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JavaScript is Everywhere
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https://octoverse.github.com/

https://octoverse.github.com/
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JavaScript Complex Semantics

4

function f(x) { return x == !x; }

Always return false?

NO!!
f([]) -> [] == ![] 
      -> [] == false 
      -> +[] == +false 
      -> 0 == 0 
      -> true
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ECMAScript: JavaScript Specification
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The production of ArrayLiteral in ES12
The Evaluation algorithm for 

the third alternative of ArrayLiteral in ES12

Syntax

Semantics
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JavaScript Specification and Engines
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ECMA-123:2009 

© Ecma International 2009 

ECMA-262 
11th Edition / June 2020
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Our Idea: N+1-version Differential Testing
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Synthesize

Reference number 
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An engine bug in 

test

test
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A specification bug in ECMAScriptA specification bug in ECMAScript 
An engine bug in

Our Idea: N+1-version Differential Testing
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JEST
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Engine-N

Spec. Bugs

Engine-1

Engine Bugs

···

JavaScript Engines and Specification Tester

[ASE'20] Park et al, “JISET: Javascript IR-based Semantics Extraction Toolchain”

Spectrum Based

Fault Localization


(SBFL)

with ER1b formula

Mechanized

Specification

ECMAScript
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Abstract
The highly dynamic nature and complex semantics of JavaScript make it difficult to correctly understand
the behaviors of JavaScript programs. To automatically reason about them, researchers have developed
various JavaScript static analyzers that conform to ECMAScript, the standard specification of JavaScript.
However, all the existing JavaScript static analyzers are manually designed; thus, the current approach
is labor-intensive and error-prone. Moreover, since late 2014, this problem becomes more critical because
the JavaScript language itself rapidly evolves with a yearly release cadence and open development process.

In this thesis, we introduce a novel approach to automatically derive JavaScript static analyzers
from any version of ECMAScript. Our approach consists of three steps: 1) mechanized specification
extraction, 2) mechanized specification validity check, and 3) derivation of static analyzers. First, we
present a tool JISET that automatically extracts a mechanized specification from ECMAScript. We show
that it successfully extracts a mechanized specification from the latest ECMAScript. Then, we present
two different tools to detect bugs in JavaScript specifications and engines; JEST performs N+1-version
differential testing with JavaScript engines and JSTAR performs a type analysis for the mechanized
specification. Finally, we present JSAVER that automatically derives JavaScript static analyzers from
mechanized specifications using a meta-level static analysis. For evaluation, we derive a JavaScript
static analyzer from the latest ECMAScript and show that it successfully analyzes all applicable official
conformance tests in a sound way. We believe that the thesis would be the first step towards the
co-evolution of specifications, tests, and tools for programming languages.

Keywords JavaScript, mechanized specification extraction, N+1-version differential testing, specifica-
tion type analysis, meta-level static analysis.
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JEST - Test Synthesizer
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JEST - Assertion Injector (7 Kinds)
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1. Exceptions (Exc) 
 

2. Aborts (Abort) 
 

3. Variable Values (Var) 
 

4. Object Values (Obj)

+ // Throw 
  let x = 42; 
  function x() {};

  var x = 1 + 2; 
+ $assert.sameValue(x, 3);

+ // Abort 
  var x = 42; x++;

  var x = {}, y = {}, z = { p: x, q: y }; 
+ $assert.sameValue(z.p, x); 
+ $assert.sameValue(z.q, y); 
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JEST - Assertion Injector (7 Kinds)
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1. Object Properties (Desc) 
 
 
 

2. Property Keys (Key) 
 
 
 

3. Internal Methods and 
Slots (In)

  var x = { p: 42 }; 
+ $verifyProperty(x, "p", { 
+   value: 42.0, writable: true, 
+   enumerable: true, configurable: true 
+ });

  var x = {[Symbol.match]: 0, p: 0, 3: 0, q: 0, 1: 0} 
+ $assert.compareArray( 
+   Reflect.ownKeys(x), 
+   ["1", "3", "p", "q", Symbol.match] 
+ );

  function f() {} 
+ $assert.sameValue(Object.getPrototypeOf(f), 
+                   Function.prototype); 
+ $assert.sameValue(Object.isExtensible(x), true); 
+ $assert.callable(f); 
+ $assert.constructable(f);



JEST: N+1-version Differential Testing of Both JavaScript Engines and Specification / 16

• JavaScript Specification 

- ECMAScript 2020 (ES11) - released in June 2020


• JavaScript Engines


- V8 - v8.3 by Google


- GraalJS - v20.1.0 by Oracle


- QuickJS - 2020-04-12 by Fabrice Bellard


- Moddable XS - v10.3.0 by Moddable Tech Inc.

13

Evaluation
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• 1,700 Synthesized Tests in 100 hours

• Syntax Coverage: 97.79% (397 / 406)

• Semantics Coverage 
- Statement: 86.67% (21,230 / 24,495)

- Branch: 77.95% (7,480 / 9,596)
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RQ1: Coverage of Synthesized Tests 
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RQ2: Bug Detection in JavaScript Engines 
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QuickJS initializes 'x' with 'undefined' instead of throwing a 'ReferenceError'

function f (... { x = x }) { return x; } var y = f();

try { ++undefined; } catch(e) { }

GraalJS crashes with an exception 'java.lang.IllegalStateException'

44 Bugs in Engines



JEST: N+1-version Differential Testing of Both JavaScript Engines and Specification / 16

RQ3: Bug Detection in ECMAScript
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https://github.com/tc39/ecma262/pull/2130/files

27 Bugs in Spec.

https://github.com/tc39/ecma262/pull/2130/files
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Problem: Fast Evolving JavaScript
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1996    1998    2000    2002    2004    2008    2010    2012    2014    2016    2018    2020    2022

1997 - ES1 
First edition

1998 - ES2 
Editorial 
changes

1999 - ES3 
RegEx, String, 
Try/catch, etc

2009 - ES5 
getters/setters,

strict mode,

exceptions, etc

2011 - ES5.1 
Editorial 
Changes

2015 - ES6 
classes, modules, etc.

2016 - ES7 
destructuring patterns, etc.

Annual Releases

2017 - ES8 
object manipulation, etc.

2018 - ES9
2020 - ES11

ES.Next

2019 - ES10
2021 - ES12

ECMAScript 2021 (ES12) - 879 pages
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Problem: Open Development Process
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• 64 out of 71 bugs are semantics bugs
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RQ4: Accuracy of Bug Localization 


