스크립트 정적 분석기를 유도해내는 새로운 방식을 제안한다. 이는 1) 기계화
명세 추출, 2) 명세의 유효성 검사, 그리고 3) 정적 분석기 유도의 세 가지 단계로 구성된다. 본 논문에서는
기계화 명세 추출 기술을 제안하고, 이를 이용해 가장 최신 자바스크립트 명세로부터 기계화 명세를 추출
한다. 또한, 자바스크립트 엔진을 이용한 N+1-버전 차분 테스팅과 기계화 명세의 타입 분석을 제안하고,
이를 통해 명세 및 엔진의 결함을 검출한다. 최종적으로, 메타 정적 분석 기술을 제안하고, 추출한 기계화
명세로부터 자동으로 자바스크립트 정적 분석기를 유도한다. 본 학위 논문에서 제시한 방식은 프로그래밍
언어를 위한 명세, 테스트, 그리고 도구들의 공진화를 위한 연구의 기틀을 마련할 것으로 기대한다.

핵 심 낱 말 자바스크립트, 기계화 명세 추출, N+1-버전 차분 테스팅, 명세 타입 분석, 메타 정적 분석

Abstract
The highly dynamic nature and complex semantics of JavaScript make it difficult to understand the
behaviors of JavaScript programs correctly. To automatically reason about them, researchers have de-
veloped various JavaScript static analyzers that conform to ECMAScript, the standard specification of
JavaScript. However, all the existing JavaScript static analyzers are manually designed; thus, the current
approach is labor-intensive and error-prone. Moreover, since late 2014, this problem has become more
critical because the JavaScript language itself rapidly evolves with a yearly release cadence and open
development process. This thesis introduces a novel approach to derive JavaScript static analyzers from
any version of ECMAScript automatically. Our approach consists of three steps: 1) mechanized specifi-
cation extraction, 2) specification validity check, and 3) derivation of static analyzers. First, we present
a tool JISET, which automatically extracts a mechanized specification from ECMAScript. We show that
it successfully extracts a mechanized specification from the latest ECMAScript. Then, we present two
different tools to detect bugs in JavaScript specifications; JEST performs N+1-version differential testing
with JavaScript engines, and JSTAR performs a type analysis for the specification. Finally, we present
JSAVER, which automatically derives JavaScript static analyzers from mechanized specifications using a
meta-level static analysis. For evaluation, we derived a JavaScript static analyzer from the latest EC-
MAScript (ES12, 2021). The derived analyzer soundly analyzed all applicable 18,556 official conformance
tests with 99.0% of precision in 1.59 seconds on average. We believe that the thesis would be the first
step towards the co-evolution of specifications, tests, and tools for programming languages.

Keywords JavaScript, mechanized specification extraction, N+1-version differential testing, specifica-
tion type analysis, meta-level static analysis.
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Chapter 1. Introduction

JavaScript is one of the most widely used programming languages. In the beginning, JavaScript
started as a small scripting language for client programming. Nowadays, it has become the de-facto pro-
gramming language for web development. According to W3Techs1, 97.7% of websites use JavaScript as
their client-side programming language. Moreover, Node.js2 introduced full-stack JavaScript by support-
ing server-side programming, and JavaScript has recently begun to be used even in embedded systems
such as Espruino3. According to the official annual report of GitHub4, JavaScript has consistently been
the most popular programming language based on the number of contributors to GitHub projects.

Despite its popularity, understanding JavaScript program behaviors correctly is challenging due to
the highly dynamic nature of the language. For example, we can generate a string value "es" by executing
the following obfuscated JavaScript code:

let x = (!![]+[])[!+[]+!+[]+!+[]]; // true[3] == "e"

let y = (![]+[])[!+[]+!+[]+!+[]]; // false[3] == "s"

let z = x + y; // "e" + "s" == "es"

In this example, !![] and ![] evaluate to true and false, respectively, because of the implicit conversions
to boolean values for the negation operator !. Then, +[] implicitly converts them to strings, and
!+[]+!+[]+!+[] evaluates to 3. Thus, variables x and y have strings "e" and "s" that are the fourth
characters of "true" and "false", respectively. Finally, the variable z has the string "es" by concatenating
them via the addition operator +. This example shows that implicitly converting types and using arbitrary
expressions for property accesses make JavaScript behaviors complex.

To reason about their complex behaviors, researchers have developed various JavaScript static an-
alyzers that conform to ECMAScript, the standard specification of JavaScript. ECMAScript describes
the semantics of JavaScript language features using algorithms written in a natural language, English.
Therefore, existing static analyzers, such as SAFE [56, 77], TAJS [45], WALA [92], and JSAI [48], have
their own abstract semantics carefully designed to over-approximate the concrete semantics described
in ECMAScript soundly. Various JavaScript static analysis techniques have been presented and im-
plemented on these tools: loop sensitivity [68, 69], advanced string domains [13, 67], analysis based
on property relations [53, 54, 66, 92], on-demand backward analysis [93], and combined analysis with
dynamic analysis [74, 76, 78, 85, 100].

Existing JavaScript static analyzers take a compiler -based approach with intermediate representa-
tions (IRs). To reduce the burden of handling numerous language features, most analyzer developers
design an IR with a compiler that translates a programming language to its IR to indirectly represent
the language semantics [34, 95, 96]. For example, Figure 1.1(a) depicts a compiler-based approach for
static analysis of a source-language L1 using a static analyzer of a target-language L2. It first compiles
an L1 program to an L2 program using an L1-L2 compiler that conforms to the semantics described in
the specification of L1. Then, it analyzes the compiled L2 program using a static analyzer of L2. For a
JavaScript static analyzer, JavaScript and its own IR are L1 and L2, respectively.

1https://w3techs.com/technologies/details/cp-javascript/all/all
2https://nodejs.org/
3https://www.espruino.com/
4https://octoverse.github.com/
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(a) A compiler -based approach (existing)

(b) An interpreter -based approach (ours)

Figure 1.1: Two approaches of static analysis for a language L1 using a static analyzer of a language L2

However, static analyzers with the compiler-based approach are unable to keep up with fast-evolving
JavaScript because they require manual updates for new language semantics. The JavaScript language
itself is rapidly evolving nowadays. Since 2015, the Ecma Technical Committee 39 (TC39) has main-
tained the specification as an open-source GitHub project and released its official versions annually. The
specification size has been getting bigger as well, and the latest version of ECMAScript (ES12, 2021) [2]
is 879 pages. Because existing JavaScript static analyzers cannot update JavaScript-IR compilers auto-
matically, they still focus on ES5.1 and only support a few ES6 features manually, even though six more
versions from ES7 to ES12 have been released since 2015. Because many recent JavaScript programs
frequently use new language features like let bindings, arrow functions, generators, and promises, the
lack of new feature support grows increasingly problematic over time.

This thesis introduces a novel technique to automatically derive a JavaScript static analyzer from
any version of ECMAScript. The main idea is to shift the paradigm from compiler -based approaches
to interpreter -based approaches to utilize “the interpreter-based nature” of JavaScript. The history of
JavaScript [101] testifies that the initial working group designing JavaScript in the 1990s defined the
semantics using reference interpreters:

Guy Steele would ask a question about some edge-case feature behavior. [. . .] they would
each turn to their respective implementation and try a test case. If they got the same answer,
that became the specified behavior.

The interpreter-based nature also affects the writing style of the language specifications. ECMAScript
describes the language semantics with pseudocode algorithms consisting of sequentially numbered steps
to represent program executions. To fully utilize this interpreter-based nature of JavaScript, our approach
derives a static analyzer by:

1. Extracting a mechanized specification from ECMAScript as a definitional interpreter.

2. Checking the validity of the extracted mechanized specification.

3. Performing a meta-level static analysis with the extracted mechanized specification.
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Figure 1.2: A compiler front-end from JavaScript to an IR with ECMAScript

1.1 Mechanized Specification Extraction

Researchers have defined various JavaScript formal semantics [16, 31, 36, 70] suitable for static
analysis [45, 48, 56, 92] and formal verification [31] by referring to ECMAScript, the standard specification
of JavaScript. ECMAScript describes the JavaScript syntax using a variant of the extended Backus–Naur
form (EBNF) notation and its semantics using abstract algorithms written in English in a clear and
structured manner. A traditional way to define the formal semantics of JavaScript is to build a compiler
front-end that takes JavaScript programs and produces programs in Intermediate Representations (IRs)
to represent the semantics of the given programs indirectly. As illustrated in Figure 1.2, the compiler
front-end consists of 1) a parser that constructs Abstract Syntax Trees (ASTs) of given programs and
2) an AST-IR translator that converts ASTs to their own IRs. It helps researchers focus on IRs without
worrying about the diverse and enormous features in JavaScript in developing new techniques for static
analysis and formal verification.

However, such compiler-based approaches require a manual update of the compiler front-end when
ECMAScript is updated. Although the manual update was reasonable until ES5.1, it is too tedious,
labor-intensive, and error-prone to deal with large sizes of ES6 and later versions. ES6 introduced
numerous new features such as lexical binding (let), the spread operator (...), classes (class), the
for-of operator, the async functions, and generators. For example, consider KJS [70], one of the formal
semantics of ES5.1 defined on top of K [84], which is a framework to define language semantics. According
to an author of KJS, it took four months to implement an AST-IR translator for 1,370 steps out of 2,932
steps in 368 abstract algorithms5. However, ES12, the most recent version, has 2,640 abstract algorithms
consisting of 13,544 steps. Thus, the manual approaches do not seem to be scalable enough to build an
AST-IR translator for recent versions of ECMAScript, and indeed no formal semantics exists for ES6 to
ES12. Moreover, roughly 1,000 to 3,000 steps of abstract algorithms have been modified or newly added
in each annual update of ECMAScript. To handle these frequent and massive updates of ECMAScript,
researchers should manually update parsers and AST-IR translators, which incurs tremendous efforts.

To alleviate this problem, we introduce JISET, a JavaScript IR-based Semantics Extraction Toolchain.
Instead of the compiler-based approach, we introduce an interpreter-based approach to represent JavaScript
semantics formally. A definitional interpreter provides a way to represent the language semantics of a
defined -language using its interpreter written in a defined -language. JISET is the first tool that automat-
ically extracts a mechanized specification from ECMAScript as a definitional interpreter of JavaScript.
We introduce IRES, a specialized Intermediate Representation for ECMAScript, to utilize it as the
defining-language and JavaScript as the defined-language of the extracted definitional interpreters.

5https://daejunpark.github.io/2015-06-16-park-stefanescu-rosu-PLDI.pdf
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For a given version of ECMAScript, JISET automatically 1) generates parsers for syntax and 2)
compiles abstract algorithms to functions of IRES for semantics. Then, JISET produces a JavaScript
definitional interpreter strictly conforming to the given version of ECMAScript based on the compiled
IRES functions. There are several technical challenges in generating parsers and compiling abstract
algorithms. To represent JavaScript syntax, ECMAScript utilizes its own variant of EBNF with several
new notations: parametric non-terminals, conditional alternatives, and even context-sensitive symbols.
Thus, no existing parser generation technique for context-free grammars (CFGs) is directly applicable
to this variant. JavaScript even supports automatic semicolon insertion with several complex rules in
its parsing algorithm. However, the most critical problem is that ECMAScript describes JavaScript
language semantics using abstract algorithms written in English. Besides, a general representation of
abstract algorithms is necessary to support future versions of ECMAScript.

1.2 Specification Validity Check

In Peter O’Hearn’s keynote speech in ICSE 2020, he quoted the following from Mark Zuckerberg’s
Letter to Investors [1]:

The Hacker Way is an approach to building that involves continuous improvement and itera-
tion. Hackers believe that something can always be better, and that nothing is ever complete.

Indeed, modern programming follows the continuous integration (CI) and continuous deployment (CD)
approach [10] rather than the traditional waterfall model. Instead of a sequential model that divides
software development into several phases, each of which takes time, CI/CD amounts to a cycle of quick
software development, deployment, and back to development with feedback. Even the development of
programming languages uses the CI/CD approach.

For example, various JavaScript engines provide diverse extensions to adapt to fast-changing user
demands. At the same time, ECMAScript, the official specification that describes the syntax and seman-
tics of JavaScript, is annually updated since ES6 to support new features in response to user demands.
Such updates in both the specification and implementations in tandem make it challenging to sync them.
Another example is Solidity [7], the standard smart contract programming language for the Ethereum
blockchain. The Solidity language specification is continuously updated, and the Solidity compiler is also
frequently released. According to Hwang and Ryu [43], the average number of days between consecutive
releases from Solidity 0.1.2 to 0.5.7 is 27. In most cases, the Solidity compiler reflects updates in the
specification. However, even the specification is revised according to the semantics implemented in the
compiler. As in JavaScript, bidirectional effects in the specification and the implementation make it hard
to guarantee their correspondence.

In this approach, both the specification and implementation may contain bugs, and it is challenging
to guarantee their correctness. The conventional approach for building a programming language is uni-
directional, from a language specification to its implementation. Language designers believe that the
specification is correct and check the conformance of an implementation to the specification via dynamic
testing. Unlike in the conventional approach, in the modern CI/CD approach, the specification may not
be the oracle because both the specification and the implementation can co-evolve.

The correctness of ECMAScript is critical because an incorrect description in the specification can
lead to wrong implementations of JavaScript engines in various fields. However, all the specification
updates are currently manually reviewed by TC39 without any automated tools. This manual review
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process is inherently labor-intensive and error-prone, making ECMAScript vulnerable to specification
bugs. Besides, the yearly release cadence and open development process of ECMAScript make this
problem more challenging. In the official ECMAScript repository6, 1,475 pull requests and 2,203 commits
exist in the master branch. Therefore, manually checking all the frequent specification updates is a
challenging task.

Unfortunately, no existing tools can automatically detect bugs in rapidly evolving JavaScript speci-
fications written in English. Thus, the ECMAScript committee has pursued various manual annotations
in abstract algorithms to reduce specification bugs. First, the committee has introduced two kinds of
annotations: 1) assertions to denote assumptions at specific points of abstract algorithms and 2) two
prefixes ? and ! to represent whether the execution of an abstract algorithm completes abruptly or not.
For example, consider the following two algorithm steps:

1. Assert: Type(O) is Object.

2. ? GetV(V ,P)

The first step denotes that the variable O always has a JavaScript object value at the point of the
assertion. The second one denotes that the execution of GetV(V ,P) may complete abruptly. Such
annotations help readers understand specifications clearly, and they are also helpful for specification-
based tools7 such as JavaScript engines [4, 5, 8, 9], debuggers [19], static analyzers [45, 48, 56, 92], and
verification tools [31, 32]. Second, the committee has started internal discussions on type annotations
for variables, parameters, and return values of abstract algorithms8. However, manual annotations are
labor-intensive and error-prone, and they do not provide any automatic mechanism to detect specification
bugs.

In this thesis, we introduce two different ways to check the validity of ECMAScript by 1) checking
the conformance with JavaScript engines via N+1-version differential testing and 2) performing type
analysis for ECMAScript.

1.2.1 N+1-version Differential Testing

To check the conformance between ECMAScript and JavaScript engines, we propose a novel N+1-
version differential testing, which enables testing of co-evolving specifications and their implementations.
The differential testing [59] is a testing technique, which executes N implementations of a specification
concurrently for each input, and detects a problem when the outputs are in disagreement. In addition
to N implementations, our approach tests the specification as well using a mechanized specification.
Recently, several approaches to extract syntax and semantics directly from language specifications have
been presented [65, 75, 97]. We utilize them to bridge the gap between specifications and their im-
plementations through conformance tests generated from mechanized specifications. The N+1-version
differential testing consists of three steps: 1) to automatically synthesize programs guided by the syn-
tax and semantics from a given language specification, 2) to generate conformance tests by injecting
assertions to the synthesized programs to check their final program states, 3) to detect bugs in the spec-
ification and implementations via executing the conformance tests on multiple implementations, and 4)
to localize bugs on the specification using statistical information.

6https://github.com/tc39/ecma262
7https://github.com/tc39/ecmarkup/issues/173
8https://github.com/tc39/ecma262/pull/545#issuecomment-559292107
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Given a language specification and N existing real-world implementations of the specification, we
automatically generate a conformance test suite from the specification with assertions in each test code
to make sure that the result of running the code conforms to the specification semantics. Then, we run
the test suite for N implementations of the specification. Because generated tests strictly comply with
the specification, they reflect specification errors as well, if any. When one of the implementations fails
in running a test, the implementation may have a bug, as in the differential testing. When most of the
implementations fail in running a test, it is highly likely that the specification has a bug. By automatically
generating a rich set of test code from the specification and running them with implementations of the
specification, we can find and localize bugs either in the specification written in a natural language or in
its implementations.

To show the practicality of the proposed approach, we present JEST, which is a JavaScript Engines
and Specification Tester using N+1-version differential testing. We implement JEST by extending JISET

to utilize the syntax and semantics automatically extracted from ECMAScript. Our tool automatically
synthesizes initial seed programs based on the extracted syntax and expands the program pool by mutat-
ing specific target programs guided by semantics coverage. Then, the tool generates conformance tests
by injecting assertions to synthesized programs. Finally, JEST detects and localizes bugs using execution
results of the tests on N JavaScript engines. We evaluate our tool with four JavaScript engines (Google
V8 [9], GraalJS [4], QuickJS [8], and Moddable XS [5]) that support all core JavaScript language features
in the latest ECMAScript, ES12.

1.2.2 Type Analysis for ECMAScript

To check the validity of ECMAScript, we also present a novel tool JSTAR, a JavaScript Specification
Type Analyzer using Refinement. The main challenge of ECMAScript type analysis to statically de-
tect type-related specification bugs automatically is that ECMAScript describes abstract algorithms in
a natural language, English. While researchers [16, 31, 36, 70] have formally defined various JavaScript
semantics for different versions of ECMAScript by hand, manual formalization is not suitable for auto-
matically detecting bugs in rapidly evolving JavaScript specifications. Thus, recent approaches in diverse
fields such as system architectures [65, 97], network protocols [49], and language specifications [86, 108]
have utilized information directly extracted from specifications written in a natural language to lessen
such burdens. Among them, JISET [75] compiles ECMAScript abstract algorithms written in a structured
natural language to IRES functions. Therefore, JSTAR leverages JISET to handle JavaScript specifications
mechanically.

JSTAR takes mechanized JavaScript specifications from JISET and performs a type analysis of
compiled functions using specification types defined in ECMAScript. ECMAScript contains not only
JavaScript language types but also specification types such as abstract syntax trees (ASTs), internal
list-like structures, and internal records including environments, completions, and property descriptors.
We define their type hierarchies based on subtype relations. For records and AST types, we also define
their fields. Using such type information, JSTAR performs a type analysis and detects specification bugs
using a bug detector consisting of four checkers: 1) a reference checker, 2) an arity checker, 3) an assertion
checker, and 4) an operand checker. JSTAR also uses a condition-based refinement for type analysis, which
prunes out infeasible parts in abstract states by using conditions of assertions and branches to improve
the precision of type analysis. We evaluated JSTAR with all 864 versions in the official ECMAScript
repository for the recent three years from ES9 to ES12. The experiments showed that the refinement
technique could reduce the number of false-positive bugs caused by imprecise type analysis.
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Figure 1.3: Overall structure to automatically derive a JavaScript static analyzer from ECMAScript

1.3 Derivation of Static Analyzers

To automatically derive a JavaScript static analyzer from any version of ECMAScript, we present
a meta-level static analysis to analyze JavaScript programs indirectly using JavaScript definitional in-
terpreters. A meta-level static analysis is an interpreter-based approach for static analysis of a defined -
language L1 using a static analyzer of a defining-language L2 as depicted in Figure 1.1(b). Since an L1

interpreter is an L2 program, it indirectly analyzes an L1 program by analyzing the interpreter using a
static analyzer of L2 with the L1 program as the input. Thus, we develop JSAVER, a JavaScript Static
Analyzer via ECMAScript Representations. It is a static analyzer of IRES for a meta-level static analysis
for JavaScript. For its expressiveness power, we also present ways to indirectly configure abstract domains
and analysis sensitivities for JavaScript in the static analysis of IRES. First, we provide a method to
configure abstract domains for JavaScript values and structures. Second, we present the AST sensitivity
to express analysis sensitivities for JavaScript, such as flow-sensitivity and k-callsite-sensitivity.

Finally, we experimentally showed that JSAVER could effectively analyze JavaScript programs by
indirectly analyzing the JavaScirpt definitional interpreter written in IRES with the programs. We
derived a static analyzer JSAES12 from the latest ECMAScript, ES12. The derived analyzer JSAES12

soundly analyzes all applicable 18,556 official conformance tests with 99.0% of precision in 1.59 seconds
on average. Moreover, we demonstrate the configurability and adaptability of JSAVER with several case
studies.

1.4 Overview

Figure 1.3 depicts the overall structure that automatically derives a JavaScript static analyzer from
a given version of ECMAScript. In the remainder of this thesis, we explain how to extract a mechanized
specification from ECMAScript (Chapter 2), how to check its validity using N+1-version differential
testing (Chapter 3) and type analysis (Chapter 4), and how to derive a static analyzer from the mech-
anized specification (Chapter 5). After evaluating each tool, we discuss related work (Section 6) and
conclude (Section 7).
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Chapter 2. JISET: Mechanized Specification Extraction

This chapter introduces JISET, a JavaScript IR-based Semantics Extraction Toolchain. The main
contribution of the tool is as follows:

• JISET is the first tool that automatically extracts mechanized specification from a lan-
guage specification, ECMAScript, as a JavaScript definitional interpreter. For syntax,
we formally introduce BNFES as a variant of EBNF for ECMAScript and propose a parser gener-
ation technique with lookahead parsing for BNFES, which supports automatic semicolon insertion.
For semantics, we present IRES to utilize it as a defining-language of the JavaScript definitional
interpreters and propose a compilation from abstract algorithms to IRES functions. The compila-
tion is assisted by compile rules which describe how to compile each step of abstract algorithms
into IRES instructions. We evaluated JISET with the six most recent ECMAScript versions (ES7
to ES12). JISET successfully generated parsers for all versions and compiled 95.61% of the steps in
abstract algorithms on average.

• JISET bridges gaps between the specification written in a natural language and tests. We
manually completed missing parts in the compiled IRES functions for the ECMAScript 2019 (ES10)
because we conducted this research in 2019. It was the first mechanized specification of JavaScript
after the big update of ECMAScript in 2015. It failed for 1,709 tests because of specification errors
in ES10. We found eight specification errors using the tests; three errors had not been reported
before. They were all confirmed by TC39 and fixed in the next release, ES11. After fixing them,
the mechanized semantics passed all 18,064 applicable tests for ES10.

• JISET is also adaptable to new language features proposed for future ECMAScript
specifications. We evaluated the forward compatibility of JISET by applying it to proposals for
new language features not yet included in ES10. When we conducted this research at the end of
2019, nine proposals were ready for inclusion in the next ECMAScript (ES11, 2020), and we applied
JISET to all of them. It automatically synthesized parsers and compiled 560 out of 595 algorithm
steps for all the proposals. After completing the missing parts, we found three specifications errors
in the BigInt proposal by executing the corresponding tests in Test262. After fixing them, the
extracted semantics passed all applicable ES10 tests and 303 new applicable tests. Moreover, we
also applied to ES12 to check that JISET still works for the latest ECMAScript. After completing
the missing parts, it passed all 18,556 applicable conformance tests for ES12.

2.1 Overview

In this section, we introduce the overall structure of JISET depicted in Figure 2.1. Compared to the
compiler-based approach with a compiler-front end shown in Figure 1.2, our tool automatically generates
JavaScript Parser and JavaScript Interpreter in IRES directly from ECMAScript. The motivation of this
work is twofold: 1) ECMAScript is written in a well-organized style, and 2) the writing style was
converged since ES7 in 2016. Therefore, JISET first extracts the syntax and semantics extracted from
ECMAScript via Spec Extractor in JSON format. Then, it utilizes them with the common patterns in
the writing style to automatically generate JavaScript Parser and JavaScript Interpreter.
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Figure 2.1: Overall structure of JISET: Automatic extraction of a mechanized specification consisting
of JavaScript Parser and JavaScript Interpreter

Syntax ECMAScript provides JavaScript language syntax with lexical and syntactic productions of
a variant of EBNF for ECMAScript in Appendix A1. We dub it BNFES and formally define it in Sec-
tion 2.2. Spec Extractor reads the BNFES productions and converts them into JSON files. For example,
Figure 2.2(a) shows the ArrayLiteral production in ES12. It takes two boolean parameters Yield and Await

and has three alternatives. The first alternative consists of three symbols: two terminal symbols [ and ],
and one non-terminal symbol Elisionopt. The opt subscript denotes that it is optional. In the second and
third alternatives, ElementList[?Yield, ?Await] denotes a parametric non-terminal symbol ElementList with
the parameters Yield and Await of ArrayLiteral as its two arguments. The prefix ? of a symbol denotes
that the symbol is passed as an argument.

To generate JavaScript Parser from given BNFES productions, we construct Parser Generator in Scala
using Scala parser combinators [63]. To parse BNFES productions correctly and efficiently, we propose
lookahead parsers, which keep track of lookaheads, sets of possible next tokens. With lookahead parsing,
generated parsers have one-to-one mapping to their corresponding productions, improving readability.
For example, Figure 2.2(b) shows the generated parser for the ArrayLiteral production in Figure 2.2(a).
Each parser has the List[Boolean] => LAParser[T] type because each production in BNFES is paramet-
ric with boolean values. The memo is a memoization function for pairs of boolean parameters and resulting
parsers for performance optimization. The value ArrayLiteral corresponds to the ArrayLiteral produc-
tion. In the parser, each string literal such as "[" or "]" denotes a parser for a terminal symbol. The opt
helper function creates optional parsers. The parametric non-terminal ElementList with arguments Yield

and Await is represented as a function call ElementList(Yield, Await). The ~ operator combines two
parsers and the ˆˆ operator describes how to construct ASTs. When the left-hand side of ˆˆ is matched,
its right-hand side shows a corresponding AST constructor, where the name of each constructor has a
number denoting the order among alternatives. For example, the ArrayLiteral0 constructor corresponds
to the first alternative of the ArrayLiteral production.

1https://262.ecma-international.org/#sec-grammar-summary
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(a) ArrayLiteral production in ES12

val ArrayLiteral: List[Boolean] => LAParser[T] = memo {

case List(Yield, Await) => {

"[" ~ opt(Elision) ~ "]" ^^ ArrayLiteral0 |

"[" ~ ElementList(Yield,Await) ~ "]" ^^ ArrayLiteral1 |

"[" ~ ElementList(Yield,Await) ~ "," ~ opt(Elision)~ "]" ^^ ArrayLiteral2

}

}

(b) The generated parser for the ArrayLiteral production

Figure 2.2: The ArrayLiteral production in ES12 and its parser

Semantics ECMAScript describes the language semantics as abstract algorithms in English. While
they are written in a natural language, the writing style is well-organized with ordered steps and tagged
tokens. Spec Extractor reads abstract algorithms with HTML tags and converts them into JSON files.
For example, Figure 2.3(a) presents the Evaluation abstract algorithm of the third alternative of the
ArrayLiteral production in ES12, and it has seven steps. Each non-terminal symbol (e.g. ElementList) or
local variable (e.g. array) has the <nt> and <var> HTML tag, respectively.

To translate such abstract algorithms into a suitable form for manipulation, we define IRES, a spe-
cialized intermediate representation for ECMAScript. Then, we develop Algorithm Compiler in Scala
using Scala parser combinators again to compile given abstract algorithms to IRES functions. It also
takes Compile Rules as another input, which has two parts: parsing rules and conversion rules. We
manually establish the compile rules to cover English sentences used in abstract algorithms as much
as possible. Algorithm Compiler utilizes the compile rules to compile each algorithm step to the cor-
responding IRES instruction. For example, Figure 2.3(b) presents the generated IRES function for the
Evaluation abstract algorithm shown in Figure 2.3(a). Note that JavaScript ASTs are also IRES val-
ues. The ArrayLiteral[2].Evaluation function takes JavaScript ASTs as arguments in two parameters
ElementList and Elisionopt that represent two non-terminal symbols ElementList and Elision, respec-
tively. Moreover, IRES handle not only JavaScript ASTs or values (e.g. objects, undefined, null, num-
bers, strings, and booleans) but also absent, completion records, constants, closures, and continuations
only used in the specification. For example, the parameter Elision has a special value absent when the
non-terminal symbol Elisionopt is not present. Thus, Algorithm Compiler compiles the condition in step
4, “If Elision is present,” into the negation of the equality check with absent: if (= Elision absent).

Finally, JISET constructs JavaScript Interpreter with the compiled IRES functions and manually
specified Global Setting, which contains minor but necessary data to execute JavaScript programs as
described in ECMAScript, including the structure of the standard built-in objects and ECMAScript
data types. Putting them all together, we can parse and execute JavaScript programs. Even though
JISET is not fully automatic because of Compile Rules and Global Setting, it could dramatically reduce
the efforts to build parsers and interpreters from scratch.
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(a) The Evaluation abstract algorithm for the third alternative

syntax def ArrayLiteral[2].Evaluation (ElementList, Elision) {

let array = [! (ArrayCreate 0)]

let nextIndex = (ElementList.ArrayAccumulation array 0)

[? nextIndex]

if (! (= Elision absent)) {

let len = (ElementList.ArrayAccumulation array nextIndex)

[? len]

}

return array

}

(b) The compiled IRES function

Figure 2.3: The Evaluation abstract algorithm for the third alternative of ArrayLiteral in ES12 and its
compiled IRES function

In the remainder of this chapter, we explain the details of how to generate parsers (Section 2.2) and
how to compile abstract algorithms to IRES functions (Section 2.3). Then, we evaluate JISET to check
its coverage, correctness, and adaptability (Section 2.4).

2.2 Parser Generator

In this section, we explain how to generate JavaScript parsers using a given ECMAScript.

2.2.1 BNFES: An Extended Backus-Naur Form (EBNF) for ECMAScript

ECMAScript describes the JavaScript syntax using a variant of the extended BNF. We dub it BNFES

and formally define its notation. It consists of a number of productions with the following form:

A(p1, · · · , pk) ::= (c1 ⇒)?α1 | · · · | (cn ⇒)?αn

The left-hand side of ::= represents a parametric non-terminal A with multiple boolean parameters
p1, · · · , pk. If a non-terminal takes no parameter, parentheses are omitted for brevity. A production has
multiple alternatives separated by | with optional conditions. A condition c is either a boolean parameter
p or its negation !p. An alternative α is a sequence of symbols, where a symbol s is one of the following:
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• ε: the empty sequence, which passes without any conditions

• a: a terminal, which is any token

• A(a1, · · · , ak): a non-terminal, which takes multiple arguments where each argument ai is either a
boolean value #t or #f, or a parameter pi

• s?: option, which is the same with s | ε

• +s (−s) : positive (negative) lookahead, which checks whether s succeeds (fails) and never consumes
any input

• srs′: exclusion, which first checks whether s succeeds and then checks whether the parsing result
does not correspond to s′

• 〈¬LT〉: no line-terminator, which is a special symbol that restricts the white spaces between two
different symbols

For example, consider the following production:

A(p) ::= p⇒ a | !p⇒ b | c

Then, A(#t) means a | c and A(#f) means b | c.

2.2.2 Lookahead Parsing

To support BNFES correctly, we extend PEG-based parser generation techniques with lookahead
parsing.

Background: Parsing Expression Grammar

Most parser generators target context-free languages with specific parsing algorithms for Context-
Free Grammar (CFG): JavaCC with LL(k) [12], Bison with GLR [94], and ANTLR with ALL(*) [80].
However, they are not directly applicable for the ECMAScript syntax because ECMAScript lexical and
syntactic grammars require context-sensitive lexers and parsers:

• Context-sensitive tokens: ECMAScript tokens are context-sensitive because of JavaScript reg-
ular expressions and template strings. For example, /x/g could be a single regular expression token
or four tokens that represent division by variables x and g depending on enclosing contexts. Thus,
lexers should be evaluated during parsing, not before parsing.

• Context-sensitive BNFES symbols: BNFES supports context-sensitive symbols, which are
positive (negative) lookahead +s (−s), exclusion srs′, and no line-terminator 〈¬LT〉. They are
highly expressive and even represent the classic non-context-free language {anbncn : n ≥ 1} with
the following productions:

S ::= +(X c) A Y X ::= a X? b

A ::= a A? Y ::= b Y ? c

However, it is not trivial to support such BNFES symbols in CFG-based parser generators.
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Unlike CFG-based parser generators, parser generators based on Parsing Expression Grammar
(PEG) [30] can easily resolve these problems. PEGs are defined with a top-down (LL-style) recur-
sive descent parser with backtracking. It visits each alternative of a production in order and backtracks
to its previous production when parsing fails. PEG-based parser generators treat lexers as parsers; thus,
we can use appropriate lexers depending on parsing contexts. Moreover, PEGs support and-predicate
(&) and not-predicate (!) operators that denote the same meaning of the positive and negative lookahead
symbols in BNFES, respectively. Therefore, we can easily support context-sensitive tokens and BNFES

symbols in PEG-based parser generators.

Problem: Prioritized Choices.

While PEG-based parser generators support the context-sensitivity, PEGs have one fundamental
difference with BNFES: prioritized choices. PEGs use the prioritized choice operator ‘/’ instead of the
unordered pipe operator ‘|’ in BNFES; even when multiple alternatives are applicable, PEGs always pick
the first successful alternative. For example, consider the following BNFES:

S ::= E + E

E ::= x | x.p
(2.1)

As expected, this grammar accepts the string x+x.p. However, the following PEG:

S ::= E + E

E ::= x / x.p
(2.2)

does not accept the same string x+x.p. Because the first alternative x of E is chosen whenever an input
string starts with x, the second alternative x.p of E is always unreachable. A simple solution to accept
the string is just to change the order of alternatives of E like E ::= x.p / x.

Unfortunately, simple reordering is not a general solution for all cases. Consider the following
BNFES:

S ::= A b

A ::= a | ab
(2.3)

It accepts both strings ab and abb. However, the following PEG:

S ::= A b

A ::= a / ab
(2.4)

accepts only ab, and another PEG with reordered productions as follows:

S ::= A b

A ::= ab / a
(2.5)

accepts only abb.

Solution: Lookahead Tokens

To alleviate the problem, we propose lookahead parsing, which is an extended parsing algorithm for
PEGs with lookahead tokens. The key idea of lookahead parsing is to keep track of the next possible
tokens by statically calculating a set of first tokens for each symbol using the algorithm in Figure 2.4.
For example, the following steps explain how to utilize lookahead tokens during parsing of the string
x+x.p with the PEG in Equation (2.2):
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firstα(s1 · · · sn) = firsts(s1) :+ firstα(s2 · · · sn)

where x :+ y =

 x ∪ y if ◦ ∈ x
x otherwise

firsts(ε) = {◦}
firsts(a) = {a}
firsts(A(a1, · · · , ak)) = firstα(α1) ∪ · · · ∪ firstα(αn)

where A(a1, · · · , ak) = α1 | · · · | αn
firsts(s?) = firsts(s) ∪ {◦}
firsts(+s) = firsts(s)

firsts(−s) = {◦}
firsts(srs′) = firsts(s)

firsts(〈¬LT〉) = {◦}

Figure 2.4: Over-approximated first tokens of BNFES symbols

Each node s[L] denotes a symbol s with a set of lookahead tokens L. The underlined character in the
string of each node denotes the current position in the parsing process that follows a pre-order traversal.
The parser starts from the starting non-terminal S with the special lookahead ◦, which denotes the end
of inputs. Then, it visits the first alternative E + E with the same lookahead ◦. Each symbol is visited
with its corresponding lookahead, which is the first tokens of the right next symbol. For example, for
the second symbol + in E + E, the next symbol is E and its first tokens are:

firsts(E) = firstα(x) ∪ firstα(x.p)

= firsts(x) ∪ (firsts(x) :+ firstα(.p)) = {x}

Thus, the parser visits + with the lookahead x. The most important point here is the difference between
two visits of the non-terminal E in E + E. The first visit of E has the lookahead + and the actual
next character after matching x is also +. Thus, the first alternative x of E is chosen for the first visit.
However, in the second visit of E, the lookahead is the end of inputs ◦ but the next character after
matching x is the dot character (.) instead of the end of inputs. Therefore, the second alternative x.p is
chosen in the second visit and the parser now successfully parses the input x+x.p.
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(s1 · · · sn)[L] = s1[firsts(s2 · · · sn) :+ L] (s1 · · · sn)[L]

ε[L] = +gets(L)

a[L] = a + gets(L)

A(a1, · · · , ak)[L] = α1[L] | · · · | αn[L]

where A(a1, · · · , ak) = α1 | · · · | αn
s?[L] = s[L] | ε[L]

(±s)[L] = ±(s[L])

(srs′)[L] = s[L]rs′

〈¬LT〉 = 〈¬LT〉 + gets(L)

Figure 2.5: Formal semantics of lookahead parsers

We formally define the semantics of lookahead parsers in Figure 2.5. The helper function gets(L)

generates a parser by combining all tokens in the lookahead L using prioritized choices. In this case, the
order does not change the semantics of lookahead parsers because gets(L) just checks the existence of a
given token.

2.2.3 Implementation

We implemented the lookahead parsing technique by extending the Scala parser combinators library,
which is a Scala library for PEG-based parser generation. We developed Parser Generator to generate
PEG-based parsers with lookahead parsing for BNFES.

AST Generation

from a given BNFES grammar. Because the structure of lexical productions do not affect the
ECMAScript semantics, we represent lexical non-terminals as string values. For each syntactic production
A(p1, · · · , pk) ::= (c1 ⇒)?α1 | · · · | (cn ⇒)?αn , the generator generates a trait A and its multiple
subclasses Ai for 0 ≤ i ≤ n − 1 that represent its alternatives. Each class Ai has non-terminals in
its corresponding alternative as its fields. For instance, the ArrayLiteral production in Figure 2.2 gets
automatically translated to the following Scala classes:

trait ArrayLiteral extends AST

case class ArrayLiteral0(x1: Option[Elision]) extends ArrayLiteral

case class ArrayLiteral1(x1: ElementList) extends ArrayLiteral

case class ArrayLiteral2(x1: ElementList, x3: Option[Elision]) extends ArrayLiteral

Parser Generation

The next step is to generate the parser for each BNFES production. We extended Scala parser
combinators to support lookahead parsing and BNFES notations. For example, the generated parser
from the production ArrayLiteral in Figure 2.2(a) is shown in Figure 2.2(b). A naïve implementation of
lookahead parsing would take exponential time because of backtracking. To reduce it to linear time, we
applied the memoization technique introduced in Packrat parsing [29]. Moreover, we also implemented
the growing the seed technique [99] to support direct and even indirect left recursive productions.
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Figure 2.6: Overall structure of Algorithm Compiler

The generated parsers also support the automatic semicolon insertion algorithm, which is one of
the most distinctive parsing features in ECMAScript. We extended our parsing algorithm to keep track
of the right-most position that fails to be parsed in a given input. In ECMAScript, the token at that
position is defined as an offending token and the automatic semicolon insertion algorithm is defined with
such tokens. The algorithm is simple when we already have the positions of offending tokens. Thus, we
just manually supported them by following the rules defined in Section 12.92 in ES12. The automatic
semicolon insertion rules rarely change; since ES5.1 written in 2011, only one sub-rule was added.

2.3 Algorithm Compiler

In this section, we explain Algorithm Compiler that compiles abstract algorithms to IRES functions
as illustrated in Figure 2.6.

2.3.1 Tokenizer

Before compiling abstract algorithms, Tokenizer first tokenizes each abstract algorithm into a list of
tagged tokens. An algorithm consists of ordered steps, and a step may contain sub-steps as well. For
example, the Evaluation abstract algorithm in Figure 2.3(a) has five steps and its fourth step has two
sub-steps. Moreover, the tokens of each step have their own HTML tags and each tag has a meaning.
We keep such HTML tag information for each token to construct more precise Compile Rules. If an
HTML element is just a text without any explicit tags, it is divided into multiple tokens and each token
becomes a sequence of alphanumeric characters or a single non-alphanumeric character. For example, in
the Evaluation algorithm, array is a single token with a HTML tag <var> and “ ! ArrayCreate(0)” is divided
into five text tokens: !, ArrayCreate, (, 0, and ).

Moreover, Tokenizer flattens a structured step to a single token list to handle multi-step statements
easily. Some statements in abstract algorithms consist of multiple steps. For example, the fourth
algorithm step of the Evaluation abstract algorithm in Figure 2.3(a) has two sub-steps 4.a and 4.b for the
then-branch of the conditional statement. To treat them as a linear structure, we introduce three special
tokens to break down structured algorithms: ↓ denotes the end of a single step, and ↘ and ↙ denote

2https://262.ecma-international.org/12.0/#sec-automatic-semicolon-insertion
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/*----------- parsing rules ----------- ^^ ----------- conversion rules -----------*/

// statements

val Stmt =

"Let" ~ varT ~ "be" ~ Expr ~ "." ^^ { case _ ~ x ~ _ ~ e ~ _ => ILet(x, e) } |

// expressions

val Expr =

// completion record unwrap

"!" ~ Expr ^^ { case e => EUnwrapComp(e, false) } |

"?" ~ Expr ^^ { case e => EUnwrapComp(e, true) } |

// variables

varT ^^ { case x => EId(x) } |

// numbers

number ^^ { case n => ENum(n) } |

// function calls

word ~ "(" ~ repsep(Expr, ",") ~ ")" ^^ { case f ~ _ ~ as ~ _ => ECall(f, as) }

Figure 2.7: A simplified version of compile rules for the first step of the Evaluation algorithm in
Figure 2.3(a)

the start and the end of nested steps, respectively. For example, the following left abstract algorithm is
tokenized to the right token list:

1. A

2. B =⇒ A ↓ B↘ C ↓↙↓
a. C

After tokenizing abstract algorithms, Algorithm Compiler compiles token lists into IRES functions using
Token List Parser and Token AST Converter. They depend on Compile Rules and each compile rule consists
of a parsing rule and a conversion rule:

val CompileRule = ParsingRule ^^ ConversionRule

For each compile rule, its parsing rule describes how to parse a given token list into a structured token
AST, and its conversion rule describes how to convert the given token AST structure into an IRES

component. For example, Figure 2.7 shows a simplified version of compile rules for the first step of
the Evaluation algorithm in Figure 2.3(a): “Let array be ! ArrayCreate(0)”. The Stmt compile rule is a
single rule that describes how to compile statements, and the Expr compile rule consists of five rules that
describes how to compile expressions. Now, we explain Token List Parser and Token AST Converter with
parsing rules and conversion rules, respectively.

2.3.2 Token List Parser

Token List Parser is defined with parsing rules. A parsing rule is a basic parsing rule or a composition
of multiple parsing rules. The composition A | B of two parsing rules A and B parses an input using both
rules and collects the longest matched results. If both rules fail or match the same length of the input,
the composition fails. We provide two kinds of basic parsing rules: tag-based rules and content-based
rules. A tag-based rule just checks whether the next token has a given tag. For example, the tag-based
parser varT checks whether the next token has the HTML tag <var>. A content-based parser checks
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whether the next token is a text token and its content passes a given condition. For example, the string
literal "ArrayCreate" denotes a content-based parser that checks whether the next token is a text token
with the content “ArrayCreate”. We also define two content-based parsers word and number that check
whether the content of the next token consists of only alphabets or numbers, respectively. In addition,
we provide several helper functions such as the optional rule A? and the positive (negative) predicate
+A(-A). For instance, the helper function repsep(A, B) generates a new parsing rule that denotes zero or
more repetition of the parsing rule A using another parsing rule B as a separator. Therefore, Token List

Parser with the parsing rules in the left side of Figure 2.7 parses the first step of the Evaluation algorithm
to the following token AST:

2.3.3 Token AST Converter

Conversion rules describe how to convert token ASTs to the corresponding IRES components, and
Token AST Converter utilizes them. Each conversion rule is defined with its corresponding parsing rule.
For basic parsing rules, their conversion rules always return the string values of the contents in parsed
tokens. For example, the right side of Figure 2.7 describes the conversion rules. The conversion rule of the
Stmt compile rule uses only the second and fourth sub-trees to construct a let-binding instruction. The
constructor ILet for let-binding instructions takes two arguments an identifier name and an expression.
For the fourth sub-tree, the conversion rule of the first Expr compile rule is applied to it to construct
a completion record unwrap expression. The constructor EUnwrapComp for completion record unwrap
expressions takes two arguments an expression and a boolean value that represents whether checking
the abrupt completion. Each abstract algorithm in ECMAScript always returns a completion record to
handle different kinds of JavaScript control flows. A completion record is abrupt if it contains values that
represent abnormal control flows such as exceptions, return, or break; otherwise, it is normal. The prefix
“?” checks whether a completion record is abrupt and returns immediately if so. Otherwise, it unwraps
the completion record to its containing value. On the other hand, the prefix “ !” unwraps a completion
record to its containing value without checking the abrupt completion. Therefore, EUnwrapComp(e, false)

denotes a completion record unwrap expression of another expression e without checking the abrupt
completion. In this way, the first step of the algorithm is converted to the following IRES instruction:

ILet("array", EUnwrapComp(ECall("ArrayCreate", 0), false))

and its beautified form is as follows:

let array = [! (ArrayCreate 0)]
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We define IRES to represent abstract algorithms as its functions with the following design choices:

• Dynamic typing: Because each variable in abstract algorithms is not statically typed, variables
do not have their own static types while each value of IRES has its dynamic type.

• Imperative style: IRES represents algorithm steps as imperative instructions in the sense that
each instruction changes the current state consisting of an environment and a heap.

• Higher-order functions with restricted scopes: In each function of IRES, only global vari-
ables, parameters, and its local variables are available, which means that a function closure does
not capture its current environment. We use such restricted scopes because they are enough to
represent abstract algorithms.

• Primitive values: IRES supports ECMAScript primitive values except “symbols” because symbols
can be represented as singleton objects. Also, IRES provides the unique absent value to represent
the absence of parameters. For example, when the optional second parameter Elision of Evaluation
in Figure 2.3(a) is absent, the parameter has the absent value.

• Abstract data types: IRES supports only three abstract data types: Record for mappings from
values to values, List for sequential data, and Symbol for singleton data. For example, ECMAScript
environment records are represented as Record from string values to addresses that represent the
bindings of the string values.

We define the syntax of IRES that has 15 kinds of instructions and 26 kinds of expressions with the
notation i and e, respectively. We also formally define its operational semantics σ ` i⇒ σ for instructions
and σ ` e ⇒ (v, σ) for expressions, where σ denotes a state and v denotes a value. For presentation
brevity, we omit the formalization of IRES in this thesis and include it in a companion report [14].

2.3.4 Implementation

We implemented Algorithm Compiler by extending the Packrat parsing [29] library in Scala parser
combinators. We modified the meaning of the composition operator (|||) to collect all the longest matched
results. If a parser detects a step that cannot be parsed or is parsed in multiple ways, it reports the step
with parsing results.

Compile Rules

Algorithm Compiler requires compile rules to compile given abstract algorithms to IRES functions. As
already explained in Section 2.1, we found common patterns in the writing style of abstract algorithms.
We manually defined general compile rules to represent such a writing style with six different kinds
as summarized in Table 2.1. The compile rule for statements, Stmt, generates IRES instructions. The
Expr, Cond, and Value compile rules generate IRES expressions, but they represent different contexts in
ECMAScript; Expr represents a context where any expression can appear, Cond denotes a context where
any boolean-valued expression can appear, and Value represents a context where a fully evaluated value
can appear. The Ty compile rule denotes type names and generates string primitives used in object
constructions. The Ref compile rule represents references such as identifier lookup and member accesses
of objects, and it generates IRES references.
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Table 2.1: General compile rules for ECMAScript

Name Stmt Expr Cond Value Ty Ref

# Rules 21 27 16 11 34 9

Global Setting AST-IRES Translator uses global settings consisting of ECMAScript data types and
built-in objects. Unlike compile rules, global settings depend on ECMAScript versions. In this thesis, we
construct global settings for the latest ECMAScript, ES12.

ECMAScript describes data types with some fields and methods. While the methods are like abstract
algorithms, their semantics are slightly different from abstract algorithms. They implicitly get their
receiver objects as arguments at callsites. To mimic such an implicit behavior, we added a special
variable this as the first parameter of each method, and passed a receiver object at its callsite by
modifying Algorithm Compiler. For example, an Environment Record type has the DeleteBinding(N )

method. Thus, its corresponding IRES function has two parameters, the special parameter this and a
normal parameter N, and the method call DeclRec.DeleteBinding(N ) in an abstract algorithm is compiled
to the IRES instruction: (DclRec.DeleteBinding DclRec N).

In ECMAScript, built-in objects are pre-defined functions with several built-in functions. For exam-
ple, Array is the constructor of array objects, and its prototype Array.prototype has built-in functions
for array objects. For instance, [1,2,3].flat() calls the Array.prototype.flat built-in function with
the array [1,2,3]. Because built-in functions are also abstract algorithms, each of them is automat-
ically compiled to an IRES function. However, the structures of built-in objects should be manually
implemented. Thus, we implemented built-in objects in Scala and connected their properties with the
compiled IRES functions. Some built-in objects that are explicitly referenced in abstract algorithms are
intrinsic objects, which have their own aliased names summarized in Table 8: Well-Known Intrinsic Objects

in Section 6.1.7.43 of ES12. We extracted the alias into Global Setting to utilize it during evaluation.

2.4 Evaluation

We developed JISET as an open-source tool4, and evaluated the tool based on the following research
questions:

• RQ1. Coverage: How much percentage of the syntax and semantics does JISET automatically
extract from ES7 to ES12?

• RQ2. Correctness: Does JISET correctly extract an IR-based formal semantics from ECMAScript
compared to the official conformance tests?

• RQ3. Adaptability: Is JISET applicable to new language features ready for inclusion in the next
version of ECMAScript?

We performed our experiments on a machine equipped with 4.2GHz Quad-Core Intel Core i7 and 64GB
of RAM. On the machine, JISET took less than one minute to extract mechanized specifications from a
given ECMAScript.

3https://262.ecma-international.org/12.0/#sec-well-known-intrinsic-objects
4https://github.com/kaist-plrg/jiset

20

https://262.ecma-international.org/12.0/#sec-well-known-intrinsic-objects
https://github.com/kaist-plrg/jiset


Table 2.2: Syntax coverage - Number of productions in each specification and in each update between
adjacent versions, from all of which JISET automatically generated parsers

(a) For each ECMAScript version from ES7 to ES12

Version ES7 ES8 ES9 ES10 ES11 ES12 Average

# Lexical productions 124 124 140 140 143 146 136.17

# Syntactic productions 157 167 174 174 185 187 174.00

(b) For each update between adjacent versions

Old version ES7 ES8 ES9 ES10 ES11
Average

New version ES8 ES9 ES10 ES11 ES12

∆ # Lexical productions 7 31 2 14 29 16.60

∆ # Syntactic productions 142 22 1 20 10 39.00

2.4.1 Coverage

We evaluated the coverage of JISET in two respects: syntax and semantics. First, we measured how
many lexical and syntactic productions in specifications JISET generated parsers for syntax. Then, we
measured how many abstract algorithm steps it compiled to IRES functions for semantics. As discussed in
Section 2.1, JISET utilizes common patterns in the converged writing style since ES7. Thus, we evaluated
the coverage of JISET using the most recent six versions of ECMAScript, ES7 to ES12. We measured the
numbers for each ECMAScript version and each update between adjacent versions. While we evaluated
only four versions from ES7 to ES10 when we conducted this work in 2019, we evaluated six versions
from ES7 to ES12 with the recent version of JISET in this thesis.

For syntax, JISET successfully generated parsers for the lexical and syntactic productions in all the
versions of ECMAScript. Table 2.2 shows that the number of lexical and syntactic productions has
consistently increased, and ES12 has 146 lexical and 187 syntactic productions to represent JavaScript
syntax. All six versions of ECMAScript contain 136.17 and 174.00 lexical and syntactic productions
on average. Each update between adjacent versions removes, modifies, or introduces 16.60 lexical and
39.00 syntactic productions on average. It showed that JISET successfully lessens the burden to manually
design and update parsers for revised JavaScript syntax in ECMAScript.

For semantics, Figure 2.8(a) shows that JISET automatically compiled algorithm steps to corre-
sponding IRES instructions with the success rate of 95.61% on average for each ECMAScript version
from ES7 to ES12. Figure 2.8(b) shows that it compiled 90.83% of modified or newly introduced algo-
rithm steps on average for each update between adjacent versions. It showed that JISET could reduce
efforts to develop JavaScript tools from scratch based on specifications and evolve existing tools for the
specification update. ECMAScript abstract algorithms describe not only the core language semantics
but also behaviors of built-in libraries with various helper functions. Note that built-in libraries are
written in more diverse styles than core language semantics due to their own specific functionalities. For
example, String.prototype or Array.prototype are built-in objects and have diverse library functions.
Therefore, The English sentences used in their abstract algorithms contain diverse expressions related to
manipulating strings or array objects. As a result, core language semantics have slightly higher success
rates (95.61% for specifications and 91.53% for updates) than built-in libraries (94.71% for specifications
and 89.06% for updates) on average.
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(a) For each ECMAScript version from ES7 to ES12

(b) For each update between adjacent versions

Figure 2.8: Semantics coverage - Number of algorithm steps in specifications, from which JISET gener-
ated the semantics
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Table 2.3: Test results with Test262 for ES10

All Test262 Tests 35,990

Annexes 1,060

Internationalization 640

In-progress features 5,338

ES10 Tests 28,952

Non-strict mode 1,150

Modules 918

Early errors before actual execution 2,288

Inessential built-in objects 6,532

Applicable Tests 18,064

Passed tests 16,355

Failed tests 1,709

2.4.2 Correctness

To evaluate the correctness of JISET, we tested the extracted semantics from the most recent version
of ECMAScript (ES10) when we conducted this work in 2019. We utilized test programs in Test262 as of
February 28, 2019, when ES10 was branched out from the main branch of the ECMAScript repository. To
focus on the core language semantics of JavaScript, we completed only the necessary parts missing in the
extracted mechanized specification. Figure 2.8(a) shows that Algorithm Compiler successfully compiled
12,022 out of 12,569 steps in ES10. It fully covered 2,034 out of 2,396 abstract algorithms, and 362
algorithms were partially covered. Among the remaining 547 algorithm steps, we manually completed 277
algorithm steps to cover essential parts for the language semantics. Based on this manual implementation,
146 more abstract algorithms are fully covered. We also manually implemented Global Setting as described
in Section 2.3.4 for the core language features. Note that we do not support minor language features such
as the non-strict mode, modules, early errors before actual execution, and inessential built-in objects.
Among 35,990 tests in Test262, we filtered out 17,926 tests, as summarized in Table 2.3. To focus on
ES10, we excluded 7,038 tests for annexes, internationalization, and in-progress features. We also filtered
out 10,888 tests that use minor language features. Finally, the extracted semantics took about three
hours to evaluate 18,064 applicable tests and failed 1,709 tests.

We investigated the failed tests and found that they failed due to specification errors in ES10. We
discovered nine errors using the failed tests: ES10-1 to ES10-9 in Table 2.4. Among them, five errors
(ES10-5 to ES10-9) were previously reported and fixed in the current draft of the next ECMAScript, and
the remaining four errors (ES10-1 to ES10-4) were never reported before. All four errors were confirmed
by TC39 and fixed in the next ECMAScript, ES11.

The specification error ES10-1 is due to a wrong assertion. While ES9 introduced the for await

iteration statement with a new iterationKind tag, async-iterate, the ForIn/OfHeadEvaluation algorithm
missed the async-iterate case in an assertion, which caused that 1,120 tests failed. We reported the
error and proposed a specification fix to include the async-iterate case, and TC39 accepted it on March
25, 2020. Because the error was created on February 16, 2018, it existed for 768 days.
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Table 2.4: Specification errors in ES10 and the BigInt proposal ready for inclusion in ES11

Name Feature Description Known Created Resolved Existed #Fails

ES10-1 Iteration
Missing the async-iterate case
in the assertion
of ForIn/OfHeadEvaluation

X 2018-02-16 2020-03-25 768 days 1,116

ES10-2 Condition
Ambiguous grammar production for
the dangling else problem
in IfStatement

X 2015-06-01 2020-10-01 1,949 days 1

ES10-3 String
Wrong use of the = operator in
StringGetOwnProperty

X 2015-06-01 2020-05-07 1,802 days 7

ES10-4 Completion
Unhandling abrupt completion in
Abstract Equality Comparison

X 2015-06-01 2020-04-28 1,793 days 9

ES10-5 Completion
Unhandling abrupt completion in
Evaluation of EqualityExpression

O 2015-06-01 2019-05-02 1,431 days 2

ES10-6 Await
Passing a value of wrong type to
the second parameter
of PromiseResolve

O 2019-02-27 2019-04-13 45 days 1,294

ES10-7 Function
No semantics of IsFunctionDefinition

for function(...){...}
O 2015-10-30 2020-01-18 1,541 days 306

ES10-8 Function
No semantics of ExpectedArgumentCount

for the base case of FormalParameters
O 2016-11-02 2020-02-20 1,205 days 81

ES10-9 Iteration
Two semantics of VarScopedDeclarations

for for await(var x of e){...}
O 2018-02-16 2019-10-11 602 days 0

BigInt-1 Expression
Using the wrong variable oldvalue

instead of oldValue in
Evaluation of UpdateExpression

X 2019-09-27 2020-04-23 209 days 533

BigInt-2 Number
Using ToInt32 instead of ToUint32 in
Number::unsignedRightShift

X 2019-09-27 2020-04-23 209 days 2

BigInt-3 Number
Unhandling BigInt values in
the Number constructor

O 2019-09-27 2019-11-19 53 days 1

ES10-2 comes from the well-known dangling else problem introduced in ALGOL 60 [11]. ES10
describes how to parse it in prose: the else statement should be associated with the nearest if statement.
Because it is written in prose rather than in the ES10 grammar productions, it caused one failed test.
We proposed a fix to revise the ambiguous grammar production, and TC39 accepted it on October 1,
2020. Thus, ES10-2 existed for 1,949 days.

ES10-3 is due to a misuse of the = operator for numbers. In abstract algorithms, “x = y” denotes
equality testing for double-precision 64-bit binary format IEEE 754-2008 values; thus, “+0 = -0” evaluates
to true. However, to check whether index is exactly the same with -0, StringGetOwnProperty used
“index = -0”, which is true even when index is +0. As a result, it caused seven failed tests. We proposed
a fix accepted on May 7, 2020. Thus, ES10-3 existed for 1,802 days.

ES10-4 and ES10-5 happened because ES10 did not handle abrupt completion from function calls.
Our proposed fix to ES10-4 was accepted on April 28, 2020, and ES10-5 was resolved on May 2, 2019
after existing for 1,431 days.

ES10-6 is due to incorrect uses of an abstract algorithm. While PromiseResolve(C , x ) expects a
JavaScript object for its second argument, ES10 passed a list of values rather than an object in three
invocations of PromiseResolve. The wrong invocations were introduced on February 27, 2019 and caused
that 1,294 tests failed. They were fixed on April 13, 2019 after existing for 45 days.

24



Table 2.5: Proposals that will be included in ES11

Proposal
∆ # Productions

∆#Steps ∆#Tests # Tests
Lexical Syntactic

matchAll of String 0 0 9/9 5/5 18,064/18,064

import() 0 2 38/38 0/0 18,064/18,064

BigInt 4 0 298/326 196/207 17,539/18,064

Promise.allSettled 0 0 79/85 50/50 18,064/18,064

globalThis 0 0 1/1 1/1 18,064/18,064

for-in mechanics 0 0 36/37 0/0 18,064/18,064

Optional Chaining 3 3 74/74 19/19 18,064/18,064

Nullish Coalescing Operator 1 4 10/10 21/21 18,064/18,064

import.meta 0 2 15/15 0/0 18,064/18,064

Total 8 11 560/595

ES10-7 and ES10-8 happened because ES10 missed semantics in some cases. They both existed for
more than 1,200 days.

ES10-9 is due to multiple semantics. While no tests in Test262 fail with any of the semantics, we
could detect this error via Spec Extractor even before executing the semantics. It is supplementary merit
of the automation of mechanized specification extraction.

After resolving the nine specification errors in ES10, we extracted JavaScript semantics from the
revised specification. The extracted semantics from the revised ES10 successfully parsed and executed all
18,064 applicable tests in Test262, which shows that JISET correctly extracted a mechanized specification
from ES10. In addition, the evaluation witnesses that JISET can detect specification errors effectively.
We could detect not only five previously-known errors but also four new errors. Therefore, we believe
that JISET bridges gaps between ECMAScript written in a natural language and executable tests in
Test262.

2.4.3 Adaptability

We evaluated whether JISET is adaptable to the proposals ready for inclusion in ECMAScript 2020
(ES11), the next version of ES10. Because ECMAScript is an open-source project, various proposals
for new features are available with their own specification changes and tests. A separate repository 5

maintains them in six stages: Stage 0 to Stage 3, Finished, and Inactive. A proposal starts with Stage
0, and the TC39 committee examines proposals in Stage 3. If a proposal is confirmed, the committee
changes its stage to Finished and integrates it into the next ECMAScript. Otherwise, its stage becomes
Inactive.

As shown in Table 2.5, we applied JISET to all nine “Finished” proposals. Collectively, the proposals
modified eight lexical and 11 syntactic productions, and JISET generated JavaScript parsers for them.
As a result, the generated parsers successfully parsed all applicable tests for all nine proposals. Then,
Algorithm Compiler with the same Compile Rules compiled their 560 algorithm steps out of 595 into
corresponding IRES instructions. Therefore, JISET has a success rate of 94.12% on average for forthcoming
proposals.

5https://github.com/tc39/proposals
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Table 2.6: Applicable conformance tests in Test262 for ES12

All Test262 Conformance Tests 41,415

Inapplicable Tests 22,859

Web Browsers / Internationalization 2,036

In-Progress Features 5,719

Non-Strict / Module 2,625

Early Errors 2,949

Inessential Built-in Objects (e.g. JSON, Atomics) 9,530

Applicable Tests 18,556

We checked the extracted semantics from the proposals by implementing missing parts of the mech-
anized specification for each proposal and checking the semantics with Test262. All of them passed all
applicable tests except the semantics from the BigInt proposal. However, it failed for 11 out of 207
applicable tests for the proposal and 525 tests out of 18,064 applicable tests for ES10.

Using the failed tests, we discovered three errors in the BigInt proposal: two new errors (BigInt-1
and BigInt-2) and one known error (BigInt-3), as summarized in Table 2.4. All of them were confirmed
by TC39 and will be fixed in ES11. The proposal added two new types: BigInt as a new type of primitives
and Numeric as a unified type of the original Number type and the new BigInt type. Therefore, it not
only added new algorithms for BigInt but also modified all existing algorithms for Number values. The
error BigInt-1 is due to a misuse of the variable oldValue in Evaluation of UpdateExpression. BigInt-2
breaks the backward compatibility because of misusing ToInt32 instead of ToUint32 in unsigned right
shift operators. BigInt-3 is due to missing BigInt primitives in the Number constructor. On average,
three errors existed for 157 days in the proposal.

After fixing the errors in the proposal, we extracted a semantics from the revised specification. The
extracted semantics passed all 207 applicable tests for the proposal and 18,064 applicable tests for ES10.
Thus, JISET also correctly extracted an mechanized specification from future proposals, which implies
that it is adaptable for new language semantics.

Moreover, we also extracted a mechanized specification from ES12 and checked its correctness to
check the adaptability of JISET for the latest ECMAScript. As shown in Figure 2.8(a), Algorithm Compiler

has a success rate of 95.80% by compiling 12,975 steps out of 13,544 for ES12. Among the remaining 569
steps, we manually completed 103 algorithm steps to define the mechanized specification. To check its
correctness, we utilized Test262 again but its current version to cover new language semantics introduced
after ES10. Since ES12 was released in June 2021, we used Test262 as of June 20216. Among 41,415
tests, we filtered out 22,859 tests using minor language features, as summarized in Table 2.6. Therefore,
we used 18,556 applicable Test262 tests to check the correctness of the extracted semantics from ES12.
It successfully parsed and executed all 18,064 applicable tests in Test262, showing that JISET correctly
extracted a mechanized specification from the current latest ECMAScript, ES12.

6https://github.com/tc39/test262/tree/aaf4402b4ca9923012e6
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Chapter 3. JEST: N+1-version Differential Testing

This chapter introduces JEST, a JavaScript Engines and Specification Tester using N+1-version
differential testing. Since we conducted this work in 2020, all the explanations and evaluations for the
tool are as of 2020. The main contributions of this work include the following:

• We present N+1-version differential testing, a novel solution to the new problem of co-evolving
language specifications and their implementations. The main idea is to generate conformance tests
from the language specification and detect errors in both specifications and implementations using
the generated tests.

• We actualize N+1-version differential testing for JavaScript as a tool named JEST. It is the first
tool that automatically generates conformance tests for JavaScript engines from ECMAScript. We
developed the tool by extending JISET to fully utilize the mechanized specification extracted from
any version of ECMAScript. JEST generates JavaScript conformance tests using the extracted
mechanized specification and detects errors in both JavaScript engines and ECMAScript.

• We evaluate JEST with four modern JavaScript engines (V8, GraalJS, QuickJS, and Moddable
XS) and ES11, the latest ECMAScript in 2020. Four JavaScript engines fully support ES11 and
pass all Test262 tests for ES11. Our tool successfully generated 1,700 conformance tests from
the specification. The semantics coverage of Test262 is 91.61% for statements and 82.91% for
branches. The conformance tests fully automatically generated by JEST have similar semantics
coverage: 87.70% for statements and 78.30% for branches. Finally, our tool successfully found and
localized 44 engine bugs in four different engines and 27 specification bugs in ES11 using the tests.

3.1 N+1-version Differential Testing

This section introduces the core concept of N+1-version differential testing with a simple running
example. The overall structure consists of two phases: 1) a conformance test generation phase and 2) a
bug detection and localization phase.

3.1.1 Main Idea

Differential testing utilizes the cross-referencing oracle, which is an assumption that any discrepancies
between program behaviors on the same input could be bugs. It compares the execution results of a
program with the same input on N different implementations. When an implementation produces a
different result from the one by the majority of the implementations, differential testing reports that the
implementation may have a bug.

On the contrary, N+1-version differential testing utilizes not only the cross-referencing oracle using
multiple implementations but also a mechanized specification. It first generates test code from a mech-
anized specification, and tests N different implementations of the specification using the generated test
code as in differential testing. In addition, it can detect possible bugs in the specification as well when
most implementations fail for a test. In such cases, because a bug in the specification could be triggered
by the test, it localizes the bug using statistical information as we explain later in this section.
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(a) The Abstract Equality Comparison algorithm in ES11

// JavaScript engines: exception with "err"

// ECMAScript (ES11) : result === false

var obj = { valueOf: () => { throw "err"; } };

var result = 42 == obj;

(b) JavaScript code using abstract equality comparison

try {

var obj = { valueOf: () => { throw "err"; } };

var result = 42 == obj;

assert(result === false);

} catch (e) {

assert(false);

}

(c) JavaScript code with injected assertions

Figure 3.1: An abstract algorithm in ES11 and code example related to its language semantics
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Figure 3.2: Overall structure of N+1-version differential testing for N implementations (engines) and
one language specification

3.1.2 Running Example

We explain how N+1-version differential testing works with a simple JavaScript example shown
in Figure 3.1. Figure 3.1(a) is an excerpt from ECMAScript 2020 (ES11), which shows some part of
the Abstract Equality Comparison abstract algorithm. It describes the semantics of non-strict equality
comparison such as == and !=. For example, null == undefined is true because of the algorithm step
2. According to the steps 10 and 11, if the type of a value is String, Number, BigInt, or Symbol, and
the type of the other value is Object, the algorithm calls ToPrimitive to convert the JavaScript object
to a primitive value. Note that this is a specification bug caused by unhandled abrupt completions! To
express control diverters such as exceptions, break, continue, return, and throw statements in addition
to normal values, ECMAScript uses “abrupt completions.” ECMAScript annotates the question mark
prefix (?) to all function calls that may return abrupt completions to denote that they should be checked.
However, even though ToPrimitive can produce an abrupt completion, the calls of ToPrimitive in steps 10
and 11 do not use the question mark, which is a bug.

Now, let’s see how N+1-version differential testing can detect the bug in the specification. Con-
sider the example JavaScript code in Figure 3.1(b), which triggers the above specification bug. In the
Abstract Equality Comparison algorithm, variables x and y respectively denote 42 and an object with a
property named valueOf whose value is a function throwing an error. Step 10 calls ToPrimitive with the
object as its argument, and the call returns an abrupt completion because the call of valueOf throws an
error. However, because the call of ToPrimitive in step 10 does not use the question mark, the specification
semantics silently ignores the abrupt completion and returns false as the result of comparison. Using
the specification semantics, we can inject assertions to check that the code does not throw any errors as
shown in Figure 3.1(c). Then, by running the code with the injected assertions on N JavaScript engines,
which throw errors, we can find that the specification may have a bug. Moreover, we can localize the
bug using statistical information: because most conformance tests that go through steps 10 and 11 of
the algorithm would fail in most of JavaScript engines, we can use the information to localize the bug in
the steps 10 and 11 of Abstract Equality Comparison with high probability.
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3.1.3 Overall Structure

Figure 3.2 depicts the overall structure of N+1-version differential testing for N different implemen-
tations (engines) and one language specification. It takes a mechanized specification extracted from a
given language specification, it first performs the conformance test generation phase, which automatically
generates conformance tests that reflect the language syntax and semantics described in the specifica-
tion. Then, it performs the bug detection and localization phase, which detects and localizes bugs in the
engines or the specification by comparing the results of the generated tests on N engines.

The functionalities of each module in the overall structure are as follows:

Seed Synthesizer

The first module of the conformance test generation phase is Seed Synthesizer, which synthesizes an
initial seed programs using the language syntax. Its main goal is to synthesize (1) a few number of (2)
small-sized programs (3) that cover possible cases in the syntax rules as many as possible.

Target Selector

Starting from the seed programs generated by Seed Synthesizer as the initial program pool, Target
Selector selects a target program in the program pool that potentially increases the coverage of the
language semantics by the pool. From the selected target program, Program Mutator constructs a new
mutated program and adds it to the program pool. When specific criteria, such as an iteration limit, are
satisfied, Target Selector stops selecting target programs and returns the program pool as its result.

Program Mutator

The main goal of Program Mutator is to generate a new program by mutating a given target program
in order to increase the coverage of the language semantics by the program pool. If it fails to generate a
new program to increase the semantics coverage, Target Selector retries to select a new target program
and repeats this process less than a pre-defined iteration limit.

Assertion Injector

Finally, the conformance test generation phase modifies the programs in the pool to generate con-
formance tests by injecting appropriate assertions reflecting the semantics described in the specification.
More specifically, Assertion Injector executes each program in the pool on the mechanized specification
and obtains the final state of its execution. It then automatically injects assertions to the program using
the final state.

Bug Localizer

Then, the second phase executes the conformance tests on N engines and collects their results.
For each test, if a small number of engines fail, it reports potential bugs in the engines that fail the
test. Otherwise, it reports potential bugs in the specification. In addition, its Bug Localizer module
uses Spectrum Based Fault Localization (SBFL) [102], a localization technique utilizing the coverage and
pass/fail results of test cases, to localize potential bugs.
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3.2 N+1-version Differential Testing for JavaScript

We actualize N+1-version differential testing for the JavaScript programming language as JEST,
which uses modern JavaScript engines and ECMAScript. This section explains the detail of five core
modules of the tool: Seed Synthesizer, Target Selector, Program Mutator, Assertion Injector, and Bug

Localizer.

3.2.1 Seed Synthesizer

The first module of JEST is Seed Synthesizer, which synthesizes seed programs using two synthesiz-
ers: a non-recursive synthesizer and a built-in function synthesizer. Because the synthesis algorithm is
deterministic, the seed programs only depend on the JavaScript syntax and built-in libraries described
in a given version of ECMAScript without any randomness.

Non-Recursive Synthesizer

The first synthesizer aims to cover as many syntax cases as possible in two steps: 1) to find the
shortest string for each non-terminal and 2) to synthesize JavaScript programs using the shortest strings.
For presentation brevity, we explain simple cases like terminals and non-terminals, but the implemen-
tation supports the extended grammar of ECMAScript such as parametric non-terminals, conditional
alternatives, and special terminal symbols.

Algorithm 1: Worklist-based Shortest String
Input: R - syntax reduction rules
Output: M - map from non-terminals to shortest strings derivable from them
Function shortestStrings(R):

M = ∅,W = a queue that contains R
while W 6= ∅ do

pop (A,α)←W

if update(A,α) then propagate(W,R, A)

Function update(A,α):
str = an empty string
forall s ∈ α do

if s is a terminal t then str = str + t

else if s is a non-terminal A′ ∧A′ ∈M then
str = str +M [A′]

else return false

if ∃M [A] ∧ ‖str‖ ≥ ‖M [A]‖ then return false
M [A] = str

return true

Function propagate(W,R, A):
forall (A′, α′) ∈ R do

if A ∈ α′ then push (A′, α′)→W
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The shortestStrings function in Algorithm 1 shows the first step. We modified McKenize’s algo-
rithm [60] that finds random strings to find the shorted string. It takes syntax reduction rules R, a set
of pairs of non-terminals and alternatives, and returns a map M from non-terminals to shortest strings
derivable from them. It utilizes a worklist W , a queue structure that includes syntax reduction rules
affected by updated non-terminals. The function initializes the worklist W with all the syntax reduction
rules R. Then, for a syntax reduction rule (A,α), it updates the map M via the update function, and
propagates updated information via the propagate function. The update function checks whether a given
alternative α of a non-terminal A can derive a string shorter than the current shortest one using the
current map M . If possible, it stores the mapping from the non-terminal A to the newly found shortest
string in M and invokes propagate. The propagate function finds all the syntax reduction rules whose
alternatives contain the updated non-terminal A and inserts them into W . The shortestStrings function
repeats this process until the worklist W becomes empty.

Algorithm 2: Non-Recursive Synthesize
Input: R - syntax reduction rules, S - start symbol
Output: D - set of strings derivable from S

Function nonRecSynthesize(R, S):
V = ∅,M = shortestStrings(R)

return getProd(M,V,R, S)

Function getProd(M,V,R, A):
if A ∈ V then return {M [A]}
D = ∅, V = V ∪ {A}
forall (A′, α) ∈ R s.t. A′ = A do

D = D ∪ getAlt(M,V,R, A, α)

return D

Function getAlt(M,V,R, A, α):
L = an empty list
forall s ∈ α do

if s is a terminal t then
append ({t}, t) to L

else if s is a non-terminal A′ then
append (getProd(M,V,R, A′),M [A]) to L

D = point-wise concatenation of first elements of pairs in L using second elements as
default ones.
return D

Using shortest strings derivable from non-terminals, the nonRecSynthesize function in Algorithm 2
synthesize programs. It takes syntax reduction rules R and a start symbol S. For the first visit with a
non-terminal A, the getProd function returns strings generated by getAlt with alternatives of the non-
terminal A. For an already visited non-terminal A, it returns the single shortest stringM [A]. The getAlt
function takes a non-terminal A with an alternative α and returns a set of strings derivable from α via
point-wise concatenation of strings derived by symbols of α. When the numbers of strings derived by
symbols are different, it uses the shortest strings derived by symbols as default strings.
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Figure 3.3: The MemberExpression production in ES11

For example, Figure 3.3 shows a simplified MemberExpression production in ES11. For the first step,
we find the shortest string for each non-terminal: () for Arguments and x for the other non-terminals.
Note that we use pre-defined shortest strings for identifiers and literals such as x for identifiers and 0

for numerical literals. In the next step, we synthesize strings derivable from MemberExpression. The
first alternative is a single non-terminal PrimaryExpression, which is never visited. Thus, it generates all
cases of PrimaryExpression. The fourth alternative consists of one terminal new and two non-terminals
MemberExpression and Arguments. Because MemberExpression is already visited, it generates a single
shortest string x. For the first visit of Arguments, it generates all cases: (), (x), (...x), and (x,). Note
that the numbers of strings generated for symbols are different. In such cases, we use the shortest strings
for symbols like x for MemberExpression as follows:

Built-in Function Synthesizer

JavaScript supports diverse built-in functions for primitive values and built-in objects. To synthesize
JavaScript programs that invoke built-in functions, we extract the information of each built-in function
from the mechanized ECMAScript. We utilize the Function.prototype.call function to invoke built-in
functions to easily handle the this object in Program Mutator; we use a corresponding object or null as
the this object by default. In addition, we synthesize function calls with optional and variable number
of arguments and built-in constructor calls with the new keyword.

Consider the following Array.prototype.indexOf function for JavaScript array objects that have a
parameter searchElement and an optional parameter fromIndex :

the synthesizer generates the following calls with an array object or null as the this object as follows:

Array.prototype.indexOf.call(new Array(), 0);

Array.prototype.indexOf.call(new Array(), 0, 0);

Array.prototype.indexOf.call(null, 0);

Array.prototype.indexOf.call(null, 0, 0);

Moreover, Array is a built-in function and a built-in constructor with a variable number of arguments.
Thus, we synthesize the following six programs for Array:

Array(); Array(0); Array(0, 0);

new Array(); new Array(0); new Array(0, 0);
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3.2.2 Target Selector

From the synthesized programs, Target Selector selects a target program to mutate to increase
the semantics coverage of the program pool. Consider the Abstract Equality Comparison algorithm in
Figure 3.1(a) again where the first step has the condition “If Type(x ) is the same as Type(y).” Assuming
that the current pool has the following three programs:

1 + 2; true == false; 0 == 1;

because later two programs that perform comparison have values of the same type, the pool covers only
the true branch of the condition in the algorithm. To cover its false branch, Target Selector selects any
program that covers the true branch like true == false; and Program Mutator mutates it to 42 == false;

for example. Then, since the mutated program covers the false branch, the pool is extended as follows:

1 + 2; true == false; 0 == 1; 42 == false;

and this process repeats until the semantics coverage converges.

3.2.3 Program Mutator

JEST increases the semantics coverage of the program pool by mutating programs randomly using
five mutation methods: 1) a random mutation, 2) a nearest syntax tree mutation, 3) a string substitution,
4) a object substitution, and 5) a statement insertion.

Random Mutation

The first naïve method is to randomly select a statement, a declaration, or an expression in a given
program and to replace it with a randomly selected one from a set of syntax trees generated by the non-
recursive synthesizer. For example, it may mutate a program var x = 1 + 2; by replacing its random
expression 1 with a random expression true producing var x = true + 2;.

Nearest Syntax Tree Mutation

The second method targets uncovered branches in abstract algorithms. When only one branch is
covered by a program, it finds the nearest syntax tree in the program that reaches the branch in the
algorithm, and replaces the nearest syntax tree with a random syntax tree derivable from the same syntax
production. For example, consider a JavaScript program: var x = "" + (1 == 2);. While it covers the
false branch of the first step of Abstract Equality Comparison in Figure 3.1(a), assume that no program
in the program pool can cover its true branch. Then, the mutator targets this branch, finds its nearest
syntax tree 1 == 2 in the program, and replaces it with a random syntax tree.

String Substitution

We collect all string literals used in conditions of the algorithms in ES11 and use them for the
random expression substitution. Because most string literals in the specification represent corner cases
such as -0, Infinity, and NaN, they are necessary for mutation to increase the semantics coverage. For
example, the semantics of the [[DefineOwnProperty]] internal method of array exotic objects depends on
whether the value of its parameter P is "length" or not.
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Object Substitution

We also collect string literals and symbols used as arguments of object property access algorithms
in ES11, randomly generate objects using them, and replace random expressions with the generated
objects. Because some abstract algorithms in the specification access object properties using HasProperty,
GetMethod, Get, and OrdinaryGetOwnProperty, objects with such properties are necessary for mutation
to achieve high coverage. Thus, the mutator mutates a randomly selected expression in a program with a
randomly generated object that has properties whose keys are from collected string literals and symbols.

Statement Insertion

To synthesize more complex programs, the mutator inserts random statements at the end of ran-
domly selected blocks like top-level code and function bodies. We generate random statements using
the non-recursive synthesizer with pre-defined special statements. The special statements are control di-
verters, which have high chances of changing execution paths, such as function calls, return, break, and
throw statements. The mutator selects special statements with a higher probability than the statements
randomly synthesized by the non-recursive synthesizer.

3.2.4 Assertion Injector

After generating JavaScript programs, Assertion Injector injects assertions to them using their final
states as specified in ECMAScript. It first obtains the final state of a given program from the mechanized
specification and injects seven kinds of assertions in the beginning of the program. To check the final
state after executing all asynchronous jobs, we enclose assertions with setTimeout to wait 100 ms when
a program uses asynchronous features such as Promise and async:

... /* a given program */

setTimeout(() => { ... /* assertions */ }, 100)

Exceptions

JavaScript supports both internal exceptions like SyntaxError and TypeError and custom exceptions
with the keyword throw. Note that catching such exceptions using the try-catch statement may change
the program semantics. For example, the following does not throw any exception:

var x; function x() {}

but the following:

try { var x; function x() {} } catch (e) {}

throws SyntaxError because declarations of a variable and a function with the same name are not allowed
in try-catch.

To resolve this problem, we exploit a comment in the first line of a program. If the program throws an
internal exception, we tag its name in the comment. Otherwise, we tag // Throw for a custom exception
and // Normal for normal termination. Using the tag in the comment, JEST checks the execution result
of a program in each engine.
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Aborts

The mechanized semantics of ECMAScript can abort due to unspecified cases. For example, consider
the following JavaScript program:

var x = 42; x++;

The postfix increment operator (++) increases the number value stored in the variable x. However,
because of a typo in the Evaluation algorithm for such update expressions in ES11, the behavior of the
program is not defined in ES11. To represent this situation in the conformance test, we tag Abort in the
comment as follows:

// Abort

var x = 42; x++;

Variable Values

We inject assertions that compare the values of variables with expected values. To focus on variables
introduced by tests, we do not check the values of pre-defined variables like built-in objects. For numbers,
we distinguish -0 from +0 using division by zero because 1/-0 and 1/+0 produce negative and positive
infinity values, respectively. The following example checks whether the value of x is 3:

var x = 1 + 2;

$assert.sameValue(x, 3);

Object Values

To check the equality of object values, we keep a representative path for each object. If the injector
meets an object for the first time, it keeps the current path of the object as its representative path and
injects assertions for the properties of the object. Otherwise, the injector adds assertions to compare the
values of the objects with the current path and the representative path. In the following example:

var x = {}, y = {}, z = { p: x, q: y };

$assert.sameValue(z.p, x);

$assert.sameValue(z.q, y);

because the injector meets two different new objects stored in x and y, it keeps the paths x and y. Then,
the object stored in z is also a new object but its properties z.p and z.q store already visited objects
values. Thus, the injector inserts two assertions that check whether z.p and x have the same object value
and z.q and y as well. To handle built-in objects, we store all the paths of built-in objects in advance.

Object Properties

Checking object properties involves checking four attributes for each property. We implement a
helper $verifyProperty to check the attributes of each property for each object. For example, the
following code checks the attributes of the property of x.p:

var x = { p: 42 };

$verifyProperty(x, "p", { value: 42.0, writable: true,

enumerable: true, configurable: true });
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Property Keys

Since ECMAScript 2015 (ES6), the specification defines orders between property keys in objects.
We check the order of property keys by Reflect.ownKeys, which takes an object and returns an array
of the object’s property keys. We implement a helper $assert.compareArray that takes two arrays and
compares their lengths and contents. For example, the following program checks the property keys and
their order of the object in x:

var x = {[Symbol.match]: 0, p: 0, 3: 0, q: 0, 1: 0}

$assert.compareArray(

Reflect.ownKeys(x),

["1", "3", "p", "q", Symbol.match]

);

Internal Methods and Slots

While internal methods and slots of JavaScript objects are generally inaccessible by users, the names
in the following are accessible by indirect getters:

Name Indirect Getter

[[Prototype]] Object.getPrototypeOf(x)

[[Extensible]] Object.isExtensible(x)

[[Call]] typeof f === "function"

[[Construct]] Reflect.construct(function(){},[],x)

The internal slot [[Prototype]] represents the prototype object of an object, which is available by a
built-in function Object.getPrototypeOf. The internal slot [[Extensible]] is also available by a built-in
function Object.isExtensible. The internal methods [[Call]] and [[Construct]] represent whether a given
object is a function and a constructor, respectively. Because the methods are not JavaScript values, we
simply check their existence using helpers $assert.callable and $assert.constructable. For [[Call]], we
use the typeof operator because it returns "function" if and only if a given value is an object with the
[[Call]] method. For [[Construct]] method, we use the Reflect.construct built-in function that checks
the existence of the [[Construct]] methods and invokes it. To avoid invoking [[Construct]] unintentionally,
we call Reflect.construct with a dummy function function(){} as its first argument and a given object
as its third argument. For example, the following code shows how the injector injects assertions for
internal methods and slots:

function f() {}

$assert.sameValue(Object.getPrototypeOf(f), Function.prototype);

$assert.sameValue(Object.isExtensible(x), true);

$assert.callable(f);

$assert.constructable(f);

3.2.5 Bug Localizer

The bug detection and localization phase uses the execution results of given conformance tests on
multiple JavaScript engines. If a small number of engines fail in running a specific conformance test, the
engines may have bugs causing the test failure. If most engines fail for a test, the test may be incorrect,
which implies a bug in the specification.
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When we have a set of failed test cases that may contain bugs of an engine or a specification,
we classify the test cases using their failure messages and give ranks between possible buggy program
elements to localize the bug. We use Spectrum Based Fault Localization (SBFL) [102], which is a ranking
technique based on likelihood of being faulty for each program element. We use the following formula
called ER1b, which is one of the best SBFL formulae theoretically analyzed by Xie et al. [105]:

nef −
nep

nep + nnp + 1

where nef, nep , nnf, and nnp represent the number of test cases; subscripts e and n respectively denote
whether a test case touches a relevant program element or not, and subscripts f and p respectively denote
whether the test case is failed or passed.

We use abstract algorithms of ECMAScript as program elements used for SBFL. To improve the
localization accuracy, we use method-level aggregation [91]. It first calculates SBFL scores for algorithm
steps and aggregates them up to algorithm-level using the highest score among those from steps of each
algorithm.

3.3 Evaluation

To evaluate JEST that performs N+1-version differential testing of JavaScript engines and its spec-
ification, we applied the tool to four JavaScript engines that fully support modern JavaScript features
and the latest specification, ECMAScript 2020 (ES11, 2020). Our experiments use the following four
JavaScript engines, all of which support ES11:

• V8(v8.5)1: An open-source high-performance engine for JavaScript and WebAssembly developed
by Google

• GraalJS(v20.1.0)2 A JavaScript implementation built on GraalVM, which is a Java Virtual
Machine (JVM) based on HotSpot/OpenJDK developed by Oracle

• QuickJS(2020-04-12)3: A small and embedded JavaScript engine developed by Fabrice Bellard
and Charlie Gordon

• Moddable XS(v10.3.0)4: A JavaScript engine at the center of the Moddable SDK, which is a
combination of development tools and runtime software to create applications for micro-controllers

To extract a mechanized specification from ECMAScript, we utilize the tool JISET, which is a JavaScript
IR-based semantics extraction toolchain, to automatically generate a JavaScript interpreter from EC-
MAScript. To focus on the core semantics of JavaScript, we consider only the semantics of strict mode
JavaScript code that pass syntax checking including the EarlyError rules. To filter out JavaScript code
that are not strict or fail syntax checking, we utilize the syntax checker of the most reliable JavaScript
engine, V8. We performed our experiments on a machine equipped with 4.0GHz Intel(R) Core(TM)
i7-6700k and 32GB of RAM (Samsung DDR4 2133MHz 8GB*4). We evaluated JEST with the following
four research questions:

1https://v8.dev/
2https://github.com/graalvm/graaljs#current-status:
3https://bellard.org/quickjs/
4https://blog.moddable.com/blog/xs10/
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(a) Statement coverage

(b) Branch coverage

Figure 3.4: The semantics coverage changes during the test generation phase

• RQ1 (Coverage of Generated Tests) Is the semantics coverage of the tests generated by
JEST comparable to that of Test262, the official conformance test suite for ECMAScript, which is
manually written?

• RQ2 (Accuracy of Bug Localization) Does JEST localize bug locations accurately?

• RQ3 (Bug Detection in JavaScript Engines) How many bugs of four JavaScript engines does
JEST detect?

• RQ4 (Bug Detection in ECMAScript) How many bugs of ES11 does JEST detect?

3.3.1 Coverage of Generated Tests

JEST generates the seed programs via Seed Synthesizer, which synthesizes 1,125 JavaScript programs
in about 10 seconds and covers 97.78% (397/406) of reachable alternatives in the syntax productions of
ES11. Among them, we filtered out 602 programs that do not increase the semantics coverage and started
the mutation iteration with 523 programs. Figure 3.4 shows the change of semantics coverage of the
program pool during the iterative process in 100 hours. The left and right graphs present the statement
and branch coverages, respectively, and the top red line denotes the coverage of Test262. We generated
conformance tests two times before and after fixing bugs detected by JEST because the specification
bugs affected the semantics coverage. In each graph, dark gray X marks and blue O marks denote the
semantics coverage of generated tests before and after fixing bugs. The semantics that we target in ES11
consists of 1,550 algorithms with 24,495 statements and 9,596 branches. For the statement coverage,

39



Table 3.1: Number of generated programs and covered branches of mutation methods

Mutation Method Program Branch (Avg.)

Nearest Syntax Tree Mutation 459 1, 230(2.68)

Random Mutation 337 1, 153(3.42)

Statement Insertion 209 650(3.11)

Object Substitution 169 491(2.91)

String Substitution 3 3(1.00)

Total 1, 177 3, 527(3.00)

Test262 covers 22,440 (91.61%) statements. The initial program pool covers 12,768 (52.12%) statements
and the final program pool covers 21,230 (86.67%) and 21,482 (87.70%) statements before and after
fixing bugs, respectively. For the branch coverage, Test262 covers 7,956 (82.91%) branches. The initial
program pool covers 3,987 (41.55%) branches and the final program pool covers 7,480 (77.95%) and 7,514
(78.30%) branches before and after fixing bugs, respectively.

Table 3.1 shows the number of synthesized programs and covered branches for each mutation method
during the test generation phase. JEST synthesized 1,177 new programs that cover 3,527 more branches
than the initial program pool. Among five mutation methods, the nearest syntax tree mutation is the
most contributed method (459 programs and 1,230 covered branches) and the least one is the string
substitution (3 programs and 3 covered branches).

Finally, JEST generates 1,700 JavaScript programs and their average number of lines is 2.01. After
injecting assertions, their average number of lines becomes 8.45. Compared to Test262, the number of
generated tests are much smaller and their number of lines are also shorter than those of tests in Test262.
Test262 provides 16,251 tests for the same range of semantics and their average number of lines is 49.67.

3.3.2 Accuracy of Bug Localization

To detect more bugs using more diverse programs, we repeated the conformance test generation
phase for ten times. We executed the generated conformance tests on four JavaScript engines to find
bugs in the engines and the specification. After inferring locations of the bugs in the engines or the
specification based on the majority of the execution results, we manually checked whether the bugs are
indeed in the engines or the specification. The following table shows that our method works well:

# Failed Engines 1 2 3 4 Total Average

Engine Bugs 38 6 0 0 44 1.14

Specification Bugs 0 0 10 17 27 3.63

For engine bugs, the average number of engine failures is 1.14 while the average number of failed engines
for specification bugs is 3.63. As we expected, when most engines fail for a test, the specification may
have a bug.

Based on the results of conformance tests on four JavaScript engines, we localized the specification
or engine bugs on the semantics of ES11. Among 71 bugs, we excluded 7 syntax bugs and localized
only 64 semantics bugs. Figure 3.5 shows the ranks of algorithms that caused the semantics bugs. The
average rank is 3.19, and 82.8% of the algorithms causing the bugs are ranked less than 5, 93.8% less
than 10, and 98.4% less than 15. Note that the location of one bug is ranked 21 because of the limitation
of SBFL; its localization accuracy becomes low for a small number of failed test cases.
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Figure 3.5: Ranks of algorithms that caused the bugs detected by JEST

Table 3.2: The number of engine bugs detected by JEST

Engines Exc Abort Var Obj Desc Key In Total

V8 0 0 0 0 0 2 0 2

GraalJS 6 0 0 0 2 8 0 16

QuickJS 3 0 1 0 0 2 0 6

Moddable XS 12 0 0 0 3 5 0 20

Total 21 0 1 0 5 17 0 44

3.3.3 Bug Detection in JavaScript Engines

From four JavaScript engines, JEST detected 44 bugs: 2 from V8, 16 from GraalJS, 6 from QuickJS,
and 20 from Moddable XS. Table 3.2 presents how many bugs for each assertion are detected for each
engine. We injected seven kinds of assertions: exceptions (Exc), aborts (Abort), variable values (Var),
object values (Obj), object properties (Desc), property keys (Key), and internal methods and slots (In).
The effectiveness of bug finding is different for different assertions. The Exc and Key assertions detected
engine bugs the most; out of 44 bugs, the former detected 21 bugs and the latter detected 17 bugs. Desc
and Var detected 5 and 1 bugs, respectively, but the other assertions did not detect any engine bugs.

The most reliable JavaScript engine is V8 because JEST found only two bugs and the bugs are due
to specification bugs in ES11. Because V8 strictly follows the semantics of functions described in ES11,
it also implemented wrong semantics that led to ES11-1 and ES11-2 listed in Table 3.3. The V8 team
confirmed the bugs and fixed them.

We detected 16 engine bugs in GraalJS and one of them caused an engine crash. When we apply the
prefix increment operator for undefined as ++undefined, GraalJS throws java.lang.IllegalStateException.
Because it crashes the engine, developers even cannot catch the exception as follows:

try { ++undefined; } catch(e) { }

The GraalJS team has been fixing the bugs we reported and asked whether we plan to publish the
conformance test suite, because the tests generated by JEST detected many semantics bugs that were
not detected by other conformance tests: “Right now, we are running Test262 and the V8 and Nashorn
unit test suites in our CI for every change, it might make sense to add your suite as well.”

In QuickJS, JEST detected 6 engine bugs, most of which are due to corner cases of the function
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Table 3.3: Specification bugs in ECMAScript 2020 (ES11) detected by JEST

Name Feature Assert # Description Known Created Resolved Existed

ES11-1 Function Key 12
Wrong order between property keys
for functions

O 2019-02-07 2020-04-11 429 days

ES11-2 Function Key 8
Missing property name

for anonymous functions
O 2015-06-01 2020-04-11 1,776 days

ES11-3 Loop Exc 1
Returning iterator objects instead of
iterator records in ForIn/OfHeadEvaluation

for for-in loops

O 2017-10-17 2020-04-30 926 days

ES11-4 Expression Abort 4
Using the wrong variable oldvalue

instead of oldValue in
Evaluation of UpdateExpression

O 2019-09-27 2020-04-23 209 days

ES11-5 Expression Exc 1
Unhandling abrupt completion in
Abstract Equality Comparison

O 2015-06-01 2020-04-28 1,793 days

ES11-6 Object Exc 1
Unhandling abrupt completion in
Evaluation of PropertyDefinition
for object literals

X 2019-02-07 2020-11-06 638 days

semantics. For example, the following code should throw a ReferenceError exception:

function f (... { x = x }) { return x; } f()

because the variable x is not yet initialized when it tries to read the right-hand side of x = x. However,
since QuickJS assumes that the initial value of x is undefined, the function call f() returns undefined.
The QuickJS team confirmed our bug reports and it has been fixing the bugs.

JEST found the most bugs in Moddable XS; it detected 20 bugs for various language features such as
optional chains, Number.prototype.toString, iterators of Map and Set, and complex assignment patterns.
Among them, optional chains are newly introduced in ES11, which shows that our approach is applicable
to finding bugs in new language features. We reported all the bugs found, and the Moddable XS team
has been fixing them. They showed interests in using our test suite: “As you know, it is difficult to
verify changes because the language specification is so big. Test262, as great a resource as it is, is not
definitive.”

3.3.4 Bug Detection in ECMAScript

JEST detected 27 specification bugs in ES11, the latest ECMAScript in 2020. Table 3.3 summarizes
the bugs categorized by their root causes (ES11-1 to ES11-6) with the related JavaScript language
features (Feature), the number of specification bugs (#), the kind of assertion used to detect them
(Assertion), whether they are already known bugs (Known), when they are created (Created) and
resolved (Resolved), and how long they lasted (Existed). Five out of six categories (ES11-1 to ES11-
5) were already reported and fixed in the draft version of ES12 in August 2020 but ES11-6 was never
reported before. Therefore, we reported it to TC39, and they confirmed and fixed it in ES12.

ES11-1 contains 12 bugs; it is due to a wrong order between property keys of all kinds of function
values such as async and generator functions, arrow functions, and classes. For example, if we define
a class declaration with a name A (class A {}), three properties are defined in the function stored in
the variable A: length with a number value 0, prototype with an object, and name with a string "A".
The problem is the different order of their keys because of the wrong order of their creation. From
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ECMAScript 2015 (ES6), the order between property keys is no more implementation-dependent but it
is related to the creation order of properties. While the order of property keys in the class A should be
[length, prototype, name] according to the semantics of ES11, the order is [length, name, prototype]

in three engines except V8. We found that it was already reported as a specification bug; we reported it
to V8 and they fixed it. This bug was created on February 7, 2019 and TC39 fixed it on April 11, 2020;
the bug lasted for 429 days.

ES11-2 contains 8 bugs that are due to the missing property name of anonymous functions. Until
ES5.1, anonymous functions, such as an identity arrow function x => x, had their own property name

with an empty string "". While ES6 removed the name property from anonymous functions, three engines
except V8 still create the name property in anonymous functions. We also found that it was reported as
a specification bug and reported it to V8, and it will be fixed in V8.

The bug in ES11-3 comes from the misunderstanding of the term “iterator object” and “iterator
record”. The algorithm ForIn/OfHeadEvaluation should return an iterator record, which is an implicit
record containing only internal slots. However, In ES11, it returns an iterator object, which is a JavaScript
object with some properties related to iteration. It causes a TypeError exception when executing the code
for(var x in {}); according to ES11 but all engines execute the code normally without any exceptions.
This bug was resolved by TC39 on April 30, 2020.

ES11-4 contains four bugs caused by a typo for the variable in the semantics of four different update
expressions: x++, x--, ++x, and --x. In each Evaluation of four kinds of UpdateExpression, there exists a
typo oldvalue in step 3 instead of oldValue declared in step 2. JEST could not execute the code x++

using the semantics of ES11 because of the typo. For this case, we directly pass the code to Bug Localizer

to test whether the code is executable in real-world engines and to localize the bug. Of course, four
JavaScript engines executed the update expressions without any issues and this bug was resolved by
TC39 on April 23, 2020.

Two bugs in ES11-5 and ES11-6 are caused by unhandling of abrupt completions in abstract equality
comparison and property definitions of object literals, respectively. The bug in ES11-5 was confirmed by
TC39 and was fixed on April 28, 2020. The bug in ES11-6 was a genuine one, and we reported it and
received a confirmation from TC39 on November 6, 2020; the bug lasted for 638 days.
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Chapter 4. JSTAR: Type Analysis for ECMAScript

This chapter introduces JSTAR, a JavaScript Specification Type Analyzer using Refinement. In this
thesis, we introduce two different tools to check the validity of ECMAScript. While JEST (Chapter 3)
checks the validity using N+1-version differential testing with JavaScript engines, JSTAR performs a
type analysis for the extracted mechanized specification to check it. The main contributions of this work
include the following:

• We present JSTAR, the first tool that performs a type analysis on ECMAScript written in a nat-
ural language to check the correctness of JavaScript language specifications. JSTAR automatically
detects type-related specification bugs such as unknown variables, duplicated variables, missing
parameters, assertion failures, ill-typed operands, and unchecked abrupt completion bugs.

• We present a condition-based refinement for type analysis of ECMAScript to reduce the number
of false-positive bugs by enhancing the analysis precision. We show that the refinement technique
increases the analysis precision from 33.0% to 59.2% by removing 122 false bugs and detecting one
more true bug.

• We demonstrate the practicality of JSTAR. It took 137.3 seconds on average to perform a type
analysis for each version of ECMAScript and detected 157 type-related specification bugs with
59.2% precision; 93 out of 157 bugs are true bugs. Among them, JSTAR newly detected 14 bugs,
and the ECMAScript committee confirmed them all.

4.1 Overview

In this section, we demonstrate the overall structure of JSTAR depicted in Figure 4.1. It consists of
three phases: 1) specification extraction, 2) type analysis, and 3) bug detection.

4.1.1 Specification Extraction

As described in Chapter 2, JISET extracts a JavaScript mechanized specification from ECMAScript,
including generated parsers for syntax and compiled IRES functions for semantics. JSTAR utilizes it to
extract JavaScript types and even specification types used in ECMAScript and perform type analysis on
the compiled IRES functions.

Syntax and Semantics

ECMAScript describes the JavaScript syntax in an EBNF notation and the semantics using ab-
stract algorithms written in a structured natural language. From ECMAScript, JISET synthesizes AST
structures for syntax and compiles the abstract algorithms to IRES functions with parameters and lo-
cal variables for semantics. For example, the algorithm step “Let baseObj be ! ToObject(V .[[Base]])” is
compiled to an IRES instruction let baseObj = [! (ToObject V.Base)]. To make it suitable for type
analysis, we modify IRES as formally defined in Section 4.2.1.
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Figure 4.1: JSTAR: a type analyzer and a bug detector for mechanized specifications extracted from
ECMAScript by JISET

Types

In addition to JavaScript types, JSTAR represents three kinds of specification types. First, because
ASTs are values in abstract algorithms, they can be stored in variables and passed as function arguments.
For ASTs, we use their production names as their types and automatically link their corresponding
syntax-directed algorithms to their fields. Second, ECMAScript supports various record types and fields
whose possible values are defined in their corresponding tables. For example, “Table 9: Completion
Record Fields” in the latest ECMAScript describes the fields of the completion records. Thus, we
manually model the fields of record types based on the tables in the latest version and use them in a
type analysis. Third, for list-like structures, we define types for empty list [] and parametric lists [τ].

4.1.2 Type Analysis

JSTAR performs a type analysis with flow-sensitivity and type-sensitivity for arguments. Each func-
tion is split into multiple flow- and type-sensitive views, and an abstract state stores mapping from views
to corresponding abstract environments. To handle views separately, we use a worklist algorithm. The
type analyzer consists of two sub-modules: an Analysis Initializer and an Abstract Transfer Function.

Analysis Initializer

It defines the initial abstract state and the initial set of views for a worklist. ECMAScript provides
three kinds of abstract algorithms: normal, syntax-directed, and built-in. As for entry points of type
analysis, we use syntax-directed algorithms and built-in algorithms because they have their parameter
types. For each entry point, the initializer defines its abstract environment with parameter types and
adds the flow- and type-sensitive views of the entry point to the worklist.

Abstract Transfer Function

For each iteration, the abstract transfer function gets a specific view from the worklist and updates
the abstract environments of the next views based on the abstract semantics. It adds the next views to the
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Figure 4.2: An example JavaScript program with related previous specification bugs and their bug fixes

worklist if it changes their abstract environments, and the iteration finishes when the worklist becomes
empty. To increase the analysis precision, we perform a condition-based refinement for an abstract
environment when the current control point is a branch or an assertion, as described in Section 4.2.3.

4.1.3 Bug Detection

To detect specification bugs utilizing the type analysis, we develop four checkers in a bug detector.
We explain the targets of the checkers with an example JavaScript program that contains related previous
specification bugs and their bug fixes, as shown in Figure 4.2.

Reference Checker

The example JavaScript program first defines a variable f without initialization, which has the value
undefined. It then assigns an anonymous function to f using the operator ??=. While the corresponding
Evaluation algorithm in Figure 4.2(a) originally used the GetReferencedName algorithm to get a reference
name on line 4.a, a contributor removed the GetReferencedName algorithm and replaced all its invocations
with accesses of the field [[ReferencedName]] on October 28, 2020. However, the contributor missed
several cases, including the semantics of ??=, which was fixed by another contributor on November 3,
2020. Thus, the unknown variable bug for GetReferencedName lasted for seven days, which the reference
checker can detect.

Arity Checker

The program finally calls f with an argument true. During the initialization of the function call,
IteratorBindingInitialization in Figure 4.2(b) is executed with additional parameters iteratorRecord and
environment to assign argument values to parameters. However, a contributor missed passing additional
arguments to them on line 2 in IteratorBindingInitialization of ArrowParameters on September 6, 2018. As
a result, it caused an arity mismatch bug, which lasted for 533 days until another contributor fixed it on
February 20, 2020. The arity checker can detect such arity mismatches.
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Figure 4.3: Fields of completion records in ECMAScript 2020

Assertion Checker

During the initialization of the function call, IteratorBindingInitialization of FormalParameter in Fig-
ure 4.2(c) contains another bug. Even though the additional environment parameter may contain
undefined, a contributor did not consider it on line 5 in the initial commit of the open development
process on September 22, 2015. It caused an assertion failure bug, which lasted for 1,297 days until
another contributor fixed it on April 10, 2019. The assertion checker can detect such assertion failures.

Operand Checker

After the function call initialization, the parameter x has the value true, and Math.round in Fig-
ure 4.2(d) is invoked with the argument true. The Math.round built-in library first converts the given
parameter x to its corresponding number value n using ToNumber, and performs the remaining steps
using n. However, a contributor mistakenly used x instead of n on lines 3 and 4 on September 11, 2020.
This bug caused the algorithm to compare the boolean value true with the numeric value 0.5 or 0 in the
example code. This bug lived for two days until another contributor fixed it, and the operand checker
can detect them.

In the remainder of this chapter, we explain how to perform type analysis for IRES functions and
increase the analysis precision using the condition-based refinement (Section 4.2). Then, we present
how to detect type-related specification bugs (Section 4.3). Finally, we evaluate JSTAR to check its
performance, precision, and effectiveness of refinement and detection of new bugs (Section 4.4).

4.2 Type Analyzer

This section formally defines a modified IRES and its type analysis and presents a condition-based
refinement of the type analysis to improve the analysis precision.

4.2.1 Intermediate Representation

Functions F 3 f ::= def x(x∗, [x∗])l

Instructions I 3 i ::= let x = e | x = (e e∗) | assert e | if e l l | return e | r = e

References r ::= x | r[e]
Expressions e ::= t {[x : e]∗} | [e∗] | e : τ | r? | e⊕ e | 	 e | r | c | vp

Primitives Vp 3 vp ::= undefined | null | b | n | ibig | s | @s
Types T 3 τ ::= t | [] | [τ] | js | prim | undefined | null

| bool | numeric | num | bigint | str | symbol
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Figure 4.4: A graphical representation of the subtype relation <:

IRES is an untyped intermediate representation for ECMAScript. We modify it as a label-based
language to make it suitable for type analysis. A modified IRES program P = (func, inst, next) consists
of three mappings; func : L → F maps labels to their functions, inst : L → I maps labels to their
instructions, and next : L → L maps labels to their next labels, where a label l ∈ L denotes a program
point. A function def f(x∗, [p∗])l ∈ F consists of its name f, normal parameters x∗, optional parameters
p∗, and a body label l . For presentation brevity, we assume that no global variables exist in this chapter.
An instruction i is a variable declaration, a function call, an assertion, a branch, a return, or a reference
update. An invocation of an abstract algorithm in ECMAScript is compiled to a function call instruction
with a new temporary variable. We represent loops using branch instructions with cyclic pointing of
labels in next. A reference r is a variable x or a field access r[e]. We write r.f to briefly represent
r["f"]. An expression e is a record, a list, a type check, an existence check, a binary operation, a unary
operation, a reference, a constant, or a primitive, which is either undefined, null, a Boolean b, a Number

n, a BigInt ibig, a String s, or a Symbol @s.
A type τ ∈ T is either a nominal type t, an empty list type [], a parametric list type [τ], a JavaScript

type js, a primitive type prim, a numeric type numeric, num, bigint, str, or symbol. A nominal type t
is either 1) an AST type with its corresponding syntax-directed algorithms as its fields, or 2) a record
type with specific fields as described in ECMAScript. For example, Figure 4.3 shows an excerpt from
ECMAScript 2020 (ES11) that describes the fields of completion records1, which we model as follows:

Completion = {

Type : {cnormal, cbreak, ccontinue, creturn, cthrow},
Value : {js, cempty},
Target : {str, cempty}

}

The subtype relation <:⊆ T × T between types is depicted in Figure 4.4; a directed edge from τ ′ to τ
denotes τ ′ <: τ , and the relation is reflexive and transitive. The subtype relation depends on the nominal
types defined in ECMAScript. We extract the subtype relation for AST types from the JavaScript syntax.
For example, consider the syntax-directed abstract algorithm in Figure 4.2(c). Because the nonterminal
BindingElement is the unique alternative of the FormalParameter production, we automatically extract
the subtype relation: BindingElement <: FormalParameter. Using the subtype relation, the expression
e : τ checks whether the evaluation result of e has type τ ′ satisfying τ ′ <: τ .

1https://262.ecma-international.org/11.0/#table-8
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We define a denotational semantics of the modified IRES for instructions JiKi : S → S, references
JrKr : S→ S×V, and expressions JeKe : S→ S×V where S and V denote states and values, respectively.

States: S

We define states as follows:

States σ ∈ S = L ×K∗ ×H× E
Contexts κ ∈ K = L × E×X
Heaps h ∈ H = A→ O
Addresses a ∈ A
Objects o ∈ O = (Tt × (Vstr → V)) ] V∗

Nominal Types t ∈ Tt
Environments ρ ∈ E = X × V
Values v ∈ V = F ] A ] Vconst ] Vp

Constants c ∈ Vconst

Strings s ∈ Vstr

A state σ ∈ S consists of a label, a context stack, a heap, and an environment. A context κ ∈ K is a
triple of a label, an environment, and a variable. A heap h ∈ H is a mapping from addresses to objects.
For each address a ∈ A, an object o ∈ O is a record from fields to values with its nominal type or a list
of values. An environment ρ ∈ E is a mapping from variables to values. A value v ∈ V is a function, an
address, a constant, or a primitive value.

Instructions: JiKi : S→ S

• Variable Declarations:
Jlet x = eKi(σ) = (next(l ), κ, h, ρ[x 7→ v])

where
JeKe(σ) = ((l , κ, h, ρ), v)

• Function Calls:
Jx = (e0 e1 · · · en)Ki(σ) = (lf, κ :: κ, h, ρ′)

where
Je0Ke(σ) = (σ0, def f(p1, · · · , pm)lf∧
Je1Ke(σ0) = (σ1, v1) ∧ · · · ∧ JenKe(σn−1) = (σn, vn)∧
σn = (l , κ, h, ρ) ∧ k = min(n,m)∧
ρ′ = [p1 7→ v1, · · · , pk 7→ vk] ∧ κ = (next(l ), ρ, x)

• Assertions:
Jassert eKi(σ) = σ′ if JeKe(σ) = (σ′, #t)

• Branches:

Jif e lt lfKi(σ) =

{
(lt, κ, h, ρ) if v = #t

(lf, κ, h, ρ) if v = #f

where
JeKe(σ) = ((lt, κ, h, ρ), v)
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• Returns:
Jreturn eKi(σ) = (l , κ, h, ρ[x 7→ v])

where
JeKe(σ) = ((_, (l , ρ, x) :: κ, h,_), v)

• Variable Updates:
Jx = eKi(σ) = (next(l ), κ, h, ρ[x 7→ v])

where
JeKe(σ) = ((l , κ, h, ρ), v)

• Field Updates:
Jr[e0] = e1Ki(σ) = (next(l ), κ, h[a 7→ o′], ρ)

where
JrKe(σ) = (σ′, a) ∧ Je0Ke(σ′) = (σ0, v0)∧
Je1Ke(σ0) = ((l , κ, h, ρ), v1) ∧ o = h(a)∧

o′ =

{
or if o = (t, fs) ∧ v0 = s

ol if o = [v′1, · · · , v′m] ∧ v0 = n
∧

or = (t, fs[s 7→ v1]) ∧ ol = [· · · , v′n−1, v1, v
′
n+1, · · · ]

References: JrKr : S→ S× V

• Variable Lookups:
JxKr(σ) = (σ, ρ(x))

where
σ = (_,_,_, ρ)

• Field Lookups:
Jr[e]Kr(σ) = (σ′′, v′)

where
JrKe(σ) = (σ′, a) ∧ JeKe(σ′) = (σ′′, v)∧
σ′′ = (l , κ, h, ρ) ∧ o = h(a)∧

v′ =


fs(s) if o = (t, fs) ∧ v = s

v′n if o = [v′1, · · · , v′m] ∧ v = n

n if o = [v′1, · · · , v′n] ∧ v = "length"

Expressions: JeKe : S→ S× V

• Records:
Jt {x1 : e1, · · · , xn : en}Ke(σ) = (σ′, a)

where
Je1Ke(σ) = (σ1, v1) ∧ · · · ∧ JenKe(σn−1) = (σn, vn)∧
σn = (l , κ, h, ρ) ∧ fs = [x1 7→ v1, · · · , xn 7→ vn]

a 6∈ Domain(h) ∧ σ′ = (l , κ, h[a 7→ (t, fs)], ρ)
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• Lists:
J[e1, · · · , en]Ke(σ) = (σ′, a)

where
Je1Ke(σ) = (σ1, v1) ∧ · · · ∧ JenKe(σn−1) = (σn, vn)∧
σn = (l , κ, h, ρ) ∧ a 6∈ Domain(h)∧
σ′ = (l , κ, h[a 7→ [v1, · · · , vn]], ρ)

• Type Checks:
Je : τKe(σ) = (σ′, b)

where

JeKe(σ) = (σ′, v) ∧ b =

{
#t if v is a value of τ
#f otherwise

• Variable Existence Checks:
Jx?Ke(σ) = (σ, b)

where

σ = (_,_,_, ρ) ∧ b =

{
#t if x ∈ Domain(ρ)

#f otherwise

• Field Existence Checks:
Jr[e]?Ke(σ) = (σ′′, b)

where
JrKe(σ) = (σ′, a) ∧ JeKe(σ′) = (σ′′, v)∧
σ′′ = (l , κ, h, ρ) ∧ o = h(a)∧

b =


#t if o = (t, fs) ∧ v = s ∧ s ∈ Domain(fs)

#t if o = [v′1, · · · , v′m] ∧ v = n ∧ 1 ≤ n ≤ m
#f otherwise

• Binary Operations:
Je⊕ eKe(σ) = (σ′′, v0 ⊕ v1)

where
Je0Ke(σ) = (σ′, v0) ∧ Je1Ke(σ′) = (σ′′, v1)

• Unary Operations:
J	 eKe(σ) = (σ′,	 v)

where
JeKe(σ) = (σ′, v)

• References:
JrKe(σ) = JrKr(σ)

• Constants:
JcKe(σ) = (σ, c)

• Primitives:
JvpKe(σ) = (σ, vp)
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4.2.2 Type Analysis

We design a type analysis for the modified IRES based on the abstract interpretation framework [23,
25] with analysis sensitivity [52]. We first define abstract states Ŝ , and then define an abstract semantics
of the modified IRES for instructions ĴiKi : (L × T∗) → Ŝ → Ŝ, references ĴrKr : Ê → T̂, and expressions
ĴeKe : Ê→ T̂.

Abstract States: Ŝ

Before defining abstract states, we first extend types as follows:

T 3 τ ::= · · · | f | c | ? | b | s | normal(τ) | abrupt

We add types for functions f and constants c, Boolean values b and String values s to precisely handle
the control flows of branches and field accesses, respectively, the absent type ? to represent the absence
of variables, and normal(τ) for normal completions whose Value fields have type τ and abrupt for abrupt
completions to enhance the analysis precision.

Using the extended types, we define abstract states with flow-sensitivity and type-sensitivity for
arguments:

Abstract States σ̂ ∈ Ŝ = M× R
Result Maps m ∈ M = L × T∗ → Ê
Return Point Maps r ∈ R = F × T∗ → P(L × T∗ ×X )

Abstract Environments ρ̂ ∈ Ê = X → T̂
Abstract Types τ̂ ∈ T̂ = P(T)

An abstract state σ̂ ∈ Ŝ is a pair of a result map and a return point map. A result map m ∈M represents
an abstract environment for each flow- and type-sensitive view, and a return point map r ∈ R represents
possible return points of each function with a type-sensitive context; each return point consists of a view
for the caller function and a variable that represents the return value. An abstract environment ρ̂ ∈ Ê
represents possible types for variables, and ρ̂(x) = {?} when x is not defined in ρ̂. An abstract type τ̂ ∈ T̂
is a set of types. We define the join operator t, the meet operator u, and the partial order v for most
of abstract domains in a point-wise manner, and define the operators for types with a normalization
function norm because of their subtype relations:

τ̂0 t τ̂1 = norm(τ̂0 ∪ τ̂1)

τ̂0 u τ̂1 = norm({τ0 ∈ τ̂0 | {τ0} v τ̂1} ∪ {τ1 ∈ τ̂1 | {τ1} v τ̂0})
τ̂0 v τ̂1 ⇔ ∀τ0 ∈ τ̂0. ∃τ1 ∈ norm(τ̂1). s.t. τ0 <: τ1

where norm(τ̂) = {τ ∈ τ̂ | @τ ′ ∈ τ̂ \ {τ}. s.t. τ <: τ ′}. Then, we define the abstract semantics ĴP K of a
program P as the least fixpoint of the abstract transfer F̂ : Ŝ→ Ŝ:

ĴP K = limn→∞(F̂ )n(σ̂ι)

F̂ (σ̂) = σ̂ t
(⊔

(l ,τ)∈Domain(m)
̂Jinst(l )Ki(l , τ)(σ̂)

)
where σ̂ = (m,_) and σ̂ι denotes the initial abstract state. As described in Section 4.1, σ̂ι contains
the entry points of all syntax-directed algorithms without additional parameters and built-in algorithms
with appropriate abstract environments. For a syntax-directed algorithm, we construct its abstract
environment containing the variable this with its production type and other variables for nonterminals.
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For example, the syntax-directed algorithm in Figure 4.2(a) is initialized with the following abstract
environment:

this 7→ {AssignmentExpression},
LeftHandSideExpression 7→ {LeftHandSideExpression},

AssignmentExpression 7→ {AssignmentExpression}

For built-in algorithms, we assign pre-defined variables this, args, and NewTarget with their correspond-
ing types and parameters with js types. For example, the following abstract environment is for the
built-in algorithm Math.round in Figure 4.2(d):

this 7→ {js}, args 7→ {[js]},
NewTarget 7→ {Object, undefined}, x 7→ {js}

Instructions: ĴiKi : (L × T∗)→ Ŝ→ Ŝ

• Variable Declarations:

̂Jlet x = eKi(l , τ)(σ̂) = ({(next(l ), τ) 7→ ρ̂x},∅)

where
σ̂ = (m,_) ∧ ρ̂ = m(l , τ)∧
ρ̂x = ρ̂[x 7→ ĴeKe(ρ̂)]

• Function Calls:
̂Jx = (e e1 · · · en)Ki(l , τ)(σ̂) = (m′, r′)

where
σ̂ = (m,_) ∧ ρ̂ = m(l , τ)∧
τ̂ = ĴeKe(ρ̂)∧
τ̂1 = Ĵe1Ke(ρ̂) ∧ · · · ∧ τ̂n = ĴenKe(ρ̂)∧
T ′ = {u̇p([τ1, · · · , τn]) | τ1 ∈ τ̂1 ∧ · · · ∧ τn ∈ τ̂n}∧
f = def f(p1, · · · , [ · · · , pkf ])lf∧
ρ̂f,τ ′ = [p1 7→ {τ ′[1]}, · · · , pkf 7→ {τ

′[kf ]}]∧
m′ = {(lf , τ ′) 7→ ρ̂f,τ ′ | f ∈ τ̂ ∧ τ ′ ∈ T ′}∧
r′ = {(f, τ ′) 7→ {(next(l ), τ , x)} | f ∈ τ̂ ∧ τ ′ ∈ T ′}

• Returns:
̂Jreturn eKi(l , τ)(σ̂) = (m′,∅)

where
σ̂ = (m, r) ∧ ρ̂ = m(l , τ)∧
R = r(func(l ), τ)∧
m′ = {(lr, τ r) 7→ ρ̂r | (lr, τ r, x) ∈ R∧

ρ̂r = m(lr, τ r)[x 7→ ĴeKe(ρ̂)]}

• Assertions:
̂Jassert eKi(l , τ)(σ̂) = (m′,∅)

where
σ̂ = (m,_) ∧ ρ̂ = m(l , τ)∧
m′ = {(next(l ), τ) 7→ pass(e, #t)(ρ̂)}
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• Branches:
̂Jif e lt lfKi(l , τ)(σ̂) = (m′,∅)

where
σ̂ = (m,_) ∧ ρ̂ = m(l , τ)∧

m′ =

{
(lt, τ) 7→ pass(e, #t)(ρ̂),

(lf, τ) 7→ pass(e, #f)(ρ̂)

}

• Variable Updates:
̂Jx = eKi(l , τ)(σ̂) = ({(next(l ), τ) 7→ σ̂x},∅)

where
σ̂ = (m,_) ∧ ρ̂ = m(l , τ)∧
σ̂x = ρ̂[x 7→ ĴeKe(ρ̂)]

• Field Updates:
̂Jr[e0] = e1Ki(l , τ)(σ̂) = ({(next(l ), τ) 7→ ρ̂},∅)

where
σ̂ = (m,_) ∧ ρ̂ = m(l , τ)

To avoid the explosion of type-sensitive views, we upcast the argument type before function calls with
the following function:

up(τ) =



normal(up(τ ′)) if τ = normal(τ ′)

[up(τ ′)] if τ = [τ ′]

str if τ = s

bool if τ = b

τ otherwise

and u̇p denotes a point-wise extension of up for type sequences. For branches and assertions, we use the
following pass function to prevent infeasible control flows:

pass(e, b)(ρ̂) =

{
refine(e, b)(ρ̂) if {#t} v ĴeKe(ρ̂)

∅ otherwise

where refine is a funcition that performs condition-based refinement of the type analysis for the modified
IRES to enhance the analysis precision. It prunes out infeasible parts in abstract environments using the
conditions of branches and assertions. We formally define the refine function as follows:

refine(!e, b)(ρ̂) = refine(e,¬b)(ρ̂)

refine(e0 || e1, b)(ρ̂) =

{
ρ̂0 t ρ̂1 if b
ρ̂0 u ρ̂1 if ¬b

refine(e0 && e1, b)(ρ̂) =

{
ρ̂0 u ρ̂1 if b
ρ̂0 t ρ̂1 if ¬b

refine(x.Type == cnormal, #t)(ρ̂) = ρ̂[x 7→ τ̂x ∩ normal(T)]

refine(x.Type == cnormal, #f)(ρ̂) = ρ̂[x 7→ τ̂x ∩ {abrupt}]
refine(x == e, #t)(ρ̂) = ρ̂[x 7→ τ̂x u τ̂e]
refine(x == e, #f)(ρ̂) = ρ̂[x 7→ τ̂x \ bτ̂ec]
refine(x : τ, #t)(ρ̂) = ρ̂[x 7→ τ̂x u {τ}]
refine(x : τ, #f)(ρ̂) = ρ̂[x 7→ τ̂x \ {τ ′ | τ ′ <: τ}]

refine(e, b)(ρ̂) = ρ̂
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where ρ̂j = refine(ej , b)(ρ̂) for j = 0, 1, τ̂e = ĴeKe(ρ̂), and bτ̂c returns {τ} if τ̂ denotes a singleton type
τ , or returns ∅, otherwise.

References: ĴrKr : Ê→ T̂

• Variable Lookups:
ĴxKr(ρ̂) = ρ̂(x)

• Field Lookups:
Ĵr[e]Kr(ρ̂) = {τ [v] | τ ∈ ĴrKr(ρ̂) ∧ v ∈ ĴeKe(ρ̂)}

where τ [v] denotes the access of field v for a type τ .

Expressions: ĴeKe : Ê→ T̂

• Completion Records:

̂JCompletion { · · · , Type : e0, Value : e1, · · · }Ke(ρ̂)

=

{
{normal(τ) | τ ∈ Ĵe1Ke(ρ̂)} if Ĵe0Ke = cnormal

{abrupt} otherwise

• Records:
̂Jt { · · · }Ke(ρ̂) = {t}

• Lists:
Ĵ[]Ke(ρ̂) = []

̂J[e1, · · · , en]Ke(ρ̂) = {[τ] | τ ∈
⊔

1≤i≤n ĴeiKe(ρ̂)}

• Type Checks:
Ĵe : τKe(ρ̂) = {τ ′ <: τ | τ ′ ∈ ĴeKe(ρ̂)}

• Existence Checks:
Ĵr?Ke(ρ̂) = {τ 6= ? | τ ∈ ĴeKe(ρ̂)}

• Binary Operations:
̂Je0 ⊕ e1Ke(ρ̂) = {τ0⊕̂τ1 | τ0 ∈ τ̂0 ∧ τ1 ∈ τ̂1}

where
τ̂0 = Ĵe0Ke(ρ̂) ∧ τ̂1 = Ĵe1Ke(ρ̂)

• Unary Operations:
Ĵ	 eKe(ρ̂) = {	̂τ | τ ∈ ĴeKe(ρ̂)}

• References:
ĴrKe(ρ̂) = ĴrKr(ρ̂) \ {?}

• Constants:
ĴcKe(ρ̂) = c

• Primitives:

ĴvpKe(ρ̂) =


num if vp = n

bigint if vp = ibig

symbol if vp = @s

vp otherwise
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Table 4.1: Type-related specification bugs fixed by pull requests for the recent three years from 2018
to 2021

Category Bug Kind # Pull Requests # Bug Fixes

Reference
UnknownVar 5 12

DuplicatedVar 2 12

Arity MissingParam 2 4

Assertion Assertion 4 5

Operand
NoNumber 1 2

Abrupt 5 6

Total 19 41

4.2.3 Condition-based Refinement

We present a condition-based refinement of the type analysis for the modified IRES to enhance
the analysis precision. It prunes out infeasible parts in abstract environments using the conditions of
branches and assertions. We formally define the refine function as follows:

refine(!e, b)(ρ̂) = refine(e,¬b)(ρ̂)

refine(e0 || e1, b)(ρ̂) =

{
ρ̂0 t ρ̂1 if b
ρ̂0 u ρ̂1 if ¬b

refine(e0 && e1, b)(ρ̂) =

{
ρ̂0 u ρ̂1 if b
ρ̂0 t ρ̂1 if ¬b

refine(x.Type == cnormal, #t)(ρ̂) = ρ̂[x 7→ τ̂x u normal(T)]

refine(x.Type == cnormal, #f)(ρ̂) = ρ̂[x 7→ τ̂x u {abrupt}]
refine(x == e, #t)(ρ̂) = ρ̂[x 7→ τ̂x u τ̂e]
refine(x == e, #f)(ρ̂) = ρ̂[x 7→ τ̂x \ bτ̂ec]
refine(x : τ, #t)(ρ̂) = ρ̂[x 7→ τ̂x u {τ}]
refine(x : τ, #f)(ρ̂) = ρ̂[x 7→ τ̂x \ {τ ′ | τ ′ <: τ}]

refine(e, b)(ρ̂) = ρ̂

where ρ̂j = refine(ej , b)(ρ̂) for j = 0, 1, τ̂e = ĴeKe(ρ̂), and bτ̂c returns {τ} if τ̂ denotes a singleton type
τ , or returns ∅, otherwise.

4.3 Bug Detector

We develop a bug detector to statically detect type-related specification bugs in ECMAScript using
an augmented abstract transfer function F̂a with additional checkers. Before implementing checkers, we
manually investigated pull requests for the recent three years from 2018 to 2021 to identify important bugs
to detect. As summarized in Table 4.1, we found 19 pull requests that fixed 41 type-related specification
bugs and classified the bugs into four categories with six kinds. To detect them automatically, we
implement four checkers: a reference checker, an arity checker, an assertion checker, and an operand
checker.
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4.3.1 Reference Checker

ECMAScript abstract algorithms dynamically introduce variables in any contexts. A reference bug
occurs when trying to access variables not yet defined (UnknownVar) or to redefine variables already
defined (DuplicatedVar). According to our manual investigation of the pull requests, the reference bug
is the most prevalent type-related specification bugs; five pull requests fixed 12 unknown variable bugs
and two pull requests fixed 12 duplicated variable declaration bugs. We implement a reference checker
by adding additional checks to the abstract semantics of variable lookups and variable declarations as
follows:

ĴxKe(ρ̂) =

{
unknown variable x if ĴxKr(ρ̂) = {?}
· · · otherwise

̂Jlet x = eKi(l , τ)(σ̂) =

{
already defined variable x if τ̂ = {#t}
· · · otherwise

where τ̂ = Ĵx?Ke(σ̂(l , τ))

If the abstract semantics of a variable lookup for x is a singleton {?}, x is always an unknown variable.
For example, consider the syntax-directed algorithm in Figure 4.2(a). Since the GetReferencedName

algorithm is removed, the variable GetReferencedName does not exist in abstract environments and its
lookup returns {?}. Thus, the reference checker reports the unknown variable bug for GetReferencedName.
For duplicated variable declarations, the reference checker utilizes the abstract semantics of the existence
check Ĵx?Ke to see whether the variable x of each variable declaration is already defined.

4.3.2 Arity Checker

The arity of a function f = def f(p1, · · · , pn, [ · · · , pm])l is an interval [n,m] where n and m − n
denote the numbers of normal and optional parameters, respectively. In function invocations, an arity
bug occurs when the number of arguments does not match with the function arity (MissingParam). In
the last three years, two pull requests fixed four missing parameter bugs. The arity checker detects them
by adding an additional check to the abstract semantics of the function call instruction:

̂Jx = (e e1 · · · ek)Ki(l , τ)(σ̂) ={
missing parameters pk+1, · · · , pnf

if ∃f ∈ τ̂ . s.t. k < nf

· · · otherwise
where f = def f(p1, · · · , pnf

, [ · · · , pmf
])l ∧

τ̂ = ĴeKe(σ̂(l , τ)).

For each function f in the abstract semantics of the function expression e, the arity checker compares
the number of arguments with the arity of f to detect missing parameters. For example, consider
the syntax-directed algorithm in Figure 4.2(b). The algorithm invocation on line 2 is compiled to the
following function call instruction:

x = (formals.IteratorBindingInitialization formals)

using a temporary variable x. Because it passes only a single argument formals even though the func-
tion arity is [3, 3], the arity checker reports missing parameter bugs for two additional parameters
iteratorRecord and environment.
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4.3.3 Assertion Checker

An assertion failure (Assertion) is a specification bug that occurs when the condition of an assertion
instruction is not true. We found four pull requests that fixed five assertion failures. The assertion
checker detects them using an additional check in the abstract semantics of the assertion instruction:

̂Jassert eKi(l , τ)(σ̂) =

{
assertion failure e if {#t} 6v τ̂
· · · otherwise

where τ̂ = ĴeKe(σ̂(l , τ))

It checks whether the abstract semantics of the condition expression e subsumes {#t}. For example,
consider the syntax-directed algorithm in Figure 4.2(c). The parameter environment of this algorithm
has an environment record or undefined. Since type sensitivity divides the abstract types of arguments to
upcasted single types, there are two different abstract environments whose variable environment points to
{Environment} or {undefined}. When environment is {Environment}, the abstract semantics of the asser-
tion condition environment = originalEnv is {bool}. Even though we know that the type of originalEnv
is also {Environment}, because Environment is not a singleton type, we cannot conclude that they are the
exactly same environment. Thus, the assertion checker does not report any bug for this case. However, if
environment is {undefined}, the abstract semantics of the condition environment = originalEnv is {#f}
because an environment is never equal to undefined. Therefore, the assertion checker reports an assertion
failure for the condition environment = originalEnv.

4.3.4 Operand Checker

An ill-typed operand bug occurs when the type of an operand does not conform to its corresponding
parameter type. The operand checker detects such ill-typed operand bugs by additional checks in the
abstract semantics of operations:

̂Je0 ⊕ e1Ke(ρ̂) =


ill-typed operand e0 if Ĵe0Kr(ρ̂) 6v τ̂0
ill-typed operand e1 if Ĵe1Kr(ρ̂) 6v τ̂1
· · · otherwise

Ĵ	 eKe(ρ̂) =

{
ill-typed operand e if ĴeKr(ρ̂) 6v τ̂
· · · otherwise

where τ̂0, τ̂1, and τ̂ are expected abstract types of e0, e1, and e, respectively. The additional checks
report when a given operand does not conform to its expected type. Our manual investigation found two
non-numeric operand bugs (NoNumber) in one pull request and six unchecked abrupt completion bugs
(Abrupt) in five pull requests.

For an example non-numeric operand bug, consider the built-in algorithm Math.round in Fig-
ure 4.2(d). The types of x and n are {js} and {num}, respectively, because ToNumber always returns
number values or abrupt completions, and the prefix ? removes the latter case. The built-in algorithm
misuses x rather than n on lines 3 and 4, and because the expected abstract type {num, bigint} does not
subsume {js}, the operand checker reports non-numeric operand bugs.

An unchecked abrupt completion bug occurs when an actual value is necessary but it is an abrupt
completion. ECMAScript has a special implicit conversion for normal completions when their actual
values stored in the Value field are necessary. An actual value is necessary in various contexts such as
conditions, values of field updates, and operands of operators. For example, if the variable x has a normal
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(a) Functions (b) Views (c) Iterations (d) Analysis time

Figure 4.5: The statistics of the type analysis using JSTAR for 864 versions of ECMAScript

completion with 42 as its actual value, x + 1 should be 43 because the normal completion gets implicitly
converted into its actual value 42. We define a unary operator ↓ to explicitly represent this conversion:

↓ v =


v if v is not a completion
v.Value if v is normal
unchecked abrupt completion v otherwise

The operand checker detects unchecked abrupt completion bugs by assuming that the operator ↓ is used
when the actual value is necessary.

4.4 Evaluation

We implemented JSTAR as an open-source tool2 in Scala by extending JISET, a JavaScript IR-based
semantics extraction toolchain [75], with a worklist-based fixpoint algorithm for type analysis. Thus,
JSTAR reports type-related specification bugs detected in fully compiled abstract algorithms by JISET.
For built-in libraries, JSTAR analyzes the abstract algorithms of the essential built-in objects: Array,
Object, Function, Math, Proxy, and objects for JavaScript primitive types.

We evaluate JSTAR using the following research questions:

• RQ1. (Performance) How long does JSTAR take to perform type analysis for JavaScript specifi-
cations?

• RQ2. (Precision) How many type-related specification bugs detected by JSTAR are true bugs?

• RQ3. (Effectiveness of Refinement) Does the condition-based refinement improve the analysis
precision with modest performance overhead?

• RQ4: (Detection of New Bugs) Does JSTAR detect new specification bugs in the latest version
of ECMAScript?

Because the latest ECMAScript (ES12, 2021) is fixed on March 9, 2021, we analyzed all 864 versions
in the official ECMAScript repository3 for the last three years from January 1, 2018 to March 9, 2021.
We performed our experiments on five Ubuntu machines equipped with 4.2GHz Quad-Core Intel Core
i7 and 32GB of RAM.

2https://github.com/kaist-plrg/jstar
3https://github.com/tc39/ecma262
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Table 4.2: The analysis precision of JSTAR without refinement (no-refine), with refinement (refine), and
their difference (∆)

Checker Bug Kind
Precision = (# True Bugs) / (# Detected Bugs)

no-refine refine ∆

Reference
UnknownVar

62/106 ( 58.5%)
17/60 ( 28.3%)

63/78 ( 80.8%)
17/31 ( 54.8%)

+1/-28 (+22.3%)
/-29 (+26.5%)

DuplicatedVar 45/46 ( 97.8%) 46/47 ( 97.9%) +1/+1 ( +0.1%)

Arity MissingParam 4/ 4 (100.0%) 4/ 4 (100.0%) 4/ 4 (100.0%) 4/ 4 (100.0%) / ( %) / ( %)

Assertion Assertion 4/ 56 ( 7.1%) 4/56 ( 7.1%) 4/31 ( 12.9%) 4/31 ( 12.9%) /-25 ( +5.8%) /-25 ( +5.8%)

Operand
NoNumber

22/113 ( 19.5%)
2/65 ( 3.1%)

22/44 ( 50.0%)
2/ 6 ( 33.3%)

/-69 (+30.5%)
/-59 (+30.3%)

Abrupt 20/48 ( 41.7%) 20/38 ( 52.6%) /-10 (+11.0%)

Total 92 / 279 (33.0%) 93 / 157 (59.2%) +1 / -122 (+26.3%)

4.4.1 Performance

Figure 4.5 shows the statistics of the type analysis using JSTAR for 864 versions of ECMAScript:
(a) the number of analyzed functions, (b) the number of flow- and type-sensitive views, (c) the number
of worklist iterations, and (d) the analysis time. For each version, JSTAR analyzed 1,696.6 functions on
average. Since ECMAScript has gradually evolved, it analyzed 1,491 functions for the first version in
2018 but analyzed 1,864 functions in the latest. JSTAR analyzes functions with flow- and type-sensitive
views. On average, each version has 92.0K views, and each function has 54.1 views.

We measured the performance of JSTAR with the worklist iteration number and the analysis time.
For each version of ECMAScript, JSTAR took 137.3 seconds with 301.6K worklist iterations on average.
The average analysis time is 8.0 seconds for specification extraction (extract), 128.5 seconds for type
analysis (analyze), and 0.8 seconds for bug detection (detect). The performance overhead is modest
enough for JSTAR to be integrated in the open development process of ECMAScript.

4.4.2 Precision

We measured the analysis precision with the ratio of true bugs in the reported bugs by JSTAR. As
summarized in the refine column of Table 4.2, the analysis precision is 59.2%; 93 out of 157 detected
bugs are true bugs. The reference checker detected the most bugs with 80.8% precision; 17 unknown
variables (UnknownVar) and 46 duplicated variable declarations (DuplicatedVar) are true bugs. We found
four missing parameters (MissingParam) with 100.0% precision and four assertion failures (Assertion) with
12.9% precision. Finally, the operand checker detected two non-numeric operand bugs (NoNumber) with
33.3% precision and 20 unchecked abrupt completion bugs (Abrupt) with 52.6% precision.

To understand the impact of the detected true bugs, we extended JSTAR to automatically extract
when they were created and resolved in the ECMAScript official repository. A bug is created when it
exists in a specific version but does not exist in its previous version, and a bug is resolved vice versa.
The life span of a bug denotes the number of days between the created date and the resolved date.
Figure 4.6 illustrates the life spans of true bugs; Figure 4.6(a) depicts the life spans sorted by creation,
and Figure 4.6(b) depicts the histogram of the life spans in a logarithmic scale. Among 93 true bugs, 49
bugs are inherited, which means that they were created before 2018. Moreover, 14 bugs still exist in the
latest ECMAScript, which are newly detected by JSTAR. We discuss the details of 14 newly found bugs
in Section 4.4.4. Even though we assume that 49 inherited bugs were created on January 1, 2018, the
average life span is 422.8, and the maximum life span is 1,164. All the bugs with the maximum life span
are inherited ones, and they are all newly detected.
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(a) Life spans sorted by creation (b) The histogram of life spans

Figure 4.6: Life spans of true bugs

We manually investigated 64 false-positive bugs to understand why JSTAR detected them. Among
them, 17 bugs are due to extraction failure of mechanized specifications caused by wrong writing styles.
Because ECMAScript is written in HTML, JISET extracts abstract algorithms using the emu-alg HTML
tag. Unfortunately, several abstract algorithms are defined with the opening tag <emu-alg> but without
the closing tag </emu-alg>, which causes extraction failure of mechanized specifications leading to false-
positive bugs. The remaining 47 bugs are due to imprecise analysis. We found that 28 bugs are due to
imprecise analysis of the conditions of assertions and branches for specific function calls. For example,
consider the following algorithm step for GetValue:

Since IsPropertyReference always returns false when the Base field of a given reference record is cunresolvable,
the field access V .[[Base]] cannot be cunresolvable on line 4.a. However, because the type analysis does
not compute such information, cunresolvable is also passed as the argument of ToObject. We believe
that an advanced refinement technique can resolve this problem by pruning out infeasible field types
depending on specific contexts.

4.4.3 Effectiveness of Refinement

We measured the effectiveness of the condition-based refinement by comparing the performance and
the analysis precision of JSTAR without (no-refine) and with refinement (refine).

For performance comparison, Figure 4.7 presents the iterations and analysis time without and with
refinement. Figures 4.7(a) and 4.7(c) are histograms of the iterations and analysis time, respectively, and
Figures 4.7(b) and 4.7(d) are scatter charts for their ratios. Without refinement, the type analysis took
91.9 seconds with 261.5K iterations on average. After applying refinement, the number of iterations is
increased at least 0.99x, at most 1.36x, and 1.16x on average, and the analysis time is increased at least
1.05x, at most 1.99x, and 1.41x on average.

Table 4.2 shows the analysis precision without refinement, with refinement, and their difference. The
refinement improved the analysis precision from 33.0% to 59.2% by removing 122 false-positive bugs and
detecting one more true bug. Among six bug kinds, the most significant improvement is for non-numeric
operand bugs (NoNumber) from 3.1% to 33.3% by removing 59 false-positive bugs. The refinement
technique successfully prunes out non-numeric values for numeric types. The refinement significantly
increased the analysis precision also for unknown variable bugs (UnknownVar) and assertion failures
(Assertion) by removing 29 and 25 false-positive bugs, respectively. Because JSTAR can precisely analyze
callees of function invocations without refinement, we found no improvement for missing parameter bugs
(MissingParam).

61



(a) The histogram of iterations (b) The ratio of iterations

(c) The histogram of time (d) The ratio of time

Figure 4.7: Comparison of iterations and analysis time without refinement (no-refine) and with refine-
ment (refine)

4.4.4 Detection of New Bugs

Among 93 true bugs detected by JSTAR, 14 are newly detected and still exist in the latest version
of ECMAScript. Table 4.3 summarizes the bugs, their related JavaScript language features, and their
life spans. Except for two bugs in ES12-8, all bugs were introduced in the initial commit of the open
development on September 22, 2015. Thus, 12 newly detected bugs last for 1,996 days until March
9, 2021. The two bugs in ES12-8 were created when a contributor introduced the prefixes ? and ! on
December 16, 2015, and they last for 1,910 days. We reported the newly detected bugs to TC39, and all
of them were confirmed by the committee and will be fixed in ECMAScript 2022 (ES13).

ES12-1 contains three bugs due to duplicated variable declarations in three syntax-directed al-
gorithms for the case block of the switch statement: hasDuplicates in ContainsDuplicateLabels and
hasUndefinedLabels in ContainsUndefinedBreakTarget and ContainsUndefinedContinueTarget. A case block
optionally contains case clauses. In the beginning of three algorithms, hasDuplicates or hasUndefinedLabels
is defined if the clauses exist. However, because the same variable is defined again after the conditional
steps, three algorithms for case blocks with case clauses always have the duplicated variable declaration
bugs for hasDuplicates or hasUndefinedLabels. Similarly, ES12-2 contains three bugs caused by the
same reason in the same abstract algorithms for the try statement.

The bug in ES12-3 is a reference bug for a duplicated declaration of the variable index in the abstract
algorithm CreateMappedArgumentsObject. For each function call in JavaScript programs, an arguments

object is created by CreateMappedArgumentsObject. In the algorithm, the variable index is defined to
handle the index of a given list of arguments. However, the variable is defined twice in steps 14 and 17
of the algorithm.
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Table 4.3: Type-related specification bugs newly detected by JSTAR in the ECMAScript 2021 (ES12)

Name Feature # Description Checker Created Life Span

ES12-1 Switch 3
Variables hasDuplicates and hasUndefinedLabels

are already defined in algorithms for
case blocks of switch statements.

Reference 2015-09-22 1,996 days

ES12-2 Try 3
Variables hasDuplicates and hasUndefinedLabels

are already defined in algorithms for
try statements.

Reference 2015-09-22 1,996 days

ES12-3 Arguments 1
A variable index is already defined in
CreateMappedArgumentsObject.

Reference 2015-09-22 1,996 days

ES12-4 Array 2
A variable succeeded is already defined in
algorithms for Array objects.

Reference 2015-09-22 1,996 days

ES12-5 Async 1
A variable value is already defined in
Evaluation for yield expressions.

Reference 2015-09-22 1,996 days

ES12-6 Class 1
A variable ClassHeritage is not defined in
Contains for tails of class declarations.

Reference 2015-09-22 1,996 days

ES12-7 Branch 1
A variable Statement is not defined in
EarlyErrors for if statement.

Reference 2015-09-22 1,996 days

ES12-8 Arguments 2
Abrupt completions are used in
DefineOwnProperty and GetOwnProperty

for arguments objects without any checks.

Operand 2015-12-16 1,910 days

ES12-4 contains two reference bugs for the already defined variable succeeded in DefineOwnProperty

of Array objects and ArraySetLength. The Array objects are not ordinary objects and have special algo-
rithms for specific behaviors. Two such algorithms are wrapper algorithms of OrdinaryDefineOwnProperty,
which updates object properties. While they define the variable succeeded to representing the result of
OrdinaryDefineOwnProperty, the variable is defined twice in a specific condition.

The bug in ES12-5 is a reference bug for the already defined variable value in Evaluation of the
yield * expression. In the evaluation of yield * e, the variable value is defined twice to represent 1)
the evaluation result of the given expression e in step 3, and 2) the iterator value in step 7.c.viii.1.

The bug in ES12-6 is a reference bug for the unknown variable ClassHeritage in Contains for the
tails of class declarations. A tail of a class declaration consists of an optional class extension with
the extends keyword and a class body. When the optional class extension does not exist, the variable
ClassHeritage is not defined, but the Contains algorithm tries to access it without any check of its
existence.

The bug in ES12-7 is a reference bug for the unknown variable Statement in EarlyErrors for the
if statement. In syntax-directed algorithms, when a production produces multiple sub-ASTs, it uses
ordinal numbers as prefixes of variables. Because the if statement contains two sub-ASTs produced by
the Statement production, the ordinal number prefixes are necessary for the variable Statement. However,
the EarlyErrors algorithm for the if statement uses the variable without any ordinal number prefixes.

ES12-8 contains two operand type bugs related to abrupt completions in DefineOwnProperty and
GetOwnProperty for arguments objects. The two algorithms define or get own properties of arguments
objects. They use the Get algorithm, which returns JavaScript values stored in object properties or
abrupt completions. Thus, they should check whether the results of Get are abstract completions or not
before using them, but they use the results without any checking of abrupt completion.
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Chapter 5. JSAVER: Derivation of Static Analyzers

In this thesis, we first introduce JISET (Chapter 2) to automatically extract a JavaScript mechanized
specification from ECMAScript. Then, we present two different ways to check the validity of ECMAScript
by 1) checking the conformance with JavaScript engines via N+1-version differential testing with JEST

(Chapter 3) and 2) performing type analysis for ECMAScript (Chapter 4). Finally, This chapter in-
troduces the last tool JSAVER, a JavaScript Static Analyzer via ECMAScript Representations. It is
the first tool that automatically derives JavaScript static analyzers from any versions of ECMAScript.
As explained in Chapter 1, the main idea of this work is to shift the paradigm from compiler -based
approaches to interpreter -based approaches to utilize “the interpreter-based nature” of JavaScript. Our
contributions to this work are as follows:

• We propose a novel meta-level static analysis technique. It indirectly analyzes a defined -language
program by analyzing its definitional interpreter using a static analyzer of the defining-language
with the program as the input.

• We present JSAVER, the first tool that automatically derives JavaScript static analyzers from any
versions of ECMAScript by 1) extracting a definitional interpreter from ECMAScript and 2) per-
forming a meta-level static analysis with the extracted interpreter.

• We derive a static analyzer JSAES12 from the latest ECMAScript, ES12, to evaluate JSAVER. The
derived analyzer JSAES12 soundly analyzes all applicable 18,556 official conformance tests with
99.0% of precision in 1.59 seconds on average. Moreover, we demonstrate the configurability and
adaptability of JSAVER with several case studies.

5.1 Background

In this section, we briefly remind ECMAScript and how JISET extracts a mechanized specification
as a JavaScript definitional interpreter from ECMAScript. Since we perform meta-level static analysis
for JavaScript using extracted definitional interpreters, it is essential to understand how ECMAScript
describes the JavaScript semantics and how JISET extracts a definitional interpreter from it.

As a running example, we use the “logical OR assignment” introduced in ES12. Figure 5.1(a) shows
its semantics described as an algorithm in English, Figure 5.1(b) shows an IRES function extracted from
the algorithm, and Figure 5.2 presents an example JavaScript program using a logical OR assignment.

5.1.1 JavaScript Semantics in ECMAScript

ECMAScript is the official specification of JavaScript, which describes its syntax in a variant of the
extended Backus–Naur form (EBNF) and its semantics as algorithms in English. For example, consider
the example code in Figure 5.2. It uses several language features not supported in ES5.1: the let

statement, the arrow function, and the logical OR assignment. Among them, the logical OR assignment
is newly introduced in ES12. Its syntax is defined by the eighth of nine alternatives of the syntactic
production of AssignmentExpression, and their semantics is defined by the algorithm in Figure 5.1(a). It
first evaluates LeftHandSideExpression to get a reference lref and its value lval in steps 1 and 2, respectively.
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(a) Evaluation algorithm for the logical OR assignment

1 syntax def AssignmentExpression[8].Evaluation(

2 this, LeftHandSideExpression, AssignmentExpression

3 ) { /* entry */

4 let lref = (LeftHandSideExpression.Evaluation)

5 let lval = [? (GetValue lref)]

6 let lbool = [! (ToBoolean lval)] /* #1 */

7 if (= lbool true) { /* #2 */ return lval } else {} /* #3 */

8 if (&& (IsAnonymousFunctionDefinition AssignmentExpression)

9 (LeftHandSideExpression.IsIdentifierRef)) { /* #4 */

10 let rval = (AssignmentExpression.NamedEvaluation lref.ReferencedName)

11 } else { /* #5 */

12 let rref = (AssignmentExpression.Evaluation)

13 let rval = [? (GetValue rref)]

14 } /* #6 */

15 [? (PutValue lref rval)]

16 return rval

17 } /* exit */

(b) Extracted IRES function for the logical OR assignment

Figure 5.1: Evaluation algorithm for the eighth alternative of AssignmentExpression in ES12 and its
extracted IRES function

1 let f = /* a random integer from 0 to 99 */;

2 f ||= x => x; // f: {name: "f", ...} or [1, 99]

3 let y = f.name; // x: "f" or undefined

Figure 5.2: JavaScript code using the logical OR assignment
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Figure 5.3: Result of f ||= x => x in a definitional interpreter

Then, it checks whether its boolean value lbool is true for short-circuiting in steps 3-4. In step 5, if the
right-hand-side AssignmentExpression is an anonymous function and the LeftHandSideExpression is an
identifier reference, it defines the name of the function as the identifier name in step 5-a. In step 6,
otherwise, the algorithm evaluates the right-hand-side expression to the value rval . It then puts rval to
the reference lref and returns rval . While the operator seems to be the same as combining the logical
OR operator (||) with the assignment operator (=), they have different semantics when defining names
of anonymous functions. Consider the example code. It first defines a variable f with a random integer
from 0 to 99. Then, it uses a logical OR assignment to update f with an arrow function whose name
becomes "f" only if f’s value is 0 because 0 represents false, but the other integers represent true.
Finally, it defines a variable y with f.name, whose value is "f" if f’s value is the arrow function, but
undefined, otherwise. If the statement on line 2 is f = f || (x => x);, the value of y is undefined or ""
instead of "f". Thus, to construct a sound static analyzer, one should consider such detailed semantics
by referring to all the algorithms in ECMAScript.

ECMAScript uses two kinds of algorithms: syntax-directed algorithms and normal algorithms. A
syntax-directed algorithm consists of 1) its corresponding alternative of a syntactic production, 2) its
name, 3) parameters, and 4) body steps. For example, the algorithm in Figure 5.1(a) is a syntax-
directed algorithm consisting of the eighth alternative of AssignmentExpression, Evaluation as its name,
no parameters, and the body consisting of eight steps. Such syntax-directed algorithms are invoked with
a verb “evaluate” for Evaluation algorithms or a preposition “of” for the other named algorithms. For
example, step 1 of the algorithm invokes the Evaluation algorithm for LeftHandSideExpression without any
arguments. On the other hand, step 5-a invokes the NamedEvaluation algorithm of AssignmentExpression

with the argument lref .[[ReferencedName]]. Unlike syntax-directed algorithms, a normal algorithm is
defined with only its name, parameters, and body steps. Their invocations are like function calls with
parentheses: GetValue(lref ) in step 2 and ToBoolean(lval) in step 3. Finally, each algorithm always returns
a completion record to handle different kinds of JavaScript control flows. The prefix “?” checks whether a
completion record is abrupt and returns immediately if so. Otherwise, it converts the completion record
to its containing value. On the other hand, the prefix “ !” converts a completion record to its containing
value without checking for abrupt completion.
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Figure 5.4: Overall structure of JSAVER

5.1.2 JavaScript Definitional Interpreter

Several researchers and developers have presented JavaScript definitional interpreters [3, 6, 16, 19,
39, 75] instead of the compiler-based approaches [31, 36, 45, 56, 70]. A definitional interpreter is written
in a defining-language to describe the language semantics of a defined -language. Among them, we
utilize JISET [75] to automatically extract a definitional interpreter from a given version of ECMAScript.
The tool JISET 1) generates a parser for syntax and 2) transforms algorithms to corresponding IRES

functions for semantics. For example, when JISET takes ES12 as an input, it generates a parser that
supports logical OR assignments according to the syntactic production of AssignmentExpression. It then
transforms the syntax-directed algorithm in Figure 5.1(a) into the IRES function in Figure 5.1(b). The
defining-language of a definitional interpreter often treats ASTs of the defined-language as values. The
defining-language IRES also treats ASTs of the defined-language JavaScript as its values. For example,
the parser generated from ES12 parses the second statement in Figure 5.2 and produces an AST shown at
the bottom of Figure 5.3. Then, the extracted IRES function in Figure 5.1(b) takes the AST and its left
and right subtrees as its arguments and defines three local variables as shown at the top of Figure 5.3.

5.2 Overview

In this section, we explain the overall structure of JSAVER as depicted in Figure 5.4. It performs
a meta-level static analysis with JavaScript as its defined -language and IRES as its defining-language.
Thus, JSAVER indirectly analyzes a JavaScript program by analyzing IRES functions with the AST of
the program as an argument. For a more detailed explanation, we describe how it performs a meta-level
static analysis for the code in Figure 5.2 with ES12.

JSAVER first utilizes JISET to extract a definitional interpreter from ES12. As explained in Sec-
tion 5.1, it generates a JavaScript parser supporting new language features, including the logical OR
assignment, and extracts IRES functions, including the function in Figure 5.1(b), by compiling algo-
rithms. The generated parser parses the example code to produce an AST, which contains the AST
shown at the bottom of Figure 5.3 as a subtree. Then, Analysis Initializer constructs an initial abstract
state with the extracted IRES functions and the produced AST. Finally, JSAVER computes the fixpoint
of Abstract Transfer Function as the analysis result of the example code with the initial abstract state.
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Figure 5.5: Control flow graph of the IRES function in Figure 5.1(b) with its flow-sensitive analysis
results

Now, let us explain what happens during the analysis of the IRES function in Figure 5.1(b). We
support view-based analysis sensitivities [52, 73] and utilize a worklist algorithm to perform view-wise
updates of analysis results. In this example, we perform flow-sensitive analysis by splitting views based
on program points annotated in comments of the IRES function: entry, exit, and from #1 to #6.

Figure 5.5 shows a control flow graph of the IRES function with its flow-sensitive analysis results.
In the graph, each node and arrow denotes a program point and a control flow, respectively. If nodes or
arrows are dotted, they are unreachable. In addition, we use the interval domain [24] for integers in this
example. At the entry point, three parameters point to three ASTs, respectively, as shown at the top of
Figure 5.3. At point #1, three new local variables are defined: lref, lval, and lbool. Since the variable
LeftHandSideExpression points to the AST of the JavaScript variable f, lref points to its reference and
lval points to the interval [0, 99]. Moreover, lbool points to the top boolean value >bool because
lval contains 0 representing false and [1, 99] representing true. Therefore, both points #2 and #3 are
reachable. At point #2, it returns lval; thus, the return value @return at the exit point becomes [0, 99].
At point #3, the condition is always true in this code; thus, only point #4 is reachable, and it assigns a
new variable rval with a JavaScript function object whose name property is a string "f". At point #6, it
updates the reference of the JavaScript variable f with rval and returns it. Therefore, the return value
@return at the exit point is merged with the JavaScript function object stored in rval. Finally, the IRES

function returns the abstract value representing both [0, 99] and the JavaScript function object.
Finally, we can automatically derive a JavaScript static analyzer for a specific version of ECMAScript

using JSAVER. For example, if we want to derive a JavaScript static analyzer for ES12, it is sufficient to
fix the first argument of JSAVER as ES12 and passes a given JavaScript program as the second argument
of the tool as follows:
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In the remainder of this chapter, we formally define the meta-level static analysis for JavaScript
with abstract domains and analysis sensitivities (Section 5.3). Then, we explain how to implement
JSAVER with several optimization and analysis techniques (Section 5.4). Finally, we evaluate JSAVER

(Section 5.5).

5.3 Meta-Level Static Analysis

In this section, we formalize a meta-level static analysis for JavaScript as a defined -language with
IRES as a defining-language. We first define a simplified IRES for brevity and a JavaScript definitional
interpreter as an IRES program. Then, we define a meta-level static analysis for JavaScript with the
abstract semantics of IRES in the abstract interpretation framework [23, 25]. In addition, we explain
how to indirectly express abstract domains and analysis sensitivities for JavaScript.

5.3.1 IRES: An IR for ECMAScript

We first define a simplified IRES by excluding several minor language features for brevity. It is an
intermediate representation for ECMAScript used as a defining-language for a JavaScript definitional
interpreters extracted by JISET. Then, we defined its its collecting and restricted semantics.

Programs P 3 P ::= f∗

Functions F 3 f ::= syntax? def x(x∗) {[l : i]∗}

Variables X 3 x

Labels L 3 l

Instructions I 3 i ::= r := e | x := {} | x := e(e∗) | if e l l | return e
Expressions E 3 e ::= vp | op(e∗) | r
References R 3 r ::= x | e[e] | e[e]js

Syntax and Notations An IRES program P is a sequence of functions. A function f is defined with
its name, parameters, and body instructions with labels. If it is defined with the prefix syntax, it is a
syntax-directed function, otherwise, a normal function. An instruction i is a reference update, an object
allocation, a function call, a branch, or a return instruction. An expression e is a primitive value, a
primitive operation, or a reference expression. A reference is a variable, an internal field access, or an
external field access. For a given program P , three helper functions func : L → F , inst : L → I, and
next : L → L return the function, instruction, and next label, respectively, of a given label.

States σ ∈ S = L × E×K∗ ×H
Environments ρ ∈ E = X fin−→ V
Calling Contexts κ ∈ K = L × E
Heaps h ∈ H = A fin−→ L×M×Mjs

Internal Field Maps m ∈ M = Vstr
fin−→ V

External Field Maps mjs ∈ Mjs = Vstr
fin−→ V

Values v ∈ V = A ] Vp ] Ω ] F
Primitive Values vp ∈ Vp = Vbool ] Vint ] Vstr ] · · ·
JS ASTs ω ∈ Ω
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Figure 5.6: A JavaScript syntactic production for coalesce expressions

Concrete States An IRES state σ ∈ S consists of a label, an environment, a stack of calling contexts,
and a heap. An environment ρ ∈ E is a finite mapping from variables to values. A calling context κ ∈ K
consists of a label and an environment of the caller. A heap h ∈ H is a finite mapping from addresses to
labels for allocation sites and two finite mappings from strings to values. The former mapping represents
internal fields accessible by e[e], and the latter represents external fields accessible by e[e]js. A value
v ∈ V is an address, a primitive value (e.g., a boolean b, an integer i, and a string s), a JavaScript AST
ω ∈ Ω, or a function f ∈ F .

Since IRES treats JavaScript ASTs as its values, we define them with tree nodes Φ as follows:

Ω 3 ω ::= τk〈φ∗〉
Φ 3 φ ::= s | ω

A JavaScript AST τk〈φ1, · · · , φn〉 denotes k-th alternative in the syntactic production of nonterminal
symbol τ with multiple tree nodes φ1, · · · , φn. A tree node is a string for a terminal symbol or another tree
for a nonterminal symbol. We define several notations to easily deal with JavaScript ASTs. The notation
τk.eval denotes an Evaluation function of k-th alternative in the production τ . Similarly, the notation
ω.eval denotes the Evaluation function of the AST ω, and it is same with τk.eval when ω = τk〈· · · 〉. The
Evaluation of each AST takes the AST itself and its tree nodes that are nonterminals as arguments. The
notation subs(ω) denotes tree nodes that are subtrees of ω. For example, Figure 5.6 shows a syntactic
production for coalesce expressions. Consider the JavaScript coalesce expression: 42 ?? true. Then, the
following AST is produced as its parsing result:

ω0 = CoalesceExpression0〈ω1, "??", ω2〉
ω1 = CoalesceExpressionHead1〈ω3〉
ω2 = BitwiseORExpression0〈· · · 〉
ω3 = BitwiseORExpression0〈· · · 〉

Its Evaluation function CoalesceExpression0.eval takes three subtrees as arguments annotated by ω0, ω1,
and ω2 in the figure. The ASTs ω0, ω1, ω2, and ω3 are subtrees of ω0 (i.e., ω0 C ω0, · · · , ω3 C ω0), and
subs(ω0) = [ω1, ω2] ∧ subs(ω1) = [ω3].
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Collecting Semantics We define denotational semantics of instructions JiK : S → S and expressions
JeK : S → V in Section 5.3.1 and Section 5.3.1, respectively. Then, the collecting semantics JP K of an
IRES program P is a set of reachable states P(S) from the initial states Sι ⊆ S. We can compute it using
a fixpoint algorithm:

JP K = lim
n→∞

Fn(Sι)

with a transfer function F : P(S)→ P(S):

F (S) = S ∪ {σ′ ∈ S | σ ∈ S ∧ σ  P σ
′}

where σ  P σ
′ denotes the one-step transition of a state σ to another state σ′ in the program P :

σ  P σ
′ ⇐⇒ σ = (l ,_,_,_) ∧ Jinst(l )K(σ) = σ′

Restricted Semantics Moreover, the restricted semantics JP KR : P(S) → P(S) is a set of reachable
states from the initial states restricted by a given set of states:

JP KR(S) = lim
n→∞

Fn(Sι ∩ S)

Instructions: JiK : S→ S

• Variable Assignments:
Jx := eK(σ) = (next(l ), ρ[x 7→ v], κ, h)

where σ = (l , ρ, κ, h) and JeK = v

• Internal Field Assignments:

Je0[e1] := e2K(σ) = (next(l ), ρ, κ, h[a 7→ (l ′,m′,mjs)])

where
σ = (l , ρ, κ, h)

(a, s, v) = (Je0K(σ), Je1K(σ), Je2K(σ))

(l ′,m,mjs) = h(a)

m′ = m[s 7→ v]

• External Field Assignments:

Je0[e1]js := e2K(σ) = (next(l ), ρ, κ, h[a 7→ (l ′,m,m′js)])

where
σ = (l , ρ, κ, h)

(a, s, v) = (Je0K(σ), Je1K(σ), Je2K(σ))

(l ′,m,mjs) = h(a)

m′js = mjs[s 7→ v]

• Field Mapping Allocations:

Jx := {}K(σ) = (next(l ), ρ[x 7→ a], κ, h[a 7→ (l , ε, ε)])

where σ = (l , ρ, κ, h) and a 6∈ Domain(h)
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• Function Calls:
Jx := e(e1 · · · en)K(σ) = (l ′, ρ′, κ :: κ, h)

where
σ = (l , ρ, κ, h)

JeK(σ) = f = · · · (x1, · · · , xn) {l ′ : · · · }
ρ′ = ⊥[x1 7→ Je1K(σ), · · · , xn 7→ JenK(σ)]

κ = (l , ρ)

• Branches:

Jif e lt lfK(σ) =

{
(lt, ρ, κ, h) if JeK(σ) = #t

(lf, ρ, κ, h) if JeK(σ) = #f

• Returns:
Jreturn eK(σ) = (next(l ), ρ[x 7→ v], κ, h)

where
σ = (_,_, (l , ρ) :: κ, h)

JeK(σ) = v

inst(l ) = x := · · ·

Expressions: JeK : S→ V

• Primitive Values:
JvpK(σ) = vp

• Primitive Operations:
Jop(e1, · · · , en)K(σ) = op(vp1 , · · · , vpn)

where ∀1 ≤ j ≤ n. JekK(σ) = vpj

• Variable Lookups:
JxK(σ) = ρ(x)

where σ = (_, ρ,_,_)

• Internal Field Lookups:
Je0[e1]K(σ) = v

where
σ = (_,_,_, h)

v0 = Je0K(σ)

v1 = Je1K(σ)

v =


m(s) if (v0, v1) = (a, s) ∧ h(a) = (_,m,_)

ωj if (v0, v1) = (τk〈ω1, · · · , ωn〉, j)
τk.eval if (v0, v1) = (τk〈ω1, · · · , ωn〉, "eval")

• External Field Lookups:
Je0[e1]jsK(σ) = v

where
σ = (_,_,_, h)

(a, s) = (Je0K(σ), Je1K(σ))

h(a) = (_,_,mjs)

v = mjs(s)
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5.3.2 JavaScript Definitional Interpreter

In a similar way to JP K, the collecting semantics JPjsKjs of a JavaScript program Pjs is a set of
all reachable JavaScript states P(Sjs) from the initial JavaScript states Sιjs ⊆ Sjs. Then, we define a
definitional interpreter for JavaScript as an IRES program:

Definition 5.3.1 (JavaScript Definitional Interpreter). An IRES program P is a JavaScript definitional
interpreter if and only if the following condition holds for each JavaScript program Pjs ∈ Pjs:

JPjsKjs = decode ◦ JP KR ◦ encode(Pjs)

where encode : Pjs → P(S) encodes a JavaScript program to IRES states and decode : P(S) → P(Sjs)
decodes IRES states to JavaScript states.

Thus, a restricted semantics of the definitional interpreter with a JavaScript program Pjs indirectly
represents the collecting semantics JPjsKjs of the JavaScript program Pjs. We utilize JISET to automatically
extract such JavaScript definitional interpreters from any versions of ECMAScript.

5.3.3 JavaScript Meta-Level Static Analysis

For a JavaScript meta-level static analysis, we define an abstract semantics of IRES in the abstract
interpretation framework with view-based analysis sensitivities [52, 73].

Abstract Domains We first define the abstract domain for each structure. We define an analysis
sensitivity as a view abstraction δ : Π → P(S), a function from finite views to sets of states. Thus, a
sensitive abstract state is defined as a function from pairs of labels and views to abstract states:

• Sensitive Abstract States: D̂δ = L ×Π→ Ŝ

γ : D̂δ → P(S)

γ(d̂δ) = {σ ∈ S | ∀n ≥ 0. callern(σ) = σ′ ⇒ (

∀(l , π) ∈ L ×Π.

σ′ = (l ,_,_,_) ∈ δ(π)⇒ σ′ ∈ γ ◦ d̂δ(π)

)}
d̂δ v d̂′δ ⇔ ∀(l , π) ∈ Π. d̂δ(l , π) v d̂′δ(l , π)

d̂δ t d̂′δ = λ(l , π) ∈ Π. d̂δ(l , π) t d̂′δ(l , π)

d̂δ u d̂′δ = λ(l , π) ∈ Π. d̂δ(l , π) u d̂′δ(l , π)

• Abstract States: Ŝ = Ê× K̂× Ĥ

γ : Ŝ→ P(S)

γ(σ̂) = {σ ∈ S | ρ ∈ γ(ρ̂) ∧ σ ∈ γ(κ̂) ∧ (h,_) ∈ γ(ĥ)}
where σ̂ = (ρ̂, κ̂, ĥ) and σ = (_, ρ,_, h)

σ̂ v σ̂′ ⇔ ρ̂ v ρ̂′ ∧ κ̂ v κ̂′ ∧ ĥ v ĥ′

σ̂ t σ̂′ = (ρ̂ t ρ̂′, κ̂ t κ̂′, ĥ t ĥ′)
σ̂ u σ̂′ = (ρ̂ u ρ̂′, κ̂ u κ̂′, ĥ u ĥ′)
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• Abstract Environments: Ê = X → V̂

γ : Ê→ P(E)

γ(ρ̂) = {ρ ∈ E | ∀x 7→ v ∈ ρ. v ∈ γ ◦ ρ̂(x)}
ρ̂ v ρ̂′ ⇔ ∀x ∈ X . ρ̂(x) v ρ̂′(x)

ρ̂ t ρ̂′ ⇔ λx ∈ X . ρ̂(x) t ρ̂′(x)

ρ̂ u ρ̂′ ⇔ λx ∈ X . ρ̂(x) u ρ̂′(x)

• Abstract Contexts: K̂ = P(L ×Π)

γ : K̂→ P(S)

γ(κ̂) = {σ ∈ S | caller(σ) = σ′ = (l ,_,_,_)⇒ ∃(l , π) ∈ κ̂. σ′ ∈ δ(π)}
κ̂ v κ̂′ ⇔ κ̂ ⊆ κ̂′

κ̂ t κ̂′ = κ̂ ∪ κ̂′

κ̂ u κ̂′ = κ̂ ∩ κ̂′

• Abstract Heaps: Ĥ = Â→ M̂× M̂js

γ : Ĥ→ P(H)

γ(ĥ) = {h ∈ H | ∀a 7→ (l ,m,mjs) ∈ h. l = η(a) ∧ (m̂, m̂js) = ĥ(l ) ∧m ∈ γ(m̂) ∧mjs ∈ γ(m̂js)}
ĥ v ĥ′ ⇔ ∀â ∈ Â. m̂ v m̂′ ∧ m̂js v m̂js

′

ĥ t ĥ′ = λâ ∈ Â. (m̂ t m̂′, m̂js t m̂js
′
)

ĥ u ĥ′ = λâ ∈ Â. (m̂ u m̂′, m̂js u m̂js
′
)

where ĥ(â) = (m̂, m̂js) and ĥ′(â) = (m̂′, m̂js
′
)

• Abstract Internal Field Maps: M̂ = Vstr → V̂

γ : M̂→ P(M)

γ(m̂) = {m ∈M | ∀s 7→ v ∈ m. v ∈ γ ◦ m̂(s)}
m̂ v m̂′ ⇔ ∀s ∈ Vstr. m̂(s) v m̂′(s)
m̂ t m̂′ = λs ∈ Vstr. m̂(s) t m̂′(s)
m̂ u m̂′ = λs ∈ Vstr. m̂(s) u m̂′(s)

• Abstract External Field Maps: M̂js = Vstr → V̂

γ : M̂js → P(Mjs)

γ(m̂js) = {mjs ∈Mjs | ∀s 7→ v ∈ mjs. v ∈ γ ◦ m̂js(s)}
m̂js v m̂js

′ ⇔ ∀s ∈ Vstr. m̂js(s) v m̂js
′
(s)

m̂js t m̂js
′

= λs ∈ Vstr. m̂js(s) t m̂js
′
(s)

m̂js u m̂js
′

= λs ∈ Vstr. m̂js(s) u m̂js
′
(s)

• Abstract Values: V̂ = P(Â ] Vp ] Ω ] F)

γ : V̂→ P(V)

γ(v̂) = (v̂ \ Â) ] {a ∈ A | η(a) ∈ v̂}
v̂ v v̂′ ⇔ v̂ ⊆ v̂′

v̂ t v̂′ = v̂ ∪ v̂′

v̂ u v̂′ = v̂ ∩ v̂′
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An abstract state σ̂ ∈ Ŝ consists of an abstract environment, an abstract context, and an abstract
heap. An abstract environment ρ̂ ∈ Ê maps variables to abstract values. An abstract context κ̂ ∈ K̂ is a
set of pairs of labels and views for callers. An abstract heap ĥ ∈ Ĥ is a function from abstract addresses
to pairs of abstract internal and external field maps. An abstract field map is a function from strings
to abstract values. An abstract address â ∈ Â is defined with the allocation-site abstraction [20], which
partitions concrete addresses A based on their allocation sites L. An abstract value v̂ ∈ V̂ is a set of
abstract addresses and non-address values. While we use concrete strings in abstract field maps and sets
of primitive values in abstract values in this formalization for brevity, we abstract them to bound the
height of their lattices as finite in the implementation. We define a partial order v, a join operator t,
and a meet operator u. Then, we define the concretization function γ for each abstract domain with the
following a helper function caller : S� S to get callers’ states:

σ = (_,_, (l , ρ) :: κ, h)⇒ caller(σ) = (l , ρ, κ, h)

and a valuation [26] η : A→ Â to correctly concretize abstract addresses.

Abstract Semantics Using abstract domains, we define the abstract semantics ĴP K of an IRES

program P :
ĴP K = lim

n→∞
F̂n(d̂ιδ)

with an initial sensitive abstract state d̂ιδ (i.e., Sι ⊆ γ(d̂ιδ)) and an abstract transfer function F̂ : D̂δ → D̂δ:

F̂ (d̂δ) = d̂δ t
⊔

(l ,π)∈L×Π

δ ̂Jinst(l )K(l , π, d̂δ(l , π))

where δĴiK : L ×Π× Ŝ→ D̂δ is an abstract semantics of a view abstraction δ : Π→ P(S).

Restricted Abstract Semantics Then, we also define the restricted abstract semantics ĴP KR : D̂δ →
D̂δ of an IRES program P with a given sensitive abstract state:

ĴP KR(d̂δ) = lim
n→∞

F̂n(d̂ιδ u d̂δ)

Meta-Level Static Analysis Finally, we define a JavaScript meta-level static analysis using the
restricted abstract semantics ĴP KR of a JavaScript definitional interpreter P :

Definition 5.3.2 (JavaScript Meta-Level Static Analysis). A JavaScript meta-level static analysis is
a way to indirectly analyze a JavaScript program Pjs using a restricted abstract semantics ĴP KR of a
JavaScript definitional interpreter P :

JPjsKjs ⊆ d̂ecode ◦ ĴP KR ◦ êncode(Pjs)

where êncode : Pjs → D̂δ encodes a JavaScript program to a sensitive abstract state and d̂ecode : D̂δ →
P(Sjs) decodes a sensitive abstract state to JavaScript states.

Flow-Sensitivity for IRES

We define the flow-sensitivity for IRES with a view abstraction δflow : {π} → P(S):

δflow(π) = S
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Because we use flow-sensitive abstract states, the view abstraction for flow-sensitivity consists of a single
view π. Then, we define the abstract semantics δflowĴiK : L × {π} × Ŝ → D̂δflow of Instructions and the
abstract semantics ĴeK : Ŝ→ V̂ of expressions in the flow-sensitivity for IRES:

• Instructions: δflowĴiK : L × {π} × Ŝ→ D̂δflow

– Variable Assignments:
δflow ̂Jx := eK(l , π, σ̂) = ⊥[(l ′, π) 7→ σ̂′]

where
l ′ = next(l )

σ̂ = (ρ̂, κ̂, ĥ)

v̂ = ĴeK(σ̂)

σ̂′ = (ρ̂[x 7→ v̂], κ̂, ĥ)

– Internal Field Assignments:

δflow ̂Je0[e1] := e2K(l , π, σ̂) = ⊥[(l ′, π) 7→ σ̂′]

where
l ′ = next(l )

σ̂ = (ρ̂, κ̂, ĥ)

(v̂0, v̂1, v̂2) = (Ĵe0K(σ̂), Ĵe1K(σ̂), Ĵe2K(σ̂))

v̂0 ∩ Â = {â1, · · · , ân}
ĥ′ = ĥ[â1 7→ (m̂′1, m̂js1), · · · , ân 7→ (m̂′n, m̂jsn)]

v̂1 ∩ Vstr = {s1, · · · , sm}
∀1 ≤ j ≤ n.
(m̂j , m̂jsj) = ĥ(âj)

m̂′j = m̂j t ⊥[s1 7→ v̂2, · · · , sm 7→ v̂2]

σ̂′ = (ρ̂, κ̂, ĥ′)

– External Field Assignments:

δflow ̂Je0[e1] := e2K(l , π, σ̂) = ⊥[(l ′, π) 7→ σ̂′]

where
l ′ = next(l )

σ̂ = (ρ̂, κ̂, ĥ)

(v̂0, v̂1, v̂2) = (Ĵe0K(σ̂), Ĵe1K(σ̂), Ĵe2K(σ̂))

v̂0 ∩ Â = {â1, · · · , ân}
ĥ′ = ĥ[â1 7→ (m̂1, m̂js

′
1), · · · , ân 7→ (m̂n, m̂js

′
n)]

v̂1 ∩ Vstr = {s1, · · · , sm}
∀1 ≤ j ≤ n.
(m̂j , m̂jsj) = ĥ(âj)

m̂js
′
j = m̂jsj t ⊥[s1 7→ v̂2, · · · , sm 7→ v̂2]

σ̂′ = (ρ̂, κ̂, ĥ′)

– Object Allocations:
δflow ̂Jx := {}K(l , π, σ̂) = ⊥[(l ′, π) 7→ σ̂′]
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where
l ′ = next(l )

σ̂ = (ρ̂, κ̂, ĥ)

â = l

ρ̂′ = ρ̂[x 7→ â]

ĥ′ = ĥ[â 7→ (⊥,⊥)]

σ̂′ = (ρ̂′, κ̂, ĥ′)

– Function Calls:
δflow ̂Jx := e(e1 · · · en)K(l , π, σ̂) = d̂′

δflow

where
σ̂ = (ρ̂, κ̂, ĥ)

v̂ = ĴeK(σ̂)

v̂j = ĴejK(σ̂) [∀1 ≤ j ≤ n]

F = v̂ ∩ F
d̂δflow = λ(l ′, ·) ∈ L × {π}.{

σ̂′ if ∃f ∈ F. f = · · · (x1, · · · , xn) {l ′ : · · · }
⊥ otherwise

ρ̂′ = ⊥[x1 7→ v̂1, · · · , xn 7→ v̂n]

σ̂′ = (ρ̂′, {(l , π)}, ĥ)

l ′′ = next(l )

σ̂′′ = (ρ̂,⊥,⊥)

d̂′
δflow

= d̂δflow [(l ′′, ·) 7→ σ̂′′]

– Branches:
δflow ̂Jif e lt lfK(l , π, σ̂) = d̂′

δflow

where
σ̂ = (ρ̂, κ̂, ĥ)

v̂ = ĴeK(σ̂)

d̂δflow =

{
⊥[lt 7→ σ̂] if #t ∈ v̂
⊥ otherwise

d̂′
δflow

=

{
d̂δ[lf 7→ σ̂] if #f ∈ v̂
d̂δ otherwise

– Returns:
δflow ̂Jreturn eK(l , π, σ̂) = d̂δflow

where
σ̂ = (ρ̂, κ̂, ĥ)

v̂ = ĴeK(σ̂)

d̂δflow = λ(l ′, ·) ∈ L × {π}.{
⊥[x 7→ v̂] if ∃(l ′, ·) ∈ κ̂ ∧ inst(l ′) = x := · · ·
⊥ otherwise

• Expressions: ĴeK : Ŝ→ V̂

– Primitive Values:
ĴvpK(σ̂) = {vp}
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– Primitive Operations:
̂Jop(e1, · · · , en)K(σ̂) = v̂

where
ĴejK(σ̂) = v̂j [∀1 ≤ j ≤ n]

v̂ = ȯp(v̂1 ∩ Vp, · · · , v̂n ∩ Vp)

– Variable Lookups:
ĴxK(σ̂) = ρ̂(x)

where σ̂ = (ρ̂,_,_)

– Internal Field Lookups:
̂Je0[e1]K(ρ̂) = v̂

where

Ĵe0K(ρ̂) = v̂0

Ĵe1K(ρ̂) = v̂1

v̂ = (a point-wise internal field lookup definition with v̂0 and v̂1)

– External Field Lookups:
̂Je0[e1]K(ρ̂) = v̂

where

Ĵe0K(ρ̂) = v̂0

Ĵe1K(ρ̂) = v̂1

v̂ = (a point-wise external field lookup definition with v̂0 and v̂1)

Callsite-Sensitivity for IRES

We define the callsite-sensitivity [88, 89] for IRES with a view abstraction δk-cfa : L≤k → P(S):

δk-cfa([l1, · · · , ln]) = {σ = (_,_, [κ1, · · · , κm],_) ∈ S |
(n = k ≤ m ∨ n = m) ∧ ∀1≤ i≤n. κi = (li,_)}

We define the abstract semantics of the callsite-sensitivity for IRES by modifying that of the flow-
sensitivity for IRES as follows:

δk-cfaĴiK : L × L≤k × Ŝ→ D̂δk-cfa

• Function Calls:
δk-cfa ̂Jx := e(e1 · · · en)K(l , [l1, · · · , ln], σ̂) = d̂′

δk-cfa

where
· · ·
d̂δk-cfa = λ(l ′, [l ′1 , · · · , l ′m]) ∈ L × L≤k.

σ̂′ if ∃f ∈ F. f = · · · (x1, · · · , xn) {l ′ : · · · }(
n = k = m∧
[l ′, l1, · · · , ln] = [l ′1 , · · · , l ′m, ln]

)
∨(

m = n+ 1∧
[l ′, l1, · · · , ln] = [l ′1 , · · · , l ′m]

)
⊥ otherwise

· · ·
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(a) Evaluation algorithm for identifier references

1 syntax def IdentifierReference[0].Evaluation(

2 this, Identifier

3 ) {

4 return [? (ResolveBinding (Identifier.StringValue))]

5 }

(b) Extracted IRES function for identifier references

Figure 5.7: The Evaluation algorithm and its compiled IRES function for identifier references

5.3.4 Abstract Domains for JavaScript

Since the configuration of abstract domains in static analyzers allows fine-tuning the quality of
analysis results, we provide a way to indirectly configure abstract domains for JavaScript values and
data structures in a JavaScript meta-level static analysis.

Values Since a JavaScript value is also an IRES value v ∈ V, we can configure V̂ for JavaScript values.
For example, recall that Figure 5.5 shows the flow-sensitive analysis results of the code in Figure 5.2
using the interval domain. Assume that we desire to use the flat domain whose elements are concrete
integer values, the bottom value ⊥int for nothing, and the top value >int for JavaScript integers. Then,
it is sufficient to use the flat domain for integers in the IRES abstract values V̂. In this setting, the IRES

local variable lval points to >int at point #1. At the exit point, the IRES function returns >int and the
function object whose name property is a string "f".

Data Structures In JavaScript, data structures including environment records and objects have ex-
ternal fields directly accessible by JavaScript syntax. For example, an environment record has variables
as external fields, accessible by identifier references. Similarly, an object has properties as external fields
accessible by property read expressions. However, they also have internal fields, which are not directly ac-
cessible by JavaScript syntax, and one should update them only indirectly. For example, an environment
record has specific algorithms as internal methods such as [[HasBinding]] and [[SetMutableBinding]].
Similarly, an object has such internal methods, including [[Get]] and [[Set]], and it also has internal
fields such as [[Prototype]]. Such internal fields are pre-defined and the number of possible internal
fields is finite. However, because one can dynamically create external fields using the with statement
for environment records and property assignment expressions for objects, the number of external fields
could be infinite. Since internal and external fields are quite different in this regard, we provide a way to
configure them differently. In Section 5.3.3, we define an abstract heap h ∈ H as a finite mapping from
abstract addresses Â to pairs of abstract internal field maps M̂ for internal fields and abstract external
field maps M̂js for external fields. For example, one way to design them with different abstract domains
is to define M̂ : Vstr → V̂ as a mapping from internal fields to abstract values and M̂js : V̂str × V̂ as a
single pair of merged external fields and merged values.
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Figure 5.8: A JavaScript meta-level static analysis with the flow-sensitivity for IRES

5.3.5 Analysis Sensitivities for JavaScript

In a JavaScript meta-level static analysis, analysis sensitivities for JavaScript are different from
those for IRES. For example, let us explain the analysis of the following JavaScript code with the
flow-sensitivity for IRES:

let x = 1, y = 2; x + y; // 3

Figure 5.7 shows (a) the Evaluation algorithm for identifier references and (b) its extracted IRES function.
Then, Figure 5.8 shows the parsing result of x + y and the initial local environment of the IRES function.
Since the flow-sensitivity merges states on the same labels, contexts for the evaluation of both identifier
references x and y are merged. Thus, the IRES variable Identifier points to their ASTs as illustrated at
the bottom of Figure 5.7(c). Due to the imprecise merge of contexts, StringValue of Identifier returns
"x" and "y", and ResolveBinding with them returns both 1 and 2. Finally, the analysis result of x + y

becomes { 2, 3, 4 }.

Flow-Sensitivity for JavaScript

To resolve this problem, we present an AST sensitivity for IRES as a variant of object sensitivity [62,
90] to represent flow-sensitivity for JavaScript. The object sensitivity uses abstract addresses Â of receiver
objects as views. However, the AST sensitivity utilizes JavaScript ASTs Ω stored in this parameter for
syntax-directed functions as views with a view abstraction δjs-flow : Ω ] {⊥} → P(S):

δjs-flow(ω⊥) = {σ = (_,_, κ,_) ∈ S | ast(κ) = ω⊥}

where ast : K∗ → Ω ] {⊥} denotes the JavaScript AST stored in this parameter of the top-most
syntax-directed function for a given calling context stack:

ast(κ) =


ω if ∃κ. κ = κ1 :: · · · :: κn :: κ :: · · · ∧ κ = (l , ρ)∧

func(l ) = syntax def · · · ∧ ρ(this) = ω∧
∀1≤j≤n. κj = (lj ,_) ∧ func(lj) = def · · ·

⊥ otherwise

Note that the number of views for the AST sensitivity is finite as well because JavaScript ASTs are finite
in a JavaScript program. We define the flow-sensitivity for JavaScript using the AST sensitivity for IRES.
It successfully divides contexts for the evaluation of JavaScript identifiers x and y in the example even
though their labels in IRES are the same.
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We define the abstract semantics of the flow-sensitivity for JavaScript as follows:

δjs-flowĴiK : L × (Ω ] {⊥})× Ŝ→ D̂δjs-flow

• Function Calls:
δjs-flow ̂Jx := e(e1 · · · en)K(l , ω⊥, σ̂) = d̂′

δjs-flow

where
· · ·
d̂δjs-flow = λ(l ′, ω′⊥) ∈ L × (Ω ] {⊥}).

σ̂′ if ∃f ∈ F. f = · · · (x1, · · · , xn) {l ′ : · · · }(
f = syntax def · · · ∧
ω′⊥ ∈ v̂1

)
∨(

f = def · · · ∧
ω⊥ = ω′⊥

)
⊥ otherwise

· · ·

Callsite-Sensitivity for JavaScript

We also formally define the callsite-sensitivity [88, 89] for JavaScript by extending the AST sensitivity
for specific normal IRES functions. In ECMAScript, all explicit and even implicit JavaScript function calls
invoke normal IRES functions Call and Construct. Thus, we define the callsite-sensitivity for JavaScript by
extending the AST sensitivity with two normal IRES functions with a view abstraction δjs-k-cfa : Ω≤k →
P(S):

δjs-k-cfa([ω1, · · · , ωn]) = {σ = (_,_, κ,_) ∈ S |
n ≤ k ∧ (n = k ∨ js-ctxtn+1(κ) = ⊥)∧
∀1≤ i≤n. ast ◦ js-ctxti(κ) = ωi}

where js-ctxt : K∗ → K∗ ] {⊥} pops out calling contexts until the function of the top-most context is
Call or Construct:

js-ctxt(κ) =



κ if κ = (l , ρ) :: _∧
(func(l ) = def Call · · · ∨
func(l ) = def Construct · · · )

js-ctxt(κ′) if κ = _ :: κ′

⊥ otherwise

Using this callsite-sensitivity for JavaScript, the meta-level static analyzer can discriminate not only
explicit JavaScript function calls (e.g. f()) but also implicit JavaScript function calls, including getter-
s/setters, user-defined implicit conversions, and implicit function calls in built-in libraries.

We define the abstract semantics of the callsite-sensitivity for JavaScript as follows:

δjs-k-cfaĴiK : L × Ω≤k × Ŝ→ D̂δjs-k-cfa

• Function Calls:
δjs-k-cfa ̂Jx := e(e1 · · · en)K(l , [ω1, · · · , ωn], σ̂) = d̂′

δjs-k-cfa
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where
· · ·
d̂δjs-k-cfa = λ(l ′, [ω′1, · · · , ω′m]) ∈ L × Ω≤k.

σ̂′ if ∃f ∈ F. f = · · · (x1, · · · , xn) {l ′ : · · · }
ω′ = (an AST of the flow-sensitivity

for JavaScript)
(f = def Call · · · ∨
f = def Construct · · · )∧
n = k = m∧
[ω′, ω1, · · · , ωn] = [ω′1, · · · , ω′m, ωn]

∨


(f = def Call · · · ∨
f = def Construct · · · )∧
m = n+ 1∧
[ω′, ω1, · · · , ωn] = [ω′1, · · · , ω′m]

∨

¬(f = def Call · · · ∨
f = def Construct · · · )∧

m = n∧
[ω1, · · · , ωn] = [ω′1, · · · , ω′m]


⊥ otherwise

· · ·

5.4 Implementation

We developed JSAVER as an open-source project1 by extending JISET. In this section, we describe
the challenges in implementing a meta-level static analyzer and present our solutions for them.

Layered Abstract States Unlike traditional JavaScript static analyses, a meta-level static analysis
for JavaScript should track analysis results not only for JavaScript but also for IRES. Thus, the sizes
of abstract states are much larger than those of the other JavaScript static analyzers. We implement
layered abstract states to maintain only updated analysis results compared to the initial abstract state.
It can reduce the time to perform the join t, meet u, and partial order v operations by considering only
the updated parts in abstract states.

Heap Cloning and Abstract Counting Object properties in JavaScript could be dynamically added,
modified, or deleted and even accessible by first-class property names. Thus, in JavaScript static analysis,
performing strong updates rather than weak updates for object properties as many as possible is critical
for precise analysis results. It becomes more important in a JavaScript meta-level static analysis than
a traditional JavaScript static analysis because it should track even internal fields for IRES. Therefore,
we implement heap cloning [55] and abstract counting [61] to increase the chances of performing strong
updates for internal and external fields. Heap cloning refines allocation-sites using calling contexts for
abstract addresses. Abstract counting checks how many times objects in the same allocation site have
been allocated and performs strong updates only for singleton objects with singleton field values.

1https://github.com/kaist-plrg/jsaver
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(a) Analysis results of TAJS (b) Analysis results of SAFE (c) Analysis results of JSAES12

Figure 5.9: Analysis results of TAJS, SAFE, and the derived ES12 static analyzer using JSAVER

(JSAES12) for 18,556 applicable tests

Loop Sensitivity Similar to function calls, loops are also typical merging points in static analysis.
Especially in the JavaScript static analysis, merged loop contexts often cause imprecise relations between
object properties. Therefore, researchers presented diverse techniques to resolve this problem [54, 66, 92,
93]. Among them, a loop sensitivity [68, 69] is one of the representative techniques to increase the analysis
precision by discriminating loop contexts. It is defined with two parameters i and j to discriminate loop
contexts based on the maximum depth i and the loop iteration j. We define it under the view-based
analysis sensitivity and implement it in JSAVER to increase the precision of the IRES static analysis.
Moreover, we also define and implement the loop sensitivity for JavaScript using the loop sensitivity for
IRES. Therefore, JSAVER discriminates contexts for explicit loops such as for-in and for-of and even
implicit loops such as the assignment of arguments or the length property of arrays.

Closures and Continuations The defining-language IRES contains more complex language features
than its simplified version presented in Section 5.3.1, such as symbols, lists, and list operations. Among
them, the two most complex features are closures with captured variables and first-class continuations
because they introduce new kinds of control flows. ECMAScript uses closures to define implicit and
explicit JavaScript iterators and uses continuations for iterators, generators, and asynchronous features
such as async, await, and the Proxy object. Therefore, we define and implement abstract closures and
abstract continuations; an abstract closure is a pair of a function and a mapping from captured variables
to their abstract values, and an abstract continuation consists of a program point, a view for analysis
sensitivity, parameters, and an abstract context.

5.5 Evaluation

We evaluate JSAVER using JSAES12, the JavaScript static analyzer derived from the latest EC-
MAScript (ES12, 2021) via JSAVER, with the following research questions:

• RQ1: Soundness. Can JSAES12 soundly analyze JavaScript programs using new language features?

• RQ2: Precision. Can JSAES12 precisely analyze JavaScript programs compared to the existing
static analyzers?

• RQ3: Configurability. Can we configure abstract domains and analysis sensitivities for JavaScript
in JSAES12?

• RQ4: Adaptability. Can JSAVER adapt to new language features not yet introduced in ES12?
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Table 5.1: Applicable conformance tests in Test262

All Test262 Conformance Tests 41,415

Inapplicable Tests 22,859

Web Browsers / Internationalization 2,036

In-Progress Features 5,719

Non-Strict / Module 2,625

Early Errors 2,949

Inessential Built-in Objects (e.g. JSON, Atomics) 9,530

Applicable Tests 18,556

We performed experiments on an Ubuntu machine equipped with 4.2GHz Quad-Core Intel Core i7 and
32GB of RAM.

5.5.1 Soundness

To evaluate the soundness of JSAES12, we used Test262, the official conformance test suite. Since
ES12 is officially released in June 2021, we used Test262 as of June 20212. While it consists of 41,415
tests, it even contains tests using additional features for web browsers, in-progress features, modules,
or early errors for the parsing process. To focus on the core language semantics of JavaScript in ES12,
we excluded 22,859 tests for such features as summarized in Table 5.1 using JISET and analyzed 18,556
applicable Test262 tests, each of which is 211.8 lines on average. Moreover, we compared the soundness
of JSAES12 with that of the existing JavaScript static analyzers, TAJS and SAFE. We used their default
context sensitivities: the object sensitivity for TAJS and 20-callsite-sensitivity for SAFE. For a fair
comparison, we used 20-callsite-sensitivity for JSAES12 as well.

For each test program, we evaluated the soundness of an analyzer by comparing its analysis result
with the final state of the program in concrete execution. The comparison targets are 1) the reachability
of the exit and the exceptional exit points and 2) primitive values stored in variables and object properties
at the exit point. We checked whether the analyzer over-approximates the expected values of comparison
targets. For example, in the JavaScript program, let x = 42; x++;, only the exit point is reachable, and
the variable x points to 43. Thus, the analysis result should cover the reachability of the exit point and
43 in x for a sound result.

Figure 5.9 shows the analysis results of TAJS, SAFE, and JSAES12 for 18,556 applicable tests. In
each chart, The x-axis denotes when tests are created, and the y-axis denotes the number of tests created
before the time. The mark sound (green, filled) denotes a sound analysis, unsound (red, stripe) an unsound
analysis, and error (white, blank) an unexpected error. The charts show that TAJS and SAFE analyzed
most tests created before 2015 in a sound way. However, the number of tests that they cannot soundly
analyze is consistently increased from 2015. TAJS and SAFE can soundly analyze only 4,763 (25.7%)
and 5,741 (30.9%), respectively. On the other hand, JSAES12 successfully analyzes all 18,556 applicable
test programs in a sound way.

2https://github.com/tc39/test262/tree/aaf4402b4ca9923012e6
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Table 5.2: Soundly analyzed tests for the top ten feature tags

Feature Tag Ver. TAJS SAFE JSAES12 # Tests

destructuring-binding ES6 0 6 4, 963 4, 963

async-iteration ES9 0 0 2, 835 2, 835

generators ES6 19 0 2, 450 2, 450

default-parameters ES6 0 0 1, 527 1, 527

Symbol.iterator ES6 1 0 1, 084 1, 084

Symbol ES6 98 3 316 316

class ES6 0 0 205 205

BigInt ES11 0 0 199 199

object-rest ES9 0 0 190 190

async-functions ES8 0 0 142 142

(a) The analysis precision (b) The analysis performance

Figure 5.10: The analysis precision and performance for 3,903 tests soundly analyzable by all of TAJS,
SAFE, and JSAES12

In addition, Table 5.2 shows that JSAES12 can soundly analyze important new language features that
TAJS and SAFE cannot. Since 2015 when ECMAScript began to be maintained in an open development
process, each newly added Test262 test has been marked with tags of its related new language features.
We counted how many applicable tests are related to each feature tag and how many of them analyzers
can soundly analyze. The table shows the top ten language feature tags (Feature Tag) with the versions
of ECMAScript in which they are introduced (Ver.), numbers of tests soundly analyzed by each analyzer,
and the number of tests tagged with them (# Tests). This table shows that SAFE does not support
most of the important new language features, and TAJS supports only a small part of the ES6 language
features like Symbol and generators. However, JSAES12 supports all the language features introduced.

5.5.2 Precision

We measured the analysis precision by counting how many comparison targets were precisely an-
alyzed. For all applicable 18,556 Test262 test programs, JSAES12 analyzed them with a high analysis
precision of 99.0% in 1,591 ms on average. Then, we compared its analysis precision with that of TAJS
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Table 5.3: Definitions of three string abstract domains: String Set (SSk), Character Inclusion (CI), and
Prefix-Suffix (PS)

Domain Definition

SSk

SSk = {>} ∪ {S ⊆ Σ∗ | ‖S‖ ≤ k}
γ(S) = S

S v S′ ⇔ S ⊆ S′

S t S′ = S ∪ S′

S u S′ = S ∩ S′

S · S′ = {s · s′ | s ∈ S ∧ s′ ∈ S′}

CI

CI = {⊥} ∪ {[L,U ] | L,U ⊆ Σ ∧ L ⊆ U}
γ([L,U ]) = {w ∈ Σ∗ | L ⊆ chars(w) ⊆ U}
[L,U ] v [L′, U ′] ⇔ L′ ⊆ L ∧ U ⊆ U ′

[L,U ] t [L′, U ′] = [L ∩ L′, U ∪ U ′]
[L,U ] u [L′, U ′] = [L ∪ L′, U ∩ U ′]
[L,U ] · [L′, U ′] = [L ∪ L′, U ∪ U ′]

PS

PS = {⊥} ∪ (Σ∗ × Σ∗)

γ(〈p, s〉) = {p · w | w ∈ Σ∗} ∩ {w · s | w ∈ Σ∗}
〈p, s〉 v 〈p′, s′〉 ⇔ lcp({p, p′}) = p′ ∧ lcs({s, s′}) = s′

〈p, s〉 t 〈p′, s′〉 = 〈lcp({p, p′}), lcs({s, s′})〉
〈p, s〉 u 〈p′, s′〉 = (naturally induced by v)

〈p, s〉 · 〈p′, s′〉 = 〈p, s′〉

and SAFE. For a fair comparison, we measured the analysis precision for 3,903 test programs soundly
analyzable by all of TAJS, SAFE, and JSAES12. Figure 5.10(a) depicts the average and distribution of
the analysis precision in violin plots [41]. TAJS and SAFE analyzed 3,903 test programs with 85.1% and
89.9% precision on average, respectively. JSAES12, on the contrary, has the highest analysis precision of
99.5%. However, the analysis speed of JSAES12 is slower than that of TAJS and SAFE, and Figure 5.10(b)
depicts them in violin plots in a logarithmic scale. While TAJS and SAFE took 148 ms and 180 ms,
respectively, to analyze 3,903 test programs on average, JSAES12 took 995 ms to analyze them because
JSAVER derives precise abstract semantics for all language features. On the contrary, TAJS and SAFE
developers often imprecisely or even unsoundly model the abstract semantics of specific language features
to increase the analysis speed. For example, TAJS does not discriminate positive/negative infinity values
or positive/negative zeros to reduce the number of possible cases in abstract values. Similarly, SAFE
ignores the semantics of getters and setters to quickly analyze object property reads.

5.5.3 Configurability

We demonstrate the configurability of JSAVER with several case studies for abstract domains and
analysis sensitivities. We discuss how different abstract domains or analysis sensitivities affect analysis
results of JSAES12 with examples.
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1 let x = /* "a" or "b" */;

2 let y = ‘c${x}d‘; // "cad" or "cbd"

3 let z = ‘${x}e${x}‘; // "aea" or "beb"

Figure 5.11: A JavaScript program using template literals

Abstract Domains

As explained in Section 5.3.4, we can configure abstract domains for JavaScript values by configuring
those for IRES values. In JavaScript static analysis, researchers have presented diverse string domains
to precisely analyze object property names. Among them, we implemented three representative string
abstract domains [13]: the String Set (SSk) domain, the Character Inclusion (CI) domain, and the Prefix-
Suffix (PS) domain. Table 5.3 summarizes formal definitions of their elements, concretization functions,
and concatenation operations. In the table, Σ denotes a set of characters, and the set of strings is
Vstr = Σ∗. We analyzed a JavaScript program in Figure 5.11 using JSAES12 with different string abstract
domains. The program uses a new language feature introduced in ES6 called a template literal, which is
a literal delimited with backticks (`), allowing embedded expressions called substitutions. For example,
the template literal ‘c${x}d‘ on line 2 concatenates a string "c", the value in the variable x, and a string
"d". Since x points to "a" or "b" on line 1, the variable y points to "cad" or "cbd". Similarly, z points to
"aea" or "beb" by concatenating x, "e", and x.

First, the String Set (SSk) domain represents a set of strings whose size is bounded by k as an
abstract string. Therefore, JSAES12 with SS5 produced the following analysis results:

x 7→ {"a", "b"}
y 7→ {"c"} · {"a", "b"} · {"d"} = {"cad", "cbd"}
z 7→ {"a", "b"} · {"e"} · {"a", "b"} = {"aea", "aeb", "bea", "beb"}

It produced precise analysis results for x and y. However, the result for z has spurious values "aeb" and
"bea" because it does not keep the information that the left and right strings of "e" are the same.

The Character Inclusion (CI) domain tracks the lower and upper bounds of characters occurring in
strings. The analysis with this domain produced the following analysis results:

x 7→ [∅, {a, b}]
y 7→ [{c}, {c}] · [∅, {a, b}] · [{d}, {d}] = [{c, d}, {a, b, c, d}]
z 7→ [∅, {a, b}] · [{e}, {e}] · [∅, {a, b}] = [{e}, {a, b, e}]

This domain ignores structures of strings, but it is a cheap abstract domain to check only the inclusion
of characters in strings. For example, it can say that the string in y always includes c and d, and the
string in z always includes e.

The last one is the Prefix-Suffix (PS) domain, which keeps prefixes and suffixes of strings. JSAES12

produced the following analysis results with PS:

x 7→ 〈"", ""〉
y 7→ 〈"c", "c"〉 · 〈"", ""〉 · 〈"d", "d"〉 = 〈"c", "d"〉
z 7→ 〈"", ""〉 · 〈"e", "e"〉 · 〈"", ""〉 = 〈"", ""〉

This domain is also cheap but focuses on prefixes and suffixes. Therefore, the analysis results cannot say
anything about x or z, but it describes that the string in y starts with "c" and ends with "d". Therefore,
we showed that one can freely configure string abstract domains for JavaScript in JSAES12.
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Figure 5.12: The analysis precision of JSAES12 with different k-callsite-sensitivities for all 18,556 appli-
cable test programs

Analysis Sensitivities

As explained in Section 5.3.5, we formally define the flow- and k-callsite-sensitivity for JavaScript
using the AST-sensitivity for IRES. In JSAES12, we can freely configure the value k of the k-callsite-
sensitivity. In Section 5.5.2, we showed that JSAES12 with the 20-callsite-sensitivity can precisely analyze
18,556 applicable test programs in Test262 with a high analysis precision of 99.0%. Now, we analyze
the test programs with different k-callsite-sensitivities to understand how different k values affect the
analysis results of JSAES12. We started from the context-insensitive analysis (k = 0) and increased k of
the k-callsite-sensitivity until their analysis precision is similar to that of the 20-callsite-sensitivity as
depicted in Figure 5.12. As expected, the context-insensitive analysis has the lowest analysis precision
of 52.2%. Then, the analysis precision consistently increases with a higher k value, and it reaches 99.0%
when k = 4.

Therefore, we showed that one can configure the analysis precision of JSAES12 by using different
k-callsite-sensitivities for JavaScript.

5.5.4 Adaptability

We evaluated the adaptability of JSAVER using two case studies with new language features. TC39
maintains proposals for future language features in GitHub repositories. In the order of the most GitHub
stars, the top three features are the pipeline operator |>3 with 5.8K stars, the pattern matching4 with
4.0K stars, and the Observable library5 with 2.8K stars. Because the pattern matching proposal is in
an early stage with only basic concepts without any detailed semantics, we evaluated the adaptability of
JSAVER with two proposals for the pipeline operator |> and the Observable library.

Pipeline Operator (|>)

The pipeline operator is a language feature typically supported in functional programming languages,
such as F# and OCaml. Its behavior is almost the same with a syntactic sugar of a function call with
a single argument. To support this operator, we first applied its proposal, which contains the syntactic
production in Figure 5.13(a) and algorithms, to ES12. Then, we derived a JavaScript static analyzer from
the updated ES12 via JSAVER. Finally, we analyzed the example JavaScript program in Figure 5.13(b)
with the interval domain for integers using the derived analyzer.

3https://github.com/tc39/proposal-pipeline-operator
4https://github.com/tc39/proposal-pattern-matching
5https://github.com/tc39/proposal-observable
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(a) Syntactic production for the pipeline operator

1 let add = y => x => x + y;

2 let double = z => z * 2;

3 let n = /* any integer from 0 to 99 */;

4 let a = n |> add(1) // [1, 100]

5 |> double; // [2, 200]

6 let b = n |> add(1n) // TypeError for ‘+‘

7 |> unknown; // unreachable

(b) A JavaScript program using the pipeline operator

Figure 5.13: Syntax and use of the pipeline operator |>

First, the derived analyzer successfully analyzes the stored value in the variable a. The program
defines two functions: add receives a value in y and adds it to the second argument in x, and double

multiplies the argument z by 2. The analyzer first analyzes that the variable n points to the interval
[0, 99] on line 3. Then, the abstract value is updated to [1, 100] and [2, 200] by analyzing |> add(1)

on line 4 and |> double on line 5, respectively. Therefore, the derived analyzer successfully analyzes that
the variable a stores the interval [2, 200].

Moreover, the derived analyzer correctly analyzes the execution order of the pipeline operator on
lines 6–7. Assume that we treat the pipeline operator as just a syntactic sugar of a function call and
replace the right-hand-side expression of the assignment on lines 6–7 with unknown(add(1n)(n)). Then,
the identifier unknown is executed first because function parts are executed earlier than argument parts
in function call expressions. Thus, it throws a ReferenceError exception by trying to read the variable
unknown. However, because the pipeline operator first executes the argument part rather than the function
part, the original program throws a TypeError exception on line 6 because the addition of the BigInt
value 1n with another numeric value is ill-typed. The derived analyzer successfully analyzes that the
program terminates on line 6 with a TypeError exception by correctly considering the execution order of
the pipeline operator.

Observable Library

JSAVER can support not only a new syntactic feature but also a new built-in library. Using the
Observable library, we can model push-based data sources, such as DOM events, timer intervals, and
sockets. Consider an example program in Figure 5.14. On lines 1–2, the program first randomly
defines variables x with 1 or 2 and y with a random string. Then, it registers an arrow function
subscriber => { ... } to a new Observable object and assigns it to the variable o on lines 3–7. On
line 8, it subscribes k => x *= k via subscribe to invoke the registered arrow function. Then, the arrow
function k => x *= k is synchronously invoked three times with multiple values 1, 2, and 3. Therefore,
the variable x points to 6 or 12 because the initial value of x is 1 or 2, and it is multiplied by 1, 2, and
3. Similarly, the variable y points to any string ending with "123" because its initial value is a random
string, and it is updated by concatenating string values of 1, 2, and 3, on line 9.

To analyze the example program, we applied the proposal of the Observable library to ES12 and
derived a JavaScript static analyzer from it. We used the interval domain for integers and the Prefix-
Suffix (PS) domain explained in Section 5.5.3 for strings. On lines 1–2, the derived analyzer first
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1 let x = /* 1 or 2 */;

2 let y = /* any string */;

3 let o = new Observable(subscriber => {

4 subscriber.next(1);

5 subscriber.next(2);

6 subscriber.next(3);

7 });

8 o.subscribe(k => x *= k); // x: 6 or 12

9 o.subscribe(k => y += k); // y: any string + "123"

Figure 5.14: An example of the Observable built-in library

assigns [1, 2] and 〈"", ""〉 to the variables x and y, respectively. Then, it assigns the new abstract
Observable object with the arrow function subscriber => { ... } to o by analyzing the invocation of
the constructor of Observable on lines 3–7. On line 8, the analyzer analyzes that an arrow function
k => x *= k is subscribed, and the variable x is updated to the interval [6, 12]. Similarly, it analyzes
that another arrow function k => y += k is subscribed on line 9, and the variable y is updated to the
abstract value 〈"", "123"〉. Thus, the derived analyzer successfully analyzes the example program and
precisely represents the possible values of x and y at the end of the program.
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Chapter 6. Related Work

In this chapter, we explain related work of our techniques to automatically derive JavaScript static
analyzers from given language specifications.

6.1 Mechanized Specification Extraction

JavaScript Mechanized Specification For JavaScript, researchers have proposed various mecha-
nized specifications. In 2010, Guha et al. [36] presented an extended lambda calculus λJS, the first
mechanized specification for a core calculus of the ES3 semantics by desugaring most of the syntax
into λJS. The λJS semantics looks quite different from the original algorithm steps. In the mid-2010s,
researchers tried to define mechanized specifications for the ES5 and 5.1 semantics using similarly look-
ing semantics with the original algorithm steps. Bodin et al. [16] defined JSCert, semantics of a small
subset of ES5, using Coq and extracted a reference interpreter JSRef. Park et al. [70] defined an entire
semantics of ES5, KJS, using the K [84] framework. Fragoso Santos et al. [31] presented JaVerT, a
JavaScript verification toolchain, including JavaScript semantics defined in their own intermediate lan-
guage, JSIL. However, all of them are manually defined; thus, they require much human effort for the
annually evolving specification.

Mechanized Specification Extraction To resolve the fundamental problem of manual approaches,
researchers in diverse fields presented approaches to automatically extract mechanized specifications from
specifications written in natural languages. For system architectures, researchers utilize complex Natural
Language Processing (NLP) and Machine Learning (ML) to extract mechanized specifications of small-
sized low-level assembly languages, x86 [65] and ARM [97]. For Java API functions, Zhai et al. [108]
presented a technique to automatically generate their models by synthesizing Java code from Javadoc
comments for API functions. Using NLP techniques and heuristic methods, it produces candidate code
and removes wrong ones by testing them with actual implementation. Unlike their approach, we introduce
JISET, which extracts JavaScript mechanized specifications from ECMAScript using general compile rules
that represent common writing patterns in specifications without using complex NLP or ML techniques.
JISET is the first tool that automatically extracts mechanized specifications for a real-world high-level
programming language, JavaScript. Moreover, the mechanized specifications extracted via JISET are also
executable, which bridge gaps between the specification written in a natural language and executable
tests.

Parser Generation Moreover, to the best of our knowledge, JISET is even the first tool to automat-
ically generate JavaScript parsers from given versions of ECMAScript. We utilize Parsing Expression
Grammar (PEG) [30] to generate parsers from given JavaScript syntax written in BNFES. From Packrat
parsing [29] with PEG, recursive-descent parsers with backtracking support linear-time parsing. How-
ever, it has the fundamental problem of ordered choices: ab is silently unmatched with a / ab. While
Generalized LL (GLL) parsing [87] is basically recursive-descent with backtracking that can support
general context-free grammars even in the presence of ambiguous grammars, its worst-time complexity
is O(n3) for the input size n, and it does not support context-sensitive features. Unlike GLL parsing,
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our lookahead parsing is applicable for JavaScript parsers with context-sensitive features such as pos-
itive/negative lookaheads. Moreover, the complexity of lookahead parsing is O(k · n) for the constant
number of tokens k. We experimentally showed that it could generate parsers for the most recent four
versions of ECMAScript.

6.2 Specification Validity Check

Specification-based Testing Recently, researchers have utilized specifications to test their imple-
mentations. For network protocols, Kim et al. [49] proposed a novel approach named BaseSpec, which
extracts message structures from tables in cellular specifications for L3 protocols to perform a compara-
tive analysis of baseband software. Schumi and Sun [86] presented SpecTest, which utilized an executable
language semantics to perform fuzzing for Java and Solidity compilers. For JavaScript, Ye et al. [107]
presented Comfort, a compiler fuzzing framework to detect JavaScript engine bugs using ECMAScript
with deep learning-based language models. We presented JEST, which performs N+1-version differential
testing with N different JavaScript engines and a reference interpreter extracted from ECMAScript.
JEST detects not only engine bugs but also specification bugs in ECMAScript using the cross-referencing
oracle. Moreover, to lessen the burden of synthesizing conformance tests using multiple JavaScript en-
gines in dozens of hours, we presented JSTAR to detect specification bugs without JavaScript engines in
several minutes. Because JSTAR uses abstract semantics while JEST uses concrete semantics, JSTAR can
quickly analyze more scope of semantics than JEST.

Differential Testing Differential testing [59] utilizes multiple implementations as cross-referencing
oracles to find semantics bugs. Researchers applied this technique to various applications domain such
as Java Virtual Machine (JVM) implementations [21], SSL/TLS certification validation logic [22, 33, 81],
web applications [18], and binary lifters [50]. Moreover, Nezha [81] introduces a guided differential
testing tool with the concept of δ-diversity to efficiently find semantics bugs. However, they have a
fundamental limitation that they cannot test specifications; they use only cross-referencing oracles and
target potential bugs in implementations. Our N+1-version differential testing extends the idea of
differential testing with not only N different implementations but also a mechanized specification to test
both of them. In addition, our approach automatically generates conformance tests directly from the
specification.

Fuzzing Fuzzing is a software testing technique for detecting security vulnerabilities by generating [37,
42, 106] or mutating [17, 82, 104] test inputs. For JavaScript [101] engines, Godefroid et al. [35] presented
white-box fuzzing using the JavaScript grammar, Han et al. [38] presented CodeAlchemist that generates
JavaScript code snippets based on semantics-aware assembly, Wang et al. [98] presented Superion using
Grammar-aware grey-box fuzzing, Park et al. [79] presented Die using aspect-preserving mutation, and
Lee et al. [57] presented Montage using neural network language models (NNLMs). While they focus on
finding security vulnerabilities rather than semantics bugs, our N+1-version differential testing focuses
on finding semantics bugs by comparing multiple implementations with the mechanized specification,
which was automatically extracted from ECMAScript by JISET. Note that JEST can also localize not
only specification bugs in ECMAScript but also bugs in JavaScript engines indirectly using the bug
locations in ECMAScript.
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Fault Localization To localize detected bugs in ECMAScript, we used Spectrum Based Fault Lo-
calization (SBFL) [102], which is a ranking technique based on the likelihood of being faulty for each
program element. Tarantula [46, 47] was the first tool that supports SBFL with a simple formula, and
researchers have developed many formulae [27, 44, 64, 103] to increase the accuracy of bug localization.
Sohn and Yoo [91] introduced a novel approach for fault localization using code and change metrics via
learning of SBFL formulae. While we utilize a specific formula ER1b introduced by Xie et al. [105], we
believe that it is possible to improve the accuracy of bug localization by using more advanced SBFL
techniques.

6.3 Derivation of Static Analyzers

JavaScript Analysis Tools ECMAScript is the standard language specification for JavaScript main-
tained by TC39. In late 2014, the committee announced its plan to release ECMAScript annually and
adopt the open development process to quickly adapt to evolving development environments. Various
JavaScript engines such as Google V8, GraalJS, QuickJS, and Moddable XS should conform to the
syntax and semantics described in annually updated ECMAScript. Beyond JavaScript engines, diverse
research projects use JavaScript specifications. The main research direction has been static analyzers
such as SAFE [56, 77], TAJS [45], WALA [92], and JSAI [48], based on the abstract interpretation frame-
work [23, 25] with their own analysis techniques. They defined abstract semantics of the JavaScript se-
mantics described in ECMAScript to statically analyze JavaScript programs in a finite time. Charguéraud
et al. [19] presented JSExplain, a debugger for JavaScript, by implementing a reference interpreter in
OCaml following the algorithm steps in ECMAScript closely. For a given JavaScript program, the debug-
ger interactively produces execution traces investigated in a browser, with an interface that displays the
JavaScript code and the interpreter’s state. Fragoso Santos et al. [31] introduced JaVerT, a JavaScript
verification toolchain, based on the separation logic with an intermediate goto language JSIL. JaVerT
2.0 [32] extends it to support compositional symbolic execution for JavaScript based on bi-abduction.
However, because all of them manually handle ECMAScript with their own intermediate representations,
most of them still target ES5.1 released in 2011 instead of the latest one.

JavaScript Static Analysis Techniques Various JavaScript static analysis techniques have been
presented and implemented. Since string values of arbitrary expressions could be used in property
accesses, a precise string analysis is much more important in JavaScript than in static analysis for other
programming languages. Thus, several advanced string abstract domains are presented for JavaScript
using hash values [58], state automata representation [51], and regular expressions [67]. Moreover,
Amadini et al. [13] presented a framework to combine such advanced string abstract domains freely.
Another challenging problem in JavaScript static analysis is imprecise relations between object properties.
Researchers presented diverse techniques to resolve this problem with a correlation tracking for read/write
pairs [92], a loop sensitivity [68, 69], a syntactic pattern-based trace partitioning [53, 54], a demand-driven
value refinement [93], and a value partitioning [66]. Due to the highly dynamic nature of JavaScript,
static analyzers suffer not only from imprecise analysis results but also from heavy computations. Thus,
combined analyses [74, 76, 78, 85, 100] with dynamic analyses have been proposed to enhance the
performance of analysis by leveraging highly optimized commercial JavaScript engines. JSAVER allows
configuring abstract domains and analysis sensitivities freely for JavaScript. We believe that JSAVER

will help researchers focus on designing novel analysis techniques without concerning about defining and
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implementing abstract semantics for the newly introduced language features.

Abstracting Definitional Interpreter Reynolds [83] first introduced the concept of definitional
interpreters to describe the semantics of defined-languages using their interpreters written in defining-
languages. Researchers have used them to describe the semantics of higher-order programming languages
in which functions or labels are values. Darais et al. [28] extended them to a definitional abstract inter-
preter, representing the abstract semantics of a defined-language using its abstract interpreter written
in a defining-language. However, unlike a meta-level static analysis, it directly describes the abstract
semantics of the defined-language without using a static analyzer of the defining-language. Therefore,
it still requires manual updates when the defined-language evolves. For the JavaScript programming
language, Herman and Flanagan [39] proposed the first definitional interpreter written in ML to rep-
resent the JavaScript semantics. Then, Bodin et al. [16] manually defined the JavaScript semantics in
JSCert using the Coq proof assistant and extracted a definitional interpreter from Coq to OCaml. It even
inspired developers to design various definitional interpreters, such as Narcissus [6] and engine262 [3].
However, they require manual updates when JavaScript evolves. On the other hand, JISET automatically
extracts a JavaScript definitional interpreter from ECMAScript. Because JISET provides a way to deal
with the JavaScript semantics mechanically, we developed JSAVER by extending JISET to automatically
derive a static analyzer via a meta-level static analysis for JavaScript.

Automatic Modeling for JavaScript Built-in Libraries For JavaScript static analysis, modeling
behaviors of functions in built-in libraries is essential because they are implemented in different program-
ming languages instead of JavaScript, such as C++ in the V8 JavaScript engine. Therefore, researchers
have presented techniques to automatically model their behaviors using types in documentation [15, 71],
program syntheses [40], and concrete executions [72]. However, because all of them are unsound ap-
proaches, they cannot cover all the possible behaviors of functions in built-in libraries. Moreover, their
qualities highly rely on given documentation or JavaScript engines. On the other hand, JSAVER does not
need to model their behaviors because they are described in the algorithms in ECMAScript and compiled
directly to IRES functions via JISET. Therefore, JSAVER can analyze the functions in built-in libraries
without any modeling, and we also showed that it can analyze not yet introduced built-in libraries.
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Chapter 7. Conclusion

The fast evolution and massive size of JavaScript specifications make it difficult to develop and
update JavaScript static analyzers manually. To alleviate this problem, we have presented a novel
approach to automatically derive JavaScript static analyzers from language specifications with three
steps: 1) mechanized specification extraction using JISET, 2) specification validity check using JEST and
JSTAR, and 3) derivation of static analyzers using JSAVER.

JISET is the first tool that automatically extracts a mechanized specification from ECMAScript, a
standard JavaScript specification written in English. The extracted mechanized specification consists of
a JavaScript parser for syntax and functions of IRES, a specialized intermediate representation we defined
for ECMAScript, for semantics. Moreover, it supports extracting IR-based semantics from ECMAScript
by synthesizing AST-IR translators based on the compiled IRES functions. The tool automatically
extracts all the syntax and 95.03% of the semantics for the most recent four versions of ECMAScript
(ES7 to ES10). We evaluated the correctness of the tool by testing the extracted semantics from ES10
with Test262, the official conformance suite. Using 1,709 failed tests, we found nine specification errors,
four of which are newly discovered, confirmed by TC39, and planned to be integrated into ES11. After
fixing the errors, the extracted semantics passed all 18,064 applicable tests in Test262. We also showed
that JISET is adaptable to nine proposals for new language features to be included in ES11, which let us
find three errors in the BigInt proposal. We believe that JISET can dramatically reduce human efforts in
building various JavaScript tools correctly.

JEST is a tool that performs N+1-version differential testing for JavaScript using a specific version
of ECMAScript and four modern JavaScript engines and to check the validity of both ECMAScript and
engines. The development of modern programming languages follows the continuous integration (CI) and
continuous deployment (CD) approach to instantly support fast-changing user demands. Such continuous
development makes it difficult to find semantics bugs in both the language specification and its various
implementations. To alleviate this problem, we present N+1-version differential testing, which is the first
technique to test both implementations and its specification in tandem. We actualized our approach for
the JavaScript programming language via JEST. It automatically generated 1,700 JavaScript programs
with 97.78% of syntax coverage and 87.70% of semantics coverage on ES11. JEST injected assertions
to the generated JavaScript programs to convert them as conformance tests. We executed generated
conformance tests on four engines that support ES11: V8, GraalJS, QuickJS, and Moddable XS. Using
the execution results, we found 44 engine bugs (16 for GraalJS, 6 for QuickJS, 20 for Moddable XS, and 2
for V8) and 27 specification bugs. All the bugs were confirmed by TC39, the committee of ECMAScript,
and the corresponding engine teams, and they will be fixed in the specification and the engines. We
believe that JEST takes the first step towards the co-evolution of software specifications, tests, and their
implementations for CI/CD.

JSTAR is another tool to check the validity of JavaScript specifications by performing type analysis
for them without leveraging JavaScript engines. Checking the correctness of ECMAScript is essential
because an incorrect description in ECMAScript can lead to wrong implementations of JavaScript en-
gines. However, since ECMAScript is annually released and developed in an open process, checking its
correctness becomes more labor-intensive and error-prone. To alleviate the problem, we propose JSTAR

that performs type analysis on JavaScript specifications and detects specification bugs using a bug de-
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tector. The main challenge of ECMAScript type analysis to statically detect type-related specification
bugs automatically is that ECMAScript describes abstract algorithms in a natural language, English.
We first compile abstract algorithms to IRES functions via JISET and define abstract semantics with
specification types on top of them. We also present condition-based refinement for type analysis, which
prunes out infeasible abstract states using conditions of assertions and branches to improve the analysis
precision. We evaluated JSTAR with all 864 versions in the official ECMAScript repository for the last
three years from 2018 to 2021. It took 137.3 seconds on average to perform type analysis for each version
and detected 157 type-related specification bugs with 59.2% precision; 93 out of 157 reported bugs are
true bugs. Among them, 14 bugs are newly detected by JSTAR, and the committee confirmed them all.

JSAVER is the first tool that automatically derives JavaScript static analyzers from any versions of
ECMAScript. The main idea of JSAVER is to shift the paradigm from compiler -based approaches to
interpreter -based approaches to fully utilize “the interpreter-based nature” of JavaScript. It performs
a meta-level static analysis to indirectly analyze JavaScript programs using a definitional interpreter
extracted from ECMAScript. We also present how to configure abstract domains and analysis sensitivities
for JavaScript indirectly in the meta-level static analysis. We evaluated JSAVER by using a derived
static analyzer JSAES12 from the latest ECMAScript, ES12. It soundly analyzes all applicable 18,556
official conformance tests with 99.0% of precision in 1.59 seconds on average. We also demonstrated
the configurability and adaptability of JSAVER with several case studies. We believe that JSAVER can
reduce the burden of defining the abstract semantics of numerous language features for static analysis of
fast-evolving JavaScript.
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