
JEST: N+1-version Differential Testing of
Both JavaScript Engines and Specification

The 43rd International Conference on

Software Engineering (ICSE'21)

Jihyeok Park, Seungmin An, Donjun Youn,

Geyongwon Kim, Sukyoung Ryu

PLRG @ KAIST

May 28, 2021

/ 15JEST: N+1-version Differential Testing of Both JavaScript Engines and Specification

JavaScript is Everywhere

2

/ 15JEST: N+1-version Differential Testing of Both JavaScript Engines and Specification

JavaScript is Dominating

3

https://octoverse.github.com/

https://octoverse.github.com/

/ 15JEST: N+1-version Differential Testing of Both JavaScript Engines and Specification

JavaScript Specification and Engines

4

Reference number
ECMA-123:2009

© Ecma International 2009

ECMA-262
11th Edition / June 2020

ECMAScript® 2020
Language Specification

JavaScript
EnginesECMAScript

QuickJS
Conformance

Conformance

/ 15JEST: N+1-version Differential Testing of Both JavaScript Engines and Specification

Test262: JavaScript Conformance Tests

5

JavaScript
Engines

Test262 QuickJStest

no conformance checkingReference number
ECMA-123:2009

© Ecma International 2009

ECMA-262
11th Edition / June 2020

ECMAScript® 2020
Language Specification

ECMAScript

manualmanual

/ 15JEST: N+1-version Differential Testing of Both JavaScript Engines and Specification

N+1-version Differential Testing

6

Synthesize

Reference number
ECMA-123:2009

© Ecma International 2009

ECMA-262
11th Edition / June 2020

ECMAScript® 2020
Language Specification

JavaScript
Engines

ECMAScript

Test QuickJS

test

An engine bug in

test

test

test

/ 15JEST: N+1-version Differential Testing of Both JavaScript Engines and Specification

A specification bug in ECMAScriptA specification bug in ECMAScript
An engine bug in

N+1-version Differential Testing

7

TestSynthesize

Reference number
ECMA-123:2009

© Ecma International 2009

ECMA-262
11th Edition / June 2020

ECMAScript® 2020
Language Specification

ECMAScript
JavaScript

Engines

QuickJS

test

test

test

test

/ 15JEST: N+1-version Differential Testing of Both JavaScript Engines and Specification

JEST

8

Test

SynthesizerMechanized 

Spec. Tests Engine-N

Bug

Localizer

Spec. Bugs

Engine-1

Engine Bugs

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

JavaScript Static Analysis with Evolving Engines and
Specification

Jihyeok Park
KAIST, South Korea

jhpark0223@kaist.ac.kr

ABSTRACT
JavaScript is one of the most dominating programming languages.
Despite its popularity, the highly dynamic nature of JavaScript
makes its semantics complex thus understanding and reasoning
about JavaScript programs are challenging tasks. Therefore, Re-
searchers have proposed JavaScript static analysis based on ab-
stract interpretation with the the abstract semantics conforming
to ECMAScript, the standard speci�cation for JavaScript. However,
all the existing abstract semantics are manually de�ned thus the
current approach is labor-intensive and error-prone. Moreover, in
late 2014, this problem becomes more critical because the Ecma
Technical Committee 39 announced that they will annually update
ECMAScript.

To alleviate the problem, we propose an approach to perform
JavaScript static analysis using the abstract semantics automatically
de�ned with both of JavaScript engines and speci�cation. Our main
idea is 1) to leverage the existing JavaScript engines as much as
possible, and 2) to utilize the formal semantics automatically ex-
tracted from ECMAScript for remaining parts. We believe that our
approach would be able to analyze JavaScript programs developed
with new language features as well as improve their quality.

KEYWORDS
JavaScript, mechanized speci�cation, static analysis, abstract inter-
pretation
ACM Reference Format:
Jihyeok Park. 2021. JavaScript Static Analysis with Evolving Engines and
Speci�cation. In Proceedings of ACM Conference (Conference’17). ACM, New
York, NY, USA, 3 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
JavaScript is one of the most dominating programming languages.
While JavaScript was initially designed for client-side programming
in web browsers, and it is now widely used in server-side program-
ming [6] and even in embedded systems [3, 5, 7]. According to
W3Techs1, 97.2% of websites use JavaScript as their client-side pro-
gramming language. The 2020 State of the Octoverse2, which is the
1https://w3techs.com/technologies/details/cp-javascript/all/all
2https://octoverse.github.com/

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

annual report of GitHub, reports that JavaScript was the top-ranked
programming language in GitHub repositories since 2014 to 2020.

Researchers have proposed various static analyzers to under-
stand and reason about JavaScript programs. Despite its popularity,
JavaScript developers often su�er from its intricate and dynamic
language features, which may cause unexpected behaviors. For ex-
ample, the function declaration function f(x){ return x == !x }

may seem to always return false. Surprisingly, it returns truewhen
its argument is an empty array; f([]) = true. To correctly under-
stand and reason about such a complex behavior, researchers have
proposed various static analyzers for JavaScript programs, such as
TAJS [15], SAFE [20], JSAI [16], and WALA [26].

However, existing JavaScript static analyzers utilize manually
de�ned formal semantics, and this approach is labor-intensive and
error-prone. ECMAScript, which is a standard speci�cation for
JavaScript maintained by the Ecma Technical Committee 39 (TC39),
describes syntax and semantics of JavaScript in a structured na-
ture language. Based on the speci�cation, researchers have de�ned
various JavaScript formal semantics [8, 14, 21] or have modi�ed
them suitable for debuggers [9], veri�cation tools [12, 13], and
static analyzers [15, 16, 20, 26]. However, all of them are written
by hand thus the existing approach is tedious, labor-intensive, and
error-prone. Moreover, in late 2014, the TC39 announced the yearly
release cadence and open development process of ECMAScript to
quickly adapt to evolving development environments. Thus, there
are already six updates after ES5.1 and this problem becomes more
critical.

To alleviate this problem, we propose an approach to perform
JavaScript static analysis using the abstract semantics automatically
de�ned with both of JavaScript engines and speci�cation. Our main
idea is 1) to leverage the existing JavaScript engines as much as
possible, and 2) to utilize the formal semantics automatically ex-
tracted from ECMAScript for remaining parts. To lessen the burden
to manually de�ne the abstract semantics for evolving JavaScript
speci�cation, we present a technique to extract a formal semantics
from ECMAScript and de�ne an abstract semantics based on it.
However, the automatically extracted abstract semantics might be
much slower than highly optimized abstract semantics written by
hand. Thus, we also leverage existing JavaScript engines to de�ne
abstract semantics for better performance of static analysis. Our
approach consists of three steps with three di�erent tools; First,
JISET automatically extracts JavaScript formal semantics using rule-
based compilation from abstract algorithms to functions of IRES,
an Intermediate Representation that we designed for ECMAScript.
Based on the extracted semantics, JEST performs #+1-version dif-
ferential testing for existing JavaScript engines and ECMAScript to
check whether they conform to each other. Finally, JSAVER performs

1

ECMAScript

···

JavaScript Engines and Specification Tester

[ASE'20] Park et al, “JISET: Javascript IR-based Semantics Extraction Toolchain”

Spectrum Based

Fault Localization (SBFL)

with ER1b formula

/ 15JEST: N+1-version Differential Testing of Both JavaScript Engines and Specification

Assertion

Injector

Conformance Test Synthesis

9

Mechanized 
Spec. Tests

Seed

Generator

Seed

Target

Selector

Programs

Target

Program

Program

Mutator Mutated

Program

Test Synthesizer

Syntax-directed

Program Generation

Seed

Generator

Coverage-guided

Target Selection

Target

Selector

1.Exceptions

2.Aborts

3.Variables

4.Objects

5.Object Properties

6.Property Keys

7.Internal Methods 

and Slots

Assertion

Injector

1.Random Mutation

2.Nearest Syntax Tree Mutation

3.String Substitutions

4.Object Substitutions

5.Statement Insertion

Program

Mutator

/ 15JEST: N+1-version Differential Testing of Both JavaScript Engines and Specification

• JavaScript Specification

- ECMAScript 2020 (ES11) - released in June 2020

• JavaScript Engines

- V8 - v8.3 by Google

- GraalJS - v20.1.0 by Oracle

- QuickJS - 2020-04-12 by Fabrice Bellard

- Moddable XS - v10.3.0 by Moddable Tech Inc.

10

Evaluation

/ 15JEST: N+1-version Differential Testing of Both JavaScript Engines and Specification

• 1,700 Synthesized Tests in 100 hours

• Syntax Coverage: 97.79% (397 / 406)

• Semantics Coverage
- Statement: 86.67% (21,230 / 24,495)

- Branch: 77.95% (7,480 / 9,596)

11

RQ1: Coverage of Synthesized Tests

/ 15JEST: N+1-version Differential Testing of Both JavaScript Engines and Specification

RQ2: Bug Detection in JavaScript Engines

12

QuickJS initializes 'x' with 'undefined' instead of throwing a 'ReferenceError'

function f (... { x = x }) { return x; } var y = f();

try { ++undefined; } catch(e) { }

GraalJS crashes with an exception 'java.lang.IllegalStateException'

/ 15JEST: N+1-version Differential Testing of Both JavaScript Engines and Specification

RQ3: Bug Detection in ECMAScript

13

https://github.com/tc39/ecma262/pull/2130/files

https://github.com/tc39/ecma262/pull/2130/files

/ 15JEST: N+1-version Differential Testing of Both JavaScript Engines and Specification

• 64 out of 71 bugs are semantics bugs

14

RQ4: Accuracy of Bug Localization

/ 15JEST: N+1-version Differential Testing of Both JavaScript Engines and Specification 15

