

JavaScript Static Analysis for Evolving Language Specifications

[SW재난연구센터] 겨울정기워크샵

Jihyeok Park

PLRG @ KAIST

February 9, 2022

JavaScript Is Everywhere

JavaScript Static Analysis for Evolving Language Specifications

JavaScript Static Analysis for Evolving Language Specifications

https://octoverse.github.com/

JavaScript Complex Semantics

function f(x) { return x == !x; }

Always return false?

JavaScript Static Analysis for Evolving Language Specifications

JavaScript Complex Semantics

- function f(x) { return x == !x; }
 - Always return false?
 - NO!!
 - f([]) -> [] == ![] -> [] == false -> +[] == +false -> 0 == 0 -> true

The production of *ArrayLiteral* in ES12

JavaScript Static Analysis for Evolving Language Specifications

13.2.5.2 Runtime Semantics: Evaluation

ArrayLiteral : [ElementList , Elision_{opt}]

1. Let *array* be ! ArrayCreate(0).

τιοναι

2. Let *nextIndex* be the result of performing ArrayAccumulation for *ElementList* with arguments *array* and 0.

Semantics

- 3. ReturnIfAbrupt(*nextIndex*).
- 4. If *Elision* is present, then

a. Let *len* be the result of performing ArrayAccumulation

for *Elision* with arguments *array* and *nextIndex*.

b. ReturnIfAbrupt(*len*).

5. Return *array*.

The Evaluation **algorithm for** the third alternative of ArrayLiteral in ES12

JavaScript Static Analysis for Evolving Language Specifications

JavaScript Static Analysis for Evolving Language Specifications

Problem: Fast Evolving JavaScript

JavaScript Static Analysis for Evolving Language Specifications

Main Idea: Deriving Static Analyzer from Spec.

JavaScript Static Analysis for Evolving Language Specifications

Overall Structure

JavaScript Static Analysis for Evolving Language Specifications

JISET: JavaScript IR-based Semantics Extraction Toolchain

Jihyeok Park, Jihee Park, Seungmin An, and Sukyoung Ryu (Published in ASE'20)

JavaScript Static Analysis for Evolving Language Specifications

Motivation: Patterns in Writing Style of ECMA-262

13.2.5.2 Runtime Semantics: Evaluation

ArrayLiteral : [ElementList , Elision_{opt}]

- 1. Let *array* be ! ArrayCreate(0).
- 2. Let *nextIndex* be the result of performing ArrayAccumulation for *ElementList* with arguments *array* and 0.
- 3. ReturnIfAbrupt(*nextIndex*).
- 4. If *Elision* is present, then

a. Let *len* be the result of performing ArrayAccumulation for *Elision* with arguments *array* and *nextIndex*.

b. ReturnIfAbrupt(*len*).

5. Return *array*.

The Evaluation algorithm for the third alternative of ArrayLiteral in ES12

JavaScript Static Analysis for Evolving Language Specifications

JISET [ASE'20]

JavaScript Static Analysis for Evolving Language Specifications

ArrayLiteral[Yield, Await] :	
[Elision _{opt}]	
[ElementList [?Yield, ?Await]]
<pre>[ElementList [?Yield, ?Await]</pre>	, Elision _{opt}

(POPL'04) Bryan Ford, "Parsing Expression Grammars: A Recognition-based Syntactic Foundation"

JavaScript Static Analysis for Evolving Language Specifications

JISET - Algorithm Compiler (Semantics)

13.2.5.2 Runtime Semantics: Evaluation

ArrayLiteral : [ElementList , Elision_{opt}]

- 1. Let *array* be ! ArrayCreate(0).
- 2. Let *nextIndex* be the result of performing ArrayAccumulation for *ElementList* with arguments *array* and 0.
- 3. ReturnIfAbrupt(*nextIndex*).
- 4. If *Elision* is present, then
 - a. Let *len* be the result of performing ArrayAccumulation

for *Elision* with arguments *array* and *nextIndex*.

b. ReturnIfAbrupt(*len*).

5. Return *array*.

[?]

JavaScript Static Analysis for Evolving Language Specifications

JISET - Evaluation

Version	# Algo.		■ auto ■ manual T: Total L: Core Language Semantics B: Built
ES7	2,105	T L B	10,471 / 1 8,041 / 8,415 (95.56% 2,430 / 2,567 (94.66%)
ES8	2,238	T L B	11,181 8,453 / 8,811 (95.94 2,728 / 2,921 (93.39%)
ES9	2,370	T L B	11, 8,932 / 9,311 (95. 2,917 / 3,082 (94.65%)
ES10	2,396	T L B	12 9,073 / 9,456 (94 2,949 / 3,113 (94.73%)
ES11	2,521	T L B	9,495 / 9,881 (9 3,010 / 3,166 (95.07%)
ES12	2,640	T L B	9,717 / 10,136 3,258 / 3,408 (95.60%)
Average	2,378	T L B	11,3 8,952 / 9,335 (95) 2,882 / 3,043 (94.71%)

JavaScript Static Analysis for Evolving Language Specifications

10,982 (95.35%) %)

1 / 11,732 (95.30%) 4%)

,849 / 12,393 (95.61%) 5.93%)

2,022 / 12,569 (95.65%) 4.95%)

12,505 / 13,047 (94.85%) (96.09%)

12,975 / 13,544 (95.80%) **6** (95.87%)

,834 / 12,378 (95.61%) 5.90%)

JISET - Evaluation

	Version	# Algo.		■ auto ■ manual T: Total L: Core Language Semantics B: Built
	ES7	2,105	T L B	10,471 / 1 8,041 / 8,415 (95.56% 2,430 / 2,567 (94.66%)
	ES8	2,238	T L B	11,181 8,453 / 8,811 (95.94 2,728 / 2,921 (93.39%)
-	ES9	2,370	T L B	11,8 8,932 / 9,311 (95. 2,917 / 3,082 (94.65%)
	ES10	2,396	T L B	12 9,073 / 9,456 (94 2,949 / 3,113 (94.73%)
	ES11	2,521	T L B	9,495 / 9,881 (9 3,010 / 3,166 (95.07%)
	ES12	2,640	T L B	9,717 / 10,136 3,258 / 3,408 (95.60%)
	Average	2,378	T L B	11, 8,952 / 9,335 (95) 2,882 / 3,043 (94.71%)

JavaScript Static Analysis for Evolving Language Specifications

10,982 (95.35%) %)

1 / 11,732 (95.30%) 4%)

,849 / 12,393 (95.61%) 5.93%)

JISET - Evaluation

Version	# Algo.		■ auto ■ manual T: Total L: Core Language Semantics B: Built-in
ES7	2,105	T L B	10,471 / 10,9 8,041 / 8,415 (95.56%) 2,430 / 2,567 (94.66%)
ES8	2,238	T L B	11,181 / 1 8,453 / 8,811 (95.94%) 2,728 / 2,921 (93.39%)
ES9	2,370	T L B	11,849 8,932 / 9,311 (95.93% 2,917 / 3,082 (94.65%)
ES10	2,396	T L B	12,02 9,073 / 9,456 (94.959 2,949 / 3,113 (94.73%)
ES11	2,521	T L B	12,5 9,495 / 9,881 (96.0 3,010 / 3,166 (95.07%)
ES12	2,640	T L B	12 9,717 / 10,136 (95 3,258 / 3,408 (95.60%)
Average	2,378	T L B	11,834 8,952 / 9,335 (95.909 2,882 / 3,043 (94.71%)

JavaScript Static Analysis for Evolving Language Specifications

Co	~ 95% Mn:	
	plied	
Libraries		

10,982 (95.35%) 6)

/ **11,732** (95.30%) 1%)

,849 / 12,393 (95.61%) .93%)

2,022 / 12,569 (95.65%) Complete 1.95%) **Missing Parts**

12,505 / 13,047 (94.85%) (96.09%)

12,975 / 13,544 (95.80%) **6** (95.87%)

,834 / 12,378 (95.61%) .90%)

Passed All Tests

- **Test262** (Official Conformance Tests)
- 18,556 applicable tests
- **Parsing tests**

- Passed all 18,556 tests
- **Evaluation Tests**
- Passed all 18,556 tests

JavaScript Static Analysis for Evolving Language Specifications

JEST - Conformance with Engines

ECMA-262

QuickJS

moddable

JavaScript Engines

JavaScript Static Analysis for Evolving Language Specifications

ECMA-262

JavaScript Static Analysis for Evolving Language Specifications

ECMA-262

JavaScript Static Analysis for Evolving Language Specifications

ECMA-262

JavaScript Static Analysis for Evolving Language Specifications

ECMA-262

JavaScript Static Analysis for Evolving Language Specifications

ECMA-262

JavaScript Static Analysis for Evolving Language Specifications

JavaScript Static Analysis for Evolving Language Specifications

JavaScript Static Analysis for Evolving Language Specifications

JEST [ICSE'21]

JavaScript Engines and Specification Tester

JavaScript Static Analysis for Evolving Language Specifications

var x = 1 + 2;

JavaScript Static Analysis for Evolving Language Specifications

var x = 1 + 2;

+ \$assert.sameValue(x, 3);

JavaScript Static Analysis for Evolving Language Specifications

JavaScript Static Analysis for Evolving Language Specifications

JavaScript Static Analysis for Evolving Language Specifications

var x = { p: 42 };
+ \$verifyProperty(x, "p", {
 value: 42.0, writable: true,
 enumerable: true, configurable: true

var x = {[Symbol.match]: 0, p: 0, 3: 0, q: 0, 1: 0}
+ \$assert.compareArray(
+ Reflect.ownKeys(x),
+ ["1", "3", "p", "q", Symbol.match]

function f() {}
4 \$assert.sameValue(Object.getPrototypeOf(f),
4 Function.prototype);
4 \$assert.sameValue(Object.isExtensible(x), true);
4 \$assert.callable(f);
4 \$assert.constructable(f);

JEST - Evaluation

Engines	Exc	Abort	Var	Obj	Desc	Key	In	Total
V8	0	0	0	0	0	2	0	2
GraalJS	6	0	0	0	2	8	0	16
QuickJS	3	0	1	0	0	2	0	6
Moddable XS	12	0	0	0	3	5	0	20
Total	21	0	1	0	5	17	0	44

Name	Feature	#	Assertion	Known	Created	Resolved	Existed
ES11-1	Function	12	Key	Ο	2019-02-07	2020-04-11	429 days
ES11-2	Function	8	Key	0	2015-06-01	2020-04-11	1,776 days
ES11-3	Loop	1	Exc	0	2017-10-17	2020-04-30	926 days
ES11-4	Expression	4	Abort	0	2019-09-27	2020-04-23	209 days
ES11-5	Expression	1	Exc	0	2015-06-01	2020-04-28	1,793 days
ES11-6	Object	1	Exc	X	2019-02-07	2020-11-05	637 days

JavaScript Static Analysis for Evolving Language Specifications

TABLE II: The number of engine bugs detected by JEST

TABLE III: Specification bugs in ECMAScript 2020 (ES11) detected by JEST

</ Bugs / in Spec.

JSTAR: JavaScript Specification Type Analyzer using Refinement

Jihyeok Park, Seungmin An, Wonho Shin, Yusung Sim, and Sukyoung Ryu (Published in ASE'21)

JavaScript Static Analysis for Evolving Language Specifications

20.3.2.28 Math.round (x)

- 1. Let *n* be ? ToNumber(x).
- 2. If *n* is an integral Number, return *n*.
- 3. If *x* < 0.5 and *x* > 0, return +0.
- 4. If x < 0 and $x \ge -0.5$, return **-0**.

 $\bullet \bullet \bullet$

https://github.com/tc39/ecma262/tree/575149cfd77aebcf3a129e165bd89e14caafc31c

JavaScript Static Analysis for Evolving Language Specifications

20.3.2.28 Math.round (x**)** x: (String v Boolean v Number v Object v ...)

- 1. Let *n* be ? ToNumber(x).
- 2. If *n* is an integral Number, return *n*.
- 3. If *x* < 0.5 and *x* > 0, return +0.
- 4. If x < 0 and $x \ge -0.5$, return **-0**.

 $\bullet \bullet \bullet$

https://github.com/tc39/ecma262/tree/575149cfd77aebcf3a129e165bd89e14caafc31c

JavaScript Static Analysis for Evolving Language Specifications

- 1. Let *n* be ? ToNumber(*x*) ToNumber(x): (Number v Exception)
- 2. If *n* is an integral Number, return *n*.
- 3. If *x* < 0.5 and *x* > 0, return +0.
- 4. If x < 0 and $x \ge -0.5$, return **-0**.

 $\bullet \bullet \bullet$

- **20.3.2.28 Math.round (x)** x: (String v Boolean v Number v Object v ...)

https://github.com/tc39/ecma262/tree/575149cfd77aebcf3a129e165bd89e14caafc31c

JavaScript Static Analysis for Evolving Language Specifications

20.3.2.28 Math.round (x) x: (String v Boolean v Number v Object v ...) 2. If *n* is an integral Number, return *n*. 3. If *x* < 0.5 and *x* > 0, return +0. 4. If x < 0 and $x \ge -0.5$, return **-0**. $\bullet \bullet \bullet$

- 1. Let *n* be $\operatorname{ProNumber}(x)$ ToNumber(x): (Number v Exception) A n: (Number)

https://github.com/tc39/ecma262/tree/575149cfd77aebcf3a129e165bd89e14caafc31c

JavaScript Static Analysis for Evolving Language Specifications

https://github.com/tc39/ecma262/tree/575149cfd77aebcf3a129e165bd89e14caafc31c

20.3.2.28 Math.round (x) x: (String v Boolean v Number v Object v ...)

1. Let *n* be $\operatorname{ProNumber}(x)$ ToNumber(x): (Number v Exception) A n: (Number)

Type Mismatch for numeric operator `>`

JavaScript Static Analysis for Evolving Language Specifications

- x: (String v Boolean v Number v Object v ...) 1. Let *n* be $\operatorname{ProNumber}(x)$ ToNumber(x): (Number v Exception) A n: (Number)
 - Type Mismatch for numeric operator `>`

Math.round(true) = ??? Math.round(false) = ???

https://github.com/tc39/ecma262/tree/575149cfd77aebcf3a129e165bd89e14caafc31c

JavaScript Static Analysis for Evolving Language Specifications

https://github.com/tc39/ecma262/tree/575149cfd77aebcf3a129e165bd89e14caafc31c

JavaScript Static Analysis for Evolving Language Specifications

JSTAR [ASE'21]

JavaScript Specification Type Analyzer using Refinement

JavaScript Static Analysis for Evolving Language Specifications

JSTAR - Evaluation

• Type Analysis for 864 versions of ECMA-2

Checker	Bug Kind	Precision = (# True Bugs) / (# Detected Bugs)						
	Dug Kinu	no-refine		refi	ne	Δ		
Roforonco	UnknownVar	62 / 106	17 / 60	63 / 78	17 / 31	⊥1 / 7 8	/ -29	
Relefence	DuplicatedVar	02/100	45 / 46	03770	46 / 47	$\pm 17 - 20$	+1 / +1	
Arity	MissingParam	4/4	4/4	4/4	4/4	/	/	
Assertion	Assertion	4 / 56	4 / 56	4 / 31	4/31	/ -25	/ -25	
Operand	NoNumber	22 / 112	2 / 65	22/14	2/6	/ 60	/ -59	
Operanu	Abrupt		20 / 48		20 / 38	7-09	/ -10	
Total		92 / 279 (33.0%)		93 / 157 (59.2%)		+1 / -122 (+26.3%)		

	Name	Feature	#	Checker	Created	Life Span
•	ES12-1	Switch	3	Reference	2015-09-22	1,996 days
-	ES12-2	Try	3	Reference	2015-09-22	1,996 days
•	ES12-3	Arguments	1	Reference	2015-09-22	1,996 days
•	ES12-4	Array	2	Reference	2015-09-22	1,996 days
•	ES12-5	Async	1	Reference	2015-09-22	1,996 days
-	ES12-6	Class	1	Reference	2015-09-22	1,996 days
-	ES12-7	Branch	1	Reference	2015-09-22	1,996 days
•	ES12-8	Arguments	2	Operand	2015-12-16	1,910 days

JavaScript Static Analysis for Evolving Language Specifications

93 Bugs / Detected

59.2% Precision

Automatically Deriving JavaScript Static Analyzers from Language Specifications

Jihyeok Park, Seungmin An, and Sukyoung Ryu (In submission)

JavaScript Static Analysis for Evolving Language Specifications

JavaScript Static Analysis for Evolving Language Specifications

JavaScript Static Analysis for Evolving Language Specifications

JSAVER - Meta-Level Static Analysis

 $x \mid \mid = y$

defined-language (JavaScript)

defining-language (IR_{ES})

JavaScript Static Analysis for Evolving Language Specifications

JSAVER - Meta-Level Static Analysis

defined-language (JavaScript)

defining-language (IR_{ES})

JavaScript Static Analysis for Evolving Language Specifications

defined-language (JavaScript)

defining-language

(IR_{ES})

let lval = [? (GetValue lref)] • • •

JavaScript Static Analysis for Evolving Language Specifications

JavaScript Static Analysis for Evolving Language Specifications

JSAVER In submission JavaScript Static Analyzer via ECMAScript Representation

JavaScript Static Analysis for Evolving Language Specifications

JSAVER - Static Analyzer Derivation

JavaScript Static Analysis for Evolving Language Specifications

JavaScript Static Analysis for Evolving Language Specifications

Soundness / Precision / Performance

- analyzers

JavaScript Static Analysis for Evolving Language Specifications

35 / 35

https://github.com/es-meta/esmeta

ript Metalanguage for Generation of Language	ript Metalanguage for Generation of Language-based Tools						
ls Issues Marketplace	Explore 🤤 + 🗸 🏟						
⊙ Unwatch 3 ▼	양 Fork 0 🔶 Starred 1 -						
Discussions	Actions 📄 Projects \cdots						
Add file - Code -	About රි						
38 minutes ago 🕚 233	ECMAScript Metalanguage for Generation of Language-based Tools						
15 days ago							
20 days ago	ゆ BSD-3-Clause License						
y files 38 minutes ago	∽ ☆ 1 star						
y files 38 minutes ago	③ 3 watching						
ngifi 15 days ago	<mark>ዮ</mark> 0 forks						
14 days ago							
ied s 2 days ago	Releases						
21 days ago	No releases published Create a new release						

JSTAR - Precision 公 - 1) Type Sensitivity String, Number, BigInt, ToNumber (x) Number, Exception

JavaScript Static Analysis for Evolving Language Specifications

JavaScript Static Analysis for Evolving Language Specifications

JSTAR - Precision 公 - 2) Type Refinement

$$\operatorname{refine}(!e,b)(\sigma^{\sharp}) = \operatorname{refine}(e,\neg b)(\sigma^{\sharp})$$
$$\operatorname{refine}(e_{0} \mid \mid e_{1},b)(\sigma^{\sharp}) = \begin{cases} \sigma_{0}^{\sharp} \sqcup \sigma_{1}^{\sharp} & \operatorname{if} b \\ \sigma_{0}^{\sharp} \sqcap \sigma_{1}^{\sharp} & \operatorname{if} - b \\ \sigma_{0}^{\sharp} \sqcup \sigma_{1}^{\sharp} & \operatorname{if} - b \end{cases}$$
$$\operatorname{refine}(e_{0} \&\& e_{1},b)(\sigma^{\sharp}) = \begin{cases} \sigma_{0}^{\sharp} \sqcap \sigma_{1}^{\sharp} & \operatorname{if} - b \\ \sigma_{0}^{\sharp} \sqcup \sigma_{1}^{\sharp} & \operatorname{if} - b \end{cases}$$
$$\operatorname{refine}(x.Type = c_{\operatorname{normal}}, \#t)(\sigma^{\sharp}) = \sigma^{\sharp}[x \mapsto \tau_{x}^{\sharp} \sqcap \operatorname{normal}(x,Type) = c_{\operatorname{normal}}, \#f)(\sigma^{\sharp}) = \sigma^{\sharp}[x \mapsto \tau_{x}^{\sharp} \sqcap \{\operatorname{abrupt}(x,Typ) = e_{0}, \#f)(\sigma^{\sharp}) = \sigma^{\sharp}[x \mapsto \tau_{x}^{\sharp} \sqcap \tau_{e}^{\sharp}]$$
$$\operatorname{refine}(x = e, \#t)(\sigma^{\sharp}) = \sigma^{\sharp}[x \mapsto \tau_{x}^{\sharp} \upharpoonright \tau_{e}^{\sharp}]$$
$$\operatorname{refine}(x : \tau, \#t)(\sigma^{\sharp}) = \sigma^{\sharp}[x \mapsto \tau_{x}^{\sharp} \upharpoonright \{\tau\}]$$
$$\operatorname{refine}(x : \tau, \#f)(\sigma^{\sharp}) = \sigma^{\sharp}[x \mapsto \tau_{x}^{\sharp} \land \{\tau' \mid \tau' < r_{e}^{\sharp}\}]$$
$$\operatorname{refine}(e, b)(\sigma^{\sharp}) = \sigma^{\sharp}$$

where $\sigma_j^{\sharp} = \text{refine}(e_j, b)(\sigma^{\sharp})$ for $j = 0, 1, \tau_e^{\sharp} = [\![e]\!]_e^{\sharp}(\sigma^{\sharp})$, and $\lfloor \tau^{\sharp} \rfloor$ returns $\{\tau\}$ if τ^{\sharp} denotes a singleton type τ , or returns \emptyset , otherwise.

JavaScript Static Analysis for Evolving Language Specifications

JSTAR - Precision 公 - 2) Type Refinement

$$\operatorname{refine}(!e,b)(\sigma^{\sharp}) = \operatorname{refine}(e,\neg b)(\sigma^{\sharp})$$
$$\operatorname{refine}(e_{0} \mid \mid e_{1},b)(\sigma^{\sharp}) = \begin{cases} \sigma_{0}^{\sharp} \sqcup \sigma_{1}^{\sharp} & \operatorname{if} b \\ \sigma_{0}^{\sharp} \sqcap \sigma_{1}^{\sharp} & \operatorname{if} - b \\ \sigma_{0}^{\sharp} \sqcup \sigma_{1}^{\sharp} & \operatorname{if} - b \end{cases}$$
$$\operatorname{refine}(e_{0} \&\& e_{1},b)(\sigma^{\sharp}) = \begin{cases} \sigma_{0}^{\sharp} \sqcap \sigma_{1}^{\sharp} & \operatorname{if} - b \\ \sigma_{0}^{\sharp} \sqcup \sigma_{1}^{\sharp} & \operatorname{if} - b \end{cases}$$
$$\operatorname{refine}(x.Type = c_{\operatorname{normal}}, \#t)(\sigma^{\sharp}) = \sigma^{\sharp}[x \mapsto \tau_{x}^{\sharp} \sqcap \operatorname{normal}(x,Type) = c_{\operatorname{normal}}, \#f)(\sigma^{\sharp}) = \sigma^{\sharp}[x \mapsto \tau_{x}^{\sharp} \sqcap \{\operatorname{abrupt}(x,Typ) = e_{0}, \#f)(\sigma^{\sharp}) = \sigma^{\sharp}[x \mapsto \tau_{x}^{\sharp} \sqcap \tau_{e}^{\sharp}]$$
$$\operatorname{refine}(x = e, \#t)(\sigma^{\sharp}) = \sigma^{\sharp}[x \mapsto \tau_{x}^{\sharp} \upharpoonright \tau_{e}^{\sharp}]$$
$$\operatorname{refine}(x : \tau, \#t)(\sigma^{\sharp}) = \sigma^{\sharp}[x \mapsto \tau_{x}^{\sharp} \upharpoonright \{\tau\}]$$
$$\operatorname{refine}(x : \tau, \#f)(\sigma^{\sharp}) = \sigma^{\sharp}[x \mapsto \tau_{x}^{\sharp} \land \{\tau' \mid \tau' < r_{e}^{\sharp}\}]$$
$$\operatorname{refine}(e, b)(\sigma^{\sharp}) = \sigma^{\sharp}$$

where $\sigma_j^{\sharp} = \text{refine}(e_j, b)(\sigma^{\sharp})$ for $j = 0, 1, \tau_e^{\sharp} = [\![e]\!]_e^{\sharp}(\sigma^{\sharp})$, and $\lfloor \tau^{\sharp} \rfloor$ returns $\{\tau\}$ if τ^{\sharp} denotes a singleton type τ , or returns \emptyset , otherwise.

JavaScript Static Analysis for Evolving Language Specifications

JSAVER - AST Sensitivity

JavaScript Static Analysis for Evolving Language Specifications

JSAVER - AST Sensitivity

(JavaScript)

this = AST of x

JavaScript Static Analysis for Evolving Language Specifications

JSAVER - AST Sensitivity

JavaScript Static Analysis for Evolving Language Specifications