
JEST: N+1-version Differential Testing of 
Both JavaScript Engines and Specification 

Jihyeok Park, Seungmin An, Donjun Youn, Geyongwon Kim, Sukyoung Ryu 

PLRG @ KAIST 

The 43rd International Conference on Software Engineering (ICSE'21) 
(Awarded ACM SIGSOFT Distinguished Paper) 

2021 한국소프트웨어종합학술대회 (KSC 2021) Top Conference 세션 

December 21, 2021



JEST: N+1-version Differential Testing of Both JavaScript Engines and Specification / 16

JavaScript is Everywhere

2



JEST: N+1-version Differential Testing of Both JavaScript Engines and Specification / 163

https://octoverse.github.com/

https://octoverse.github.com/


JEST: N+1-version Differential Testing of Both JavaScript Engines and Specification / 16

JavaScript Complex Semantics

4

function f(x) { return x == !x; }

Always return false?

NO!!
f([]) -> [] == ![] 
      -> [] == false 
      -> +[] == +false 
      -> 0 == 0 
      -> true



JEST: N+1-version Differential Testing of Both JavaScript Engines and Specification / 16

ECMAScript: JavaScript Specification

5

The production of ArrayLiteral in ES12
The Evaluation algorithm for 

the third alternative of ArrayLiteral in ES12

Syntax

Semantics



JEST: N+1-version Differential Testing of Both JavaScript Engines and Specification / 16

JavaScript Specification and Engines

6

Reference number 
ECMA-123:2009 

© Ecma International 2009 

ECMA-262 
11th Edition / June 2020

ECMAScript® 2020 
Language Specification 

JavaScript 
EnginesECMAScript

QuickJS
Conformance

Conformance



JEST: N+1-version Differential Testing of Both JavaScript Engines and Specification / 16

Our Idea: N+1-version Differential Testing

7

Synthesize

Reference number 
ECMA-123:2009 

© Ecma International 2009 

ECMA-262 
11th Edition / June 2020

ECMAScript® 2020 
Language Specification 

JavaScript 
Engines

Test
QuickJS

test

An engine bug in 

test

test

test

ECMAScript



JEST: N+1-version Differential Testing of Both JavaScript Engines and Specification / 16

A specification bug in ECMAScriptA specification bug in ECMAScript 
An engine bug in

Our Idea: N+1-version Differential Testing

8

TestSynthesize

Reference number 
ECMA-123:2009 

© Ecma International 2009 

ECMA-262 
11th Edition / June 2020

ECMAScript® 2020 
Language Specification 

ECMAScript

JavaScript 
Engines

QuickJS

test

test

test

test



JEST: N+1-version Differential Testing of Both JavaScript Engines and Specification / 16

JEST

9

Engine-N

Spec. Bugs

Engine-1

Engine Bugs

···

JavaScript Engines and Specification Tester

[ASE'20] Park et al, “JISET: Javascript IR-based Semantics Extraction Toolchain”

Spectrum Based

Fault Localization


(SBFL)

with ER1b formula

Mechanized

Specification

ECMAScript

DCS �¿�. 1•Xî ⌅\¯ò� ∏¥ Ö8| ⌅\ ê§lΩ∏ �� Ñ�.
⌅∞YÄ . 2022D. 46+iv Ω. ¿ƒP⇠: X��. (�8 |8)
Jihyeok Park. JavaScript Static Analysis for Evolving Language Specifica-
tions. School of Computing . 2022. 46+iv pages. Advisor: Sukyoung Ryu.
(Text in English)

� ]

ê§lΩ∏X Ÿ�x 1»¸ ı°\ X¯`@ ê§lΩ∏ ⌅\¯®‰X âŸD �UXå ttX0 ¥

5å Ã‡‰. lê‰@ t| t∞X‡ê ‰ë\ ê§lΩ∏ �� Ñ�0‰D ⌧⌧tT¿Ã, t‰@
®P ⇠Ÿ<\ $ƒ� ⇠»0– xŸ—}�t‡ $X– Ë}X‰. ⇣\, 2014D –Ä0 ê§lΩ∏X
∏¥ Ö8� ‰D 1‡⇠0 ‹ëXt⌧ t 8⌧î T Ï�tL‰. ¯ Y⌅ |8–⌧î ê§lΩ∏ ∏¥
Ö8\Ä0êŸ<\ê§lΩ∏��Ñ�0| ƒt¥î»\¥)›D⌧H\‰. tî 1)0ƒTÖ8
îú, 2) 0ƒT Ö8  ®1 Ä¨, ¯¨‡ 3) �� Ñ�0  ƒX 8 �¿ Ëƒ\ l1⌧‰. ¯ |8–⌧î
0ƒT Ö8 îú 0 D ⌧HX‡, t| t©t �• \‡ ê§lΩ∏ Ö8\Ä0 0ƒT Ö8| îú
\‰. ⇣\, ê§lΩ∏ ‘ƒD t©\ N+1-Ñ⌅ (Ñ L§⇧¸ 0ƒT Ö8X ¿Ö Ñ�D ⌧HX‡,
t| µt Ö8 ✏ ‘ƒX ∞hD Äú\‰. \Ö�<\, T¿ �� Ñ� 0 D ⌧HX‡, îú\ 0ƒT
Ö8\Ä0 êŸ<\ ê§lΩ∏ �� Ñ�0|  ƒ\‰. ¯ Y⌅ |8–⌧ ⌧‹\ )›@ ⌅\¯ò�
∏¥| ⌅\ Ö8, L§∏, ¯¨‡ ƒl‰X ıƒT| ⌅\ lX 0¿D »(` É<\ 0�\‰.

u Ï ± – ê§lΩ∏, 0ƒT Ö8 îú, Ö8 ¿Ö Ñ�, N+1-Ñ⌅ (Ñ L§⇧, T¿ �� Ñ�

Abstract
The highly dynamic nature and complex semantics of JavaScript make it difficult to correctly understand
the behaviors of JavaScript programs. To automatically reason about them, researchers have developed
various JavaScript static analyzers that conform to ECMAScript, the standard specification of JavaScript.
However, all the existing JavaScript static analyzers are manually designed; thus, the current approach
is labor-intensive and error-prone. Moreover, since late 2014, this problem becomes more critical because
the JavaScript language itself rapidly evolves with a yearly release cadence and open development process.

In this thesis, we introduce a novel approach to automatically derive JavaScript static analyzers
from any version of ECMAScript. Our approach consists of three steps: 1) mechanized specification
extraction, 2) mechanized specification validity check, and 3) derivation of static analyzers. First, we
present a tool JISET that automatically extracts a mechanized specification from ECMAScript. We show
that it successfully extracts a mechanized specification from the latest ECMAScript. Then, we present
two different tools to detect bugs in JavaScript specifications and engines; JEST performs N+1-version
differential testing with JavaScript engines and JSTAR performs a type analysis for the mechanized
specification. Finally, we present JSAVER that automatically derives JavaScript static analyzers from
mechanized specifications using a meta-level static analysis. For evaluation, we derive a JavaScript
static analyzer from the latest ECMAScript and show that it successfully analyzes all applicable official
conformance tests in a sound way. We believe that the thesis would be the first step towards the
co-evolution of specifications, tests, and tools for programming languages.

Keywords JavaScript, mechanized specification extraction, N+1-version differential testing, specifica-
tion type analysis, meta-level static analysis.

Test

Synthesizer

Conformance

Tests

Bug

Localizer

DCS �¿�. 1•Xî ⌅\¯ò� ∏¥ Ö8| ⌅\ ê§lΩ∏ �� Ñ�.
⌅∞YÄ . 2022D. 46+iv Ω. ¿ƒP⇠: X��. (�8 |8)
Jihyeok Park. JavaScript Static Analysis for Evolving Language Specifica-
tions. School of Computing . 2022. 46+iv pages. Advisor: Sukyoung Ryu.
(Text in English)

� ]

ê§lΩ∏X Ÿ�x 1»¸ ı°\ X¯`@ ê§lΩ∏ ⌅\¯®‰X âŸD �UXå ttX0 ¥

5å Ã‡‰. lê‰@ t| t∞X‡ê ‰ë\ ê§lΩ∏ �� Ñ�0‰D ⌧⌧tT¿Ã, t‰@
®P ⇠Ÿ<\ $ƒ� ⇠»0– xŸ—}�t‡ $X– Ë}X‰. ⇣\, 2014D –Ä0 ê§lΩ∏X
∏¥ Ö8� ‰D 1‡⇠0 ‹ëXt⌧ t 8⌧î T Ï�tL‰. ¯ Y⌅ |8–⌧î ê§lΩ∏ ∏¥
Ö8\Ä0êŸ<\ê§lΩ∏��Ñ�0| ƒt¥î»\¥)›D⌧H\‰. tî 1)0ƒTÖ8
îú, 2) 0ƒT Ö8  ®1 Ä¨, ¯¨‡ 3) �� Ñ�0  ƒX 8 �¿ Ëƒ\ l1⌧‰. ¯ |8–⌧î
0ƒT Ö8 îú 0 D ⌧HX‡, t| t©t �• \‡ ê§lΩ∏ Ö8\Ä0 0ƒT Ö8| îú
\‰. ⇣\, ê§lΩ∏ ‘ƒD t©\ N+1-Ñ⌅ (Ñ L§⇧¸ 0ƒT Ö8X ¿Ö Ñ�D ⌧HX‡,
t| µt Ö8 ✏ ‘ƒX ∞hD Äú\‰. \Ö�<\, T¿ �� Ñ� 0 D ⌧HX‡, îú\ 0ƒT
Ö8\Ä0 êŸ<\ ê§lΩ∏ �� Ñ�0|  ƒ\‰. ¯ Y⌅ |8–⌧ ⌧‹\ )›@ ⌅\¯ò�
∏¥| ⌅\ Ö8, L§∏, ¯¨‡ ƒl‰X ıƒT| ⌅\ lX 0¿D »(` É<\ 0�\‰.

u Ï ± – ê§lΩ∏, 0ƒT Ö8 îú, Ö8 ¿Ö Ñ�, N+1-Ñ⌅ (Ñ L§⇧, T¿ �� Ñ�

Abstract
The highly dynamic nature and complex semantics of JavaScript make it difficult to correctly understand
the behaviors of JavaScript programs. To automatically reason about them, researchers have developed
various JavaScript static analyzers that conform to ECMAScript, the standard specification of JavaScript.
However, all the existing JavaScript static analyzers are manually designed; thus, the current approach
is labor-intensive and error-prone. Moreover, since late 2014, this problem becomes more critical because
the JavaScript language itself rapidly evolves with a yearly release cadence and open development process.

In this thesis, we introduce a novel approach to automatically derive JavaScript static analyzers
from any version of ECMAScript. Our approach consists of three steps: 1) mechanized specification
extraction, 2) mechanized specification validity check, and 3) derivation of static analyzers. First, we
present a tool JISET that automatically extracts a mechanized specification from ECMAScript. We show
that it successfully extracts a mechanized specification from the latest ECMAScript. Then, we present
two different tools to detect bugs in JavaScript specifications and engines; JEST performs N+1-version
differential testing with JavaScript engines and JSTAR performs a type analysis for the mechanized
specification. Finally, we present JSAVER that automatically derives JavaScript static analyzers from
mechanized specifications using a meta-level static analysis. For evaluation, we derive a JavaScript
static analyzer from the latest ECMAScript and show that it successfully analyzes all applicable official
conformance tests in a sound way. We believe that the thesis would be the first step towards the
co-evolution of specifications, tests, and tools for programming languages.

Keywords JavaScript, mechanized specification extraction, N+1-version differential testing, specifica-
tion type analysis, meta-level static analysis.



JEST: N+1-version Differential Testing of Both JavaScript Engines and Specification / 16

JEST - Test Synthesizer

10

Mechanized

Specification

Assertion

Injector

Program

Mutator

Seed

Synthesizer

JS Programs

Conformance

Tests

Syntax-directed

Program Generation

Coverage-guided

Mutation

1.Random Mutation

2.Nearest Syntax Tree Mutation

3.String Substitutions

4.Object Substitutions

5.Statement Insertion

Final State-based

Assertions Test Synthesizer



JEST: N+1-version Differential Testing of Both JavaScript Engines and Specification / 16

JEST - Assertion Injector (7 Kinds)

11

1. Exceptions (Exc) 
 

2. Aborts (Abort) 
 

3. Variable Values (Var) 
 

4. Object Values (Obj)

+ // Throw 
  let x = 42; 
  function x() {};

  var x = 1 + 2; 
+ $assert.sameValue(x, 3);

+ // Abort 
  var x = 42; x++;

  var x = {}, y = {}, z = { p: x, q: y }; 
+ $assert.sameValue(z.p, x); 
+ $assert.sameValue(z.q, y); 



JEST: N+1-version Differential Testing of Both JavaScript Engines and Specification / 16

JEST - Assertion Injector (7 Kinds)

12

1. Object Properties (Desc) 
 
 
 

2. Property Keys (Key) 
 
 
 

3. Internal Methods and 
Slots (In)

  var x = { p: 42 }; 
+ $verifyProperty(x, "p", { 
+   value: 42.0, writable: true, 
+   enumerable: true, configurable: true 
+ });

  var x = {[Symbol.match]: 0, p: 0, 3: 0, q: 0, 1: 0} 
+ $assert.compareArray( 
+   Reflect.ownKeys(x), 
+   ["1", "3", "p", "q", Symbol.match] 
+ );

  function f() {} 
+ $assert.sameValue(Object.getPrototypeOf(f), 
+                   Function.prototype); 
+ $assert.sameValue(Object.isExtensible(x), true); 
+ $assert.callable(f); 
+ $assert.constructable(f);



JEST: N+1-version Differential Testing of Both JavaScript Engines and Specification / 16

• JavaScript Specification 

- ECMAScript 2020 (ES11) - released in June 2020


• JavaScript Engines


- V8 - v8.3 by Google


- GraalJS - v20.1.0 by Oracle


- QuickJS - 2020-04-12 by Fabrice Bellard


- Moddable XS - v10.3.0 by Moddable Tech Inc.

13

Evaluation



JEST: N+1-version Differential Testing of Both JavaScript Engines and Specification / 16

• 1,700 Synthesized Tests in 100 hours

• Syntax Coverage: 97.79% (397 / 406)

• Semantics Coverage 
- Statement: 86.67% (21,230 / 24,495)

- Branch: 77.95% (7,480 / 9,596)

14

RQ1: Coverage of Synthesized Tests 



JEST: N+1-version Differential Testing of Both JavaScript Engines and Specification / 16

RQ2: Bug Detection in JavaScript Engines 

15

QuickJS initializes 'x' with 'undefined' instead of throwing a 'ReferenceError'

function f (... { x = x }) { return x; } var y = f();

try { ++undefined; } catch(e) { }

GraalJS crashes with an exception 'java.lang.IllegalStateException'

44 Bugs in Engines



JEST: N+1-version Differential Testing of Both JavaScript Engines and Specification / 16

RQ3: Bug Detection in ECMAScript

16

https://github.com/tc39/ecma262/pull/2130/files

27 Bugs in Spec.

https://github.com/tc39/ecma262/pull/2130/files




Backup Slides



JEST: N+1-version Differential Testing of Both JavaScript Engines and Specification / 16

Problem: Fast Evolving JavaScript

19

1996    1998    2000    2002    2004    2008    2010    2012    2014    2016    2018    2020    2022

1997 - ES1 
First edition

1998 - ES2 
Editorial 
changes

1999 - ES3 
RegEx, String, 
Try/catch, etc

2009 - ES5 
getters/setters,

strict mode,

exceptions, etc

2011 - ES5.1 
Editorial 
Changes

2015 - ES6 
classes, modules, etc.

2016 - ES7 
destructuring patterns, etc.

Annual Releases

2017 - ES8 
object manipulation, etc.

2018 - ES9
2020 - ES11

ES.Next

2019 - ES10
2021 - ES12

ECMAScript 2021 (ES12) - 879 pages



JEST: N+1-version Differential Testing of Both JavaScript Engines and Specification / 16

Problem: Open Development Process

20



JEST: N+1-version Differential Testing of Both JavaScript Engines and Specification / 16

• 64 out of 71 bugs are semantics bugs

21

RQ4: Accuracy of Bug Localization 


