
JSTAR: JavaScript Specification
Type Analyzer using Refinement

The 36th IEEE/ACM International Conference on Automated Software
Engineering (ASE'21)

Jihyeok Park, Seungmin An, Wonho Shin,

Yusung Sim, Sukyoung Ryu

PLRG @ KAIST

November 17, 2021

/ 16JSTAR: JavaScript Specification Type Analyzer using Refinement

JavaScript is Everywhere

2

/ 16JSTAR: JavaScript Specification Type Analyzer using Refinement 3

https://octoverse.github.com/

https://octoverse.github.com/

/ 16JSTAR: JavaScript Specification Type Analyzer using Refinement

ECMAScript: JavaScript Specification

4

The production of ArrayLiteral in ES12
The Evaluation algorithm for

the third alternative of ArrayLiteral in ES12

Syntax

Semantics

/ 16JSTAR: JavaScript Specification Type Analyzer using Refinement

Correctness of ECMAScript is Important

5

Reference number
ECMA-123:2009

© Ecma International 2009

ECMA-262
11th Edition / June 2020

ECMAScript® 2020
Language Specification

ECMAScript Web
Applications

Server-side
Programs

Embedded
Systems

/ 16JSTAR: JavaScript Specification Type Analyzer using Refinement

Problem: Manual Review of ECMAScript

6

Reference number
ECMA-123:2009

© Ecma International 2009

ECMA-262
11th Edition / June 2020

ECMAScript® 2020
Language Specification

ECMAScript

review

update

Reference number
ECMA-123:2009

© Ecma International 2009

ECMA-262
11th Edition / June 2020

ECMAScript® 2020
Language Specification

ECMAScript

update

Reference number
ECMA-123:2009

© Ecma International 2009

ECMA-262
11th Edition / June 2020

ECMAScript® 2020
Language Specification

ECMAScript

review review

<latexit sha1_base64="f6kaPVpFywPpu7SCGPKrx6cbDbk=">AAACOXicbVC7TgJBFJ3FF+ILtNRiIzGxIruGqCXRxhITXglsyOxwgQnz2MzMGsmGj7DVT/FLLO2MrT/gLGwh4ElucnLu+4QRo9p43oeT29jc2t7J7xb29g8Oj4ql45aWsSLQJJJJ1QmxBkYFNA01DDqRAsxDBu1wcp/m20+gNJWiYaYRBByPBB1Sgo2V2j0ykEYX+sWyV/HmcNeJn5EyylDvl5yz3kCSmIMwhGGtu74XmSDBylDCYFboxRoiTCZ4BF1LBeagg2R+78y9sMrAHUplQxh3rv7tSDDXespDW8mxGevVXCr+l+vGZngbJFREsQFBFouGMXONdNPn3QFVQAybWoKJovZWl4yxwsRYi5YmNfwgSY9Lxyytf178sFTM8QSUlNw+iAUBNrN++qvurZPWVcW/rlQfq+XaXeZsHp2ic3SJfHSDaugB1VETETRBL+gVvTnvzqfz5XwvSnNO1nOCluD8/AJtYq2k</latexit>· · ·

/ 16JSTAR: JavaScript Specification Type Analyzer using Refinement

Problem: Fast Evolving JavaScript

7

1996 1998 2000 2002 2004 2008 2010 2012 2014 2016 2018 2020 2022

1997 - ES1
First edition

1998 - ES2
Editorial 
changes

1999 - ES3
RegEx, String, 
Try/catch, etc

2009 - ES5
getters/setters,

strict mode,

exceptions, etc

2011 - ES5.1
Editorial 
Changes

2015 - ES6
classes, modules, etc.

2016 - ES7
destructuring patterns, etc.

Annual Releases

2017 - ES8
object manipulation, etc.

2018 - ES9
2020 - ES11

ES.Next

2019 - ES10
2021 - ES12

ECMAScript 2021 (ES12) - 879 pages

/ 16JSTAR: JavaScript Specification Type Analyzer using Refinement

Problem: Open Development Process

8

/ 16JSTAR: JavaScript Specification Type Analyzer using Refinement

Solution: Type Analysis for ECMAScript

9

...

https://github.com/tc39/ecma262/tree/575149cfd77aebcf3a129e165bd89e14caafc31c

x: (String v Boolean v Number v Object v ...)

n: (Number) ∧ ToNumber(x): (Number v Exception)

Type Mismatch for
numeric operator `>`

Math.round(true) = ???
Math.round(false) = ???

Math.round(true) = 1
Math.round(false) = 0

https://github.com/tc39/ecma262/tree/575149cfd77aebcf3a129e165bd89e14caafc31c

/ 16JSTAR: JavaScript Specification Type Analyzer using Refinement

Overall Structure of JSTAR

10

JavaScript Specification Type Analyzer using Refinement

/ 16JSTAR: JavaScript Specification Type Analyzer using Refinement

Precision ⇧ - 1) Type Analysis

11

String,
Number,
BigInt,

...

ToNumber (x)

Number,
Exception

Type
Sensitivity

String

Number

...

Number

Number

Null

+0

BigInt

Exception

/ 16JSTAR: JavaScript Specification Type Analyzer using Refinement

Precision ⇧ - 2) Condition-based Refinement

12

TABLE I: Type-related specification bugs fixed by pull re-
quests for the recent three years from 2018 to 2021

Category Bug Kind # Pull Requests # Bug Fixes

Reference
UnknownVar 5 12

DuplicatedVar 2 12

Arity MissingParam 2 4

Assertion Assertion 4 5

Operand
NoNumber 1 2

Abrupt 5 6

Total 19 41

refine(!e, b)(�]) = refine(e,¬b)(�])

refine(e0 || e1, b)(�]) =

⇢
�]
0 t �]

1 if b
�]
0 u �]

1 if ¬b

refine(e0 && e1, b)(�]) =

⇢
�]
0 u �]

1 if b
�]
0 t �]

1 if ¬b
refine(x.Type == cnormal, #t)(�

]) = �][x 7! ⌧]x u normal(T)]
refine(x.Type == cnormal, #f)(�

]) = �][x 7! ⌧]x u {abrupt}]
refine(x == e, #t)(�]) = �][x 7! ⌧]x u ⌧]e]
refine(x == e, #f)(�]) = �][x 7! ⌧]x \ b⌧]ec]
refine(x : ⌧, #t)(�]) = �][x 7! ⌧]x u {⌧}]
refine(x : ⌧, #f)(�]) = �][x 7! ⌧]x \ {⌧ 0 | ⌧ 0 <: ⌧}]

refine(e, b)(�]) = �]

where �]
j = refine(ej , b)(�]) for j = 0, 1, ⌧]e = JeK]e(�]),

and b⌧]c returns {⌧} if ⌧] denotes a singleton type ⌧ , or returns
?, otherwise.

IV. BUG DETECTOR

We develop a bug detector to statically detect type-related
specification bugs in ECMAScript using an augmented ab-
stract transfer function F]

a with additional checkers. Before
implementing checkers, we manually investigated pull requests
for the recent three years from 2018 to 2021 to identify
important bugs to detect. As summarized in Table I, we found
19 pull requests that fixed 41 type-related specification bugs,
and classified the bugs into four categories with six kinds.
To detect them automatically, we implement four checkers: a
reference checker, an arity checker, an assertion checker, and
an operand checker.

A. Reference Checker

ECMAScript abstract algorithms dynamically introduce
variables in any contexts. A reference bug occurs when trying
to access variables not yet defined (UnknownVar) or to redefine
variables already defined (DuplicatedVar). According to our
manual investigation of the pull requests, the reference bug
is the most prevalent type-related specification bugs; five pull
requests fixed 12 unknown variable bugs and two pull requests
fixed 12 duplicated variable declaration bugs. We implement a
reference checker by adding additional checks to the abstract
semantics of variable lookups and variable declarations as
follows:

JxK]e(�]) =

⇢
unknown variable x if JxK]r(�]) = {?}
· · · otherwise

Jlet x = eK]i(l , ⌧)(d]) =
⇢

already defined variable x if ⌧] = {#t}
· · · otherwise

where ⌧] = Jx?K]e(d](l , ⌧))

If the abstract semantics of a variable lookup for x is a
singleton {?}, x is always an unknown variable. For example,
consider the syntax-directed algorithm in Figure 2(a). Since
the GetReferencedName algorithm is removed, the variable
GetReferencedName does not exist in abstract environments
and its lookup returns {?}. Thus, the reference checker reports
the unknown variable bug for GetReferencedName. For
duplicated variable declarations, the reference checker utilizes
the abstract semantics of the existence check Jx?K]e to see
whether the variable x of each variable declaration is already
defined.

B. Arity Checker

The arity of a function f = def f(p1, · · · ,pn,[· · · , pm])l
is an interval [n,m] where n and m� n denote the numbers
of normal and optional parameters, respectively. In function
invocations, an arity bug occurs when the number of argu-
ments does not match with the function arity (MissingParam).
In the last three years, two pull requests fixed four missing
parameter bugs. The arity checker detects them by adding an
additional check to the abstract semantics of the function call
instruction:

Jx = (e e1 · · · ek)K]i(l , ⌧)(d]) =⇢
missing parameters pk+1, · · · , pnf

if 9f 2 ⌧]. s.t. k < nf

· · · otherwise
where f = def f(p1, · · · , pnf

, [· · · , pmf])l ^
⌧] = JeK]e(d](l , ⌧)).

For each function f in the abstract semantics of the function
expression e, the arity checker compares the number of
arguments with the arity of f to detect missing parameters.
For example, consider the syntax-directed algorithm in Fig-
ure 2(b). The algorithm invocation on line 2 is compiled to
the following function call instruction:

x = (formals.IteratorBindingInitialization formals)

using a temporary variable x. Because it passes only a single
argument formals even though the function arity is [3, 3], the
arity checker reports missing parameter bugs for two additional
parameters iteratorRecord and environment.

C. Assertion Checker

An assertion failure (Assertion) is a specification bug that
occurs when the condition of an assertion instruction is not
true. We found four pull requests that fixed five assertion
failures. The assertion checker detects them using an additional
check in the abstract semantics of the assertion instruction:

Jassert eK]i(l , ⌧)(d]) =
⇢

assertion failure e if {#t} 6v ⌧]

· · · otherwise
where ⌧] = JeK]e(d](l , ⌧))

It checks whether the abstract semantics of the condi-
tion expression e subsumes {#t}. For example, consider
the syntax-directed algorithm in Figure 2(c). The parameter
environment of this algorithm has an environment record or
undefined. Since type sensitivity divides the abstract types

x: number v boolean v string

x: number
#t #f

x: number x: boolean v
 string

JSTAR: JavaScript Specification Type Analyzer using Refinement / 16

• 864 versions of ECMAScript 
(Jan. 1, 2018 to Mar. 9, 2021)

• 4.2GHz Quad-Core Intel Core i7

• 32GB of RAM

• Average Time : 137.3 s

- extract : 8.0 s

- analyze: 128.5

- detect: 0.8 s

13

RQ1) Performance

JSTAR: JavaScript Specification Type Analyzer using Refinement / 1614

RQ2) Precision

TABLE II: The analysis precision of JSTAR without refinement (no-refine), with refinement (refine), and their difference (�)

Checker Bug Kind Precision = (# True Bugs) / (# Detected Bugs)
no-refine refine �

Reference
UnknownVar 62 / 106 17 / 60 63 / 78 17 / 31 +1 / -28 / -29
DuplicatedVar 45 / 46 46 / 47 +1 / +1

Arity MissingParam 4 / 4 4 / 4 4 / 4 4 / 4 / /
Assertion Assertion 4 / 56 4 / 56 4 / 31 4 / 31 / -25 / -25

Operand
NoNumber 22 / 113 2 / 65 22 / 44 2 / 6 / -69 / -59
Abrupt 20 / 48 20 / 38 / -10

Total 92 / 279 (33.0%) 93 / 157 (59.2%) +1 / -122 (+26.3%)

(a) Life spans sorted by creation (b) The histogram of life spans

Fig. 7: Life spans of true bugs

A. Performance

Figure 6 shows the statistics of the type analysis using
JSTAR for 864 versions of ECMAScript: (a) the number of
analyzed functions, (b) the number of flow- and type-sensitive
views, (c) the number of worklist iterations, and (d) the analy-
sis time. For each version, JSTAR analyzed 1,696.6 functions
on average. Since ECMAScript has gradually evolved, it ana-
lyzed 1,491 functions for the first version in 2018 but analyzed
1,864 functions in the latest. JSTAR analyzes functions with
flow- and type-sensitive views. On average, each version has
92.0K views and each function has 54.1 views.

We measured the performance of JSTAR with the worklist
iteration number and the analysis time. For each version of
ECMAScript, JSTAR took 137.3 seconds with 301.6K worklist
iterations on average. The average analysis time is 8.0 seconds
for specification extraction (extract), 128.5 seconds for type
analysis (analyze), and 0.8 seconds for bug detection (detect).
The performance overhead is modest enough for JSTAR to be
integrated in the open development process of ECMAScript.

B. Precision

We measured the analysis precision with the ratio of true
bugs in the reported bugs by JSTAR. As summarized in the
refine column of Table II, the analysis precision is 59.2%; 93
out of 157 detected bugs are true bugs. The reference checker
detected the most bugs with 80.8% precision; 17 unknown
variables (UnknownVar) and 46 duplicated variable declara-
tions (DuplicatedVar) are true bugs. We found four missing
parameters (MissingParam) with 100.0% precision and four
assertion failures (Assertion) with 12.9% precision. Finally,
the operand checker detected two non-numeric operand bugs

(NoNumber) with 33.3% precision and 20 unchecked abrupt
completion bugs (Abrupt) with 52.6% precision.

To understand the impact of the detected true bugs, we
extended JSTAR to automatically extract when they are created
and resolved in the ECMAScript official repository. A bug is
created when it exists in a specific version but does not exist in
its previous version, and a bug is resolved vice versa. The life

span of a bug denotes the number of days between the created
date and the resolved date. Figure 7 illustrates the life spans of
true bugs; Figure 7(a) depicts the life spans sorted by creation
and Figure 7(b) depicts the histogram of the life spans in a
logarithmic scale. Among 93 true bugs, 49 bugs are inherited,
which means that they are created before 2018. Moreover, 14
bugs still exist in the latest ECMAScript, which are newly
detected by JSTAR. We discuss the details of 14 newly found
bugs in Section V-D. Even though we assume that 49 inherited
bugs are created on January 1, 2018, the average life span is
422.8 and the maximum life span is 1,164. All the bugs with
the maximum life span are inherited ones and they are all
newly detected.

We manually investigated 64 false-positive bugs to under-
stand why JSTAR detected them. Among them, 17 bugs are
due to extraction failure of mechanized specifications caused
by wrong writing styles. Because ECMAScript is written in
HTML, JISET extracts abstract algorithms using the emu-alg
HTML tag. Unfortunately, several abstract algorithms are
defined with the opening tag <emu-alg> but without the
closing tag </emu-alg>, which causes extraction failure of
mechanized specifications leading to false-positive bugs. The
remaining 47 bugs are due to imprecise analysis. We found
that 28 bugs are due to imprecise analysis of the conditions
of assertions and branches for specific function calls. For
example, consider the following algorithm step for GetValue:

Since IsPropertyReference always returns false when the
Base field of a given reference record is cunresolvable, the
field access V .[[Base]] cannot be cunresolvable on line 4.a.
However, because the type analysis does not compute such in-
formation, cunresolvable is also passed as the argument of
ToObject. We believe that an advanced refinement technique

JSTAR: JavaScript Specification Type Analyzer using Refinement / 1615

RQ3) Effectiveness of Refinement

TABLE II: The analysis precision of JSTAR without refinement (no-refine), with refinement (refine), and their difference (�)

Checker Bug Kind Precision = (# True Bugs) / (# Detected Bugs)
no-refine refine �

Reference
UnknownVar 62 / 106 17 / 60 63 / 78 17 / 31 +1 / -28 / -29
DuplicatedVar 45 / 46 46 / 47 +1 / +1

Arity MissingParam 4 / 4 4 / 4 4 / 4 4 / 4 / /
Assertion Assertion 4 / 56 4 / 56 4 / 31 4 / 31 / -25 / -25

Operand
NoNumber 22 / 113 2 / 65 22 / 44 2 / 6 / -69 / -59
Abrupt 20 / 48 20 / 38 / -10

Total 92 / 279 (33.0%) 93 / 157 (59.2%) +1 / -122 (+26.3%)

(a) Life spans sorted by creation (b) The histogram of life spans

Fig. 7: Life spans of true bugs

A. Performance

Figure 6 shows the statistics of the type analysis using
JSTAR for 864 versions of ECMAScript: (a) the number of
analyzed functions, (b) the number of flow- and type-sensitive
views, (c) the number of worklist iterations, and (d) the analy-
sis time. For each version, JSTAR analyzed 1,696.6 functions
on average. Since ECMAScript has gradually evolved, it ana-
lyzed 1,491 functions for the first version in 2018 but analyzed
1,864 functions in the latest. JSTAR analyzes functions with
flow- and type-sensitive views. On average, each version has
92.0K views and each function has 54.1 views.

We measured the performance of JSTAR with the worklist
iteration number and the analysis time. For each version of
ECMAScript, JSTAR took 137.3 seconds with 301.6K worklist
iterations on average. The average analysis time is 8.0 seconds
for specification extraction (extract), 128.5 seconds for type
analysis (analyze), and 0.8 seconds for bug detection (detect).
The performance overhead is modest enough for JSTAR to be
integrated in the open development process of ECMAScript.

B. Precision

We measured the analysis precision with the ratio of true
bugs in the reported bugs by JSTAR. As summarized in the
refine column of Table II, the analysis precision is 59.2%; 93
out of 157 detected bugs are true bugs. The reference checker
detected the most bugs with 80.8% precision; 17 unknown
variables (UnknownVar) and 46 duplicated variable declara-
tions (DuplicatedVar) are true bugs. We found four missing
parameters (MissingParam) with 100.0% precision and four
assertion failures (Assertion) with 12.9% precision. Finally,
the operand checker detected two non-numeric operand bugs

(NoNumber) with 33.3% precision and 20 unchecked abrupt
completion bugs (Abrupt) with 52.6% precision.

To understand the impact of the detected true bugs, we
extended JSTAR to automatically extract when they are created
and resolved in the ECMAScript official repository. A bug is
created when it exists in a specific version but does not exist in
its previous version, and a bug is resolved vice versa. The life

span of a bug denotes the number of days between the created
date and the resolved date. Figure 7 illustrates the life spans of
true bugs; Figure 7(a) depicts the life spans sorted by creation
and Figure 7(b) depicts the histogram of the life spans in a
logarithmic scale. Among 93 true bugs, 49 bugs are inherited,
which means that they are created before 2018. Moreover, 14
bugs still exist in the latest ECMAScript, which are newly
detected by JSTAR. We discuss the details of 14 newly found
bugs in Section V-D. Even though we assume that 49 inherited
bugs are created on January 1, 2018, the average life span is
422.8 and the maximum life span is 1,164. All the bugs with
the maximum life span are inherited ones and they are all
newly detected.

We manually investigated 64 false-positive bugs to under-
stand why JSTAR detected them. Among them, 17 bugs are
due to extraction failure of mechanized specifications caused
by wrong writing styles. Because ECMAScript is written in
HTML, JISET extracts abstract algorithms using the emu-alg
HTML tag. Unfortunately, several abstract algorithms are
defined with the opening tag <emu-alg> but without the
closing tag </emu-alg>, which causes extraction failure of
mechanized specifications leading to false-positive bugs. The
remaining 47 bugs are due to imprecise analysis. We found
that 28 bugs are due to imprecise analysis of the conditions
of assertions and branches for specific function calls. For
example, consider the following algorithm step for GetValue:

Since IsPropertyReference always returns false when the
Base field of a given reference record is cunresolvable, the
field access V .[[Base]] cannot be cunresolvable on line 4.a.
However, because the type analysis does not compute such in-
formation, cunresolvable is also passed as the argument of
ToObject. We believe that an advanced refinement technique

JSTAR: JavaScript Specification Type Analyzer using Refinement / 16

• The Latest Version: ECMAScript 2021 (ES12)

16

RQ4) Detection of New Bugs

14 Bugs in Spec.

