
Towards Co-evolution of

JavaScript Specification and Tools

Jihyeok Park

PLRG @ KAIST

Programming Systems Laboratory Seminar

June 28, 2021

/ 35PS Lab Seminar - Towards Co-evolution of JavaScript Specification and Tools

JavaScript is Everywhere

2

/ 35PS Lab Seminar - Towards Co-evolution of JavaScript Specification and Tools

JavaScript is Dominating

3

https://octoverse.github.com/

https://octoverse.github.com/

/ 35PS Lab Seminar - Towards Co-evolution of JavaScript Specification and Tools

JavaScript Complex Semantics

4

function f(x) { return x == !x; }

Always return false?

/ 35PS Lab Seminar - Towards Co-evolution of JavaScript Specification and Tools

JavaScript Complex Semantics

4

function f(x) { return x == !x; }

Always return false?

NO!!
f([]) -> [] == ![]

 -> [] == false

 -> +[] == +false

 -> 0 == 0

 -> true

/ 35PS Lab Seminar - Towards Co-evolution of JavaScript Specification and Tools

ECMAScript: JavaScript Specification

5

https://developer.mozilla.org/en-US/docs/Web/JavaScript

https://developer.mozilla.org/en-US/docs/Web/JavaScript

/ 35PS Lab Seminar - Towards Co-evolution of JavaScript Specification and Tools

Fast Evolving JavaScript

6

1996 1998 2000 2002 2004 2008 2010 2012 2014 2016 2018 2020 2022

1997 - ES1
First edition

1998 - ES2
Editorial 
changes

1999 - ES3
RegEx, String, 
Try/catch, etc

2009 - ES5
getters/setters,

strict mode,

exceptions, etc

2011 - ES5.1
Editorial 
Changes

2015 - ES6
classes, modules, etc.

2016 - ES7
destructuring patterns, etc.

Annual Releases

2017 - ES8
object manipulation, etc.

2018 - ES9
2020 - ES11

ES.Next

2019 - ES10
2021 - ES12

ECMAScript 2021 (ES12) - 884 pages

/ 35PS Lab Seminar - Towards Co-evolution of JavaScript Specification and Tools

JavaScript Specification and Tools

7

Reference number
ECMA-123:2009

© Ecma International 2009

ECMA-262
11th Edition / June 2020

ECMAScript® 2020
Language Specification

ECMAScript

Parser Engine

Debugger Symbolic
Executor

Formal
Verifier

Static
Analyzer

JavaScript
Tools

/ 35PS Lab Seminar - Towards Co-evolution of JavaScript Specification and Tools

JavaScript Specification and Tools

7

Reference number
ECMA-123:2009

© Ecma International 2009

ECMA-262
11th Edition / June 2020

ECMAScript® 2020
Language Specification

ECMAScript

Parser Engine

Debugger Symbolic
Executor

Formal
Verifier

Static
Analyzer

JavaScript
Tools

/ 35PS Lab Seminar - Towards Co-evolution of JavaScript Specification and Tools

JavaScript Specification and Tools

7

Reference number
ECMA-123:2009

© Ecma International 2009

ECMA-262
11th Edition / June 2020

ECMAScript® 2020
Language Specification

ECMAScript

Conformance
Parser Engine

Debugger Symbolic
Executor

Formal
Verifier

Static
Analyzer

JavaScript
Tools

/ 35PS Lab Seminar - Towards Co-evolution of JavaScript Specification and Tools

JavaScript Specification and Tools

7

Reference number
ECMA-123:2009

© Ecma International 2009

ECMA-262
11th Edition / June 2020

ECMAScript® 2020
Language Specification

ECMAScript

Conformance

Conformance

Parser Engine

Debugger Symbolic
Executor

Formal
Verifier

Static
Analyzer

JavaScript
Tools

/ 35PS Lab Seminar - Towards Co-evolution of JavaScript Specification and Tools

JavaScript Specification and Tools

7

Reference number
ECMA-123:2009

© Ecma International 2009

ECMA-262
11th Edition / June 2020

ECMAScript® 2020
Language Specification

ECMAScript

Conformance

Conformance

Parser Engine

Debugger Symbolic
Executor

Formal
Verifier

Static
Analyzer

JavaScript
Tools

/ 35PS Lab Seminar - Towards Co-evolution of JavaScript Specification and Tools

Co-evolution of JavaScript Spec. and Tools

8

ECMAScript

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

JavaScript Static Analysis with Evolving Engines and
Specification

Jihyeok Park
KAIST, South Korea

jhpark0223@kaist.ac.kr

ABSTRACT
JavaScript is one of the most dominating programming languages.
Despite its popularity, the highly dynamic nature of JavaScript
makes its semantics complex thus understanding and reasoning
about JavaScript programs are challenging tasks. Therefore, Re-
searchers have proposed JavaScript static analysis based on ab-
stract interpretation with the the abstract semantics conforming
to ECMAScript, the standard speci�cation for JavaScript. However,
all the existing abstract semantics are manually de�ned thus the
current approach is labor-intensive and error-prone. Moreover, in
late 2014, this problem becomes more critical because the Ecma
Technical Committee 39 announced that they will annually update
ECMAScript.

To alleviate the problem, we propose an approach to perform
JavaScript static analysis using the abstract semantics automatically
de�ned with both of JavaScript engines and speci�cation. Our main
idea is 1) to leverage the existing JavaScript engines as much as
possible, and 2) to utilize the formal semantics automatically ex-
tracted from ECMAScript for remaining parts. We believe that our
approach would be able to analyze JavaScript programs developed
with new language features as well as improve their quality.

KEYWORDS
JavaScript, mechanized speci�cation, static analysis, abstract inter-
pretation
ACM Reference Format:
Jihyeok Park. 2021. JavaScript Static Analysis with Evolving Engines and
Speci�cation. In Proceedings of ACM Conference (Conference’17). ACM, New
York, NY, USA, 3 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
JavaScript is one of the most dominating programming languages.
While JavaScript was initially designed for client-side programming
in web browsers, and it is now widely used in server-side program-
ming [6] and even in embedded systems [3, 5, 7]. According to
W3Techs1, 97.2% of websites use JavaScript as their client-side pro-
gramming language. The 2020 State of the Octoverse2, which is the
1https://w3techs.com/technologies/details/cp-javascript/all/all
2https://octoverse.github.com/

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

annual report of GitHub, reports that JavaScript was the top-ranked
programming language in GitHub repositories since 2014 to 2020.

Researchers have proposed various static analyzers to under-
stand and reason about JavaScript programs. Despite its popularity,
JavaScript developers often su�er from its intricate and dynamic
language features, which may cause unexpected behaviors. For ex-
ample, the function declaration function f(x){ return x == !x }

may seem to always return false. Surprisingly, it returns truewhen
its argument is an empty array; f([]) = true. To correctly under-
stand and reason about such a complex behavior, researchers have
proposed various static analyzers for JavaScript programs, such as
TAJS [15], SAFE [20], JSAI [16], and WALA [26].

However, existing JavaScript static analyzers utilize manually
de�ned formal semantics, and this approach is labor-intensive and
error-prone. ECMAScript, which is a standard speci�cation for
JavaScript maintained by the Ecma Technical Committee 39 (TC39),
describes syntax and semantics of JavaScript in a structured na-
ture language. Based on the speci�cation, researchers have de�ned
various JavaScript formal semantics [8, 14, 21] or have modi�ed
them suitable for debuggers [9], veri�cation tools [12, 13], and
static analyzers [15, 16, 20, 26]. However, all of them are written
by hand thus the existing approach is tedious, labor-intensive, and
error-prone. Moreover, in late 2014, the TC39 announced the yearly
release cadence and open development process of ECMAScript to
quickly adapt to evolving development environments. Thus, there
are already six updates after ES5.1 and this problem becomes more
critical.

To alleviate this problem, we propose an approach to perform
JavaScript static analysis using the abstract semantics automatically
de�ned with both of JavaScript engines and speci�cation. Our main
idea is 1) to leverage the existing JavaScript engines as much as
possible, and 2) to utilize the formal semantics automatically ex-
tracted from ECMAScript for remaining parts. To lessen the burden
to manually de�ne the abstract semantics for evolving JavaScript
speci�cation, we present a technique to extract a formal semantics
from ECMAScript and de�ne an abstract semantics based on it.
However, the automatically extracted abstract semantics might be
much slower than highly optimized abstract semantics written by
hand. Thus, we also leverage existing JavaScript engines to de�ne
abstract semantics for better performance of static analysis. Our
approach consists of three steps with three di�erent tools; First,
JISET automatically extracts JavaScript formal semantics using rule-
based compilation from abstract algorithms to functions of IRES,
an Intermediate Representation that we designed for ECMAScript.
Based on the extracted semantics, JEST performs #+1-version dif-
ferential testing for existing JavaScript engines and ECMAScript to
check whether they conform to each other. Finally, JSAVER performs

1

Mechanized 
Spec.ASE'20 Tests JS EngineMechanized 
Spec.

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

JavaScript Static Analysis with Evolving Engines and Specification Conference’17, July 2017, Washington, DC, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Figure 2: The overall structure of JavaScript static analysis
with evolving engines and speci�cation

of ArrayLiteral and the Evaluation algorithm for its �rst alter-
native in ES11. We utilize such a common pattern in the writing
style to extract mechanized speci�cation directly from ECMAScript.
Moreover, commercial JavaScript engines are highly optimized to
quickly execute real-world JavaScript programs. However, most
of JavaScript static analyzers are developed and maintained by re-
searchers thus they are not scalable to analyze real-world JavaScript
programs. Thus, we leverage JavaScript engines as much as possible
during static analysis. This work is closely related to two research
�elds: mechanized speci�cation extraction and combined analysis of
dynamic and static analysis.

Mechanized Speci�cation Extraction. In diverse �elds, several
researchers have extracted mechanized speci�cations from speci�-
cations written in a natural language to automatically handle their
contents. Nguyen [18] extracted a mechanized speci�cation of x86
architecture from its natural language description using Natural
Language Processing (NLP) techniques. Moreover, Vu and Ogawa
[31] proposed a similar approach for ARM architecture using NLP
techniques with machine Learning techniques. Besides low-level
assembly languages, Zhai et al. [35] presented a technique to auto-
matically synthesize Java API functions from their documentation
using NLP techniques. For JavaScript, Ye et al. [34] presented C���
����, a compiler fuzzing framework to detect JavaScript engine
bugs using boundary conditions extracted from ECMAScript ab-
stract algorithms with deep learning-based language models. For
network protocols, Kim et al. [16] proposed B���S���, which ex-
tracts message structures from tables in cellular speci�cations for
L3 protocols to perform comparative analysis of baseband software.
However, there is no existing approach to automatically extract a
mechanized speci�cation that represents the entire formal seman-
tics of a high-level modern programming language.

Combined Analysis. Static and dynamic analyses are two of the
most popular program analysis techniques. Several researchers
have leveraged dynamic analysis during static analysis for 1) au-
tomatic modeling, 2) pruning analysis scope, and 3) performance
improvement. For automatic modeling, Park et al. [22] presented
a Sample-Run-Abstract (SRA) technique that utilizes the execution
results of sampled concrete states as an automatic modeling during
JavaScript static analysis. To prune out infeasible analysis scopes,
Schäfer et al. [28] utilized dynamic determinacy analysis and elimi-
nated invocations of eval and constant property names. Moreover,
Wei and Ryder [32] introduced blended taint analysis that sacri-
�ces the analysis soundness but increase analysis precision using
concrete traces collected by dynamic analysis. Similarly, Park et al.

Figure 3: A mechanized speci�cation extraction from EC-
MAScript via JISET

val ArrayLiteral: List[Boolean] => LAParser[T] = memo {

case List(Yield , Await) =>

�[� ~ opt(Elision) ~ �]� ^^ ArrayLiteral0 |

�[� ~ ElementList(Yield ,Await) ~ �]� ^^ ArrayLiteral1 |

�[� ~ ElementList(Yield ,Await) ~ �,�

~ opt(Elision)~ �]� ^^ ArrayLiteral2

}

(a) The generated parser for the ArrayLiteral production

ArrayLiteral [0]. Evaluation (Elision) => {

let array = [! (ArrayCreate 0)]

if (! (= Elision absent)) {

let len = (Elision.ArrayAccumulation array 0)

[? len]

}

return array

}

(b) The IRES function compiled from the Evaluation algorithm

Figure 4: The generated parser and the compiled IRES func-
tion from the production and abstract algorithm in Figure 1

[23, 26] utilize them to prune out initial states, dynamically loaded
�les, and event handlers. Unlike previous approaches, Toman and
Grossman [30] proposed C������� that performs a sound com-
bined analysis that could signi�cantly improve the precision and
performance of Java static analysis.

3 GOALS OF THE RESEARCH
In this section, we explain goals of an approach to perform JavaScript
static analysis using the abstract semantics automatically de�ned
with both of JavaScript engines and speci�cation. Figure 2 describes
the overall structure of our approach and it consists of three steps
with three di�erent tools; First, JISET (Section 3.1) automatically
extracts JavaScript a mechanized speci�cation using a parser gener-
ation for syntax and a rule-based compilation for semantics. Using
the mechanized speci�cation extracted by JISET, JEST (Section 3.2)
performs #+1-version di�erential testing for existing JavaScript
engines and ECMAScript to check whether they conform to each
other. Finally, JSAVER (Section 3.3) performs JavaScript static analy-
sis based on the abstract semantics de�ned with both of JavaScript
engines and speci�cation. Among three tools, we already developed
JISET [24] and JEST [21] thus we are now focusing on developing
JSAVER.

3.1 JISET: Mechanized Speci�cation Extraction
We present JISET [24], a JavaScript IR-based Semantics Extrac-

tion Toolchain, and Figure 3 depicts the overall structure of JISET.
3

ICSE'21

Conformance Test

Synthesis

Distinguished Paper
Award!!

Mechanized 
Spec.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

JavaScript Static Analysis with Evolving Engines and
Specification

Jihyeok Park
KAIST, South Korea

jhpark0223@kaist.ac.kr

ABSTRACT
JavaScript is one of the most dominant programming languages. De-
spite its popularity, the highly dynamic nature of JavaScript makes
its semantics complex; thus, understanding and reasoning about
JavaScript programs are challenging tasks. Therefore, Researchers
have proposed JavaScript static analysis based on the abstract in-
terpretation with abstract semantics conforming to ECMAScript,
the standard speci�cation for JavaScript. However, all the existing
abstract semantics are manually de�ned; thus, the current approach
is labor-intensive and error-prone. Moreover, since late 2014, this
problem becomes more critical because the Ecma Technical Com-
mittee 39 announced that they would update ECMAScript annually.

To alleviate the problem, we propose an approach to perform
JavaScript static analysis using abstract semantics automatically
de�ned with both JavaScript engines and speci�cation. Our main
idea is 1) to leverage the existing JavaScript engines as much as
possible and 2) to utilize the mechanized speci�cation automatically
extracted from ECMAScript for the remaining parts. We believe that
our approach can to perform static analysis for JavaScript programs
developed with new language features and help build high-quality
JavaScript programs.

KEYWORDS
JavaScript, mechanized speci�cation, static analysis, abstract inter-
pretation
ACM Reference Format:
Jihyeok Park. 2021. JavaScript Static Analysis with Evolving Engines and
Speci�cation. In Proceedings of ACM Conference (Conference’17). ACM, New
York, NY, USA, 6 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
JavaScript is one of the most dominant programming languages.
While JavaScript was initially designed for client-side program-
ming in web browsers, it is now widely used in server-side pro-
gramming [4] and even in embedded systems [2, 3, 5]. According
to W3Techs1, 97.2% of websites use JavaScript as their client-side
programming language. The 2020 State of the Octoverse2, which is
1https://w3techs.com/technologies/details/cp-javascript/all/all
2https://octoverse.github.com/

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

the annual report of GitHub, reports that JavaScript was the top-
ranked programming language in GitHub repositories since 2014
to 2020.

Researchers have proposed various static analyzers to under-
stand and reason about JavaScript programs. Despite its popularity,
JavaScript developers often su�er from its intricate and dynamic
language features, which may cause unexpected behaviors. For ex-
ample, the function declaration function f(x){ return x == !x }

may seem to always return false. Surprisingly, it returns truewhen
its argument is an empty array: f([]) = true. To correctly under-
stand and reason about such a complex behavior, researchers have
proposed various static analyzers for JavaScript programs, such as
TAJS [14], SAFE [17], JSAI [15], and WALA [29].

However, existing JavaScript static analyzers utilize manually
de�ned formal semantics, and this approach is labor-intensive and
error-prone. ECMAScript, the standard speci�cation for JavaScript
maintained by the Ecma Technical Committee 39 (TC39), describes
syntax and semantics of JavaScript in a structured nature lan-
guage. Based on the speci�cation, researchers have de�ned various
JavaScript formal semantics [7, 13, 18, 20] or have modi�ed them
suitable for debuggers [8], veri�cation tools [11, 12], and static
analyzers [14, 15, 17, 29]. However, because all of them are writ-
ten by hand, the existing approach is tedious, labor-intensive, and
error-prone. Moreover, in late 2014, the TC39 announced the yearly
release cadence and open development process of ECMAScript to
quickly adapt to evolving development environments. Thus, there
are already six updates after ES5.1 and this problem becomes more
critical.

To alleviate this problem, we propose an approach to perform
JavaScript static analysis using abstract semantics automatically
de�ned with both JavaScript engines and speci�cation. Our main
idea is 1) to leverage the existing JavaScript engines as much as
possible and 2) to utilize the a mechanized speci�cation automati-
cally extracted from ECMAScript for the remaining parts. To lessen
the burden of manually de�ning the abstract semantics for the
evolving JavaScript speci�cation, we present a technique to extract
a mechanized speci�cation from ECMAScript and de�ne an ab-
stract semantics based on it. However, the automatically extracted
abstract semantics might be much slower than highly optimized
abstract semantics written by hand. Thus, we also leverage existing
JavaScript engines to de�ne abstract semantics for better perfor-
mance of static analysis. Our approach consists of three steps with
three di�erent tools; First, JISET automatically extracts JavaScript
mechanized speci�cation using a parser generation for syntax and
a rule-based compilation for semantics. Using the mechanized spec-
i�cation, JEST performs #+1-version di�erential testing for existing
JavaScript engines and ECMAScript to check whether they con-
form to each other. Finally, JSTAR performs JavaScript static analysis

1 On Review

<latexit sha1_base64="UFE5rAltPKCxrmF3rEz1sNHj3wU=">AAACNnicbVDLSsNAFJ34rO9Wl7oIFsFVSUTUZdGNSwWrQhvkZnrbDp1HmJmIJfQX3Oqn+Ctu3IlbP8FJm4WpHrhwOPd94oQzY4Pg3ZubX1hcWq6srK6tb2xuVWvbt0almmKLKq70fQwGOZPYssxyvE80gog53sXDizx/94jaMCVv7CjBSEBfsh6jYHOpYyF9qNaDRjCB/5eEBamTAlcPNW+v01U0FSgt5WBMOwwSG2WgLaMcx6ud1GACdAh9bDsqQaCJssmxY//AKV2/p7QLaf2J+rsjA2HMSMSuUoAdmNlcLv6Xa6e2dxZlTCapRUmni3op963y88/9LtNILR85AlQzd6tPB6CBWudPadJNGGX5cfmY0vqn6Q+lYgFD1EoJ9yBIinzs/Axn3ftLbo8a4UkjvD6uN88LZytkl+yTQxKSU9Ikl+SKtAglA/JMXsir9+Z9eJ/e17R0zit6dkgJ3vcPZwSspg==</latexit>⌧
Type Info.

Type Analysis

for Specification

ECMAScript Mechanized 
Spec.

<latexit sha1_base64="UFE5rAltPKCxrmF3rEz1sNHj3wU=">AAACNnicbVDLSsNAFJ34rO9Wl7oIFsFVSUTUZdGNSwWrQhvkZnrbDp1HmJmIJfQX3Oqn+Ctu3IlbP8FJm4WpHrhwOPd94oQzY4Pg3ZubX1hcWq6srK6tb2xuVWvbt0almmKLKq70fQwGOZPYssxyvE80gog53sXDizx/94jaMCVv7CjBSEBfsh6jYHOpYyF9qNaDRjCB/5eEBamTAlcPNW+v01U0FSgt5WBMOwwSG2WgLaMcx6ud1GACdAh9bDsqQaCJssmxY//AKV2/p7QLaf2J+rsjA2HMSMSuUoAdmNlcLv6Xa6e2dxZlTCapRUmni3op963y88/9LtNILR85AlQzd6tPB6CBWudPadJNGGX5cfmY0vqn6Q+lYgFD1EoJ9yBIinzs/Axn3ftLbo8a4UkjvD6uN88LZytkl+yTQxKSU9Ikl+SKtAglA/JMXsir9+Z9eJ/e17R0zit6dkgJ3vcPZwSspg==</latexit>⌧
Type Info.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

JavaScript Static Analysis with Evolving Engines and
Specification

Jihyeok Park
KAIST, South Korea

jhpark0223@kaist.ac.kr

ABSTRACT
JavaScript is one of the most dominant programming languages. De-
spite its popularity, the highly dynamic nature of JavaScript makes
its semantics complex; thus, understanding and reasoning about
JavaScript programs are challenging tasks. Therefore, Researchers
have proposed JavaScript static analysis based on the abstract in-
terpretation with abstract semantics conforming to ECMAScript,
the standard speci�cation for JavaScript. However, all the existing
abstract semantics are manually de�ned; thus, the current approach
is labor-intensive and error-prone. Moreover, since late 2014, this
problem becomes more critical because the Ecma Technical Com-
mittee 39 announced that they would update ECMAScript annually.

To alleviate the problem, we propose an approach to perform
JavaScript static analysis using abstract semantics automatically
de�ned with both JavaScript engines and speci�cation. Our main
idea is 1) to leverage the existing JavaScript engines as much as
possible and 2) to utilize the mechanized speci�cation automatically
extracted from ECMAScript for the remaining parts. We believe that
our approach can to perform static analysis for JavaScript programs
developed with new language features and help build high-quality
JavaScript programs.

KEYWORDS
JavaScript, mechanized speci�cation, static analysis, abstract inter-
pretation
ACM Reference Format:
Jihyeok Park. 2021. JavaScript Static Analysis with Evolving Engines and
Speci�cation. In Proceedings of ACM Conference (Conference’17). ACM, New
York, NY, USA, 6 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
JavaScript is one of the most dominant programming languages.
While JavaScript was initially designed for client-side program-
ming in web browsers, it is now widely used in server-side pro-
gramming [4] and even in embedded systems [2, 3, 5]. According
to W3Techs1, 97.2% of websites use JavaScript as their client-side
programming language. The 2020 State of the Octoverse2, which is
1https://w3techs.com/technologies/details/cp-javascript/all/all
2https://octoverse.github.com/

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

the annual report of GitHub, reports that JavaScript was the top-
ranked programming language in GitHub repositories since 2014
to 2020.

Researchers have proposed various static analyzers to under-
stand and reason about JavaScript programs. Despite its popularity,
JavaScript developers often su�er from its intricate and dynamic
language features, which may cause unexpected behaviors. For ex-
ample, the function declaration function f(x){ return x == !x }

may seem to always return false. Surprisingly, it returns truewhen
its argument is an empty array: f([]) = true. To correctly under-
stand and reason about such a complex behavior, researchers have
proposed various static analyzers for JavaScript programs, such as
TAJS [14], SAFE [17], JSAI [15], and WALA [29].

However, existing JavaScript static analyzers utilize manually
de�ned formal semantics, and this approach is labor-intensive and
error-prone. ECMAScript, the standard speci�cation for JavaScript
maintained by the Ecma Technical Committee 39 (TC39), describes
syntax and semantics of JavaScript in a structured nature lan-
guage. Based on the speci�cation, researchers have de�ned various
JavaScript formal semantics [7, 13, 18, 20] or have modi�ed them
suitable for debuggers [8], veri�cation tools [11, 12], and static
analyzers [14, 15, 17, 29]. However, because all of them are writ-
ten by hand, the existing approach is tedious, labor-intensive, and
error-prone. Moreover, in late 2014, the TC39 announced the yearly
release cadence and open development process of ECMAScript to
quickly adapt to evolving development environments. Thus, there
are already six updates after ES5.1 and this problem becomes more
critical.

To alleviate this problem, we propose an approach to perform
JavaScript static analysis using abstract semantics automatically
de�ned with both JavaScript engines and speci�cation. Our main
idea is 1) to leverage the existing JavaScript engines as much as
possible and 2) to utilize the a mechanized speci�cation automati-
cally extracted from ECMAScript for the remaining parts. To lessen
the burden of manually de�ning the abstract semantics for the
evolving JavaScript speci�cation, we present a technique to extract
a mechanized speci�cation from ECMAScript and de�ne an ab-
stract semantics based on it. However, the automatically extracted
abstract semantics might be much slower than highly optimized
abstract semantics written by hand. Thus, we also leverage existing
JavaScript engines to de�ne abstract semantics for better perfor-
mance of static analysis. Our approach consists of three steps with
three di�erent tools; First, JISET automatically extracts JavaScript
mechanized speci�cation using a parser generation for syntax and
a rule-based compilation for semantics. Using the mechanized spec-
i�cation, JEST performs #+1-version di�erential testing for existing
JavaScript engines and ECMAScript to check whether they conform
to each other. Finally, JSDebug performs JavaScript static analysis

1 Ongoing Work

JavaScript

Debugger

JS EngineMechanized 
Spec.

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

JavaScript Static Analysis with Evolving Engines and Specification Conference’17, July 2017, Washington, DC, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Figure 2: The overall structure of JavaScript static analysis
with evolving engines and speci�cation

most JavaScript static analyzers are developed and maintained by
researchers, they are not scalable to analyze real-world JavaScript
programs. Thus, we leverage JavaScript engines as much as possible
during static analysis. This work is closely related to two research
�elds: mechanized speci�cation extraction and combined analysis of
dynamic and static analysis.

Mechanized Speci�cation Extraction. In diverse �elds, several
researchers have extracted mechanized speci�cations from speci�-
cations written in a natural language to automatically handle their
contents. Nguyen [19] extracted a mechanized speci�cation of x86
architecture from its natural language description using Natural
Language Processing (NLP) techniques. Moreover, Vu and Ogawa
[31] proposed a similar approach for ARM architecture using NLP
techniques with machine Learning techniques. Besides low-level
assembly languages, Zhai et al. [35] presented a technique to auto-
matically synthesize Java API functions from their documentation
using NLP techniques. For JavaScript, Ye et al. [34] presented C���
����, a compiler fuzzing framework to detect JavaScript engine
bugs using boundary conditions extracted from ECMAScript ab-
stract algorithms with deep learning-based language models. For
network protocols, Kim et al. [16] proposed B���S���, which ex-
tracts message structures from tables in cellular speci�cations for
L3 protocols to perform comparative analysis of baseband software.
However, there is no existing approach to automatically extract a
mechanized speci�cation that represents the entire formal seman-
tics of a high-level modern programming language.

Combined Analysis. Static and dynamic analyses are two of the
most popular program analysis techniques. Several researchers
have leveraged dynamic analysis during static analysis for 1) au-
tomatic modeling, 2) pruning analysis scope, and 3) performance
improvement. For automatic modeling, Park et al. [22] presented
a Sample-Run-Abstract (SRA) technique that utilizes the execution
results of sampled concrete states as an automatic modeling during
JavaScript static analysis. To prune out infeasible analysis scopes,
Schäfer et al. [28] utilized dynamic determinacy analysis and elimi-
nated invocations of eval and constant property names. Moreover,
Wei and Ryder [32] introduced blended taint analysis that sacri-
�ces the analysis soundness but increases analysis precision using
concrete traces collected by dynamic analysis. Similarly, Park et al.
[23, 26] utilize them to prune out initial states, dynamically loaded
�les, and event handlers. Unlike previous approaches, Toman and
Grossman [30] proposed C������� that performs a sound com-
bined analysis that could signi�cantly improve the precision and
performance of Java static analysis.

Figure 3: A mechanized speci�cation extraction from EC-
MAScript via JISET

val ArrayLiteral: List[Boolean] => LAParser[T] = memo {

case List(Yield , Await) =>

�[� ~ opt(Elision) ~ �]� ^^ ArrayLiteral0 |

�[� ~ ElementList(Yield ,Await) ~ �]� ^^ ArrayLiteral1 |

�[� ~ ElementList(Yield ,Await) ~ �,�

~ opt(Elision)~ �]� ^^ ArrayLiteral2

}

(a) The generated parser for the ArrayLiteral production

ArrayLiteral [0]. Evaluation (Elision) => {

let array = [! (ArrayCreate 0)]

if (! (= Elision absent)) {

let len = (Elision.ArrayAccumulation array 0)

[? len]

}

return array

}

(b) The IRES function compiled from the Evaluation algorithm

Figure 4: The generated parser and the compiled IRES func-
tion from the production and abstract algorithm in Figure 1

3 GOALS OF THE RESEARCH
In this section, we explain goals of our approach to perform JavaScript
static analysis using the abstract semantics automatically de�ned
with both JavaScript engines and speci�cation. Figure 2 describes
the overall structure of our approach and it consists of three steps
with three tools; First, JISET (Section 3.1) automatically extracts a
mechanized speci�cation of JavaScript using a parser generation for
syntax and a rule-based compilation for semantics. Using the mech-
anized speci�cation extracted by JISET, JEST (Section 3.2) performs
#+1-version di�erential testing for existing JavaScript engines and
ECMAScript to check whether they conform to each other. Finally,
JSAVER (Section 3.3) performs JavaScript static analysis based on
the abstract semantics de�ned with both JavaScript engines and
speci�cation. Among three tools, we already developed JISET [24]
and JEST [21] and we are now focusing on developing JSAVER.

3.1 JISET: Mechanized Speci�cation Extraction
We present JISET [24], a JavaScript IR-based Semantics Extrac-

tion Toolchain, and Figure 3 depicts the overall structure of JISET.
We explain how JISET utilizes common patterns in the writing style
of ECMAScript to extract a mechanized speci�cation using the data
in JSON format extracted from ECMAScript by Spec Extractor. A
mechanized speci�cation consists of a JavaScript parser for syn-
tax and functions of IRES, an Intermediate Representation that we
designed for ECMAScript, for semantics.

3

Ongoing Work

JavaScript

Static Analysis

JS EngineECMAScript Mechanized 
Spec.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

JavaScript Static Analysis with Evolving Engines and
Specification

Jihyeok Park
KAIST, South Korea

jhpark0223@kaist.ac.kr

ABSTRACT
JavaScript is one of the most dominant programming languages. De-
spite its popularity, the highly dynamic nature of JavaScript makes
its semantics complex; thus, understanding and reasoning about
JavaScript programs are challenging tasks. Therefore, Researchers
have proposed JavaScript static analysis based on the abstract in-
terpretation with abstract semantics conforming to ECMAScript,
the standard speci�cation for JavaScript. However, all the existing
abstract semantics are manually de�ned; thus, the current approach
is labor-intensive and error-prone. Moreover, since late 2014, this
problem becomes more critical because the Ecma Technical Com-
mittee 39 announced that they would update ECMAScript annually.

To alleviate the problem, we propose an approach to perform
JavaScript static analysis using abstract semantics automatically
de�ned with both JavaScript engines and speci�cation. Our main
idea is 1) to leverage the existing JavaScript engines as much as
possible and 2) to utilize the mechanized speci�cation automatically
extracted from ECMAScript for the remaining parts. We believe that
our approach can to perform static analysis for JavaScript programs
developed with new language features and help build high-quality
JavaScript programs.

KEYWORDS
JavaScript, mechanized speci�cation, static analysis, abstract inter-
pretation

ACM Reference Format:
Jihyeok Park. 2021. JavaScript Static Analysis with Evolving Engines and
Speci�cation. In Proceedings of ACM Conference (Conference’17). ACM, New
York, NY, USA, 7 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
JSAVER

JSFix
JSSFix
SUPER-JS
JSUPER
ESFix

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

JavaScript is one of the most dominant programming languages.
While JavaScript was initially designed for client-side program-
ming in web browsers, it is now widely used in server-side pro-
gramming [4] and even in embedded systems [2, 3, 5]. According
to W3Techs1, 97.2% of websites use JavaScript as their client-side
programming language. The 2020 State of the Octoverse2, which is
the annual report of GitHub, reports that JavaScript was the top-
ranked programming language in GitHub repositories since 2014
to 2020.

Researchers have proposed various static analyzers to under-
stand and reason about JavaScript programs. Despite its popularity,
JavaScript developers often su�er from its intricate and dynamic
language features, which may cause unexpected behaviors. For ex-
ample, the function declaration function f(x){ return x == !x }

may seem to always return false. Surprisingly, it returns truewhen
its argument is an empty array: f([]) = true. To correctly under-
stand and reason about such a complex behavior, researchers have
proposed various static analyzers for JavaScript programs, such as
TAJS [14], SAFE [17], JSAI [15], and WALA [29].

However, existing JavaScript static analyzers utilize manually
de�ned formal semantics, and this approach is labor-intensive and
error-prone. ECMAScript, the standard speci�cation for JavaScript
maintained by the Ecma Technical Committee 39 (TC39), describes
syntax and semantics of JavaScript in a structured nature lan-
guage. Based on the speci�cation, researchers have de�ned various
JavaScript formal semantics [7, 13, 18, 20] or have modi�ed them
suitable for debuggers [8], veri�cation tools [11, 12], and static
analyzers [14, 15, 17, 29]. However, because all of them are writ-
ten by hand, the existing approach is tedious, labor-intensive, and
error-prone. Moreover, in late 2014, the TC39 announced the yearly
release cadence and open development process of ECMAScript to
quickly adapt to evolving development environments. Thus, there
are already six updates after ES5.1 and this problem becomes more
critical.

To alleviate this problem, we propose an approach to perform
JavaScript static analysis using abstract semantics automatically
de�ned with both JavaScript engines and speci�cation. Our main
idea is 1) to leverage the existing JavaScript engines as much as
possible and 2) to utilize the a mechanized speci�cation automati-
cally extracted from ECMAScript for the remaining parts. To lessen
the burden of manually de�ning the abstract semantics for the
evolving JavaScript speci�cation, we present a technique to extract
a mechanized speci�cation from ECMAScript and de�ne an ab-
stract semantics based on it. However, the automatically extracted
abstract semantics might be much slower than highly optimized
abstract semantics written by hand. Thus, we also leverage existing

1https://w3techs.com/technologies/details/cp-javascript/all/all
2https://octoverse.github.com/

1

Ongoing Work

<latexit sha1_base64="PijVNKgGrQaAgZTi4M7Cz3uI1Ww=">AAACO3icbVC7SgNBFJ2NrxhfUUstFoNgFXZF1FK0sYyQh5Iscndyo0PmsczMimHJV9jqp/gh1nZia+9ssoVRD1w4nPs+ccKZsUHw5pXm5hcWl8rLlZXVtfWN6uZW26hUU2xRxZW+jsEgZxJbllmO14lGEDHHTjy8yPOdB9SGKdm0owQjAXeSDRgF66SbHkfoG6sqt9VaUA8m8P+SsCA1UqBxu+nt9vqKpgKlpRyM6YZBYqMMtGWU47jSSw0mQIdwh11HJQg0UTa5eOzvO6XvD5R2Ia0/UX92ZCCMGYnYVQqw9+Z3Lhf/y3VTOziNMiaT1KKk00WDlPtW+fn7fp9ppJaPHAGqmbvVp/eggVpn0sykZhhl+XH5mJn1j9MfZooFDFErJdyDICnysfMz/O3eX9I+rIfH9fDqqHZ2XjhbJjtkjxyQkJyQM3JJGqRFKBHkiTyTF+/Ve/c+vM9packrerbJDLyvbzNrroQ=</latexit>

<latexit sha1_base64="PijVNKgGrQaAgZTi4M7Cz3uI1Ww=">AAACO3icbVC7SgNBFJ2NrxhfUUstFoNgFXZF1FK0sYyQh5Iscndyo0PmsczMimHJV9jqp/gh1nZia+9ssoVRD1w4nPs+ccKZsUHw5pXm5hcWl8rLlZXVtfWN6uZW26hUU2xRxZW+jsEgZxJbllmO14lGEDHHTjy8yPOdB9SGKdm0owQjAXeSDRgF66SbHkfoG6sqt9VaUA8m8P+SsCA1UqBxu+nt9vqKpgKlpRyM6YZBYqMMtGWU47jSSw0mQIdwh11HJQg0UTa5eOzvO6XvD5R2Ia0/UX92ZCCMGYnYVQqw9+Z3Lhf/y3VTOziNMiaT1KKk00WDlPtW+fn7fp9ppJaPHAGqmbvVp/eggVpn0sykZhhl+XH5mJn1j9MfZooFDFErJdyDICnysfMz/O3eX9I+rIfH9fDqqHZ2XjhbJjtkjxyQkJyQM3JJGqRFKBHkiTyTF+/Ve/c+vM9packrerbJDLyvbzNrroQ=</latexit>

Execution

Traces

ECMAScript

Automatic Update

Mechanized Spec.

Extraction

/ 35PS Lab Seminar - Towards Co-evolution of JavaScript Specification and Tools

Co-evolution of JavaScript Spec. and Tools

8

ECMAScript

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

JavaScript Static Analysis with Evolving Engines and
Specification

Jihyeok Park
KAIST, South Korea

jhpark0223@kaist.ac.kr

ABSTRACT
JavaScript is one of the most dominating programming languages.
Despite its popularity, the highly dynamic nature of JavaScript
makes its semantics complex thus understanding and reasoning
about JavaScript programs are challenging tasks. Therefore, Re-
searchers have proposed JavaScript static analysis based on ab-
stract interpretation with the the abstract semantics conforming
to ECMAScript, the standard speci�cation for JavaScript. However,
all the existing abstract semantics are manually de�ned thus the
current approach is labor-intensive and error-prone. Moreover, in
late 2014, this problem becomes more critical because the Ecma
Technical Committee 39 announced that they will annually update
ECMAScript.

To alleviate the problem, we propose an approach to perform
JavaScript static analysis using the abstract semantics automatically
de�ned with both of JavaScript engines and speci�cation. Our main
idea is 1) to leverage the existing JavaScript engines as much as
possible, and 2) to utilize the formal semantics automatically ex-
tracted from ECMAScript for remaining parts. We believe that our
approach would be able to analyze JavaScript programs developed
with new language features as well as improve their quality.

KEYWORDS
JavaScript, mechanized speci�cation, static analysis, abstract inter-
pretation
ACM Reference Format:
Jihyeok Park. 2021. JavaScript Static Analysis with Evolving Engines and
Speci�cation. In Proceedings of ACM Conference (Conference’17). ACM, New
York, NY, USA, 3 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
JavaScript is one of the most dominating programming languages.
While JavaScript was initially designed for client-side programming
in web browsers, and it is now widely used in server-side program-
ming [6] and even in embedded systems [3, 5, 7]. According to
W3Techs1, 97.2% of websites use JavaScript as their client-side pro-
gramming language. The 2020 State of the Octoverse2, which is the
1https://w3techs.com/technologies/details/cp-javascript/all/all
2https://octoverse.github.com/

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

annual report of GitHub, reports that JavaScript was the top-ranked
programming language in GitHub repositories since 2014 to 2020.

Researchers have proposed various static analyzers to under-
stand and reason about JavaScript programs. Despite its popularity,
JavaScript developers often su�er from its intricate and dynamic
language features, which may cause unexpected behaviors. For ex-
ample, the function declaration function f(x){ return x == !x }

may seem to always return false. Surprisingly, it returns truewhen
its argument is an empty array; f([]) = true. To correctly under-
stand and reason about such a complex behavior, researchers have
proposed various static analyzers for JavaScript programs, such as
TAJS [15], SAFE [20], JSAI [16], and WALA [26].

However, existing JavaScript static analyzers utilize manually
de�ned formal semantics, and this approach is labor-intensive and
error-prone. ECMAScript, which is a standard speci�cation for
JavaScript maintained by the Ecma Technical Committee 39 (TC39),
describes syntax and semantics of JavaScript in a structured na-
ture language. Based on the speci�cation, researchers have de�ned
various JavaScript formal semantics [8, 14, 21] or have modi�ed
them suitable for debuggers [9], veri�cation tools [12, 13], and
static analyzers [15, 16, 20, 26]. However, all of them are written
by hand thus the existing approach is tedious, labor-intensive, and
error-prone. Moreover, in late 2014, the TC39 announced the yearly
release cadence and open development process of ECMAScript to
quickly adapt to evolving development environments. Thus, there
are already six updates after ES5.1 and this problem becomes more
critical.

To alleviate this problem, we propose an approach to perform
JavaScript static analysis using the abstract semantics automatically
de�ned with both of JavaScript engines and speci�cation. Our main
idea is 1) to leverage the existing JavaScript engines as much as
possible, and 2) to utilize the formal semantics automatically ex-
tracted from ECMAScript for remaining parts. To lessen the burden
to manually de�ne the abstract semantics for evolving JavaScript
speci�cation, we present a technique to extract a formal semantics
from ECMAScript and de�ne an abstract semantics based on it.
However, the automatically extracted abstract semantics might be
much slower than highly optimized abstract semantics written by
hand. Thus, we also leverage existing JavaScript engines to de�ne
abstract semantics for better performance of static analysis. Our
approach consists of three steps with three di�erent tools; First,
JISET automatically extracts JavaScript formal semantics using rule-
based compilation from abstract algorithms to functions of IRES,
an Intermediate Representation that we designed for ECMAScript.
Based on the extracted semantics, JEST performs #+1-version dif-
ferential testing for existing JavaScript engines and ECMAScript to
check whether they conform to each other. Finally, JSAVER performs

1

Mechanized 
Spec.ASE'20 Tests JS EngineMechanized 
Spec.

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

JavaScript Static Analysis with Evolving Engines and Specification Conference’17, July 2017, Washington, DC, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Figure 2: The overall structure of JavaScript static analysis
with evolving engines and speci�cation

of ArrayLiteral and the Evaluation algorithm for its �rst alter-
native in ES11. We utilize such a common pattern in the writing
style to extract mechanized speci�cation directly from ECMAScript.
Moreover, commercial JavaScript engines are highly optimized to
quickly execute real-world JavaScript programs. However, most
of JavaScript static analyzers are developed and maintained by re-
searchers thus they are not scalable to analyze real-world JavaScript
programs. Thus, we leverage JavaScript engines as much as possible
during static analysis. This work is closely related to two research
�elds: mechanized speci�cation extraction and combined analysis of
dynamic and static analysis.

Mechanized Speci�cation Extraction. In diverse �elds, several
researchers have extracted mechanized speci�cations from speci�-
cations written in a natural language to automatically handle their
contents. Nguyen [18] extracted a mechanized speci�cation of x86
architecture from its natural language description using Natural
Language Processing (NLP) techniques. Moreover, Vu and Ogawa
[31] proposed a similar approach for ARM architecture using NLP
techniques with machine Learning techniques. Besides low-level
assembly languages, Zhai et al. [35] presented a technique to auto-
matically synthesize Java API functions from their documentation
using NLP techniques. For JavaScript, Ye et al. [34] presented C���
����, a compiler fuzzing framework to detect JavaScript engine
bugs using boundary conditions extracted from ECMAScript ab-
stract algorithms with deep learning-based language models. For
network protocols, Kim et al. [16] proposed B���S���, which ex-
tracts message structures from tables in cellular speci�cations for
L3 protocols to perform comparative analysis of baseband software.
However, there is no existing approach to automatically extract a
mechanized speci�cation that represents the entire formal seman-
tics of a high-level modern programming language.

Combined Analysis. Static and dynamic analyses are two of the
most popular program analysis techniques. Several researchers
have leveraged dynamic analysis during static analysis for 1) au-
tomatic modeling, 2) pruning analysis scope, and 3) performance
improvement. For automatic modeling, Park et al. [22] presented
a Sample-Run-Abstract (SRA) technique that utilizes the execution
results of sampled concrete states as an automatic modeling during
JavaScript static analysis. To prune out infeasible analysis scopes,
Schäfer et al. [28] utilized dynamic determinacy analysis and elimi-
nated invocations of eval and constant property names. Moreover,
Wei and Ryder [32] introduced blended taint analysis that sacri-
�ces the analysis soundness but increase analysis precision using
concrete traces collected by dynamic analysis. Similarly, Park et al.

Figure 3: A mechanized speci�cation extraction from EC-
MAScript via JISET

val ArrayLiteral: List[Boolean] => LAParser[T] = memo {

case List(Yield , Await) =>

�[� ~ opt(Elision) ~ �]� ^^ ArrayLiteral0 |

�[� ~ ElementList(Yield ,Await) ~ �]� ^^ ArrayLiteral1 |

�[� ~ ElementList(Yield ,Await) ~ �,�

~ opt(Elision)~ �]� ^^ ArrayLiteral2

}

(a) The generated parser for the ArrayLiteral production

ArrayLiteral [0]. Evaluation (Elision) => {

let array = [! (ArrayCreate 0)]

if (! (= Elision absent)) {

let len = (Elision.ArrayAccumulation array 0)

[? len]

}

return array

}

(b) The IRES function compiled from the Evaluation algorithm

Figure 4: The generated parser and the compiled IRES func-
tion from the production and abstract algorithm in Figure 1

[23, 26] utilize them to prune out initial states, dynamically loaded
�les, and event handlers. Unlike previous approaches, Toman and
Grossman [30] proposed C������� that performs a sound com-
bined analysis that could signi�cantly improve the precision and
performance of Java static analysis.

3 GOALS OF THE RESEARCH
In this section, we explain goals of an approach to perform JavaScript
static analysis using the abstract semantics automatically de�ned
with both of JavaScript engines and speci�cation. Figure 2 describes
the overall structure of our approach and it consists of three steps
with three di�erent tools; First, JISET (Section 3.1) automatically
extracts JavaScript a mechanized speci�cation using a parser gener-
ation for syntax and a rule-based compilation for semantics. Using
the mechanized speci�cation extracted by JISET, JEST (Section 3.2)
performs #+1-version di�erential testing for existing JavaScript
engines and ECMAScript to check whether they conform to each
other. Finally, JSAVER (Section 3.3) performs JavaScript static analy-
sis based on the abstract semantics de�ned with both of JavaScript
engines and speci�cation. Among three tools, we already developed
JISET [24] and JEST [21] thus we are now focusing on developing
JSAVER.

3.1 JISET: Mechanized Speci�cation Extraction
We present JISET [24], a JavaScript IR-based Semantics Extrac-

tion Toolchain, and Figure 3 depicts the overall structure of JISET.
3

ICSE'21

Conformance Test

Synthesis

Distinguished Paper
Award!!

Mechanized 
Spec.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

JavaScript Static Analysis with Evolving Engines and
Specification

Jihyeok Park
KAIST, South Korea

jhpark0223@kaist.ac.kr

ABSTRACT
JavaScript is one of the most dominant programming languages. De-
spite its popularity, the highly dynamic nature of JavaScript makes
its semantics complex; thus, understanding and reasoning about
JavaScript programs are challenging tasks. Therefore, Researchers
have proposed JavaScript static analysis based on the abstract in-
terpretation with abstract semantics conforming to ECMAScript,
the standard speci�cation for JavaScript. However, all the existing
abstract semantics are manually de�ned; thus, the current approach
is labor-intensive and error-prone. Moreover, since late 2014, this
problem becomes more critical because the Ecma Technical Com-
mittee 39 announced that they would update ECMAScript annually.

To alleviate the problem, we propose an approach to perform
JavaScript static analysis using abstract semantics automatically
de�ned with both JavaScript engines and speci�cation. Our main
idea is 1) to leverage the existing JavaScript engines as much as
possible and 2) to utilize the mechanized speci�cation automatically
extracted from ECMAScript for the remaining parts. We believe that
our approach can to perform static analysis for JavaScript programs
developed with new language features and help build high-quality
JavaScript programs.

KEYWORDS
JavaScript, mechanized speci�cation, static analysis, abstract inter-
pretation
ACM Reference Format:
Jihyeok Park. 2021. JavaScript Static Analysis with Evolving Engines and
Speci�cation. In Proceedings of ACM Conference (Conference’17). ACM, New
York, NY, USA, 6 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
JavaScript is one of the most dominant programming languages.
While JavaScript was initially designed for client-side program-
ming in web browsers, it is now widely used in server-side pro-
gramming [4] and even in embedded systems [2, 3, 5]. According
to W3Techs1, 97.2% of websites use JavaScript as their client-side
programming language. The 2020 State of the Octoverse2, which is
1https://w3techs.com/technologies/details/cp-javascript/all/all
2https://octoverse.github.com/

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

the annual report of GitHub, reports that JavaScript was the top-
ranked programming language in GitHub repositories since 2014
to 2020.

Researchers have proposed various static analyzers to under-
stand and reason about JavaScript programs. Despite its popularity,
JavaScript developers often su�er from its intricate and dynamic
language features, which may cause unexpected behaviors. For ex-
ample, the function declaration function f(x){ return x == !x }

may seem to always return false. Surprisingly, it returns truewhen
its argument is an empty array: f([]) = true. To correctly under-
stand and reason about such a complex behavior, researchers have
proposed various static analyzers for JavaScript programs, such as
TAJS [14], SAFE [17], JSAI [15], and WALA [29].

However, existing JavaScript static analyzers utilize manually
de�ned formal semantics, and this approach is labor-intensive and
error-prone. ECMAScript, the standard speci�cation for JavaScript
maintained by the Ecma Technical Committee 39 (TC39), describes
syntax and semantics of JavaScript in a structured nature lan-
guage. Based on the speci�cation, researchers have de�ned various
JavaScript formal semantics [7, 13, 18, 20] or have modi�ed them
suitable for debuggers [8], veri�cation tools [11, 12], and static
analyzers [14, 15, 17, 29]. However, because all of them are writ-
ten by hand, the existing approach is tedious, labor-intensive, and
error-prone. Moreover, in late 2014, the TC39 announced the yearly
release cadence and open development process of ECMAScript to
quickly adapt to evolving development environments. Thus, there
are already six updates after ES5.1 and this problem becomes more
critical.

To alleviate this problem, we propose an approach to perform
JavaScript static analysis using abstract semantics automatically
de�ned with both JavaScript engines and speci�cation. Our main
idea is 1) to leverage the existing JavaScript engines as much as
possible and 2) to utilize the a mechanized speci�cation automati-
cally extracted from ECMAScript for the remaining parts. To lessen
the burden of manually de�ning the abstract semantics for the
evolving JavaScript speci�cation, we present a technique to extract
a mechanized speci�cation from ECMAScript and de�ne an ab-
stract semantics based on it. However, the automatically extracted
abstract semantics might be much slower than highly optimized
abstract semantics written by hand. Thus, we also leverage existing
JavaScript engines to de�ne abstract semantics for better perfor-
mance of static analysis. Our approach consists of three steps with
three di�erent tools; First, JISET automatically extracts JavaScript
mechanized speci�cation using a parser generation for syntax and
a rule-based compilation for semantics. Using the mechanized spec-
i�cation, JEST performs #+1-version di�erential testing for existing
JavaScript engines and ECMAScript to check whether they con-
form to each other. Finally, JSTAR performs JavaScript static analysis

1 On Review

<latexit sha1_base64="UFE5rAltPKCxrmF3rEz1sNHj3wU=">AAACNnicbVDLSsNAFJ34rO9Wl7oIFsFVSUTUZdGNSwWrQhvkZnrbDp1HmJmIJfQX3Oqn+Ctu3IlbP8FJm4WpHrhwOPd94oQzY4Pg3ZubX1hcWq6srK6tb2xuVWvbt0almmKLKq70fQwGOZPYssxyvE80gog53sXDizx/94jaMCVv7CjBSEBfsh6jYHOpYyF9qNaDRjCB/5eEBamTAlcPNW+v01U0FSgt5WBMOwwSG2WgLaMcx6ud1GACdAh9bDsqQaCJssmxY//AKV2/p7QLaf2J+rsjA2HMSMSuUoAdmNlcLv6Xa6e2dxZlTCapRUmni3op963y88/9LtNILR85AlQzd6tPB6CBWudPadJNGGX5cfmY0vqn6Q+lYgFD1EoJ9yBIinzs/Axn3ftLbo8a4UkjvD6uN88LZytkl+yTQxKSU9Ikl+SKtAglA/JMXsir9+Z9eJ/e17R0zit6dkgJ3vcPZwSspg==</latexit>⌧
Type Info.

Type Analysis

for Specification

ECMAScript Mechanized 
Spec.

<latexit sha1_base64="UFE5rAltPKCxrmF3rEz1sNHj3wU=">AAACNnicbVDLSsNAFJ34rO9Wl7oIFsFVSUTUZdGNSwWrQhvkZnrbDp1HmJmIJfQX3Oqn+Ctu3IlbP8FJm4WpHrhwOPd94oQzY4Pg3ZubX1hcWq6srK6tb2xuVWvbt0almmKLKq70fQwGOZPYssxyvE80gog53sXDizx/94jaMCVv7CjBSEBfsh6jYHOpYyF9qNaDRjCB/5eEBamTAlcPNW+v01U0FSgt5WBMOwwSG2WgLaMcx6ud1GACdAh9bDsqQaCJssmxY//AKV2/p7QLaf2J+rsjA2HMSMSuUoAdmNlcLv6Xa6e2dxZlTCapRUmni3op963y88/9LtNILR85AlQzd6tPB6CBWudPadJNGGX5cfmY0vqn6Q+lYgFD1EoJ9yBIinzs/Axn3ftLbo8a4UkjvD6uN88LZytkl+yTQxKSU9Ikl+SKtAglA/JMXsir9+Z9eJ/e17R0zit6dkgJ3vcPZwSspg==</latexit>⌧
Type Info.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

JavaScript Static Analysis with Evolving Engines and
Specification

Jihyeok Park
KAIST, South Korea

jhpark0223@kaist.ac.kr

ABSTRACT
JavaScript is one of the most dominant programming languages. De-
spite its popularity, the highly dynamic nature of JavaScript makes
its semantics complex; thus, understanding and reasoning about
JavaScript programs are challenging tasks. Therefore, Researchers
have proposed JavaScript static analysis based on the abstract in-
terpretation with abstract semantics conforming to ECMAScript,
the standard speci�cation for JavaScript. However, all the existing
abstract semantics are manually de�ned; thus, the current approach
is labor-intensive and error-prone. Moreover, since late 2014, this
problem becomes more critical because the Ecma Technical Com-
mittee 39 announced that they would update ECMAScript annually.

To alleviate the problem, we propose an approach to perform
JavaScript static analysis using abstract semantics automatically
de�ned with both JavaScript engines and speci�cation. Our main
idea is 1) to leverage the existing JavaScript engines as much as
possible and 2) to utilize the mechanized speci�cation automatically
extracted from ECMAScript for the remaining parts. We believe that
our approach can to perform static analysis for JavaScript programs
developed with new language features and help build high-quality
JavaScript programs.

KEYWORDS
JavaScript, mechanized speci�cation, static analysis, abstract inter-
pretation
ACM Reference Format:
Jihyeok Park. 2021. JavaScript Static Analysis with Evolving Engines and
Speci�cation. In Proceedings of ACM Conference (Conference’17). ACM, New
York, NY, USA, 6 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
JavaScript is one of the most dominant programming languages.
While JavaScript was initially designed for client-side program-
ming in web browsers, it is now widely used in server-side pro-
gramming [4] and even in embedded systems [2, 3, 5]. According
to W3Techs1, 97.2% of websites use JavaScript as their client-side
programming language. The 2020 State of the Octoverse2, which is
1https://w3techs.com/technologies/details/cp-javascript/all/all
2https://octoverse.github.com/

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

the annual report of GitHub, reports that JavaScript was the top-
ranked programming language in GitHub repositories since 2014
to 2020.

Researchers have proposed various static analyzers to under-
stand and reason about JavaScript programs. Despite its popularity,
JavaScript developers often su�er from its intricate and dynamic
language features, which may cause unexpected behaviors. For ex-
ample, the function declaration function f(x){ return x == !x }

may seem to always return false. Surprisingly, it returns truewhen
its argument is an empty array: f([]) = true. To correctly under-
stand and reason about such a complex behavior, researchers have
proposed various static analyzers for JavaScript programs, such as
TAJS [14], SAFE [17], JSAI [15], and WALA [29].

However, existing JavaScript static analyzers utilize manually
de�ned formal semantics, and this approach is labor-intensive and
error-prone. ECMAScript, the standard speci�cation for JavaScript
maintained by the Ecma Technical Committee 39 (TC39), describes
syntax and semantics of JavaScript in a structured nature lan-
guage. Based on the speci�cation, researchers have de�ned various
JavaScript formal semantics [7, 13, 18, 20] or have modi�ed them
suitable for debuggers [8], veri�cation tools [11, 12], and static
analyzers [14, 15, 17, 29]. However, because all of them are writ-
ten by hand, the existing approach is tedious, labor-intensive, and
error-prone. Moreover, in late 2014, the TC39 announced the yearly
release cadence and open development process of ECMAScript to
quickly adapt to evolving development environments. Thus, there
are already six updates after ES5.1 and this problem becomes more
critical.

To alleviate this problem, we propose an approach to perform
JavaScript static analysis using abstract semantics automatically
de�ned with both JavaScript engines and speci�cation. Our main
idea is 1) to leverage the existing JavaScript engines as much as
possible and 2) to utilize the a mechanized speci�cation automati-
cally extracted from ECMAScript for the remaining parts. To lessen
the burden of manually de�ning the abstract semantics for the
evolving JavaScript speci�cation, we present a technique to extract
a mechanized speci�cation from ECMAScript and de�ne an ab-
stract semantics based on it. However, the automatically extracted
abstract semantics might be much slower than highly optimized
abstract semantics written by hand. Thus, we also leverage existing
JavaScript engines to de�ne abstract semantics for better perfor-
mance of static analysis. Our approach consists of three steps with
three di�erent tools; First, JISET automatically extracts JavaScript
mechanized speci�cation using a parser generation for syntax and
a rule-based compilation for semantics. Using the mechanized spec-
i�cation, JEST performs #+1-version di�erential testing for existing
JavaScript engines and ECMAScript to check whether they conform
to each other. Finally, JSDebug performs JavaScript static analysis

1 Ongoing Work

JavaScript

Debugger

JS EngineMechanized 
Spec.

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

JavaScript Static Analysis with Evolving Engines and Specification Conference’17, July 2017, Washington, DC, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Figure 2: The overall structure of JavaScript static analysis
with evolving engines and speci�cation

most JavaScript static analyzers are developed and maintained by
researchers, they are not scalable to analyze real-world JavaScript
programs. Thus, we leverage JavaScript engines as much as possible
during static analysis. This work is closely related to two research
�elds: mechanized speci�cation extraction and combined analysis of
dynamic and static analysis.

Mechanized Speci�cation Extraction. In diverse �elds, several
researchers have extracted mechanized speci�cations from speci�-
cations written in a natural language to automatically handle their
contents. Nguyen [19] extracted a mechanized speci�cation of x86
architecture from its natural language description using Natural
Language Processing (NLP) techniques. Moreover, Vu and Ogawa
[31] proposed a similar approach for ARM architecture using NLP
techniques with machine Learning techniques. Besides low-level
assembly languages, Zhai et al. [35] presented a technique to auto-
matically synthesize Java API functions from their documentation
using NLP techniques. For JavaScript, Ye et al. [34] presented C���
����, a compiler fuzzing framework to detect JavaScript engine
bugs using boundary conditions extracted from ECMAScript ab-
stract algorithms with deep learning-based language models. For
network protocols, Kim et al. [16] proposed B���S���, which ex-
tracts message structures from tables in cellular speci�cations for
L3 protocols to perform comparative analysis of baseband software.
However, there is no existing approach to automatically extract a
mechanized speci�cation that represents the entire formal seman-
tics of a high-level modern programming language.

Combined Analysis. Static and dynamic analyses are two of the
most popular program analysis techniques. Several researchers
have leveraged dynamic analysis during static analysis for 1) au-
tomatic modeling, 2) pruning analysis scope, and 3) performance
improvement. For automatic modeling, Park et al. [22] presented
a Sample-Run-Abstract (SRA) technique that utilizes the execution
results of sampled concrete states as an automatic modeling during
JavaScript static analysis. To prune out infeasible analysis scopes,
Schäfer et al. [28] utilized dynamic determinacy analysis and elimi-
nated invocations of eval and constant property names. Moreover,
Wei and Ryder [32] introduced blended taint analysis that sacri-
�ces the analysis soundness but increases analysis precision using
concrete traces collected by dynamic analysis. Similarly, Park et al.
[23, 26] utilize them to prune out initial states, dynamically loaded
�les, and event handlers. Unlike previous approaches, Toman and
Grossman [30] proposed C������� that performs a sound com-
bined analysis that could signi�cantly improve the precision and
performance of Java static analysis.

Figure 3: A mechanized speci�cation extraction from EC-
MAScript via JISET

val ArrayLiteral: List[Boolean] => LAParser[T] = memo {

case List(Yield , Await) =>

�[� ~ opt(Elision) ~ �]� ^^ ArrayLiteral0 |

�[� ~ ElementList(Yield ,Await) ~ �]� ^^ ArrayLiteral1 |

�[� ~ ElementList(Yield ,Await) ~ �,�

~ opt(Elision)~ �]� ^^ ArrayLiteral2

}

(a) The generated parser for the ArrayLiteral production

ArrayLiteral [0]. Evaluation (Elision) => {

let array = [! (ArrayCreate 0)]

if (! (= Elision absent)) {

let len = (Elision.ArrayAccumulation array 0)

[? len]

}

return array

}

(b) The IRES function compiled from the Evaluation algorithm

Figure 4: The generated parser and the compiled IRES func-
tion from the production and abstract algorithm in Figure 1

3 GOALS OF THE RESEARCH
In this section, we explain goals of our approach to perform JavaScript
static analysis using the abstract semantics automatically de�ned
with both JavaScript engines and speci�cation. Figure 2 describes
the overall structure of our approach and it consists of three steps
with three tools; First, JISET (Section 3.1) automatically extracts a
mechanized speci�cation of JavaScript using a parser generation for
syntax and a rule-based compilation for semantics. Using the mech-
anized speci�cation extracted by JISET, JEST (Section 3.2) performs
#+1-version di�erential testing for existing JavaScript engines and
ECMAScript to check whether they conform to each other. Finally,
JSAVER (Section 3.3) performs JavaScript static analysis based on
the abstract semantics de�ned with both JavaScript engines and
speci�cation. Among three tools, we already developed JISET [24]
and JEST [21] and we are now focusing on developing JSAVER.

3.1 JISET: Mechanized Speci�cation Extraction
We present JISET [24], a JavaScript IR-based Semantics Extrac-

tion Toolchain, and Figure 3 depicts the overall structure of JISET.
We explain how JISET utilizes common patterns in the writing style
of ECMAScript to extract a mechanized speci�cation using the data
in JSON format extracted from ECMAScript by Spec Extractor. A
mechanized speci�cation consists of a JavaScript parser for syn-
tax and functions of IRES, an Intermediate Representation that we
designed for ECMAScript, for semantics.

3

Ongoing Work

JavaScript

Static Analysis

JS EngineECMAScript Mechanized 
Spec.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

JavaScript Static Analysis with Evolving Engines and
Specification

Jihyeok Park
KAIST, South Korea

jhpark0223@kaist.ac.kr

ABSTRACT
JavaScript is one of the most dominant programming languages. De-
spite its popularity, the highly dynamic nature of JavaScript makes
its semantics complex; thus, understanding and reasoning about
JavaScript programs are challenging tasks. Therefore, Researchers
have proposed JavaScript static analysis based on the abstract in-
terpretation with abstract semantics conforming to ECMAScript,
the standard speci�cation for JavaScript. However, all the existing
abstract semantics are manually de�ned; thus, the current approach
is labor-intensive and error-prone. Moreover, since late 2014, this
problem becomes more critical because the Ecma Technical Com-
mittee 39 announced that they would update ECMAScript annually.

To alleviate the problem, we propose an approach to perform
JavaScript static analysis using abstract semantics automatically
de�ned with both JavaScript engines and speci�cation. Our main
idea is 1) to leverage the existing JavaScript engines as much as
possible and 2) to utilize the mechanized speci�cation automatically
extracted from ECMAScript for the remaining parts. We believe that
our approach can to perform static analysis for JavaScript programs
developed with new language features and help build high-quality
JavaScript programs.

KEYWORDS
JavaScript, mechanized speci�cation, static analysis, abstract inter-
pretation

ACM Reference Format:
Jihyeok Park. 2021. JavaScript Static Analysis with Evolving Engines and
Speci�cation. In Proceedings of ACM Conference (Conference’17). ACM, New
York, NY, USA, 7 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
JSAVER

JSFix
JSSFix
SUPER-JS
JSUPER
ESFix

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

JavaScript is one of the most dominant programming languages.
While JavaScript was initially designed for client-side program-
ming in web browsers, it is now widely used in server-side pro-
gramming [4] and even in embedded systems [2, 3, 5]. According
to W3Techs1, 97.2% of websites use JavaScript as their client-side
programming language. The 2020 State of the Octoverse2, which is
the annual report of GitHub, reports that JavaScript was the top-
ranked programming language in GitHub repositories since 2014
to 2020.

Researchers have proposed various static analyzers to under-
stand and reason about JavaScript programs. Despite its popularity,
JavaScript developers often su�er from its intricate and dynamic
language features, which may cause unexpected behaviors. For ex-
ample, the function declaration function f(x){ return x == !x }

may seem to always return false. Surprisingly, it returns truewhen
its argument is an empty array: f([]) = true. To correctly under-
stand and reason about such a complex behavior, researchers have
proposed various static analyzers for JavaScript programs, such as
TAJS [14], SAFE [17], JSAI [15], and WALA [29].

However, existing JavaScript static analyzers utilize manually
de�ned formal semantics, and this approach is labor-intensive and
error-prone. ECMAScript, the standard speci�cation for JavaScript
maintained by the Ecma Technical Committee 39 (TC39), describes
syntax and semantics of JavaScript in a structured nature lan-
guage. Based on the speci�cation, researchers have de�ned various
JavaScript formal semantics [7, 13, 18, 20] or have modi�ed them
suitable for debuggers [8], veri�cation tools [11, 12], and static
analyzers [14, 15, 17, 29]. However, because all of them are writ-
ten by hand, the existing approach is tedious, labor-intensive, and
error-prone. Moreover, in late 2014, the TC39 announced the yearly
release cadence and open development process of ECMAScript to
quickly adapt to evolving development environments. Thus, there
are already six updates after ES5.1 and this problem becomes more
critical.

To alleviate this problem, we propose an approach to perform
JavaScript static analysis using abstract semantics automatically
de�ned with both JavaScript engines and speci�cation. Our main
idea is 1) to leverage the existing JavaScript engines as much as
possible and 2) to utilize the a mechanized speci�cation automati-
cally extracted from ECMAScript for the remaining parts. To lessen
the burden of manually de�ning the abstract semantics for the
evolving JavaScript speci�cation, we present a technique to extract
a mechanized speci�cation from ECMAScript and de�ne an ab-
stract semantics based on it. However, the automatically extracted
abstract semantics might be much slower than highly optimized
abstract semantics written by hand. Thus, we also leverage existing

1https://w3techs.com/technologies/details/cp-javascript/all/all
2https://octoverse.github.com/

1

Ongoing Work

<latexit sha1_base64="PijVNKgGrQaAgZTi4M7Cz3uI1Ww=">AAACO3icbVC7SgNBFJ2NrxhfUUstFoNgFXZF1FK0sYyQh5Iscndyo0PmsczMimHJV9jqp/gh1nZia+9ssoVRD1w4nPs+ccKZsUHw5pXm5hcWl8rLlZXVtfWN6uZW26hUU2xRxZW+jsEgZxJbllmO14lGEDHHTjy8yPOdB9SGKdm0owQjAXeSDRgF66SbHkfoG6sqt9VaUA8m8P+SsCA1UqBxu+nt9vqKpgKlpRyM6YZBYqMMtGWU47jSSw0mQIdwh11HJQg0UTa5eOzvO6XvD5R2Ia0/UX92ZCCMGYnYVQqw9+Z3Lhf/y3VTOziNMiaT1KKk00WDlPtW+fn7fp9ppJaPHAGqmbvVp/eggVpn0sykZhhl+XH5mJn1j9MfZooFDFErJdyDICnysfMz/O3eX9I+rIfH9fDqqHZ2XjhbJjtkjxyQkJyQM3JJGqRFKBHkiTyTF+/Ve/c+vM9packrerbJDLyvbzNrroQ=</latexit>

<latexit sha1_base64="PijVNKgGrQaAgZTi4M7Cz3uI1Ww=">AAACO3icbVC7SgNBFJ2NrxhfUUstFoNgFXZF1FK0sYyQh5Iscndyo0PmsczMimHJV9jqp/gh1nZia+9ssoVRD1w4nPs+ccKZsUHw5pXm5hcWl8rLlZXVtfWN6uZW26hUU2xRxZW+jsEgZxJbllmO14lGEDHHTjy8yPOdB9SGKdm0owQjAXeSDRgF66SbHkfoG6sqt9VaUA8m8P+SsCA1UqBxu+nt9vqKpgKlpRyM6YZBYqMMtGWU47jSSw0mQIdwh11HJQg0UTa5eOzvO6XvD5R2Ia0/UX92ZCCMGYnYVQqw9+Z3Lhf/y3VTOziNMiaT1KKk00WDlPtW+fn7fp9ppJaPHAGqmbvVp/eggVpn0sykZhhl+XH5mJn1j9MfZooFDFErJdyDICnysfMz/O3eX9I+rIfH9fDqqHZ2XjhbJjtkjxyQkJyQM3JJGqRFKBHkiTyTF+/Ve/c+vM9packrerbJDLyvbzNrroQ=</latexit>

Execution

Traces

ECMAScript

Automatic Update

Mechanized Spec.

Extraction

ECMAScript

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

JavaScript Static Analysis with Evolving Engines and
Specification

Jihyeok Park
KAIST, South Korea

jhpark0223@kaist.ac.kr

ABSTRACT
JavaScript is one of the most dominating programming languages.
Despite its popularity, the highly dynamic nature of JavaScript
makes its semantics complex thus understanding and reasoning
about JavaScript programs are challenging tasks. Therefore, Re-
searchers have proposed JavaScript static analysis based on ab-
stract interpretation with the the abstract semantics conforming
to ECMAScript, the standard speci�cation for JavaScript. However,
all the existing abstract semantics are manually de�ned thus the
current approach is labor-intensive and error-prone. Moreover, in
late 2014, this problem becomes more critical because the Ecma
Technical Committee 39 announced that they will annually update
ECMAScript.

To alleviate the problem, we propose an approach to perform
JavaScript static analysis using the abstract semantics automatically
de�ned with both of JavaScript engines and speci�cation. Our main
idea is 1) to leverage the existing JavaScript engines as much as
possible, and 2) to utilize the formal semantics automatically ex-
tracted from ECMAScript for remaining parts. We believe that our
approach would be able to analyze JavaScript programs developed
with new language features as well as improve their quality.

KEYWORDS
JavaScript, mechanized speci�cation, static analysis, abstract inter-
pretation
ACM Reference Format:
Jihyeok Park. 2021. JavaScript Static Analysis with Evolving Engines and
Speci�cation. In Proceedings of ACM Conference (Conference’17). ACM, New
York, NY, USA, 3 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
JavaScript is one of the most dominating programming languages.
While JavaScript was initially designed for client-side programming
in web browsers, and it is now widely used in server-side program-
ming [6] and even in embedded systems [3, 5, 7]. According to
W3Techs1, 97.2% of websites use JavaScript as their client-side pro-
gramming language. The 2020 State of the Octoverse2, which is the
1https://w3techs.com/technologies/details/cp-javascript/all/all
2https://octoverse.github.com/

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

annual report of GitHub, reports that JavaScript was the top-ranked
programming language in GitHub repositories since 2014 to 2020.

Researchers have proposed various static analyzers to under-
stand and reason about JavaScript programs. Despite its popularity,
JavaScript developers often su�er from its intricate and dynamic
language features, which may cause unexpected behaviors. For ex-
ample, the function declaration function f(x){ return x == !x }

may seem to always return false. Surprisingly, it returns truewhen
its argument is an empty array; f([]) = true. To correctly under-
stand and reason about such a complex behavior, researchers have
proposed various static analyzers for JavaScript programs, such as
TAJS [15], SAFE [20], JSAI [16], and WALA [26].

However, existing JavaScript static analyzers utilize manually
de�ned formal semantics, and this approach is labor-intensive and
error-prone. ECMAScript, which is a standard speci�cation for
JavaScript maintained by the Ecma Technical Committee 39 (TC39),
describes syntax and semantics of JavaScript in a structured na-
ture language. Based on the speci�cation, researchers have de�ned
various JavaScript formal semantics [8, 14, 21] or have modi�ed
them suitable for debuggers [9], veri�cation tools [12, 13], and
static analyzers [15, 16, 20, 26]. However, all of them are written
by hand thus the existing approach is tedious, labor-intensive, and
error-prone. Moreover, in late 2014, the TC39 announced the yearly
release cadence and open development process of ECMAScript to
quickly adapt to evolving development environments. Thus, there
are already six updates after ES5.1 and this problem becomes more
critical.

To alleviate this problem, we propose an approach to perform
JavaScript static analysis using the abstract semantics automatically
de�ned with both of JavaScript engines and speci�cation. Our main
idea is 1) to leverage the existing JavaScript engines as much as
possible, and 2) to utilize the formal semantics automatically ex-
tracted from ECMAScript for remaining parts. To lessen the burden
to manually de�ne the abstract semantics for evolving JavaScript
speci�cation, we present a technique to extract a formal semantics
from ECMAScript and de�ne an abstract semantics based on it.
However, the automatically extracted abstract semantics might be
much slower than highly optimized abstract semantics written by
hand. Thus, we also leverage existing JavaScript engines to de�ne
abstract semantics for better performance of static analysis. Our
approach consists of three steps with three di�erent tools; First,
JISET automatically extracts JavaScript formal semantics using rule-
based compilation from abstract algorithms to functions of IRES,
an Intermediate Representation that we designed for ECMAScript.
Based on the extracted semantics, JEST performs #+1-version dif-
ferential testing for existing JavaScript engines and ECMAScript to
check whether they conform to each other. Finally, JSAVER performs

1

Mechanized 
Spec. Tests JS EngineMechanized 
Spec.

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

JavaScript Static Analysis with Evolving Engines and Specification Conference’17, July 2017, Washington, DC, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Figure 2: The overall structure of JavaScript static analysis
with evolving engines and speci�cation

of ArrayLiteral and the Evaluation algorithm for its �rst alter-
native in ES11. We utilize such a common pattern in the writing
style to extract mechanized speci�cation directly from ECMAScript.
Moreover, commercial JavaScript engines are highly optimized to
quickly execute real-world JavaScript programs. However, most
of JavaScript static analyzers are developed and maintained by re-
searchers thus they are not scalable to analyze real-world JavaScript
programs. Thus, we leverage JavaScript engines as much as possible
during static analysis. This work is closely related to two research
�elds: mechanized speci�cation extraction and combined analysis of
dynamic and static analysis.

Mechanized Speci�cation Extraction. In diverse �elds, several
researchers have extracted mechanized speci�cations from speci�-
cations written in a natural language to automatically handle their
contents. Nguyen [18] extracted a mechanized speci�cation of x86
architecture from its natural language description using Natural
Language Processing (NLP) techniques. Moreover, Vu and Ogawa
[31] proposed a similar approach for ARM architecture using NLP
techniques with machine Learning techniques. Besides low-level
assembly languages, Zhai et al. [35] presented a technique to auto-
matically synthesize Java API functions from their documentation
using NLP techniques. For JavaScript, Ye et al. [34] presented C���
����, a compiler fuzzing framework to detect JavaScript engine
bugs using boundary conditions extracted from ECMAScript ab-
stract algorithms with deep learning-based language models. For
network protocols, Kim et al. [16] proposed B���S���, which ex-
tracts message structures from tables in cellular speci�cations for
L3 protocols to perform comparative analysis of baseband software.
However, there is no existing approach to automatically extract a
mechanized speci�cation that represents the entire formal seman-
tics of a high-level modern programming language.

Combined Analysis. Static and dynamic analyses are two of the
most popular program analysis techniques. Several researchers
have leveraged dynamic analysis during static analysis for 1) au-
tomatic modeling, 2) pruning analysis scope, and 3) performance
improvement. For automatic modeling, Park et al. [22] presented
a Sample-Run-Abstract (SRA) technique that utilizes the execution
results of sampled concrete states as an automatic modeling during
JavaScript static analysis. To prune out infeasible analysis scopes,
Schäfer et al. [28] utilized dynamic determinacy analysis and elimi-
nated invocations of eval and constant property names. Moreover,
Wei and Ryder [32] introduced blended taint analysis that sacri-
�ces the analysis soundness but increase analysis precision using
concrete traces collected by dynamic analysis. Similarly, Park et al.

Figure 3: A mechanized speci�cation extraction from EC-
MAScript via JISET

val ArrayLiteral: List[Boolean] => LAParser[T] = memo {

case List(Yield , Await) =>

�[� ~ opt(Elision) ~ �]� ^^ ArrayLiteral0 |

�[� ~ ElementList(Yield ,Await) ~ �]� ^^ ArrayLiteral1 |

�[� ~ ElementList(Yield ,Await) ~ �,�

~ opt(Elision)~ �]� ^^ ArrayLiteral2

}

(a) The generated parser for the ArrayLiteral production

ArrayLiteral [0]. Evaluation (Elision) => {

let array = [! (ArrayCreate 0)]

if (! (= Elision absent)) {

let len = (Elision.ArrayAccumulation array 0)

[? len]

}

return array

}

(b) The IRES function compiled from the Evaluation algorithm

Figure 4: The generated parser and the compiled IRES func-
tion from the production and abstract algorithm in Figure 1

[23, 26] utilize them to prune out initial states, dynamically loaded
�les, and event handlers. Unlike previous approaches, Toman and
Grossman [30] proposed C������� that performs a sound com-
bined analysis that could signi�cantly improve the precision and
performance of Java static analysis.

3 GOALS OF THE RESEARCH
In this section, we explain goals of an approach to perform JavaScript
static analysis using the abstract semantics automatically de�ned
with both of JavaScript engines and speci�cation. Figure 2 describes
the overall structure of our approach and it consists of three steps
with three di�erent tools; First, JISET (Section 3.1) automatically
extracts JavaScript a mechanized speci�cation using a parser gener-
ation for syntax and a rule-based compilation for semantics. Using
the mechanized speci�cation extracted by JISET, JEST (Section 3.2)
performs #+1-version di�erential testing for existing JavaScript
engines and ECMAScript to check whether they conform to each
other. Finally, JSAVER (Section 3.3) performs JavaScript static analy-
sis based on the abstract semantics de�ned with both of JavaScript
engines and speci�cation. Among three tools, we already developed
JISET [24] and JEST [21] thus we are now focusing on developing
JSAVER.

3.1 JISET: Mechanized Speci�cation Extraction
We present JISET [24], a JavaScript IR-based Semantics Extrac-

tion Toolchain, and Figure 3 depicts the overall structure of JISET.
3

ICSE'21

Conformance Test

Synthesis

Distinguished Paper
Award!!

Mechanized 
Spec.ECMAScript Mechanized 
Spec. JS EngineMechanized 
Spec. JS EngineECMAScript Mechanized 
Spec.

Mechanized Spec.

Extraction

ASE'20

/ 35PS Lab Seminar - Towards Co-evolution of JavaScript Specification and Tools

Co-evolution of JavaScript Spec. and Tools

8

ECMAScript

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

JavaScript Static Analysis with Evolving Engines and
Specification

Jihyeok Park
KAIST, South Korea

jhpark0223@kaist.ac.kr

ABSTRACT
JavaScript is one of the most dominating programming languages.
Despite its popularity, the highly dynamic nature of JavaScript
makes its semantics complex thus understanding and reasoning
about JavaScript programs are challenging tasks. Therefore, Re-
searchers have proposed JavaScript static analysis based on ab-
stract interpretation with the the abstract semantics conforming
to ECMAScript, the standard speci�cation for JavaScript. However,
all the existing abstract semantics are manually de�ned thus the
current approach is labor-intensive and error-prone. Moreover, in
late 2014, this problem becomes more critical because the Ecma
Technical Committee 39 announced that they will annually update
ECMAScript.

To alleviate the problem, we propose an approach to perform
JavaScript static analysis using the abstract semantics automatically
de�ned with both of JavaScript engines and speci�cation. Our main
idea is 1) to leverage the existing JavaScript engines as much as
possible, and 2) to utilize the formal semantics automatically ex-
tracted from ECMAScript for remaining parts. We believe that our
approach would be able to analyze JavaScript programs developed
with new language features as well as improve their quality.

KEYWORDS
JavaScript, mechanized speci�cation, static analysis, abstract inter-
pretation
ACM Reference Format:
Jihyeok Park. 2021. JavaScript Static Analysis with Evolving Engines and
Speci�cation. In Proceedings of ACM Conference (Conference’17). ACM, New
York, NY, USA, 3 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
JavaScript is one of the most dominating programming languages.
While JavaScript was initially designed for client-side programming
in web browsers, and it is now widely used in server-side program-
ming [6] and even in embedded systems [3, 5, 7]. According to
W3Techs1, 97.2% of websites use JavaScript as their client-side pro-
gramming language. The 2020 State of the Octoverse2, which is the
1https://w3techs.com/technologies/details/cp-javascript/all/all
2https://octoverse.github.com/

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

annual report of GitHub, reports that JavaScript was the top-ranked
programming language in GitHub repositories since 2014 to 2020.

Researchers have proposed various static analyzers to under-
stand and reason about JavaScript programs. Despite its popularity,
JavaScript developers often su�er from its intricate and dynamic
language features, which may cause unexpected behaviors. For ex-
ample, the function declaration function f(x){ return x == !x }

may seem to always return false. Surprisingly, it returns truewhen
its argument is an empty array; f([]) = true. To correctly under-
stand and reason about such a complex behavior, researchers have
proposed various static analyzers for JavaScript programs, such as
TAJS [15], SAFE [20], JSAI [16], and WALA [26].

However, existing JavaScript static analyzers utilize manually
de�ned formal semantics, and this approach is labor-intensive and
error-prone. ECMAScript, which is a standard speci�cation for
JavaScript maintained by the Ecma Technical Committee 39 (TC39),
describes syntax and semantics of JavaScript in a structured na-
ture language. Based on the speci�cation, researchers have de�ned
various JavaScript formal semantics [8, 14, 21] or have modi�ed
them suitable for debuggers [9], veri�cation tools [12, 13], and
static analyzers [15, 16, 20, 26]. However, all of them are written
by hand thus the existing approach is tedious, labor-intensive, and
error-prone. Moreover, in late 2014, the TC39 announced the yearly
release cadence and open development process of ECMAScript to
quickly adapt to evolving development environments. Thus, there
are already six updates after ES5.1 and this problem becomes more
critical.

To alleviate this problem, we propose an approach to perform
JavaScript static analysis using the abstract semantics automatically
de�ned with both of JavaScript engines and speci�cation. Our main
idea is 1) to leverage the existing JavaScript engines as much as
possible, and 2) to utilize the formal semantics automatically ex-
tracted from ECMAScript for remaining parts. To lessen the burden
to manually de�ne the abstract semantics for evolving JavaScript
speci�cation, we present a technique to extract a formal semantics
from ECMAScript and de�ne an abstract semantics based on it.
However, the automatically extracted abstract semantics might be
much slower than highly optimized abstract semantics written by
hand. Thus, we also leverage existing JavaScript engines to de�ne
abstract semantics for better performance of static analysis. Our
approach consists of three steps with three di�erent tools; First,
JISET automatically extracts JavaScript formal semantics using rule-
based compilation from abstract algorithms to functions of IRES,
an Intermediate Representation that we designed for ECMAScript.
Based on the extracted semantics, JEST performs #+1-version dif-
ferential testing for existing JavaScript engines and ECMAScript to
check whether they conform to each other. Finally, JSAVER performs

1

Mechanized 
Spec.ASE'20 Tests JS EngineMechanized 
Spec.

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

JavaScript Static Analysis with Evolving Engines and Specification Conference’17, July 2017, Washington, DC, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Figure 2: The overall structure of JavaScript static analysis
with evolving engines and speci�cation

of ArrayLiteral and the Evaluation algorithm for its �rst alter-
native in ES11. We utilize such a common pattern in the writing
style to extract mechanized speci�cation directly from ECMAScript.
Moreover, commercial JavaScript engines are highly optimized to
quickly execute real-world JavaScript programs. However, most
of JavaScript static analyzers are developed and maintained by re-
searchers thus they are not scalable to analyze real-world JavaScript
programs. Thus, we leverage JavaScript engines as much as possible
during static analysis. This work is closely related to two research
�elds: mechanized speci�cation extraction and combined analysis of
dynamic and static analysis.

Mechanized Speci�cation Extraction. In diverse �elds, several
researchers have extracted mechanized speci�cations from speci�-
cations written in a natural language to automatically handle their
contents. Nguyen [18] extracted a mechanized speci�cation of x86
architecture from its natural language description using Natural
Language Processing (NLP) techniques. Moreover, Vu and Ogawa
[31] proposed a similar approach for ARM architecture using NLP
techniques with machine Learning techniques. Besides low-level
assembly languages, Zhai et al. [35] presented a technique to auto-
matically synthesize Java API functions from their documentation
using NLP techniques. For JavaScript, Ye et al. [34] presented C���
����, a compiler fuzzing framework to detect JavaScript engine
bugs using boundary conditions extracted from ECMAScript ab-
stract algorithms with deep learning-based language models. For
network protocols, Kim et al. [16] proposed B���S���, which ex-
tracts message structures from tables in cellular speci�cations for
L3 protocols to perform comparative analysis of baseband software.
However, there is no existing approach to automatically extract a
mechanized speci�cation that represents the entire formal seman-
tics of a high-level modern programming language.

Combined Analysis. Static and dynamic analyses are two of the
most popular program analysis techniques. Several researchers
have leveraged dynamic analysis during static analysis for 1) au-
tomatic modeling, 2) pruning analysis scope, and 3) performance
improvement. For automatic modeling, Park et al. [22] presented
a Sample-Run-Abstract (SRA) technique that utilizes the execution
results of sampled concrete states as an automatic modeling during
JavaScript static analysis. To prune out infeasible analysis scopes,
Schäfer et al. [28] utilized dynamic determinacy analysis and elimi-
nated invocations of eval and constant property names. Moreover,
Wei and Ryder [32] introduced blended taint analysis that sacri-
�ces the analysis soundness but increase analysis precision using
concrete traces collected by dynamic analysis. Similarly, Park et al.

Figure 3: A mechanized speci�cation extraction from EC-
MAScript via JISET

val ArrayLiteral: List[Boolean] => LAParser[T] = memo {

case List(Yield , Await) =>

�[� ~ opt(Elision) ~ �]� ^^ ArrayLiteral0 |

�[� ~ ElementList(Yield ,Await) ~ �]� ^^ ArrayLiteral1 |

�[� ~ ElementList(Yield ,Await) ~ �,�

~ opt(Elision)~ �]� ^^ ArrayLiteral2

}

(a) The generated parser for the ArrayLiteral production

ArrayLiteral [0]. Evaluation (Elision) => {

let array = [! (ArrayCreate 0)]

if (! (= Elision absent)) {

let len = (Elision.ArrayAccumulation array 0)

[? len]

}

return array

}

(b) The IRES function compiled from the Evaluation algorithm

Figure 4: The generated parser and the compiled IRES func-
tion from the production and abstract algorithm in Figure 1

[23, 26] utilize them to prune out initial states, dynamically loaded
�les, and event handlers. Unlike previous approaches, Toman and
Grossman [30] proposed C������� that performs a sound com-
bined analysis that could signi�cantly improve the precision and
performance of Java static analysis.

3 GOALS OF THE RESEARCH
In this section, we explain goals of an approach to perform JavaScript
static analysis using the abstract semantics automatically de�ned
with both of JavaScript engines and speci�cation. Figure 2 describes
the overall structure of our approach and it consists of three steps
with three di�erent tools; First, JISET (Section 3.1) automatically
extracts JavaScript a mechanized speci�cation using a parser gener-
ation for syntax and a rule-based compilation for semantics. Using
the mechanized speci�cation extracted by JISET, JEST (Section 3.2)
performs #+1-version di�erential testing for existing JavaScript
engines and ECMAScript to check whether they conform to each
other. Finally, JSAVER (Section 3.3) performs JavaScript static analy-
sis based on the abstract semantics de�ned with both of JavaScript
engines and speci�cation. Among three tools, we already developed
JISET [24] and JEST [21] thus we are now focusing on developing
JSAVER.

3.1 JISET: Mechanized Speci�cation Extraction
We present JISET [24], a JavaScript IR-based Semantics Extrac-

tion Toolchain, and Figure 3 depicts the overall structure of JISET.
3

ICSE'21

Conformance Test

Synthesis

Distinguished Paper
Award!!

Mechanized 
Spec.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

JavaScript Static Analysis with Evolving Engines and
Specification

Jihyeok Park
KAIST, South Korea

jhpark0223@kaist.ac.kr

ABSTRACT
JavaScript is one of the most dominant programming languages. De-
spite its popularity, the highly dynamic nature of JavaScript makes
its semantics complex; thus, understanding and reasoning about
JavaScript programs are challenging tasks. Therefore, Researchers
have proposed JavaScript static analysis based on the abstract in-
terpretation with abstract semantics conforming to ECMAScript,
the standard speci�cation for JavaScript. However, all the existing
abstract semantics are manually de�ned; thus, the current approach
is labor-intensive and error-prone. Moreover, since late 2014, this
problem becomes more critical because the Ecma Technical Com-
mittee 39 announced that they would update ECMAScript annually.

To alleviate the problem, we propose an approach to perform
JavaScript static analysis using abstract semantics automatically
de�ned with both JavaScript engines and speci�cation. Our main
idea is 1) to leverage the existing JavaScript engines as much as
possible and 2) to utilize the mechanized speci�cation automatically
extracted from ECMAScript for the remaining parts. We believe that
our approach can to perform static analysis for JavaScript programs
developed with new language features and help build high-quality
JavaScript programs.

KEYWORDS
JavaScript, mechanized speci�cation, static analysis, abstract inter-
pretation
ACM Reference Format:
Jihyeok Park. 2021. JavaScript Static Analysis with Evolving Engines and
Speci�cation. In Proceedings of ACM Conference (Conference’17). ACM, New
York, NY, USA, 6 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
JavaScript is one of the most dominant programming languages.
While JavaScript was initially designed for client-side program-
ming in web browsers, it is now widely used in server-side pro-
gramming [4] and even in embedded systems [2, 3, 5]. According
to W3Techs1, 97.2% of websites use JavaScript as their client-side
programming language. The 2020 State of the Octoverse2, which is
1https://w3techs.com/technologies/details/cp-javascript/all/all
2https://octoverse.github.com/

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

the annual report of GitHub, reports that JavaScript was the top-
ranked programming language in GitHub repositories since 2014
to 2020.

Researchers have proposed various static analyzers to under-
stand and reason about JavaScript programs. Despite its popularity,
JavaScript developers often su�er from its intricate and dynamic
language features, which may cause unexpected behaviors. For ex-
ample, the function declaration function f(x){ return x == !x }

may seem to always return false. Surprisingly, it returns truewhen
its argument is an empty array: f([]) = true. To correctly under-
stand and reason about such a complex behavior, researchers have
proposed various static analyzers for JavaScript programs, such as
TAJS [14], SAFE [17], JSAI [15], and WALA [29].

However, existing JavaScript static analyzers utilize manually
de�ned formal semantics, and this approach is labor-intensive and
error-prone. ECMAScript, the standard speci�cation for JavaScript
maintained by the Ecma Technical Committee 39 (TC39), describes
syntax and semantics of JavaScript in a structured nature lan-
guage. Based on the speci�cation, researchers have de�ned various
JavaScript formal semantics [7, 13, 18, 20] or have modi�ed them
suitable for debuggers [8], veri�cation tools [11, 12], and static
analyzers [14, 15, 17, 29]. However, because all of them are writ-
ten by hand, the existing approach is tedious, labor-intensive, and
error-prone. Moreover, in late 2014, the TC39 announced the yearly
release cadence and open development process of ECMAScript to
quickly adapt to evolving development environments. Thus, there
are already six updates after ES5.1 and this problem becomes more
critical.

To alleviate this problem, we propose an approach to perform
JavaScript static analysis using abstract semantics automatically
de�ned with both JavaScript engines and speci�cation. Our main
idea is 1) to leverage the existing JavaScript engines as much as
possible and 2) to utilize the a mechanized speci�cation automati-
cally extracted from ECMAScript for the remaining parts. To lessen
the burden of manually de�ning the abstract semantics for the
evolving JavaScript speci�cation, we present a technique to extract
a mechanized speci�cation from ECMAScript and de�ne an ab-
stract semantics based on it. However, the automatically extracted
abstract semantics might be much slower than highly optimized
abstract semantics written by hand. Thus, we also leverage existing
JavaScript engines to de�ne abstract semantics for better perfor-
mance of static analysis. Our approach consists of three steps with
three di�erent tools; First, JISET automatically extracts JavaScript
mechanized speci�cation using a parser generation for syntax and
a rule-based compilation for semantics. Using the mechanized spec-
i�cation, JEST performs #+1-version di�erential testing for existing
JavaScript engines and ECMAScript to check whether they con-
form to each other. Finally, JSTAR performs JavaScript static analysis

1 On Review

<latexit sha1_base64="UFE5rAltPKCxrmF3rEz1sNHj3wU=">AAACNnicbVDLSsNAFJ34rO9Wl7oIFsFVSUTUZdGNSwWrQhvkZnrbDp1HmJmIJfQX3Oqn+Ctu3IlbP8FJm4WpHrhwOPd94oQzY4Pg3ZubX1hcWq6srK6tb2xuVWvbt0almmKLKq70fQwGOZPYssxyvE80gog53sXDizx/94jaMCVv7CjBSEBfsh6jYHOpYyF9qNaDRjCB/5eEBamTAlcPNW+v01U0FSgt5WBMOwwSG2WgLaMcx6ud1GACdAh9bDsqQaCJssmxY//AKV2/p7QLaf2J+rsjA2HMSMSuUoAdmNlcLv6Xa6e2dxZlTCapRUmni3op963y88/9LtNILR85AlQzd6tPB6CBWudPadJNGGX5cfmY0vqn6Q+lYgFD1EoJ9yBIinzs/Axn3ftLbo8a4UkjvD6uN88LZytkl+yTQxKSU9Ikl+SKtAglA/JMXsir9+Z9eJ/e17R0zit6dkgJ3vcPZwSspg==</latexit>⌧
Type Info.

Type Analysis

for Specification

ECMAScript Mechanized 
Spec.

<latexit sha1_base64="UFE5rAltPKCxrmF3rEz1sNHj3wU=">AAACNnicbVDLSsNAFJ34rO9Wl7oIFsFVSUTUZdGNSwWrQhvkZnrbDp1HmJmIJfQX3Oqn+Ctu3IlbP8FJm4WpHrhwOPd94oQzY4Pg3ZubX1hcWq6srK6tb2xuVWvbt0almmKLKq70fQwGOZPYssxyvE80gog53sXDizx/94jaMCVv7CjBSEBfsh6jYHOpYyF9qNaDRjCB/5eEBamTAlcPNW+v01U0FSgt5WBMOwwSG2WgLaMcx6ud1GACdAh9bDsqQaCJssmxY//AKV2/p7QLaf2J+rsjA2HMSMSuUoAdmNlcLv6Xa6e2dxZlTCapRUmni3op963y88/9LtNILR85AlQzd6tPB6CBWudPadJNGGX5cfmY0vqn6Q+lYgFD1EoJ9yBIinzs/Axn3ftLbo8a4UkjvD6uN88LZytkl+yTQxKSU9Ikl+SKtAglA/JMXsir9+Z9eJ/e17R0zit6dkgJ3vcPZwSspg==</latexit>⌧
Type Info.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

JavaScript Static Analysis with Evolving Engines and
Specification

Jihyeok Park
KAIST, South Korea

jhpark0223@kaist.ac.kr

ABSTRACT
JavaScript is one of the most dominant programming languages. De-
spite its popularity, the highly dynamic nature of JavaScript makes
its semantics complex; thus, understanding and reasoning about
JavaScript programs are challenging tasks. Therefore, Researchers
have proposed JavaScript static analysis based on the abstract in-
terpretation with abstract semantics conforming to ECMAScript,
the standard speci�cation for JavaScript. However, all the existing
abstract semantics are manually de�ned; thus, the current approach
is labor-intensive and error-prone. Moreover, since late 2014, this
problem becomes more critical because the Ecma Technical Com-
mittee 39 announced that they would update ECMAScript annually.

To alleviate the problem, we propose an approach to perform
JavaScript static analysis using abstract semantics automatically
de�ned with both JavaScript engines and speci�cation. Our main
idea is 1) to leverage the existing JavaScript engines as much as
possible and 2) to utilize the mechanized speci�cation automatically
extracted from ECMAScript for the remaining parts. We believe that
our approach can to perform static analysis for JavaScript programs
developed with new language features and help build high-quality
JavaScript programs.

KEYWORDS
JavaScript, mechanized speci�cation, static analysis, abstract inter-
pretation
ACM Reference Format:
Jihyeok Park. 2021. JavaScript Static Analysis with Evolving Engines and
Speci�cation. In Proceedings of ACM Conference (Conference’17). ACM, New
York, NY, USA, 6 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
JavaScript is one of the most dominant programming languages.
While JavaScript was initially designed for client-side program-
ming in web browsers, it is now widely used in server-side pro-
gramming [4] and even in embedded systems [2, 3, 5]. According
to W3Techs1, 97.2% of websites use JavaScript as their client-side
programming language. The 2020 State of the Octoverse2, which is
1https://w3techs.com/technologies/details/cp-javascript/all/all
2https://octoverse.github.com/

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

the annual report of GitHub, reports that JavaScript was the top-
ranked programming language in GitHub repositories since 2014
to 2020.

Researchers have proposed various static analyzers to under-
stand and reason about JavaScript programs. Despite its popularity,
JavaScript developers often su�er from its intricate and dynamic
language features, which may cause unexpected behaviors. For ex-
ample, the function declaration function f(x){ return x == !x }

may seem to always return false. Surprisingly, it returns truewhen
its argument is an empty array: f([]) = true. To correctly under-
stand and reason about such a complex behavior, researchers have
proposed various static analyzers for JavaScript programs, such as
TAJS [14], SAFE [17], JSAI [15], and WALA [29].

However, existing JavaScript static analyzers utilize manually
de�ned formal semantics, and this approach is labor-intensive and
error-prone. ECMAScript, the standard speci�cation for JavaScript
maintained by the Ecma Technical Committee 39 (TC39), describes
syntax and semantics of JavaScript in a structured nature lan-
guage. Based on the speci�cation, researchers have de�ned various
JavaScript formal semantics [7, 13, 18, 20] or have modi�ed them
suitable for debuggers [8], veri�cation tools [11, 12], and static
analyzers [14, 15, 17, 29]. However, because all of them are writ-
ten by hand, the existing approach is tedious, labor-intensive, and
error-prone. Moreover, in late 2014, the TC39 announced the yearly
release cadence and open development process of ECMAScript to
quickly adapt to evolving development environments. Thus, there
are already six updates after ES5.1 and this problem becomes more
critical.

To alleviate this problem, we propose an approach to perform
JavaScript static analysis using abstract semantics automatically
de�ned with both JavaScript engines and speci�cation. Our main
idea is 1) to leverage the existing JavaScript engines as much as
possible and 2) to utilize the a mechanized speci�cation automati-
cally extracted from ECMAScript for the remaining parts. To lessen
the burden of manually de�ning the abstract semantics for the
evolving JavaScript speci�cation, we present a technique to extract
a mechanized speci�cation from ECMAScript and de�ne an ab-
stract semantics based on it. However, the automatically extracted
abstract semantics might be much slower than highly optimized
abstract semantics written by hand. Thus, we also leverage existing
JavaScript engines to de�ne abstract semantics for better perfor-
mance of static analysis. Our approach consists of three steps with
three di�erent tools; First, JISET automatically extracts JavaScript
mechanized speci�cation using a parser generation for syntax and
a rule-based compilation for semantics. Using the mechanized spec-
i�cation, JEST performs #+1-version di�erential testing for existing
JavaScript engines and ECMAScript to check whether they conform
to each other. Finally, JSDebug performs JavaScript static analysis

1 Ongoing Work

JavaScript

Debugger

JS EngineMechanized 
Spec.

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

JavaScript Static Analysis with Evolving Engines and Specification Conference’17, July 2017, Washington, DC, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Figure 2: The overall structure of JavaScript static analysis
with evolving engines and speci�cation

most JavaScript static analyzers are developed and maintained by
researchers, they are not scalable to analyze real-world JavaScript
programs. Thus, we leverage JavaScript engines as much as possible
during static analysis. This work is closely related to two research
�elds: mechanized speci�cation extraction and combined analysis of
dynamic and static analysis.

Mechanized Speci�cation Extraction. In diverse �elds, several
researchers have extracted mechanized speci�cations from speci�-
cations written in a natural language to automatically handle their
contents. Nguyen [19] extracted a mechanized speci�cation of x86
architecture from its natural language description using Natural
Language Processing (NLP) techniques. Moreover, Vu and Ogawa
[31] proposed a similar approach for ARM architecture using NLP
techniques with machine Learning techniques. Besides low-level
assembly languages, Zhai et al. [35] presented a technique to auto-
matically synthesize Java API functions from their documentation
using NLP techniques. For JavaScript, Ye et al. [34] presented C���
����, a compiler fuzzing framework to detect JavaScript engine
bugs using boundary conditions extracted from ECMAScript ab-
stract algorithms with deep learning-based language models. For
network protocols, Kim et al. [16] proposed B���S���, which ex-
tracts message structures from tables in cellular speci�cations for
L3 protocols to perform comparative analysis of baseband software.
However, there is no existing approach to automatically extract a
mechanized speci�cation that represents the entire formal seman-
tics of a high-level modern programming language.

Combined Analysis. Static and dynamic analyses are two of the
most popular program analysis techniques. Several researchers
have leveraged dynamic analysis during static analysis for 1) au-
tomatic modeling, 2) pruning analysis scope, and 3) performance
improvement. For automatic modeling, Park et al. [22] presented
a Sample-Run-Abstract (SRA) technique that utilizes the execution
results of sampled concrete states as an automatic modeling during
JavaScript static analysis. To prune out infeasible analysis scopes,
Schäfer et al. [28] utilized dynamic determinacy analysis and elimi-
nated invocations of eval and constant property names. Moreover,
Wei and Ryder [32] introduced blended taint analysis that sacri-
�ces the analysis soundness but increases analysis precision using
concrete traces collected by dynamic analysis. Similarly, Park et al.
[23, 26] utilize them to prune out initial states, dynamically loaded
�les, and event handlers. Unlike previous approaches, Toman and
Grossman [30] proposed C������� that performs a sound com-
bined analysis that could signi�cantly improve the precision and
performance of Java static analysis.

Figure 3: A mechanized speci�cation extraction from EC-
MAScript via JISET

val ArrayLiteral: List[Boolean] => LAParser[T] = memo {

case List(Yield , Await) =>

�[� ~ opt(Elision) ~ �]� ^^ ArrayLiteral0 |

�[� ~ ElementList(Yield ,Await) ~ �]� ^^ ArrayLiteral1 |

�[� ~ ElementList(Yield ,Await) ~ �,�

~ opt(Elision)~ �]� ^^ ArrayLiteral2

}

(a) The generated parser for the ArrayLiteral production

ArrayLiteral [0]. Evaluation (Elision) => {

let array = [! (ArrayCreate 0)]

if (! (= Elision absent)) {

let len = (Elision.ArrayAccumulation array 0)

[? len]

}

return array

}

(b) The IRES function compiled from the Evaluation algorithm

Figure 4: The generated parser and the compiled IRES func-
tion from the production and abstract algorithm in Figure 1

3 GOALS OF THE RESEARCH
In this section, we explain goals of our approach to perform JavaScript
static analysis using the abstract semantics automatically de�ned
with both JavaScript engines and speci�cation. Figure 2 describes
the overall structure of our approach and it consists of three steps
with three tools; First, JISET (Section 3.1) automatically extracts a
mechanized speci�cation of JavaScript using a parser generation for
syntax and a rule-based compilation for semantics. Using the mech-
anized speci�cation extracted by JISET, JEST (Section 3.2) performs
#+1-version di�erential testing for existing JavaScript engines and
ECMAScript to check whether they conform to each other. Finally,
JSAVER (Section 3.3) performs JavaScript static analysis based on
the abstract semantics de�ned with both JavaScript engines and
speci�cation. Among three tools, we already developed JISET [24]
and JEST [21] and we are now focusing on developing JSAVER.

3.1 JISET: Mechanized Speci�cation Extraction
We present JISET [24], a JavaScript IR-based Semantics Extrac-

tion Toolchain, and Figure 3 depicts the overall structure of JISET.
We explain how JISET utilizes common patterns in the writing style
of ECMAScript to extract a mechanized speci�cation using the data
in JSON format extracted from ECMAScript by Spec Extractor. A
mechanized speci�cation consists of a JavaScript parser for syn-
tax and functions of IRES, an Intermediate Representation that we
designed for ECMAScript, for semantics.

3

Ongoing Work

JavaScript

Static Analysis

JS EngineECMAScript Mechanized 
Spec.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

JavaScript Static Analysis with Evolving Engines and
Specification

Jihyeok Park
KAIST, South Korea

jhpark0223@kaist.ac.kr

ABSTRACT
JavaScript is one of the most dominant programming languages. De-
spite its popularity, the highly dynamic nature of JavaScript makes
its semantics complex; thus, understanding and reasoning about
JavaScript programs are challenging tasks. Therefore, Researchers
have proposed JavaScript static analysis based on the abstract in-
terpretation with abstract semantics conforming to ECMAScript,
the standard speci�cation for JavaScript. However, all the existing
abstract semantics are manually de�ned; thus, the current approach
is labor-intensive and error-prone. Moreover, since late 2014, this
problem becomes more critical because the Ecma Technical Com-
mittee 39 announced that they would update ECMAScript annually.

To alleviate the problem, we propose an approach to perform
JavaScript static analysis using abstract semantics automatically
de�ned with both JavaScript engines and speci�cation. Our main
idea is 1) to leverage the existing JavaScript engines as much as
possible and 2) to utilize the mechanized speci�cation automatically
extracted from ECMAScript for the remaining parts. We believe that
our approach can to perform static analysis for JavaScript programs
developed with new language features and help build high-quality
JavaScript programs.

KEYWORDS
JavaScript, mechanized speci�cation, static analysis, abstract inter-
pretation

ACM Reference Format:
Jihyeok Park. 2021. JavaScript Static Analysis with Evolving Engines and
Speci�cation. In Proceedings of ACM Conference (Conference’17). ACM, New
York, NY, USA, 7 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
JSAVER

JSFix
JSSFix
SUPER-JS
JSUPER
ESFix

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

JavaScript is one of the most dominant programming languages.
While JavaScript was initially designed for client-side program-
ming in web browsers, it is now widely used in server-side pro-
gramming [4] and even in embedded systems [2, 3, 5]. According
to W3Techs1, 97.2% of websites use JavaScript as their client-side
programming language. The 2020 State of the Octoverse2, which is
the annual report of GitHub, reports that JavaScript was the top-
ranked programming language in GitHub repositories since 2014
to 2020.

Researchers have proposed various static analyzers to under-
stand and reason about JavaScript programs. Despite its popularity,
JavaScript developers often su�er from its intricate and dynamic
language features, which may cause unexpected behaviors. For ex-
ample, the function declaration function f(x){ return x == !x }

may seem to always return false. Surprisingly, it returns truewhen
its argument is an empty array: f([]) = true. To correctly under-
stand and reason about such a complex behavior, researchers have
proposed various static analyzers for JavaScript programs, such as
TAJS [14], SAFE [17], JSAI [15], and WALA [29].

However, existing JavaScript static analyzers utilize manually
de�ned formal semantics, and this approach is labor-intensive and
error-prone. ECMAScript, the standard speci�cation for JavaScript
maintained by the Ecma Technical Committee 39 (TC39), describes
syntax and semantics of JavaScript in a structured nature lan-
guage. Based on the speci�cation, researchers have de�ned various
JavaScript formal semantics [7, 13, 18, 20] or have modi�ed them
suitable for debuggers [8], veri�cation tools [11, 12], and static
analyzers [14, 15, 17, 29]. However, because all of them are writ-
ten by hand, the existing approach is tedious, labor-intensive, and
error-prone. Moreover, in late 2014, the TC39 announced the yearly
release cadence and open development process of ECMAScript to
quickly adapt to evolving development environments. Thus, there
are already six updates after ES5.1 and this problem becomes more
critical.

To alleviate this problem, we propose an approach to perform
JavaScript static analysis using abstract semantics automatically
de�ned with both JavaScript engines and speci�cation. Our main
idea is 1) to leverage the existing JavaScript engines as much as
possible and 2) to utilize the a mechanized speci�cation automati-
cally extracted from ECMAScript for the remaining parts. To lessen
the burden of manually de�ning the abstract semantics for the
evolving JavaScript speci�cation, we present a technique to extract
a mechanized speci�cation from ECMAScript and de�ne an ab-
stract semantics based on it. However, the automatically extracted
abstract semantics might be much slower than highly optimized
abstract semantics written by hand. Thus, we also leverage existing

1https://w3techs.com/technologies/details/cp-javascript/all/all
2https://octoverse.github.com/

1

Ongoing Work

<latexit sha1_base64="PijVNKgGrQaAgZTi4M7Cz3uI1Ww=">AAACO3icbVC7SgNBFJ2NrxhfUUstFoNgFXZF1FK0sYyQh5Iscndyo0PmsczMimHJV9jqp/gh1nZia+9ssoVRD1w4nPs+ccKZsUHw5pXm5hcWl8rLlZXVtfWN6uZW26hUU2xRxZW+jsEgZxJbllmO14lGEDHHTjy8yPOdB9SGKdm0owQjAXeSDRgF66SbHkfoG6sqt9VaUA8m8P+SsCA1UqBxu+nt9vqKpgKlpRyM6YZBYqMMtGWU47jSSw0mQIdwh11HJQg0UTa5eOzvO6XvD5R2Ia0/UX92ZCCMGYnYVQqw9+Z3Lhf/y3VTOziNMiaT1KKk00WDlPtW+fn7fp9ppJaPHAGqmbvVp/eggVpn0sykZhhl+XH5mJn1j9MfZooFDFErJdyDICnysfMz/O3eX9I+rIfH9fDqqHZ2XjhbJjtkjxyQkJyQM3JJGqRFKBHkiTyTF+/Ve/c+vM9packrerbJDLyvbzNrroQ=</latexit>

<latexit sha1_base64="PijVNKgGrQaAgZTi4M7Cz3uI1Ww=">AAACO3icbVC7SgNBFJ2NrxhfUUstFoNgFXZF1FK0sYyQh5Iscndyo0PmsczMimHJV9jqp/gh1nZia+9ssoVRD1w4nPs+ccKZsUHw5pXm5hcWl8rLlZXVtfWN6uZW26hUU2xRxZW+jsEgZxJbllmO14lGEDHHTjy8yPOdB9SGKdm0owQjAXeSDRgF66SbHkfoG6sqt9VaUA8m8P+SsCA1UqBxu+nt9vqKpgKlpRyM6YZBYqMMtGWU47jSSw0mQIdwh11HJQg0UTa5eOzvO6XvD5R2Ia0/UX92ZCCMGYnYVQqw9+Z3Lhf/y3VTOziNMiaT1KKk00WDlPtW+fn7fp9ppJaPHAGqmbvVp/eggVpn0sykZhhl+XH5mJn1j9MfZooFDFErJdyDICnysfMz/O3eX9I+rIfH9fDqqHZ2XjhbJjtkjxyQkJyQM3JJGqRFKBHkiTyTF+/Ve/c+vM9packrerbJDLyvbzNrroQ=</latexit>

Execution

Traces

ECMAScript

Automatic Update

Mechanized Spec.

Extraction

ECMAScript

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

JavaScript Static Analysis with Evolving Engines and
Specification

Jihyeok Park
KAIST, South Korea

jhpark0223@kaist.ac.kr

ABSTRACT
JavaScript is one of the most dominating programming languages.
Despite its popularity, the highly dynamic nature of JavaScript
makes its semantics complex thus understanding and reasoning
about JavaScript programs are challenging tasks. Therefore, Re-
searchers have proposed JavaScript static analysis based on ab-
stract interpretation with the the abstract semantics conforming
to ECMAScript, the standard speci�cation for JavaScript. However,
all the existing abstract semantics are manually de�ned thus the
current approach is labor-intensive and error-prone. Moreover, in
late 2014, this problem becomes more critical because the Ecma
Technical Committee 39 announced that they will annually update
ECMAScript.

To alleviate the problem, we propose an approach to perform
JavaScript static analysis using the abstract semantics automatically
de�ned with both of JavaScript engines and speci�cation. Our main
idea is 1) to leverage the existing JavaScript engines as much as
possible, and 2) to utilize the formal semantics automatically ex-
tracted from ECMAScript for remaining parts. We believe that our
approach would be able to analyze JavaScript programs developed
with new language features as well as improve their quality.

KEYWORDS
JavaScript, mechanized speci�cation, static analysis, abstract inter-
pretation
ACM Reference Format:
Jihyeok Park. 2021. JavaScript Static Analysis with Evolving Engines and
Speci�cation. In Proceedings of ACM Conference (Conference’17). ACM, New
York, NY, USA, 3 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
JavaScript is one of the most dominating programming languages.
While JavaScript was initially designed for client-side programming
in web browsers, and it is now widely used in server-side program-
ming [6] and even in embedded systems [3, 5, 7]. According to
W3Techs1, 97.2% of websites use JavaScript as their client-side pro-
gramming language. The 2020 State of the Octoverse2, which is the
1https://w3techs.com/technologies/details/cp-javascript/all/all
2https://octoverse.github.com/

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

annual report of GitHub, reports that JavaScript was the top-ranked
programming language in GitHub repositories since 2014 to 2020.

Researchers have proposed various static analyzers to under-
stand and reason about JavaScript programs. Despite its popularity,
JavaScript developers often su�er from its intricate and dynamic
language features, which may cause unexpected behaviors. For ex-
ample, the function declaration function f(x){ return x == !x }

may seem to always return false. Surprisingly, it returns truewhen
its argument is an empty array; f([]) = true. To correctly under-
stand and reason about such a complex behavior, researchers have
proposed various static analyzers for JavaScript programs, such as
TAJS [15], SAFE [20], JSAI [16], and WALA [26].

However, existing JavaScript static analyzers utilize manually
de�ned formal semantics, and this approach is labor-intensive and
error-prone. ECMAScript, which is a standard speci�cation for
JavaScript maintained by the Ecma Technical Committee 39 (TC39),
describes syntax and semantics of JavaScript in a structured na-
ture language. Based on the speci�cation, researchers have de�ned
various JavaScript formal semantics [8, 14, 21] or have modi�ed
them suitable for debuggers [9], veri�cation tools [12, 13], and
static analyzers [15, 16, 20, 26]. However, all of them are written
by hand thus the existing approach is tedious, labor-intensive, and
error-prone. Moreover, in late 2014, the TC39 announced the yearly
release cadence and open development process of ECMAScript to
quickly adapt to evolving development environments. Thus, there
are already six updates after ES5.1 and this problem becomes more
critical.

To alleviate this problem, we propose an approach to perform
JavaScript static analysis using the abstract semantics automatically
de�ned with both of JavaScript engines and speci�cation. Our main
idea is 1) to leverage the existing JavaScript engines as much as
possible, and 2) to utilize the formal semantics automatically ex-
tracted from ECMAScript for remaining parts. To lessen the burden
to manually de�ne the abstract semantics for evolving JavaScript
speci�cation, we present a technique to extract a formal semantics
from ECMAScript and de�ne an abstract semantics based on it.
However, the automatically extracted abstract semantics might be
much slower than highly optimized abstract semantics written by
hand. Thus, we also leverage existing JavaScript engines to de�ne
abstract semantics for better performance of static analysis. Our
approach consists of three steps with three di�erent tools; First,
JISET automatically extracts JavaScript formal semantics using rule-
based compilation from abstract algorithms to functions of IRES,
an Intermediate Representation that we designed for ECMAScript.
Based on the extracted semantics, JEST performs #+1-version dif-
ferential testing for existing JavaScript engines and ECMAScript to
check whether they conform to each other. Finally, JSAVER performs

1

Mechanized 
Spec. Tests JS EngineMechanized 
Spec.

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

JavaScript Static Analysis with Evolving Engines and Specification Conference’17, July 2017, Washington, DC, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Figure 2: The overall structure of JavaScript static analysis
with evolving engines and speci�cation

of ArrayLiteral and the Evaluation algorithm for its �rst alter-
native in ES11. We utilize such a common pattern in the writing
style to extract mechanized speci�cation directly from ECMAScript.
Moreover, commercial JavaScript engines are highly optimized to
quickly execute real-world JavaScript programs. However, most
of JavaScript static analyzers are developed and maintained by re-
searchers thus they are not scalable to analyze real-world JavaScript
programs. Thus, we leverage JavaScript engines as much as possible
during static analysis. This work is closely related to two research
�elds: mechanized speci�cation extraction and combined analysis of
dynamic and static analysis.

Mechanized Speci�cation Extraction. In diverse �elds, several
researchers have extracted mechanized speci�cations from speci�-
cations written in a natural language to automatically handle their
contents. Nguyen [18] extracted a mechanized speci�cation of x86
architecture from its natural language description using Natural
Language Processing (NLP) techniques. Moreover, Vu and Ogawa
[31] proposed a similar approach for ARM architecture using NLP
techniques with machine Learning techniques. Besides low-level
assembly languages, Zhai et al. [35] presented a technique to auto-
matically synthesize Java API functions from their documentation
using NLP techniques. For JavaScript, Ye et al. [34] presented C���
����, a compiler fuzzing framework to detect JavaScript engine
bugs using boundary conditions extracted from ECMAScript ab-
stract algorithms with deep learning-based language models. For
network protocols, Kim et al. [16] proposed B���S���, which ex-
tracts message structures from tables in cellular speci�cations for
L3 protocols to perform comparative analysis of baseband software.
However, there is no existing approach to automatically extract a
mechanized speci�cation that represents the entire formal seman-
tics of a high-level modern programming language.

Combined Analysis. Static and dynamic analyses are two of the
most popular program analysis techniques. Several researchers
have leveraged dynamic analysis during static analysis for 1) au-
tomatic modeling, 2) pruning analysis scope, and 3) performance
improvement. For automatic modeling, Park et al. [22] presented
a Sample-Run-Abstract (SRA) technique that utilizes the execution
results of sampled concrete states as an automatic modeling during
JavaScript static analysis. To prune out infeasible analysis scopes,
Schäfer et al. [28] utilized dynamic determinacy analysis and elimi-
nated invocations of eval and constant property names. Moreover,
Wei and Ryder [32] introduced blended taint analysis that sacri-
�ces the analysis soundness but increase analysis precision using
concrete traces collected by dynamic analysis. Similarly, Park et al.

Figure 3: A mechanized speci�cation extraction from EC-
MAScript via JISET

val ArrayLiteral: List[Boolean] => LAParser[T] = memo {

case List(Yield , Await) =>

�[� ~ opt(Elision) ~ �]� ^^ ArrayLiteral0 |

�[� ~ ElementList(Yield ,Await) ~ �]� ^^ ArrayLiteral1 |

�[� ~ ElementList(Yield ,Await) ~ �,�

~ opt(Elision)~ �]� ^^ ArrayLiteral2

}

(a) The generated parser for the ArrayLiteral production

ArrayLiteral [0]. Evaluation (Elision) => {

let array = [! (ArrayCreate 0)]

if (! (= Elision absent)) {

let len = (Elision.ArrayAccumulation array 0)

[? len]

}

return array

}

(b) The IRES function compiled from the Evaluation algorithm

Figure 4: The generated parser and the compiled IRES func-
tion from the production and abstract algorithm in Figure 1

[23, 26] utilize them to prune out initial states, dynamically loaded
�les, and event handlers. Unlike previous approaches, Toman and
Grossman [30] proposed C������� that performs a sound com-
bined analysis that could signi�cantly improve the precision and
performance of Java static analysis.

3 GOALS OF THE RESEARCH
In this section, we explain goals of an approach to perform JavaScript
static analysis using the abstract semantics automatically de�ned
with both of JavaScript engines and speci�cation. Figure 2 describes
the overall structure of our approach and it consists of three steps
with three di�erent tools; First, JISET (Section 3.1) automatically
extracts JavaScript a mechanized speci�cation using a parser gener-
ation for syntax and a rule-based compilation for semantics. Using
the mechanized speci�cation extracted by JISET, JEST (Section 3.2)
performs #+1-version di�erential testing for existing JavaScript
engines and ECMAScript to check whether they conform to each
other. Finally, JSAVER (Section 3.3) performs JavaScript static analy-
sis based on the abstract semantics de�ned with both of JavaScript
engines and speci�cation. Among three tools, we already developed
JISET [24] and JEST [21] thus we are now focusing on developing
JSAVER.

3.1 JISET: Mechanized Speci�cation Extraction
We present JISET [24], a JavaScript IR-based Semantics Extrac-

tion Toolchain, and Figure 3 depicts the overall structure of JISET.
3

ICSE'21

Conformance Test

Synthesis

Distinguished Paper
Award!!

Mechanized 
Spec.ECMAScript Mechanized 
Spec. JS EngineMechanized 
Spec. JS EngineECMAScript Mechanized 
Spec.

Mechanized Spec.

Extraction

ASE'20

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

JavaScript Static Analysis with Evolving Engines and
Specification

Jihyeok Park
KAIST, South Korea

jhpark0223@kaist.ac.kr

ABSTRACT
JavaScript is one of the most dominating programming languages.
Despite its popularity, the highly dynamic nature of JavaScript
makes its semantics complex thus understanding and reasoning
about JavaScript programs are challenging tasks. Therefore, Re-
searchers have proposed JavaScript static analysis based on ab-
stract interpretation with the the abstract semantics conforming
to ECMAScript, the standard speci�cation for JavaScript. However,
all the existing abstract semantics are manually de�ned thus the
current approach is labor-intensive and error-prone. Moreover, in
late 2014, this problem becomes more critical because the Ecma
Technical Committee 39 announced that they will annually update
ECMAScript.

To alleviate the problem, we propose an approach to perform
JavaScript static analysis using the abstract semantics automatically
de�ned with both of JavaScript engines and speci�cation. Our main
idea is 1) to leverage the existing JavaScript engines as much as
possible, and 2) to utilize the formal semantics automatically ex-
tracted from ECMAScript for remaining parts. We believe that our
approach would be able to analyze JavaScript programs developed
with new language features as well as improve their quality.

KEYWORDS
JavaScript, mechanized speci�cation, static analysis, abstract inter-
pretation
ACM Reference Format:
Jihyeok Park. 2021. JavaScript Static Analysis with Evolving Engines and
Speci�cation. In Proceedings of ACM Conference (Conference’17). ACM, New
York, NY, USA, 3 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
JavaScript is one of the most dominating programming languages.
While JavaScript was initially designed for client-side programming
in web browsers, and it is now widely used in server-side program-
ming [6] and even in embedded systems [3, 5, 7]. According to
W3Techs1, 97.2% of websites use JavaScript as their client-side pro-
gramming language. The 2020 State of the Octoverse2, which is the
1https://w3techs.com/technologies/details/cp-javascript/all/all
2https://octoverse.github.com/

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

annual report of GitHub, reports that JavaScript was the top-ranked
programming language in GitHub repositories since 2014 to 2020.

Researchers have proposed various static analyzers to under-
stand and reason about JavaScript programs. Despite its popularity,
JavaScript developers often su�er from its intricate and dynamic
language features, which may cause unexpected behaviors. For ex-
ample, the function declaration function f(x){ return x == !x }

may seem to always return false. Surprisingly, it returns truewhen
its argument is an empty array; f([]) = true. To correctly under-
stand and reason about such a complex behavior, researchers have
proposed various static analyzers for JavaScript programs, such as
TAJS [15], SAFE [20], JSAI [16], and WALA [26].

However, existing JavaScript static analyzers utilize manually
de�ned formal semantics, and this approach is labor-intensive and
error-prone. ECMAScript, which is a standard speci�cation for
JavaScript maintained by the Ecma Technical Committee 39 (TC39),
describes syntax and semantics of JavaScript in a structured na-
ture language. Based on the speci�cation, researchers have de�ned
various JavaScript formal semantics [8, 14, 21] or have modi�ed
them suitable for debuggers [9], veri�cation tools [12, 13], and
static analyzers [15, 16, 20, 26]. However, all of them are written
by hand thus the existing approach is tedious, labor-intensive, and
error-prone. Moreover, in late 2014, the TC39 announced the yearly
release cadence and open development process of ECMAScript to
quickly adapt to evolving development environments. Thus, there
are already six updates after ES5.1 and this problem becomes more
critical.

To alleviate this problem, we propose an approach to perform
JavaScript static analysis using the abstract semantics automatically
de�ned with both of JavaScript engines and speci�cation. Our main
idea is 1) to leverage the existing JavaScript engines as much as
possible, and 2) to utilize the formal semantics automatically ex-
tracted from ECMAScript for remaining parts. To lessen the burden
to manually de�ne the abstract semantics for evolving JavaScript
speci�cation, we present a technique to extract a formal semantics
from ECMAScript and de�ne an abstract semantics based on it.
However, the automatically extracted abstract semantics might be
much slower than highly optimized abstract semantics written by
hand. Thus, we also leverage existing JavaScript engines to de�ne
abstract semantics for better performance of static analysis. Our
approach consists of three steps with three di�erent tools; First,
JISET automatically extracts JavaScript formal semantics using rule-
based compilation from abstract algorithms to functions of IRES,
an Intermediate Representation that we designed for ECMAScript.
Based on the extracted semantics, JEST performs #+1-version dif-
ferential testing for existing JavaScript engines and ECMAScript to
check whether they conform to each other. Finally, JSAVER performs

1

JISET: JavaScript IR-based Semantics

Extraction Toolchain

[ASE'20]

/ 35PS Lab Seminar - Towards Co-evolution of JavaScript Specification and Tools

IR-based Semantics Extraction

10

JavaScript

Program

JavaScript
Parser JavaScript

AST

AST-IR
Translator Intermediate

Representation

IR

Concrete

Execution

Static

Analysis

Formal

Verification

manual

ECMAScript

···

/ 35PS Lab Seminar - Towards Co-evolution of JavaScript Specification and Tools

IR-based Semantics Extraction

11

[]; JavaScript
Parser JavaScript

AST

AST-IR
Translator

x = {};

x.__proto__ =

 Array.prototype;

x.length = 0;

The production of ArrayLiteral in ES10 The Evaluation algorithm for the first alternative of ArrayLiteral in ES10

MANUAL Implementation

/ 35PS Lab Seminar - Towards Co-evolution of JavaScript Specification and Tools

Our Approach

12

[]; JavaScript
Parser JavaScript

AST

AST-IR
Translator

let array =

 ArrayCreate(0)

let pad = ...

...

JavaScript IR-based Semantics Extraction Toolchain

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

JavaScript Static Analysis with Evolving Engines and
Specification

Jihyeok Park
KAIST, South Korea

jhpark0223@kaist.ac.kr

ABSTRACT
JavaScript is one of the most dominant programming languages. De-
spite its popularity, the highly dynamic nature of JavaScript makes
its semantics complex; thus, understanding and reasoning about
JavaScript programs are challenging tasks. Therefore, researchers
have proposed JavaScript static analysis based on the abstract in-
terpretation with abstract semantics conforming to ECMAScript,
the standard speci�cation for JavaScript. However, all the existing
abstract semantics are manually de�ned; thus, the current approach
is labor-intensive and error-prone. Moreover, since late 2014, this
problem becomes more critical because the Ecma Technical Com-
mittee 39 announced that they would update ECMAScript annually.

To alleviate the problem, we propose an approach to perform
JavaScript static analysis using abstract semantics automatically
de�ned with both JavaScript engines and speci�cation. Our main
idea is 1) to leverage the existing JavaScript engines as much as
possible and 2) to utilize the mechanized speci�cation automatically
extracted from ECMAScript for the remaining parts. We believe that
our approach can to perform static analysis for JavaScript programs
developed with new language features and help build high-quality
JavaScript programs.

KEYWORDS
JavaScript, mechanized speci�cation, static analysis, abstract inter-
pretation
ACM Reference Format:
Jihyeok Park. 2021. JavaScript Static Analysis with Evolving Engines and
Speci�cation. In Proceedings of ACM Conference (Conference’17). ACM, New
York, NY, USA, 6 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
JavaScript is one of the most dominant programming languages.
While JavaScript was initially designed for client-side program-
ming in web browsers, it is now widely used in server-side pro-
gramming [4] and even in embedded systems [2, 3, 5]. According
to W3Techs1, 97.2% of websites use JavaScript as their client-side
programming language. The 2020 State of the Octoverse2, which is
1https://w3techs.com/technologies/details/cp-javascript/all/all
2https://octoverse.github.com/

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

the annual report of GitHub, reports that JavaScript was the top-
ranked programming language in GitHub repositories since 2014
to 2020.

Researchers have proposed various static analyzers to under-
stand and reason about JavaScript programs. Despite its popularity,
JavaScript developers often su�er from its intricate and dynamic
language features, which may cause unexpected behaviors. For ex-
ample, the function declaration function f(x){ return x == !x }

may seem to always return false. Surprisingly, it returns truewhen
its argument is an empty array: f([]) = true. To correctly under-
stand and reason about such a complex behavior, researchers have
proposed various static analyzers for JavaScript programs, such as
TAJS [14], SAFE [17], JSAI [15], and WALA [29].

However, existing JavaScript static analyzers utilize manually
de�ned formal semantics, and this approach is labor-intensive and
error-prone. ECMAScript, the standard speci�cation for JavaScript
maintained by the Ecma Technical Committee 39 (TC39), describes
syntax and semantics of JavaScript in a structured nature lan-
guage. Based on the speci�cation, researchers have de�ned various
JavaScript formal semantics [7, 13, 18, 20] or have modi�ed them
suitable for debuggers [8], veri�cation tools [11, 12], and static
analyzers [14, 15, 17, 29]. However, because all of them are writ-
ten by hand, the existing approach is tedious, labor-intensive, and
error-prone. Moreover, in late 2014, the TC39 announced the yearly
release cadence and open development process of ECMAScript to
quickly adapt to evolving development environments. Thus, there
are already six updates after ES5.1 and this problem becomes more
critical.

To alleviate this problem, we propose an approach to perform
JavaScript static analysis using abstract semantics automatically
de�ned with both JavaScript engines and speci�cation. Our main
idea is 1) to leverage the existing JavaScript engines as much as
possible and 2) to utilize the a mechanized speci�cation automati-
cally extracted from ECMAScript for the remaining parts. To lessen
the burden of manually de�ning the abstract semantics for the
evolving JavaScript speci�cation, we present a technique to extract
a mechanized speci�cation from ECMAScript and de�ne an ab-
stract semantics based on it. However, the automatically extracted
abstract semantics might be much slower than highly optimized
abstract semantics written by hand. Thus, we also leverage existing
JavaScript engines to de�ne abstract semantics for better perfor-
mance of static analysis. Our approach consists of three steps with
three di�erent tools; First, JISET automatically extracts JavaScript
mechanized speci�cation using a parser generation for syntax and
a rule-based compilation for semantics. Using the mechanized spec-
i�cation, JEST performs #+1-version di�erential testing for existing
JavaScript engines and ECMAScript to check whether they conform
to each other. Finally, JSAVER performs JavaScript static analysis

1

IRES

(Intermediate

Representation 
for ECMAScript)

The production of ArrayLiteral in ES10 The Evaluation algorithm for the first alternative of ArrayLiteral in ES10

/ 35PS Lab Seminar - Towards Co-evolution of JavaScript Specification and Tools

Overall Structure of JISET

13

JavaScript

Program

JavaScript
Parser JavaScript

AST

AST-IR
Translator Intermediate

Representation

IRES

Parser
Generator IRES

Functions

�
<latexit sha1_base64="WUqYpOUqC3vDwpPsTXxORIYVrtc=">AAACYHicbVFLS8NAEN7GV63P6k0vwSJ4KkkV9Ojr4EVQ6AuaIJvttF26m4TdiViX/Aiv+su8+kvctD1YdWDh45vZmW++iVLBNXreZ8lZWl5ZXSuvVzY2t7Z3dqt7bZ1kikGLJSJR3YhqEDyGFnIU0E0VUBkJ6ETjmyLfeQaleRI3cZJCKOkw5gPOKFqqEwhb2qdPuzWv7k3D/Qv8OaiReTw8VUs3QT9hmYQYmaBa93wvxdBQhZwJyCtBpiGlbEyH0LMwphJ0aKZ6c/fYMn13kCj7YnSn7M8fhkqtJzKylZLiSP/OFeR/uV6Gg4vQ8DjNEGI2GzTIhIuJWyzv9rkChmJiAWWKW60uG1FFGVqLFjo1/dAU4oo2C+NfZjtUgluwiyu4tyKuRDqiEaAJCknpK8tN08/NFMjccFxsYe8RWftlbm33f5v8F7Qbdf+03ng8q11ezw9QJofkiJwQn5yTS3JHHkiLMDImb+SdfJS+nLKz41RnpU5p/mefLIRz8A1vW7qw</latexit>�

<latexit sha1_base64="WUqYpOUqC3vDwpPsTXxORIYVrtc=">AAACYHicbVFLS8NAEN7GV63P6k0vwSJ4KkkV9Ojr4EVQ6AuaIJvttF26m4TdiViX/Aiv+su8+kvctD1YdWDh45vZmW++iVLBNXreZ8lZWl5ZXSuvVzY2t7Z3dqt7bZ1kikGLJSJR3YhqEDyGFnIU0E0VUBkJ6ETjmyLfeQaleRI3cZJCKOkw5gPOKFqqEwhb2qdPuzWv7k3D/Qv8OaiReTw8VUs3QT9hmYQYmaBa93wvxdBQhZwJyCtBpiGlbEyH0LMwphJ0aKZ6c/fYMn13kCj7YnSn7M8fhkqtJzKylZLiSP/OFeR/uV6Gg4vQ8DjNEGI2GzTIhIuJWyzv9rkChmJiAWWKW60uG1FFGVqLFjo1/dAU4oo2C+NfZjtUgluwiyu4tyKuRDqiEaAJCknpK8tN08/NFMjccFxsYe8RWftlbm33f5v8F7Qbdf+03ng8q11ezw9QJofkiJwQn5yTS3JHHkiLMDImb+SdfJS+nLKz41RnpU5p/mefLIRz8A1vW7qw</latexit>�
<latexit sha1_base64="WUqYpOUqC3vDwpPsTXxORIYVrtc=">AAACYHicbVFLS8NAEN7GV63P6k0vwSJ4KkkV9Ojr4EVQ6AuaIJvttF26m4TdiViX/Aiv+su8+kvctD1YdWDh45vZmW++iVLBNXreZ8lZWl5ZXSuvVzY2t7Z3dqt7bZ1kikGLJSJR3YhqEDyGFnIU0E0VUBkJ6ETjmyLfeQaleRI3cZJCKOkw5gPOKFqqEwhb2qdPuzWv7k3D/Qv8OaiReTw8VUs3QT9hmYQYmaBa93wvxdBQhZwJyCtBpiGlbEyH0LMwphJ0aKZ6c/fYMn13kCj7YnSn7M8fhkqtJzKylZLiSP/OFeR/uV6Gg4vQ8DjNEGI2GzTIhIuJWyzv9rkChmJiAWWKW60uG1FFGVqLFjo1/dAU4oo2C+NfZjtUgluwiyu4tyKuRDqiEaAJCknpK8tN08/NFMjccFxsYe8RWftlbm33f5v8F7Qbdf+03ng8q11ezw9QJofkiJwQn5yTS3JHHkiLMDImb+SdfJS+nLKz41RnpU5p/mefLIRz8A1vW7qw</latexit>

Global

Setting

Algorithm
Compiler Compile

RulesBNFES

A ::=B |C
<latexit sha1_base64="GLMXsP5/U3ZwfL4AED45+I3FVgA=">AAACnnicbVHLahsxFJWnr8R9xGmX2cg1pV2ZmSTQEAjkUUo3oSnYicEajEa+jkUkzSDdKXHFfEK/ptv2Q/o31dgudJJekDic+74nK5R0GMe/W9GDh48eP9nYbD999vzFVmf75aXLSytgKHKV21HGHShpYIgSFYwKC1xnCq6ym7Paf/UVrJO5GeCigFTzayNnUnAM1KTzts0QbkOiP6lY9/DwiHX/EqeBYFpOWdefVZNOL+7HS6P3QbIGPbK2i8l2a8KmuSg1GBSKOzdO4gJTzy1KoaBqs9JBwcUNv4ZxgIZrcKlfblTRN4GZ0lluwzNIl+y/GZ5r5xY6C5Ga49zd9dXk/3zjEmcHqZemKBGMWDWalYpiTuvz0Km0IFAtAuDCyjArFXNuucBwxEalQZL6eri6TKP97WqHNvsAYXEL52GIE1XMeQboWT1S8U1UfpBUfgl05SU272Fyq7kCnfoy/M3yQc0siKdrSZK7AtwHl7v9ZK+/+2W/d3y6FmeD7JDX5B1JyHtyTD6RCzIkgnwnP8hP8iui0cfoPPq8Co1a65xXpGHR6A/aVtI5</latexit>

ECMAScript

Spec
Extractor

Algorithms

manual

Syntax Semantics

/ 35PS Lab Seminar - Towards Co-evolution of JavaScript Specification and Tools

Overall Structure of JISET

13

JavaScript

Program

JavaScript
Parser JavaScript

AST

AST-IR
Translator Intermediate

Representation

IRES

Parser
Generator IRES

Functions

�
<latexit sha1_base64="WUqYpOUqC3vDwpPsTXxORIYVrtc=">AAACYHicbVFLS8NAEN7GV63P6k0vwSJ4KkkV9Ojr4EVQ6AuaIJvttF26m4TdiViX/Aiv+su8+kvctD1YdWDh45vZmW++iVLBNXreZ8lZWl5ZXSuvVzY2t7Z3dqt7bZ1kikGLJSJR3YhqEDyGFnIU0E0VUBkJ6ETjmyLfeQaleRI3cZJCKOkw5gPOKFqqEwhb2qdPuzWv7k3D/Qv8OaiReTw8VUs3QT9hmYQYmaBa93wvxdBQhZwJyCtBpiGlbEyH0LMwphJ0aKZ6c/fYMn13kCj7YnSn7M8fhkqtJzKylZLiSP/OFeR/uV6Gg4vQ8DjNEGI2GzTIhIuJWyzv9rkChmJiAWWKW60uG1FFGVqLFjo1/dAU4oo2C+NfZjtUgluwiyu4tyKuRDqiEaAJCknpK8tN08/NFMjccFxsYe8RWftlbm33f5v8F7Qbdf+03ng8q11ezw9QJofkiJwQn5yTS3JHHkiLMDImb+SdfJS+nLKz41RnpU5p/mefLIRz8A1vW7qw</latexit>�

<latexit sha1_base64="WUqYpOUqC3vDwpPsTXxORIYVrtc=">AAACYHicbVFLS8NAEN7GV63P6k0vwSJ4KkkV9Ojr4EVQ6AuaIJvttF26m4TdiViX/Aiv+su8+kvctD1YdWDh45vZmW++iVLBNXreZ8lZWl5ZXSuvVzY2t7Z3dqt7bZ1kikGLJSJR3YhqEDyGFnIU0E0VUBkJ6ETjmyLfeQaleRI3cZJCKOkw5gPOKFqqEwhb2qdPuzWv7k3D/Qv8OaiReTw8VUs3QT9hmYQYmaBa93wvxdBQhZwJyCtBpiGlbEyH0LMwphJ0aKZ6c/fYMn13kCj7YnSn7M8fhkqtJzKylZLiSP/OFeR/uV6Gg4vQ8DjNEGI2GzTIhIuJWyzv9rkChmJiAWWKW60uG1FFGVqLFjo1/dAU4oo2C+NfZjtUgluwiyu4tyKuRDqiEaAJCknpK8tN08/NFMjccFxsYe8RWftlbm33f5v8F7Qbdf+03ng8q11ezw9QJofkiJwQn5yTS3JHHkiLMDImb+SdfJS+nLKz41RnpU5p/mefLIRz8A1vW7qw</latexit>�
<latexit sha1_base64="WUqYpOUqC3vDwpPsTXxORIYVrtc=">AAACYHicbVFLS8NAEN7GV63P6k0vwSJ4KkkV9Ojr4EVQ6AuaIJvttF26m4TdiViX/Aiv+su8+kvctD1YdWDh45vZmW++iVLBNXreZ8lZWl5ZXSuvVzY2t7Z3dqt7bZ1kikGLJSJR3YhqEDyGFnIU0E0VUBkJ6ETjmyLfeQaleRI3cZJCKOkw5gPOKFqqEwhb2qdPuzWv7k3D/Qv8OaiReTw8VUs3QT9hmYQYmaBa93wvxdBQhZwJyCtBpiGlbEyH0LMwphJ0aKZ6c/fYMn13kCj7YnSn7M8fhkqtJzKylZLiSP/OFeR/uV6Gg4vQ8DjNEGI2GzTIhIuJWyzv9rkChmJiAWWKW60uG1FFGVqLFjo1/dAU4oo2C+NfZjtUgluwiyu4tyKuRDqiEaAJCknpK8tN08/NFMjccFxsYe8RWftlbm33f5v8F7Qbdf+03ng8q11ezw9QJofkiJwQn5yTS3JHHkiLMDImb+SdfJS+nLKz41RnpU5p/mefLIRz8A1vW7qw</latexit>

Global

Setting

Algorithm
Compiler Compile

RulesBNFES

A ::=B |C
<latexit sha1_base64="GLMXsP5/U3ZwfL4AED45+I3FVgA=">AAACnnicbVHLahsxFJWnr8R9xGmX2cg1pV2ZmSTQEAjkUUo3oSnYicEajEa+jkUkzSDdKXHFfEK/ptv2Q/o31dgudJJekDic+74nK5R0GMe/W9GDh48eP9nYbD999vzFVmf75aXLSytgKHKV21HGHShpYIgSFYwKC1xnCq6ym7Paf/UVrJO5GeCigFTzayNnUnAM1KTzts0QbkOiP6lY9/DwiHX/EqeBYFpOWdefVZNOL+7HS6P3QbIGPbK2i8l2a8KmuSg1GBSKOzdO4gJTzy1KoaBqs9JBwcUNv4ZxgIZrcKlfblTRN4GZ0lluwzNIl+y/GZ5r5xY6C5Ga49zd9dXk/3zjEmcHqZemKBGMWDWalYpiTuvz0Km0IFAtAuDCyjArFXNuucBwxEalQZL6eri6TKP97WqHNvsAYXEL52GIE1XMeQboWT1S8U1UfpBUfgl05SU272Fyq7kCnfoy/M3yQc0siKdrSZK7AtwHl7v9ZK+/+2W/d3y6FmeD7JDX5B1JyHtyTD6RCzIkgnwnP8hP8iui0cfoPPq8Co1a65xXpGHR6A/aVtI5</latexit>

ECMAScript

Spec
Extractor

Algorithms

manual

Syntax SemanticsSyntax

/ 35PS Lab Seminar - Towards Co-evolution of JavaScript Specification and Tools

Syntax - Parser Synthesis

14

JavaScript
Parser

Parser
Generator

BNFES

A ::=B |C
<latexit sha1_base64="GLMXsP5/U3ZwfL4AED45+I3FVgA=">AAACnnicbVHLahsxFJWnr8R9xGmX2cg1pV2ZmSTQEAjkUUo3oSnYicEajEa+jkUkzSDdKXHFfEK/ptv2Q/o31dgudJJekDic+74nK5R0GMe/W9GDh48eP9nYbD999vzFVmf75aXLSytgKHKV21HGHShpYIgSFYwKC1xnCq6ym7Paf/UVrJO5GeCigFTzayNnUnAM1KTzts0QbkOiP6lY9/DwiHX/EqeBYFpOWdefVZNOL+7HS6P3QbIGPbK2i8l2a8KmuSg1GBSKOzdO4gJTzy1KoaBqs9JBwcUNv4ZxgIZrcKlfblTRN4GZ0lluwzNIl+y/GZ5r5xY6C5Ga49zd9dXk/3zjEmcHqZemKBGMWDWalYpiTuvz0Km0IFAtAuDCyjArFXNuucBwxEalQZL6eri6TKP97WqHNvsAYXEL52GIE1XMeQboWT1S8U1UfpBUfgl05SU272Fyq7kCnfoy/M3yQc0siKdrSZK7AtwHl7v9ZK+/+2W/d3y6FmeD7JDX5B1JyHtyTD6RCzIkgnwnP8hP8iui0cfoPPq8Co1a65xXpGHR6A/aVtI5</latexit>

The production of ArrayLiteral in ES10

type P[T] = List[Boolean] => LAParser[T]

lazy val ArrayLiteral: P[ArrayLiteral] = memo {

 case List(Yield, Await) =>

 "[" ~ opt(Elision) ~ "]"

 ^^ ArrayLiteral0 |

 "[" ~ ElementList(Yield, Await) ~ "]"

 ^^ ArrayLiteral1 |

 "[" ~ ElementList(Yield, Await)

 ~ "," ~ opt(Elision) ~ "]"

 ^^ ArrayLiteral2

}

The generated parser for ArrayLiteral in ES10

Parsing Expression 
Grammar (PEG)

/ 35PS Lab Seminar - Towards Co-evolution of JavaScript Specification and Tools

Syntax - Parser Synthesis

14

JavaScript
Parser

Parser
Generator

BNFES

A ::=B |C
<latexit sha1_base64="GLMXsP5/U3ZwfL4AED45+I3FVgA=">AAACnnicbVHLahsxFJWnr8R9xGmX2cg1pV2ZmSTQEAjkUUo3oSnYicEajEa+jkUkzSDdKXHFfEK/ptv2Q/o31dgudJJekDic+74nK5R0GMe/W9GDh48eP9nYbD999vzFVmf75aXLSytgKHKV21HGHShpYIgSFYwKC1xnCq6ym7Paf/UVrJO5GeCigFTzayNnUnAM1KTzts0QbkOiP6lY9/DwiHX/EqeBYFpOWdefVZNOL+7HS6P3QbIGPbK2i8l2a8KmuSg1GBSKOzdO4gJTzy1KoaBqs9JBwcUNv4ZxgIZrcKlfblTRN4GZ0lluwzNIl+y/GZ5r5xY6C5Ga49zd9dXk/3zjEmcHqZemKBGMWDWalYpiTuvz0Km0IFAtAuDCyjArFXNuucBwxEalQZL6eri6TKP97WqHNvsAYXEL52GIE1XMeQboWT1S8U1UfpBUfgl05SU272Fyq7kCnfoy/M3yQc0siKdrSZK7AtwHl7v9ZK+/+2W/d3y6FmeD7JDX5B1JyHtyTD6RCzIkgnwnP8hP8iui0cfoPPq8Co1a65xXpGHR6A/aVtI5</latexit>

The production of ArrayLiteral in ES10

type P[T] = List[Boolean] => LAParser[T]

lazy val ArrayLiteral: P[ArrayLiteral] = memo {

 case List(Yield, Await) =>

 "[" ~ opt(Elision) ~ "]"

 ^^ ArrayLiteral0 |

 "[" ~ ElementList(Yield, Await) ~ "]"

 ^^ ArrayLiteral1 |

 "[" ~ ElementList(Yield, Await)

 ~ "," ~ opt(Elision) ~ "]"

 ^^ ArrayLiteral2

}

The generated parser for ArrayLiteral in ES10

Parsing Expression 
Grammar (PEG)

Lookahead
Parsing+

/ 35PS Lab Seminar - Towards Co-evolution of JavaScript Specification and Tools

Syntax - Lookahead Parsing

15

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

Conference’17, July 2017, Washington, DC, USA Anon.

451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530

3 PARSER GENERATOR
In this section, we explain how to automatically generate JavaScript
parsers from a given ECMAScript speci�cation.

3.1 BNFES: Grammar for ECMAScript
The ECMAScript speci�cation describes the JavaScript syntax using
an extension of the BNF notation. We formally de�ne the notation
and dub it BNFES. It consists of a number of productions with the
following form:

A(p1, · · · ,pk) ::= (c1))?�1 | · · · | (cn))?�n
The left-hand side of ::= represents a parametric non-terminal A
with multiple boolean parameters p1, · · · ,pk . If a non-terminal
takes no parameter, parentheses are omitted for brevity. A produc-
tion has multiple alternatives separated by | with optional condi-
tions. A condition c is either a boolean parameter p or its negation
!p. An alternative � is a sequence of symbols, where a symbol s is
one of the following:
• � : the empty sequence, which passes without any conditions
• a: a terminal, which is any token
• A(a1, · · · ,ak): a non-terminal, which takes multiple arguments
where each argument ai is either a boolean value #t or #f, or a
parameter pi

• s?: option, which is the same with s | �
• +s (�s) : positive (negative) lookahead, which checks whether
s succeeds (fails) and never consumes any input

• srs 0: exclusion, which �rst checks whether s succeeds and then
checks whether the parsing result does not correspond to s 0

• h¬LTi: no line-terminator, which is a special symbol that re-
stricts the white spaces between two di�erent symbols

For example, consider the following production:

A(p) ::= p) a | !p) b | c
Then, A(#t) means a | c and A(#f) means b | c.

3.2 Lookahead Parsers
To support BNFES correctly, we propose a recursive descent parser
generator that handles both backtracking and lookahead tokens.

Approach. Our goal is to automatically generate a JavaScript
parser from a given ECMAScript grammarwritten in BNFES. Among
various parser generators, we chose Scala parser combinators de-
�ned in Parsing Expression Grammar (PEG) [13]. PEG is a top-down
(LL-style) recursive descent parser with backtracking. It visits each
alternative of a production in order and backtracks to its previous
production when parsing fails. We chose Scala parser combinators
because of the following reasons:
• Context-sensitive tokens: ECMAScript tokens are context-
sensitive because of JavaScript regular expressions and template
strings. For example, /x/g could be a single regular expression
token or four tokens that represent division by variables x

and g depending on enclosing contexts. Thus, lexers should be
evaluated during parsing not before parsing. Since Scala parser
combinators also treat lexers as parsers, we can use appropriate
lexers depending on parsing contexts.

• BNFES symbols: PEG can represent BNFES symbols intuitively
as we explain in Section 3.3.

�rst� (s1 · · · sn) = �rsts (s1) :+ �rsts (s2 · · · sn)

where x :+ � =
⇢
x [� if � 2 x
x otherwise

�rsts (�) = {�}
�rsts (a) = {a}
�rsts (A(a1, · · · , ak)) = �rst� (�1) [· · · [�rst� (�n)

where A(a1, · · · , ak) = �1 | · · · | �n
�rsts (s?) = �rsts (s) [{�}
�rsts (+s) = �rsts (s)
�rsts (�s) = {�}
�rsts (srs0) = �rsts (s)
�rsts (h¬LTi) = {�}

Figure 5: Over-approximated �rst tokens of BNFES symbols

• Multiple starting non-terminals: Since ECMAScript 6, both
scripts and modules serve as starting points of parsers. Scala
parser combinators allow to use any non-terminals as parsers.

• Parsing at run-time: JavaScript supports the eval function
that parses a given JavaScript string value to code and evaluates
it. Moreover, syntax-directed abstract algorithms use special
phrases like “the N that is covered by P ,” which means that a
generalized parser parses the syntax tree P because �nding a
speci�c parser to correctly parse it requires its evaluation con-
text. When a JavaScript interpreter encounters such a phrase, it
decides a speci�c parser to N and parses the given syntax tree
P with the non-terminal N again at run time.

Problem: Prioritized Choices.While PEG provides all the fea-
tures we discussed so far, it has one fundamental problem: priori-
tized choices. In PEG, the pipe | operator denotes a prioritized choice;
even when multiple alternatives are applicable, PEG always picks
the �rst success alternative. However, some non-terminals of the
ECMAScript grammar accept multiple alternatives for given input
strings. For example, consider the following simpli�ed grammar of
the JavaScript expressions:

A ::= T; | A + T;

T ::= a | a(b)
The non-terminal T should accept both alternatives for a(b);, but
PEG-based parsers fail to parse it because the �rst alternative a suc-
ceeds �rst and the second alternative a(b) is not reachable. A simple
solution is to change the order of alternatives likeT ::= a(b) | a, but
ensuring correct order is not trivial because it requires calculation
of their inclusion relationship. Moreover, simple reordering does
not work for some productions:

A ::= B b

B ::= a | a b

The non-terminal A should successfully parse two strings ab and
abb, but it accepts only ab, and it accepts only abb if B ::= a b | a.
Hence, we should re-structure the above rules to accept both strings
in traditional PEG grammars.

Solution: Lookahead Tokens. To alleviate the problem, we
propose lookahead parsers, which are recursive descent parsers
extended with backtracking and lookahead tokens. They keep track
of the next possible tokens by statically calculating �rst tokens
of each symbol using the algorithm in Figure 5. For example, the

4

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

JISET: JavaScript IR-based Semantics Extraction Toolchain Conference’17, July 2017, Washington, DC, USA

589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668

(s1 · · · sn)[L] = s1[�rsts (s2 · · · sn) :+ L] (s1 · · · sn)[L]
� [L] = +gets (L)
a[L] = a + gets (L)
A(a1, · · · , ak)[L] = �1[L] | · · · | �n [L]

where A(a1, · · · , ak) = �1 | · · · | �n
s?[L] = s[L] | � [L]
(±s)[L] = ±(s[L])
(srs0)[L] = s[L]rs0
h¬LTi = h¬LTi + gets (L)

Figure 6: Formal semantics of lookahead parsers

following steps explain how to utilize lookahead tokens during
parsing with the input a(b);:

Each node s⇤[L] denotes a sequence of symbols s⇤ with a set of
lookahead tokens L. The parsing process follows a pre-order tra-
versal. It starts from the starting non-terminal A with the special
lookahead �, which denotes the end of inputs. Then, it visits the
�rst alternativeT; with the same lookahead. Each symbol is visited
with its corresponding lookahead, which is the �rst tokens of the
right next symbol. For example, for the symbol T , the next symbol
is ; and its �rst token is itself. Thus, the parser visits T with the
lookahead ;. The most important point here is the �rst alternative a
of the non-terminalT . The parser visits it with the lookahead ; but
the next token of the input string a(b); is (rather than ;. Hence,
it fails to parse the input string even though the current token is
the same with the terminal a. Therefore, the parser can visit the
next alternative a(b) and successfully parses the input a(b);.

We formally de�ne the semantics of lookahead parsers in Fig-
ure 6. The helper function gets (L) generates a parser by combining
all tokens in the lookahead L using prioritized choices. In this case,
the order does not change the semantics of lookahead parsers be-
cause gets (L) just checks the existence of a given token.

3.3 Implementation
We implemented lookahead parsers by extending Scala parser com-
binators with two functions corresponding to Figure 5 and Figure 6.

AST Generation.We �rst automatically generate ASTs as Scala
case classes from a given BNFES grammar. Because lexical gram-
mars do not a�ect the ECMAScript semantics, we represent them
as string values. For parser grammars, we automatically synthe-
size a Scala �le that has classes of syntax trees. For each produc-
tion A(p1, · · · ,pk) ::= (c1))?�1 | · · · | (cn))?�n , the AST
generator de�nes the A trait and multiple subclasses Ai of A for
0  i  n � 1 that represents its alternatives. Each class Ai has
non-terminals in its corresponding alternative as its �elds. For in-
stance, the Arra�Literal production in Figure 3 gets automatically
translated to the following Scala classes:

trait ArrayLiteral extends AST
case class ArrayLiteral0(x1: Option[Elision])
case class ArrayLiteral1(x1: ElementList)
case class ArrayLiteral2(x1: ElementList, x3: Option[Elision])

Parser Generation. The next step is to automatically extract
parsers from the given BNFES grammar. The conversion fromBNFES
symbols into Scala code is as follows:

�) MATCH

a) "a"

A(a1, · · · , an)) A(a1, .. , an)

s?) opt(s)

±s) ±s
srs0) s\s’

h¬LTi) NoLineTerminator

where MATCH denotes the empty sequence of lookahead parsers.
Each string literal gets implicitly converted to a lookahead parser
via Scala implicit conversion. The opt(s) function is the same with
s | MATCH. We also de�ne the \ operator between parsers to sup-
port exclusive parsers. Finally, we provide the NoLineTerminator

parser, which uses the white space parsers to check the existence of
line terminators. Our approach can support such a parser because
we also automatically generate lexers not only parsers of the EC-
MAScript syntax. Then, the automatically synthesized parser from
the production ArrayLiteral in Figure 3(a) is the one in Figure 3(b).

We support the automatic semicolon insertion algorithm, which
is the most distinctive parsing feature in ECMAScript. We extended
our parser implementation to keep track of the right-most position
that fails to be parsed in a given input. In ECMAScript, the token
at that position is de�ned as an o�ending token and the automatic
semicolon insertion algorithm is de�ned with such tokens. The
algorithm is simple whenwe already have the positions of o�ending
tokens. Thus, we just manually supported them by following the
rules in ECMAScript 2020. In addition, the rules rarely change; since
ECMAScript 5.1 written in 2011, only one sub-rule was added.

Discussion. While implementing lookahead parsers in Scala,
we resolved two issues.

First, one of the critical weak points of recursive descent parsing
with backtracking is its performance. To support backtracking, it
requires exponential time relative to the input size. Luckily, Ford et
al [12] proposed Packrat parsing that provides linear time complex-
ity using memoization. By treating each parser as a function from
the current input position to a parsing result, it just memoizes each
parser using input positions, which dramatically reduces redundant
parsing trials. In a similar way, we treat each lookahead parser as a
function from a pair of lookahead tokens and input positions to a
parsing result.

The second issue is that recursive descent parsers do not support
left recursion in grammars. If a grammar has a left recursion, its
parser falls into an in�nite loop. To resolve this problem, Warth
et al [24] proposed a mechanism to support not only direct left
recursion but also indirect one in Packrat parsing. While we can
adopt the mechanism, we found that the ECMAScript 2020 syntax
does not use indirect left recursion. Thus, we decided to just remove
direct left recursion by de�ning sub productions.

5

Algorithm for 
first tokens of BNFES

Algorithm for
lookahead parsing

/ 35PS Lab Seminar - Towards Co-evolution of JavaScript Specification and Tools

Syntax - Evaluation

16

/ 35PS Lab Seminar - Towards Co-evolution of JavaScript Specification and Tools

Syntax - Evaluation

16

Pass all parsing tests 
in Test262

All Success!!

/ 35PS Lab Seminar - Towards Co-evolution of JavaScript Specification and Tools

SemanticsSyntax

Overall Structure of JISET

17

JavaScript

Program

JavaScript
Parser JavaScript

AST

AST-IR
Translator Intermediate

Representation

IRES

Parser
Generator IRES

Functions

�
<latexit sha1_base64="WUqYpOUqC3vDwpPsTXxORIYVrtc=">AAACYHicbVFLS8NAEN7GV63P6k0vwSJ4KkkV9Ojr4EVQ6AuaIJvttF26m4TdiViX/Aiv+su8+kvctD1YdWDh45vZmW++iVLBNXreZ8lZWl5ZXSuvVzY2t7Z3dqt7bZ1kikGLJSJR3YhqEDyGFnIU0E0VUBkJ6ETjmyLfeQaleRI3cZJCKOkw5gPOKFqqEwhb2qdPuzWv7k3D/Qv8OaiReTw8VUs3QT9hmYQYmaBa93wvxdBQhZwJyCtBpiGlbEyH0LMwphJ0aKZ6c/fYMn13kCj7YnSn7M8fhkqtJzKylZLiSP/OFeR/uV6Gg4vQ8DjNEGI2GzTIhIuJWyzv9rkChmJiAWWKW60uG1FFGVqLFjo1/dAU4oo2C+NfZjtUgluwiyu4tyKuRDqiEaAJCknpK8tN08/NFMjccFxsYe8RWftlbm33f5v8F7Qbdf+03ng8q11ezw9QJofkiJwQn5yTS3JHHkiLMDImb+SdfJS+nLKz41RnpU5p/mefLIRz8A1vW7qw</latexit>�

<latexit sha1_base64="WUqYpOUqC3vDwpPsTXxORIYVrtc=">AAACYHicbVFLS8NAEN7GV63P6k0vwSJ4KkkV9Ojr4EVQ6AuaIJvttF26m4TdiViX/Aiv+su8+kvctD1YdWDh45vZmW++iVLBNXreZ8lZWl5ZXSuvVzY2t7Z3dqt7bZ1kikGLJSJR3YhqEDyGFnIU0E0VUBkJ6ETjmyLfeQaleRI3cZJCKOkw5gPOKFqqEwhb2qdPuzWv7k3D/Qv8OaiReTw8VUs3QT9hmYQYmaBa93wvxdBQhZwJyCtBpiGlbEyH0LMwphJ0aKZ6c/fYMn13kCj7YnSn7M8fhkqtJzKylZLiSP/OFeR/uV6Gg4vQ8DjNEGI2GzTIhIuJWyzv9rkChmJiAWWKW60uG1FFGVqLFjo1/dAU4oo2C+NfZjtUgluwiyu4tyKuRDqiEaAJCknpK8tN08/NFMjccFxsYe8RWftlbm33f5v8F7Qbdf+03ng8q11ezw9QJofkiJwQn5yTS3JHHkiLMDImb+SdfJS+nLKz41RnpU5p/mefLIRz8A1vW7qw</latexit>�
<latexit sha1_base64="WUqYpOUqC3vDwpPsTXxORIYVrtc=">AAACYHicbVFLS8NAEN7GV63P6k0vwSJ4KkkV9Ojr4EVQ6AuaIJvttF26m4TdiViX/Aiv+su8+kvctD1YdWDh45vZmW++iVLBNXreZ8lZWl5ZXSuvVzY2t7Z3dqt7bZ1kikGLJSJR3YhqEDyGFnIU0E0VUBkJ6ETjmyLfeQaleRI3cZJCKOkw5gPOKFqqEwhb2qdPuzWv7k3D/Qv8OaiReTw8VUs3QT9hmYQYmaBa93wvxdBQhZwJyCtBpiGlbEyH0LMwphJ0aKZ6c/fYMn13kCj7YnSn7M8fhkqtJzKylZLiSP/OFeR/uV6Gg4vQ8DjNEGI2GzTIhIuJWyzv9rkChmJiAWWKW60uG1FFGVqLFjo1/dAU4oo2C+NfZjtUgluwiyu4tyKuRDqiEaAJCknpK8tN08/NFMjccFxsYe8RWftlbm33f5v8F7Qbdf+03ng8q11ezw9QJofkiJwQn5yTS3JHHkiLMDImb+SdfJS+nLKz41RnpU5p/mefLIRz8A1vW7qw</latexit>

Global

Setting

Algorithm
Compiler Compile

RulesBNFES

A ::=B |C
<latexit sha1_base64="GLMXsP5/U3ZwfL4AED45+I3FVgA=">AAACnnicbVHLahsxFJWnr8R9xGmX2cg1pV2ZmSTQEAjkUUo3oSnYicEajEa+jkUkzSDdKXHFfEK/ptv2Q/o31dgudJJekDic+74nK5R0GMe/W9GDh48eP9nYbD999vzFVmf75aXLSytgKHKV21HGHShpYIgSFYwKC1xnCq6ym7Paf/UVrJO5GeCigFTzayNnUnAM1KTzts0QbkOiP6lY9/DwiHX/EqeBYFpOWdefVZNOL+7HS6P3QbIGPbK2i8l2a8KmuSg1GBSKOzdO4gJTzy1KoaBqs9JBwcUNv4ZxgIZrcKlfblTRN4GZ0lluwzNIl+y/GZ5r5xY6C5Ga49zd9dXk/3zjEmcHqZemKBGMWDWalYpiTuvz0Km0IFAtAuDCyjArFXNuucBwxEalQZL6eri6TKP97WqHNvsAYXEL52GIE1XMeQboWT1S8U1UfpBUfgl05SU272Fyq7kCnfoy/M3yQc0siKdrSZK7AtwHl7v9ZK+/+2W/d3y6FmeD7JDX5B1JyHtyTD6RCzIkgnwnP8hP8iui0cfoPPq8Co1a65xXpGHR6A/aVtI5</latexit>

ECMAScript

Spec
Extractor

Algorithms

manual

/ 35PS Lab Seminar - Towards Co-evolution of JavaScript Specification and Tools

SemanticsSyntaxSyntax Semantics

Overall Structure of JISET

17

JavaScript

Program

JavaScript
Parser JavaScript

AST

AST-IR
Translator Intermediate

Representation

IRES

Parser
Generator IRES

Functions

�
<latexit sha1_base64="WUqYpOUqC3vDwpPsTXxORIYVrtc=">AAACYHicbVFLS8NAEN7GV63P6k0vwSJ4KkkV9Ojr4EVQ6AuaIJvttF26m4TdiViX/Aiv+su8+kvctD1YdWDh45vZmW++iVLBNXreZ8lZWl5ZXSuvVzY2t7Z3dqt7bZ1kikGLJSJR3YhqEDyGFnIU0E0VUBkJ6ETjmyLfeQaleRI3cZJCKOkw5gPOKFqqEwhb2qdPuzWv7k3D/Qv8OaiReTw8VUs3QT9hmYQYmaBa93wvxdBQhZwJyCtBpiGlbEyH0LMwphJ0aKZ6c/fYMn13kCj7YnSn7M8fhkqtJzKylZLiSP/OFeR/uV6Gg4vQ8DjNEGI2GzTIhIuJWyzv9rkChmJiAWWKW60uG1FFGVqLFjo1/dAU4oo2C+NfZjtUgluwiyu4tyKuRDqiEaAJCknpK8tN08/NFMjccFxsYe8RWftlbm33f5v8F7Qbdf+03ng8q11ezw9QJofkiJwQn5yTS3JHHkiLMDImb+SdfJS+nLKz41RnpU5p/mefLIRz8A1vW7qw</latexit>�

<latexit sha1_base64="WUqYpOUqC3vDwpPsTXxORIYVrtc=">AAACYHicbVFLS8NAEN7GV63P6k0vwSJ4KkkV9Ojr4EVQ6AuaIJvttF26m4TdiViX/Aiv+su8+kvctD1YdWDh45vZmW++iVLBNXreZ8lZWl5ZXSuvVzY2t7Z3dqt7bZ1kikGLJSJR3YhqEDyGFnIU0E0VUBkJ6ETjmyLfeQaleRI3cZJCKOkw5gPOKFqqEwhb2qdPuzWv7k3D/Qv8OaiReTw8VUs3QT9hmYQYmaBa93wvxdBQhZwJyCtBpiGlbEyH0LMwphJ0aKZ6c/fYMn13kCj7YnSn7M8fhkqtJzKylZLiSP/OFeR/uV6Gg4vQ8DjNEGI2GzTIhIuJWyzv9rkChmJiAWWKW60uG1FFGVqLFjo1/dAU4oo2C+NfZjtUgluwiyu4tyKuRDqiEaAJCknpK8tN08/NFMjccFxsYe8RWftlbm33f5v8F7Qbdf+03ng8q11ezw9QJofkiJwQn5yTS3JHHkiLMDImb+SdfJS+nLKz41RnpU5p/mefLIRz8A1vW7qw</latexit>�
<latexit sha1_base64="WUqYpOUqC3vDwpPsTXxORIYVrtc=">AAACYHicbVFLS8NAEN7GV63P6k0vwSJ4KkkV9Ojr4EVQ6AuaIJvttF26m4TdiViX/Aiv+su8+kvctD1YdWDh45vZmW++iVLBNXreZ8lZWl5ZXSuvVzY2t7Z3dqt7bZ1kikGLJSJR3YhqEDyGFnIU0E0VUBkJ6ETjmyLfeQaleRI3cZJCKOkw5gPOKFqqEwhb2qdPuzWv7k3D/Qv8OaiReTw8VUs3QT9hmYQYmaBa93wvxdBQhZwJyCtBpiGlbEyH0LMwphJ0aKZ6c/fYMn13kCj7YnSn7M8fhkqtJzKylZLiSP/OFeR/uV6Gg4vQ8DjNEGI2GzTIhIuJWyzv9rkChmJiAWWKW60uG1FFGVqLFjo1/dAU4oo2C+NfZjtUgluwiyu4tyKuRDqiEaAJCknpK8tN08/NFMjccFxsYe8RWftlbm33f5v8F7Qbdf+03ng8q11ezw9QJofkiJwQn5yTS3JHHkiLMDImb+SdfJS+nLKz41RnpU5p/mefLIRz8A1vW7qw</latexit>

Global

Setting

Algorithm
Compiler Compile

RulesBNFES

A ::=B |C
<latexit sha1_base64="GLMXsP5/U3ZwfL4AED45+I3FVgA=">AAACnnicbVHLahsxFJWnr8R9xGmX2cg1pV2ZmSTQEAjkUUo3oSnYicEajEa+jkUkzSDdKXHFfEK/ptv2Q/o31dgudJJekDic+74nK5R0GMe/W9GDh48eP9nYbD999vzFVmf75aXLSytgKHKV21HGHShpYIgSFYwKC1xnCq6ym7Paf/UVrJO5GeCigFTzayNnUnAM1KTzts0QbkOiP6lY9/DwiHX/EqeBYFpOWdefVZNOL+7HS6P3QbIGPbK2i8l2a8KmuSg1GBSKOzdO4gJTzy1KoaBqs9JBwcUNv4ZxgIZrcKlfblTRN4GZ0lluwzNIl+y/GZ5r5xY6C5Ga49zd9dXk/3zjEmcHqZemKBGMWDWalYpiTuvz0Km0IFAtAuDCyjArFXNuucBwxEalQZL6eri6TKP97WqHNvsAYXEL52GIE1XMeQboWT1S8U1UfpBUfgl05SU272Fyq7kCnfoy/M3yQc0siKdrSZK7AtwHl7v9ZK+/+2W/d3y6FmeD7JDX5B1JyHtyTD6RCzIkgnwnP8hP8iui0cfoPPq8Co1a65xXpGHR6A/aVtI5</latexit>

ECMAScript

Spec
Extractor

Algorithms

manual

/ 35PS Lab Seminar - Towards Co-evolution of JavaScript Specification and Tools

Semantics - Algorithm Compilation

18

AST-IR
Translator

IRES

Functions

�
<latexit sha1_base64="WUqYpOUqC3vDwpPsTXxORIYVrtc=">AAACYHicbVFLS8NAEN7GV63P6k0vwSJ4KkkV9Ojr4EVQ6AuaIJvttF26m4TdiViX/Aiv+su8+kvctD1YdWDh45vZmW++iVLBNXreZ8lZWl5ZXSuvVzY2t7Z3dqt7bZ1kikGLJSJR3YhqEDyGFnIU0E0VUBkJ6ETjmyLfeQaleRI3cZJCKOkw5gPOKFqqEwhb2qdPuzWv7k3D/Qv8OaiReTw8VUs3QT9hmYQYmaBa93wvxdBQhZwJyCtBpiGlbEyH0LMwphJ0aKZ6c/fYMn13kCj7YnSn7M8fhkqtJzKylZLiSP/OFeR/uV6Gg4vQ8DjNEGI2GzTIhIuJWyzv9rkChmJiAWWKW60uG1FFGVqLFjo1/dAU4oo2C+NfZjtUgluwiyu4tyKuRDqiEaAJCknpK8tN08/NFMjccFxsYe8RWftlbm33f5v8F7Qbdf+03ng8q11ezw9QJofkiJwQn5yTS3JHHkiLMDImb+SdfJS+nLKz41RnpU5p/mefLIRz8A1vW7qw</latexit>�

<latexit sha1_base64="WUqYpOUqC3vDwpPsTXxORIYVrtc=">AAACYHicbVFLS8NAEN7GV63P6k0vwSJ4KkkV9Ojr4EVQ6AuaIJvttF26m4TdiViX/Aiv+su8+kvctD1YdWDh45vZmW++iVLBNXreZ8lZWl5ZXSuvVzY2t7Z3dqt7bZ1kikGLJSJR3YhqEDyGFnIU0E0VUBkJ6ETjmyLfeQaleRI3cZJCKOkw5gPOKFqqEwhb2qdPuzWv7k3D/Qv8OaiReTw8VUs3QT9hmYQYmaBa93wvxdBQhZwJyCtBpiGlbEyH0LMwphJ0aKZ6c/fYMn13kCj7YnSn7M8fhkqtJzKylZLiSP/OFeR/uV6Gg4vQ8DjNEGI2GzTIhIuJWyzv9rkChmJiAWWKW60uG1FFGVqLFjo1/dAU4oo2C+NfZjtUgluwiyu4tyKuRDqiEaAJCknpK8tN08/NFMjccFxsYe8RWftlbm33f5v8F7Qbdf+03ng8q11ezw9QJofkiJwQn5yTS3JHHkiLMDImb+SdfJS+nLKz41RnpU5p/mefLIRz8A1vW7qw</latexit>�
<latexit sha1_base64="WUqYpOUqC3vDwpPsTXxORIYVrtc=">AAACYHicbVFLS8NAEN7GV63P6k0vwSJ4KkkV9Ojr4EVQ6AuaIJvttF26m4TdiViX/Aiv+su8+kvctD1YdWDh45vZmW++iVLBNXreZ8lZWl5ZXSuvVzY2t7Z3dqt7bZ1kikGLJSJR3YhqEDyGFnIU0E0VUBkJ6ETjmyLfeQaleRI3cZJCKOkw5gPOKFqqEwhb2qdPuzWv7k3D/Qv8OaiReTw8VUs3QT9hmYQYmaBa93wvxdBQhZwJyCtBpiGlbEyH0LMwphJ0aKZ6c/fYMn13kCj7YnSn7M8fhkqtJzKylZLiSP/OFeR/uV6Gg4vQ8DjNEGI2GzTIhIuJWyzv9rkChmJiAWWKW60uG1FFGVqLFjo1/dAU4oo2C+NfZjtUgluwiyu4tyKuRDqiEaAJCknpK8tN08/NFMjccFxsYe8RWftlbm33f5v8F7Qbdf+03ng8q11ezw9QJofkiJwQn5yTS3JHHkiLMDImb+SdfJS+nLKz41RnpU5p/mefLIRz8A1vW7qw</latexit>

Global

Setting

Algorithm
Compiler Compile

Rules

Algorithms manual

"ArrayLiteral0.Evaluation" (Elision) => {

 let array = ! (ArrayCreate 0)

 if (= Elision absent) let pad = 0

 else let pad = Elision.ElisionWidth

 (Set array "length" (ToUint32 pad) false)

 return array

}

The Evaluation algorithm for the first alternative of ArrayLiteral in ES10

The IRES function of the first alternative of ArrayLiteral in ES10

/ 35PS Lab Seminar - Towards Co-evolution of JavaScript Specification and Tools

Semantics - Algorithm Compilation

18

AST-IR
Translator

IRES

Functions

�
<latexit sha1_base64="WUqYpOUqC3vDwpPsTXxORIYVrtc=">AAACYHicbVFLS8NAEN7GV63P6k0vwSJ4KkkV9Ojr4EVQ6AuaIJvttF26m4TdiViX/Aiv+su8+kvctD1YdWDh45vZmW++iVLBNXreZ8lZWl5ZXSuvVzY2t7Z3dqt7bZ1kikGLJSJR3YhqEDyGFnIU0E0VUBkJ6ETjmyLfeQaleRI3cZJCKOkw5gPOKFqqEwhb2qdPuzWv7k3D/Qv8OaiReTw8VUs3QT9hmYQYmaBa93wvxdBQhZwJyCtBpiGlbEyH0LMwphJ0aKZ6c/fYMn13kCj7YnSn7M8fhkqtJzKylZLiSP/OFeR/uV6Gg4vQ8DjNEGI2GzTIhIuJWyzv9rkChmJiAWWKW60uG1FFGVqLFjo1/dAU4oo2C+NfZjtUgluwiyu4tyKuRDqiEaAJCknpK8tN08/NFMjccFxsYe8RWftlbm33f5v8F7Qbdf+03ng8q11ezw9QJofkiJwQn5yTS3JHHkiLMDImb+SdfJS+nLKz41RnpU5p/mefLIRz8A1vW7qw</latexit>�

<latexit sha1_base64="WUqYpOUqC3vDwpPsTXxORIYVrtc=">AAACYHicbVFLS8NAEN7GV63P6k0vwSJ4KkkV9Ojr4EVQ6AuaIJvttF26m4TdiViX/Aiv+su8+kvctD1YdWDh45vZmW++iVLBNXreZ8lZWl5ZXSuvVzY2t7Z3dqt7bZ1kikGLJSJR3YhqEDyGFnIU0E0VUBkJ6ETjmyLfeQaleRI3cZJCKOkw5gPOKFqqEwhb2qdPuzWv7k3D/Qv8OaiReTw8VUs3QT9hmYQYmaBa93wvxdBQhZwJyCtBpiGlbEyH0LMwphJ0aKZ6c/fYMn13kCj7YnSn7M8fhkqtJzKylZLiSP/OFeR/uV6Gg4vQ8DjNEGI2GzTIhIuJWyzv9rkChmJiAWWKW60uG1FFGVqLFjo1/dAU4oo2C+NfZjtUgluwiyu4tyKuRDqiEaAJCknpK8tN08/NFMjccFxsYe8RWftlbm33f5v8F7Qbdf+03ng8q11ezw9QJofkiJwQn5yTS3JHHkiLMDImb+SdfJS+nLKz41RnpU5p/mefLIRz8A1vW7qw</latexit>�
<latexit sha1_base64="WUqYpOUqC3vDwpPsTXxORIYVrtc=">AAACYHicbVFLS8NAEN7GV63P6k0vwSJ4KkkV9Ojr4EVQ6AuaIJvttF26m4TdiViX/Aiv+su8+kvctD1YdWDh45vZmW++iVLBNXreZ8lZWl5ZXSuvVzY2t7Z3dqt7bZ1kikGLJSJR3YhqEDyGFnIU0E0VUBkJ6ETjmyLfeQaleRI3cZJCKOkw5gPOKFqqEwhb2qdPuzWv7k3D/Qv8OaiReTw8VUs3QT9hmYQYmaBa93wvxdBQhZwJyCtBpiGlbEyH0LMwphJ0aKZ6c/fYMn13kCj7YnSn7M8fhkqtJzKylZLiSP/OFeR/uV6Gg4vQ8DjNEGI2GzTIhIuJWyzv9rkChmJiAWWKW60uG1FFGVqLFjo1/dAU4oo2C+NfZjtUgluwiyu4tyKuRDqiEaAJCknpK8tN08/NFMjccFxsYe8RWftlbm33f5v8F7Qbdf+03ng8q11ezw9QJofkiJwQn5yTS3JHHkiLMDImb+SdfJS+nLKz41RnpU5p/mefLIRz8A1vW7qw</latexit>

Global

Setting

Algorithm
Compiler Compile

Rules

Algorithms manual

"ArrayLiteral0.Evaluation" (Elision) => {

 let array = ! (ArrayCreate 0)

 if (= Elision absent) let pad = 0

 else let pad = Elision.ElisionWidth

 (Set array "length" (ToUint32 pad) false)

 return array

}

The Evaluation algorithm for the first alternative of ArrayLiteral in ES10

The IRES function of the first alternative of ArrayLiteral in ES10

/ 35PS Lab Seminar - Towards Co-evolution of JavaScript Specification and Tools 19

S = // statements 
 Let ~ V ~ be ~ E ~ . ^^ ILet 

E = // expressions

 ! E ^^ EAbruptCheck |

 str ~ (~ E ~) ^^ ECall |

 num ^^ _.toDouble

Simplified compile rules

Parsing rules Conversion Rules

/ 35PS Lab Seminar - Towards Co-evolution of JavaScript Specification and Tools 19

S = // statements 
 Let ~ V ~ be ~ E ~ . ^^ ILet 

E = // expressions

 ! E ^^ EAbruptCheck |

 str ~ (~ E ~) ^^ ECall |

 num ^^ _.toDouble

Simplified compile rules

Parsing rules Conversion Rules

/ 35PS Lab Seminar - Towards Co-evolution of JavaScript Specification and Tools 19

S = // statements 
 Let ~ V ~ be ~ E ~ . ^^ ILet 

E = // expressions

 ! E ^^ EAbruptCheck |

 str ~ (~ E ~) ^^ ECall |

 num ^^ _.toDouble

Simplified compile rules

Parsing rules Conversion Rules

/ 35PS Lab Seminar - Towards Co-evolution of JavaScript Specification and Tools 19

S = // statements 
 Let ~ V ~ be ~ E ~ . ^^ ILet 

E = // expressions

 ! E ^^ EAbruptCheck |

 str ~ (~ E ~) ^^ ECall |

 num ^^ _.toDouble

Simplified compile rules

Parsing rules Conversion Rules

/ 35PS Lab Seminar - Towards Co-evolution of JavaScript Specification and Tools 20

S = // statements 
 Let ~ V ~ be ~ E ~ . ^^ ILet 

E = // expressions

 ! E ^^ EAbruptCheck |

 str ~ (~ E ~) ^^ ECall |

 num ^^ _.toDouble

Simplified compile rules

Parsing rules Conversion Rules

/ 35PS Lab Seminar - Towards Co-evolution of JavaScript Specification and Tools 20

S = // statements 
 Let ~ V ~ be ~ E ~ . ^^ ILet 

E = // expressions

 ! E ^^ EAbruptCheck |

 str ~ (~ E ~) ^^ ECall |

 num ^^ _.toDouble

Simplified compile rules

Parsing rules Conversion Rules

ILet(array, EAbruptCheck(

 ECall("ArrayCreate", 0)))

/ 35PS Lab Seminar - Towards Co-evolution of JavaScript Specification and Tools 20

S = // statements 
 Let ~ V ~ be ~ E ~ . ^^ ILet 

E = // expressions

 ! E ^^ EAbruptCheck |

 str ~ (~ E ~) ^^ ECall |

 num ^^ _.toDouble

Simplified compile rules

Parsing rules Conversion Rules
let array = ! (ArrayCreate 0)

ILet(array, EAbruptCheck(

 ECall("ArrayCreate", 0)))

/ 35PS Lab Seminar - Towards Co-evolution of JavaScript Specification and Tools

Semantics - Evaluation

21

Name # Rules

Statment 21

Expression 27

Condition 16

Value 11

Type 34

Reference 9

Total 118

The number of compile rules

/ 35PS Lab Seminar - Towards Co-evolution of JavaScript Specification and Tools

Semantics - Evaluation

21

≈ 95% Compiled
Name # Rules

Statment 21

Expression 27

Condition 16

Value 11

Type 34

Reference 9

Total 118

The number of compile rules

/ 35PS Lab Seminar - Towards Co-evolution of JavaScript Specification and Tools 22

Semantics - Evaluation

16,355 / 18,064
(90.54%)

292 / 303 (96.37%)

• Test262 - Official ECMAScript test suite

/ 35PS Lab Seminar - Towards Co-evolution of JavaScript Specification and Tools 22

Semantics - Evaluation

16,355 / 18,064
(90.54%)

18,064 / 18,064
(100.00%)

9 bugs in ES10

292 / 303 (96.37%)

• Test262 - Official ECMAScript test suite

/ 35PS Lab Seminar - Towards Co-evolution of JavaScript Specification and Tools 22

Semantics - Evaluation

16,355 / 18,064
(90.54%)

18,064 / 18,064
(100.00%)

9 bugs in ES10

292 / 303 (96.37%)

3 bugs in ES.Next

303 / 303 (100.00%)

• Test262 - Official ECMAScript test suite

/ 35PS Lab Seminar - Towards Co-evolution of JavaScript Specification and Tools 22

Semantics - Evaluation

16,355 / 18,064
(90.54%)

All Tests
Passed

18,064 / 18,064
(100.00%)

9 bugs in ES10

292 / 303 (96.37%)

3 bugs in ES.Next

303 / 303 (100.00%)

• Test262 - Official ECMAScript test suite

/ 35PS Lab Seminar - Towards Co-evolution of JavaScript Specification and Tools

Co-evolution of JavaScript Spec. and Tools

23

ECMAScript

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

JavaScript Static Analysis with Evolving Engines and
Specification

Jihyeok Park
KAIST, South Korea

jhpark0223@kaist.ac.kr

ABSTRACT
JavaScript is one of the most dominating programming languages.
Despite its popularity, the highly dynamic nature of JavaScript
makes its semantics complex thus understanding and reasoning
about JavaScript programs are challenging tasks. Therefore, Re-
searchers have proposed JavaScript static analysis based on ab-
stract interpretation with the the abstract semantics conforming
to ECMAScript, the standard speci�cation for JavaScript. However,
all the existing abstract semantics are manually de�ned thus the
current approach is labor-intensive and error-prone. Moreover, in
late 2014, this problem becomes more critical because the Ecma
Technical Committee 39 announced that they will annually update
ECMAScript.

To alleviate the problem, we propose an approach to perform
JavaScript static analysis using the abstract semantics automatically
de�ned with both of JavaScript engines and speci�cation. Our main
idea is 1) to leverage the existing JavaScript engines as much as
possible, and 2) to utilize the formal semantics automatically ex-
tracted from ECMAScript for remaining parts. We believe that our
approach would be able to analyze JavaScript programs developed
with new language features as well as improve their quality.

KEYWORDS
JavaScript, mechanized speci�cation, static analysis, abstract inter-
pretation
ACM Reference Format:
Jihyeok Park. 2021. JavaScript Static Analysis with Evolving Engines and
Speci�cation. In Proceedings of ACM Conference (Conference’17). ACM, New
York, NY, USA, 3 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
JavaScript is one of the most dominating programming languages.
While JavaScript was initially designed for client-side programming
in web browsers, and it is now widely used in server-side program-
ming [6] and even in embedded systems [3, 5, 7]. According to
W3Techs1, 97.2% of websites use JavaScript as their client-side pro-
gramming language. The 2020 State of the Octoverse2, which is the
1https://w3techs.com/technologies/details/cp-javascript/all/all
2https://octoverse.github.com/

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

annual report of GitHub, reports that JavaScript was the top-ranked
programming language in GitHub repositories since 2014 to 2020.

Researchers have proposed various static analyzers to under-
stand and reason about JavaScript programs. Despite its popularity,
JavaScript developers often su�er from its intricate and dynamic
language features, which may cause unexpected behaviors. For ex-
ample, the function declaration function f(x){ return x == !x }

may seem to always return false. Surprisingly, it returns truewhen
its argument is an empty array; f([]) = true. To correctly under-
stand and reason about such a complex behavior, researchers have
proposed various static analyzers for JavaScript programs, such as
TAJS [15], SAFE [20], JSAI [16], and WALA [26].

However, existing JavaScript static analyzers utilize manually
de�ned formal semantics, and this approach is labor-intensive and
error-prone. ECMAScript, which is a standard speci�cation for
JavaScript maintained by the Ecma Technical Committee 39 (TC39),
describes syntax and semantics of JavaScript in a structured na-
ture language. Based on the speci�cation, researchers have de�ned
various JavaScript formal semantics [8, 14, 21] or have modi�ed
them suitable for debuggers [9], veri�cation tools [12, 13], and
static analyzers [15, 16, 20, 26]. However, all of them are written
by hand thus the existing approach is tedious, labor-intensive, and
error-prone. Moreover, in late 2014, the TC39 announced the yearly
release cadence and open development process of ECMAScript to
quickly adapt to evolving development environments. Thus, there
are already six updates after ES5.1 and this problem becomes more
critical.

To alleviate this problem, we propose an approach to perform
JavaScript static analysis using the abstract semantics automatically
de�ned with both of JavaScript engines and speci�cation. Our main
idea is 1) to leverage the existing JavaScript engines as much as
possible, and 2) to utilize the formal semantics automatically ex-
tracted from ECMAScript for remaining parts. To lessen the burden
to manually de�ne the abstract semantics for evolving JavaScript
speci�cation, we present a technique to extract a formal semantics
from ECMAScript and de�ne an abstract semantics based on it.
However, the automatically extracted abstract semantics might be
much slower than highly optimized abstract semantics written by
hand. Thus, we also leverage existing JavaScript engines to de�ne
abstract semantics for better performance of static analysis. Our
approach consists of three steps with three di�erent tools; First,
JISET automatically extracts JavaScript formal semantics using rule-
based compilation from abstract algorithms to functions of IRES,
an Intermediate Representation that we designed for ECMAScript.
Based on the extracted semantics, JEST performs #+1-version dif-
ferential testing for existing JavaScript engines and ECMAScript to
check whether they conform to each other. Finally, JSAVER performs

1

Mechanized 
Spec.ASE'20 Tests JS EngineMechanized 
Spec.

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

JavaScript Static Analysis with Evolving Engines and Specification Conference’17, July 2017, Washington, DC, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Figure 2: The overall structure of JavaScript static analysis
with evolving engines and speci�cation

of ArrayLiteral and the Evaluation algorithm for its �rst alter-
native in ES11. We utilize such a common pattern in the writing
style to extract mechanized speci�cation directly from ECMAScript.
Moreover, commercial JavaScript engines are highly optimized to
quickly execute real-world JavaScript programs. However, most
of JavaScript static analyzers are developed and maintained by re-
searchers thus they are not scalable to analyze real-world JavaScript
programs. Thus, we leverage JavaScript engines as much as possible
during static analysis. This work is closely related to two research
�elds: mechanized speci�cation extraction and combined analysis of
dynamic and static analysis.

Mechanized Speci�cation Extraction. In diverse �elds, several
researchers have extracted mechanized speci�cations from speci�-
cations written in a natural language to automatically handle their
contents. Nguyen [18] extracted a mechanized speci�cation of x86
architecture from its natural language description using Natural
Language Processing (NLP) techniques. Moreover, Vu and Ogawa
[31] proposed a similar approach for ARM architecture using NLP
techniques with machine Learning techniques. Besides low-level
assembly languages, Zhai et al. [35] presented a technique to auto-
matically synthesize Java API functions from their documentation
using NLP techniques. For JavaScript, Ye et al. [34] presented C���
����, a compiler fuzzing framework to detect JavaScript engine
bugs using boundary conditions extracted from ECMAScript ab-
stract algorithms with deep learning-based language models. For
network protocols, Kim et al. [16] proposed B���S���, which ex-
tracts message structures from tables in cellular speci�cations for
L3 protocols to perform comparative analysis of baseband software.
However, there is no existing approach to automatically extract a
mechanized speci�cation that represents the entire formal seman-
tics of a high-level modern programming language.

Combined Analysis. Static and dynamic analyses are two of the
most popular program analysis techniques. Several researchers
have leveraged dynamic analysis during static analysis for 1) au-
tomatic modeling, 2) pruning analysis scope, and 3) performance
improvement. For automatic modeling, Park et al. [22] presented
a Sample-Run-Abstract (SRA) technique that utilizes the execution
results of sampled concrete states as an automatic modeling during
JavaScript static analysis. To prune out infeasible analysis scopes,
Schäfer et al. [28] utilized dynamic determinacy analysis and elimi-
nated invocations of eval and constant property names. Moreover,
Wei and Ryder [32] introduced blended taint analysis that sacri-
�ces the analysis soundness but increase analysis precision using
concrete traces collected by dynamic analysis. Similarly, Park et al.

Figure 3: A mechanized speci�cation extraction from EC-
MAScript via JISET

val ArrayLiteral: List[Boolean] => LAParser[T] = memo {

case List(Yield , Await) =>

�[� ~ opt(Elision) ~ �]� ^^ ArrayLiteral0 |

�[� ~ ElementList(Yield ,Await) ~ �]� ^^ ArrayLiteral1 |

�[� ~ ElementList(Yield ,Await) ~ �,�

~ opt(Elision)~ �]� ^^ ArrayLiteral2

}

(a) The generated parser for the ArrayLiteral production

ArrayLiteral [0]. Evaluation (Elision) => {

let array = [! (ArrayCreate 0)]

if (! (= Elision absent)) {

let len = (Elision.ArrayAccumulation array 0)

[? len]

}

return array

}

(b) The IRES function compiled from the Evaluation algorithm

Figure 4: The generated parser and the compiled IRES func-
tion from the production and abstract algorithm in Figure 1

[23, 26] utilize them to prune out initial states, dynamically loaded
�les, and event handlers. Unlike previous approaches, Toman and
Grossman [30] proposed C������� that performs a sound com-
bined analysis that could signi�cantly improve the precision and
performance of Java static analysis.

3 GOALS OF THE RESEARCH
In this section, we explain goals of an approach to perform JavaScript
static analysis using the abstract semantics automatically de�ned
with both of JavaScript engines and speci�cation. Figure 2 describes
the overall structure of our approach and it consists of three steps
with three di�erent tools; First, JISET (Section 3.1) automatically
extracts JavaScript a mechanized speci�cation using a parser gener-
ation for syntax and a rule-based compilation for semantics. Using
the mechanized speci�cation extracted by JISET, JEST (Section 3.2)
performs #+1-version di�erential testing for existing JavaScript
engines and ECMAScript to check whether they conform to each
other. Finally, JSAVER (Section 3.3) performs JavaScript static analy-
sis based on the abstract semantics de�ned with both of JavaScript
engines and speci�cation. Among three tools, we already developed
JISET [24] and JEST [21] thus we are now focusing on developing
JSAVER.

3.1 JISET: Mechanized Speci�cation Extraction
We present JISET [24], a JavaScript IR-based Semantics Extrac-

tion Toolchain, and Figure 3 depicts the overall structure of JISET.
3

ICSE'21

Conformance Test

Synthesis

Distinguished Paper
Award!!

Mechanized 
Spec.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

JavaScript Static Analysis with Evolving Engines and
Specification

Jihyeok Park
KAIST, South Korea

jhpark0223@kaist.ac.kr

ABSTRACT
JavaScript is one of the most dominant programming languages. De-
spite its popularity, the highly dynamic nature of JavaScript makes
its semantics complex; thus, understanding and reasoning about
JavaScript programs are challenging tasks. Therefore, Researchers
have proposed JavaScript static analysis based on the abstract in-
terpretation with abstract semantics conforming to ECMAScript,
the standard speci�cation for JavaScript. However, all the existing
abstract semantics are manually de�ned; thus, the current approach
is labor-intensive and error-prone. Moreover, since late 2014, this
problem becomes more critical because the Ecma Technical Com-
mittee 39 announced that they would update ECMAScript annually.

To alleviate the problem, we propose an approach to perform
JavaScript static analysis using abstract semantics automatically
de�ned with both JavaScript engines and speci�cation. Our main
idea is 1) to leverage the existing JavaScript engines as much as
possible and 2) to utilize the mechanized speci�cation automatically
extracted from ECMAScript for the remaining parts. We believe that
our approach can to perform static analysis for JavaScript programs
developed with new language features and help build high-quality
JavaScript programs.

KEYWORDS
JavaScript, mechanized speci�cation, static analysis, abstract inter-
pretation
ACM Reference Format:
Jihyeok Park. 2021. JavaScript Static Analysis with Evolving Engines and
Speci�cation. In Proceedings of ACM Conference (Conference’17). ACM, New
York, NY, USA, 6 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
JavaScript is one of the most dominant programming languages.
While JavaScript was initially designed for client-side program-
ming in web browsers, it is now widely used in server-side pro-
gramming [4] and even in embedded systems [2, 3, 5]. According
to W3Techs1, 97.2% of websites use JavaScript as their client-side
programming language. The 2020 State of the Octoverse2, which is
1https://w3techs.com/technologies/details/cp-javascript/all/all
2https://octoverse.github.com/

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

the annual report of GitHub, reports that JavaScript was the top-
ranked programming language in GitHub repositories since 2014
to 2020.

Researchers have proposed various static analyzers to under-
stand and reason about JavaScript programs. Despite its popularity,
JavaScript developers often su�er from its intricate and dynamic
language features, which may cause unexpected behaviors. For ex-
ample, the function declaration function f(x){ return x == !x }

may seem to always return false. Surprisingly, it returns truewhen
its argument is an empty array: f([]) = true. To correctly under-
stand and reason about such a complex behavior, researchers have
proposed various static analyzers for JavaScript programs, such as
TAJS [14], SAFE [17], JSAI [15], and WALA [29].

However, existing JavaScript static analyzers utilize manually
de�ned formal semantics, and this approach is labor-intensive and
error-prone. ECMAScript, the standard speci�cation for JavaScript
maintained by the Ecma Technical Committee 39 (TC39), describes
syntax and semantics of JavaScript in a structured nature lan-
guage. Based on the speci�cation, researchers have de�ned various
JavaScript formal semantics [7, 13, 18, 20] or have modi�ed them
suitable for debuggers [8], veri�cation tools [11, 12], and static
analyzers [14, 15, 17, 29]. However, because all of them are writ-
ten by hand, the existing approach is tedious, labor-intensive, and
error-prone. Moreover, in late 2014, the TC39 announced the yearly
release cadence and open development process of ECMAScript to
quickly adapt to evolving development environments. Thus, there
are already six updates after ES5.1 and this problem becomes more
critical.

To alleviate this problem, we propose an approach to perform
JavaScript static analysis using abstract semantics automatically
de�ned with both JavaScript engines and speci�cation. Our main
idea is 1) to leverage the existing JavaScript engines as much as
possible and 2) to utilize the a mechanized speci�cation automati-
cally extracted from ECMAScript for the remaining parts. To lessen
the burden of manually de�ning the abstract semantics for the
evolving JavaScript speci�cation, we present a technique to extract
a mechanized speci�cation from ECMAScript and de�ne an ab-
stract semantics based on it. However, the automatically extracted
abstract semantics might be much slower than highly optimized
abstract semantics written by hand. Thus, we also leverage existing
JavaScript engines to de�ne abstract semantics for better perfor-
mance of static analysis. Our approach consists of three steps with
three di�erent tools; First, JISET automatically extracts JavaScript
mechanized speci�cation using a parser generation for syntax and
a rule-based compilation for semantics. Using the mechanized spec-
i�cation, JEST performs #+1-version di�erential testing for existing
JavaScript engines and ECMAScript to check whether they con-
form to each other. Finally, JSTAR performs JavaScript static analysis

1 On Review

<latexit sha1_base64="UFE5rAltPKCxrmF3rEz1sNHj3wU=">AAACNnicbVDLSsNAFJ34rO9Wl7oIFsFVSUTUZdGNSwWrQhvkZnrbDp1HmJmIJfQX3Oqn+Ctu3IlbP8FJm4WpHrhwOPd94oQzY4Pg3ZubX1hcWq6srK6tb2xuVWvbt0almmKLKq70fQwGOZPYssxyvE80gog53sXDizx/94jaMCVv7CjBSEBfsh6jYHOpYyF9qNaDRjCB/5eEBamTAlcPNW+v01U0FSgt5WBMOwwSG2WgLaMcx6ud1GACdAh9bDsqQaCJssmxY//AKV2/p7QLaf2J+rsjA2HMSMSuUoAdmNlcLv6Xa6e2dxZlTCapRUmni3op963y88/9LtNILR85AlQzd6tPB6CBWudPadJNGGX5cfmY0vqn6Q+lYgFD1EoJ9yBIinzs/Axn3ftLbo8a4UkjvD6uN88LZytkl+yTQxKSU9Ikl+SKtAglA/JMXsir9+Z9eJ/e17R0zit6dkgJ3vcPZwSspg==</latexit>⌧
Type Info.

Type Analysis

for Specification

ECMAScript Mechanized 
Spec.

<latexit sha1_base64="UFE5rAltPKCxrmF3rEz1sNHj3wU=">AAACNnicbVDLSsNAFJ34rO9Wl7oIFsFVSUTUZdGNSwWrQhvkZnrbDp1HmJmIJfQX3Oqn+Ctu3IlbP8FJm4WpHrhwOPd94oQzY4Pg3ZubX1hcWq6srK6tb2xuVWvbt0almmKLKq70fQwGOZPYssxyvE80gog53sXDizx/94jaMCVv7CjBSEBfsh6jYHOpYyF9qNaDRjCB/5eEBamTAlcPNW+v01U0FSgt5WBMOwwSG2WgLaMcx6ud1GACdAh9bDsqQaCJssmxY//AKV2/p7QLaf2J+rsjA2HMSMSuUoAdmNlcLv6Xa6e2dxZlTCapRUmni3op963y88/9LtNILR85AlQzd6tPB6CBWudPadJNGGX5cfmY0vqn6Q+lYgFD1EoJ9yBIinzs/Axn3ftLbo8a4UkjvD6uN88LZytkl+yTQxKSU9Ikl+SKtAglA/JMXsir9+Z9eJ/e17R0zit6dkgJ3vcPZwSspg==</latexit>⌧
Type Info.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

JavaScript Static Analysis with Evolving Engines and
Specification

Jihyeok Park
KAIST, South Korea

jhpark0223@kaist.ac.kr

ABSTRACT
JavaScript is one of the most dominant programming languages. De-
spite its popularity, the highly dynamic nature of JavaScript makes
its semantics complex; thus, understanding and reasoning about
JavaScript programs are challenging tasks. Therefore, Researchers
have proposed JavaScript static analysis based on the abstract in-
terpretation with abstract semantics conforming to ECMAScript,
the standard speci�cation for JavaScript. However, all the existing
abstract semantics are manually de�ned; thus, the current approach
is labor-intensive and error-prone. Moreover, since late 2014, this
problem becomes more critical because the Ecma Technical Com-
mittee 39 announced that they would update ECMAScript annually.

To alleviate the problem, we propose an approach to perform
JavaScript static analysis using abstract semantics automatically
de�ned with both JavaScript engines and speci�cation. Our main
idea is 1) to leverage the existing JavaScript engines as much as
possible and 2) to utilize the mechanized speci�cation automatically
extracted from ECMAScript for the remaining parts. We believe that
our approach can to perform static analysis for JavaScript programs
developed with new language features and help build high-quality
JavaScript programs.

KEYWORDS
JavaScript, mechanized speci�cation, static analysis, abstract inter-
pretation
ACM Reference Format:
Jihyeok Park. 2021. JavaScript Static Analysis with Evolving Engines and
Speci�cation. In Proceedings of ACM Conference (Conference’17). ACM, New
York, NY, USA, 6 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
JavaScript is one of the most dominant programming languages.
While JavaScript was initially designed for client-side program-
ming in web browsers, it is now widely used in server-side pro-
gramming [4] and even in embedded systems [2, 3, 5]. According
to W3Techs1, 97.2% of websites use JavaScript as their client-side
programming language. The 2020 State of the Octoverse2, which is
1https://w3techs.com/technologies/details/cp-javascript/all/all
2https://octoverse.github.com/

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

the annual report of GitHub, reports that JavaScript was the top-
ranked programming language in GitHub repositories since 2014
to 2020.

Researchers have proposed various static analyzers to under-
stand and reason about JavaScript programs. Despite its popularity,
JavaScript developers often su�er from its intricate and dynamic
language features, which may cause unexpected behaviors. For ex-
ample, the function declaration function f(x){ return x == !x }

may seem to always return false. Surprisingly, it returns truewhen
its argument is an empty array: f([]) = true. To correctly under-
stand and reason about such a complex behavior, researchers have
proposed various static analyzers for JavaScript programs, such as
TAJS [14], SAFE [17], JSAI [15], and WALA [29].

However, existing JavaScript static analyzers utilize manually
de�ned formal semantics, and this approach is labor-intensive and
error-prone. ECMAScript, the standard speci�cation for JavaScript
maintained by the Ecma Technical Committee 39 (TC39), describes
syntax and semantics of JavaScript in a structured nature lan-
guage. Based on the speci�cation, researchers have de�ned various
JavaScript formal semantics [7, 13, 18, 20] or have modi�ed them
suitable for debuggers [8], veri�cation tools [11, 12], and static
analyzers [14, 15, 17, 29]. However, because all of them are writ-
ten by hand, the existing approach is tedious, labor-intensive, and
error-prone. Moreover, in late 2014, the TC39 announced the yearly
release cadence and open development process of ECMAScript to
quickly adapt to evolving development environments. Thus, there
are already six updates after ES5.1 and this problem becomes more
critical.

To alleviate this problem, we propose an approach to perform
JavaScript static analysis using abstract semantics automatically
de�ned with both JavaScript engines and speci�cation. Our main
idea is 1) to leverage the existing JavaScript engines as much as
possible and 2) to utilize the a mechanized speci�cation automati-
cally extracted from ECMAScript for the remaining parts. To lessen
the burden of manually de�ning the abstract semantics for the
evolving JavaScript speci�cation, we present a technique to extract
a mechanized speci�cation from ECMAScript and de�ne an ab-
stract semantics based on it. However, the automatically extracted
abstract semantics might be much slower than highly optimized
abstract semantics written by hand. Thus, we also leverage existing
JavaScript engines to de�ne abstract semantics for better perfor-
mance of static analysis. Our approach consists of three steps with
three di�erent tools; First, JISET automatically extracts JavaScript
mechanized speci�cation using a parser generation for syntax and
a rule-based compilation for semantics. Using the mechanized spec-
i�cation, JEST performs #+1-version di�erential testing for existing
JavaScript engines and ECMAScript to check whether they conform
to each other. Finally, JSDebug performs JavaScript static analysis

1 Ongoing Work

JavaScript

Debugger

JS EngineMechanized 
Spec.

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

JavaScript Static Analysis with Evolving Engines and Specification Conference’17, July 2017, Washington, DC, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Figure 2: The overall structure of JavaScript static analysis
with evolving engines and speci�cation

most JavaScript static analyzers are developed and maintained by
researchers, they are not scalable to analyze real-world JavaScript
programs. Thus, we leverage JavaScript engines as much as possible
during static analysis. This work is closely related to two research
�elds: mechanized speci�cation extraction and combined analysis of
dynamic and static analysis.

Mechanized Speci�cation Extraction. In diverse �elds, several
researchers have extracted mechanized speci�cations from speci�-
cations written in a natural language to automatically handle their
contents. Nguyen [19] extracted a mechanized speci�cation of x86
architecture from its natural language description using Natural
Language Processing (NLP) techniques. Moreover, Vu and Ogawa
[31] proposed a similar approach for ARM architecture using NLP
techniques with machine Learning techniques. Besides low-level
assembly languages, Zhai et al. [35] presented a technique to auto-
matically synthesize Java API functions from their documentation
using NLP techniques. For JavaScript, Ye et al. [34] presented C���
����, a compiler fuzzing framework to detect JavaScript engine
bugs using boundary conditions extracted from ECMAScript ab-
stract algorithms with deep learning-based language models. For
network protocols, Kim et al. [16] proposed B���S���, which ex-
tracts message structures from tables in cellular speci�cations for
L3 protocols to perform comparative analysis of baseband software.
However, there is no existing approach to automatically extract a
mechanized speci�cation that represents the entire formal seman-
tics of a high-level modern programming language.

Combined Analysis. Static and dynamic analyses are two of the
most popular program analysis techniques. Several researchers
have leveraged dynamic analysis during static analysis for 1) au-
tomatic modeling, 2) pruning analysis scope, and 3) performance
improvement. For automatic modeling, Park et al. [22] presented
a Sample-Run-Abstract (SRA) technique that utilizes the execution
results of sampled concrete states as an automatic modeling during
JavaScript static analysis. To prune out infeasible analysis scopes,
Schäfer et al. [28] utilized dynamic determinacy analysis and elimi-
nated invocations of eval and constant property names. Moreover,
Wei and Ryder [32] introduced blended taint analysis that sacri-
�ces the analysis soundness but increases analysis precision using
concrete traces collected by dynamic analysis. Similarly, Park et al.
[23, 26] utilize them to prune out initial states, dynamically loaded
�les, and event handlers. Unlike previous approaches, Toman and
Grossman [30] proposed C������� that performs a sound com-
bined analysis that could signi�cantly improve the precision and
performance of Java static analysis.

Figure 3: A mechanized speci�cation extraction from EC-
MAScript via JISET

val ArrayLiteral: List[Boolean] => LAParser[T] = memo {

case List(Yield , Await) =>

�[� ~ opt(Elision) ~ �]� ^^ ArrayLiteral0 |

�[� ~ ElementList(Yield ,Await) ~ �]� ^^ ArrayLiteral1 |

�[� ~ ElementList(Yield ,Await) ~ �,�

~ opt(Elision)~ �]� ^^ ArrayLiteral2

}

(a) The generated parser for the ArrayLiteral production

ArrayLiteral [0]. Evaluation (Elision) => {

let array = [! (ArrayCreate 0)]

if (! (= Elision absent)) {

let len = (Elision.ArrayAccumulation array 0)

[? len]

}

return array

}

(b) The IRES function compiled from the Evaluation algorithm

Figure 4: The generated parser and the compiled IRES func-
tion from the production and abstract algorithm in Figure 1

3 GOALS OF THE RESEARCH
In this section, we explain goals of our approach to perform JavaScript
static analysis using the abstract semantics automatically de�ned
with both JavaScript engines and speci�cation. Figure 2 describes
the overall structure of our approach and it consists of three steps
with three tools; First, JISET (Section 3.1) automatically extracts a
mechanized speci�cation of JavaScript using a parser generation for
syntax and a rule-based compilation for semantics. Using the mech-
anized speci�cation extracted by JISET, JEST (Section 3.2) performs
#+1-version di�erential testing for existing JavaScript engines and
ECMAScript to check whether they conform to each other. Finally,
JSAVER (Section 3.3) performs JavaScript static analysis based on
the abstract semantics de�ned with both JavaScript engines and
speci�cation. Among three tools, we already developed JISET [24]
and JEST [21] and we are now focusing on developing JSAVER.

3.1 JISET: Mechanized Speci�cation Extraction
We present JISET [24], a JavaScript IR-based Semantics Extrac-

tion Toolchain, and Figure 3 depicts the overall structure of JISET.
We explain how JISET utilizes common patterns in the writing style
of ECMAScript to extract a mechanized speci�cation using the data
in JSON format extracted from ECMAScript by Spec Extractor. A
mechanized speci�cation consists of a JavaScript parser for syn-
tax and functions of IRES, an Intermediate Representation that we
designed for ECMAScript, for semantics.

3

Ongoing Work

JavaScript

Static Analysis

JS EngineECMAScript Mechanized 
Spec.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

JavaScript Static Analysis with Evolving Engines and
Specification

Jihyeok Park
KAIST, South Korea

jhpark0223@kaist.ac.kr

ABSTRACT
JavaScript is one of the most dominant programming languages. De-
spite its popularity, the highly dynamic nature of JavaScript makes
its semantics complex; thus, understanding and reasoning about
JavaScript programs are challenging tasks. Therefore, Researchers
have proposed JavaScript static analysis based on the abstract in-
terpretation with abstract semantics conforming to ECMAScript,
the standard speci�cation for JavaScript. However, all the existing
abstract semantics are manually de�ned; thus, the current approach
is labor-intensive and error-prone. Moreover, since late 2014, this
problem becomes more critical because the Ecma Technical Com-
mittee 39 announced that they would update ECMAScript annually.

To alleviate the problem, we propose an approach to perform
JavaScript static analysis using abstract semantics automatically
de�ned with both JavaScript engines and speci�cation. Our main
idea is 1) to leverage the existing JavaScript engines as much as
possible and 2) to utilize the mechanized speci�cation automatically
extracted from ECMAScript for the remaining parts. We believe that
our approach can to perform static analysis for JavaScript programs
developed with new language features and help build high-quality
JavaScript programs.

KEYWORDS
JavaScript, mechanized speci�cation, static analysis, abstract inter-
pretation

ACM Reference Format:
Jihyeok Park. 2021. JavaScript Static Analysis with Evolving Engines and
Speci�cation. In Proceedings of ACM Conference (Conference’17). ACM, New
York, NY, USA, 7 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
JSAVER

JSFix
JSSFix
SUPER-JS
JSUPER
ESFix

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

JavaScript is one of the most dominant programming languages.
While JavaScript was initially designed for client-side program-
ming in web browsers, it is now widely used in server-side pro-
gramming [4] and even in embedded systems [2, 3, 5]. According
to W3Techs1, 97.2% of websites use JavaScript as their client-side
programming language. The 2020 State of the Octoverse2, which is
the annual report of GitHub, reports that JavaScript was the top-
ranked programming language in GitHub repositories since 2014
to 2020.

Researchers have proposed various static analyzers to under-
stand and reason about JavaScript programs. Despite its popularity,
JavaScript developers often su�er from its intricate and dynamic
language features, which may cause unexpected behaviors. For ex-
ample, the function declaration function f(x){ return x == !x }

may seem to always return false. Surprisingly, it returns truewhen
its argument is an empty array: f([]) = true. To correctly under-
stand and reason about such a complex behavior, researchers have
proposed various static analyzers for JavaScript programs, such as
TAJS [14], SAFE [17], JSAI [15], and WALA [29].

However, existing JavaScript static analyzers utilize manually
de�ned formal semantics, and this approach is labor-intensive and
error-prone. ECMAScript, the standard speci�cation for JavaScript
maintained by the Ecma Technical Committee 39 (TC39), describes
syntax and semantics of JavaScript in a structured nature lan-
guage. Based on the speci�cation, researchers have de�ned various
JavaScript formal semantics [7, 13, 18, 20] or have modi�ed them
suitable for debuggers [8], veri�cation tools [11, 12], and static
analyzers [14, 15, 17, 29]. However, because all of them are writ-
ten by hand, the existing approach is tedious, labor-intensive, and
error-prone. Moreover, in late 2014, the TC39 announced the yearly
release cadence and open development process of ECMAScript to
quickly adapt to evolving development environments. Thus, there
are already six updates after ES5.1 and this problem becomes more
critical.

To alleviate this problem, we propose an approach to perform
JavaScript static analysis using abstract semantics automatically
de�ned with both JavaScript engines and speci�cation. Our main
idea is 1) to leverage the existing JavaScript engines as much as
possible and 2) to utilize the a mechanized speci�cation automati-
cally extracted from ECMAScript for the remaining parts. To lessen
the burden of manually de�ning the abstract semantics for the
evolving JavaScript speci�cation, we present a technique to extract
a mechanized speci�cation from ECMAScript and de�ne an ab-
stract semantics based on it. However, the automatically extracted
abstract semantics might be much slower than highly optimized
abstract semantics written by hand. Thus, we also leverage existing

1https://w3techs.com/technologies/details/cp-javascript/all/all
2https://octoverse.github.com/

1

Ongoing Work

<latexit sha1_base64="PijVNKgGrQaAgZTi4M7Cz3uI1Ww=">AAACO3icbVC7SgNBFJ2NrxhfUUstFoNgFXZF1FK0sYyQh5Iscndyo0PmsczMimHJV9jqp/gh1nZia+9ssoVRD1w4nPs+ccKZsUHw5pXm5hcWl8rLlZXVtfWN6uZW26hUU2xRxZW+jsEgZxJbllmO14lGEDHHTjy8yPOdB9SGKdm0owQjAXeSDRgF66SbHkfoG6sqt9VaUA8m8P+SsCA1UqBxu+nt9vqKpgKlpRyM6YZBYqMMtGWU47jSSw0mQIdwh11HJQg0UTa5eOzvO6XvD5R2Ia0/UX92ZCCMGYnYVQqw9+Z3Lhf/y3VTOziNMiaT1KKk00WDlPtW+fn7fp9ppJaPHAGqmbvVp/eggVpn0sykZhhl+XH5mJn1j9MfZooFDFErJdyDICnysfMz/O3eX9I+rIfH9fDqqHZ2XjhbJjtkjxyQkJyQM3JJGqRFKBHkiTyTF+/Ve/c+vM9packrerbJDLyvbzNrroQ=</latexit>

<latexit sha1_base64="PijVNKgGrQaAgZTi4M7Cz3uI1Ww=">AAACO3icbVC7SgNBFJ2NrxhfUUstFoNgFXZF1FK0sYyQh5Iscndyo0PmsczMimHJV9jqp/gh1nZia+9ssoVRD1w4nPs+ccKZsUHw5pXm5hcWl8rLlZXVtfWN6uZW26hUU2xRxZW+jsEgZxJbllmO14lGEDHHTjy8yPOdB9SGKdm0owQjAXeSDRgF66SbHkfoG6sqt9VaUA8m8P+SsCA1UqBxu+nt9vqKpgKlpRyM6YZBYqMMtGWU47jSSw0mQIdwh11HJQg0UTa5eOzvO6XvD5R2Ia0/UX92ZCCMGYnYVQqw9+Z3Lhf/y3VTOziNMiaT1KKk00WDlPtW+fn7fp9ppJaPHAGqmbvVp/eggVpn0sykZhhl+XH5mJn1j9MfZooFDFErJdyDICnysfMz/O3eX9I+rIfH9fDqqHZ2XjhbJjtkjxyQkJyQM3JJGqRFKBHkiTyTF+/Ve/c+vM9packrerbJDLyvbzNrroQ=</latexit>

Execution

Traces

ECMAScript

Automatic Update

Mechanized Spec.

Extraction

ECMAScript

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

JavaScript Static Analysis with Evolving Engines and
Specification

Jihyeok Park
KAIST, South Korea

jhpark0223@kaist.ac.kr

ABSTRACT
JavaScript is one of the most dominating programming languages.
Despite its popularity, the highly dynamic nature of JavaScript
makes its semantics complex thus understanding and reasoning
about JavaScript programs are challenging tasks. Therefore, Re-
searchers have proposed JavaScript static analysis based on ab-
stract interpretation with the the abstract semantics conforming
to ECMAScript, the standard speci�cation for JavaScript. However,
all the existing abstract semantics are manually de�ned thus the
current approach is labor-intensive and error-prone. Moreover, in
late 2014, this problem becomes more critical because the Ecma
Technical Committee 39 announced that they will annually update
ECMAScript.

To alleviate the problem, we propose an approach to perform
JavaScript static analysis using the abstract semantics automatically
de�ned with both of JavaScript engines and speci�cation. Our main
idea is 1) to leverage the existing JavaScript engines as much as
possible, and 2) to utilize the formal semantics automatically ex-
tracted from ECMAScript for remaining parts. We believe that our
approach would be able to analyze JavaScript programs developed
with new language features as well as improve their quality.

KEYWORDS
JavaScript, mechanized speci�cation, static analysis, abstract inter-
pretation
ACM Reference Format:
Jihyeok Park. 2021. JavaScript Static Analysis with Evolving Engines and
Speci�cation. In Proceedings of ACM Conference (Conference’17). ACM, New
York, NY, USA, 3 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
JavaScript is one of the most dominating programming languages.
While JavaScript was initially designed for client-side programming
in web browsers, and it is now widely used in server-side program-
ming [6] and even in embedded systems [3, 5, 7]. According to
W3Techs1, 97.2% of websites use JavaScript as their client-side pro-
gramming language. The 2020 State of the Octoverse2, which is the
1https://w3techs.com/technologies/details/cp-javascript/all/all
2https://octoverse.github.com/

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

annual report of GitHub, reports that JavaScript was the top-ranked
programming language in GitHub repositories since 2014 to 2020.

Researchers have proposed various static analyzers to under-
stand and reason about JavaScript programs. Despite its popularity,
JavaScript developers often su�er from its intricate and dynamic
language features, which may cause unexpected behaviors. For ex-
ample, the function declaration function f(x){ return x == !x }

may seem to always return false. Surprisingly, it returns truewhen
its argument is an empty array; f([]) = true. To correctly under-
stand and reason about such a complex behavior, researchers have
proposed various static analyzers for JavaScript programs, such as
TAJS [15], SAFE [20], JSAI [16], and WALA [26].

However, existing JavaScript static analyzers utilize manually
de�ned formal semantics, and this approach is labor-intensive and
error-prone. ECMAScript, which is a standard speci�cation for
JavaScript maintained by the Ecma Technical Committee 39 (TC39),
describes syntax and semantics of JavaScript in a structured na-
ture language. Based on the speci�cation, researchers have de�ned
various JavaScript formal semantics [8, 14, 21] or have modi�ed
them suitable for debuggers [9], veri�cation tools [12, 13], and
static analyzers [15, 16, 20, 26]. However, all of them are written
by hand thus the existing approach is tedious, labor-intensive, and
error-prone. Moreover, in late 2014, the TC39 announced the yearly
release cadence and open development process of ECMAScript to
quickly adapt to evolving development environments. Thus, there
are already six updates after ES5.1 and this problem becomes more
critical.

To alleviate this problem, we propose an approach to perform
JavaScript static analysis using the abstract semantics automatically
de�ned with both of JavaScript engines and speci�cation. Our main
idea is 1) to leverage the existing JavaScript engines as much as
possible, and 2) to utilize the formal semantics automatically ex-
tracted from ECMAScript for remaining parts. To lessen the burden
to manually de�ne the abstract semantics for evolving JavaScript
speci�cation, we present a technique to extract a formal semantics
from ECMAScript and de�ne an abstract semantics based on it.
However, the automatically extracted abstract semantics might be
much slower than highly optimized abstract semantics written by
hand. Thus, we also leverage existing JavaScript engines to de�ne
abstract semantics for better performance of static analysis. Our
approach consists of three steps with three di�erent tools; First,
JISET automatically extracts JavaScript formal semantics using rule-
based compilation from abstract algorithms to functions of IRES,
an Intermediate Representation that we designed for ECMAScript.
Based on the extracted semantics, JEST performs #+1-version dif-
ferential testing for existing JavaScript engines and ECMAScript to
check whether they conform to each other. Finally, JSAVER performs

1

Mechanized 
Spec. Tests JS EngineMechanized 
Spec.

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

JavaScript Static Analysis with Evolving Engines and Specification Conference’17, July 2017, Washington, DC, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Figure 2: The overall structure of JavaScript static analysis
with evolving engines and speci�cation

of ArrayLiteral and the Evaluation algorithm for its �rst alter-
native in ES11. We utilize such a common pattern in the writing
style to extract mechanized speci�cation directly from ECMAScript.
Moreover, commercial JavaScript engines are highly optimized to
quickly execute real-world JavaScript programs. However, most
of JavaScript static analyzers are developed and maintained by re-
searchers thus they are not scalable to analyze real-world JavaScript
programs. Thus, we leverage JavaScript engines as much as possible
during static analysis. This work is closely related to two research
�elds: mechanized speci�cation extraction and combined analysis of
dynamic and static analysis.

Mechanized Speci�cation Extraction. In diverse �elds, several
researchers have extracted mechanized speci�cations from speci�-
cations written in a natural language to automatically handle their
contents. Nguyen [18] extracted a mechanized speci�cation of x86
architecture from its natural language description using Natural
Language Processing (NLP) techniques. Moreover, Vu and Ogawa
[31] proposed a similar approach for ARM architecture using NLP
techniques with machine Learning techniques. Besides low-level
assembly languages, Zhai et al. [35] presented a technique to auto-
matically synthesize Java API functions from their documentation
using NLP techniques. For JavaScript, Ye et al. [34] presented C���
����, a compiler fuzzing framework to detect JavaScript engine
bugs using boundary conditions extracted from ECMAScript ab-
stract algorithms with deep learning-based language models. For
network protocols, Kim et al. [16] proposed B���S���, which ex-
tracts message structures from tables in cellular speci�cations for
L3 protocols to perform comparative analysis of baseband software.
However, there is no existing approach to automatically extract a
mechanized speci�cation that represents the entire formal seman-
tics of a high-level modern programming language.

Combined Analysis. Static and dynamic analyses are two of the
most popular program analysis techniques. Several researchers
have leveraged dynamic analysis during static analysis for 1) au-
tomatic modeling, 2) pruning analysis scope, and 3) performance
improvement. For automatic modeling, Park et al. [22] presented
a Sample-Run-Abstract (SRA) technique that utilizes the execution
results of sampled concrete states as an automatic modeling during
JavaScript static analysis. To prune out infeasible analysis scopes,
Schäfer et al. [28] utilized dynamic determinacy analysis and elimi-
nated invocations of eval and constant property names. Moreover,
Wei and Ryder [32] introduced blended taint analysis that sacri-
�ces the analysis soundness but increase analysis precision using
concrete traces collected by dynamic analysis. Similarly, Park et al.

Figure 3: A mechanized speci�cation extraction from EC-
MAScript via JISET

val ArrayLiteral: List[Boolean] => LAParser[T] = memo {

case List(Yield , Await) =>

�[� ~ opt(Elision) ~ �]� ^^ ArrayLiteral0 |

�[� ~ ElementList(Yield ,Await) ~ �]� ^^ ArrayLiteral1 |

�[� ~ ElementList(Yield ,Await) ~ �,�

~ opt(Elision)~ �]� ^^ ArrayLiteral2

}

(a) The generated parser for the ArrayLiteral production

ArrayLiteral [0]. Evaluation (Elision) => {

let array = [! (ArrayCreate 0)]

if (! (= Elision absent)) {

let len = (Elision.ArrayAccumulation array 0)

[? len]

}

return array

}

(b) The IRES function compiled from the Evaluation algorithm

Figure 4: The generated parser and the compiled IRES func-
tion from the production and abstract algorithm in Figure 1

[23, 26] utilize them to prune out initial states, dynamically loaded
�les, and event handlers. Unlike previous approaches, Toman and
Grossman [30] proposed C������� that performs a sound com-
bined analysis that could signi�cantly improve the precision and
performance of Java static analysis.

3 GOALS OF THE RESEARCH
In this section, we explain goals of an approach to perform JavaScript
static analysis using the abstract semantics automatically de�ned
with both of JavaScript engines and speci�cation. Figure 2 describes
the overall structure of our approach and it consists of three steps
with three di�erent tools; First, JISET (Section 3.1) automatically
extracts JavaScript a mechanized speci�cation using a parser gener-
ation for syntax and a rule-based compilation for semantics. Using
the mechanized speci�cation extracted by JISET, JEST (Section 3.2)
performs #+1-version di�erential testing for existing JavaScript
engines and ECMAScript to check whether they conform to each
other. Finally, JSAVER (Section 3.3) performs JavaScript static analy-
sis based on the abstract semantics de�ned with both of JavaScript
engines and speci�cation. Among three tools, we already developed
JISET [24] and JEST [21] thus we are now focusing on developing
JSAVER.

3.1 JISET: Mechanized Speci�cation Extraction
We present JISET [24], a JavaScript IR-based Semantics Extrac-

tion Toolchain, and Figure 3 depicts the overall structure of JISET.
3

ICSE'21

Conformance Test

Synthesis

Distinguished Paper
Award!!

Mechanized 
Spec.ECMAScript Mechanized 
Spec. JS EngineMechanized 
Spec. JS EngineECMAScript Mechanized 
Spec.

Mechanized Spec.

Extraction

ASE'20

/ 35PS Lab Seminar - Towards Co-evolution of JavaScript Specification and Tools

Co-evolution of JavaScript Spec. and Tools

23

ECMAScript

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

JavaScript Static Analysis with Evolving Engines and
Specification

Jihyeok Park
KAIST, South Korea

jhpark0223@kaist.ac.kr

ABSTRACT
JavaScript is one of the most dominating programming languages.
Despite its popularity, the highly dynamic nature of JavaScript
makes its semantics complex thus understanding and reasoning
about JavaScript programs are challenging tasks. Therefore, Re-
searchers have proposed JavaScript static analysis based on ab-
stract interpretation with the the abstract semantics conforming
to ECMAScript, the standard speci�cation for JavaScript. However,
all the existing abstract semantics are manually de�ned thus the
current approach is labor-intensive and error-prone. Moreover, in
late 2014, this problem becomes more critical because the Ecma
Technical Committee 39 announced that they will annually update
ECMAScript.

To alleviate the problem, we propose an approach to perform
JavaScript static analysis using the abstract semantics automatically
de�ned with both of JavaScript engines and speci�cation. Our main
idea is 1) to leverage the existing JavaScript engines as much as
possible, and 2) to utilize the formal semantics automatically ex-
tracted from ECMAScript for remaining parts. We believe that our
approach would be able to analyze JavaScript programs developed
with new language features as well as improve their quality.

KEYWORDS
JavaScript, mechanized speci�cation, static analysis, abstract inter-
pretation
ACM Reference Format:
Jihyeok Park. 2021. JavaScript Static Analysis with Evolving Engines and
Speci�cation. In Proceedings of ACM Conference (Conference’17). ACM, New
York, NY, USA, 3 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
JavaScript is one of the most dominating programming languages.
While JavaScript was initially designed for client-side programming
in web browsers, and it is now widely used in server-side program-
ming [6] and even in embedded systems [3, 5, 7]. According to
W3Techs1, 97.2% of websites use JavaScript as their client-side pro-
gramming language. The 2020 State of the Octoverse2, which is the
1https://w3techs.com/technologies/details/cp-javascript/all/all
2https://octoverse.github.com/

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

annual report of GitHub, reports that JavaScript was the top-ranked
programming language in GitHub repositories since 2014 to 2020.

Researchers have proposed various static analyzers to under-
stand and reason about JavaScript programs. Despite its popularity,
JavaScript developers often su�er from its intricate and dynamic
language features, which may cause unexpected behaviors. For ex-
ample, the function declaration function f(x){ return x == !x }

may seem to always return false. Surprisingly, it returns truewhen
its argument is an empty array; f([]) = true. To correctly under-
stand and reason about such a complex behavior, researchers have
proposed various static analyzers for JavaScript programs, such as
TAJS [15], SAFE [20], JSAI [16], and WALA [26].

However, existing JavaScript static analyzers utilize manually
de�ned formal semantics, and this approach is labor-intensive and
error-prone. ECMAScript, which is a standard speci�cation for
JavaScript maintained by the Ecma Technical Committee 39 (TC39),
describes syntax and semantics of JavaScript in a structured na-
ture language. Based on the speci�cation, researchers have de�ned
various JavaScript formal semantics [8, 14, 21] or have modi�ed
them suitable for debuggers [9], veri�cation tools [12, 13], and
static analyzers [15, 16, 20, 26]. However, all of them are written
by hand thus the existing approach is tedious, labor-intensive, and
error-prone. Moreover, in late 2014, the TC39 announced the yearly
release cadence and open development process of ECMAScript to
quickly adapt to evolving development environments. Thus, there
are already six updates after ES5.1 and this problem becomes more
critical.

To alleviate this problem, we propose an approach to perform
JavaScript static analysis using the abstract semantics automatically
de�ned with both of JavaScript engines and speci�cation. Our main
idea is 1) to leverage the existing JavaScript engines as much as
possible, and 2) to utilize the formal semantics automatically ex-
tracted from ECMAScript for remaining parts. To lessen the burden
to manually de�ne the abstract semantics for evolving JavaScript
speci�cation, we present a technique to extract a formal semantics
from ECMAScript and de�ne an abstract semantics based on it.
However, the automatically extracted abstract semantics might be
much slower than highly optimized abstract semantics written by
hand. Thus, we also leverage existing JavaScript engines to de�ne
abstract semantics for better performance of static analysis. Our
approach consists of three steps with three di�erent tools; First,
JISET automatically extracts JavaScript formal semantics using rule-
based compilation from abstract algorithms to functions of IRES,
an Intermediate Representation that we designed for ECMAScript.
Based on the extracted semantics, JEST performs #+1-version dif-
ferential testing for existing JavaScript engines and ECMAScript to
check whether they conform to each other. Finally, JSAVER performs

1

Mechanized 
Spec.ASE'20 Tests JS EngineMechanized 
Spec.

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

JavaScript Static Analysis with Evolving Engines and Specification Conference’17, July 2017, Washington, DC, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Figure 2: The overall structure of JavaScript static analysis
with evolving engines and speci�cation

of ArrayLiteral and the Evaluation algorithm for its �rst alter-
native in ES11. We utilize such a common pattern in the writing
style to extract mechanized speci�cation directly from ECMAScript.
Moreover, commercial JavaScript engines are highly optimized to
quickly execute real-world JavaScript programs. However, most
of JavaScript static analyzers are developed and maintained by re-
searchers thus they are not scalable to analyze real-world JavaScript
programs. Thus, we leverage JavaScript engines as much as possible
during static analysis. This work is closely related to two research
�elds: mechanized speci�cation extraction and combined analysis of
dynamic and static analysis.

Mechanized Speci�cation Extraction. In diverse �elds, several
researchers have extracted mechanized speci�cations from speci�-
cations written in a natural language to automatically handle their
contents. Nguyen [18] extracted a mechanized speci�cation of x86
architecture from its natural language description using Natural
Language Processing (NLP) techniques. Moreover, Vu and Ogawa
[31] proposed a similar approach for ARM architecture using NLP
techniques with machine Learning techniques. Besides low-level
assembly languages, Zhai et al. [35] presented a technique to auto-
matically synthesize Java API functions from their documentation
using NLP techniques. For JavaScript, Ye et al. [34] presented C���
����, a compiler fuzzing framework to detect JavaScript engine
bugs using boundary conditions extracted from ECMAScript ab-
stract algorithms with deep learning-based language models. For
network protocols, Kim et al. [16] proposed B���S���, which ex-
tracts message structures from tables in cellular speci�cations for
L3 protocols to perform comparative analysis of baseband software.
However, there is no existing approach to automatically extract a
mechanized speci�cation that represents the entire formal seman-
tics of a high-level modern programming language.

Combined Analysis. Static and dynamic analyses are two of the
most popular program analysis techniques. Several researchers
have leveraged dynamic analysis during static analysis for 1) au-
tomatic modeling, 2) pruning analysis scope, and 3) performance
improvement. For automatic modeling, Park et al. [22] presented
a Sample-Run-Abstract (SRA) technique that utilizes the execution
results of sampled concrete states as an automatic modeling during
JavaScript static analysis. To prune out infeasible analysis scopes,
Schäfer et al. [28] utilized dynamic determinacy analysis and elimi-
nated invocations of eval and constant property names. Moreover,
Wei and Ryder [32] introduced blended taint analysis that sacri-
�ces the analysis soundness but increase analysis precision using
concrete traces collected by dynamic analysis. Similarly, Park et al.

Figure 3: A mechanized speci�cation extraction from EC-
MAScript via JISET

val ArrayLiteral: List[Boolean] => LAParser[T] = memo {

case List(Yield , Await) =>

�[� ~ opt(Elision) ~ �]� ^^ ArrayLiteral0 |

�[� ~ ElementList(Yield ,Await) ~ �]� ^^ ArrayLiteral1 |

�[� ~ ElementList(Yield ,Await) ~ �,�

~ opt(Elision)~ �]� ^^ ArrayLiteral2

}

(a) The generated parser for the ArrayLiteral production

ArrayLiteral [0]. Evaluation (Elision) => {

let array = [! (ArrayCreate 0)]

if (! (= Elision absent)) {

let len = (Elision.ArrayAccumulation array 0)

[? len]

}

return array

}

(b) The IRES function compiled from the Evaluation algorithm

Figure 4: The generated parser and the compiled IRES func-
tion from the production and abstract algorithm in Figure 1

[23, 26] utilize them to prune out initial states, dynamically loaded
�les, and event handlers. Unlike previous approaches, Toman and
Grossman [30] proposed C������� that performs a sound com-
bined analysis that could signi�cantly improve the precision and
performance of Java static analysis.

3 GOALS OF THE RESEARCH
In this section, we explain goals of an approach to perform JavaScript
static analysis using the abstract semantics automatically de�ned
with both of JavaScript engines and speci�cation. Figure 2 describes
the overall structure of our approach and it consists of three steps
with three di�erent tools; First, JISET (Section 3.1) automatically
extracts JavaScript a mechanized speci�cation using a parser gener-
ation for syntax and a rule-based compilation for semantics. Using
the mechanized speci�cation extracted by JISET, JEST (Section 3.2)
performs #+1-version di�erential testing for existing JavaScript
engines and ECMAScript to check whether they conform to each
other. Finally, JSAVER (Section 3.3) performs JavaScript static analy-
sis based on the abstract semantics de�ned with both of JavaScript
engines and speci�cation. Among three tools, we already developed
JISET [24] and JEST [21] thus we are now focusing on developing
JSAVER.

3.1 JISET: Mechanized Speci�cation Extraction
We present JISET [24], a JavaScript IR-based Semantics Extrac-

tion Toolchain, and Figure 3 depicts the overall structure of JISET.
3

ICSE'21

Conformance Test

Synthesis

Distinguished Paper
Award!!

Mechanized 
Spec.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

JavaScript Static Analysis with Evolving Engines and
Specification

Jihyeok Park
KAIST, South Korea

jhpark0223@kaist.ac.kr

ABSTRACT
JavaScript is one of the most dominant programming languages. De-
spite its popularity, the highly dynamic nature of JavaScript makes
its semantics complex; thus, understanding and reasoning about
JavaScript programs are challenging tasks. Therefore, Researchers
have proposed JavaScript static analysis based on the abstract in-
terpretation with abstract semantics conforming to ECMAScript,
the standard speci�cation for JavaScript. However, all the existing
abstract semantics are manually de�ned; thus, the current approach
is labor-intensive and error-prone. Moreover, since late 2014, this
problem becomes more critical because the Ecma Technical Com-
mittee 39 announced that they would update ECMAScript annually.

To alleviate the problem, we propose an approach to perform
JavaScript static analysis using abstract semantics automatically
de�ned with both JavaScript engines and speci�cation. Our main
idea is 1) to leverage the existing JavaScript engines as much as
possible and 2) to utilize the mechanized speci�cation automatically
extracted from ECMAScript for the remaining parts. We believe that
our approach can to perform static analysis for JavaScript programs
developed with new language features and help build high-quality
JavaScript programs.

KEYWORDS
JavaScript, mechanized speci�cation, static analysis, abstract inter-
pretation
ACM Reference Format:
Jihyeok Park. 2021. JavaScript Static Analysis with Evolving Engines and
Speci�cation. In Proceedings of ACM Conference (Conference’17). ACM, New
York, NY, USA, 6 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
JavaScript is one of the most dominant programming languages.
While JavaScript was initially designed for client-side program-
ming in web browsers, it is now widely used in server-side pro-
gramming [4] and even in embedded systems [2, 3, 5]. According
to W3Techs1, 97.2% of websites use JavaScript as their client-side
programming language. The 2020 State of the Octoverse2, which is
1https://w3techs.com/technologies/details/cp-javascript/all/all
2https://octoverse.github.com/

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

the annual report of GitHub, reports that JavaScript was the top-
ranked programming language in GitHub repositories since 2014
to 2020.

Researchers have proposed various static analyzers to under-
stand and reason about JavaScript programs. Despite its popularity,
JavaScript developers often su�er from its intricate and dynamic
language features, which may cause unexpected behaviors. For ex-
ample, the function declaration function f(x){ return x == !x }

may seem to always return false. Surprisingly, it returns truewhen
its argument is an empty array: f([]) = true. To correctly under-
stand and reason about such a complex behavior, researchers have
proposed various static analyzers for JavaScript programs, such as
TAJS [14], SAFE [17], JSAI [15], and WALA [29].

However, existing JavaScript static analyzers utilize manually
de�ned formal semantics, and this approach is labor-intensive and
error-prone. ECMAScript, the standard speci�cation for JavaScript
maintained by the Ecma Technical Committee 39 (TC39), describes
syntax and semantics of JavaScript in a structured nature lan-
guage. Based on the speci�cation, researchers have de�ned various
JavaScript formal semantics [7, 13, 18, 20] or have modi�ed them
suitable for debuggers [8], veri�cation tools [11, 12], and static
analyzers [14, 15, 17, 29]. However, because all of them are writ-
ten by hand, the existing approach is tedious, labor-intensive, and
error-prone. Moreover, in late 2014, the TC39 announced the yearly
release cadence and open development process of ECMAScript to
quickly adapt to evolving development environments. Thus, there
are already six updates after ES5.1 and this problem becomes more
critical.

To alleviate this problem, we propose an approach to perform
JavaScript static analysis using abstract semantics automatically
de�ned with both JavaScript engines and speci�cation. Our main
idea is 1) to leverage the existing JavaScript engines as much as
possible and 2) to utilize the a mechanized speci�cation automati-
cally extracted from ECMAScript for the remaining parts. To lessen
the burden of manually de�ning the abstract semantics for the
evolving JavaScript speci�cation, we present a technique to extract
a mechanized speci�cation from ECMAScript and de�ne an ab-
stract semantics based on it. However, the automatically extracted
abstract semantics might be much slower than highly optimized
abstract semantics written by hand. Thus, we also leverage existing
JavaScript engines to de�ne abstract semantics for better perfor-
mance of static analysis. Our approach consists of three steps with
three di�erent tools; First, JISET automatically extracts JavaScript
mechanized speci�cation using a parser generation for syntax and
a rule-based compilation for semantics. Using the mechanized spec-
i�cation, JEST performs #+1-version di�erential testing for existing
JavaScript engines and ECMAScript to check whether they con-
form to each other. Finally, JSTAR performs JavaScript static analysis

1 On Review

<latexit sha1_base64="UFE5rAltPKCxrmF3rEz1sNHj3wU=">AAACNnicbVDLSsNAFJ34rO9Wl7oIFsFVSUTUZdGNSwWrQhvkZnrbDp1HmJmIJfQX3Oqn+Ctu3IlbP8FJm4WpHrhwOPd94oQzY4Pg3ZubX1hcWq6srK6tb2xuVWvbt0almmKLKq70fQwGOZPYssxyvE80gog53sXDizx/94jaMCVv7CjBSEBfsh6jYHOpYyF9qNaDRjCB/5eEBamTAlcPNW+v01U0FSgt5WBMOwwSG2WgLaMcx6ud1GACdAh9bDsqQaCJssmxY//AKV2/p7QLaf2J+rsjA2HMSMSuUoAdmNlcLv6Xa6e2dxZlTCapRUmni3op963y88/9LtNILR85AlQzd6tPB6CBWudPadJNGGX5cfmY0vqn6Q+lYgFD1EoJ9yBIinzs/Axn3ftLbo8a4UkjvD6uN88LZytkl+yTQxKSU9Ikl+SKtAglA/JMXsir9+Z9eJ/e17R0zit6dkgJ3vcPZwSspg==</latexit>⌧
Type Info.

Type Analysis

for Specification

ECMAScript Mechanized 
Spec.

<latexit sha1_base64="UFE5rAltPKCxrmF3rEz1sNHj3wU=">AAACNnicbVDLSsNAFJ34rO9Wl7oIFsFVSUTUZdGNSwWrQhvkZnrbDp1HmJmIJfQX3Oqn+Ctu3IlbP8FJm4WpHrhwOPd94oQzY4Pg3ZubX1hcWq6srK6tb2xuVWvbt0almmKLKq70fQwGOZPYssxyvE80gog53sXDizx/94jaMCVv7CjBSEBfsh6jYHOpYyF9qNaDRjCB/5eEBamTAlcPNW+v01U0FSgt5WBMOwwSG2WgLaMcx6ud1GACdAh9bDsqQaCJssmxY//AKV2/p7QLaf2J+rsjA2HMSMSuUoAdmNlcLv6Xa6e2dxZlTCapRUmni3op963y88/9LtNILR85AlQzd6tPB6CBWudPadJNGGX5cfmY0vqn6Q+lYgFD1EoJ9yBIinzs/Axn3ftLbo8a4UkjvD6uN88LZytkl+yTQxKSU9Ikl+SKtAglA/JMXsir9+Z9eJ/e17R0zit6dkgJ3vcPZwSspg==</latexit>⌧
Type Info.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

JavaScript Static Analysis with Evolving Engines and
Specification

Jihyeok Park
KAIST, South Korea

jhpark0223@kaist.ac.kr

ABSTRACT
JavaScript is one of the most dominant programming languages. De-
spite its popularity, the highly dynamic nature of JavaScript makes
its semantics complex; thus, understanding and reasoning about
JavaScript programs are challenging tasks. Therefore, Researchers
have proposed JavaScript static analysis based on the abstract in-
terpretation with abstract semantics conforming to ECMAScript,
the standard speci�cation for JavaScript. However, all the existing
abstract semantics are manually de�ned; thus, the current approach
is labor-intensive and error-prone. Moreover, since late 2014, this
problem becomes more critical because the Ecma Technical Com-
mittee 39 announced that they would update ECMAScript annually.

To alleviate the problem, we propose an approach to perform
JavaScript static analysis using abstract semantics automatically
de�ned with both JavaScript engines and speci�cation. Our main
idea is 1) to leverage the existing JavaScript engines as much as
possible and 2) to utilize the mechanized speci�cation automatically
extracted from ECMAScript for the remaining parts. We believe that
our approach can to perform static analysis for JavaScript programs
developed with new language features and help build high-quality
JavaScript programs.

KEYWORDS
JavaScript, mechanized speci�cation, static analysis, abstract inter-
pretation
ACM Reference Format:
Jihyeok Park. 2021. JavaScript Static Analysis with Evolving Engines and
Speci�cation. In Proceedings of ACM Conference (Conference’17). ACM, New
York, NY, USA, 6 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
JavaScript is one of the most dominant programming languages.
While JavaScript was initially designed for client-side program-
ming in web browsers, it is now widely used in server-side pro-
gramming [4] and even in embedded systems [2, 3, 5]. According
to W3Techs1, 97.2% of websites use JavaScript as their client-side
programming language. The 2020 State of the Octoverse2, which is
1https://w3techs.com/technologies/details/cp-javascript/all/all
2https://octoverse.github.com/

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

the annual report of GitHub, reports that JavaScript was the top-
ranked programming language in GitHub repositories since 2014
to 2020.

Researchers have proposed various static analyzers to under-
stand and reason about JavaScript programs. Despite its popularity,
JavaScript developers often su�er from its intricate and dynamic
language features, which may cause unexpected behaviors. For ex-
ample, the function declaration function f(x){ return x == !x }

may seem to always return false. Surprisingly, it returns truewhen
its argument is an empty array: f([]) = true. To correctly under-
stand and reason about such a complex behavior, researchers have
proposed various static analyzers for JavaScript programs, such as
TAJS [14], SAFE [17], JSAI [15], and WALA [29].

However, existing JavaScript static analyzers utilize manually
de�ned formal semantics, and this approach is labor-intensive and
error-prone. ECMAScript, the standard speci�cation for JavaScript
maintained by the Ecma Technical Committee 39 (TC39), describes
syntax and semantics of JavaScript in a structured nature lan-
guage. Based on the speci�cation, researchers have de�ned various
JavaScript formal semantics [7, 13, 18, 20] or have modi�ed them
suitable for debuggers [8], veri�cation tools [11, 12], and static
analyzers [14, 15, 17, 29]. However, because all of them are writ-
ten by hand, the existing approach is tedious, labor-intensive, and
error-prone. Moreover, in late 2014, the TC39 announced the yearly
release cadence and open development process of ECMAScript to
quickly adapt to evolving development environments. Thus, there
are already six updates after ES5.1 and this problem becomes more
critical.

To alleviate this problem, we propose an approach to perform
JavaScript static analysis using abstract semantics automatically
de�ned with both JavaScript engines and speci�cation. Our main
idea is 1) to leverage the existing JavaScript engines as much as
possible and 2) to utilize the a mechanized speci�cation automati-
cally extracted from ECMAScript for the remaining parts. To lessen
the burden of manually de�ning the abstract semantics for the
evolving JavaScript speci�cation, we present a technique to extract
a mechanized speci�cation from ECMAScript and de�ne an ab-
stract semantics based on it. However, the automatically extracted
abstract semantics might be much slower than highly optimized
abstract semantics written by hand. Thus, we also leverage existing
JavaScript engines to de�ne abstract semantics for better perfor-
mance of static analysis. Our approach consists of three steps with
three di�erent tools; First, JISET automatically extracts JavaScript
mechanized speci�cation using a parser generation for syntax and
a rule-based compilation for semantics. Using the mechanized spec-
i�cation, JEST performs #+1-version di�erential testing for existing
JavaScript engines and ECMAScript to check whether they conform
to each other. Finally, JSDebug performs JavaScript static analysis

1 Ongoing Work

JavaScript

Debugger

JS EngineMechanized 
Spec.

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

JavaScript Static Analysis with Evolving Engines and Specification Conference’17, July 2017, Washington, DC, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Figure 2: The overall structure of JavaScript static analysis
with evolving engines and speci�cation

most JavaScript static analyzers are developed and maintained by
researchers, they are not scalable to analyze real-world JavaScript
programs. Thus, we leverage JavaScript engines as much as possible
during static analysis. This work is closely related to two research
�elds: mechanized speci�cation extraction and combined analysis of
dynamic and static analysis.

Mechanized Speci�cation Extraction. In diverse �elds, several
researchers have extracted mechanized speci�cations from speci�-
cations written in a natural language to automatically handle their
contents. Nguyen [19] extracted a mechanized speci�cation of x86
architecture from its natural language description using Natural
Language Processing (NLP) techniques. Moreover, Vu and Ogawa
[31] proposed a similar approach for ARM architecture using NLP
techniques with machine Learning techniques. Besides low-level
assembly languages, Zhai et al. [35] presented a technique to auto-
matically synthesize Java API functions from their documentation
using NLP techniques. For JavaScript, Ye et al. [34] presented C���
����, a compiler fuzzing framework to detect JavaScript engine
bugs using boundary conditions extracted from ECMAScript ab-
stract algorithms with deep learning-based language models. For
network protocols, Kim et al. [16] proposed B���S���, which ex-
tracts message structures from tables in cellular speci�cations for
L3 protocols to perform comparative analysis of baseband software.
However, there is no existing approach to automatically extract a
mechanized speci�cation that represents the entire formal seman-
tics of a high-level modern programming language.

Combined Analysis. Static and dynamic analyses are two of the
most popular program analysis techniques. Several researchers
have leveraged dynamic analysis during static analysis for 1) au-
tomatic modeling, 2) pruning analysis scope, and 3) performance
improvement. For automatic modeling, Park et al. [22] presented
a Sample-Run-Abstract (SRA) technique that utilizes the execution
results of sampled concrete states as an automatic modeling during
JavaScript static analysis. To prune out infeasible analysis scopes,
Schäfer et al. [28] utilized dynamic determinacy analysis and elimi-
nated invocations of eval and constant property names. Moreover,
Wei and Ryder [32] introduced blended taint analysis that sacri-
�ces the analysis soundness but increases analysis precision using
concrete traces collected by dynamic analysis. Similarly, Park et al.
[23, 26] utilize them to prune out initial states, dynamically loaded
�les, and event handlers. Unlike previous approaches, Toman and
Grossman [30] proposed C������� that performs a sound com-
bined analysis that could signi�cantly improve the precision and
performance of Java static analysis.

Figure 3: A mechanized speci�cation extraction from EC-
MAScript via JISET

val ArrayLiteral: List[Boolean] => LAParser[T] = memo {

case List(Yield , Await) =>

�[� ~ opt(Elision) ~ �]� ^^ ArrayLiteral0 |

�[� ~ ElementList(Yield ,Await) ~ �]� ^^ ArrayLiteral1 |

�[� ~ ElementList(Yield ,Await) ~ �,�

~ opt(Elision)~ �]� ^^ ArrayLiteral2

}

(a) The generated parser for the ArrayLiteral production

ArrayLiteral [0]. Evaluation (Elision) => {

let array = [! (ArrayCreate 0)]

if (! (= Elision absent)) {

let len = (Elision.ArrayAccumulation array 0)

[? len]

}

return array

}

(b) The IRES function compiled from the Evaluation algorithm

Figure 4: The generated parser and the compiled IRES func-
tion from the production and abstract algorithm in Figure 1

3 GOALS OF THE RESEARCH
In this section, we explain goals of our approach to perform JavaScript
static analysis using the abstract semantics automatically de�ned
with both JavaScript engines and speci�cation. Figure 2 describes
the overall structure of our approach and it consists of three steps
with three tools; First, JISET (Section 3.1) automatically extracts a
mechanized speci�cation of JavaScript using a parser generation for
syntax and a rule-based compilation for semantics. Using the mech-
anized speci�cation extracted by JISET, JEST (Section 3.2) performs
#+1-version di�erential testing for existing JavaScript engines and
ECMAScript to check whether they conform to each other. Finally,
JSAVER (Section 3.3) performs JavaScript static analysis based on
the abstract semantics de�ned with both JavaScript engines and
speci�cation. Among three tools, we already developed JISET [24]
and JEST [21] and we are now focusing on developing JSAVER.

3.1 JISET: Mechanized Speci�cation Extraction
We present JISET [24], a JavaScript IR-based Semantics Extrac-

tion Toolchain, and Figure 3 depicts the overall structure of JISET.
We explain how JISET utilizes common patterns in the writing style
of ECMAScript to extract a mechanized speci�cation using the data
in JSON format extracted from ECMAScript by Spec Extractor. A
mechanized speci�cation consists of a JavaScript parser for syn-
tax and functions of IRES, an Intermediate Representation that we
designed for ECMAScript, for semantics.

3

Ongoing Work

JavaScript

Static Analysis

JS EngineECMAScript Mechanized 
Spec.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

JavaScript Static Analysis with Evolving Engines and
Specification

Jihyeok Park
KAIST, South Korea

jhpark0223@kaist.ac.kr

ABSTRACT
JavaScript is one of the most dominant programming languages. De-
spite its popularity, the highly dynamic nature of JavaScript makes
its semantics complex; thus, understanding and reasoning about
JavaScript programs are challenging tasks. Therefore, Researchers
have proposed JavaScript static analysis based on the abstract in-
terpretation with abstract semantics conforming to ECMAScript,
the standard speci�cation for JavaScript. However, all the existing
abstract semantics are manually de�ned; thus, the current approach
is labor-intensive and error-prone. Moreover, since late 2014, this
problem becomes more critical because the Ecma Technical Com-
mittee 39 announced that they would update ECMAScript annually.

To alleviate the problem, we propose an approach to perform
JavaScript static analysis using abstract semantics automatically
de�ned with both JavaScript engines and speci�cation. Our main
idea is 1) to leverage the existing JavaScript engines as much as
possible and 2) to utilize the mechanized speci�cation automatically
extracted from ECMAScript for the remaining parts. We believe that
our approach can to perform static analysis for JavaScript programs
developed with new language features and help build high-quality
JavaScript programs.

KEYWORDS
JavaScript, mechanized speci�cation, static analysis, abstract inter-
pretation

ACM Reference Format:
Jihyeok Park. 2021. JavaScript Static Analysis with Evolving Engines and
Speci�cation. In Proceedings of ACM Conference (Conference’17). ACM, New
York, NY, USA, 7 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
JSAVER

JSFix
JSSFix
SUPER-JS
JSUPER
ESFix

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

JavaScript is one of the most dominant programming languages.
While JavaScript was initially designed for client-side program-
ming in web browsers, it is now widely used in server-side pro-
gramming [4] and even in embedded systems [2, 3, 5]. According
to W3Techs1, 97.2% of websites use JavaScript as their client-side
programming language. The 2020 State of the Octoverse2, which is
the annual report of GitHub, reports that JavaScript was the top-
ranked programming language in GitHub repositories since 2014
to 2020.

Researchers have proposed various static analyzers to under-
stand and reason about JavaScript programs. Despite its popularity,
JavaScript developers often su�er from its intricate and dynamic
language features, which may cause unexpected behaviors. For ex-
ample, the function declaration function f(x){ return x == !x }

may seem to always return false. Surprisingly, it returns truewhen
its argument is an empty array: f([]) = true. To correctly under-
stand and reason about such a complex behavior, researchers have
proposed various static analyzers for JavaScript programs, such as
TAJS [14], SAFE [17], JSAI [15], and WALA [29].

However, existing JavaScript static analyzers utilize manually
de�ned formal semantics, and this approach is labor-intensive and
error-prone. ECMAScript, the standard speci�cation for JavaScript
maintained by the Ecma Technical Committee 39 (TC39), describes
syntax and semantics of JavaScript in a structured nature lan-
guage. Based on the speci�cation, researchers have de�ned various
JavaScript formal semantics [7, 13, 18, 20] or have modi�ed them
suitable for debuggers [8], veri�cation tools [11, 12], and static
analyzers [14, 15, 17, 29]. However, because all of them are writ-
ten by hand, the existing approach is tedious, labor-intensive, and
error-prone. Moreover, in late 2014, the TC39 announced the yearly
release cadence and open development process of ECMAScript to
quickly adapt to evolving development environments. Thus, there
are already six updates after ES5.1 and this problem becomes more
critical.

To alleviate this problem, we propose an approach to perform
JavaScript static analysis using abstract semantics automatically
de�ned with both JavaScript engines and speci�cation. Our main
idea is 1) to leverage the existing JavaScript engines as much as
possible and 2) to utilize the a mechanized speci�cation automati-
cally extracted from ECMAScript for the remaining parts. To lessen
the burden of manually de�ning the abstract semantics for the
evolving JavaScript speci�cation, we present a technique to extract
a mechanized speci�cation from ECMAScript and de�ne an ab-
stract semantics based on it. However, the automatically extracted
abstract semantics might be much slower than highly optimized
abstract semantics written by hand. Thus, we also leverage existing

1https://w3techs.com/technologies/details/cp-javascript/all/all
2https://octoverse.github.com/

1

Ongoing Work

<latexit sha1_base64="PijVNKgGrQaAgZTi4M7Cz3uI1Ww=">AAACO3icbVC7SgNBFJ2NrxhfUUstFoNgFXZF1FK0sYyQh5Iscndyo0PmsczMimHJV9jqp/gh1nZia+9ssoVRD1w4nPs+ccKZsUHw5pXm5hcWl8rLlZXVtfWN6uZW26hUU2xRxZW+jsEgZxJbllmO14lGEDHHTjy8yPOdB9SGKdm0owQjAXeSDRgF66SbHkfoG6sqt9VaUA8m8P+SsCA1UqBxu+nt9vqKpgKlpRyM6YZBYqMMtGWU47jSSw0mQIdwh11HJQg0UTa5eOzvO6XvD5R2Ia0/UX92ZCCMGYnYVQqw9+Z3Lhf/y3VTOziNMiaT1KKk00WDlPtW+fn7fp9ppJaPHAGqmbvVp/eggVpn0sykZhhl+XH5mJn1j9MfZooFDFErJdyDICnysfMz/O3eX9I+rIfH9fDqqHZ2XjhbJjtkjxyQkJyQM3JJGqRFKBHkiTyTF+/Ve/c+vM9packrerbJDLyvbzNrroQ=</latexit>

<latexit sha1_base64="PijVNKgGrQaAgZTi4M7Cz3uI1Ww=">AAACO3icbVC7SgNBFJ2NrxhfUUstFoNgFXZF1FK0sYyQh5Iscndyo0PmsczMimHJV9jqp/gh1nZia+9ssoVRD1w4nPs+ccKZsUHw5pXm5hcWl8rLlZXVtfWN6uZW26hUU2xRxZW+jsEgZxJbllmO14lGEDHHTjy8yPOdB9SGKdm0owQjAXeSDRgF66SbHkfoG6sqt9VaUA8m8P+SsCA1UqBxu+nt9vqKpgKlpRyM6YZBYqMMtGWU47jSSw0mQIdwh11HJQg0UTa5eOzvO6XvD5R2Ia0/UX92ZCCMGYnYVQqw9+Z3Lhf/y3VTOziNMiaT1KKk00WDlPtW+fn7fp9ppJaPHAGqmbvVp/eggVpn0sykZhhl+XH5mJn1j9MfZooFDFErJdyDICnysfMz/O3eX9I+rIfH9fDqqHZ2XjhbJjtkjxyQkJyQM3JJGqRFKBHkiTyTF+/Ve/c+vM9packrerbJDLyvbzNrroQ=</latexit>

Execution

Traces

ECMAScript

Automatic Update

Mechanized Spec.

Extraction

ECMAScript

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

JavaScript Static Analysis with Evolving Engines and
Specification

Jihyeok Park
KAIST, South Korea

jhpark0223@kaist.ac.kr

ABSTRACT
JavaScript is one of the most dominating programming languages.
Despite its popularity, the highly dynamic nature of JavaScript
makes its semantics complex thus understanding and reasoning
about JavaScript programs are challenging tasks. Therefore, Re-
searchers have proposed JavaScript static analysis based on ab-
stract interpretation with the the abstract semantics conforming
to ECMAScript, the standard speci�cation for JavaScript. However,
all the existing abstract semantics are manually de�ned thus the
current approach is labor-intensive and error-prone. Moreover, in
late 2014, this problem becomes more critical because the Ecma
Technical Committee 39 announced that they will annually update
ECMAScript.

To alleviate the problem, we propose an approach to perform
JavaScript static analysis using the abstract semantics automatically
de�ned with both of JavaScript engines and speci�cation. Our main
idea is 1) to leverage the existing JavaScript engines as much as
possible, and 2) to utilize the formal semantics automatically ex-
tracted from ECMAScript for remaining parts. We believe that our
approach would be able to analyze JavaScript programs developed
with new language features as well as improve their quality.

KEYWORDS
JavaScript, mechanized speci�cation, static analysis, abstract inter-
pretation
ACM Reference Format:
Jihyeok Park. 2021. JavaScript Static Analysis with Evolving Engines and
Speci�cation. In Proceedings of ACM Conference (Conference’17). ACM, New
York, NY, USA, 3 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
JavaScript is one of the most dominating programming languages.
While JavaScript was initially designed for client-side programming
in web browsers, and it is now widely used in server-side program-
ming [6] and even in embedded systems [3, 5, 7]. According to
W3Techs1, 97.2% of websites use JavaScript as their client-side pro-
gramming language. The 2020 State of the Octoverse2, which is the
1https://w3techs.com/technologies/details/cp-javascript/all/all
2https://octoverse.github.com/

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

annual report of GitHub, reports that JavaScript was the top-ranked
programming language in GitHub repositories since 2014 to 2020.

Researchers have proposed various static analyzers to under-
stand and reason about JavaScript programs. Despite its popularity,
JavaScript developers often su�er from its intricate and dynamic
language features, which may cause unexpected behaviors. For ex-
ample, the function declaration function f(x){ return x == !x }

may seem to always return false. Surprisingly, it returns truewhen
its argument is an empty array; f([]) = true. To correctly under-
stand and reason about such a complex behavior, researchers have
proposed various static analyzers for JavaScript programs, such as
TAJS [15], SAFE [20], JSAI [16], and WALA [26].

However, existing JavaScript static analyzers utilize manually
de�ned formal semantics, and this approach is labor-intensive and
error-prone. ECMAScript, which is a standard speci�cation for
JavaScript maintained by the Ecma Technical Committee 39 (TC39),
describes syntax and semantics of JavaScript in a structured na-
ture language. Based on the speci�cation, researchers have de�ned
various JavaScript formal semantics [8, 14, 21] or have modi�ed
them suitable for debuggers [9], veri�cation tools [12, 13], and
static analyzers [15, 16, 20, 26]. However, all of them are written
by hand thus the existing approach is tedious, labor-intensive, and
error-prone. Moreover, in late 2014, the TC39 announced the yearly
release cadence and open development process of ECMAScript to
quickly adapt to evolving development environments. Thus, there
are already six updates after ES5.1 and this problem becomes more
critical.

To alleviate this problem, we propose an approach to perform
JavaScript static analysis using the abstract semantics automatically
de�ned with both of JavaScript engines and speci�cation. Our main
idea is 1) to leverage the existing JavaScript engines as much as
possible, and 2) to utilize the formal semantics automatically ex-
tracted from ECMAScript for remaining parts. To lessen the burden
to manually de�ne the abstract semantics for evolving JavaScript
speci�cation, we present a technique to extract a formal semantics
from ECMAScript and de�ne an abstract semantics based on it.
However, the automatically extracted abstract semantics might be
much slower than highly optimized abstract semantics written by
hand. Thus, we also leverage existing JavaScript engines to de�ne
abstract semantics for better performance of static analysis. Our
approach consists of three steps with three di�erent tools; First,
JISET automatically extracts JavaScript formal semantics using rule-
based compilation from abstract algorithms to functions of IRES,
an Intermediate Representation that we designed for ECMAScript.
Based on the extracted semantics, JEST performs #+1-version dif-
ferential testing for existing JavaScript engines and ECMAScript to
check whether they conform to each other. Finally, JSAVER performs

1

Mechanized 
Spec. Tests JS EngineMechanized 
Spec.

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

JavaScript Static Analysis with Evolving Engines and Specification Conference’17, July 2017, Washington, DC, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Figure 2: The overall structure of JavaScript static analysis
with evolving engines and speci�cation

of ArrayLiteral and the Evaluation algorithm for its �rst alter-
native in ES11. We utilize such a common pattern in the writing
style to extract mechanized speci�cation directly from ECMAScript.
Moreover, commercial JavaScript engines are highly optimized to
quickly execute real-world JavaScript programs. However, most
of JavaScript static analyzers are developed and maintained by re-
searchers thus they are not scalable to analyze real-world JavaScript
programs. Thus, we leverage JavaScript engines as much as possible
during static analysis. This work is closely related to two research
�elds: mechanized speci�cation extraction and combined analysis of
dynamic and static analysis.

Mechanized Speci�cation Extraction. In diverse �elds, several
researchers have extracted mechanized speci�cations from speci�-
cations written in a natural language to automatically handle their
contents. Nguyen [18] extracted a mechanized speci�cation of x86
architecture from its natural language description using Natural
Language Processing (NLP) techniques. Moreover, Vu and Ogawa
[31] proposed a similar approach for ARM architecture using NLP
techniques with machine Learning techniques. Besides low-level
assembly languages, Zhai et al. [35] presented a technique to auto-
matically synthesize Java API functions from their documentation
using NLP techniques. For JavaScript, Ye et al. [34] presented C���
����, a compiler fuzzing framework to detect JavaScript engine
bugs using boundary conditions extracted from ECMAScript ab-
stract algorithms with deep learning-based language models. For
network protocols, Kim et al. [16] proposed B���S���, which ex-
tracts message structures from tables in cellular speci�cations for
L3 protocols to perform comparative analysis of baseband software.
However, there is no existing approach to automatically extract a
mechanized speci�cation that represents the entire formal seman-
tics of a high-level modern programming language.

Combined Analysis. Static and dynamic analyses are two of the
most popular program analysis techniques. Several researchers
have leveraged dynamic analysis during static analysis for 1) au-
tomatic modeling, 2) pruning analysis scope, and 3) performance
improvement. For automatic modeling, Park et al. [22] presented
a Sample-Run-Abstract (SRA) technique that utilizes the execution
results of sampled concrete states as an automatic modeling during
JavaScript static analysis. To prune out infeasible analysis scopes,
Schäfer et al. [28] utilized dynamic determinacy analysis and elimi-
nated invocations of eval and constant property names. Moreover,
Wei and Ryder [32] introduced blended taint analysis that sacri-
�ces the analysis soundness but increase analysis precision using
concrete traces collected by dynamic analysis. Similarly, Park et al.

Figure 3: A mechanized speci�cation extraction from EC-
MAScript via JISET

val ArrayLiteral: List[Boolean] => LAParser[T] = memo {

case List(Yield , Await) =>

�[� ~ opt(Elision) ~ �]� ^^ ArrayLiteral0 |

�[� ~ ElementList(Yield ,Await) ~ �]� ^^ ArrayLiteral1 |

�[� ~ ElementList(Yield ,Await) ~ �,�

~ opt(Elision)~ �]� ^^ ArrayLiteral2

}

(a) The generated parser for the ArrayLiteral production

ArrayLiteral [0]. Evaluation (Elision) => {

let array = [! (ArrayCreate 0)]

if (! (= Elision absent)) {

let len = (Elision.ArrayAccumulation array 0)

[? len]

}

return array

}

(b) The IRES function compiled from the Evaluation algorithm

Figure 4: The generated parser and the compiled IRES func-
tion from the production and abstract algorithm in Figure 1

[23, 26] utilize them to prune out initial states, dynamically loaded
�les, and event handlers. Unlike previous approaches, Toman and
Grossman [30] proposed C������� that performs a sound com-
bined analysis that could signi�cantly improve the precision and
performance of Java static analysis.

3 GOALS OF THE RESEARCH
In this section, we explain goals of an approach to perform JavaScript
static analysis using the abstract semantics automatically de�ned
with both of JavaScript engines and speci�cation. Figure 2 describes
the overall structure of our approach and it consists of three steps
with three di�erent tools; First, JISET (Section 3.1) automatically
extracts JavaScript a mechanized speci�cation using a parser gener-
ation for syntax and a rule-based compilation for semantics. Using
the mechanized speci�cation extracted by JISET, JEST (Section 3.2)
performs #+1-version di�erential testing for existing JavaScript
engines and ECMAScript to check whether they conform to each
other. Finally, JSAVER (Section 3.3) performs JavaScript static analy-
sis based on the abstract semantics de�ned with both of JavaScript
engines and speci�cation. Among three tools, we already developed
JISET [24] and JEST [21] thus we are now focusing on developing
JSAVER.

3.1 JISET: Mechanized Speci�cation Extraction
We present JISET [24], a JavaScript IR-based Semantics Extrac-

tion Toolchain, and Figure 3 depicts the overall structure of JISET.
3

ICSE'21

Conformance Test

Synthesis

Distinguished Paper
Award!!

Mechanized 
Spec.ECMAScript Mechanized 
Spec. JS EngineMechanized 
Spec. JS EngineECMAScript Mechanized 
Spec.

Mechanized Spec.

Extraction

ASE'20

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

JavaScript Static Analysis with Evolving Engines and Specification Conference’17, July 2017, Washington, DC, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Figure 2: The overall structure of JavaScript static analysis
with evolving engines and speci�cation

of ArrayLiteral and the Evaluation algorithm for its �rst alter-
native in ES11. We utilize such a common pattern in the writing
style to extract mechanized speci�cation directly from ECMAScript.
Moreover, commercial JavaScript engines are highly optimized to
quickly execute real-world JavaScript programs. However, most
of JavaScript static analyzers are developed and maintained by re-
searchers thus they are not scalable to analyze real-world JavaScript
programs. Thus, we leverage JavaScript engines as much as possible
during static analysis. This work is closely related to two research
�elds: mechanized speci�cation extraction and combined analysis of
dynamic and static analysis.

Mechanized Speci�cation Extraction. In diverse �elds, several
researchers have extracted mechanized speci�cations from speci�-
cations written in a natural language to automatically handle their
contents. Nguyen [18] extracted a mechanized speci�cation of x86
architecture from its natural language description using Natural
Language Processing (NLP) techniques. Moreover, Vu and Ogawa
[31] proposed a similar approach for ARM architecture using NLP
techniques with machine Learning techniques. Besides low-level
assembly languages, Zhai et al. [35] presented a technique to auto-
matically synthesize Java API functions from their documentation
using NLP techniques. For JavaScript, Ye et al. [34] presented C���
����, a compiler fuzzing framework to detect JavaScript engine
bugs using boundary conditions extracted from ECMAScript ab-
stract algorithms with deep learning-based language models. For
network protocols, Kim et al. [16] proposed B���S���, which ex-
tracts message structures from tables in cellular speci�cations for
L3 protocols to perform comparative analysis of baseband software.
However, there is no existing approach to automatically extract a
mechanized speci�cation that represents the entire formal seman-
tics of a high-level modern programming language.

Combined Analysis. Static and dynamic analyses are two of the
most popular program analysis techniques. Several researchers
have leveraged dynamic analysis during static analysis for 1) au-
tomatic modeling, 2) pruning analysis scope, and 3) performance
improvement. For automatic modeling, Park et al. [22] presented
a Sample-Run-Abstract (SRA) technique that utilizes the execution
results of sampled concrete states as an automatic modeling during
JavaScript static analysis. To prune out infeasible analysis scopes,
Schäfer et al. [28] utilized dynamic determinacy analysis and elimi-
nated invocations of eval and constant property names. Moreover,
Wei and Ryder [32] introduced blended taint analysis that sacri-
�ces the analysis soundness but increase analysis precision using
concrete traces collected by dynamic analysis. Similarly, Park et al.

Figure 3: A mechanized speci�cation extraction from EC-
MAScript via JISET

val ArrayLiteral: List[Boolean] => LAParser[T] = memo {

case List(Yield , Await) =>

�[� ~ opt(Elision) ~ �]� ^^ ArrayLiteral0 |

�[� ~ ElementList(Yield ,Await) ~ �]� ^^ ArrayLiteral1 |

�[� ~ ElementList(Yield ,Await) ~ �,�

~ opt(Elision)~ �]� ^^ ArrayLiteral2

}

(a) The generated parser for the ArrayLiteral production

ArrayLiteral [0]. Evaluation (Elision) => {

let array = [! (ArrayCreate 0)]

if (! (= Elision absent)) {

let len = (Elision.ArrayAccumulation array 0)

[? len]

}

return array

}

(b) The IRES function compiled from the Evaluation algorithm

Figure 4: The generated parser and the compiled IRES func-
tion from the production and abstract algorithm in Figure 1

[23, 26] utilize them to prune out initial states, dynamically loaded
�les, and event handlers. Unlike previous approaches, Toman and
Grossman [30] proposed C������� that performs a sound com-
bined analysis that could signi�cantly improve the precision and
performance of Java static analysis.

3 GOALS OF THE RESEARCH
In this section, we explain goals of an approach to perform JavaScript
static analysis using the abstract semantics automatically de�ned
with both of JavaScript engines and speci�cation. Figure 2 describes
the overall structure of our approach and it consists of three steps
with three di�erent tools; First, JISET (Section 3.1) automatically
extracts JavaScript a mechanized speci�cation using a parser gener-
ation for syntax and a rule-based compilation for semantics. Using
the mechanized speci�cation extracted by JISET, JEST (Section 3.2)
performs #+1-version di�erential testing for existing JavaScript
engines and ECMAScript to check whether they conform to each
other. Finally, JSAVER (Section 3.3) performs JavaScript static analy-
sis based on the abstract semantics de�ned with both of JavaScript
engines and speci�cation. Among three tools, we already developed
JISET [24] and JEST [21] thus we are now focusing on developing
JSAVER.

3.1 JISET: Mechanized Speci�cation Extraction
We present JISET [24], a JavaScript IR-based Semantics Extrac-

tion Toolchain, and Figure 3 depicts the overall structure of JISET.
3

JEST: JavaScript Engine and
Specification Tester

[ICSE'21]

/ 35PS Lab Seminar - Towards Co-evolution of JavaScript Specification and Tools

Test262: JavaScript Conformance Tests

25

JavaScript
Engines

Test262 QuickJStest

Reference number
ECMA-123:2009

© Ecma International 2009

ECMA-262
11th Edition / June 2020

ECMAScript® 2020
Language Specification

ECMAScript

manual

/ 35PS Lab Seminar - Towards Co-evolution of JavaScript Specification and Tools

Test262: JavaScript Conformance Tests

25

JavaScript
Engines

Test262 QuickJStest

Reference number
ECMA-123:2009

© Ecma International 2009

ECMA-262
11th Edition / June 2020

ECMAScript® 2020
Language Specification

ECMAScript

manualmanual

/ 35PS Lab Seminar - Towards Co-evolution of JavaScript Specification and Tools

Test262: JavaScript Conformance Tests

25

JavaScript
Engines

Test262 QuickJStest

no conformance checkingReference number
ECMA-123:2009

© Ecma International 2009

ECMA-262
11th Edition / June 2020

ECMAScript® 2020
Language Specification

ECMAScript

manualmanual

/ 35PS Lab Seminar - Towards Co-evolution of JavaScript Specification and Tools

N+1-version Differential Testing

26

Synthesize

Reference number
ECMA-123:2009

© Ecma International 2009

ECMA-262
11th Edition / June 2020

ECMAScript® 2020
Language Specification

JavaScript
Engines

ECMAScript

Test QuickJS

test

test

test

test

/ 35PS Lab Seminar - Towards Co-evolution of JavaScript Specification and Tools

N+1-version Differential Testing

26

Synthesize

Reference number
ECMA-123:2009

© Ecma International 2009

ECMA-262
11th Edition / June 2020

ECMAScript® 2020
Language Specification

JavaScript
Engines

ECMAScript

Test QuickJS

test

test

test

test

/ 35PS Lab Seminar - Towards Co-evolution of JavaScript Specification and Tools

N+1-version Differential Testing

26

Synthesize

Reference number
ECMA-123:2009

© Ecma International 2009

ECMA-262
11th Edition / June 2020

ECMAScript® 2020
Language Specification

JavaScript
Engines

ECMAScript

Test QuickJS

test

An engine bug in

test

test

test

/ 35PS Lab Seminar - Towards Co-evolution of JavaScript Specification and Tools

N+1-version Differential Testing

27

TestSynthesize

Reference number
ECMA-123:2009

© Ecma International 2009

ECMA-262
11th Edition / June 2020

ECMAScript® 2020
Language Specification

ECMAScript
JavaScript

Engines

QuickJS

test

test

test

test

/ 35PS Lab Seminar - Towards Co-evolution of JavaScript Specification and Tools

N+1-version Differential Testing

27

TestSynthesize

Reference number
ECMA-123:2009

© Ecma International 2009

ECMA-262
11th Edition / June 2020

ECMAScript® 2020
Language Specification

ECMAScript
JavaScript

Engines

QuickJS

test

test

test

test

/ 35PS Lab Seminar - Towards Co-evolution of JavaScript Specification and Tools

A specification bug in ECMAScript

N+1-version Differential Testing

27

TestSynthesize

Reference number
ECMA-123:2009

© Ecma International 2009

ECMA-262
11th Edition / June 2020

ECMAScript® 2020
Language Specification

ECMAScript
JavaScript

Engines

QuickJS

test

test

test

test

/ 35PS Lab Seminar - Towards Co-evolution of JavaScript Specification and Tools

A specification bug in ECMAScriptA specification bug in ECMAScript
An engine bug in

N+1-version Differential Testing

27

TestSynthesize

Reference number
ECMA-123:2009

© Ecma International 2009

ECMA-262
11th Edition / June 2020

ECMAScript® 2020
Language Specification

ECMAScript
JavaScript

Engines

QuickJS

test

test

test

test

/ 35PS Lab Seminar - Towards Co-evolution of JavaScript Specification and Tools

JEST

28

Test

SynthesizerMechanized 

Spec. Tests Engine-N

Bug

Localizer

Spec. Bugs

Engine-1

Engine Bugs

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

JavaScript Static Analysis with Evolving Engines and
Specification

Jihyeok Park
KAIST, South Korea

jhpark0223@kaist.ac.kr

ABSTRACT
JavaScript is one of the most dominating programming languages.
Despite its popularity, the highly dynamic nature of JavaScript
makes its semantics complex thus understanding and reasoning
about JavaScript programs are challenging tasks. Therefore, Re-
searchers have proposed JavaScript static analysis based on ab-
stract interpretation with the the abstract semantics conforming
to ECMAScript, the standard speci�cation for JavaScript. However,
all the existing abstract semantics are manually de�ned thus the
current approach is labor-intensive and error-prone. Moreover, in
late 2014, this problem becomes more critical because the Ecma
Technical Committee 39 announced that they will annually update
ECMAScript.

To alleviate the problem, we propose an approach to perform
JavaScript static analysis using the abstract semantics automatically
de�ned with both of JavaScript engines and speci�cation. Our main
idea is 1) to leverage the existing JavaScript engines as much as
possible, and 2) to utilize the formal semantics automatically ex-
tracted from ECMAScript for remaining parts. We believe that our
approach would be able to analyze JavaScript programs developed
with new language features as well as improve their quality.

KEYWORDS
JavaScript, mechanized speci�cation, static analysis, abstract inter-
pretation
ACM Reference Format:
Jihyeok Park. 2021. JavaScript Static Analysis with Evolving Engines and
Speci�cation. In Proceedings of ACM Conference (Conference’17). ACM, New
York, NY, USA, 3 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
JavaScript is one of the most dominating programming languages.
While JavaScript was initially designed for client-side programming
in web browsers, and it is now widely used in server-side program-
ming [6] and even in embedded systems [3, 5, 7]. According to
W3Techs1, 97.2% of websites use JavaScript as their client-side pro-
gramming language. The 2020 State of the Octoverse2, which is the
1https://w3techs.com/technologies/details/cp-javascript/all/all
2https://octoverse.github.com/

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

annual report of GitHub, reports that JavaScript was the top-ranked
programming language in GitHub repositories since 2014 to 2020.

Researchers have proposed various static analyzers to under-
stand and reason about JavaScript programs. Despite its popularity,
JavaScript developers often su�er from its intricate and dynamic
language features, which may cause unexpected behaviors. For ex-
ample, the function declaration function f(x){ return x == !x }

may seem to always return false. Surprisingly, it returns truewhen
its argument is an empty array; f([]) = true. To correctly under-
stand and reason about such a complex behavior, researchers have
proposed various static analyzers for JavaScript programs, such as
TAJS [15], SAFE [20], JSAI [16], and WALA [26].

However, existing JavaScript static analyzers utilize manually
de�ned formal semantics, and this approach is labor-intensive and
error-prone. ECMAScript, which is a standard speci�cation for
JavaScript maintained by the Ecma Technical Committee 39 (TC39),
describes syntax and semantics of JavaScript in a structured na-
ture language. Based on the speci�cation, researchers have de�ned
various JavaScript formal semantics [8, 14, 21] or have modi�ed
them suitable for debuggers [9], veri�cation tools [12, 13], and
static analyzers [15, 16, 20, 26]. However, all of them are written
by hand thus the existing approach is tedious, labor-intensive, and
error-prone. Moreover, in late 2014, the TC39 announced the yearly
release cadence and open development process of ECMAScript to
quickly adapt to evolving development environments. Thus, there
are already six updates after ES5.1 and this problem becomes more
critical.

To alleviate this problem, we propose an approach to perform
JavaScript static analysis using the abstract semantics automatically
de�ned with both of JavaScript engines and speci�cation. Our main
idea is 1) to leverage the existing JavaScript engines as much as
possible, and 2) to utilize the formal semantics automatically ex-
tracted from ECMAScript for remaining parts. To lessen the burden
to manually de�ne the abstract semantics for evolving JavaScript
speci�cation, we present a technique to extract a formal semantics
from ECMAScript and de�ne an abstract semantics based on it.
However, the automatically extracted abstract semantics might be
much slower than highly optimized abstract semantics written by
hand. Thus, we also leverage existing JavaScript engines to de�ne
abstract semantics for better performance of static analysis. Our
approach consists of three steps with three di�erent tools; First,
JISET automatically extracts JavaScript formal semantics using rule-
based compilation from abstract algorithms to functions of IRES,
an Intermediate Representation that we designed for ECMAScript.
Based on the extracted semantics, JEST performs #+1-version dif-
ferential testing for existing JavaScript engines and ECMAScript to
check whether they conform to each other. Finally, JSAVER performs

1

ECMAScript

···

JavaScript Engines and Specification Tester

Spectrum Based

Fault Localization (SBFL)

with ER1b formula

/ 35PS Lab Seminar - Towards Co-evolution of JavaScript Specification and Tools

JEST

28

Test

SynthesizerMechanized 

Spec. Tests Engine-N

Bug

Localizer

Spec. Bugs

Engine-1

Engine Bugs

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

JavaScript Static Analysis with Evolving Engines and
Specification

Jihyeok Park
KAIST, South Korea

jhpark0223@kaist.ac.kr

ABSTRACT
JavaScript is one of the most dominating programming languages.
Despite its popularity, the highly dynamic nature of JavaScript
makes its semantics complex thus understanding and reasoning
about JavaScript programs are challenging tasks. Therefore, Re-
searchers have proposed JavaScript static analysis based on ab-
stract interpretation with the the abstract semantics conforming
to ECMAScript, the standard speci�cation for JavaScript. However,
all the existing abstract semantics are manually de�ned thus the
current approach is labor-intensive and error-prone. Moreover, in
late 2014, this problem becomes more critical because the Ecma
Technical Committee 39 announced that they will annually update
ECMAScript.

To alleviate the problem, we propose an approach to perform
JavaScript static analysis using the abstract semantics automatically
de�ned with both of JavaScript engines and speci�cation. Our main
idea is 1) to leverage the existing JavaScript engines as much as
possible, and 2) to utilize the formal semantics automatically ex-
tracted from ECMAScript for remaining parts. We believe that our
approach would be able to analyze JavaScript programs developed
with new language features as well as improve their quality.

KEYWORDS
JavaScript, mechanized speci�cation, static analysis, abstract inter-
pretation
ACM Reference Format:
Jihyeok Park. 2021. JavaScript Static Analysis with Evolving Engines and
Speci�cation. In Proceedings of ACM Conference (Conference’17). ACM, New
York, NY, USA, 3 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
JavaScript is one of the most dominating programming languages.
While JavaScript was initially designed for client-side programming
in web browsers, and it is now widely used in server-side program-
ming [6] and even in embedded systems [3, 5, 7]. According to
W3Techs1, 97.2% of websites use JavaScript as their client-side pro-
gramming language. The 2020 State of the Octoverse2, which is the
1https://w3techs.com/technologies/details/cp-javascript/all/all
2https://octoverse.github.com/

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

annual report of GitHub, reports that JavaScript was the top-ranked
programming language in GitHub repositories since 2014 to 2020.

Researchers have proposed various static analyzers to under-
stand and reason about JavaScript programs. Despite its popularity,
JavaScript developers often su�er from its intricate and dynamic
language features, which may cause unexpected behaviors. For ex-
ample, the function declaration function f(x){ return x == !x }

may seem to always return false. Surprisingly, it returns truewhen
its argument is an empty array; f([]) = true. To correctly under-
stand and reason about such a complex behavior, researchers have
proposed various static analyzers for JavaScript programs, such as
TAJS [15], SAFE [20], JSAI [16], and WALA [26].

However, existing JavaScript static analyzers utilize manually
de�ned formal semantics, and this approach is labor-intensive and
error-prone. ECMAScript, which is a standard speci�cation for
JavaScript maintained by the Ecma Technical Committee 39 (TC39),
describes syntax and semantics of JavaScript in a structured na-
ture language. Based on the speci�cation, researchers have de�ned
various JavaScript formal semantics [8, 14, 21] or have modi�ed
them suitable for debuggers [9], veri�cation tools [12, 13], and
static analyzers [15, 16, 20, 26]. However, all of them are written
by hand thus the existing approach is tedious, labor-intensive, and
error-prone. Moreover, in late 2014, the TC39 announced the yearly
release cadence and open development process of ECMAScript to
quickly adapt to evolving development environments. Thus, there
are already six updates after ES5.1 and this problem becomes more
critical.

To alleviate this problem, we propose an approach to perform
JavaScript static analysis using the abstract semantics automatically
de�ned with both of JavaScript engines and speci�cation. Our main
idea is 1) to leverage the existing JavaScript engines as much as
possible, and 2) to utilize the formal semantics automatically ex-
tracted from ECMAScript for remaining parts. To lessen the burden
to manually de�ne the abstract semantics for evolving JavaScript
speci�cation, we present a technique to extract a formal semantics
from ECMAScript and de�ne an abstract semantics based on it.
However, the automatically extracted abstract semantics might be
much slower than highly optimized abstract semantics written by
hand. Thus, we also leverage existing JavaScript engines to de�ne
abstract semantics for better performance of static analysis. Our
approach consists of three steps with three di�erent tools; First,
JISET automatically extracts JavaScript formal semantics using rule-
based compilation from abstract algorithms to functions of IRES,
an Intermediate Representation that we designed for ECMAScript.
Based on the extracted semantics, JEST performs #+1-version dif-
ferential testing for existing JavaScript engines and ECMAScript to
check whether they conform to each other. Finally, JSAVER performs

1

ECMAScript

···

JavaScript Engines and Specification Tester

Spectrum Based

Fault Localization (SBFL)

with ER1b formula

/ 35PS Lab Seminar - Towards Co-evolution of JavaScript Specification and Tools

Assertion

Injector

Conformance Test Synthesis

29

Mechanized 
Spec. Tests

Seed

Generator

Seed

Target

Selector

Programs

Target

Program

Program

Mutator Mutated

Program

Test Synthesizer

/ 35PS Lab Seminar - Towards Co-evolution of JavaScript Specification and Tools

Assertion

Injector

Conformance Test Synthesis

29

Mechanized 
Spec. Tests

Seed

Generator

Seed

Target

Selector

Programs

Target

Program

Program

Mutator Mutated

Program

Test Synthesizer

Syntax-directed

Program Generation

Seed

Generator

/ 35PS Lab Seminar - Towards Co-evolution of JavaScript Specification and Tools

Assertion

Injector

Conformance Test Synthesis

29

Mechanized 
Spec. Tests

Seed

Generator

Seed

Target

Selector

Programs

Target

Program

Program

Mutator Mutated

Program

Test Synthesizer

Syntax-directed

Program Generation

Seed

Generator

Coverage-guided

Target Selection

Target

Selector

/ 35PS Lab Seminar - Towards Co-evolution of JavaScript Specification and Tools

Assertion

Injector

Conformance Test Synthesis

29

Mechanized 
Spec. Tests

Seed

Generator

Seed

Target

Selector

Programs

Target

Program

Program

Mutator Mutated

Program

Test Synthesizer

Syntax-directed

Program Generation

Seed

Generator

Coverage-guided

Target Selection

Target

Selector

1.Random Mutation

2.Nearest Syntax Tree Mutation

3.String Substitutions

4.Object Substitutions

5.Statement Insertion

Program

Mutator

/ 35PS Lab Seminar - Towards Co-evolution of JavaScript Specification and Tools

Assertion

Injector

Conformance Test Synthesis

29

Mechanized 
Spec. Tests

Seed

Generator

Seed

Target

Selector

Programs

Target

Program

Program

Mutator Mutated

Program

Test Synthesizer

Syntax-directed

Program Generation

Seed

Generator

Coverage-guided

Target Selection

Target

Selector

1.Exceptions

2.Aborts

3.Variables

4.Objects

5.Object Properties

6.Property Keys

7.Internal Methods 

and Slots

Assertion

Injector

1.Random Mutation

2.Nearest Syntax Tree Mutation

3.String Substitutions

4.Object Substitutions

5.Statement Insertion

Program

Mutator

/ 35PS Lab Seminar - Towards Co-evolution of JavaScript Specification and Tools

• JavaScript Specification

- ECMAScript 2020 (ES11) - released in June 2020

• JavaScript Engines

- V8 - v8.3 by Google

- GraalJS - v20.1.0 by Oracle

- QuickJS - 2020-04-12 by Fabrice Bellard

- Moddable XS - v10.3.0 by Moddable Tech Inc.

30

Evaluation

/ 35PS Lab Seminar - Towards Co-evolution of JavaScript Specification and Tools

• 1,700 Synthesized Tests in 100 hours

• Syntax Coverage: 97.79% (397 / 406)

• Semantics Coverage
- Statement: 86.67% (21,230 / 24,495)

- Branch: 77.95% (7,480 / 9,596)

31

RQ1: Coverage of Synthesized Tests

/ 35PS Lab Seminar - Towards Co-evolution of JavaScript Specification and Tools

RQ2: Bug Detection in JavaScript Engines

32

/ 35PS Lab Seminar - Towards Co-evolution of JavaScript Specification and Tools

RQ2: Bug Detection in JavaScript Engines

32

QuickJS initializes 'x' with 'undefined' instead of throwing a 'ReferenceError'

function f (... { x = x }) { return x; } var y = f();

/ 35PS Lab Seminar - Towards Co-evolution of JavaScript Specification and Tools

RQ2: Bug Detection in JavaScript Engines

32

QuickJS initializes 'x' with 'undefined' instead of throwing a 'ReferenceError'

function f (... { x = x }) { return x; } var y = f();

try { ++undefined; } catch(e) { }

GraalJS crashes with an exception 'java.lang.IllegalStateException'

/ 35PS Lab Seminar - Towards Co-evolution of JavaScript Specification and Tools

RQ3: Bug Detection in ECMAScript

33

https://github.com/tc39/ecma262/pull/2130/files

https://github.com/tc39/ecma262/pull/2130/files

/ 35PS Lab Seminar - Towards Co-evolution of JavaScript Specification and Tools

• 64 out of 71 bugs are semantics bugs

34

RQ4: Accuracy of Bug Localization

/ 35PS Lab Seminar - Towards Co-evolution of JavaScript Specification and Tools

Future Work

35

ECMAScript

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

JavaScript Static Analysis with Evolving Engines and
Specification

Jihyeok Park
KAIST, South Korea

jhpark0223@kaist.ac.kr

ABSTRACT
JavaScript is one of the most dominating programming languages.
Despite its popularity, the highly dynamic nature of JavaScript
makes its semantics complex thus understanding and reasoning
about JavaScript programs are challenging tasks. Therefore, Re-
searchers have proposed JavaScript static analysis based on ab-
stract interpretation with the the abstract semantics conforming
to ECMAScript, the standard speci�cation for JavaScript. However,
all the existing abstract semantics are manually de�ned thus the
current approach is labor-intensive and error-prone. Moreover, in
late 2014, this problem becomes more critical because the Ecma
Technical Committee 39 announced that they will annually update
ECMAScript.

To alleviate the problem, we propose an approach to perform
JavaScript static analysis using the abstract semantics automatically
de�ned with both of JavaScript engines and speci�cation. Our main
idea is 1) to leverage the existing JavaScript engines as much as
possible, and 2) to utilize the formal semantics automatically ex-
tracted from ECMAScript for remaining parts. We believe that our
approach would be able to analyze JavaScript programs developed
with new language features as well as improve their quality.

KEYWORDS
JavaScript, mechanized speci�cation, static analysis, abstract inter-
pretation
ACM Reference Format:
Jihyeok Park. 2021. JavaScript Static Analysis with Evolving Engines and
Speci�cation. In Proceedings of ACM Conference (Conference’17). ACM, New
York, NY, USA, 3 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
JavaScript is one of the most dominating programming languages.
While JavaScript was initially designed for client-side programming
in web browsers, and it is now widely used in server-side program-
ming [6] and even in embedded systems [3, 5, 7]. According to
W3Techs1, 97.2% of websites use JavaScript as their client-side pro-
gramming language. The 2020 State of the Octoverse2, which is the
1https://w3techs.com/technologies/details/cp-javascript/all/all
2https://octoverse.github.com/

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

annual report of GitHub, reports that JavaScript was the top-ranked
programming language in GitHub repositories since 2014 to 2020.

Researchers have proposed various static analyzers to under-
stand and reason about JavaScript programs. Despite its popularity,
JavaScript developers often su�er from its intricate and dynamic
language features, which may cause unexpected behaviors. For ex-
ample, the function declaration function f(x){ return x == !x }

may seem to always return false. Surprisingly, it returns truewhen
its argument is an empty array; f([]) = true. To correctly under-
stand and reason about such a complex behavior, researchers have
proposed various static analyzers for JavaScript programs, such as
TAJS [15], SAFE [20], JSAI [16], and WALA [26].

However, existing JavaScript static analyzers utilize manually
de�ned formal semantics, and this approach is labor-intensive and
error-prone. ECMAScript, which is a standard speci�cation for
JavaScript maintained by the Ecma Technical Committee 39 (TC39),
describes syntax and semantics of JavaScript in a structured na-
ture language. Based on the speci�cation, researchers have de�ned
various JavaScript formal semantics [8, 14, 21] or have modi�ed
them suitable for debuggers [9], veri�cation tools [12, 13], and
static analyzers [15, 16, 20, 26]. However, all of them are written
by hand thus the existing approach is tedious, labor-intensive, and
error-prone. Moreover, in late 2014, the TC39 announced the yearly
release cadence and open development process of ECMAScript to
quickly adapt to evolving development environments. Thus, there
are already six updates after ES5.1 and this problem becomes more
critical.

To alleviate this problem, we propose an approach to perform
JavaScript static analysis using the abstract semantics automatically
de�ned with both of JavaScript engines and speci�cation. Our main
idea is 1) to leverage the existing JavaScript engines as much as
possible, and 2) to utilize the formal semantics automatically ex-
tracted from ECMAScript for remaining parts. To lessen the burden
to manually de�ne the abstract semantics for evolving JavaScript
speci�cation, we present a technique to extract a formal semantics
from ECMAScript and de�ne an abstract semantics based on it.
However, the automatically extracted abstract semantics might be
much slower than highly optimized abstract semantics written by
hand. Thus, we also leverage existing JavaScript engines to de�ne
abstract semantics for better performance of static analysis. Our
approach consists of three steps with three di�erent tools; First,
JISET automatically extracts JavaScript formal semantics using rule-
based compilation from abstract algorithms to functions of IRES,
an Intermediate Representation that we designed for ECMAScript.
Based on the extracted semantics, JEST performs #+1-version dif-
ferential testing for existing JavaScript engines and ECMAScript to
check whether they conform to each other. Finally, JSAVER performs

1

Mechanized 
Spec.ASE'20 Tests JS EngineMechanized 
Spec.

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

JavaScript Static Analysis with Evolving Engines and Specification Conference’17, July 2017, Washington, DC, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Figure 2: The overall structure of JavaScript static analysis
with evolving engines and speci�cation

of ArrayLiteral and the Evaluation algorithm for its �rst alter-
native in ES11. We utilize such a common pattern in the writing
style to extract mechanized speci�cation directly from ECMAScript.
Moreover, commercial JavaScript engines are highly optimized to
quickly execute real-world JavaScript programs. However, most
of JavaScript static analyzers are developed and maintained by re-
searchers thus they are not scalable to analyze real-world JavaScript
programs. Thus, we leverage JavaScript engines as much as possible
during static analysis. This work is closely related to two research
�elds: mechanized speci�cation extraction and combined analysis of
dynamic and static analysis.

Mechanized Speci�cation Extraction. In diverse �elds, several
researchers have extracted mechanized speci�cations from speci�-
cations written in a natural language to automatically handle their
contents. Nguyen [18] extracted a mechanized speci�cation of x86
architecture from its natural language description using Natural
Language Processing (NLP) techniques. Moreover, Vu and Ogawa
[31] proposed a similar approach for ARM architecture using NLP
techniques with machine Learning techniques. Besides low-level
assembly languages, Zhai et al. [35] presented a technique to auto-
matically synthesize Java API functions from their documentation
using NLP techniques. For JavaScript, Ye et al. [34] presented C���
����, a compiler fuzzing framework to detect JavaScript engine
bugs using boundary conditions extracted from ECMAScript ab-
stract algorithms with deep learning-based language models. For
network protocols, Kim et al. [16] proposed B���S���, which ex-
tracts message structures from tables in cellular speci�cations for
L3 protocols to perform comparative analysis of baseband software.
However, there is no existing approach to automatically extract a
mechanized speci�cation that represents the entire formal seman-
tics of a high-level modern programming language.

Combined Analysis. Static and dynamic analyses are two of the
most popular program analysis techniques. Several researchers
have leveraged dynamic analysis during static analysis for 1) au-
tomatic modeling, 2) pruning analysis scope, and 3) performance
improvement. For automatic modeling, Park et al. [22] presented
a Sample-Run-Abstract (SRA) technique that utilizes the execution
results of sampled concrete states as an automatic modeling during
JavaScript static analysis. To prune out infeasible analysis scopes,
Schäfer et al. [28] utilized dynamic determinacy analysis and elimi-
nated invocations of eval and constant property names. Moreover,
Wei and Ryder [32] introduced blended taint analysis that sacri-
�ces the analysis soundness but increase analysis precision using
concrete traces collected by dynamic analysis. Similarly, Park et al.

Figure 3: A mechanized speci�cation extraction from EC-
MAScript via JISET

val ArrayLiteral: List[Boolean] => LAParser[T] = memo {

case List(Yield , Await) =>

�[� ~ opt(Elision) ~ �]� ^^ ArrayLiteral0 |

�[� ~ ElementList(Yield ,Await) ~ �]� ^^ ArrayLiteral1 |

�[� ~ ElementList(Yield ,Await) ~ �,�

~ opt(Elision)~ �]� ^^ ArrayLiteral2

}

(a) The generated parser for the ArrayLiteral production

ArrayLiteral [0]. Evaluation (Elision) => {

let array = [! (ArrayCreate 0)]

if (! (= Elision absent)) {

let len = (Elision.ArrayAccumulation array 0)

[? len]

}

return array

}

(b) The IRES function compiled from the Evaluation algorithm

Figure 4: The generated parser and the compiled IRES func-
tion from the production and abstract algorithm in Figure 1

[23, 26] utilize them to prune out initial states, dynamically loaded
�les, and event handlers. Unlike previous approaches, Toman and
Grossman [30] proposed C������� that performs a sound com-
bined analysis that could signi�cantly improve the precision and
performance of Java static analysis.

3 GOALS OF THE RESEARCH
In this section, we explain goals of an approach to perform JavaScript
static analysis using the abstract semantics automatically de�ned
with both of JavaScript engines and speci�cation. Figure 2 describes
the overall structure of our approach and it consists of three steps
with three di�erent tools; First, JISET (Section 3.1) automatically
extracts JavaScript a mechanized speci�cation using a parser gener-
ation for syntax and a rule-based compilation for semantics. Using
the mechanized speci�cation extracted by JISET, JEST (Section 3.2)
performs #+1-version di�erential testing for existing JavaScript
engines and ECMAScript to check whether they conform to each
other. Finally, JSAVER (Section 3.3) performs JavaScript static analy-
sis based on the abstract semantics de�ned with both of JavaScript
engines and speci�cation. Among three tools, we already developed
JISET [24] and JEST [21] thus we are now focusing on developing
JSAVER.

3.1 JISET: Mechanized Speci�cation Extraction
We present JISET [24], a JavaScript IR-based Semantics Extrac-

tion Toolchain, and Figure 3 depicts the overall structure of JISET.
3

ICSE'21

Conformance Test

Synthesis

Distinguished Paper
Award!!

Mechanized Spec.

Extraction

/ 35PS Lab Seminar - Towards Co-evolution of JavaScript Specification and Tools

Future Work

35

ECMAScript

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

JavaScript Static Analysis with Evolving Engines and
Specification

Jihyeok Park
KAIST, South Korea

jhpark0223@kaist.ac.kr

ABSTRACT
JavaScript is one of the most dominating programming languages.
Despite its popularity, the highly dynamic nature of JavaScript
makes its semantics complex thus understanding and reasoning
about JavaScript programs are challenging tasks. Therefore, Re-
searchers have proposed JavaScript static analysis based on ab-
stract interpretation with the the abstract semantics conforming
to ECMAScript, the standard speci�cation for JavaScript. However,
all the existing abstract semantics are manually de�ned thus the
current approach is labor-intensive and error-prone. Moreover, in
late 2014, this problem becomes more critical because the Ecma
Technical Committee 39 announced that they will annually update
ECMAScript.

To alleviate the problem, we propose an approach to perform
JavaScript static analysis using the abstract semantics automatically
de�ned with both of JavaScript engines and speci�cation. Our main
idea is 1) to leverage the existing JavaScript engines as much as
possible, and 2) to utilize the formal semantics automatically ex-
tracted from ECMAScript for remaining parts. We believe that our
approach would be able to analyze JavaScript programs developed
with new language features as well as improve their quality.

KEYWORDS
JavaScript, mechanized speci�cation, static analysis, abstract inter-
pretation
ACM Reference Format:
Jihyeok Park. 2021. JavaScript Static Analysis with Evolving Engines and
Speci�cation. In Proceedings of ACM Conference (Conference’17). ACM, New
York, NY, USA, 3 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
JavaScript is one of the most dominating programming languages.
While JavaScript was initially designed for client-side programming
in web browsers, and it is now widely used in server-side program-
ming [6] and even in embedded systems [3, 5, 7]. According to
W3Techs1, 97.2% of websites use JavaScript as their client-side pro-
gramming language. The 2020 State of the Octoverse2, which is the
1https://w3techs.com/technologies/details/cp-javascript/all/all
2https://octoverse.github.com/

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

annual report of GitHub, reports that JavaScript was the top-ranked
programming language in GitHub repositories since 2014 to 2020.

Researchers have proposed various static analyzers to under-
stand and reason about JavaScript programs. Despite its popularity,
JavaScript developers often su�er from its intricate and dynamic
language features, which may cause unexpected behaviors. For ex-
ample, the function declaration function f(x){ return x == !x }

may seem to always return false. Surprisingly, it returns truewhen
its argument is an empty array; f([]) = true. To correctly under-
stand and reason about such a complex behavior, researchers have
proposed various static analyzers for JavaScript programs, such as
TAJS [15], SAFE [20], JSAI [16], and WALA [26].

However, existing JavaScript static analyzers utilize manually
de�ned formal semantics, and this approach is labor-intensive and
error-prone. ECMAScript, which is a standard speci�cation for
JavaScript maintained by the Ecma Technical Committee 39 (TC39),
describes syntax and semantics of JavaScript in a structured na-
ture language. Based on the speci�cation, researchers have de�ned
various JavaScript formal semantics [8, 14, 21] or have modi�ed
them suitable for debuggers [9], veri�cation tools [12, 13], and
static analyzers [15, 16, 20, 26]. However, all of them are written
by hand thus the existing approach is tedious, labor-intensive, and
error-prone. Moreover, in late 2014, the TC39 announced the yearly
release cadence and open development process of ECMAScript to
quickly adapt to evolving development environments. Thus, there
are already six updates after ES5.1 and this problem becomes more
critical.

To alleviate this problem, we propose an approach to perform
JavaScript static analysis using the abstract semantics automatically
de�ned with both of JavaScript engines and speci�cation. Our main
idea is 1) to leverage the existing JavaScript engines as much as
possible, and 2) to utilize the formal semantics automatically ex-
tracted from ECMAScript for remaining parts. To lessen the burden
to manually de�ne the abstract semantics for evolving JavaScript
speci�cation, we present a technique to extract a formal semantics
from ECMAScript and de�ne an abstract semantics based on it.
However, the automatically extracted abstract semantics might be
much slower than highly optimized abstract semantics written by
hand. Thus, we also leverage existing JavaScript engines to de�ne
abstract semantics for better performance of static analysis. Our
approach consists of three steps with three di�erent tools; First,
JISET automatically extracts JavaScript formal semantics using rule-
based compilation from abstract algorithms to functions of IRES,
an Intermediate Representation that we designed for ECMAScript.
Based on the extracted semantics, JEST performs #+1-version dif-
ferential testing for existing JavaScript engines and ECMAScript to
check whether they conform to each other. Finally, JSAVER performs

1

Mechanized 
Spec.ASE'20 Tests JS EngineMechanized 
Spec.

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

JavaScript Static Analysis with Evolving Engines and Specification Conference’17, July 2017, Washington, DC, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Figure 2: The overall structure of JavaScript static analysis
with evolving engines and speci�cation

of ArrayLiteral and the Evaluation algorithm for its �rst alter-
native in ES11. We utilize such a common pattern in the writing
style to extract mechanized speci�cation directly from ECMAScript.
Moreover, commercial JavaScript engines are highly optimized to
quickly execute real-world JavaScript programs. However, most
of JavaScript static analyzers are developed and maintained by re-
searchers thus they are not scalable to analyze real-world JavaScript
programs. Thus, we leverage JavaScript engines as much as possible
during static analysis. This work is closely related to two research
�elds: mechanized speci�cation extraction and combined analysis of
dynamic and static analysis.

Mechanized Speci�cation Extraction. In diverse �elds, several
researchers have extracted mechanized speci�cations from speci�-
cations written in a natural language to automatically handle their
contents. Nguyen [18] extracted a mechanized speci�cation of x86
architecture from its natural language description using Natural
Language Processing (NLP) techniques. Moreover, Vu and Ogawa
[31] proposed a similar approach for ARM architecture using NLP
techniques with machine Learning techniques. Besides low-level
assembly languages, Zhai et al. [35] presented a technique to auto-
matically synthesize Java API functions from their documentation
using NLP techniques. For JavaScript, Ye et al. [34] presented C���
����, a compiler fuzzing framework to detect JavaScript engine
bugs using boundary conditions extracted from ECMAScript ab-
stract algorithms with deep learning-based language models. For
network protocols, Kim et al. [16] proposed B���S���, which ex-
tracts message structures from tables in cellular speci�cations for
L3 protocols to perform comparative analysis of baseband software.
However, there is no existing approach to automatically extract a
mechanized speci�cation that represents the entire formal seman-
tics of a high-level modern programming language.

Combined Analysis. Static and dynamic analyses are two of the
most popular program analysis techniques. Several researchers
have leveraged dynamic analysis during static analysis for 1) au-
tomatic modeling, 2) pruning analysis scope, and 3) performance
improvement. For automatic modeling, Park et al. [22] presented
a Sample-Run-Abstract (SRA) technique that utilizes the execution
results of sampled concrete states as an automatic modeling during
JavaScript static analysis. To prune out infeasible analysis scopes,
Schäfer et al. [28] utilized dynamic determinacy analysis and elimi-
nated invocations of eval and constant property names. Moreover,
Wei and Ryder [32] introduced blended taint analysis that sacri-
�ces the analysis soundness but increase analysis precision using
concrete traces collected by dynamic analysis. Similarly, Park et al.

Figure 3: A mechanized speci�cation extraction from EC-
MAScript via JISET

val ArrayLiteral: List[Boolean] => LAParser[T] = memo {

case List(Yield , Await) =>

�[� ~ opt(Elision) ~ �]� ^^ ArrayLiteral0 |

�[� ~ ElementList(Yield ,Await) ~ �]� ^^ ArrayLiteral1 |

�[� ~ ElementList(Yield ,Await) ~ �,�

~ opt(Elision)~ �]� ^^ ArrayLiteral2

}

(a) The generated parser for the ArrayLiteral production

ArrayLiteral [0]. Evaluation (Elision) => {

let array = [! (ArrayCreate 0)]

if (! (= Elision absent)) {

let len = (Elision.ArrayAccumulation array 0)

[? len]

}

return array

}

(b) The IRES function compiled from the Evaluation algorithm

Figure 4: The generated parser and the compiled IRES func-
tion from the production and abstract algorithm in Figure 1

[23, 26] utilize them to prune out initial states, dynamically loaded
�les, and event handlers. Unlike previous approaches, Toman and
Grossman [30] proposed C������� that performs a sound com-
bined analysis that could signi�cantly improve the precision and
performance of Java static analysis.

3 GOALS OF THE RESEARCH
In this section, we explain goals of an approach to perform JavaScript
static analysis using the abstract semantics automatically de�ned
with both of JavaScript engines and speci�cation. Figure 2 describes
the overall structure of our approach and it consists of three steps
with three di�erent tools; First, JISET (Section 3.1) automatically
extracts JavaScript a mechanized speci�cation using a parser gener-
ation for syntax and a rule-based compilation for semantics. Using
the mechanized speci�cation extracted by JISET, JEST (Section 3.2)
performs #+1-version di�erential testing for existing JavaScript
engines and ECMAScript to check whether they conform to each
other. Finally, JSAVER (Section 3.3) performs JavaScript static analy-
sis based on the abstract semantics de�ned with both of JavaScript
engines and speci�cation. Among three tools, we already developed
JISET [24] and JEST [21] thus we are now focusing on developing
JSAVER.

3.1 JISET: Mechanized Speci�cation Extraction
We present JISET [24], a JavaScript IR-based Semantics Extrac-

tion Toolchain, and Figure 3 depicts the overall structure of JISET.
3

ICSE'21

Conformance Test

Synthesis

Distinguished Paper
Award!!

Mechanized 
Spec.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

JavaScript Static Analysis with Evolving Engines and
Specification

Jihyeok Park
KAIST, South Korea

jhpark0223@kaist.ac.kr

ABSTRACT
JavaScript is one of the most dominant programming languages. De-
spite its popularity, the highly dynamic nature of JavaScript makes
its semantics complex; thus, understanding and reasoning about
JavaScript programs are challenging tasks. Therefore, Researchers
have proposed JavaScript static analysis based on the abstract in-
terpretation with abstract semantics conforming to ECMAScript,
the standard speci�cation for JavaScript. However, all the existing
abstract semantics are manually de�ned; thus, the current approach
is labor-intensive and error-prone. Moreover, since late 2014, this
problem becomes more critical because the Ecma Technical Com-
mittee 39 announced that they would update ECMAScript annually.

To alleviate the problem, we propose an approach to perform
JavaScript static analysis using abstract semantics automatically
de�ned with both JavaScript engines and speci�cation. Our main
idea is 1) to leverage the existing JavaScript engines as much as
possible and 2) to utilize the mechanized speci�cation automatically
extracted from ECMAScript for the remaining parts. We believe that
our approach can to perform static analysis for JavaScript programs
developed with new language features and help build high-quality
JavaScript programs.

KEYWORDS
JavaScript, mechanized speci�cation, static analysis, abstract inter-
pretation
ACM Reference Format:
Jihyeok Park. 2021. JavaScript Static Analysis with Evolving Engines and
Speci�cation. In Proceedings of ACM Conference (Conference’17). ACM, New
York, NY, USA, 6 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
JavaScript is one of the most dominant programming languages.
While JavaScript was initially designed for client-side program-
ming in web browsers, it is now widely used in server-side pro-
gramming [4] and even in embedded systems [2, 3, 5]. According
to W3Techs1, 97.2% of websites use JavaScript as their client-side
programming language. The 2020 State of the Octoverse2, which is
1https://w3techs.com/technologies/details/cp-javascript/all/all
2https://octoverse.github.com/

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

the annual report of GitHub, reports that JavaScript was the top-
ranked programming language in GitHub repositories since 2014
to 2020.

Researchers have proposed various static analyzers to under-
stand and reason about JavaScript programs. Despite its popularity,
JavaScript developers often su�er from its intricate and dynamic
language features, which may cause unexpected behaviors. For ex-
ample, the function declaration function f(x){ return x == !x }

may seem to always return false. Surprisingly, it returns truewhen
its argument is an empty array: f([]) = true. To correctly under-
stand and reason about such a complex behavior, researchers have
proposed various static analyzers for JavaScript programs, such as
TAJS [14], SAFE [17], JSAI [15], and WALA [29].

However, existing JavaScript static analyzers utilize manually
de�ned formal semantics, and this approach is labor-intensive and
error-prone. ECMAScript, the standard speci�cation for JavaScript
maintained by the Ecma Technical Committee 39 (TC39), describes
syntax and semantics of JavaScript in a structured nature lan-
guage. Based on the speci�cation, researchers have de�ned various
JavaScript formal semantics [7, 13, 18, 20] or have modi�ed them
suitable for debuggers [8], veri�cation tools [11, 12], and static
analyzers [14, 15, 17, 29]. However, because all of them are writ-
ten by hand, the existing approach is tedious, labor-intensive, and
error-prone. Moreover, in late 2014, the TC39 announced the yearly
release cadence and open development process of ECMAScript to
quickly adapt to evolving development environments. Thus, there
are already six updates after ES5.1 and this problem becomes more
critical.

To alleviate this problem, we propose an approach to perform
JavaScript static analysis using abstract semantics automatically
de�ned with both JavaScript engines and speci�cation. Our main
idea is 1) to leverage the existing JavaScript engines as much as
possible and 2) to utilize the a mechanized speci�cation automati-
cally extracted from ECMAScript for the remaining parts. To lessen
the burden of manually de�ning the abstract semantics for the
evolving JavaScript speci�cation, we present a technique to extract
a mechanized speci�cation from ECMAScript and de�ne an ab-
stract semantics based on it. However, the automatically extracted
abstract semantics might be much slower than highly optimized
abstract semantics written by hand. Thus, we also leverage existing
JavaScript engines to de�ne abstract semantics for better perfor-
mance of static analysis. Our approach consists of three steps with
three di�erent tools; First, JISET automatically extracts JavaScript
mechanized speci�cation using a parser generation for syntax and
a rule-based compilation for semantics. Using the mechanized spec-
i�cation, JEST performs #+1-version di�erential testing for existing
JavaScript engines and ECMAScript to check whether they con-
form to each other. Finally, JSTAR performs JavaScript static analysis

1 On Review

<latexit sha1_base64="UFE5rAltPKCxrmF3rEz1sNHj3wU=">AAACNnicbVDLSsNAFJ34rO9Wl7oIFsFVSUTUZdGNSwWrQhvkZnrbDp1HmJmIJfQX3Oqn+Ctu3IlbP8FJm4WpHrhwOPd94oQzY4Pg3ZubX1hcWq6srK6tb2xuVWvbt0almmKLKq70fQwGOZPYssxyvE80gog53sXDizx/94jaMCVv7CjBSEBfsh6jYHOpYyF9qNaDRjCB/5eEBamTAlcPNW+v01U0FSgt5WBMOwwSG2WgLaMcx6ud1GACdAh9bDsqQaCJssmxY//AKV2/p7QLaf2J+rsjA2HMSMSuUoAdmNlcLv6Xa6e2dxZlTCapRUmni3op963y88/9LtNILR85AlQzd6tPB6CBWudPadJNGGX5cfmY0vqn6Q+lYgFD1EoJ9yBIinzs/Axn3ftLbo8a4UkjvD6uN88LZytkl+yTQxKSU9Ikl+SKtAglA/JMXsir9+Z9eJ/e17R0zit6dkgJ3vcPZwSspg==</latexit>⌧
Type Info.

Type Analysis

for Specification

Mechanized Spec.

Extraction

/ 35PS Lab Seminar - Towards Co-evolution of JavaScript Specification and Tools

Future Work

35

ECMAScript

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

JavaScript Static Analysis with Evolving Engines and
Specification

Jihyeok Park
KAIST, South Korea

jhpark0223@kaist.ac.kr

ABSTRACT
JavaScript is one of the most dominating programming languages.
Despite its popularity, the highly dynamic nature of JavaScript
makes its semantics complex thus understanding and reasoning
about JavaScript programs are challenging tasks. Therefore, Re-
searchers have proposed JavaScript static analysis based on ab-
stract interpretation with the the abstract semantics conforming
to ECMAScript, the standard speci�cation for JavaScript. However,
all the existing abstract semantics are manually de�ned thus the
current approach is labor-intensive and error-prone. Moreover, in
late 2014, this problem becomes more critical because the Ecma
Technical Committee 39 announced that they will annually update
ECMAScript.

To alleviate the problem, we propose an approach to perform
JavaScript static analysis using the abstract semantics automatically
de�ned with both of JavaScript engines and speci�cation. Our main
idea is 1) to leverage the existing JavaScript engines as much as
possible, and 2) to utilize the formal semantics automatically ex-
tracted from ECMAScript for remaining parts. We believe that our
approach would be able to analyze JavaScript programs developed
with new language features as well as improve their quality.

KEYWORDS
JavaScript, mechanized speci�cation, static analysis, abstract inter-
pretation
ACM Reference Format:
Jihyeok Park. 2021. JavaScript Static Analysis with Evolving Engines and
Speci�cation. In Proceedings of ACM Conference (Conference’17). ACM, New
York, NY, USA, 3 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
JavaScript is one of the most dominating programming languages.
While JavaScript was initially designed for client-side programming
in web browsers, and it is now widely used in server-side program-
ming [6] and even in embedded systems [3, 5, 7]. According to
W3Techs1, 97.2% of websites use JavaScript as their client-side pro-
gramming language. The 2020 State of the Octoverse2, which is the
1https://w3techs.com/technologies/details/cp-javascript/all/all
2https://octoverse.github.com/

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

annual report of GitHub, reports that JavaScript was the top-ranked
programming language in GitHub repositories since 2014 to 2020.

Researchers have proposed various static analyzers to under-
stand and reason about JavaScript programs. Despite its popularity,
JavaScript developers often su�er from its intricate and dynamic
language features, which may cause unexpected behaviors. For ex-
ample, the function declaration function f(x){ return x == !x }

may seem to always return false. Surprisingly, it returns truewhen
its argument is an empty array; f([]) = true. To correctly under-
stand and reason about such a complex behavior, researchers have
proposed various static analyzers for JavaScript programs, such as
TAJS [15], SAFE [20], JSAI [16], and WALA [26].

However, existing JavaScript static analyzers utilize manually
de�ned formal semantics, and this approach is labor-intensive and
error-prone. ECMAScript, which is a standard speci�cation for
JavaScript maintained by the Ecma Technical Committee 39 (TC39),
describes syntax and semantics of JavaScript in a structured na-
ture language. Based on the speci�cation, researchers have de�ned
various JavaScript formal semantics [8, 14, 21] or have modi�ed
them suitable for debuggers [9], veri�cation tools [12, 13], and
static analyzers [15, 16, 20, 26]. However, all of them are written
by hand thus the existing approach is tedious, labor-intensive, and
error-prone. Moreover, in late 2014, the TC39 announced the yearly
release cadence and open development process of ECMAScript to
quickly adapt to evolving development environments. Thus, there
are already six updates after ES5.1 and this problem becomes more
critical.

To alleviate this problem, we propose an approach to perform
JavaScript static analysis using the abstract semantics automatically
de�ned with both of JavaScript engines and speci�cation. Our main
idea is 1) to leverage the existing JavaScript engines as much as
possible, and 2) to utilize the formal semantics automatically ex-
tracted from ECMAScript for remaining parts. To lessen the burden
to manually de�ne the abstract semantics for evolving JavaScript
speci�cation, we present a technique to extract a formal semantics
from ECMAScript and de�ne an abstract semantics based on it.
However, the automatically extracted abstract semantics might be
much slower than highly optimized abstract semantics written by
hand. Thus, we also leverage existing JavaScript engines to de�ne
abstract semantics for better performance of static analysis. Our
approach consists of three steps with three di�erent tools; First,
JISET automatically extracts JavaScript formal semantics using rule-
based compilation from abstract algorithms to functions of IRES,
an Intermediate Representation that we designed for ECMAScript.
Based on the extracted semantics, JEST performs #+1-version dif-
ferential testing for existing JavaScript engines and ECMAScript to
check whether they conform to each other. Finally, JSAVER performs

1

Mechanized 
Spec.ASE'20 Tests JS EngineMechanized 
Spec.

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

JavaScript Static Analysis with Evolving Engines and Specification Conference’17, July 2017, Washington, DC, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Figure 2: The overall structure of JavaScript static analysis
with evolving engines and speci�cation

of ArrayLiteral and the Evaluation algorithm for its �rst alter-
native in ES11. We utilize such a common pattern in the writing
style to extract mechanized speci�cation directly from ECMAScript.
Moreover, commercial JavaScript engines are highly optimized to
quickly execute real-world JavaScript programs. However, most
of JavaScript static analyzers are developed and maintained by re-
searchers thus they are not scalable to analyze real-world JavaScript
programs. Thus, we leverage JavaScript engines as much as possible
during static analysis. This work is closely related to two research
�elds: mechanized speci�cation extraction and combined analysis of
dynamic and static analysis.

Mechanized Speci�cation Extraction. In diverse �elds, several
researchers have extracted mechanized speci�cations from speci�-
cations written in a natural language to automatically handle their
contents. Nguyen [18] extracted a mechanized speci�cation of x86
architecture from its natural language description using Natural
Language Processing (NLP) techniques. Moreover, Vu and Ogawa
[31] proposed a similar approach for ARM architecture using NLP
techniques with machine Learning techniques. Besides low-level
assembly languages, Zhai et al. [35] presented a technique to auto-
matically synthesize Java API functions from their documentation
using NLP techniques. For JavaScript, Ye et al. [34] presented C���
����, a compiler fuzzing framework to detect JavaScript engine
bugs using boundary conditions extracted from ECMAScript ab-
stract algorithms with deep learning-based language models. For
network protocols, Kim et al. [16] proposed B���S���, which ex-
tracts message structures from tables in cellular speci�cations for
L3 protocols to perform comparative analysis of baseband software.
However, there is no existing approach to automatically extract a
mechanized speci�cation that represents the entire formal seman-
tics of a high-level modern programming language.

Combined Analysis. Static and dynamic analyses are two of the
most popular program analysis techniques. Several researchers
have leveraged dynamic analysis during static analysis for 1) au-
tomatic modeling, 2) pruning analysis scope, and 3) performance
improvement. For automatic modeling, Park et al. [22] presented
a Sample-Run-Abstract (SRA) technique that utilizes the execution
results of sampled concrete states as an automatic modeling during
JavaScript static analysis. To prune out infeasible analysis scopes,
Schäfer et al. [28] utilized dynamic determinacy analysis and elimi-
nated invocations of eval and constant property names. Moreover,
Wei and Ryder [32] introduced blended taint analysis that sacri-
�ces the analysis soundness but increase analysis precision using
concrete traces collected by dynamic analysis. Similarly, Park et al.

Figure 3: A mechanized speci�cation extraction from EC-
MAScript via JISET

val ArrayLiteral: List[Boolean] => LAParser[T] = memo {

case List(Yield , Await) =>

�[� ~ opt(Elision) ~ �]� ^^ ArrayLiteral0 |

�[� ~ ElementList(Yield ,Await) ~ �]� ^^ ArrayLiteral1 |

�[� ~ ElementList(Yield ,Await) ~ �,�

~ opt(Elision)~ �]� ^^ ArrayLiteral2

}

(a) The generated parser for the ArrayLiteral production

ArrayLiteral [0]. Evaluation (Elision) => {

let array = [! (ArrayCreate 0)]

if (! (= Elision absent)) {

let len = (Elision.ArrayAccumulation array 0)

[? len]

}

return array

}

(b) The IRES function compiled from the Evaluation algorithm

Figure 4: The generated parser and the compiled IRES func-
tion from the production and abstract algorithm in Figure 1

[23, 26] utilize them to prune out initial states, dynamically loaded
�les, and event handlers. Unlike previous approaches, Toman and
Grossman [30] proposed C������� that performs a sound com-
bined analysis that could signi�cantly improve the precision and
performance of Java static analysis.

3 GOALS OF THE RESEARCH
In this section, we explain goals of an approach to perform JavaScript
static analysis using the abstract semantics automatically de�ned
with both of JavaScript engines and speci�cation. Figure 2 describes
the overall structure of our approach and it consists of three steps
with three di�erent tools; First, JISET (Section 3.1) automatically
extracts JavaScript a mechanized speci�cation using a parser gener-
ation for syntax and a rule-based compilation for semantics. Using
the mechanized speci�cation extracted by JISET, JEST (Section 3.2)
performs #+1-version di�erential testing for existing JavaScript
engines and ECMAScript to check whether they conform to each
other. Finally, JSAVER (Section 3.3) performs JavaScript static analy-
sis based on the abstract semantics de�ned with both of JavaScript
engines and speci�cation. Among three tools, we already developed
JISET [24] and JEST [21] thus we are now focusing on developing
JSAVER.

3.1 JISET: Mechanized Speci�cation Extraction
We present JISET [24], a JavaScript IR-based Semantics Extrac-

tion Toolchain, and Figure 3 depicts the overall structure of JISET.
3

ICSE'21

Conformance Test

Synthesis

Distinguished Paper
Award!!

Mechanized 
Spec.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

JavaScript Static Analysis with Evolving Engines and
Specification

Jihyeok Park
KAIST, South Korea

jhpark0223@kaist.ac.kr

ABSTRACT
JavaScript is one of the most dominant programming languages. De-
spite its popularity, the highly dynamic nature of JavaScript makes
its semantics complex; thus, understanding and reasoning about
JavaScript programs are challenging tasks. Therefore, Researchers
have proposed JavaScript static analysis based on the abstract in-
terpretation with abstract semantics conforming to ECMAScript,
the standard speci�cation for JavaScript. However, all the existing
abstract semantics are manually de�ned; thus, the current approach
is labor-intensive and error-prone. Moreover, since late 2014, this
problem becomes more critical because the Ecma Technical Com-
mittee 39 announced that they would update ECMAScript annually.

To alleviate the problem, we propose an approach to perform
JavaScript static analysis using abstract semantics automatically
de�ned with both JavaScript engines and speci�cation. Our main
idea is 1) to leverage the existing JavaScript engines as much as
possible and 2) to utilize the mechanized speci�cation automatically
extracted from ECMAScript for the remaining parts. We believe that
our approach can to perform static analysis for JavaScript programs
developed with new language features and help build high-quality
JavaScript programs.

KEYWORDS
JavaScript, mechanized speci�cation, static analysis, abstract inter-
pretation
ACM Reference Format:
Jihyeok Park. 2021. JavaScript Static Analysis with Evolving Engines and
Speci�cation. In Proceedings of ACM Conference (Conference’17). ACM, New
York, NY, USA, 6 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
JavaScript is one of the most dominant programming languages.
While JavaScript was initially designed for client-side program-
ming in web browsers, it is now widely used in server-side pro-
gramming [4] and even in embedded systems [2, 3, 5]. According
to W3Techs1, 97.2% of websites use JavaScript as their client-side
programming language. The 2020 State of the Octoverse2, which is
1https://w3techs.com/technologies/details/cp-javascript/all/all
2https://octoverse.github.com/

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

the annual report of GitHub, reports that JavaScript was the top-
ranked programming language in GitHub repositories since 2014
to 2020.

Researchers have proposed various static analyzers to under-
stand and reason about JavaScript programs. Despite its popularity,
JavaScript developers often su�er from its intricate and dynamic
language features, which may cause unexpected behaviors. For ex-
ample, the function declaration function f(x){ return x == !x }

may seem to always return false. Surprisingly, it returns truewhen
its argument is an empty array: f([]) = true. To correctly under-
stand and reason about such a complex behavior, researchers have
proposed various static analyzers for JavaScript programs, such as
TAJS [14], SAFE [17], JSAI [15], and WALA [29].

However, existing JavaScript static analyzers utilize manually
de�ned formal semantics, and this approach is labor-intensive and
error-prone. ECMAScript, the standard speci�cation for JavaScript
maintained by the Ecma Technical Committee 39 (TC39), describes
syntax and semantics of JavaScript in a structured nature lan-
guage. Based on the speci�cation, researchers have de�ned various
JavaScript formal semantics [7, 13, 18, 20] or have modi�ed them
suitable for debuggers [8], veri�cation tools [11, 12], and static
analyzers [14, 15, 17, 29]. However, because all of them are writ-
ten by hand, the existing approach is tedious, labor-intensive, and
error-prone. Moreover, in late 2014, the TC39 announced the yearly
release cadence and open development process of ECMAScript to
quickly adapt to evolving development environments. Thus, there
are already six updates after ES5.1 and this problem becomes more
critical.

To alleviate this problem, we propose an approach to perform
JavaScript static analysis using abstract semantics automatically
de�ned with both JavaScript engines and speci�cation. Our main
idea is 1) to leverage the existing JavaScript engines as much as
possible and 2) to utilize the a mechanized speci�cation automati-
cally extracted from ECMAScript for the remaining parts. To lessen
the burden of manually de�ning the abstract semantics for the
evolving JavaScript speci�cation, we present a technique to extract
a mechanized speci�cation from ECMAScript and de�ne an ab-
stract semantics based on it. However, the automatically extracted
abstract semantics might be much slower than highly optimized
abstract semantics written by hand. Thus, we also leverage existing
JavaScript engines to de�ne abstract semantics for better perfor-
mance of static analysis. Our approach consists of three steps with
three di�erent tools; First, JISET automatically extracts JavaScript
mechanized speci�cation using a parser generation for syntax and
a rule-based compilation for semantics. Using the mechanized spec-
i�cation, JEST performs #+1-version di�erential testing for existing
JavaScript engines and ECMAScript to check whether they con-
form to each other. Finally, JSTAR performs JavaScript static analysis

1 On Review

<latexit sha1_base64="UFE5rAltPKCxrmF3rEz1sNHj3wU=">AAACNnicbVDLSsNAFJ34rO9Wl7oIFsFVSUTUZdGNSwWrQhvkZnrbDp1HmJmIJfQX3Oqn+Ctu3IlbP8FJm4WpHrhwOPd94oQzY4Pg3ZubX1hcWq6srK6tb2xuVWvbt0almmKLKq70fQwGOZPYssxyvE80gog53sXDizx/94jaMCVv7CjBSEBfsh6jYHOpYyF9qNaDRjCB/5eEBamTAlcPNW+v01U0FSgt5WBMOwwSG2WgLaMcx6ud1GACdAh9bDsqQaCJssmxY//AKV2/p7QLaf2J+rsjA2HMSMSuUoAdmNlcLv6Xa6e2dxZlTCapRUmni3op963y88/9LtNILR85AlQzd6tPB6CBWudPadJNGGX5cfmY0vqn6Q+lYgFD1EoJ9yBIinzs/Axn3ftLbo8a4UkjvD6uN88LZytkl+yTQxKSU9Ikl+SKtAglA/JMXsir9+Z9eJ/e17R0zit6dkgJ3vcPZwSspg==</latexit>⌧
Type Info.

Type Analysis

for Specification

ECMAScript Mechanized 
Spec.

<latexit sha1_base64="UFE5rAltPKCxrmF3rEz1sNHj3wU=">AAACNnicbVDLSsNAFJ34rO9Wl7oIFsFVSUTUZdGNSwWrQhvkZnrbDp1HmJmIJfQX3Oqn+Ctu3IlbP8FJm4WpHrhwOPd94oQzY4Pg3ZubX1hcWq6srK6tb2xuVWvbt0almmKLKq70fQwGOZPYssxyvE80gog53sXDizx/94jaMCVv7CjBSEBfsh6jYHOpYyF9qNaDRjCB/5eEBamTAlcPNW+v01U0FSgt5WBMOwwSG2WgLaMcx6ud1GACdAh9bDsqQaCJssmxY//AKV2/p7QLaf2J+rsjA2HMSMSuUoAdmNlcLv6Xa6e2dxZlTCapRUmni3op963y88/9LtNILR85AlQzd6tPB6CBWudPadJNGGX5cfmY0vqn6Q+lYgFD1EoJ9yBIinzs/Axn3ftLbo8a4UkjvD6uN88LZytkl+yTQxKSU9Ikl+SKtAglA/JMXsir9+Z9eJ/e17R0zit6dkgJ3vcPZwSspg==</latexit>⌧
Type Info.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

JavaScript Static Analysis with Evolving Engines and
Specification

Jihyeok Park
KAIST, South Korea

jhpark0223@kaist.ac.kr

ABSTRACT
JavaScript is one of the most dominant programming languages. De-
spite its popularity, the highly dynamic nature of JavaScript makes
its semantics complex; thus, understanding and reasoning about
JavaScript programs are challenging tasks. Therefore, Researchers
have proposed JavaScript static analysis based on the abstract in-
terpretation with abstract semantics conforming to ECMAScript,
the standard speci�cation for JavaScript. However, all the existing
abstract semantics are manually de�ned; thus, the current approach
is labor-intensive and error-prone. Moreover, since late 2014, this
problem becomes more critical because the Ecma Technical Com-
mittee 39 announced that they would update ECMAScript annually.

To alleviate the problem, we propose an approach to perform
JavaScript static analysis using abstract semantics automatically
de�ned with both JavaScript engines and speci�cation. Our main
idea is 1) to leverage the existing JavaScript engines as much as
possible and 2) to utilize the mechanized speci�cation automatically
extracted from ECMAScript for the remaining parts. We believe that
our approach can to perform static analysis for JavaScript programs
developed with new language features and help build high-quality
JavaScript programs.

KEYWORDS
JavaScript, mechanized speci�cation, static analysis, abstract inter-
pretation
ACM Reference Format:
Jihyeok Park. 2021. JavaScript Static Analysis with Evolving Engines and
Speci�cation. In Proceedings of ACM Conference (Conference’17). ACM, New
York, NY, USA, 6 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
JavaScript is one of the most dominant programming languages.
While JavaScript was initially designed for client-side program-
ming in web browsers, it is now widely used in server-side pro-
gramming [4] and even in embedded systems [2, 3, 5]. According
to W3Techs1, 97.2% of websites use JavaScript as their client-side
programming language. The 2020 State of the Octoverse2, which is
1https://w3techs.com/technologies/details/cp-javascript/all/all
2https://octoverse.github.com/

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

the annual report of GitHub, reports that JavaScript was the top-
ranked programming language in GitHub repositories since 2014
to 2020.

Researchers have proposed various static analyzers to under-
stand and reason about JavaScript programs. Despite its popularity,
JavaScript developers often su�er from its intricate and dynamic
language features, which may cause unexpected behaviors. For ex-
ample, the function declaration function f(x){ return x == !x }

may seem to always return false. Surprisingly, it returns truewhen
its argument is an empty array: f([]) = true. To correctly under-
stand and reason about such a complex behavior, researchers have
proposed various static analyzers for JavaScript programs, such as
TAJS [14], SAFE [17], JSAI [15], and WALA [29].

However, existing JavaScript static analyzers utilize manually
de�ned formal semantics, and this approach is labor-intensive and
error-prone. ECMAScript, the standard speci�cation for JavaScript
maintained by the Ecma Technical Committee 39 (TC39), describes
syntax and semantics of JavaScript in a structured nature lan-
guage. Based on the speci�cation, researchers have de�ned various
JavaScript formal semantics [7, 13, 18, 20] or have modi�ed them
suitable for debuggers [8], veri�cation tools [11, 12], and static
analyzers [14, 15, 17, 29]. However, because all of them are writ-
ten by hand, the existing approach is tedious, labor-intensive, and
error-prone. Moreover, in late 2014, the TC39 announced the yearly
release cadence and open development process of ECMAScript to
quickly adapt to evolving development environments. Thus, there
are already six updates after ES5.1 and this problem becomes more
critical.

To alleviate this problem, we propose an approach to perform
JavaScript static analysis using abstract semantics automatically
de�ned with both JavaScript engines and speci�cation. Our main
idea is 1) to leverage the existing JavaScript engines as much as
possible and 2) to utilize the a mechanized speci�cation automati-
cally extracted from ECMAScript for the remaining parts. To lessen
the burden of manually de�ning the abstract semantics for the
evolving JavaScript speci�cation, we present a technique to extract
a mechanized speci�cation from ECMAScript and de�ne an ab-
stract semantics based on it. However, the automatically extracted
abstract semantics might be much slower than highly optimized
abstract semantics written by hand. Thus, we also leverage existing
JavaScript engines to de�ne abstract semantics for better perfor-
mance of static analysis. Our approach consists of three steps with
three di�erent tools; First, JISET automatically extracts JavaScript
mechanized speci�cation using a parser generation for syntax and
a rule-based compilation for semantics. Using the mechanized spec-
i�cation, JEST performs #+1-version di�erential testing for existing
JavaScript engines and ECMAScript to check whether they conform
to each other. Finally, JSDebug performs JavaScript static analysis

1 Ongoing Work

JavaScript

Debugger

Mechanized Spec.

Extraction

/ 35PS Lab Seminar - Towards Co-evolution of JavaScript Specification and Tools

Future Work

35

ECMAScript

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

JavaScript Static Analysis with Evolving Engines and
Specification

Jihyeok Park
KAIST, South Korea

jhpark0223@kaist.ac.kr

ABSTRACT
JavaScript is one of the most dominating programming languages.
Despite its popularity, the highly dynamic nature of JavaScript
makes its semantics complex thus understanding and reasoning
about JavaScript programs are challenging tasks. Therefore, Re-
searchers have proposed JavaScript static analysis based on ab-
stract interpretation with the the abstract semantics conforming
to ECMAScript, the standard speci�cation for JavaScript. However,
all the existing abstract semantics are manually de�ned thus the
current approach is labor-intensive and error-prone. Moreover, in
late 2014, this problem becomes more critical because the Ecma
Technical Committee 39 announced that they will annually update
ECMAScript.

To alleviate the problem, we propose an approach to perform
JavaScript static analysis using the abstract semantics automatically
de�ned with both of JavaScript engines and speci�cation. Our main
idea is 1) to leverage the existing JavaScript engines as much as
possible, and 2) to utilize the formal semantics automatically ex-
tracted from ECMAScript for remaining parts. We believe that our
approach would be able to analyze JavaScript programs developed
with new language features as well as improve their quality.

KEYWORDS
JavaScript, mechanized speci�cation, static analysis, abstract inter-
pretation
ACM Reference Format:
Jihyeok Park. 2021. JavaScript Static Analysis with Evolving Engines and
Speci�cation. In Proceedings of ACM Conference (Conference’17). ACM, New
York, NY, USA, 3 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
JavaScript is one of the most dominating programming languages.
While JavaScript was initially designed for client-side programming
in web browsers, and it is now widely used in server-side program-
ming [6] and even in embedded systems [3, 5, 7]. According to
W3Techs1, 97.2% of websites use JavaScript as their client-side pro-
gramming language. The 2020 State of the Octoverse2, which is the
1https://w3techs.com/technologies/details/cp-javascript/all/all
2https://octoverse.github.com/

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

annual report of GitHub, reports that JavaScript was the top-ranked
programming language in GitHub repositories since 2014 to 2020.

Researchers have proposed various static analyzers to under-
stand and reason about JavaScript programs. Despite its popularity,
JavaScript developers often su�er from its intricate and dynamic
language features, which may cause unexpected behaviors. For ex-
ample, the function declaration function f(x){ return x == !x }

may seem to always return false. Surprisingly, it returns truewhen
its argument is an empty array; f([]) = true. To correctly under-
stand and reason about such a complex behavior, researchers have
proposed various static analyzers for JavaScript programs, such as
TAJS [15], SAFE [20], JSAI [16], and WALA [26].

However, existing JavaScript static analyzers utilize manually
de�ned formal semantics, and this approach is labor-intensive and
error-prone. ECMAScript, which is a standard speci�cation for
JavaScript maintained by the Ecma Technical Committee 39 (TC39),
describes syntax and semantics of JavaScript in a structured na-
ture language. Based on the speci�cation, researchers have de�ned
various JavaScript formal semantics [8, 14, 21] or have modi�ed
them suitable for debuggers [9], veri�cation tools [12, 13], and
static analyzers [15, 16, 20, 26]. However, all of them are written
by hand thus the existing approach is tedious, labor-intensive, and
error-prone. Moreover, in late 2014, the TC39 announced the yearly
release cadence and open development process of ECMAScript to
quickly adapt to evolving development environments. Thus, there
are already six updates after ES5.1 and this problem becomes more
critical.

To alleviate this problem, we propose an approach to perform
JavaScript static analysis using the abstract semantics automatically
de�ned with both of JavaScript engines and speci�cation. Our main
idea is 1) to leverage the existing JavaScript engines as much as
possible, and 2) to utilize the formal semantics automatically ex-
tracted from ECMAScript for remaining parts. To lessen the burden
to manually de�ne the abstract semantics for evolving JavaScript
speci�cation, we present a technique to extract a formal semantics
from ECMAScript and de�ne an abstract semantics based on it.
However, the automatically extracted abstract semantics might be
much slower than highly optimized abstract semantics written by
hand. Thus, we also leverage existing JavaScript engines to de�ne
abstract semantics for better performance of static analysis. Our
approach consists of three steps with three di�erent tools; First,
JISET automatically extracts JavaScript formal semantics using rule-
based compilation from abstract algorithms to functions of IRES,
an Intermediate Representation that we designed for ECMAScript.
Based on the extracted semantics, JEST performs #+1-version dif-
ferential testing for existing JavaScript engines and ECMAScript to
check whether they conform to each other. Finally, JSAVER performs

1

Mechanized 
Spec.ASE'20 Tests JS EngineMechanized 
Spec.

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

JavaScript Static Analysis with Evolving Engines and Specification Conference’17, July 2017, Washington, DC, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Figure 2: The overall structure of JavaScript static analysis
with evolving engines and speci�cation

of ArrayLiteral and the Evaluation algorithm for its �rst alter-
native in ES11. We utilize such a common pattern in the writing
style to extract mechanized speci�cation directly from ECMAScript.
Moreover, commercial JavaScript engines are highly optimized to
quickly execute real-world JavaScript programs. However, most
of JavaScript static analyzers are developed and maintained by re-
searchers thus they are not scalable to analyze real-world JavaScript
programs. Thus, we leverage JavaScript engines as much as possible
during static analysis. This work is closely related to two research
�elds: mechanized speci�cation extraction and combined analysis of
dynamic and static analysis.

Mechanized Speci�cation Extraction. In diverse �elds, several
researchers have extracted mechanized speci�cations from speci�-
cations written in a natural language to automatically handle their
contents. Nguyen [18] extracted a mechanized speci�cation of x86
architecture from its natural language description using Natural
Language Processing (NLP) techniques. Moreover, Vu and Ogawa
[31] proposed a similar approach for ARM architecture using NLP
techniques with machine Learning techniques. Besides low-level
assembly languages, Zhai et al. [35] presented a technique to auto-
matically synthesize Java API functions from their documentation
using NLP techniques. For JavaScript, Ye et al. [34] presented C���
����, a compiler fuzzing framework to detect JavaScript engine
bugs using boundary conditions extracted from ECMAScript ab-
stract algorithms with deep learning-based language models. For
network protocols, Kim et al. [16] proposed B���S���, which ex-
tracts message structures from tables in cellular speci�cations for
L3 protocols to perform comparative analysis of baseband software.
However, there is no existing approach to automatically extract a
mechanized speci�cation that represents the entire formal seman-
tics of a high-level modern programming language.

Combined Analysis. Static and dynamic analyses are two of the
most popular program analysis techniques. Several researchers
have leveraged dynamic analysis during static analysis for 1) au-
tomatic modeling, 2) pruning analysis scope, and 3) performance
improvement. For automatic modeling, Park et al. [22] presented
a Sample-Run-Abstract (SRA) technique that utilizes the execution
results of sampled concrete states as an automatic modeling during
JavaScript static analysis. To prune out infeasible analysis scopes,
Schäfer et al. [28] utilized dynamic determinacy analysis and elimi-
nated invocations of eval and constant property names. Moreover,
Wei and Ryder [32] introduced blended taint analysis that sacri-
�ces the analysis soundness but increase analysis precision using
concrete traces collected by dynamic analysis. Similarly, Park et al.

Figure 3: A mechanized speci�cation extraction from EC-
MAScript via JISET

val ArrayLiteral: List[Boolean] => LAParser[T] = memo {

case List(Yield , Await) =>

�[� ~ opt(Elision) ~ �]� ^^ ArrayLiteral0 |

�[� ~ ElementList(Yield ,Await) ~ �]� ^^ ArrayLiteral1 |

�[� ~ ElementList(Yield ,Await) ~ �,�

~ opt(Elision)~ �]� ^^ ArrayLiteral2

}

(a) The generated parser for the ArrayLiteral production

ArrayLiteral [0]. Evaluation (Elision) => {

let array = [! (ArrayCreate 0)]

if (! (= Elision absent)) {

let len = (Elision.ArrayAccumulation array 0)

[? len]

}

return array

}

(b) The IRES function compiled from the Evaluation algorithm

Figure 4: The generated parser and the compiled IRES func-
tion from the production and abstract algorithm in Figure 1

[23, 26] utilize them to prune out initial states, dynamically loaded
�les, and event handlers. Unlike previous approaches, Toman and
Grossman [30] proposed C������� that performs a sound com-
bined analysis that could signi�cantly improve the precision and
performance of Java static analysis.

3 GOALS OF THE RESEARCH
In this section, we explain goals of an approach to perform JavaScript
static analysis using the abstract semantics automatically de�ned
with both of JavaScript engines and speci�cation. Figure 2 describes
the overall structure of our approach and it consists of three steps
with three di�erent tools; First, JISET (Section 3.1) automatically
extracts JavaScript a mechanized speci�cation using a parser gener-
ation for syntax and a rule-based compilation for semantics. Using
the mechanized speci�cation extracted by JISET, JEST (Section 3.2)
performs #+1-version di�erential testing for existing JavaScript
engines and ECMAScript to check whether they conform to each
other. Finally, JSAVER (Section 3.3) performs JavaScript static analy-
sis based on the abstract semantics de�ned with both of JavaScript
engines and speci�cation. Among three tools, we already developed
JISET [24] and JEST [21] thus we are now focusing on developing
JSAVER.

3.1 JISET: Mechanized Speci�cation Extraction
We present JISET [24], a JavaScript IR-based Semantics Extrac-

tion Toolchain, and Figure 3 depicts the overall structure of JISET.
3

ICSE'21

Conformance Test

Synthesis

Distinguished Paper
Award!!

Mechanized 
Spec.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

JavaScript Static Analysis with Evolving Engines and
Specification

Jihyeok Park
KAIST, South Korea

jhpark0223@kaist.ac.kr

ABSTRACT
JavaScript is one of the most dominant programming languages. De-
spite its popularity, the highly dynamic nature of JavaScript makes
its semantics complex; thus, understanding and reasoning about
JavaScript programs are challenging tasks. Therefore, Researchers
have proposed JavaScript static analysis based on the abstract in-
terpretation with abstract semantics conforming to ECMAScript,
the standard speci�cation for JavaScript. However, all the existing
abstract semantics are manually de�ned; thus, the current approach
is labor-intensive and error-prone. Moreover, since late 2014, this
problem becomes more critical because the Ecma Technical Com-
mittee 39 announced that they would update ECMAScript annually.

To alleviate the problem, we propose an approach to perform
JavaScript static analysis using abstract semantics automatically
de�ned with both JavaScript engines and speci�cation. Our main
idea is 1) to leverage the existing JavaScript engines as much as
possible and 2) to utilize the mechanized speci�cation automatically
extracted from ECMAScript for the remaining parts. We believe that
our approach can to perform static analysis for JavaScript programs
developed with new language features and help build high-quality
JavaScript programs.

KEYWORDS
JavaScript, mechanized speci�cation, static analysis, abstract inter-
pretation
ACM Reference Format:
Jihyeok Park. 2021. JavaScript Static Analysis with Evolving Engines and
Speci�cation. In Proceedings of ACM Conference (Conference’17). ACM, New
York, NY, USA, 6 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
JavaScript is one of the most dominant programming languages.
While JavaScript was initially designed for client-side program-
ming in web browsers, it is now widely used in server-side pro-
gramming [4] and even in embedded systems [2, 3, 5]. According
to W3Techs1, 97.2% of websites use JavaScript as their client-side
programming language. The 2020 State of the Octoverse2, which is
1https://w3techs.com/technologies/details/cp-javascript/all/all
2https://octoverse.github.com/

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

the annual report of GitHub, reports that JavaScript was the top-
ranked programming language in GitHub repositories since 2014
to 2020.

Researchers have proposed various static analyzers to under-
stand and reason about JavaScript programs. Despite its popularity,
JavaScript developers often su�er from its intricate and dynamic
language features, which may cause unexpected behaviors. For ex-
ample, the function declaration function f(x){ return x == !x }

may seem to always return false. Surprisingly, it returns truewhen
its argument is an empty array: f([]) = true. To correctly under-
stand and reason about such a complex behavior, researchers have
proposed various static analyzers for JavaScript programs, such as
TAJS [14], SAFE [17], JSAI [15], and WALA [29].

However, existing JavaScript static analyzers utilize manually
de�ned formal semantics, and this approach is labor-intensive and
error-prone. ECMAScript, the standard speci�cation for JavaScript
maintained by the Ecma Technical Committee 39 (TC39), describes
syntax and semantics of JavaScript in a structured nature lan-
guage. Based on the speci�cation, researchers have de�ned various
JavaScript formal semantics [7, 13, 18, 20] or have modi�ed them
suitable for debuggers [8], veri�cation tools [11, 12], and static
analyzers [14, 15, 17, 29]. However, because all of them are writ-
ten by hand, the existing approach is tedious, labor-intensive, and
error-prone. Moreover, in late 2014, the TC39 announced the yearly
release cadence and open development process of ECMAScript to
quickly adapt to evolving development environments. Thus, there
are already six updates after ES5.1 and this problem becomes more
critical.

To alleviate this problem, we propose an approach to perform
JavaScript static analysis using abstract semantics automatically
de�ned with both JavaScript engines and speci�cation. Our main
idea is 1) to leverage the existing JavaScript engines as much as
possible and 2) to utilize the a mechanized speci�cation automati-
cally extracted from ECMAScript for the remaining parts. To lessen
the burden of manually de�ning the abstract semantics for the
evolving JavaScript speci�cation, we present a technique to extract
a mechanized speci�cation from ECMAScript and de�ne an ab-
stract semantics based on it. However, the automatically extracted
abstract semantics might be much slower than highly optimized
abstract semantics written by hand. Thus, we also leverage existing
JavaScript engines to de�ne abstract semantics for better perfor-
mance of static analysis. Our approach consists of three steps with
three di�erent tools; First, JISET automatically extracts JavaScript
mechanized speci�cation using a parser generation for syntax and
a rule-based compilation for semantics. Using the mechanized spec-
i�cation, JEST performs #+1-version di�erential testing for existing
JavaScript engines and ECMAScript to check whether they con-
form to each other. Finally, JSTAR performs JavaScript static analysis

1 On Review

<latexit sha1_base64="UFE5rAltPKCxrmF3rEz1sNHj3wU=">AAACNnicbVDLSsNAFJ34rO9Wl7oIFsFVSUTUZdGNSwWrQhvkZnrbDp1HmJmIJfQX3Oqn+Ctu3IlbP8FJm4WpHrhwOPd94oQzY4Pg3ZubX1hcWq6srK6tb2xuVWvbt0almmKLKq70fQwGOZPYssxyvE80gog53sXDizx/94jaMCVv7CjBSEBfsh6jYHOpYyF9qNaDRjCB/5eEBamTAlcPNW+v01U0FSgt5WBMOwwSG2WgLaMcx6ud1GACdAh9bDsqQaCJssmxY//AKV2/p7QLaf2J+rsjA2HMSMSuUoAdmNlcLv6Xa6e2dxZlTCapRUmni3op963y88/9LtNILR85AlQzd6tPB6CBWudPadJNGGX5cfmY0vqn6Q+lYgFD1EoJ9yBIinzs/Axn3ftLbo8a4UkjvD6uN88LZytkl+yTQxKSU9Ikl+SKtAglA/JMXsir9+Z9eJ/e17R0zit6dkgJ3vcPZwSspg==</latexit>⌧
Type Info.

Type Analysis

for Specification

ECMAScript Mechanized 
Spec.

<latexit sha1_base64="UFE5rAltPKCxrmF3rEz1sNHj3wU=">AAACNnicbVDLSsNAFJ34rO9Wl7oIFsFVSUTUZdGNSwWrQhvkZnrbDp1HmJmIJfQX3Oqn+Ctu3IlbP8FJm4WpHrhwOPd94oQzY4Pg3ZubX1hcWq6srK6tb2xuVWvbt0almmKLKq70fQwGOZPYssxyvE80gog53sXDizx/94jaMCVv7CjBSEBfsh6jYHOpYyF9qNaDRjCB/5eEBamTAlcPNW+v01U0FSgt5WBMOwwSG2WgLaMcx6ud1GACdAh9bDsqQaCJssmxY//AKV2/p7QLaf2J+rsjA2HMSMSuUoAdmNlcLv6Xa6e2dxZlTCapRUmni3op963y88/9LtNILR85AlQzd6tPB6CBWudPadJNGGX5cfmY0vqn6Q+lYgFD1EoJ9yBIinzs/Axn3ftLbo8a4UkjvD6uN88LZytkl+yTQxKSU9Ikl+SKtAglA/JMXsir9+Z9eJ/e17R0zit6dkgJ3vcPZwSspg==</latexit>⌧
Type Info.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

JavaScript Static Analysis with Evolving Engines and
Specification

Jihyeok Park
KAIST, South Korea

jhpark0223@kaist.ac.kr

ABSTRACT
JavaScript is one of the most dominant programming languages. De-
spite its popularity, the highly dynamic nature of JavaScript makes
its semantics complex; thus, understanding and reasoning about
JavaScript programs are challenging tasks. Therefore, Researchers
have proposed JavaScript static analysis based on the abstract in-
terpretation with abstract semantics conforming to ECMAScript,
the standard speci�cation for JavaScript. However, all the existing
abstract semantics are manually de�ned; thus, the current approach
is labor-intensive and error-prone. Moreover, since late 2014, this
problem becomes more critical because the Ecma Technical Com-
mittee 39 announced that they would update ECMAScript annually.

To alleviate the problem, we propose an approach to perform
JavaScript static analysis using abstract semantics automatically
de�ned with both JavaScript engines and speci�cation. Our main
idea is 1) to leverage the existing JavaScript engines as much as
possible and 2) to utilize the mechanized speci�cation automatically
extracted from ECMAScript for the remaining parts. We believe that
our approach can to perform static analysis for JavaScript programs
developed with new language features and help build high-quality
JavaScript programs.

KEYWORDS
JavaScript, mechanized speci�cation, static analysis, abstract inter-
pretation
ACM Reference Format:
Jihyeok Park. 2021. JavaScript Static Analysis with Evolving Engines and
Speci�cation. In Proceedings of ACM Conference (Conference’17). ACM, New
York, NY, USA, 6 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
JavaScript is one of the most dominant programming languages.
While JavaScript was initially designed for client-side program-
ming in web browsers, it is now widely used in server-side pro-
gramming [4] and even in embedded systems [2, 3, 5]. According
to W3Techs1, 97.2% of websites use JavaScript as their client-side
programming language. The 2020 State of the Octoverse2, which is
1https://w3techs.com/technologies/details/cp-javascript/all/all
2https://octoverse.github.com/

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

the annual report of GitHub, reports that JavaScript was the top-
ranked programming language in GitHub repositories since 2014
to 2020.

Researchers have proposed various static analyzers to under-
stand and reason about JavaScript programs. Despite its popularity,
JavaScript developers often su�er from its intricate and dynamic
language features, which may cause unexpected behaviors. For ex-
ample, the function declaration function f(x){ return x == !x }

may seem to always return false. Surprisingly, it returns truewhen
its argument is an empty array: f([]) = true. To correctly under-
stand and reason about such a complex behavior, researchers have
proposed various static analyzers for JavaScript programs, such as
TAJS [14], SAFE [17], JSAI [15], and WALA [29].

However, existing JavaScript static analyzers utilize manually
de�ned formal semantics, and this approach is labor-intensive and
error-prone. ECMAScript, the standard speci�cation for JavaScript
maintained by the Ecma Technical Committee 39 (TC39), describes
syntax and semantics of JavaScript in a structured nature lan-
guage. Based on the speci�cation, researchers have de�ned various
JavaScript formal semantics [7, 13, 18, 20] or have modi�ed them
suitable for debuggers [8], veri�cation tools [11, 12], and static
analyzers [14, 15, 17, 29]. However, because all of them are writ-
ten by hand, the existing approach is tedious, labor-intensive, and
error-prone. Moreover, in late 2014, the TC39 announced the yearly
release cadence and open development process of ECMAScript to
quickly adapt to evolving development environments. Thus, there
are already six updates after ES5.1 and this problem becomes more
critical.

To alleviate this problem, we propose an approach to perform
JavaScript static analysis using abstract semantics automatically
de�ned with both JavaScript engines and speci�cation. Our main
idea is 1) to leverage the existing JavaScript engines as much as
possible and 2) to utilize the a mechanized speci�cation automati-
cally extracted from ECMAScript for the remaining parts. To lessen
the burden of manually de�ning the abstract semantics for the
evolving JavaScript speci�cation, we present a technique to extract
a mechanized speci�cation from ECMAScript and de�ne an ab-
stract semantics based on it. However, the automatically extracted
abstract semantics might be much slower than highly optimized
abstract semantics written by hand. Thus, we also leverage existing
JavaScript engines to de�ne abstract semantics for better perfor-
mance of static analysis. Our approach consists of three steps with
three di�erent tools; First, JISET automatically extracts JavaScript
mechanized speci�cation using a parser generation for syntax and
a rule-based compilation for semantics. Using the mechanized spec-
i�cation, JEST performs #+1-version di�erential testing for existing
JavaScript engines and ECMAScript to check whether they conform
to each other. Finally, JSDebug performs JavaScript static analysis

1 Ongoing Work

JavaScript

Debugger

JS EngineMechanized 
Spec.

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

JavaScript Static Analysis with Evolving Engines and Specification Conference’17, July 2017, Washington, DC, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Figure 2: The overall structure of JavaScript static analysis
with evolving engines and speci�cation

most JavaScript static analyzers are developed and maintained by
researchers, they are not scalable to analyze real-world JavaScript
programs. Thus, we leverage JavaScript engines as much as possible
during static analysis. This work is closely related to two research
�elds: mechanized speci�cation extraction and combined analysis of
dynamic and static analysis.

Mechanized Speci�cation Extraction. In diverse �elds, several
researchers have extracted mechanized speci�cations from speci�-
cations written in a natural language to automatically handle their
contents. Nguyen [19] extracted a mechanized speci�cation of x86
architecture from its natural language description using Natural
Language Processing (NLP) techniques. Moreover, Vu and Ogawa
[31] proposed a similar approach for ARM architecture using NLP
techniques with machine Learning techniques. Besides low-level
assembly languages, Zhai et al. [35] presented a technique to auto-
matically synthesize Java API functions from their documentation
using NLP techniques. For JavaScript, Ye et al. [34] presented C���
����, a compiler fuzzing framework to detect JavaScript engine
bugs using boundary conditions extracted from ECMAScript ab-
stract algorithms with deep learning-based language models. For
network protocols, Kim et al. [16] proposed B���S���, which ex-
tracts message structures from tables in cellular speci�cations for
L3 protocols to perform comparative analysis of baseband software.
However, there is no existing approach to automatically extract a
mechanized speci�cation that represents the entire formal seman-
tics of a high-level modern programming language.

Combined Analysis. Static and dynamic analyses are two of the
most popular program analysis techniques. Several researchers
have leveraged dynamic analysis during static analysis for 1) au-
tomatic modeling, 2) pruning analysis scope, and 3) performance
improvement. For automatic modeling, Park et al. [22] presented
a Sample-Run-Abstract (SRA) technique that utilizes the execution
results of sampled concrete states as an automatic modeling during
JavaScript static analysis. To prune out infeasible analysis scopes,
Schäfer et al. [28] utilized dynamic determinacy analysis and elimi-
nated invocations of eval and constant property names. Moreover,
Wei and Ryder [32] introduced blended taint analysis that sacri-
�ces the analysis soundness but increases analysis precision using
concrete traces collected by dynamic analysis. Similarly, Park et al.
[23, 26] utilize them to prune out initial states, dynamically loaded
�les, and event handlers. Unlike previous approaches, Toman and
Grossman [30] proposed C������� that performs a sound com-
bined analysis that could signi�cantly improve the precision and
performance of Java static analysis.

Figure 3: A mechanized speci�cation extraction from EC-
MAScript via JISET

val ArrayLiteral: List[Boolean] => LAParser[T] = memo {

case List(Yield , Await) =>

�[� ~ opt(Elision) ~ �]� ^^ ArrayLiteral0 |

�[� ~ ElementList(Yield ,Await) ~ �]� ^^ ArrayLiteral1 |

�[� ~ ElementList(Yield ,Await) ~ �,�

~ opt(Elision)~ �]� ^^ ArrayLiteral2

}

(a) The generated parser for the ArrayLiteral production

ArrayLiteral [0]. Evaluation (Elision) => {

let array = [! (ArrayCreate 0)]

if (! (= Elision absent)) {

let len = (Elision.ArrayAccumulation array 0)

[? len]

}

return array

}

(b) The IRES function compiled from the Evaluation algorithm

Figure 4: The generated parser and the compiled IRES func-
tion from the production and abstract algorithm in Figure 1

3 GOALS OF THE RESEARCH
In this section, we explain goals of our approach to perform JavaScript
static analysis using the abstract semantics automatically de�ned
with both JavaScript engines and speci�cation. Figure 2 describes
the overall structure of our approach and it consists of three steps
with three tools; First, JISET (Section 3.1) automatically extracts a
mechanized speci�cation of JavaScript using a parser generation for
syntax and a rule-based compilation for semantics. Using the mech-
anized speci�cation extracted by JISET, JEST (Section 3.2) performs
#+1-version di�erential testing for existing JavaScript engines and
ECMAScript to check whether they conform to each other. Finally,
JSAVER (Section 3.3) performs JavaScript static analysis based on
the abstract semantics de�ned with both JavaScript engines and
speci�cation. Among three tools, we already developed JISET [24]
and JEST [21] and we are now focusing on developing JSAVER.

3.1 JISET: Mechanized Speci�cation Extraction
We present JISET [24], a JavaScript IR-based Semantics Extrac-

tion Toolchain, and Figure 3 depicts the overall structure of JISET.
We explain how JISET utilizes common patterns in the writing style
of ECMAScript to extract a mechanized speci�cation using the data
in JSON format extracted from ECMAScript by Spec Extractor. A
mechanized speci�cation consists of a JavaScript parser for syn-
tax and functions of IRES, an Intermediate Representation that we
designed for ECMAScript, for semantics.

3

Ongoing Work

JavaScript

Static Analysis

Mechanized Spec.

Extraction

/ 35PS Lab Seminar - Towards Co-evolution of JavaScript Specification and Tools

Future Work

35

ECMAScript

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

JavaScript Static Analysis with Evolving Engines and
Specification

Jihyeok Park
KAIST, South Korea

jhpark0223@kaist.ac.kr

ABSTRACT
JavaScript is one of the most dominating programming languages.
Despite its popularity, the highly dynamic nature of JavaScript
makes its semantics complex thus understanding and reasoning
about JavaScript programs are challenging tasks. Therefore, Re-
searchers have proposed JavaScript static analysis based on ab-
stract interpretation with the the abstract semantics conforming
to ECMAScript, the standard speci�cation for JavaScript. However,
all the existing abstract semantics are manually de�ned thus the
current approach is labor-intensive and error-prone. Moreover, in
late 2014, this problem becomes more critical because the Ecma
Technical Committee 39 announced that they will annually update
ECMAScript.

To alleviate the problem, we propose an approach to perform
JavaScript static analysis using the abstract semantics automatically
de�ned with both of JavaScript engines and speci�cation. Our main
idea is 1) to leverage the existing JavaScript engines as much as
possible, and 2) to utilize the formal semantics automatically ex-
tracted from ECMAScript for remaining parts. We believe that our
approach would be able to analyze JavaScript programs developed
with new language features as well as improve their quality.

KEYWORDS
JavaScript, mechanized speci�cation, static analysis, abstract inter-
pretation
ACM Reference Format:
Jihyeok Park. 2021. JavaScript Static Analysis with Evolving Engines and
Speci�cation. In Proceedings of ACM Conference (Conference’17). ACM, New
York, NY, USA, 3 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
JavaScript is one of the most dominating programming languages.
While JavaScript was initially designed for client-side programming
in web browsers, and it is now widely used in server-side program-
ming [6] and even in embedded systems [3, 5, 7]. According to
W3Techs1, 97.2% of websites use JavaScript as their client-side pro-
gramming language. The 2020 State of the Octoverse2, which is the
1https://w3techs.com/technologies/details/cp-javascript/all/all
2https://octoverse.github.com/

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

annual report of GitHub, reports that JavaScript was the top-ranked
programming language in GitHub repositories since 2014 to 2020.

Researchers have proposed various static analyzers to under-
stand and reason about JavaScript programs. Despite its popularity,
JavaScript developers often su�er from its intricate and dynamic
language features, which may cause unexpected behaviors. For ex-
ample, the function declaration function f(x){ return x == !x }

may seem to always return false. Surprisingly, it returns truewhen
its argument is an empty array; f([]) = true. To correctly under-
stand and reason about such a complex behavior, researchers have
proposed various static analyzers for JavaScript programs, such as
TAJS [15], SAFE [20], JSAI [16], and WALA [26].

However, existing JavaScript static analyzers utilize manually
de�ned formal semantics, and this approach is labor-intensive and
error-prone. ECMAScript, which is a standard speci�cation for
JavaScript maintained by the Ecma Technical Committee 39 (TC39),
describes syntax and semantics of JavaScript in a structured na-
ture language. Based on the speci�cation, researchers have de�ned
various JavaScript formal semantics [8, 14, 21] or have modi�ed
them suitable for debuggers [9], veri�cation tools [12, 13], and
static analyzers [15, 16, 20, 26]. However, all of them are written
by hand thus the existing approach is tedious, labor-intensive, and
error-prone. Moreover, in late 2014, the TC39 announced the yearly
release cadence and open development process of ECMAScript to
quickly adapt to evolving development environments. Thus, there
are already six updates after ES5.1 and this problem becomes more
critical.

To alleviate this problem, we propose an approach to perform
JavaScript static analysis using the abstract semantics automatically
de�ned with both of JavaScript engines and speci�cation. Our main
idea is 1) to leverage the existing JavaScript engines as much as
possible, and 2) to utilize the formal semantics automatically ex-
tracted from ECMAScript for remaining parts. To lessen the burden
to manually de�ne the abstract semantics for evolving JavaScript
speci�cation, we present a technique to extract a formal semantics
from ECMAScript and de�ne an abstract semantics based on it.
However, the automatically extracted abstract semantics might be
much slower than highly optimized abstract semantics written by
hand. Thus, we also leverage existing JavaScript engines to de�ne
abstract semantics for better performance of static analysis. Our
approach consists of three steps with three di�erent tools; First,
JISET automatically extracts JavaScript formal semantics using rule-
based compilation from abstract algorithms to functions of IRES,
an Intermediate Representation that we designed for ECMAScript.
Based on the extracted semantics, JEST performs #+1-version dif-
ferential testing for existing JavaScript engines and ECMAScript to
check whether they conform to each other. Finally, JSAVER performs

1

Mechanized 
Spec.ASE'20 Tests JS EngineMechanized 
Spec.

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

JavaScript Static Analysis with Evolving Engines and Specification Conference’17, July 2017, Washington, DC, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Figure 2: The overall structure of JavaScript static analysis
with evolving engines and speci�cation

of ArrayLiteral and the Evaluation algorithm for its �rst alter-
native in ES11. We utilize such a common pattern in the writing
style to extract mechanized speci�cation directly from ECMAScript.
Moreover, commercial JavaScript engines are highly optimized to
quickly execute real-world JavaScript programs. However, most
of JavaScript static analyzers are developed and maintained by re-
searchers thus they are not scalable to analyze real-world JavaScript
programs. Thus, we leverage JavaScript engines as much as possible
during static analysis. This work is closely related to two research
�elds: mechanized speci�cation extraction and combined analysis of
dynamic and static analysis.

Mechanized Speci�cation Extraction. In diverse �elds, several
researchers have extracted mechanized speci�cations from speci�-
cations written in a natural language to automatically handle their
contents. Nguyen [18] extracted a mechanized speci�cation of x86
architecture from its natural language description using Natural
Language Processing (NLP) techniques. Moreover, Vu and Ogawa
[31] proposed a similar approach for ARM architecture using NLP
techniques with machine Learning techniques. Besides low-level
assembly languages, Zhai et al. [35] presented a technique to auto-
matically synthesize Java API functions from their documentation
using NLP techniques. For JavaScript, Ye et al. [34] presented C���
����, a compiler fuzzing framework to detect JavaScript engine
bugs using boundary conditions extracted from ECMAScript ab-
stract algorithms with deep learning-based language models. For
network protocols, Kim et al. [16] proposed B���S���, which ex-
tracts message structures from tables in cellular speci�cations for
L3 protocols to perform comparative analysis of baseband software.
However, there is no existing approach to automatically extract a
mechanized speci�cation that represents the entire formal seman-
tics of a high-level modern programming language.

Combined Analysis. Static and dynamic analyses are two of the
most popular program analysis techniques. Several researchers
have leveraged dynamic analysis during static analysis for 1) au-
tomatic modeling, 2) pruning analysis scope, and 3) performance
improvement. For automatic modeling, Park et al. [22] presented
a Sample-Run-Abstract (SRA) technique that utilizes the execution
results of sampled concrete states as an automatic modeling during
JavaScript static analysis. To prune out infeasible analysis scopes,
Schäfer et al. [28] utilized dynamic determinacy analysis and elimi-
nated invocations of eval and constant property names. Moreover,
Wei and Ryder [32] introduced blended taint analysis that sacri-
�ces the analysis soundness but increase analysis precision using
concrete traces collected by dynamic analysis. Similarly, Park et al.

Figure 3: A mechanized speci�cation extraction from EC-
MAScript via JISET

val ArrayLiteral: List[Boolean] => LAParser[T] = memo {

case List(Yield , Await) =>

�[� ~ opt(Elision) ~ �]� ^^ ArrayLiteral0 |

�[� ~ ElementList(Yield ,Await) ~ �]� ^^ ArrayLiteral1 |

�[� ~ ElementList(Yield ,Await) ~ �,�

~ opt(Elision)~ �]� ^^ ArrayLiteral2

}

(a) The generated parser for the ArrayLiteral production

ArrayLiteral [0]. Evaluation (Elision) => {

let array = [! (ArrayCreate 0)]

if (! (= Elision absent)) {

let len = (Elision.ArrayAccumulation array 0)

[? len]

}

return array

}

(b) The IRES function compiled from the Evaluation algorithm

Figure 4: The generated parser and the compiled IRES func-
tion from the production and abstract algorithm in Figure 1

[23, 26] utilize them to prune out initial states, dynamically loaded
�les, and event handlers. Unlike previous approaches, Toman and
Grossman [30] proposed C������� that performs a sound com-
bined analysis that could signi�cantly improve the precision and
performance of Java static analysis.

3 GOALS OF THE RESEARCH
In this section, we explain goals of an approach to perform JavaScript
static analysis using the abstract semantics automatically de�ned
with both of JavaScript engines and speci�cation. Figure 2 describes
the overall structure of our approach and it consists of three steps
with three di�erent tools; First, JISET (Section 3.1) automatically
extracts JavaScript a mechanized speci�cation using a parser gener-
ation for syntax and a rule-based compilation for semantics. Using
the mechanized speci�cation extracted by JISET, JEST (Section 3.2)
performs #+1-version di�erential testing for existing JavaScript
engines and ECMAScript to check whether they conform to each
other. Finally, JSAVER (Section 3.3) performs JavaScript static analy-
sis based on the abstract semantics de�ned with both of JavaScript
engines and speci�cation. Among three tools, we already developed
JISET [24] and JEST [21] thus we are now focusing on developing
JSAVER.

3.1 JISET: Mechanized Speci�cation Extraction
We present JISET [24], a JavaScript IR-based Semantics Extrac-

tion Toolchain, and Figure 3 depicts the overall structure of JISET.
3

ICSE'21

Conformance Test

Synthesis

Distinguished Paper
Award!!

Mechanized 
Spec.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

JavaScript Static Analysis with Evolving Engines and
Specification

Jihyeok Park
KAIST, South Korea

jhpark0223@kaist.ac.kr

ABSTRACT
JavaScript is one of the most dominant programming languages. De-
spite its popularity, the highly dynamic nature of JavaScript makes
its semantics complex; thus, understanding and reasoning about
JavaScript programs are challenging tasks. Therefore, Researchers
have proposed JavaScript static analysis based on the abstract in-
terpretation with abstract semantics conforming to ECMAScript,
the standard speci�cation for JavaScript. However, all the existing
abstract semantics are manually de�ned; thus, the current approach
is labor-intensive and error-prone. Moreover, since late 2014, this
problem becomes more critical because the Ecma Technical Com-
mittee 39 announced that they would update ECMAScript annually.

To alleviate the problem, we propose an approach to perform
JavaScript static analysis using abstract semantics automatically
de�ned with both JavaScript engines and speci�cation. Our main
idea is 1) to leverage the existing JavaScript engines as much as
possible and 2) to utilize the mechanized speci�cation automatically
extracted from ECMAScript for the remaining parts. We believe that
our approach can to perform static analysis for JavaScript programs
developed with new language features and help build high-quality
JavaScript programs.

KEYWORDS
JavaScript, mechanized speci�cation, static analysis, abstract inter-
pretation
ACM Reference Format:
Jihyeok Park. 2021. JavaScript Static Analysis with Evolving Engines and
Speci�cation. In Proceedings of ACM Conference (Conference’17). ACM, New
York, NY, USA, 6 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
JavaScript is one of the most dominant programming languages.
While JavaScript was initially designed for client-side program-
ming in web browsers, it is now widely used in server-side pro-
gramming [4] and even in embedded systems [2, 3, 5]. According
to W3Techs1, 97.2% of websites use JavaScript as their client-side
programming language. The 2020 State of the Octoverse2, which is
1https://w3techs.com/technologies/details/cp-javascript/all/all
2https://octoverse.github.com/

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

the annual report of GitHub, reports that JavaScript was the top-
ranked programming language in GitHub repositories since 2014
to 2020.

Researchers have proposed various static analyzers to under-
stand and reason about JavaScript programs. Despite its popularity,
JavaScript developers often su�er from its intricate and dynamic
language features, which may cause unexpected behaviors. For ex-
ample, the function declaration function f(x){ return x == !x }

may seem to always return false. Surprisingly, it returns truewhen
its argument is an empty array: f([]) = true. To correctly under-
stand and reason about such a complex behavior, researchers have
proposed various static analyzers for JavaScript programs, such as
TAJS [14], SAFE [17], JSAI [15], and WALA [29].

However, existing JavaScript static analyzers utilize manually
de�ned formal semantics, and this approach is labor-intensive and
error-prone. ECMAScript, the standard speci�cation for JavaScript
maintained by the Ecma Technical Committee 39 (TC39), describes
syntax and semantics of JavaScript in a structured nature lan-
guage. Based on the speci�cation, researchers have de�ned various
JavaScript formal semantics [7, 13, 18, 20] or have modi�ed them
suitable for debuggers [8], veri�cation tools [11, 12], and static
analyzers [14, 15, 17, 29]. However, because all of them are writ-
ten by hand, the existing approach is tedious, labor-intensive, and
error-prone. Moreover, in late 2014, the TC39 announced the yearly
release cadence and open development process of ECMAScript to
quickly adapt to evolving development environments. Thus, there
are already six updates after ES5.1 and this problem becomes more
critical.

To alleviate this problem, we propose an approach to perform
JavaScript static analysis using abstract semantics automatically
de�ned with both JavaScript engines and speci�cation. Our main
idea is 1) to leverage the existing JavaScript engines as much as
possible and 2) to utilize the a mechanized speci�cation automati-
cally extracted from ECMAScript for the remaining parts. To lessen
the burden of manually de�ning the abstract semantics for the
evolving JavaScript speci�cation, we present a technique to extract
a mechanized speci�cation from ECMAScript and de�ne an ab-
stract semantics based on it. However, the automatically extracted
abstract semantics might be much slower than highly optimized
abstract semantics written by hand. Thus, we also leverage existing
JavaScript engines to de�ne abstract semantics for better perfor-
mance of static analysis. Our approach consists of three steps with
three di�erent tools; First, JISET automatically extracts JavaScript
mechanized speci�cation using a parser generation for syntax and
a rule-based compilation for semantics. Using the mechanized spec-
i�cation, JEST performs #+1-version di�erential testing for existing
JavaScript engines and ECMAScript to check whether they con-
form to each other. Finally, JSTAR performs JavaScript static analysis

1 On Review

<latexit sha1_base64="UFE5rAltPKCxrmF3rEz1sNHj3wU=">AAACNnicbVDLSsNAFJ34rO9Wl7oIFsFVSUTUZdGNSwWrQhvkZnrbDp1HmJmIJfQX3Oqn+Ctu3IlbP8FJm4WpHrhwOPd94oQzY4Pg3ZubX1hcWq6srK6tb2xuVWvbt0almmKLKq70fQwGOZPYssxyvE80gog53sXDizx/94jaMCVv7CjBSEBfsh6jYHOpYyF9qNaDRjCB/5eEBamTAlcPNW+v01U0FSgt5WBMOwwSG2WgLaMcx6ud1GACdAh9bDsqQaCJssmxY//AKV2/p7QLaf2J+rsjA2HMSMSuUoAdmNlcLv6Xa6e2dxZlTCapRUmni3op963y88/9LtNILR85AlQzd6tPB6CBWudPadJNGGX5cfmY0vqn6Q+lYgFD1EoJ9yBIinzs/Axn3ftLbo8a4UkjvD6uN88LZytkl+yTQxKSU9Ikl+SKtAglA/JMXsir9+Z9eJ/e17R0zit6dkgJ3vcPZwSspg==</latexit>⌧
Type Info.

Type Analysis

for Specification

ECMAScript Mechanized 
Spec.

<latexit sha1_base64="UFE5rAltPKCxrmF3rEz1sNHj3wU=">AAACNnicbVDLSsNAFJ34rO9Wl7oIFsFVSUTUZdGNSwWrQhvkZnrbDp1HmJmIJfQX3Oqn+Ctu3IlbP8FJm4WpHrhwOPd94oQzY4Pg3ZubX1hcWq6srK6tb2xuVWvbt0almmKLKq70fQwGOZPYssxyvE80gog53sXDizx/94jaMCVv7CjBSEBfsh6jYHOpYyF9qNaDRjCB/5eEBamTAlcPNW+v01U0FSgt5WBMOwwSG2WgLaMcx6ud1GACdAh9bDsqQaCJssmxY//AKV2/p7QLaf2J+rsjA2HMSMSuUoAdmNlcLv6Xa6e2dxZlTCapRUmni3op963y88/9LtNILR85AlQzd6tPB6CBWudPadJNGGX5cfmY0vqn6Q+lYgFD1EoJ9yBIinzs/Axn3ftLbo8a4UkjvD6uN88LZytkl+yTQxKSU9Ikl+SKtAglA/JMXsir9+Z9eJ/e17R0zit6dkgJ3vcPZwSspg==</latexit>⌧
Type Info.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

JavaScript Static Analysis with Evolving Engines and
Specification

Jihyeok Park
KAIST, South Korea

jhpark0223@kaist.ac.kr

ABSTRACT
JavaScript is one of the most dominant programming languages. De-
spite its popularity, the highly dynamic nature of JavaScript makes
its semantics complex; thus, understanding and reasoning about
JavaScript programs are challenging tasks. Therefore, Researchers
have proposed JavaScript static analysis based on the abstract in-
terpretation with abstract semantics conforming to ECMAScript,
the standard speci�cation for JavaScript. However, all the existing
abstract semantics are manually de�ned; thus, the current approach
is labor-intensive and error-prone. Moreover, since late 2014, this
problem becomes more critical because the Ecma Technical Com-
mittee 39 announced that they would update ECMAScript annually.

To alleviate the problem, we propose an approach to perform
JavaScript static analysis using abstract semantics automatically
de�ned with both JavaScript engines and speci�cation. Our main
idea is 1) to leverage the existing JavaScript engines as much as
possible and 2) to utilize the mechanized speci�cation automatically
extracted from ECMAScript for the remaining parts. We believe that
our approach can to perform static analysis for JavaScript programs
developed with new language features and help build high-quality
JavaScript programs.

KEYWORDS
JavaScript, mechanized speci�cation, static analysis, abstract inter-
pretation
ACM Reference Format:
Jihyeok Park. 2021. JavaScript Static Analysis with Evolving Engines and
Speci�cation. In Proceedings of ACM Conference (Conference’17). ACM, New
York, NY, USA, 6 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
JavaScript is one of the most dominant programming languages.
While JavaScript was initially designed for client-side program-
ming in web browsers, it is now widely used in server-side pro-
gramming [4] and even in embedded systems [2, 3, 5]. According
to W3Techs1, 97.2% of websites use JavaScript as their client-side
programming language. The 2020 State of the Octoverse2, which is
1https://w3techs.com/technologies/details/cp-javascript/all/all
2https://octoverse.github.com/

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

the annual report of GitHub, reports that JavaScript was the top-
ranked programming language in GitHub repositories since 2014
to 2020.

Researchers have proposed various static analyzers to under-
stand and reason about JavaScript programs. Despite its popularity,
JavaScript developers often su�er from its intricate and dynamic
language features, which may cause unexpected behaviors. For ex-
ample, the function declaration function f(x){ return x == !x }

may seem to always return false. Surprisingly, it returns truewhen
its argument is an empty array: f([]) = true. To correctly under-
stand and reason about such a complex behavior, researchers have
proposed various static analyzers for JavaScript programs, such as
TAJS [14], SAFE [17], JSAI [15], and WALA [29].

However, existing JavaScript static analyzers utilize manually
de�ned formal semantics, and this approach is labor-intensive and
error-prone. ECMAScript, the standard speci�cation for JavaScript
maintained by the Ecma Technical Committee 39 (TC39), describes
syntax and semantics of JavaScript in a structured nature lan-
guage. Based on the speci�cation, researchers have de�ned various
JavaScript formal semantics [7, 13, 18, 20] or have modi�ed them
suitable for debuggers [8], veri�cation tools [11, 12], and static
analyzers [14, 15, 17, 29]. However, because all of them are writ-
ten by hand, the existing approach is tedious, labor-intensive, and
error-prone. Moreover, in late 2014, the TC39 announced the yearly
release cadence and open development process of ECMAScript to
quickly adapt to evolving development environments. Thus, there
are already six updates after ES5.1 and this problem becomes more
critical.

To alleviate this problem, we propose an approach to perform
JavaScript static analysis using abstract semantics automatically
de�ned with both JavaScript engines and speci�cation. Our main
idea is 1) to leverage the existing JavaScript engines as much as
possible and 2) to utilize the a mechanized speci�cation automati-
cally extracted from ECMAScript for the remaining parts. To lessen
the burden of manually de�ning the abstract semantics for the
evolving JavaScript speci�cation, we present a technique to extract
a mechanized speci�cation from ECMAScript and de�ne an ab-
stract semantics based on it. However, the automatically extracted
abstract semantics might be much slower than highly optimized
abstract semantics written by hand. Thus, we also leverage existing
JavaScript engines to de�ne abstract semantics for better perfor-
mance of static analysis. Our approach consists of three steps with
three di�erent tools; First, JISET automatically extracts JavaScript
mechanized speci�cation using a parser generation for syntax and
a rule-based compilation for semantics. Using the mechanized spec-
i�cation, JEST performs #+1-version di�erential testing for existing
JavaScript engines and ECMAScript to check whether they conform
to each other. Finally, JSDebug performs JavaScript static analysis

1 Ongoing Work

JavaScript

Debugger

JS EngineMechanized 
Spec.

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

JavaScript Static Analysis with Evolving Engines and Specification Conference’17, July 2017, Washington, DC, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Figure 2: The overall structure of JavaScript static analysis
with evolving engines and speci�cation

most JavaScript static analyzers are developed and maintained by
researchers, they are not scalable to analyze real-world JavaScript
programs. Thus, we leverage JavaScript engines as much as possible
during static analysis. This work is closely related to two research
�elds: mechanized speci�cation extraction and combined analysis of
dynamic and static analysis.

Mechanized Speci�cation Extraction. In diverse �elds, several
researchers have extracted mechanized speci�cations from speci�-
cations written in a natural language to automatically handle their
contents. Nguyen [19] extracted a mechanized speci�cation of x86
architecture from its natural language description using Natural
Language Processing (NLP) techniques. Moreover, Vu and Ogawa
[31] proposed a similar approach for ARM architecture using NLP
techniques with machine Learning techniques. Besides low-level
assembly languages, Zhai et al. [35] presented a technique to auto-
matically synthesize Java API functions from their documentation
using NLP techniques. For JavaScript, Ye et al. [34] presented C���
����, a compiler fuzzing framework to detect JavaScript engine
bugs using boundary conditions extracted from ECMAScript ab-
stract algorithms with deep learning-based language models. For
network protocols, Kim et al. [16] proposed B���S���, which ex-
tracts message structures from tables in cellular speci�cations for
L3 protocols to perform comparative analysis of baseband software.
However, there is no existing approach to automatically extract a
mechanized speci�cation that represents the entire formal seman-
tics of a high-level modern programming language.

Combined Analysis. Static and dynamic analyses are two of the
most popular program analysis techniques. Several researchers
have leveraged dynamic analysis during static analysis for 1) au-
tomatic modeling, 2) pruning analysis scope, and 3) performance
improvement. For automatic modeling, Park et al. [22] presented
a Sample-Run-Abstract (SRA) technique that utilizes the execution
results of sampled concrete states as an automatic modeling during
JavaScript static analysis. To prune out infeasible analysis scopes,
Schäfer et al. [28] utilized dynamic determinacy analysis and elimi-
nated invocations of eval and constant property names. Moreover,
Wei and Ryder [32] introduced blended taint analysis that sacri-
�ces the analysis soundness but increases analysis precision using
concrete traces collected by dynamic analysis. Similarly, Park et al.
[23, 26] utilize them to prune out initial states, dynamically loaded
�les, and event handlers. Unlike previous approaches, Toman and
Grossman [30] proposed C������� that performs a sound com-
bined analysis that could signi�cantly improve the precision and
performance of Java static analysis.

Figure 3: A mechanized speci�cation extraction from EC-
MAScript via JISET

val ArrayLiteral: List[Boolean] => LAParser[T] = memo {

case List(Yield , Await) =>

�[� ~ opt(Elision) ~ �]� ^^ ArrayLiteral0 |

�[� ~ ElementList(Yield ,Await) ~ �]� ^^ ArrayLiteral1 |

�[� ~ ElementList(Yield ,Await) ~ �,�

~ opt(Elision)~ �]� ^^ ArrayLiteral2

}

(a) The generated parser for the ArrayLiteral production

ArrayLiteral [0]. Evaluation (Elision) => {

let array = [! (ArrayCreate 0)]

if (! (= Elision absent)) {

let len = (Elision.ArrayAccumulation array 0)

[? len]

}

return array

}

(b) The IRES function compiled from the Evaluation algorithm

Figure 4: The generated parser and the compiled IRES func-
tion from the production and abstract algorithm in Figure 1

3 GOALS OF THE RESEARCH
In this section, we explain goals of our approach to perform JavaScript
static analysis using the abstract semantics automatically de�ned
with both JavaScript engines and speci�cation. Figure 2 describes
the overall structure of our approach and it consists of three steps
with three tools; First, JISET (Section 3.1) automatically extracts a
mechanized speci�cation of JavaScript using a parser generation for
syntax and a rule-based compilation for semantics. Using the mech-
anized speci�cation extracted by JISET, JEST (Section 3.2) performs
#+1-version di�erential testing for existing JavaScript engines and
ECMAScript to check whether they conform to each other. Finally,
JSAVER (Section 3.3) performs JavaScript static analysis based on
the abstract semantics de�ned with both JavaScript engines and
speci�cation. Among three tools, we already developed JISET [24]
and JEST [21] and we are now focusing on developing JSAVER.

3.1 JISET: Mechanized Speci�cation Extraction
We present JISET [24], a JavaScript IR-based Semantics Extrac-

tion Toolchain, and Figure 3 depicts the overall structure of JISET.
We explain how JISET utilizes common patterns in the writing style
of ECMAScript to extract a mechanized speci�cation using the data
in JSON format extracted from ECMAScript by Spec Extractor. A
mechanized speci�cation consists of a JavaScript parser for syn-
tax and functions of IRES, an Intermediate Representation that we
designed for ECMAScript, for semantics.

3

Ongoing Work

JavaScript

Static Analysis

JS EngineECMAScript Mechanized 
Spec.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

JavaScript Static Analysis with Evolving Engines and
Specification

Jihyeok Park
KAIST, South Korea

jhpark0223@kaist.ac.kr

ABSTRACT
JavaScript is one of the most dominant programming languages. De-
spite its popularity, the highly dynamic nature of JavaScript makes
its semantics complex; thus, understanding and reasoning about
JavaScript programs are challenging tasks. Therefore, Researchers
have proposed JavaScript static analysis based on the abstract in-
terpretation with abstract semantics conforming to ECMAScript,
the standard speci�cation for JavaScript. However, all the existing
abstract semantics are manually de�ned; thus, the current approach
is labor-intensive and error-prone. Moreover, since late 2014, this
problem becomes more critical because the Ecma Technical Com-
mittee 39 announced that they would update ECMAScript annually.

To alleviate the problem, we propose an approach to perform
JavaScript static analysis using abstract semantics automatically
de�ned with both JavaScript engines and speci�cation. Our main
idea is 1) to leverage the existing JavaScript engines as much as
possible and 2) to utilize the mechanized speci�cation automatically
extracted from ECMAScript for the remaining parts. We believe that
our approach can to perform static analysis for JavaScript programs
developed with new language features and help build high-quality
JavaScript programs.

KEYWORDS
JavaScript, mechanized speci�cation, static analysis, abstract inter-
pretation

ACM Reference Format:
Jihyeok Park. 2021. JavaScript Static Analysis with Evolving Engines and
Speci�cation. In Proceedings of ACM Conference (Conference’17). ACM, New
York, NY, USA, 7 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
JSAVER

JSFix
JSSFix
SUPER-JS
JSUPER
ESFix

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

JavaScript is one of the most dominant programming languages.
While JavaScript was initially designed for client-side program-
ming in web browsers, it is now widely used in server-side pro-
gramming [4] and even in embedded systems [2, 3, 5]. According
to W3Techs1, 97.2% of websites use JavaScript as their client-side
programming language. The 2020 State of the Octoverse2, which is
the annual report of GitHub, reports that JavaScript was the top-
ranked programming language in GitHub repositories since 2014
to 2020.

Researchers have proposed various static analyzers to under-
stand and reason about JavaScript programs. Despite its popularity,
JavaScript developers often su�er from its intricate and dynamic
language features, which may cause unexpected behaviors. For ex-
ample, the function declaration function f(x){ return x == !x }

may seem to always return false. Surprisingly, it returns truewhen
its argument is an empty array: f([]) = true. To correctly under-
stand and reason about such a complex behavior, researchers have
proposed various static analyzers for JavaScript programs, such as
TAJS [14], SAFE [17], JSAI [15], and WALA [29].

However, existing JavaScript static analyzers utilize manually
de�ned formal semantics, and this approach is labor-intensive and
error-prone. ECMAScript, the standard speci�cation for JavaScript
maintained by the Ecma Technical Committee 39 (TC39), describes
syntax and semantics of JavaScript in a structured nature lan-
guage. Based on the speci�cation, researchers have de�ned various
JavaScript formal semantics [7, 13, 18, 20] or have modi�ed them
suitable for debuggers [8], veri�cation tools [11, 12], and static
analyzers [14, 15, 17, 29]. However, because all of them are writ-
ten by hand, the existing approach is tedious, labor-intensive, and
error-prone. Moreover, in late 2014, the TC39 announced the yearly
release cadence and open development process of ECMAScript to
quickly adapt to evolving development environments. Thus, there
are already six updates after ES5.1 and this problem becomes more
critical.

To alleviate this problem, we propose an approach to perform
JavaScript static analysis using abstract semantics automatically
de�ned with both JavaScript engines and speci�cation. Our main
idea is 1) to leverage the existing JavaScript engines as much as
possible and 2) to utilize the a mechanized speci�cation automati-
cally extracted from ECMAScript for the remaining parts. To lessen
the burden of manually de�ning the abstract semantics for the
evolving JavaScript speci�cation, we present a technique to extract
a mechanized speci�cation from ECMAScript and de�ne an ab-
stract semantics based on it. However, the automatically extracted
abstract semantics might be much slower than highly optimized
abstract semantics written by hand. Thus, we also leverage existing

1https://w3techs.com/technologies/details/cp-javascript/all/all
2https://octoverse.github.com/

1

Ongoing Work

<latexit sha1_base64="PijVNKgGrQaAgZTi4M7Cz3uI1Ww=">AAACO3icbVC7SgNBFJ2NrxhfUUstFoNgFXZF1FK0sYyQh5Iscndyo0PmsczMimHJV9jqp/gh1nZia+9ssoVRD1w4nPs+ccKZsUHw5pXm5hcWl8rLlZXVtfWN6uZW26hUU2xRxZW+jsEgZxJbllmO14lGEDHHTjy8yPOdB9SGKdm0owQjAXeSDRgF66SbHkfoG6sqt9VaUA8m8P+SsCA1UqBxu+nt9vqKpgKlpRyM6YZBYqMMtGWU47jSSw0mQIdwh11HJQg0UTa5eOzvO6XvD5R2Ia0/UX92ZCCMGYnYVQqw9+Z3Lhf/y3VTOziNMiaT1KKk00WDlPtW+fn7fp9ppJaPHAGqmbvVp/eggVpn0sykZhhl+XH5mJn1j9MfZooFDFErJdyDICnysfMz/O3eX9I+rIfH9fDqqHZ2XjhbJjtkjxyQkJyQM3JJGqRFKBHkiTyTF+/Ve/c+vM9packrerbJDLyvbzNrroQ=</latexit>

<latexit sha1_base64="PijVNKgGrQaAgZTi4M7Cz3uI1Ww=">AAACO3icbVC7SgNBFJ2NrxhfUUstFoNgFXZF1FK0sYyQh5Iscndyo0PmsczMimHJV9jqp/gh1nZia+9ssoVRD1w4nPs+ccKZsUHw5pXm5hcWl8rLlZXVtfWN6uZW26hUU2xRxZW+jsEgZxJbllmO14lGEDHHTjy8yPOdB9SGKdm0owQjAXeSDRgF66SbHkfoG6sqt9VaUA8m8P+SsCA1UqBxu+nt9vqKpgKlpRyM6YZBYqMMtGWU47jSSw0mQIdwh11HJQg0UTa5eOzvO6XvD5R2Ia0/UX92ZCCMGYnYVQqw9+Z3Lhf/y3VTOziNMiaT1KKk00WDlPtW+fn7fp9ppJaPHAGqmbvVp/eggVpn0sykZhhl+XH5mJn1j9MfZooFDFErJdyDICnysfMz/O3eX9I+rIfH9fDqqHZ2XjhbJjtkjxyQkJyQM3JJGqRFKBHkiTyTF+/Ve/c+vM9packrerbJDLyvbzNrroQ=</latexit>

Execution

Traces

ECMAScript

Automatic Update

Mechanized Spec.

Extraction

