
JavaScript Static Analysis with
Evolving Engines and Specification

Jihyeok Park

PLRG @ KAIST

ECOOP/ISSTA 2021 Doctoral Symposium

July 13, 2021

ECOOP/ISSTA 2021 Doctoral Symposium / 222

JavaScript is Everywhere

ECOOP/ISSTA 2021 Doctoral Symposium / 223

https://octoverse.github.com/

https://octoverse.github.com/

ECOOP/ISSTA 2021 Doctoral Symposium / 224

JavaScript Complex Semantics

function f(x) { return x == !x; }

Always return false?

ECOOP/ISSTA 2021 Doctoral Symposium / 224

JavaScript Complex Semantics

function f(x) { return x == !x; }

Always return false?

NO!!
f([]) -> [] == ![]
 -> [] == false
 -> +[] == +false
 -> 0 == 0
 -> true

ECOOP/ISSTA 2021 Doctoral Symposium / 225

ECMAScript: JavaScript Specification

The production of ArrayLiteral in ES10 The Evaluation algorithm for
the first alternative of ArrayLiteral in ES10

Syntax

Semantics

ECOOP/ISSTA 2021 Doctoral Symposium / 226

Problem: JavaScript Static Analyzer

ECMAScript

Program

Bugs

JavaScript

Programs

JS Static

Analyzer

read Formal

Semantics

abstract

define
analyzer

developer

- SAFE - TAJS
- WALA - · · ·

<latexit sha1_base64="uZrKiHQWpH3WeD1h9yKztQmHyT8=">AAACkHicbVFdb9MwFHWyAaOwrRuPvFh0IF6okoHE3tbwJTSBNLR2ndRUlePctNYcJ7Jv0IoV/icv/BacNg9bx5VsHZ977r32cVJKYTAI/nj+1vaDh492HneePN3d2+8eHF6aotIcRryQhb5KmAEpFIxQoISrUgPLEwnj5Ppjkx//BG1EoYa4LGGas7kSmeAMHTXr3sQJzIWyTGu2rK0e2N+1XO915+jNEX1FY4QbNJm9iL58rt35LjuMzi7qON7QjqNv0S0tTws0ThSDSttRs24v6AeroPdB2IIeaeN8duCROC14lYNCLpkxkzAoceraoeAS6k5cGSgZv2ZzmDioWA5malcW1fSlY1KaFdothXTF3q6wLDdmmSdOmTNcmM1cQ/4vN6kwO5laocoKQfH1oKySFAva+E1ToYGjXDrAuBburpQvmGYc3a904k/g3qLhu+sbyXLBEkAbN1PKX7y2w7C2K5DXVmDjWbjp0H1wedwP3/aPf7zrDT607u2Q5+QFeU1C8p4MyFdyTkaEk7/etrfr7fmH/ol/6kdrqe+1Nc/InfDP/gGZYcRN</latexit>

ECOOP/ISSTA 2021 Doctoral Symposium / 226

Problem: JavaScript Static Analyzer

ECMAScript

Program

Bugs

JavaScript

Programs

JS Static

Analyzer

read Formal

Semantics

abstract

define
analyzer

developer

- SAFE - TAJS
- WALA - · · ·

<latexit sha1_base64="uZrKiHQWpH3WeD1h9yKztQmHyT8=">AAACkHicbVFdb9MwFHWyAaOwrRuPvFh0IF6okoHE3tbwJTSBNLR2ndRUlePctNYcJ7Jv0IoV/icv/BacNg9bx5VsHZ977r32cVJKYTAI/nj+1vaDh492HneePN3d2+8eHF6aotIcRryQhb5KmAEpFIxQoISrUgPLEwnj5Ppjkx//BG1EoYa4LGGas7kSmeAMHTXr3sQJzIWyTGu2rK0e2N+1XO915+jNEX1FY4QbNJm9iL58rt35LjuMzi7qON7QjqNv0S0tTws0ThSDSttRs24v6AeroPdB2IIeaeN8duCROC14lYNCLpkxkzAoceraoeAS6k5cGSgZv2ZzmDioWA5malcW1fSlY1KaFdothXTF3q6wLDdmmSdOmTNcmM1cQ/4vN6kwO5laocoKQfH1oKySFAva+E1ToYGjXDrAuBburpQvmGYc3a904k/g3qLhu+sbyXLBEkAbN1PKX7y2w7C2K5DXVmDjWbjp0H1wedwP3/aPf7zrDT607u2Q5+QFeU1C8p4MyFdyTkaEk7/etrfr7fmH/ol/6kdrqe+1Nc/InfDP/gGZYcRN</latexit>

ECOOP/ISSTA 2021 Doctoral Symposium / 226

Problem: JavaScript Static Analyzer

ECMAScript

Program

Bugs

JavaScript

Programs

JS Static

Analyzer

read Formal

Semantics

abstract

define
analyzer

developer

read

- SAFE - TAJS
- WALA - · · ·

<latexit sha1_base64="uZrKiHQWpH3WeD1h9yKztQmHyT8=">AAACkHicbVFdb9MwFHWyAaOwrRuPvFh0IF6okoHE3tbwJTSBNLR2ndRUlePctNYcJ7Jv0IoV/icv/BacNg9bx5VsHZ977r32cVJKYTAI/nj+1vaDh492HneePN3d2+8eHF6aotIcRryQhb5KmAEpFIxQoISrUgPLEwnj5Ppjkx//BG1EoYa4LGGas7kSmeAMHTXr3sQJzIWyTGu2rK0e2N+1XO915+jNEX1FY4QbNJm9iL58rt35LjuMzi7qON7QjqNv0S0tTws0ThSDSttRs24v6AeroPdB2IIeaeN8duCROC14lYNCLpkxkzAoceraoeAS6k5cGSgZv2ZzmDioWA5malcW1fSlY1KaFdothXTF3q6wLDdmmSdOmTNcmM1cQ/4vN6kwO5laocoKQfH1oKySFAva+E1ToYGjXDrAuBburpQvmGYc3a904k/g3qLhu+sbyXLBEkAbN1PKX7y2w7C2K5DXVmDjWbjp0H1wedwP3/aPf7zrDT607u2Q5+QFeU1C8p4MyFdyTkaEk7/etrfr7fmH/ol/6kdrqe+1Nc/InfDP/gGZYcRN</latexit>

ECOOP/ISSTA 2021 Doctoral Symposium / 226

Problem: JavaScript Static Analyzer

ECMAScript

Program

Bugs

JavaScript

Programs

JS Static

Analyzer

read Formal

Semantics

abstract

define
analyzer

developer

read define

- SAFE - TAJS
- WALA - · · ·

<latexit sha1_base64="uZrKiHQWpH3WeD1h9yKztQmHyT8=">AAACkHicbVFdb9MwFHWyAaOwrRuPvFh0IF6okoHE3tbwJTSBNLR2ndRUlePctNYcJ7Jv0IoV/icv/BacNg9bx5VsHZ977r32cVJKYTAI/nj+1vaDh492HneePN3d2+8eHF6aotIcRryQhb5KmAEpFIxQoISrUgPLEwnj5Ppjkx//BG1EoYa4LGGas7kSmeAMHTXr3sQJzIWyTGu2rK0e2N+1XO915+jNEX1FY4QbNJm9iL58rt35LjuMzi7qON7QjqNv0S0tTws0ThSDSttRs24v6AeroPdB2IIeaeN8duCROC14lYNCLpkxkzAoceraoeAS6k5cGSgZv2ZzmDioWA5malcW1fSlY1KaFdothXTF3q6wLDdmmSdOmTNcmM1cQ/4vN6kwO5laocoKQfH1oKySFAva+E1ToYGjXDrAuBburpQvmGYc3a904k/g3qLhu+sbyXLBEkAbN1PKX7y2w7C2K5DXVmDjWbjp0H1wedwP3/aPf7zrDT607u2Q5+QFeU1C8p4MyFdyTkaEk7/etrfr7fmH/ol/6kdrqe+1Nc/InfDP/gGZYcRN</latexit>

ECOOP/ISSTA 2021 Doctoral Symposium / 226

Problem: JavaScript Static Analyzer

ECMAScript

Program

Bugs

JavaScript

Programs

JS Static

Analyzer

read Formal

Semantics

abstract

define
analyzer

developer

read

abstract

define

- SAFE - TAJS
- WALA - · · ·

<latexit sha1_base64="uZrKiHQWpH3WeD1h9yKztQmHyT8=">AAACkHicbVFdb9MwFHWyAaOwrRuPvFh0IF6okoHE3tbwJTSBNLR2ndRUlePctNYcJ7Jv0IoV/icv/BacNg9bx5VsHZ977r32cVJKYTAI/nj+1vaDh492HneePN3d2+8eHF6aotIcRryQhb5KmAEpFIxQoISrUgPLEwnj5Ppjkx//BG1EoYa4LGGas7kSmeAMHTXr3sQJzIWyTGu2rK0e2N+1XO915+jNEX1FY4QbNJm9iL58rt35LjuMzi7qON7QjqNv0S0tTws0ThSDSttRs24v6AeroPdB2IIeaeN8duCROC14lYNCLpkxkzAoceraoeAS6k5cGSgZv2ZzmDioWA5malcW1fSlY1KaFdothXTF3q6wLDdmmSdOmTNcmM1cQ/4vN6kwO5laocoKQfH1oKySFAva+E1ToYGjXDrAuBburpQvmGYc3a904k/g3qLhu+sbyXLBEkAbN1PKX7y2w7C2K5DXVmDjWbjp0H1wedwP3/aPf7zrDT607u2Q5+QFeU1C8p4MyFdyTkaEk7/etrfr7fmH/ol/6kdrqe+1Nc/InfDP/gGZYcRN</latexit>

ECOOP/ISSTA 2021 Doctoral Symposium / 227

Problem: Fast Evolving JavaScript

1996 1998 2000 2002 2004 2008 2010 2012 2014 2016 2018 2020 2022

1997 - ES1
First edition

1998 - ES2
Editorial 
changes

1999 - ES3
RegEx, String, 
Try/catch, etc

2009 - ES5
getters/setters,

strict mode,

exceptions, etc

2011 - ES5.1
Editorial 
Changes

2015 - ES6
classes, modules, etc.

2016 - ES7
destructuring patterns, etc.

Annual Releases

2017 - ES8
object manipulation, etc.

2018 - ES9
2020 - ES11

ES.Next

2019 - ES10
2021 - ES12

ECMAScript 2021 (ES12) - 884 pages

ECOOP/ISSTA 2021 Doctoral Symposium / 228

Core Idea: Synthesis of JS Static Analyzer

ECMAScript JavaScript

Engines

Program

Bugs

JavaScript

Programs

JS Static

Analyzer

synthesize

ECOOP/ISSTA 2021 Doctoral Symposium / 229

Overall Structure

ECMAScript JavaScript

Engines

Program

Bugs

JavaScript

Programs

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

JavaScript Static Analysis with Evolving Engines and
Specification

Jihyeok Park
KAIST, South Korea

jhpark0223@kaist.ac.kr

ABSTRACT
JavaScript is one of the most dominating programming languages.
Despite its popularity, the highly dynamic nature of JavaScript
makes its semantics complex thus understanding and reasoning
about JavaScript programs are challenging tasks. Therefore, Re-
searchers have proposed JavaScript static analysis based on ab-
stract interpretation with the the abstract semantics conforming
to ECMAScript, the standard speci�cation for JavaScript. However,
all the existing abstract semantics are manually de�ned thus the
current approach is labor-intensive and error-prone. Moreover, in
late 2014, this problem becomes more critical because the Ecma
Technical Committee 39 announced that they will annually update
ECMAScript.

To alleviate the problem, we propose an approach to perform
JavaScript static analysis using the abstract semantics automatically
de�ned with both of JavaScript engines and speci�cation. Our main
idea is 1) to leverage the existing JavaScript engines as much as
possible, and 2) to utilize the formal semantics automatically ex-
tracted from ECMAScript for remaining parts. We believe that our
approach would be able to analyze JavaScript programs developed
with new language features as well as improve their quality.

KEYWORDS
JavaScript, mechanized speci�cation, static analysis, abstract inter-
pretation
ACM Reference Format:
Jihyeok Park. 2021. JavaScript Static Analysis with Evolving Engines and
Speci�cation. In Proceedings of ACM Conference (Conference’17). ACM, New
York, NY, USA, 3 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
JavaScript is one of the most dominating programming languages.
While JavaScript was initially designed for client-side programming
in web browsers, and it is now widely used in server-side program-
ming [6] and even in embedded systems [3, 5, 7]. According to
W3Techs1, 97.2% of websites use JavaScript as their client-side pro-
gramming language. The 2020 State of the Octoverse2, which is the
1https://w3techs.com/technologies/details/cp-javascript/all/all
2https://octoverse.github.com/

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

annual report of GitHub, reports that JavaScript was the top-ranked
programming language in GitHub repositories since 2014 to 2020.

Researchers have proposed various static analyzers to under-
stand and reason about JavaScript programs. Despite its popularity,
JavaScript developers often su�er from its intricate and dynamic
language features, which may cause unexpected behaviors. For ex-
ample, the function declaration function f(x){ return x == !x }

may seem to always return false. Surprisingly, it returns truewhen
its argument is an empty array; f([]) = true. To correctly under-
stand and reason about such a complex behavior, researchers have
proposed various static analyzers for JavaScript programs, such as
TAJS [15], SAFE [20], JSAI [16], and WALA [26].

However, existing JavaScript static analyzers utilize manually
de�ned formal semantics, and this approach is labor-intensive and
error-prone. ECMAScript, which is a standard speci�cation for
JavaScript maintained by the Ecma Technical Committee 39 (TC39),
describes syntax and semantics of JavaScript in a structured na-
ture language. Based on the speci�cation, researchers have de�ned
various JavaScript formal semantics [8, 14, 21] or have modi�ed
them suitable for debuggers [9], veri�cation tools [12, 13], and
static analyzers [15, 16, 20, 26]. However, all of them are written
by hand thus the existing approach is tedious, labor-intensive, and
error-prone. Moreover, in late 2014, the TC39 announced the yearly
release cadence and open development process of ECMAScript to
quickly adapt to evolving development environments. Thus, there
are already six updates after ES5.1 and this problem becomes more
critical.

To alleviate this problem, we propose an approach to perform
JavaScript static analysis using the abstract semantics automatically
de�ned with both of JavaScript engines and speci�cation. Our main
idea is 1) to leverage the existing JavaScript engines as much as
possible, and 2) to utilize the formal semantics automatically ex-
tracted from ECMAScript for remaining parts. To lessen the burden
to manually de�ne the abstract semantics for evolving JavaScript
speci�cation, we present a technique to extract a formal semantics
from ECMAScript and de�ne an abstract semantics based on it.
However, the automatically extracted abstract semantics might be
much slower than highly optimized abstract semantics written by
hand. Thus, we also leverage existing JavaScript engines to de�ne
abstract semantics for better performance of static analysis. Our
approach consists of three steps with three di�erent tools; First,
JISET automatically extracts JavaScript formal semantics using rule-
based compilation from abstract algorithms to functions of IRES,
an Intermediate Representation that we designed for ECMAScript.
Based on the extracted semantics, JEST performs #+1-version dif-
ferential testing for existing JavaScript engines and ECMAScript to
check whether they conform to each other. Finally, JSAVER performs

1

Mechanized

Specification

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

JavaScript Static Analysis with Evolving Engines and
Specification

Jihyeok Park
KAIST, South Korea

jhpark0223@kaist.ac.kr

ABSTRACT
JavaScript is one of the most dominating programming languages.
Despite its popularity, the highly dynamic nature of JavaScript
makes its semantics complex thus understanding and reasoning
about JavaScript programs are challenging tasks. Therefore, Re-
searchers have proposed JavaScript static analysis based on ab-
stract interpretation with the the abstract semantics conforming
to ECMAScript, the standard speci�cation for JavaScript. However,
all the existing abstract semantics are manually de�ned thus the
current approach is labor-intensive and error-prone. Moreover, in
late 2014, this problem becomes more critical because the Ecma
Technical Committee 39 announced that they will annually update
ECMAScript.

To alleviate the problem, we propose an approach to perform
JavaScript static analysis using the abstract semantics automatically
de�ned with both of JavaScript engines and speci�cation. Our main
idea is 1) to leverage the existing JavaScript engines as much as
possible, and 2) to utilize the formal semantics automatically ex-
tracted from ECMAScript for remaining parts. We believe that our
approach would be able to analyze JavaScript programs developed
with new language features as well as improve their quality.

KEYWORDS
JavaScript, mechanized speci�cation, static analysis, abstract inter-
pretation
ACM Reference Format:
Jihyeok Park. 2021. JavaScript Static Analysis with Evolving Engines and
Speci�cation. In Proceedings of ACM Conference (Conference’17). ACM, New
York, NY, USA, 3 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
JavaScript is one of the most dominating programming languages.
While JavaScript was initially designed for client-side programming
in web browsers, and it is now widely used in server-side program-
ming [6] and even in embedded systems [3, 5, 7]. According to
W3Techs1, 97.2% of websites use JavaScript as their client-side pro-
gramming language. The 2020 State of the Octoverse2, which is the
1https://w3techs.com/technologies/details/cp-javascript/all/all
2https://octoverse.github.com/

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

annual report of GitHub, reports that JavaScript was the top-ranked
programming language in GitHub repositories since 2014 to 2020.

Researchers have proposed various static analyzers to under-
stand and reason about JavaScript programs. Despite its popularity,
JavaScript developers often su�er from its intricate and dynamic
language features, which may cause unexpected behaviors. For ex-
ample, the function declaration function f(x){ return x == !x }

may seem to always return false. Surprisingly, it returns truewhen
its argument is an empty array; f([]) = true. To correctly under-
stand and reason about such a complex behavior, researchers have
proposed various static analyzers for JavaScript programs, such as
TAJS [15], SAFE [20], JSAI [16], and WALA [26].

However, existing JavaScript static analyzers utilize manually
de�ned formal semantics, and this approach is labor-intensive and
error-prone. ECMAScript, which is a standard speci�cation for
JavaScript maintained by the Ecma Technical Committee 39 (TC39),
describes syntax and semantics of JavaScript in a structured na-
ture language. Based on the speci�cation, researchers have de�ned
various JavaScript formal semantics [8, 14, 21] or have modi�ed
them suitable for debuggers [9], veri�cation tools [12, 13], and
static analyzers [15, 16, 20, 26]. However, all of them are written
by hand thus the existing approach is tedious, labor-intensive, and
error-prone. Moreover, in late 2014, the TC39 announced the yearly
release cadence and open development process of ECMAScript to
quickly adapt to evolving development environments. Thus, there
are already six updates after ES5.1 and this problem becomes more
critical.

To alleviate this problem, we propose an approach to perform
JavaScript static analysis using the abstract semantics automatically
de�ned with both of JavaScript engines and speci�cation. Our main
idea is 1) to leverage the existing JavaScript engines as much as
possible, and 2) to utilize the formal semantics automatically ex-
tracted from ECMAScript for remaining parts. To lessen the burden
to manually de�ne the abstract semantics for evolving JavaScript
speci�cation, we present a technique to extract a formal semantics
from ECMAScript and de�ne an abstract semantics based on it.
However, the automatically extracted abstract semantics might be
much slower than highly optimized abstract semantics written by
hand. Thus, we also leverage existing JavaScript engines to de�ne
abstract semantics for better performance of static analysis. Our
approach consists of three steps with three di�erent tools; First,
JISET automatically extracts JavaScript formal semantics using rule-
based compilation from abstract algorithms to functions of IRES,
an Intermediate Representation that we designed for ECMAScript.
Based on the extracted semantics, JEST performs #+1-version dif-
ferential testing for existing JavaScript engines and ECMAScript to
check whether they conform to each other. Finally, JSAVER performs

1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

JavaScript Static Analysis with Evolving Engines and
Specification

Jihyeok Park
KAIST, South Korea

jhpark0223@kaist.ac.kr

ABSTRACT
JavaScript is one of the most dominating programming languages.
Despite its popularity, the highly dynamic nature of JavaScript
makes its semantics complex thus understanding and reasoning
about JavaScript programs are challenging tasks. Therefore, Re-
searchers have proposed JavaScript static analysis based on ab-
stract interpretation with the the abstract semantics conforming
to ECMAScript, the standard speci�cation for JavaScript. However,
all the existing abstract semantics are manually de�ned thus the
current approach is labor-intensive and error-prone. Moreover, in
late 2014, this problem becomes more critical because the Ecma
Technical Committee 39 announced that they will annually update
ECMAScript.

To alleviate the problem, we propose an approach to perform
JavaScript static analysis using the abstract semantics automatically
de�ned with both of JavaScript engines and speci�cation. Our main
idea is 1) to leverage the existing JavaScript engines as much as
possible, and 2) to utilize the formal semantics automatically ex-
tracted from ECMAScript for remaining parts. We believe that our
approach would be able to analyze JavaScript programs developed
with new language features as well as improve their quality.

KEYWORDS
JavaScript, mechanized speci�cation, static analysis, abstract inter-
pretation
ACM Reference Format:
Jihyeok Park. 2021. JavaScript Static Analysis with Evolving Engines and
Speci�cation. In Proceedings of ACM Conference (Conference’17). ACM, New
York, NY, USA, 3 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
JavaScript is one of the most dominating programming languages.
While JavaScript was initially designed for client-side programming
in web browsers, and it is now widely used in server-side program-
ming [6] and even in embedded systems [3, 5, 7]. According to
W3Techs1, 97.2% of websites use JavaScript as their client-side pro-
gramming language. The 2020 State of the Octoverse2, which is the
1https://w3techs.com/technologies/details/cp-javascript/all/all
2https://octoverse.github.com/

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

annual report of GitHub, reports that JavaScript was the top-ranked
programming language in GitHub repositories since 2014 to 2020.

Researchers have proposed various static analyzers to under-
stand and reason about JavaScript programs. Despite its popularity,
JavaScript developers often su�er from its intricate and dynamic
language features, which may cause unexpected behaviors. For ex-
ample, the function declaration function f(x){ return x == !x }

may seem to always return false. Surprisingly, it returns truewhen
its argument is an empty array; f([]) = true. To correctly under-
stand and reason about such a complex behavior, researchers have
proposed various static analyzers for JavaScript programs, such as
TAJS [15], SAFE [20], JSAI [16], and WALA [26].

However, existing JavaScript static analyzers utilize manually
de�ned formal semantics, and this approach is labor-intensive and
error-prone. ECMAScript, which is a standard speci�cation for
JavaScript maintained by the Ecma Technical Committee 39 (TC39),
describes syntax and semantics of JavaScript in a structured na-
ture language. Based on the speci�cation, researchers have de�ned
various JavaScript formal semantics [8, 14, 21] or have modi�ed
them suitable for debuggers [9], veri�cation tools [12, 13], and
static analyzers [15, 16, 20, 26]. However, all of them are written
by hand thus the existing approach is tedious, labor-intensive, and
error-prone. Moreover, in late 2014, the TC39 announced the yearly
release cadence and open development process of ECMAScript to
quickly adapt to evolving development environments. Thus, there
are already six updates after ES5.1 and this problem becomes more
critical.

To alleviate this problem, we propose an approach to perform
JavaScript static analysis using the abstract semantics automatically
de�ned with both of JavaScript engines and speci�cation. Our main
idea is 1) to leverage the existing JavaScript engines as much as
possible, and 2) to utilize the formal semantics automatically ex-
tracted from ECMAScript for remaining parts. To lessen the burden
to manually de�ne the abstract semantics for evolving JavaScript
speci�cation, we present a technique to extract a formal semantics
from ECMAScript and de�ne an abstract semantics based on it.
However, the automatically extracted abstract semantics might be
much slower than highly optimized abstract semantics written by
hand. Thus, we also leverage existing JavaScript engines to de�ne
abstract semantics for better performance of static analysis. Our
approach consists of three steps with three di�erent tools; First,
JISET automatically extracts JavaScript formal semantics using rule-
based compilation from abstract algorithms to functions of IRES,
an Intermediate Representation that we designed for ECMAScript.
Based on the extracted semantics, JEST performs #+1-version dif-
ferential testing for existing JavaScript engines and ECMAScript to
check whether they conform to each other. Finally, JSAVER performs

1

Conformance

Bugs

ASE'20

ICSE'21

Ongoing Work

ECOOP/ISSTA 2021 Doctoral Symposium / 229

Overall Structure

ECMAScript JavaScript

Engines

Program

Bugs

JavaScript

Programs

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

JavaScript Static Analysis with Evolving Engines and
Specification

Jihyeok Park
KAIST, South Korea

jhpark0223@kaist.ac.kr

ABSTRACT
JavaScript is one of the most dominating programming languages.
Despite its popularity, the highly dynamic nature of JavaScript
makes its semantics complex thus understanding and reasoning
about JavaScript programs are challenging tasks. Therefore, Re-
searchers have proposed JavaScript static analysis based on ab-
stract interpretation with the the abstract semantics conforming
to ECMAScript, the standard speci�cation for JavaScript. However,
all the existing abstract semantics are manually de�ned thus the
current approach is labor-intensive and error-prone. Moreover, in
late 2014, this problem becomes more critical because the Ecma
Technical Committee 39 announced that they will annually update
ECMAScript.

To alleviate the problem, we propose an approach to perform
JavaScript static analysis using the abstract semantics automatically
de�ned with both of JavaScript engines and speci�cation. Our main
idea is 1) to leverage the existing JavaScript engines as much as
possible, and 2) to utilize the formal semantics automatically ex-
tracted from ECMAScript for remaining parts. We believe that our
approach would be able to analyze JavaScript programs developed
with new language features as well as improve their quality.

KEYWORDS
JavaScript, mechanized speci�cation, static analysis, abstract inter-
pretation
ACM Reference Format:
Jihyeok Park. 2021. JavaScript Static Analysis with Evolving Engines and
Speci�cation. In Proceedings of ACM Conference (Conference’17). ACM, New
York, NY, USA, 3 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
JavaScript is one of the most dominating programming languages.
While JavaScript was initially designed for client-side programming
in web browsers, and it is now widely used in server-side program-
ming [6] and even in embedded systems [3, 5, 7]. According to
W3Techs1, 97.2% of websites use JavaScript as their client-side pro-
gramming language. The 2020 State of the Octoverse2, which is the
1https://w3techs.com/technologies/details/cp-javascript/all/all
2https://octoverse.github.com/

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

annual report of GitHub, reports that JavaScript was the top-ranked
programming language in GitHub repositories since 2014 to 2020.

Researchers have proposed various static analyzers to under-
stand and reason about JavaScript programs. Despite its popularity,
JavaScript developers often su�er from its intricate and dynamic
language features, which may cause unexpected behaviors. For ex-
ample, the function declaration function f(x){ return x == !x }

may seem to always return false. Surprisingly, it returns truewhen
its argument is an empty array; f([]) = true. To correctly under-
stand and reason about such a complex behavior, researchers have
proposed various static analyzers for JavaScript programs, such as
TAJS [15], SAFE [20], JSAI [16], and WALA [26].

However, existing JavaScript static analyzers utilize manually
de�ned formal semantics, and this approach is labor-intensive and
error-prone. ECMAScript, which is a standard speci�cation for
JavaScript maintained by the Ecma Technical Committee 39 (TC39),
describes syntax and semantics of JavaScript in a structured na-
ture language. Based on the speci�cation, researchers have de�ned
various JavaScript formal semantics [8, 14, 21] or have modi�ed
them suitable for debuggers [9], veri�cation tools [12, 13], and
static analyzers [15, 16, 20, 26]. However, all of them are written
by hand thus the existing approach is tedious, labor-intensive, and
error-prone. Moreover, in late 2014, the TC39 announced the yearly
release cadence and open development process of ECMAScript to
quickly adapt to evolving development environments. Thus, there
are already six updates after ES5.1 and this problem becomes more
critical.

To alleviate this problem, we propose an approach to perform
JavaScript static analysis using the abstract semantics automatically
de�ned with both of JavaScript engines and speci�cation. Our main
idea is 1) to leverage the existing JavaScript engines as much as
possible, and 2) to utilize the formal semantics automatically ex-
tracted from ECMAScript for remaining parts. To lessen the burden
to manually de�ne the abstract semantics for evolving JavaScript
speci�cation, we present a technique to extract a formal semantics
from ECMAScript and de�ne an abstract semantics based on it.
However, the automatically extracted abstract semantics might be
much slower than highly optimized abstract semantics written by
hand. Thus, we also leverage existing JavaScript engines to de�ne
abstract semantics for better performance of static analysis. Our
approach consists of three steps with three di�erent tools; First,
JISET automatically extracts JavaScript formal semantics using rule-
based compilation from abstract algorithms to functions of IRES,
an Intermediate Representation that we designed for ECMAScript.
Based on the extracted semantics, JEST performs #+1-version dif-
ferential testing for existing JavaScript engines and ECMAScript to
check whether they conform to each other. Finally, JSAVER performs

1

Mechanized

Specification

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

JavaScript Static Analysis with Evolving Engines and
Specification

Jihyeok Park
KAIST, South Korea

jhpark0223@kaist.ac.kr

ABSTRACT
JavaScript is one of the most dominating programming languages.
Despite its popularity, the highly dynamic nature of JavaScript
makes its semantics complex thus understanding and reasoning
about JavaScript programs are challenging tasks. Therefore, Re-
searchers have proposed JavaScript static analysis based on ab-
stract interpretation with the the abstract semantics conforming
to ECMAScript, the standard speci�cation for JavaScript. However,
all the existing abstract semantics are manually de�ned thus the
current approach is labor-intensive and error-prone. Moreover, in
late 2014, this problem becomes more critical because the Ecma
Technical Committee 39 announced that they will annually update
ECMAScript.

To alleviate the problem, we propose an approach to perform
JavaScript static analysis using the abstract semantics automatically
de�ned with both of JavaScript engines and speci�cation. Our main
idea is 1) to leverage the existing JavaScript engines as much as
possible, and 2) to utilize the formal semantics automatically ex-
tracted from ECMAScript for remaining parts. We believe that our
approach would be able to analyze JavaScript programs developed
with new language features as well as improve their quality.

KEYWORDS
JavaScript, mechanized speci�cation, static analysis, abstract inter-
pretation
ACM Reference Format:
Jihyeok Park. 2021. JavaScript Static Analysis with Evolving Engines and
Speci�cation. In Proceedings of ACM Conference (Conference’17). ACM, New
York, NY, USA, 3 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
JavaScript is one of the most dominating programming languages.
While JavaScript was initially designed for client-side programming
in web browsers, and it is now widely used in server-side program-
ming [6] and even in embedded systems [3, 5, 7]. According to
W3Techs1, 97.2% of websites use JavaScript as their client-side pro-
gramming language. The 2020 State of the Octoverse2, which is the
1https://w3techs.com/technologies/details/cp-javascript/all/all
2https://octoverse.github.com/

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

annual report of GitHub, reports that JavaScript was the top-ranked
programming language in GitHub repositories since 2014 to 2020.

Researchers have proposed various static analyzers to under-
stand and reason about JavaScript programs. Despite its popularity,
JavaScript developers often su�er from its intricate and dynamic
language features, which may cause unexpected behaviors. For ex-
ample, the function declaration function f(x){ return x == !x }

may seem to always return false. Surprisingly, it returns truewhen
its argument is an empty array; f([]) = true. To correctly under-
stand and reason about such a complex behavior, researchers have
proposed various static analyzers for JavaScript programs, such as
TAJS [15], SAFE [20], JSAI [16], and WALA [26].

However, existing JavaScript static analyzers utilize manually
de�ned formal semantics, and this approach is labor-intensive and
error-prone. ECMAScript, which is a standard speci�cation for
JavaScript maintained by the Ecma Technical Committee 39 (TC39),
describes syntax and semantics of JavaScript in a structured na-
ture language. Based on the speci�cation, researchers have de�ned
various JavaScript formal semantics [8, 14, 21] or have modi�ed
them suitable for debuggers [9], veri�cation tools [12, 13], and
static analyzers [15, 16, 20, 26]. However, all of them are written
by hand thus the existing approach is tedious, labor-intensive, and
error-prone. Moreover, in late 2014, the TC39 announced the yearly
release cadence and open development process of ECMAScript to
quickly adapt to evolving development environments. Thus, there
are already six updates after ES5.1 and this problem becomes more
critical.

To alleviate this problem, we propose an approach to perform
JavaScript static analysis using the abstract semantics automatically
de�ned with both of JavaScript engines and speci�cation. Our main
idea is 1) to leverage the existing JavaScript engines as much as
possible, and 2) to utilize the formal semantics automatically ex-
tracted from ECMAScript for remaining parts. To lessen the burden
to manually de�ne the abstract semantics for evolving JavaScript
speci�cation, we present a technique to extract a formal semantics
from ECMAScript and de�ne an abstract semantics based on it.
However, the automatically extracted abstract semantics might be
much slower than highly optimized abstract semantics written by
hand. Thus, we also leverage existing JavaScript engines to de�ne
abstract semantics for better performance of static analysis. Our
approach consists of three steps with three di�erent tools; First,
JISET automatically extracts JavaScript formal semantics using rule-
based compilation from abstract algorithms to functions of IRES,
an Intermediate Representation that we designed for ECMAScript.
Based on the extracted semantics, JEST performs #+1-version dif-
ferential testing for existing JavaScript engines and ECMAScript to
check whether they conform to each other. Finally, JSAVER performs

1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

JavaScript Static Analysis with Evolving Engines and
Specification

Jihyeok Park
KAIST, South Korea

jhpark0223@kaist.ac.kr

ABSTRACT
JavaScript is one of the most dominating programming languages.
Despite its popularity, the highly dynamic nature of JavaScript
makes its semantics complex thus understanding and reasoning
about JavaScript programs are challenging tasks. Therefore, Re-
searchers have proposed JavaScript static analysis based on ab-
stract interpretation with the the abstract semantics conforming
to ECMAScript, the standard speci�cation for JavaScript. However,
all the existing abstract semantics are manually de�ned thus the
current approach is labor-intensive and error-prone. Moreover, in
late 2014, this problem becomes more critical because the Ecma
Technical Committee 39 announced that they will annually update
ECMAScript.

To alleviate the problem, we propose an approach to perform
JavaScript static analysis using the abstract semantics automatically
de�ned with both of JavaScript engines and speci�cation. Our main
idea is 1) to leverage the existing JavaScript engines as much as
possible, and 2) to utilize the formal semantics automatically ex-
tracted from ECMAScript for remaining parts. We believe that our
approach would be able to analyze JavaScript programs developed
with new language features as well as improve their quality.

KEYWORDS
JavaScript, mechanized speci�cation, static analysis, abstract inter-
pretation
ACM Reference Format:
Jihyeok Park. 2021. JavaScript Static Analysis with Evolving Engines and
Speci�cation. In Proceedings of ACM Conference (Conference’17). ACM, New
York, NY, USA, 3 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
JavaScript is one of the most dominating programming languages.
While JavaScript was initially designed for client-side programming
in web browsers, and it is now widely used in server-side program-
ming [6] and even in embedded systems [3, 5, 7]. According to
W3Techs1, 97.2% of websites use JavaScript as their client-side pro-
gramming language. The 2020 State of the Octoverse2, which is the
1https://w3techs.com/technologies/details/cp-javascript/all/all
2https://octoverse.github.com/

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

annual report of GitHub, reports that JavaScript was the top-ranked
programming language in GitHub repositories since 2014 to 2020.

Researchers have proposed various static analyzers to under-
stand and reason about JavaScript programs. Despite its popularity,
JavaScript developers often su�er from its intricate and dynamic
language features, which may cause unexpected behaviors. For ex-
ample, the function declaration function f(x){ return x == !x }

may seem to always return false. Surprisingly, it returns truewhen
its argument is an empty array; f([]) = true. To correctly under-
stand and reason about such a complex behavior, researchers have
proposed various static analyzers for JavaScript programs, such as
TAJS [15], SAFE [20], JSAI [16], and WALA [26].

However, existing JavaScript static analyzers utilize manually
de�ned formal semantics, and this approach is labor-intensive and
error-prone. ECMAScript, which is a standard speci�cation for
JavaScript maintained by the Ecma Technical Committee 39 (TC39),
describes syntax and semantics of JavaScript in a structured na-
ture language. Based on the speci�cation, researchers have de�ned
various JavaScript formal semantics [8, 14, 21] or have modi�ed
them suitable for debuggers [9], veri�cation tools [12, 13], and
static analyzers [15, 16, 20, 26]. However, all of them are written
by hand thus the existing approach is tedious, labor-intensive, and
error-prone. Moreover, in late 2014, the TC39 announced the yearly
release cadence and open development process of ECMAScript to
quickly adapt to evolving development environments. Thus, there
are already six updates after ES5.1 and this problem becomes more
critical.

To alleviate this problem, we propose an approach to perform
JavaScript static analysis using the abstract semantics automatically
de�ned with both of JavaScript engines and speci�cation. Our main
idea is 1) to leverage the existing JavaScript engines as much as
possible, and 2) to utilize the formal semantics automatically ex-
tracted from ECMAScript for remaining parts. To lessen the burden
to manually de�ne the abstract semantics for evolving JavaScript
speci�cation, we present a technique to extract a formal semantics
from ECMAScript and de�ne an abstract semantics based on it.
However, the automatically extracted abstract semantics might be
much slower than highly optimized abstract semantics written by
hand. Thus, we also leverage existing JavaScript engines to de�ne
abstract semantics for better performance of static analysis. Our
approach consists of three steps with three di�erent tools; First,
JISET automatically extracts JavaScript formal semantics using rule-
based compilation from abstract algorithms to functions of IRES,
an Intermediate Representation that we designed for ECMAScript.
Based on the extracted semantics, JEST performs #+1-version dif-
ferential testing for existing JavaScript engines and ECMAScript to
check whether they conform to each other. Finally, JSAVER performs

1

Conformance

Bugs

ASE'20

ICSE'21

Ongoing Work

ECOOP/ISSTA 2021 Doctoral Symposium / 2210

JISET [ASE'20]

ECMAScript Spec 
Extractor

Abstract

Algorithms

Algorithm

Compiler

IRES

Functions

JavaScript

Parser

Compile

Rules

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

JavaScript Static Analysis with Evolving Engines and
Specification

Jihyeok Park
KAIST, South Korea

jhpark0223@kaist.ac.kr

ABSTRACT
JavaScript is one of the most dominating programming languages.
Despite its popularity, the highly dynamic nature of JavaScript
makes its semantics complex thus understanding and reasoning
about JavaScript programs are challenging tasks. Therefore, Re-
searchers have proposed JavaScript static analysis based on ab-
stract interpretation with the the abstract semantics conforming
to ECMAScript, the standard speci�cation for JavaScript. However,
all the existing abstract semantics are manually de�ned thus the
current approach is labor-intensive and error-prone. Moreover, in
late 2014, this problem becomes more critical because the Ecma
Technical Committee 39 announced that they will annually update
ECMAScript.

To alleviate the problem, we propose an approach to perform
JavaScript static analysis using the abstract semantics automatically
de�ned with both of JavaScript engines and speci�cation. Our main
idea is 1) to leverage the existing JavaScript engines as much as
possible, and 2) to utilize the formal semantics automatically ex-
tracted from ECMAScript for remaining parts. We believe that our
approach would be able to analyze JavaScript programs developed
with new language features as well as improve their quality.

KEYWORDS
JavaScript, mechanized speci�cation, static analysis, abstract inter-
pretation
ACM Reference Format:
Jihyeok Park. 2021. JavaScript Static Analysis with Evolving Engines and
Speci�cation. In Proceedings of ACM Conference (Conference’17). ACM, New
York, NY, USA, 3 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
JavaScript is one of the most dominating programming languages.
While JavaScript was initially designed for client-side programming
in web browsers, and it is now widely used in server-side program-
ming [6] and even in embedded systems [3, 5, 7]. According to
W3Techs1, 97.2% of websites use JavaScript as their client-side pro-
gramming language. The 2020 State of the Octoverse2, which is the
1https://w3techs.com/technologies/details/cp-javascript/all/all
2https://octoverse.github.com/

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

annual report of GitHub, reports that JavaScript was the top-ranked
programming language in GitHub repositories since 2014 to 2020.

Researchers have proposed various static analyzers to under-
stand and reason about JavaScript programs. Despite its popularity,
JavaScript developers often su�er from its intricate and dynamic
language features, which may cause unexpected behaviors. For ex-
ample, the function declaration function f(x){ return x == !x }

may seem to always return false. Surprisingly, it returns truewhen
its argument is an empty array; f([]) = true. To correctly under-
stand and reason about such a complex behavior, researchers have
proposed various static analyzers for JavaScript programs, such as
TAJS [15], SAFE [20], JSAI [16], and WALA [26].

However, existing JavaScript static analyzers utilize manually
de�ned formal semantics, and this approach is labor-intensive and
error-prone. ECMAScript, which is a standard speci�cation for
JavaScript maintained by the Ecma Technical Committee 39 (TC39),
describes syntax and semantics of JavaScript in a structured na-
ture language. Based on the speci�cation, researchers have de�ned
various JavaScript formal semantics [8, 14, 21] or have modi�ed
them suitable for debuggers [9], veri�cation tools [12, 13], and
static analyzers [15, 16, 20, 26]. However, all of them are written
by hand thus the existing approach is tedious, labor-intensive, and
error-prone. Moreover, in late 2014, the TC39 announced the yearly
release cadence and open development process of ECMAScript to
quickly adapt to evolving development environments. Thus, there
are already six updates after ES5.1 and this problem becomes more
critical.

To alleviate this problem, we propose an approach to perform
JavaScript static analysis using the abstract semantics automatically
de�ned with both of JavaScript engines and speci�cation. Our main
idea is 1) to leverage the existing JavaScript engines as much as
possible, and 2) to utilize the formal semantics automatically ex-
tracted from ECMAScript for remaining parts. To lessen the burden
to manually de�ne the abstract semantics for evolving JavaScript
speci�cation, we present a technique to extract a formal semantics
from ECMAScript and de�ne an abstract semantics based on it.
However, the automatically extracted abstract semantics might be
much slower than highly optimized abstract semantics written by
hand. Thus, we also leverage existing JavaScript engines to de�ne
abstract semantics for better performance of static analysis. Our
approach consists of three steps with three di�erent tools; First,
JISET automatically extracts JavaScript formal semantics using rule-
based compilation from abstract algorithms to functions of IRES,
an Intermediate Representation that we designed for ECMAScript.
Based on the extracted semantics, JEST performs #+1-version dif-
ferential testing for existing JavaScript engines and ECMAScript to
check whether they conform to each other. Finally, JSAVER performs

1

BNFES

Productions

Parser

Generator

Mechanized Specification

JavaScript IR-based Semantics Extraction Toolchain Syntax

Semantics

ECOOP/ISSTA 2021 Doctoral Symposium / 2211

JISET - Parser Generator (Syntax)

Parsing Expression Grammar
(+ Lookahed Parsing)

ECOOP/ISSTA 2021 Doctoral Symposium / 2212

JISET - Algorithm Compiler (Semantics)

Compile Rules for
Steps in Abstract Algorithms

ECOOP/ISSTA 2021 Doctoral Symposium / 22

• Test262 
(Official Conformance Tests)

- 18,064 applicable tests

• Parsing tests

- Passed all 18,064 tests

• Evaluation Tests

- Passed all 18,064 tests

13

JISET - Evaluation

ECOOP/ISSTA 2021 Doctoral Symposium / 22

• Test262 
(Official Conformance Tests)

- 18,064 applicable tests

• Parsing tests

- Passed all 18,064 tests

• Evaluation Tests

- Passed all 18,064 tests

13

JISET - Evaluation ≈ 95% Compiled

ECOOP/ISSTA 2021 Doctoral Symposium / 22

• Test262 
(Official Conformance Tests)

- 18,064 applicable tests

• Parsing tests

- Passed all 18,064 tests

• Evaluation Tests

- Passed all 18,064 tests

13

JISET - Evaluation ≈ 95% Compiled

Passed All Tests

ECOOP/ISSTA 2021 Doctoral Symposium / 2214

Overall Structure

ECMAScript JavaScript

Engines

Program

Bugs

JavaScript

Programs

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

JavaScript Static Analysis with Evolving Engines and
Specification

Jihyeok Park
KAIST, South Korea

jhpark0223@kaist.ac.kr

ABSTRACT
JavaScript is one of the most dominating programming languages.
Despite its popularity, the highly dynamic nature of JavaScript
makes its semantics complex thus understanding and reasoning
about JavaScript programs are challenging tasks. Therefore, Re-
searchers have proposed JavaScript static analysis based on ab-
stract interpretation with the the abstract semantics conforming
to ECMAScript, the standard speci�cation for JavaScript. However,
all the existing abstract semantics are manually de�ned thus the
current approach is labor-intensive and error-prone. Moreover, in
late 2014, this problem becomes more critical because the Ecma
Technical Committee 39 announced that they will annually update
ECMAScript.

To alleviate the problem, we propose an approach to perform
JavaScript static analysis using the abstract semantics automatically
de�ned with both of JavaScript engines and speci�cation. Our main
idea is 1) to leverage the existing JavaScript engines as much as
possible, and 2) to utilize the formal semantics automatically ex-
tracted from ECMAScript for remaining parts. We believe that our
approach would be able to analyze JavaScript programs developed
with new language features as well as improve their quality.

KEYWORDS
JavaScript, mechanized speci�cation, static analysis, abstract inter-
pretation
ACM Reference Format:
Jihyeok Park. 2021. JavaScript Static Analysis with Evolving Engines and
Speci�cation. In Proceedings of ACM Conference (Conference’17). ACM, New
York, NY, USA, 3 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
JavaScript is one of the most dominating programming languages.
While JavaScript was initially designed for client-side programming
in web browsers, and it is now widely used in server-side program-
ming [6] and even in embedded systems [3, 5, 7]. According to
W3Techs1, 97.2% of websites use JavaScript as their client-side pro-
gramming language. The 2020 State of the Octoverse2, which is the
1https://w3techs.com/technologies/details/cp-javascript/all/all
2https://octoverse.github.com/

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

annual report of GitHub, reports that JavaScript was the top-ranked
programming language in GitHub repositories since 2014 to 2020.

Researchers have proposed various static analyzers to under-
stand and reason about JavaScript programs. Despite its popularity,
JavaScript developers often su�er from its intricate and dynamic
language features, which may cause unexpected behaviors. For ex-
ample, the function declaration function f(x){ return x == !x }

may seem to always return false. Surprisingly, it returns truewhen
its argument is an empty array; f([]) = true. To correctly under-
stand and reason about such a complex behavior, researchers have
proposed various static analyzers for JavaScript programs, such as
TAJS [15], SAFE [20], JSAI [16], and WALA [26].

However, existing JavaScript static analyzers utilize manually
de�ned formal semantics, and this approach is labor-intensive and
error-prone. ECMAScript, which is a standard speci�cation for
JavaScript maintained by the Ecma Technical Committee 39 (TC39),
describes syntax and semantics of JavaScript in a structured na-
ture language. Based on the speci�cation, researchers have de�ned
various JavaScript formal semantics [8, 14, 21] or have modi�ed
them suitable for debuggers [9], veri�cation tools [12, 13], and
static analyzers [15, 16, 20, 26]. However, all of them are written
by hand thus the existing approach is tedious, labor-intensive, and
error-prone. Moreover, in late 2014, the TC39 announced the yearly
release cadence and open development process of ECMAScript to
quickly adapt to evolving development environments. Thus, there
are already six updates after ES5.1 and this problem becomes more
critical.

To alleviate this problem, we propose an approach to perform
JavaScript static analysis using the abstract semantics automatically
de�ned with both of JavaScript engines and speci�cation. Our main
idea is 1) to leverage the existing JavaScript engines as much as
possible, and 2) to utilize the formal semantics automatically ex-
tracted from ECMAScript for remaining parts. To lessen the burden
to manually de�ne the abstract semantics for evolving JavaScript
speci�cation, we present a technique to extract a formal semantics
from ECMAScript and de�ne an abstract semantics based on it.
However, the automatically extracted abstract semantics might be
much slower than highly optimized abstract semantics written by
hand. Thus, we also leverage existing JavaScript engines to de�ne
abstract semantics for better performance of static analysis. Our
approach consists of three steps with three di�erent tools; First,
JISET automatically extracts JavaScript formal semantics using rule-
based compilation from abstract algorithms to functions of IRES,
an Intermediate Representation that we designed for ECMAScript.
Based on the extracted semantics, JEST performs #+1-version dif-
ferential testing for existing JavaScript engines and ECMAScript to
check whether they conform to each other. Finally, JSAVER performs

1

Mechanized

Specification

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

JavaScript Static Analysis with Evolving Engines and
Specification

Jihyeok Park
KAIST, South Korea

jhpark0223@kaist.ac.kr

ABSTRACT
JavaScript is one of the most dominating programming languages.
Despite its popularity, the highly dynamic nature of JavaScript
makes its semantics complex thus understanding and reasoning
about JavaScript programs are challenging tasks. Therefore, Re-
searchers have proposed JavaScript static analysis based on ab-
stract interpretation with the the abstract semantics conforming
to ECMAScript, the standard speci�cation for JavaScript. However,
all the existing abstract semantics are manually de�ned thus the
current approach is labor-intensive and error-prone. Moreover, in
late 2014, this problem becomes more critical because the Ecma
Technical Committee 39 announced that they will annually update
ECMAScript.

To alleviate the problem, we propose an approach to perform
JavaScript static analysis using the abstract semantics automatically
de�ned with both of JavaScript engines and speci�cation. Our main
idea is 1) to leverage the existing JavaScript engines as much as
possible, and 2) to utilize the formal semantics automatically ex-
tracted from ECMAScript for remaining parts. We believe that our
approach would be able to analyze JavaScript programs developed
with new language features as well as improve their quality.

KEYWORDS
JavaScript, mechanized speci�cation, static analysis, abstract inter-
pretation
ACM Reference Format:
Jihyeok Park. 2021. JavaScript Static Analysis with Evolving Engines and
Speci�cation. In Proceedings of ACM Conference (Conference’17). ACM, New
York, NY, USA, 3 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
JavaScript is one of the most dominating programming languages.
While JavaScript was initially designed for client-side programming
in web browsers, and it is now widely used in server-side program-
ming [6] and even in embedded systems [3, 5, 7]. According to
W3Techs1, 97.2% of websites use JavaScript as their client-side pro-
gramming language. The 2020 State of the Octoverse2, which is the
1https://w3techs.com/technologies/details/cp-javascript/all/all
2https://octoverse.github.com/

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

annual report of GitHub, reports that JavaScript was the top-ranked
programming language in GitHub repositories since 2014 to 2020.

Researchers have proposed various static analyzers to under-
stand and reason about JavaScript programs. Despite its popularity,
JavaScript developers often su�er from its intricate and dynamic
language features, which may cause unexpected behaviors. For ex-
ample, the function declaration function f(x){ return x == !x }

may seem to always return false. Surprisingly, it returns truewhen
its argument is an empty array; f([]) = true. To correctly under-
stand and reason about such a complex behavior, researchers have
proposed various static analyzers for JavaScript programs, such as
TAJS [15], SAFE [20], JSAI [16], and WALA [26].

However, existing JavaScript static analyzers utilize manually
de�ned formal semantics, and this approach is labor-intensive and
error-prone. ECMAScript, which is a standard speci�cation for
JavaScript maintained by the Ecma Technical Committee 39 (TC39),
describes syntax and semantics of JavaScript in a structured na-
ture language. Based on the speci�cation, researchers have de�ned
various JavaScript formal semantics [8, 14, 21] or have modi�ed
them suitable for debuggers [9], veri�cation tools [12, 13], and
static analyzers [15, 16, 20, 26]. However, all of them are written
by hand thus the existing approach is tedious, labor-intensive, and
error-prone. Moreover, in late 2014, the TC39 announced the yearly
release cadence and open development process of ECMAScript to
quickly adapt to evolving development environments. Thus, there
are already six updates after ES5.1 and this problem becomes more
critical.

To alleviate this problem, we propose an approach to perform
JavaScript static analysis using the abstract semantics automatically
de�ned with both of JavaScript engines and speci�cation. Our main
idea is 1) to leverage the existing JavaScript engines as much as
possible, and 2) to utilize the formal semantics automatically ex-
tracted from ECMAScript for remaining parts. To lessen the burden
to manually de�ne the abstract semantics for evolving JavaScript
speci�cation, we present a technique to extract a formal semantics
from ECMAScript and de�ne an abstract semantics based on it.
However, the automatically extracted abstract semantics might be
much slower than highly optimized abstract semantics written by
hand. Thus, we also leverage existing JavaScript engines to de�ne
abstract semantics for better performance of static analysis. Our
approach consists of three steps with three di�erent tools; First,
JISET automatically extracts JavaScript formal semantics using rule-
based compilation from abstract algorithms to functions of IRES,
an Intermediate Representation that we designed for ECMAScript.
Based on the extracted semantics, JEST performs #+1-version dif-
ferential testing for existing JavaScript engines and ECMAScript to
check whether they conform to each other. Finally, JSAVER performs

1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

JavaScript Static Analysis with Evolving Engines and
Specification

Jihyeok Park
KAIST, South Korea

jhpark0223@kaist.ac.kr

ABSTRACT
JavaScript is one of the most dominating programming languages.
Despite its popularity, the highly dynamic nature of JavaScript
makes its semantics complex thus understanding and reasoning
about JavaScript programs are challenging tasks. Therefore, Re-
searchers have proposed JavaScript static analysis based on ab-
stract interpretation with the the abstract semantics conforming
to ECMAScript, the standard speci�cation for JavaScript. However,
all the existing abstract semantics are manually de�ned thus the
current approach is labor-intensive and error-prone. Moreover, in
late 2014, this problem becomes more critical because the Ecma
Technical Committee 39 announced that they will annually update
ECMAScript.

To alleviate the problem, we propose an approach to perform
JavaScript static analysis using the abstract semantics automatically
de�ned with both of JavaScript engines and speci�cation. Our main
idea is 1) to leverage the existing JavaScript engines as much as
possible, and 2) to utilize the formal semantics automatically ex-
tracted from ECMAScript for remaining parts. We believe that our
approach would be able to analyze JavaScript programs developed
with new language features as well as improve their quality.

KEYWORDS
JavaScript, mechanized speci�cation, static analysis, abstract inter-
pretation
ACM Reference Format:
Jihyeok Park. 2021. JavaScript Static Analysis with Evolving Engines and
Speci�cation. In Proceedings of ACM Conference (Conference’17). ACM, New
York, NY, USA, 3 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
JavaScript is one of the most dominating programming languages.
While JavaScript was initially designed for client-side programming
in web browsers, and it is now widely used in server-side program-
ming [6] and even in embedded systems [3, 5, 7]. According to
W3Techs1, 97.2% of websites use JavaScript as their client-side pro-
gramming language. The 2020 State of the Octoverse2, which is the
1https://w3techs.com/technologies/details/cp-javascript/all/all
2https://octoverse.github.com/

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

annual report of GitHub, reports that JavaScript was the top-ranked
programming language in GitHub repositories since 2014 to 2020.

Researchers have proposed various static analyzers to under-
stand and reason about JavaScript programs. Despite its popularity,
JavaScript developers often su�er from its intricate and dynamic
language features, which may cause unexpected behaviors. For ex-
ample, the function declaration function f(x){ return x == !x }

may seem to always return false. Surprisingly, it returns truewhen
its argument is an empty array; f([]) = true. To correctly under-
stand and reason about such a complex behavior, researchers have
proposed various static analyzers for JavaScript programs, such as
TAJS [15], SAFE [20], JSAI [16], and WALA [26].

However, existing JavaScript static analyzers utilize manually
de�ned formal semantics, and this approach is labor-intensive and
error-prone. ECMAScript, which is a standard speci�cation for
JavaScript maintained by the Ecma Technical Committee 39 (TC39),
describes syntax and semantics of JavaScript in a structured na-
ture language. Based on the speci�cation, researchers have de�ned
various JavaScript formal semantics [8, 14, 21] or have modi�ed
them suitable for debuggers [9], veri�cation tools [12, 13], and
static analyzers [15, 16, 20, 26]. However, all of them are written
by hand thus the existing approach is tedious, labor-intensive, and
error-prone. Moreover, in late 2014, the TC39 announced the yearly
release cadence and open development process of ECMAScript to
quickly adapt to evolving development environments. Thus, there
are already six updates after ES5.1 and this problem becomes more
critical.

To alleviate this problem, we propose an approach to perform
JavaScript static analysis using the abstract semantics automatically
de�ned with both of JavaScript engines and speci�cation. Our main
idea is 1) to leverage the existing JavaScript engines as much as
possible, and 2) to utilize the formal semantics automatically ex-
tracted from ECMAScript for remaining parts. To lessen the burden
to manually de�ne the abstract semantics for evolving JavaScript
speci�cation, we present a technique to extract a formal semantics
from ECMAScript and de�ne an abstract semantics based on it.
However, the automatically extracted abstract semantics might be
much slower than highly optimized abstract semantics written by
hand. Thus, we also leverage existing JavaScript engines to de�ne
abstract semantics for better performance of static analysis. Our
approach consists of three steps with three di�erent tools; First,
JISET automatically extracts JavaScript formal semantics using rule-
based compilation from abstract algorithms to functions of IRES,
an Intermediate Representation that we designed for ECMAScript.
Based on the extracted semantics, JEST performs #+1-version dif-
ferential testing for existing JavaScript engines and ECMAScript to
check whether they conform to each other. Finally, JSAVER performs

1

Conformance

Bugs

ASE'20

ICSE'21

Ongoing Work

ECOOP/ISSTA 2021 Doctoral Symposium / 2215

JEST [ICSE'21]

Seed

Synthesizer

Program

Mutator

Assertion

Injector

JS Programs

Conformance

Tests

Engine

Bugs

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

JavaScript Static Analysis with Evolving Engines and
Specification

Jihyeok Park
KAIST, South Korea

jhpark0223@kaist.ac.kr

ABSTRACT
JavaScript is one of the most dominating programming languages.
Despite its popularity, the highly dynamic nature of JavaScript
makes its semantics complex thus understanding and reasoning
about JavaScript programs are challenging tasks. Therefore, Re-
searchers have proposed JavaScript static analysis based on ab-
stract interpretation with the the abstract semantics conforming
to ECMAScript, the standard speci�cation for JavaScript. However,
all the existing abstract semantics are manually de�ned thus the
current approach is labor-intensive and error-prone. Moreover, in
late 2014, this problem becomes more critical because the Ecma
Technical Committee 39 announced that they will annually update
ECMAScript.

To alleviate the problem, we propose an approach to perform
JavaScript static analysis using the abstract semantics automatically
de�ned with both of JavaScript engines and speci�cation. Our main
idea is 1) to leverage the existing JavaScript engines as much as
possible, and 2) to utilize the formal semantics automatically ex-
tracted from ECMAScript for remaining parts. We believe that our
approach would be able to analyze JavaScript programs developed
with new language features as well as improve their quality.

KEYWORDS
JavaScript, mechanized speci�cation, static analysis, abstract inter-
pretation
ACM Reference Format:
Jihyeok Park. 2021. JavaScript Static Analysis with Evolving Engines and
Speci�cation. In Proceedings of ACM Conference (Conference’17). ACM, New
York, NY, USA, 3 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
JavaScript is one of the most dominating programming languages.
While JavaScript was initially designed for client-side programming
in web browsers, and it is now widely used in server-side program-
ming [6] and even in embedded systems [3, 5, 7]. According to
W3Techs1, 97.2% of websites use JavaScript as their client-side pro-
gramming language. The 2020 State of the Octoverse2, which is the
1https://w3techs.com/technologies/details/cp-javascript/all/all
2https://octoverse.github.com/

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

annual report of GitHub, reports that JavaScript was the top-ranked
programming language in GitHub repositories since 2014 to 2020.

Researchers have proposed various static analyzers to under-
stand and reason about JavaScript programs. Despite its popularity,
JavaScript developers often su�er from its intricate and dynamic
language features, which may cause unexpected behaviors. For ex-
ample, the function declaration function f(x){ return x == !x }

may seem to always return false. Surprisingly, it returns truewhen
its argument is an empty array; f([]) = true. To correctly under-
stand and reason about such a complex behavior, researchers have
proposed various static analyzers for JavaScript programs, such as
TAJS [15], SAFE [20], JSAI [16], and WALA [26].

However, existing JavaScript static analyzers utilize manually
de�ned formal semantics, and this approach is labor-intensive and
error-prone. ECMAScript, which is a standard speci�cation for
JavaScript maintained by the Ecma Technical Committee 39 (TC39),
describes syntax and semantics of JavaScript in a structured na-
ture language. Based on the speci�cation, researchers have de�ned
various JavaScript formal semantics [8, 14, 21] or have modi�ed
them suitable for debuggers [9], veri�cation tools [12, 13], and
static analyzers [15, 16, 20, 26]. However, all of them are written
by hand thus the existing approach is tedious, labor-intensive, and
error-prone. Moreover, in late 2014, the TC39 announced the yearly
release cadence and open development process of ECMAScript to
quickly adapt to evolving development environments. Thus, there
are already six updates after ES5.1 and this problem becomes more
critical.

To alleviate this problem, we propose an approach to perform
JavaScript static analysis using the abstract semantics automatically
de�ned with both of JavaScript engines and speci�cation. Our main
idea is 1) to leverage the existing JavaScript engines as much as
possible, and 2) to utilize the formal semantics automatically ex-
tracted from ECMAScript for remaining parts. To lessen the burden
to manually de�ne the abstract semantics for evolving JavaScript
speci�cation, we present a technique to extract a formal semantics
from ECMAScript and de�ne an abstract semantics based on it.
However, the automatically extracted abstract semantics might be
much slower than highly optimized abstract semantics written by
hand. Thus, we also leverage existing JavaScript engines to de�ne
abstract semantics for better performance of static analysis. Our
approach consists of three steps with three di�erent tools; First,
JISET automatically extracts JavaScript formal semantics using rule-
based compilation from abstract algorithms to functions of IRES,
an Intermediate Representation that we designed for ECMAScript.
Based on the extracted semantics, JEST performs #+1-version dif-
ferential testing for existing JavaScript engines and ECMAScript to
check whether they conform to each other. Finally, JSAVER performs

1

Specification

BugsJavaScript Engines and Specification Tester

JavaScript

Engines

Mechanized

Specification

Conformance Bugs

Syntax-directed

Program Generation

Final State-based

Assertions

Coverage-guided
Mutation

ECOOP/ISSTA 2021 Doctoral Symposium / 2216

JEST - Test Synthesis
JavaScript Engines and Specification Tester

ECOOP/ISSTA 2021 Doctoral Symposium / 2216

JEST - Test Synthesis
JavaScript Engines and Specification Tester

Seed

Synthesizer

ECOOP/ISSTA 2021 Doctoral Symposium / 2216

JEST - Test Synthesis
JavaScript Engines and Specification Tester

Seed

Synthesizer

Program

Mutator

ECOOP/ISSTA 2021 Doctoral Symposium / 2216

JEST - Test Synthesis
JavaScript Engines and Specification Tester

Seed

Synthesizer

Program

Mutator

Assertion

Injector

ECOOP/ISSTA 2021 Doctoral Symposium / 2216

JEST - Test Synthesis
JavaScript Engines and Specification Tester

Seed

Synthesizer

Program

Mutator

Assertion

Injector

ECOOP/ISSTA 2021 Doctoral Symposium / 2216

JEST - Test Synthesis
JavaScript Engines and Specification Tester

Seed

Synthesizer

Program

Mutator

Assertion

Injector

ECOOP/ISSTA 2021 Doctoral Symposium / 2217

JEST - N+1-version Differential Testing
JavaScript Engines and Specification Tester

Synthesize

Reference number
ECMA-123:2009

© Ecma International 2009

ECMA-262
11th Edition / June 2020

ECMAScript® 2020
Language Specification

JavaScript
Engines

ECMAScript

Test QuickJS

test

test

test

test

ECOOP/ISSTA 2021 Doctoral Symposium / 2217

JEST - N+1-version Differential Testing
JavaScript Engines and Specification Tester

Synthesize

Reference number
ECMA-123:2009

© Ecma International 2009

ECMA-262
11th Edition / June 2020

ECMAScript® 2020
Language Specification

JavaScript
Engines

ECMAScript

Test QuickJS

test

test

test

test

ECOOP/ISSTA 2021 Doctoral Symposium / 2217

JEST - N+1-version Differential Testing
JavaScript Engines and Specification Tester

Synthesize

Reference number
ECMA-123:2009

© Ecma International 2009

ECMA-262
11th Edition / June 2020

ECMAScript® 2020
Language Specification

JavaScript
Engines

ECMAScript

Test QuickJS

test

An engine bug in

test

test

test

ECOOP/ISSTA 2021 Doctoral Symposium / 2218

JEST - N+1-version Differential Testing

TestSynthesize

Reference number
ECMA-123:2009

© Ecma International 2009

ECMA-262
11th Edition / June 2020

ECMAScript® 2020
Language Specification

ECMAScript
JavaScript

Engines

QuickJS

test

test

test

test

JavaScript Engines and Specification Tester

ECOOP/ISSTA 2021 Doctoral Symposium / 2218

JEST - N+1-version Differential Testing

TestSynthesize

Reference number
ECMA-123:2009

© Ecma International 2009

ECMA-262
11th Edition / June 2020

ECMAScript® 2020
Language Specification

ECMAScript
JavaScript

Engines

QuickJS

test

test

test

test

JavaScript Engines and Specification Tester

ECOOP/ISSTA 2021 Doctoral Symposium / 2218

JEST - N+1-version Differential Testing

A specification bug in ECMAScript

TestSynthesize

Reference number
ECMA-123:2009

© Ecma International 2009

ECMA-262
11th Edition / June 2020

ECMAScript® 2020
Language Specification

ECMAScript
JavaScript

Engines

QuickJS

test

test

test

test

JavaScript Engines and Specification Tester

ECOOP/ISSTA 2021 Doctoral Symposium / 2218

JEST - N+1-version Differential Testing

A specification bug in ECMAScriptA specification bug in ECMAScript
An engine bug in

TestSynthesize

Reference number
ECMA-123:2009

© Ecma International 2009

ECMA-262
11th Edition / June 2020

ECMAScript® 2020
Language Specification

ECMAScript
JavaScript

Engines

QuickJS

test

test

test

test

JavaScript Engines and Specification Tester

ECOOP/ISSTA 2021 Doctoral Symposium / 2219

JEST - Evaluation

ECOOP/ISSTA 2021 Doctoral Symposium / 2219

JEST - Evaluation 44 Bugs in Engines

ECOOP/ISSTA 2021 Doctoral Symposium / 2219

JEST - Evaluation 44 Bugs in Engines

27 Bugs in Spec.

ECOOP/ISSTA 2021 Doctoral Symposium / 2220

Overall Structure

ECMAScript JavaScript

Engines

Program

Bugs

JavaScript

Programs

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

JavaScript Static Analysis with Evolving Engines and
Specification

Jihyeok Park
KAIST, South Korea

jhpark0223@kaist.ac.kr

ABSTRACT
JavaScript is one of the most dominating programming languages.
Despite its popularity, the highly dynamic nature of JavaScript
makes its semantics complex thus understanding and reasoning
about JavaScript programs are challenging tasks. Therefore, Re-
searchers have proposed JavaScript static analysis based on ab-
stract interpretation with the the abstract semantics conforming
to ECMAScript, the standard speci�cation for JavaScript. However,
all the existing abstract semantics are manually de�ned thus the
current approach is labor-intensive and error-prone. Moreover, in
late 2014, this problem becomes more critical because the Ecma
Technical Committee 39 announced that they will annually update
ECMAScript.

To alleviate the problem, we propose an approach to perform
JavaScript static analysis using the abstract semantics automatically
de�ned with both of JavaScript engines and speci�cation. Our main
idea is 1) to leverage the existing JavaScript engines as much as
possible, and 2) to utilize the formal semantics automatically ex-
tracted from ECMAScript for remaining parts. We believe that our
approach would be able to analyze JavaScript programs developed
with new language features as well as improve their quality.

KEYWORDS
JavaScript, mechanized speci�cation, static analysis, abstract inter-
pretation
ACM Reference Format:
Jihyeok Park. 2021. JavaScript Static Analysis with Evolving Engines and
Speci�cation. In Proceedings of ACM Conference (Conference’17). ACM, New
York, NY, USA, 3 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
JavaScript is one of the most dominating programming languages.
While JavaScript was initially designed for client-side programming
in web browsers, and it is now widely used in server-side program-
ming [6] and even in embedded systems [3, 5, 7]. According to
W3Techs1, 97.2% of websites use JavaScript as their client-side pro-
gramming language. The 2020 State of the Octoverse2, which is the
1https://w3techs.com/technologies/details/cp-javascript/all/all
2https://octoverse.github.com/

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

annual report of GitHub, reports that JavaScript was the top-ranked
programming language in GitHub repositories since 2014 to 2020.

Researchers have proposed various static analyzers to under-
stand and reason about JavaScript programs. Despite its popularity,
JavaScript developers often su�er from its intricate and dynamic
language features, which may cause unexpected behaviors. For ex-
ample, the function declaration function f(x){ return x == !x }

may seem to always return false. Surprisingly, it returns truewhen
its argument is an empty array; f([]) = true. To correctly under-
stand and reason about such a complex behavior, researchers have
proposed various static analyzers for JavaScript programs, such as
TAJS [15], SAFE [20], JSAI [16], and WALA [26].

However, existing JavaScript static analyzers utilize manually
de�ned formal semantics, and this approach is labor-intensive and
error-prone. ECMAScript, which is a standard speci�cation for
JavaScript maintained by the Ecma Technical Committee 39 (TC39),
describes syntax and semantics of JavaScript in a structured na-
ture language. Based on the speci�cation, researchers have de�ned
various JavaScript formal semantics [8, 14, 21] or have modi�ed
them suitable for debuggers [9], veri�cation tools [12, 13], and
static analyzers [15, 16, 20, 26]. However, all of them are written
by hand thus the existing approach is tedious, labor-intensive, and
error-prone. Moreover, in late 2014, the TC39 announced the yearly
release cadence and open development process of ECMAScript to
quickly adapt to evolving development environments. Thus, there
are already six updates after ES5.1 and this problem becomes more
critical.

To alleviate this problem, we propose an approach to perform
JavaScript static analysis using the abstract semantics automatically
de�ned with both of JavaScript engines and speci�cation. Our main
idea is 1) to leverage the existing JavaScript engines as much as
possible, and 2) to utilize the formal semantics automatically ex-
tracted from ECMAScript for remaining parts. To lessen the burden
to manually de�ne the abstract semantics for evolving JavaScript
speci�cation, we present a technique to extract a formal semantics
from ECMAScript and de�ne an abstract semantics based on it.
However, the automatically extracted abstract semantics might be
much slower than highly optimized abstract semantics written by
hand. Thus, we also leverage existing JavaScript engines to de�ne
abstract semantics for better performance of static analysis. Our
approach consists of three steps with three di�erent tools; First,
JISET automatically extracts JavaScript formal semantics using rule-
based compilation from abstract algorithms to functions of IRES,
an Intermediate Representation that we designed for ECMAScript.
Based on the extracted semantics, JEST performs #+1-version dif-
ferential testing for existing JavaScript engines and ECMAScript to
check whether they conform to each other. Finally, JSAVER performs

1

Mechanized

Specification

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

JavaScript Static Analysis with Evolving Engines and
Specification

Jihyeok Park
KAIST, South Korea

jhpark0223@kaist.ac.kr

ABSTRACT
JavaScript is one of the most dominating programming languages.
Despite its popularity, the highly dynamic nature of JavaScript
makes its semantics complex thus understanding and reasoning
about JavaScript programs are challenging tasks. Therefore, Re-
searchers have proposed JavaScript static analysis based on ab-
stract interpretation with the the abstract semantics conforming
to ECMAScript, the standard speci�cation for JavaScript. However,
all the existing abstract semantics are manually de�ned thus the
current approach is labor-intensive and error-prone. Moreover, in
late 2014, this problem becomes more critical because the Ecma
Technical Committee 39 announced that they will annually update
ECMAScript.

To alleviate the problem, we propose an approach to perform
JavaScript static analysis using the abstract semantics automatically
de�ned with both of JavaScript engines and speci�cation. Our main
idea is 1) to leverage the existing JavaScript engines as much as
possible, and 2) to utilize the formal semantics automatically ex-
tracted from ECMAScript for remaining parts. We believe that our
approach would be able to analyze JavaScript programs developed
with new language features as well as improve their quality.

KEYWORDS
JavaScript, mechanized speci�cation, static analysis, abstract inter-
pretation
ACM Reference Format:
Jihyeok Park. 2021. JavaScript Static Analysis with Evolving Engines and
Speci�cation. In Proceedings of ACM Conference (Conference’17). ACM, New
York, NY, USA, 3 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
JavaScript is one of the most dominating programming languages.
While JavaScript was initially designed for client-side programming
in web browsers, and it is now widely used in server-side program-
ming [6] and even in embedded systems [3, 5, 7]. According to
W3Techs1, 97.2% of websites use JavaScript as their client-side pro-
gramming language. The 2020 State of the Octoverse2, which is the
1https://w3techs.com/technologies/details/cp-javascript/all/all
2https://octoverse.github.com/

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

annual report of GitHub, reports that JavaScript was the top-ranked
programming language in GitHub repositories since 2014 to 2020.

Researchers have proposed various static analyzers to under-
stand and reason about JavaScript programs. Despite its popularity,
JavaScript developers often su�er from its intricate and dynamic
language features, which may cause unexpected behaviors. For ex-
ample, the function declaration function f(x){ return x == !x }

may seem to always return false. Surprisingly, it returns truewhen
its argument is an empty array; f([]) = true. To correctly under-
stand and reason about such a complex behavior, researchers have
proposed various static analyzers for JavaScript programs, such as
TAJS [15], SAFE [20], JSAI [16], and WALA [26].

However, existing JavaScript static analyzers utilize manually
de�ned formal semantics, and this approach is labor-intensive and
error-prone. ECMAScript, which is a standard speci�cation for
JavaScript maintained by the Ecma Technical Committee 39 (TC39),
describes syntax and semantics of JavaScript in a structured na-
ture language. Based on the speci�cation, researchers have de�ned
various JavaScript formal semantics [8, 14, 21] or have modi�ed
them suitable for debuggers [9], veri�cation tools [12, 13], and
static analyzers [15, 16, 20, 26]. However, all of them are written
by hand thus the existing approach is tedious, labor-intensive, and
error-prone. Moreover, in late 2014, the TC39 announced the yearly
release cadence and open development process of ECMAScript to
quickly adapt to evolving development environments. Thus, there
are already six updates after ES5.1 and this problem becomes more
critical.

To alleviate this problem, we propose an approach to perform
JavaScript static analysis using the abstract semantics automatically
de�ned with both of JavaScript engines and speci�cation. Our main
idea is 1) to leverage the existing JavaScript engines as much as
possible, and 2) to utilize the formal semantics automatically ex-
tracted from ECMAScript for remaining parts. To lessen the burden
to manually de�ne the abstract semantics for evolving JavaScript
speci�cation, we present a technique to extract a formal semantics
from ECMAScript and de�ne an abstract semantics based on it.
However, the automatically extracted abstract semantics might be
much slower than highly optimized abstract semantics written by
hand. Thus, we also leverage existing JavaScript engines to de�ne
abstract semantics for better performance of static analysis. Our
approach consists of three steps with three di�erent tools; First,
JISET automatically extracts JavaScript formal semantics using rule-
based compilation from abstract algorithms to functions of IRES,
an Intermediate Representation that we designed for ECMAScript.
Based on the extracted semantics, JEST performs #+1-version dif-
ferential testing for existing JavaScript engines and ECMAScript to
check whether they conform to each other. Finally, JSAVER performs

1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

JavaScript Static Analysis with Evolving Engines and
Specification

Jihyeok Park
KAIST, South Korea

jhpark0223@kaist.ac.kr

ABSTRACT
JavaScript is one of the most dominating programming languages.
Despite its popularity, the highly dynamic nature of JavaScript
makes its semantics complex thus understanding and reasoning
about JavaScript programs are challenging tasks. Therefore, Re-
searchers have proposed JavaScript static analysis based on ab-
stract interpretation with the the abstract semantics conforming
to ECMAScript, the standard speci�cation for JavaScript. However,
all the existing abstract semantics are manually de�ned thus the
current approach is labor-intensive and error-prone. Moreover, in
late 2014, this problem becomes more critical because the Ecma
Technical Committee 39 announced that they will annually update
ECMAScript.

To alleviate the problem, we propose an approach to perform
JavaScript static analysis using the abstract semantics automatically
de�ned with both of JavaScript engines and speci�cation. Our main
idea is 1) to leverage the existing JavaScript engines as much as
possible, and 2) to utilize the formal semantics automatically ex-
tracted from ECMAScript for remaining parts. We believe that our
approach would be able to analyze JavaScript programs developed
with new language features as well as improve their quality.

KEYWORDS
JavaScript, mechanized speci�cation, static analysis, abstract inter-
pretation
ACM Reference Format:
Jihyeok Park. 2021. JavaScript Static Analysis with Evolving Engines and
Speci�cation. In Proceedings of ACM Conference (Conference’17). ACM, New
York, NY, USA, 3 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
JavaScript is one of the most dominating programming languages.
While JavaScript was initially designed for client-side programming
in web browsers, and it is now widely used in server-side program-
ming [6] and even in embedded systems [3, 5, 7]. According to
W3Techs1, 97.2% of websites use JavaScript as their client-side pro-
gramming language. The 2020 State of the Octoverse2, which is the
1https://w3techs.com/technologies/details/cp-javascript/all/all
2https://octoverse.github.com/

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

annual report of GitHub, reports that JavaScript was the top-ranked
programming language in GitHub repositories since 2014 to 2020.

Researchers have proposed various static analyzers to under-
stand and reason about JavaScript programs. Despite its popularity,
JavaScript developers often su�er from its intricate and dynamic
language features, which may cause unexpected behaviors. For ex-
ample, the function declaration function f(x){ return x == !x }

may seem to always return false. Surprisingly, it returns truewhen
its argument is an empty array; f([]) = true. To correctly under-
stand and reason about such a complex behavior, researchers have
proposed various static analyzers for JavaScript programs, such as
TAJS [15], SAFE [20], JSAI [16], and WALA [26].

However, existing JavaScript static analyzers utilize manually
de�ned formal semantics, and this approach is labor-intensive and
error-prone. ECMAScript, which is a standard speci�cation for
JavaScript maintained by the Ecma Technical Committee 39 (TC39),
describes syntax and semantics of JavaScript in a structured na-
ture language. Based on the speci�cation, researchers have de�ned
various JavaScript formal semantics [8, 14, 21] or have modi�ed
them suitable for debuggers [9], veri�cation tools [12, 13], and
static analyzers [15, 16, 20, 26]. However, all of them are written
by hand thus the existing approach is tedious, labor-intensive, and
error-prone. Moreover, in late 2014, the TC39 announced the yearly
release cadence and open development process of ECMAScript to
quickly adapt to evolving development environments. Thus, there
are already six updates after ES5.1 and this problem becomes more
critical.

To alleviate this problem, we propose an approach to perform
JavaScript static analysis using the abstract semantics automatically
de�ned with both of JavaScript engines and speci�cation. Our main
idea is 1) to leverage the existing JavaScript engines as much as
possible, and 2) to utilize the formal semantics automatically ex-
tracted from ECMAScript for remaining parts. To lessen the burden
to manually de�ne the abstract semantics for evolving JavaScript
speci�cation, we present a technique to extract a formal semantics
from ECMAScript and de�ne an abstract semantics based on it.
However, the automatically extracted abstract semantics might be
much slower than highly optimized abstract semantics written by
hand. Thus, we also leverage existing JavaScript engines to de�ne
abstract semantics for better performance of static analysis. Our
approach consists of three steps with three di�erent tools; First,
JISET automatically extracts JavaScript formal semantics using rule-
based compilation from abstract algorithms to functions of IRES,
an Intermediate Representation that we designed for ECMAScript.
Based on the extracted semantics, JEST performs #+1-version dif-
ferential testing for existing JavaScript engines and ECMAScript to
check whether they conform to each other. Finally, JSAVER performs

1

Conformance

Bugs

ASE'20

ICSE'21

Ongoing Work

ECOOP/ISSTA 2021 Doctoral Symposium / 2221

JSAVER - Basic Idea
JavaScript Static Analysis via ECMAScript Representation

New language
features in >= ES6

JavaScript

Engine

Mechanized

Specification

LandingPage.js file in the Instagram Website.

(1)
(2)

(3)
(4)

ECOOP/ISSTA 2021 Doctoral Symposium / 22

• Static analysis for real-world applications

- Web applications using new language features >= ES6

• Research Questions

- Analysis Scope

- Performance

- Precision of Bug Detection

22

JSAVER - Evaluation Plan
JavaScript Static Analysis via ECMAScript Representation

