
JavaScript Static Analysis
for Evolving Language Specifications

[SW재난연구센터] 겨울정기워크샵

Jihyeok Park

PLRG @ KAIST

February 9, 2022

JavaScript Static Analysis for Evolving Language Specifications / 352

JavaScript Is Everywhere

JavaScript Static Analysis for Evolving Language Specifications / 353

https://octoverse.github.com/

https://octoverse.github.com/

JavaScript Static Analysis for Evolving Language Specifications / 354

JavaScript Complex Semantics

function f(x) { return x == !x; }

Always return false?

JavaScript Static Analysis for Evolving Language Specifications / 354

JavaScript Complex Semantics

function f(x) { return x == !x; }

Always return false?

NO!!
f([]) -> [] == ![]
 -> [] == false
 -> +[] == +false
 -> 0 == 0
 -> true

JavaScript Static Analysis for Evolving Language Specifications / 355

ECMA-262: ECMAScript Specification

The production of ArrayLiteral in ES12
The Evaluation algorithm for

the third alternative of ArrayLiteral in ES12

Syntax

Semantics

JavaScript Static Analysis for Evolving Language Specifications / 356

Problem: Manual JavaScript Static Analyzer

ECMA-262

Analysis

Result

JavaScript

Programs

JS Static

Analyzer

Formal

Semantics

<latexit sha1_base64="a8rkyxWqADWwo4chPaKrQZo9g6M=">AAACPXicbVC7SgNBFJ2Nr/h+lVqMBsHGsCtBLYM2lgpGA5slzE5ukiHzWGZmxbDkM2z1U/wOP8BObG2dTbYw0QsXDufc54kTzoz1/XevNDe/sLhUXl5ZXVvf2Nza3rk3KtUUGlRxpZsxMcCZhIZllkMz0UBEzOEhHlzl+sMjaMOUvLPDBCJBepJ1GSXWUWHYOgjxCY5aB1F7q+JX/XHgvyAoQAUVcdPe9vZbHUVTAdJSTowJAz+xUUa0ZZTDaKWVGkgIHZAehA5KIsBE2fjmET5yTAd3lXYpLR6zvzsyIowZithVCmL7ZlbLyf+0MLXdiyhjMkktSDpZ1E05tgrnBuAO00AtHzpAqGbuVkz7RBNqnU1Tk+6CKMuPy8dMrX+a/DBVLMgAtFLCPUgkBT5yfgaz7v0F96fV4Kxau61V6peFs2W0hw7RMQrQOaqja3SDGogihZ7RC3r13rwP79P7mpSWvKJnF02F9/0DoGauIA==</latexit>

[[�]] abstractdefine

<latexit sha1_base64="73i+wUK58YewWc1CG/tcNMX86mQ=">AAACn3icbVHLbtNAFB2bVymvFJawMERIrCy7qqDLuhUUKoSCkjRFsRVdT67TUeZhzYyrRlY+kmW/hC3jxEJJy5VGOue+75m85MzYKLrx/Hv3Hzx8tPN498nTZ89fdPZenhtVaYpDqrjSFzkY5Ezi0DLL8aLUCCLnOMrnJ018dIXaMCUHdlFiJmAmWcEoWOeadOZpjjMma9AaFsuaL3dTi9fWFHU/+fJ5mab/+CA562/yUfI92eRn/eTbJg/DcEVRTtvuk043CqOVBXdB3IIuaa032fPepFNFK4HSUg7GjOOotJlrZxnl6HatDJZA5zDDsYMSBJqsXqmyDN47zzQolHZP2mDl3ayoQRizELnLFGAvze1Y4/xfbFzZ4jCrmSwri5KuBxUVD6wKGomDKdNILV84AFQzt2tAL0EDte4jtjoN4qxulmvabI2/Xt+wlSxgjlop4Q4ESZE3esa31bsLzvfD+GN48POge3TcKrtDXpN35AOJySdyRL6SHhkSSn6TPx7xPP+tf+r/8HvrVN9ra16RLfN//QVuVNB8</latexit>

SAFE
TAJS
WALA
JSAI
...

analyzer
developer

manual manual

[ECOOP'10]

[POPL'14]

[PLDI'15]

[POPL'17]

<latexit sha1_base64="MIe41XfV/Rjo6kgw3dO6hEXxyHA=">AAACpnicbVHbattAEF2pl7juzWkf2wdRU8iTkEpI+xialzQtJSVxHLCEO1qNnMWrXbE7CjHC/9n+TOnKViFKOrBw5sz9bFZJYSmKfnv+g4ePHu8MngyfPnv+4uVo99WF1bXhOOFaanOZgUUpFE5IkMTLyiCUmcRptjxq49NrNFZodU6rCtMSFkoUggM5aj4ySYYLoRowBlbrRq6HiXTVOcwTwhuyRXNytk6S4T/va989Ofvyre8foaHbTBiGGxdV3g2Zj8ZRGG0suA/iDoxZZ6fzXe9tkmtel6iIS7B2FkcVpa4dCS7RrVxbrIAvYYEzBxWUaNNmI846eO+YPCi0cU9RsGFvVzRQWrsqM5dZAl3Zu7GW/F9sVlPxKW2EqmpCxbeDiloGpINW6SAXBjnJlQPAjXC7BvwKDHBy/9HrdB6nTbtc26Y3/mZ7Qy+5hCUarUt3ICiOstUzvqvefXDxIYwPwv0f++PDz52yA/aGvWN7LGYf2SE7Zqdswjj7xf54O97A3/O/+xN/uk31va7mNeuZ//Mv5wzUIw==</latexit>

�JS
KJS
JSIL
JSCert
... [FOOL'12]

[SAS'09]

[ECOOP'12]

[FSE'14]

JavaScript Static Analysis for Evolving Language Specifications / 356

Problem: Manual JavaScript Static Analyzer

ECMA-262

Analysis

Result

JavaScript

Programs

JS Static

Analyzer

Formal

Semantics

<latexit sha1_base64="a8rkyxWqADWwo4chPaKrQZo9g6M=">AAACPXicbVC7SgNBFJ2Nr/h+lVqMBsHGsCtBLYM2lgpGA5slzE5ukiHzWGZmxbDkM2z1U/wOP8BObG2dTbYw0QsXDufc54kTzoz1/XevNDe/sLhUXl5ZXVvf2Nza3rk3KtUUGlRxpZsxMcCZhIZllkMz0UBEzOEhHlzl+sMjaMOUvLPDBCJBepJ1GSXWUWHYOgjxCY5aB1F7q+JX/XHgvyAoQAUVcdPe9vZbHUVTAdJSTowJAz+xUUa0ZZTDaKWVGkgIHZAehA5KIsBE2fjmET5yTAd3lXYpLR6zvzsyIowZithVCmL7ZlbLyf+0MLXdiyhjMkktSDpZ1E05tgrnBuAO00AtHzpAqGbuVkz7RBNqnU1Tk+6CKMuPy8dMrX+a/DBVLMgAtFLCPUgkBT5yfgaz7v0F96fV4Kxau61V6peFs2W0hw7RMQrQOaqja3SDGogihZ7RC3r13rwP79P7mpSWvKJnF02F9/0DoGauIA==</latexit>

[[�]] abstractdefine

<latexit sha1_base64="73i+wUK58YewWc1CG/tcNMX86mQ=">AAACn3icbVHLbtNAFB2bVymvFJawMERIrCy7qqDLuhUUKoSCkjRFsRVdT67TUeZhzYyrRlY+kmW/hC3jxEJJy5VGOue+75m85MzYKLrx/Hv3Hzx8tPN498nTZ89fdPZenhtVaYpDqrjSFzkY5Ezi0DLL8aLUCCLnOMrnJ018dIXaMCUHdlFiJmAmWcEoWOeadOZpjjMma9AaFsuaL3dTi9fWFHU/+fJ5mab/+CA562/yUfI92eRn/eTbJg/DcEVRTtvuk043CqOVBXdB3IIuaa032fPepFNFK4HSUg7GjOOotJlrZxnl6HatDJZA5zDDsYMSBJqsXqmyDN47zzQolHZP2mDl3ayoQRizELnLFGAvze1Y4/xfbFzZ4jCrmSwri5KuBxUVD6wKGomDKdNILV84AFQzt2tAL0EDte4jtjoN4qxulmvabI2/Xt+wlSxgjlop4Q4ESZE3esa31bsLzvfD+GN48POge3TcKrtDXpN35AOJySdyRL6SHhkSSn6TPx7xPP+tf+r/8HvrVN9ra16RLfN//QVuVNB8</latexit>

SAFE
TAJS
WALA
JSAI
...

analyzer
developer

manual manual

[ECOOP'10]

[POPL'14]

[PLDI'15]

[POPL'17]

<latexit sha1_base64="MIe41XfV/Rjo6kgw3dO6hEXxyHA=">AAACpnicbVHbattAEF2pl7juzWkf2wdRU8iTkEpI+xialzQtJSVxHLCEO1qNnMWrXbE7CjHC/9n+TOnKViFKOrBw5sz9bFZJYSmKfnv+g4ePHu8MngyfPnv+4uVo99WF1bXhOOFaanOZgUUpFE5IkMTLyiCUmcRptjxq49NrNFZodU6rCtMSFkoUggM5aj4ySYYLoRowBlbrRq6HiXTVOcwTwhuyRXNytk6S4T/va989Ofvyre8foaHbTBiGGxdV3g2Zj8ZRGG0suA/iDoxZZ6fzXe9tkmtel6iIS7B2FkcVpa4dCS7RrVxbrIAvYYEzBxWUaNNmI846eO+YPCi0cU9RsGFvVzRQWrsqM5dZAl3Zu7GW/F9sVlPxKW2EqmpCxbeDiloGpINW6SAXBjnJlQPAjXC7BvwKDHBy/9HrdB6nTbtc26Y3/mZ7Qy+5hCUarUt3ICiOstUzvqvefXDxIYwPwv0f++PDz52yA/aGvWN7LGYf2SE7Zqdswjj7xf54O97A3/O/+xN/uk31va7mNeuZ//Mv5wzUIw==</latexit>

�JS
KJS
JSIL
JSCert
... [FOOL'12]

[SAS'09]

[ECOOP'12]

[FSE'14]

JavaScript Static Analysis for Evolving Language Specifications / 356

Problem: Manual JavaScript Static Analyzer

ECMA-262

Analysis

Result

JavaScript

Programs

JS Static

Analyzer

Formal

Semantics

<latexit sha1_base64="a8rkyxWqADWwo4chPaKrQZo9g6M=">AAACPXicbVC7SgNBFJ2Nr/h+lVqMBsHGsCtBLYM2lgpGA5slzE5ukiHzWGZmxbDkM2z1U/wOP8BObG2dTbYw0QsXDufc54kTzoz1/XevNDe/sLhUXl5ZXVvf2Nza3rk3KtUUGlRxpZsxMcCZhIZllkMz0UBEzOEhHlzl+sMjaMOUvLPDBCJBepJ1GSXWUWHYOgjxCY5aB1F7q+JX/XHgvyAoQAUVcdPe9vZbHUVTAdJSTowJAz+xUUa0ZZTDaKWVGkgIHZAehA5KIsBE2fjmET5yTAd3lXYpLR6zvzsyIowZithVCmL7ZlbLyf+0MLXdiyhjMkktSDpZ1E05tgrnBuAO00AtHzpAqGbuVkz7RBNqnU1Tk+6CKMuPy8dMrX+a/DBVLMgAtFLCPUgkBT5yfgaz7v0F96fV4Kxau61V6peFs2W0hw7RMQrQOaqja3SDGogihZ7RC3r13rwP79P7mpSWvKJnF02F9/0DoGauIA==</latexit>

[[�]] abstractdefine

<latexit sha1_base64="73i+wUK58YewWc1CG/tcNMX86mQ=">AAACn3icbVHLbtNAFB2bVymvFJawMERIrCy7qqDLuhUUKoSCkjRFsRVdT67TUeZhzYyrRlY+kmW/hC3jxEJJy5VGOue+75m85MzYKLrx/Hv3Hzx8tPN498nTZ89fdPZenhtVaYpDqrjSFzkY5Ezi0DLL8aLUCCLnOMrnJ018dIXaMCUHdlFiJmAmWcEoWOeadOZpjjMma9AaFsuaL3dTi9fWFHU/+fJ5mab/+CA562/yUfI92eRn/eTbJg/DcEVRTtvuk043CqOVBXdB3IIuaa032fPepFNFK4HSUg7GjOOotJlrZxnl6HatDJZA5zDDsYMSBJqsXqmyDN47zzQolHZP2mDl3ayoQRizELnLFGAvze1Y4/xfbFzZ4jCrmSwri5KuBxUVD6wKGomDKdNILV84AFQzt2tAL0EDte4jtjoN4qxulmvabI2/Xt+wlSxgjlop4Q4ESZE3esa31bsLzvfD+GN48POge3TcKrtDXpN35AOJySdyRL6SHhkSSn6TPx7xPP+tf+r/8HvrVN9ra16RLfN//QVuVNB8</latexit>

SAFE
TAJS
WALA
JSAI
...

analyzer
developer

manual manual

[ECOOP'10]

[POPL'14]

[PLDI'15]

[POPL'17]

<latexit sha1_base64="MIe41XfV/Rjo6kgw3dO6hEXxyHA=">AAACpnicbVHbattAEF2pl7juzWkf2wdRU8iTkEpI+xialzQtJSVxHLCEO1qNnMWrXbE7CjHC/9n+TOnKViFKOrBw5sz9bFZJYSmKfnv+g4ePHu8MngyfPnv+4uVo99WF1bXhOOFaanOZgUUpFE5IkMTLyiCUmcRptjxq49NrNFZodU6rCtMSFkoUggM5aj4ySYYLoRowBlbrRq6HiXTVOcwTwhuyRXNytk6S4T/va989Ofvyre8foaHbTBiGGxdV3g2Zj8ZRGG0suA/iDoxZZ6fzXe9tkmtel6iIS7B2FkcVpa4dCS7RrVxbrIAvYYEzBxWUaNNmI846eO+YPCi0cU9RsGFvVzRQWrsqM5dZAl3Zu7GW/F9sVlPxKW2EqmpCxbeDiloGpINW6SAXBjnJlQPAjXC7BvwKDHBy/9HrdB6nTbtc26Y3/mZ7Qy+5hCUarUt3ICiOstUzvqvefXDxIYwPwv0f++PDz52yA/aGvWN7LGYf2SE7Zqdswjj7xf54O97A3/O/+xN/uk31va7mNeuZ//Mv5wzUIw==</latexit>

�JS
KJS
JSIL
JSCert
... [FOOL'12]

[SAS'09]

[ECOOP'12]

[FSE'14]

define

JavaScript Static Analysis for Evolving Language Specifications / 356

Problem: Manual JavaScript Static Analyzer

ECMA-262

Analysis

Result

JavaScript

Programs

JS Static

Analyzer

Formal

Semantics

<latexit sha1_base64="a8rkyxWqADWwo4chPaKrQZo9g6M=">AAACPXicbVC7SgNBFJ2Nr/h+lVqMBsHGsCtBLYM2lgpGA5slzE5ukiHzWGZmxbDkM2z1U/wOP8BObG2dTbYw0QsXDufc54kTzoz1/XevNDe/sLhUXl5ZXVvf2Nza3rk3KtUUGlRxpZsxMcCZhIZllkMz0UBEzOEhHlzl+sMjaMOUvLPDBCJBepJ1GSXWUWHYOgjxCY5aB1F7q+JX/XHgvyAoQAUVcdPe9vZbHUVTAdJSTowJAz+xUUa0ZZTDaKWVGkgIHZAehA5KIsBE2fjmET5yTAd3lXYpLR6zvzsyIowZithVCmL7ZlbLyf+0MLXdiyhjMkktSDpZ1E05tgrnBuAO00AtHzpAqGbuVkz7RBNqnU1Tk+6CKMuPy8dMrX+a/DBVLMgAtFLCPUgkBT5yfgaz7v0F96fV4Kxau61V6peFs2W0hw7RMQrQOaqja3SDGogihZ7RC3r13rwP79P7mpSWvKJnF02F9/0DoGauIA==</latexit>

[[�]] abstractdefine

<latexit sha1_base64="73i+wUK58YewWc1CG/tcNMX86mQ=">AAACn3icbVHLbtNAFB2bVymvFJawMERIrCy7qqDLuhUUKoSCkjRFsRVdT67TUeZhzYyrRlY+kmW/hC3jxEJJy5VGOue+75m85MzYKLrx/Hv3Hzx8tPN498nTZ89fdPZenhtVaYpDqrjSFzkY5Ezi0DLL8aLUCCLnOMrnJ018dIXaMCUHdlFiJmAmWcEoWOeadOZpjjMma9AaFsuaL3dTi9fWFHU/+fJ5mab/+CA562/yUfI92eRn/eTbJg/DcEVRTtvuk043CqOVBXdB3IIuaa032fPepFNFK4HSUg7GjOOotJlrZxnl6HatDJZA5zDDsYMSBJqsXqmyDN47zzQolHZP2mDl3ayoQRizELnLFGAvze1Y4/xfbFzZ4jCrmSwri5KuBxUVD6wKGomDKdNILV84AFQzt2tAL0EDte4jtjoN4qxulmvabI2/Xt+wlSxgjlop4Q4ESZE3esa31bsLzvfD+GN48POge3TcKrtDXpN35AOJySdyRL6SHhkSSn6TPx7xPP+tf+r/8HvrVN9ra16RLfN//QVuVNB8</latexit>

SAFE
TAJS
WALA
JSAI
...

analyzer
developer

manual manual

[ECOOP'10]

[POPL'14]

[PLDI'15]

[POPL'17]

<latexit sha1_base64="MIe41XfV/Rjo6kgw3dO6hEXxyHA=">AAACpnicbVHbattAEF2pl7juzWkf2wdRU8iTkEpI+xialzQtJSVxHLCEO1qNnMWrXbE7CjHC/9n+TOnKViFKOrBw5sz9bFZJYSmKfnv+g4ePHu8MngyfPnv+4uVo99WF1bXhOOFaanOZgUUpFE5IkMTLyiCUmcRptjxq49NrNFZodU6rCtMSFkoUggM5aj4ySYYLoRowBlbrRq6HiXTVOcwTwhuyRXNytk6S4T/va989Ofvyre8foaHbTBiGGxdV3g2Zj8ZRGG0suA/iDoxZZ6fzXe9tkmtel6iIS7B2FkcVpa4dCS7RrVxbrIAvYYEzBxWUaNNmI846eO+YPCi0cU9RsGFvVzRQWrsqM5dZAl3Zu7GW/F9sVlPxKW2EqmpCxbeDiloGpINW6SAXBjnJlQPAjXC7BvwKDHBy/9HrdB6nTbtc26Y3/mZ7Qy+5hCUarUt3ICiOstUzvqvefXDxIYwPwv0f++PDz52yA/aGvWN7LGYf2SE7Zqdswjj7xf54O97A3/O/+xN/uk31va7mNeuZ//Mv5wzUIw==</latexit>

�JS
KJS
JSIL
JSCert
... [FOOL'12]

[SAS'09]

[ECOOP'12]

[FSE'14]

define abstract

JavaScript Static Analysis for Evolving Language Specifications / 357

Problem: Fast Evolving JavaScript

1996 1998 2000 2002 2004 2008 2010 2012 2014

1997 - ES1
First edition

1998 - ES2
Editorial 
changes

1999 - ES3
RegEx, String, 
Try/catch, etc

2009 - ES5
getters/setters,

strict mode,

exceptions, etc

2011 - ES5.1
Editorial 
Changes

<latexit sha1_base64="MIe41XfV/Rjo6kgw3dO6hEXxyHA=">AAACpnicbVHbattAEF2pl7juzWkf2wdRU8iTkEpI+xialzQtJSVxHLCEO1qNnMWrXbE7CjHC/9n+TOnKViFKOrBw5sz9bFZJYSmKfnv+g4ePHu8MngyfPnv+4uVo99WF1bXhOOFaanOZgUUpFE5IkMTLyiCUmcRptjxq49NrNFZodU6rCtMSFkoUggM5aj4ySYYLoRowBlbrRq6HiXTVOcwTwhuyRXNytk6S4T/va989Ofvyre8foaHbTBiGGxdV3g2Zj8ZRGG0suA/iDoxZZ6fzXe9tkmtel6iIS7B2FkcVpa4dCS7RrVxbrIAvYYEzBxWUaNNmI846eO+YPCi0cU9RsGFvVzRQWrsqM5dZAl3Zu7GW/F9sVlPxKW2EqmpCxbeDiloGpINW6SAXBjnJlQPAjXC7BvwKDHBy/9HrdB6nTbtc26Y3/mZ7Qy+5hCUarUt3ICiOstUzvqvefXDxIYwPwv0f++PDz52yA/aGvWN7LGYf2SE7Zqdswjj7xf54O97A3/O/+xN/uk31va7mNeuZ//Mv5wzUIw==</latexit>

�JS
KJS
JSIL
JSCert
...

<latexit sha1_base64="MJ/kdLY9U4kkYOGJnSN4fLHVAm4=">AAACYHicbVDNTttAEN6YQgOlkMANelgRVeoBRTZChSMqF0p7oIIAUmJF6804rLI/1u64IrLyEjwNV3iLXnkS1kmQamCkkb755v9LMikchuG/WrDwYXHpY3155dPq57X1RnPj0pnccuhwI429TpgDKTR0UKCE68wCU4mEq2R0XOav/oJ1wugLHGcQKzbUIhWcoaf6jd0ewi26tPh1ej7ZpS/R6fnP35XwGCxO+o1W2A6nRt+CaA5aZG5n/WbtS29geK5AI5fMuW4UZhgXzKLgEiYrvdxBxviIDaHroWYKXFxM35rQr54Z0NRY7xrplP2/o2DKubFKfKVieONe50ryvVw3x/QwLoTOcgTNZ4vSXFI0tNSIDoQFjnLsAeNW+Fspv2GWcfRKViZdRHFRHleOqay/nf1QKVZsBNYY5R9kmoMs9Yxeq/cWXO61o+/t/T/7raMfc2XrZJvskG8kIgfkiJyQM9IhnNyRe/JAHmtPQT1YD5qz0qA279kkFQu2ngH3zbl7</latexit>

KJS, JSIL, JSCert

<latexit sha1_base64="MJ/kdLY9U4kkYOGJnSN4fLHVAm4=">AAACYHicbVDNTttAEN6YQgOlkMANelgRVeoBRTZChSMqF0p7oIIAUmJF6804rLI/1u64IrLyEjwNV3iLXnkS1kmQamCkkb755v9LMikchuG/WrDwYXHpY3155dPq57X1RnPj0pnccuhwI429TpgDKTR0UKCE68wCU4mEq2R0XOav/oJ1wugLHGcQKzbUIhWcoaf6jd0ewi26tPh1ej7ZpS/R6fnP35XwGCxO+o1W2A6nRt+CaA5aZG5n/WbtS29geK5AI5fMuW4UZhgXzKLgEiYrvdxBxviIDaHroWYKXFxM35rQr54Z0NRY7xrplP2/o2DKubFKfKVieONe50ryvVw3x/QwLoTOcgTNZ4vSXFI0tNSIDoQFjnLsAeNW+Fspv2GWcfRKViZdRHFRHleOqay/nf1QKVZsBNYY5R9kmoMs9Yxeq/cWXO61o+/t/T/7raMfc2XrZJvskG8kIgfkiJyQM9IhnNyRe/JAHmtPQT1YD5qz0qA279kkFQu2ngH3zbl7</latexit>

KJS, JSIL, JSCert
<latexit sha1_base64="bFjUIf8UdRmAPc2FjPUcR6RCit8=">AAAClnicbVDLattAFB0rfSTpI06yCTSLoaali2KkEtquitWQNg1duNiOA5Ywo/GVM3geYmYUYoT6ffmF/ES27bIjWyl10gsDZ84993WSjDNjff+64a09ePjo8frG5pOnz55vNbd3To3KNYUBVVzps4QY4EzCwDLL4SzTQETCYZjMDqv88AK0YUr27TyDWJCpZCmjxDpq3EyiBKZMFkRrMi8L3il+lrzcjCxcWpMWvfDLUfkWv8a3RD886ZVR9FcwDL+HleD2f9ILvy3yICd103Gz5bf9ReD7IKhBC9XRHW839qOJorkAaSknxowCP7Oxa2cZ5eC2yw1khM7IFEYOSiLAxMXCjBK/cswEp0q7Jy1esP9WFEQYMxeJUwpiz83dXEX+LzfKbfoxLpjMcguSLgelOcdW4cpZPGEaqOVzBwjVzO2K6TnRhFrn/0qnfhAX1XJVm5Xxl8sbVsSCzEArJdyBRFLglZ/BXffug9N37eB9++DHQavzuXZ2Hb1AL9EbFKAPqIOOURcNEEVX6Ab9Qr+9Pe+Td+R9XUq9Rl2zi1bC6/4Be5nOhA==</latexit>

SAFE, TAJS
WALA, JSAI

<latexit sha1_base64="bFjUIf8UdRmAPc2FjPUcR6RCit8=">AAAClnicbVDLattAFB0rfSTpI06yCTSLoaali2KkEtquitWQNg1duNiOA5Ywo/GVM3geYmYUYoT6ffmF/ES27bIjWyl10gsDZ84993WSjDNjff+64a09ePjo8frG5pOnz55vNbd3To3KNYUBVVzps4QY4EzCwDLL4SzTQETCYZjMDqv88AK0YUr27TyDWJCpZCmjxDpq3EyiBKZMFkRrMi8L3il+lrzcjCxcWpMWvfDLUfkWv8a3RD886ZVR9FcwDL+HleD2f9ILvy3yICd103Gz5bf9ReD7IKhBC9XRHW839qOJorkAaSknxowCP7Oxa2cZ5eC2yw1khM7IFEYOSiLAxMXCjBK/cswEp0q7Jy1esP9WFEQYMxeJUwpiz83dXEX+LzfKbfoxLpjMcguSLgelOcdW4cpZPGEaqOVzBwjVzO2K6TnRhFrn/0qnfhAX1XJVm5Xxl8sbVsSCzEArJdyBRFLglZ/BXffug9N37eB9++DHQavzuXZ2Hb1AL9EbFKAPqIOOURcNEEVX6Ab9Qr+9Pe+Td+R9XUq9Rl2zi1bC6/4Be5nOhA==</latexit>

SAFE, TAJS
WALA, JSAI

<latexit sha1_base64="bFjUIf8UdRmAPc2FjPUcR6RCit8=">AAAClnicbVDLattAFB0rfSTpI06yCTSLoaali2KkEtquitWQNg1duNiOA5Ywo/GVM3geYmYUYoT6ffmF/ES27bIjWyl10gsDZ84993WSjDNjff+64a09ePjo8frG5pOnz55vNbd3To3KNYUBVVzps4QY4EzCwDLL4SzTQETCYZjMDqv88AK0YUr27TyDWJCpZCmjxDpq3EyiBKZMFkRrMi8L3il+lrzcjCxcWpMWvfDLUfkWv8a3RD886ZVR9FcwDL+HleD2f9ILvy3yICd103Gz5bf9ReD7IKhBC9XRHW839qOJorkAaSknxowCP7Oxa2cZ5eC2yw1khM7IFEYOSiLAxMXCjBK/cswEp0q7Jy1esP9WFEQYMxeJUwpiz83dXEX+LzfKbfoxLpjMcguSLgelOcdW4cpZPGEaqOVzBwjVzO2K6TnRhFrn/0qnfhAX1XJVm5Xxl8sbVsSCzEArJdyBRFLglZ/BXffug9N37eB9++DHQavzuXZ2Hb1AL9EbFKAPqIOOURcNEEVX6Ab9Qr+9Pe+Td+R9XUq9Rl2zi1bC6/4Be5nOhA==</latexit>

SAFE, TAJS
WALA, JSAI

<latexit sha1_base64="bFjUIf8UdRmAPc2FjPUcR6RCit8=">AAAClnicbVDLattAFB0rfSTpI06yCTSLoaali2KkEtquitWQNg1duNiOA5Ywo/GVM3geYmYUYoT6ffmF/ES27bIjWyl10gsDZ84993WSjDNjff+64a09ePjo8frG5pOnz55vNbd3To3KNYUBVVzps4QY4EzCwDLL4SzTQETCYZjMDqv88AK0YUr27TyDWJCpZCmjxDpq3EyiBKZMFkRrMi8L3il+lrzcjCxcWpMWvfDLUfkWv8a3RD886ZVR9FcwDL+HleD2f9ILvy3yICd103Gz5bf9ReD7IKhBC9XRHW839qOJorkAaSknxowCP7Oxa2cZ5eC2yw1khM7IFEYOSiLAxMXCjBK/cswEp0q7Jy1esP9WFEQYMxeJUwpiz83dXEX+LzfKbfoxLpjMcguSLgelOcdW4cpZPGEaqOVzBwjVzO2K6TnRhFrn/0qnfhAX1XJVm5Xxl8sbVsSCzEArJdyBRFLglZ/BXffug9N37eB9++DHQavzuXZ2Hb1AL9EbFKAPqIOOURcNEEVX6Ab9Qr+9Pe+Td+R9XUq9Rl2zi1bC6/4Be5nOhA==</latexit>

SAFE, TAJS
WALA, JSAI

<latexit sha1_base64="MJ/kdLY9U4kkYOGJnSN4fLHVAm4=">AAACYHicbVDNTttAEN6YQgOlkMANelgRVeoBRTZChSMqF0p7oIIAUmJF6804rLI/1u64IrLyEjwNV3iLXnkS1kmQamCkkb755v9LMikchuG/WrDwYXHpY3155dPq57X1RnPj0pnccuhwI429TpgDKTR0UKCE68wCU4mEq2R0XOav/oJ1wugLHGcQKzbUIhWcoaf6jd0ewi26tPh1ej7ZpS/R6fnP35XwGCxO+o1W2A6nRt+CaA5aZG5n/WbtS29geK5AI5fMuW4UZhgXzKLgEiYrvdxBxviIDaHroWYKXFxM35rQr54Z0NRY7xrplP2/o2DKubFKfKVieONe50ryvVw3x/QwLoTOcgTNZ4vSXFI0tNSIDoQFjnLsAeNW+Fspv2GWcfRKViZdRHFRHleOqay/nf1QKVZsBNYY5R9kmoMs9Yxeq/cWXO61o+/t/T/7raMfc2XrZJvskG8kIgfkiJyQM9IhnNyRe/JAHmtPQT1YD5qz0qA279kkFQu2ngH3zbl7</latexit>

KJS, JSIL, JSCert

JavaScript Static Analysis for Evolving Language Specifications / 358

Problem: Fast Evolving JavaScript

1996 1998 2000 2002 2004 2008 2010 2012 2014 2016 2018 2020 2022

1997 - ES1
First edition

1998 - ES2
Editorial 
changes

1999 - ES3
RegEx, String, 
Try/catch, etc

2009 - ES5
getters/setters,

strict mode,

exceptions, etc

2011 - ES5.1
Editorial 
Changes

2015 - ES6
classes, modules, etc.

2016 - ES7
destructuring patterns, etc.

Annual Releases

2017 - ES8
object manipulation, etc.

2018 - ES9
2020 - ES11

ES.Next

2019 - ES10
2021 - ES12

ECMAScript 2021 (ES12) - 879 pages

<latexit sha1_base64="MIe41XfV/Rjo6kgw3dO6hEXxyHA=">AAACpnicbVHbattAEF2pl7juzWkf2wdRU8iTkEpI+xialzQtJSVxHLCEO1qNnMWrXbE7CjHC/9n+TOnKViFKOrBw5sz9bFZJYSmKfnv+g4ePHu8MngyfPnv+4uVo99WF1bXhOOFaanOZgUUpFE5IkMTLyiCUmcRptjxq49NrNFZodU6rCtMSFkoUggM5aj4ySYYLoRowBlbrRq6HiXTVOcwTwhuyRXNytk6S4T/va989Ofvyre8foaHbTBiGGxdV3g2Zj8ZRGG0suA/iDoxZZ6fzXe9tkmtel6iIS7B2FkcVpa4dCS7RrVxbrIAvYYEzBxWUaNNmI846eO+YPCi0cU9RsGFvVzRQWrsqM5dZAl3Zu7GW/F9sVlPxKW2EqmpCxbeDiloGpINW6SAXBjnJlQPAjXC7BvwKDHBy/9HrdB6nTbtc26Y3/mZ7Qy+5hCUarUt3ICiOstUzvqvefXDxIYwPwv0f++PDz52yA/aGvWN7LGYf2SE7Zqdswjj7xf54O97A3/O/+xN/uk31va7mNeuZ//Mv5wzUIw==</latexit>

�JS
KJS
JSIL
JSCert
...

<latexit sha1_base64="MJ/kdLY9U4kkYOGJnSN4fLHVAm4=">AAACYHicbVDNTttAEN6YQgOlkMANelgRVeoBRTZChSMqF0p7oIIAUmJF6804rLI/1u64IrLyEjwNV3iLXnkS1kmQamCkkb755v9LMikchuG/WrDwYXHpY3155dPq57X1RnPj0pnccuhwI429TpgDKTR0UKCE68wCU4mEq2R0XOav/oJ1wugLHGcQKzbUIhWcoaf6jd0ewi26tPh1ej7ZpS/R6fnP35XwGCxO+o1W2A6nRt+CaA5aZG5n/WbtS29geK5AI5fMuW4UZhgXzKLgEiYrvdxBxviIDaHroWYKXFxM35rQr54Z0NRY7xrplP2/o2DKubFKfKVieONe50ryvVw3x/QwLoTOcgTNZ4vSXFI0tNSIDoQFjnLsAeNW+Fspv2GWcfRKViZdRHFRHleOqay/nf1QKVZsBNYY5R9kmoMs9Yxeq/cWXO61o+/t/T/7raMfc2XrZJvskG8kIgfkiJyQM9IhnNyRe/JAHmtPQT1YD5qz0qA279kkFQu2ngH3zbl7</latexit>

KJS, JSIL, JSCert

<latexit sha1_base64="MJ/kdLY9U4kkYOGJnSN4fLHVAm4=">AAACYHicbVDNTttAEN6YQgOlkMANelgRVeoBRTZChSMqF0p7oIIAUmJF6804rLI/1u64IrLyEjwNV3iLXnkS1kmQamCkkb755v9LMikchuG/WrDwYXHpY3155dPq57X1RnPj0pnccuhwI429TpgDKTR0UKCE68wCU4mEq2R0XOav/oJ1wugLHGcQKzbUIhWcoaf6jd0ewi26tPh1ej7ZpS/R6fnP35XwGCxO+o1W2A6nRt+CaA5aZG5n/WbtS29geK5AI5fMuW4UZhgXzKLgEiYrvdxBxviIDaHroWYKXFxM35rQr54Z0NRY7xrplP2/o2DKubFKfKVieONe50ryvVw3x/QwLoTOcgTNZ4vSXFI0tNSIDoQFjnLsAeNW+Fspv2GWcfRKViZdRHFRHleOqay/nf1QKVZsBNYY5R9kmoMs9Yxeq/cWXO61o+/t/T/7raMfc2XrZJvskG8kIgfkiJyQM9IhnNyRe/JAHmtPQT1YD5qz0qA279kkFQu2ngH3zbl7</latexit>

KJS, JSIL, JSCert
<latexit sha1_base64="bFjUIf8UdRmAPc2FjPUcR6RCit8=">AAAClnicbVDLattAFB0rfSTpI06yCTSLoaali2KkEtquitWQNg1duNiOA5Ywo/GVM3geYmYUYoT6ffmF/ES27bIjWyl10gsDZ84993WSjDNjff+64a09ePjo8frG5pOnz55vNbd3To3KNYUBVVzps4QY4EzCwDLL4SzTQETCYZjMDqv88AK0YUr27TyDWJCpZCmjxDpq3EyiBKZMFkRrMi8L3il+lrzcjCxcWpMWvfDLUfkWv8a3RD886ZVR9FcwDL+HleD2f9ILvy3yICd103Gz5bf9ReD7IKhBC9XRHW839qOJorkAaSknxowCP7Oxa2cZ5eC2yw1khM7IFEYOSiLAxMXCjBK/cswEp0q7Jy1esP9WFEQYMxeJUwpiz83dXEX+LzfKbfoxLpjMcguSLgelOcdW4cpZPGEaqOVzBwjVzO2K6TnRhFrn/0qnfhAX1XJVm5Xxl8sbVsSCzEArJdyBRFLglZ/BXffug9N37eB9++DHQavzuXZ2Hb1AL9EbFKAPqIOOURcNEEVX6Ab9Qr+9Pe+Td+R9XUq9Rl2zi1bC6/4Be5nOhA==</latexit>

SAFE, TAJS
WALA, JSAI

<latexit sha1_base64="bFjUIf8UdRmAPc2FjPUcR6RCit8=">AAAClnicbVDLattAFB0rfSTpI06yCTSLoaali2KkEtquitWQNg1duNiOA5Ywo/GVM3geYmYUYoT6ffmF/ES27bIjWyl10gsDZ84993WSjDNjff+64a09ePjo8frG5pOnz55vNbd3To3KNYUBVVzps4QY4EzCwDLL4SzTQETCYZjMDqv88AK0YUr27TyDWJCpZCmjxDpq3EyiBKZMFkRrMi8L3il+lrzcjCxcWpMWvfDLUfkWv8a3RD886ZVR9FcwDL+HleD2f9ILvy3yICd103Gz5bf9ReD7IKhBC9XRHW839qOJorkAaSknxowCP7Oxa2cZ5eC2yw1khM7IFEYOSiLAxMXCjBK/cswEp0q7Jy1esP9WFEQYMxeJUwpiz83dXEX+LzfKbfoxLpjMcguSLgelOcdW4cpZPGEaqOVzBwjVzO2K6TnRhFrn/0qnfhAX1XJVm5Xxl8sbVsSCzEArJdyBRFLglZ/BXffug9N37eB9++DHQavzuXZ2Hb1AL9EbFKAPqIOOURcNEEVX6Ab9Qr+9Pe+Td+R9XUq9Rl2zi1bC6/4Be5nOhA==</latexit>

SAFE, TAJS
WALA, JSAI

<latexit sha1_base64="bFjUIf8UdRmAPc2FjPUcR6RCit8=">AAAClnicbVDLattAFB0rfSTpI06yCTSLoaali2KkEtquitWQNg1duNiOA5Ywo/GVM3geYmYUYoT6ffmF/ES27bIjWyl10gsDZ84993WSjDNjff+64a09ePjo8frG5pOnz55vNbd3To3KNYUBVVzps4QY4EzCwDLL4SzTQETCYZjMDqv88AK0YUr27TyDWJCpZCmjxDpq3EyiBKZMFkRrMi8L3il+lrzcjCxcWpMWvfDLUfkWv8a3RD886ZVR9FcwDL+HleD2f9ILvy3yICd103Gz5bf9ReD7IKhBC9XRHW839qOJorkAaSknxowCP7Oxa2cZ5eC2yw1khM7IFEYOSiLAxMXCjBK/cswEp0q7Jy1esP9WFEQYMxeJUwpiz83dXEX+LzfKbfoxLpjMcguSLgelOcdW4cpZPGEaqOVzBwjVzO2K6TnRhFrn/0qnfhAX1XJVm5Xxl8sbVsSCzEArJdyBRFLglZ/BXffug9N37eB9++DHQavzuXZ2Hb1AL9EbFKAPqIOOURcNEEVX6Ab9Qr+9Pe+Td+R9XUq9Rl2zi1bC6/4Be5nOhA==</latexit>

SAFE, TAJS
WALA, JSAI

<latexit sha1_base64="bFjUIf8UdRmAPc2FjPUcR6RCit8=">AAAClnicbVDLattAFB0rfSTpI06yCTSLoaali2KkEtquitWQNg1duNiOA5Ywo/GVM3geYmYUYoT6ffmF/ES27bIjWyl10gsDZ84993WSjDNjff+64a09ePjo8frG5pOnz55vNbd3To3KNYUBVVzps4QY4EzCwDLL4SzTQETCYZjMDqv88AK0YUr27TyDWJCpZCmjxDpq3EyiBKZMFkRrMi8L3il+lrzcjCxcWpMWvfDLUfkWv8a3RD886ZVR9FcwDL+HleD2f9ILvy3yICd103Gz5bf9ReD7IKhBC9XRHW839qOJorkAaSknxowCP7Oxa2cZ5eC2yw1khM7IFEYOSiLAxMXCjBK/cswEp0q7Jy1esP9WFEQYMxeJUwpiz83dXEX+LzfKbfoxLpjMcguSLgelOcdW4cpZPGEaqOVzBwjVzO2K6TnRhFrn/0qnfhAX1XJVm5Xxl8sbVsSCzEArJdyBRFLglZ/BXffug9N37eB9++DHQavzuXZ2Hb1AL9EbFKAPqIOOURcNEEVX6Ab9Qr+9Pe+Td+R9XUq9Rl2zi1bC6/4Be5nOhA==</latexit>

SAFE, TAJS
WALA, JSAI

<latexit sha1_base64="MJ/kdLY9U4kkYOGJnSN4fLHVAm4=">AAACYHicbVDNTttAEN6YQgOlkMANelgRVeoBRTZChSMqF0p7oIIAUmJF6804rLI/1u64IrLyEjwNV3iLXnkS1kmQamCkkb755v9LMikchuG/WrDwYXHpY3155dPq57X1RnPj0pnccuhwI429TpgDKTR0UKCE68wCU4mEq2R0XOav/oJ1wugLHGcQKzbUIhWcoaf6jd0ewi26tPh1ej7ZpS/R6fnP35XwGCxO+o1W2A6nRt+CaA5aZG5n/WbtS29geK5AI5fMuW4UZhgXzKLgEiYrvdxBxviIDaHroWYKXFxM35rQr54Z0NRY7xrplP2/o2DKubFKfKVieONe50ryvVw3x/QwLoTOcgTNZ4vSXFI0tNSIDoQFjnLsAeNW+Fspv2GWcfRKViZdRHFRHleOqay/nf1QKVZsBNYY5R9kmoMs9Yxeq/cWXO61o+/t/T/7raMfc2XrZJvskG8kIgfkiJyQM9IhnNyRe/JAHmtPQT1YD5qz0qA279kkFQu2ngH3zbl7</latexit>

KJS, JSIL, JSCert

JavaScript Static Analysis for Evolving Language Specifications / 35

Main Idea: Deriving Static Analyzer from Spec.

9

ECMA-262

Analysis

Result

JavaScript

Programs

JS Static

Analyzer

automatically
derive

?

JavaScript Static Analysis for Evolving Language Specifications / 35

Overall Structure

10

ECMA-262

Analysis

Result

JavaScript

Programs

Derived Static

Analyzer

DCS �¿�. 1•Xî ⌅\¯ò� ∏¥ Ö8| ⌅\ ê§lΩ∏ �� Ñ�.
⌅∞YÄ . 2022D. 46+iv Ω. ¿ƒP⇠: X��. (�8 |8)
Jihyeok Park. JavaScript Static Analysis for Evolving Language Specifica-
tions. School of Computing . 2022. 46+iv pages. Advisor: Sukyoung Ryu.
(Text in English)

�]

ê§lΩ∏X Ÿ�x 1»¸ ı°\ X¯`@ ê§lΩ∏ ⌅\¯®‰X âŸD �UXå ttX0 ¥

5å Ã‡‰. lê‰@ t| t∞X‡ê ‰ë\ ê§lΩ∏ �� Ñ�0‰D ⌧⌧tT¿Ã, t‰@
®P ⇠Ÿ<\ $ƒ� ⇠»0– xŸ—}�t‡ $X– Ë}X‰. ⇣\, 2014D –Ä0 ê§lΩ∏X
∏¥ Ö8� ‰D 1‡⇠0 ‹ëXt⌧ t 8⌧î T Ï�tL‰. ¯ Y⌅ |8–⌧î ê§lΩ∏ ∏¥
Ö8\Ä0êŸ<\ê§lΩ∏��Ñ�0| ƒt¥î»\¥)›D⌧H\‰. tî 1)0ƒTÖ8
îú, 2) 0ƒT Ö8 ®1 Ä¨, ¯¨‡ 3) �� Ñ�0 ƒX 8 �¿ Ëƒ\ l1⌧‰. ¯ |8–⌧î
0ƒT Ö8 îú 0 D ⌧HX‡, t| t©t �• \‡ ê§lΩ∏ Ö8\Ä0 0ƒT Ö8| îú
\‰. ⇣\, ê§lΩ∏ ‘ƒD t©\ N+1-Ñ⌅ (Ñ L§⇧¸ 0ƒT Ö8X ¿Ö Ñ�D ⌧HX‡,
t| µt Ö8 ✏ ‘ƒX ∞hD Äú\‰. \Ö�<\, T¿ �� Ñ� 0 D ⌧HX‡, îú\ 0ƒT
Ö8\Ä0 êŸ<\ ê§lΩ∏ �� Ñ�0| ƒ\‰. ¯ Y⌅ |8–⌧ ⌧‹\)›@ ⌅\¯ò�
∏¥| ⌅\ Ö8, L§∏, ¯¨‡ ƒl‰X ıƒT| ⌅\ lX 0¿D »(` É<\ 0�\‰.

u Ï ± – ê§lΩ∏, 0ƒT Ö8 îú, Ö8 ¿Ö Ñ�, N+1-Ñ⌅ (Ñ L§⇧, T¿ �� Ñ�

Abstract
The highly dynamic nature and complex semantics of JavaScript make it difficult to correctly understand
the behaviors of JavaScript programs. To automatically reason about them, researchers have developed
various JavaScript static analyzers that conform to ECMAScript, the standard specification of JavaScript.
However, all the existing JavaScript static analyzers are manually designed; thus, the current approach
is labor-intensive and error-prone. Moreover, since late 2014, this problem becomes more critical because
the JavaScript language itself rapidly evolves with a yearly release cadence and open development process.

In this thesis, we introduce a novel approach to automatically derive JavaScript static analyzers
from any version of ECMAScript. Our approach consists of three steps: 1) mechanized specification
extraction, 2) mechanized specification validity check, and 3) derivation of static analyzers. First, we
present a tool JISET that automatically extracts a mechanized specification from ECMAScript. We show
that it successfully extracts a mechanized specification from the latest ECMAScript. Then, we present
two different tools to detect bugs in JavaScript specifications and engines; JEST performs N+1-version
differential testing with JavaScript engines and JSTAR performs a type analysis for the mechanized
specification. Finally, we present JSAVER that automatically derives JavaScript static analyzers from
mechanized specifications using a meta-level static analysis. For evaluation, we derive a JavaScript
static analyzer from the latest ECMAScript and show that it successfully analyzes all applicable official
conformance tests in a sound way. We believe that the thesis would be the first step towards the
co-evolution of specifications, tests, and tools for programming languages.

Keywords JavaScript, mechanized specification extraction, N+1-version differential testing, specifica-
tion type analysis, meta-level static analysis.

1. Mechanized Spec.
Extraction

[ASE'20]

DCS �¿�. 1•Xî ⌅\¯ò� ∏¥ Ö8| ⌅\ ê§lΩ∏ �� Ñ�.
⌅∞YÄ . 2022D. 46+iv Ω. ¿ƒP⇠: X��. (�8 |8)
Jihyeok Park. JavaScript Static Analysis for Evolving Language Specifica-
tions. School of Computing . 2022. 46+iv pages. Advisor: Sukyoung Ryu.
(Text in English)

�]

ê§lΩ∏X Ÿ�x 1»¸ ı°\ X¯`@ ê§lΩ∏ ⌅\¯®‰X âŸD �UXå ttX0 ¥

5å Ã‡‰. lê‰@ t| t∞X‡ê ‰ë\ ê§lΩ∏ �� Ñ�0‰D ⌧⌧tT¿Ã, t‰@
®P ⇠Ÿ<\ $ƒ� ⇠»0– xŸ—}�t‡ $X– Ë}X‰. ⇣\, 2014D –Ä0 ê§lΩ∏X
∏¥ Ö8� ‰D 1‡⇠0 ‹ëXt⌧ t 8⌧î T Ï�tL‰. ¯ Y⌅ |8–⌧î ê§lΩ∏ ∏¥
Ö8\Ä0êŸ<\ê§lΩ∏��Ñ�0| ƒt¥î»\¥)›D⌧H\‰. tî 1)0ƒTÖ8
îú, 2) 0ƒT Ö8 ®1 Ä¨, ¯¨‡ 3) �� Ñ�0 ƒX 8 �¿ Ëƒ\ l1⌧‰. ¯ |8–⌧î
0ƒT Ö8 îú 0 D ⌧HX‡, t| t©t �• \‡ ê§lΩ∏ Ö8\Ä0 0ƒT Ö8| îú
\‰. ⇣\, ê§lΩ∏ ‘ƒD t©\ N+1-Ñ⌅ (Ñ L§⇧¸ 0ƒT Ö8X ¿Ö Ñ�D ⌧HX‡,
t| µt Ö8 ✏ ‘ƒX ∞hD Äú\‰. \Ö�<\, T¿ �� Ñ� 0 D ⌧HX‡, îú\ 0ƒT
Ö8\Ä0 êŸ<\ ê§lΩ∏ �� Ñ�0| ƒ\‰. ¯ Y⌅ |8–⌧ ⌧‹\)›@ ⌅\¯ò�
∏¥| ⌅\ Ö8, L§∏, ¯¨‡ ƒl‰X ıƒT| ⌅\ lX 0¿D »(` É<\ 0�\‰.

u Ï ± – ê§lΩ∏, 0ƒT Ö8 îú, Ö8 ¿Ö Ñ�, N+1-Ñ⌅ (Ñ L§⇧, T¿ �� Ñ�

Abstract
The highly dynamic nature and complex semantics of JavaScript make it difficult to correctly understand
the behaviors of JavaScript programs. To automatically reason about them, researchers have developed
various JavaScript static analyzers that conform to ECMAScript, the standard specification of JavaScript.
However, all the existing JavaScript static analyzers are manually designed; thus, the current approach
is labor-intensive and error-prone. Moreover, since late 2014, this problem becomes more critical because
the JavaScript language itself rapidly evolves with a yearly release cadence and open development process.

In this thesis, we introduce a novel approach to automatically derive JavaScript static analyzers
from any version of ECMAScript. Our approach consists of three steps: 1) mechanized specification
extraction, 2) mechanized specification validity check, and 3) derivation of static analyzers. First, we
present a tool JISET that automatically extracts a mechanized specification from ECMAScript. We show
that it successfully extracts a mechanized specification from the latest ECMAScript. Then, we present
two different tools to detect bugs in JavaScript specifications and engines; JEST performs N+1-version
differential testing with JavaScript engines and JSTAR performs a type analysis for the mechanized
specification. Finally, we present JSAVER that automatically derives JavaScript static analyzers from
mechanized specifications using a meta-level static analysis. For evaluation, we derive a JavaScript
static analyzer from the latest ECMAScript and show that it successfully analyzes all applicable official
conformance tests in a sound way. We believe that the thesis would be the first step towards the
co-evolution of specifications, tests, and tools for programming languages.

Keywords JavaScript, mechanized specification extraction, N+1-version differential testing, specifica-
tion type analysis, meta-level static analysis.

3. Derivation of
Static Analyzers

In submission

Mechanized

Specification

DCS �¿�. 1•Xî ⌅\¯ò� ∏¥ Ö8| ⌅\ ê§lΩ∏ �� Ñ�.
⌅∞YÄ . 2022D. 46+iv Ω. ¿ƒP⇠: X��. (�8 |8)
Jihyeok Park. JavaScript Static Analysis for Evolving Language Specifica-
tions. School of Computing . 2022. 46+iv pages. Advisor: Sukyoung Ryu.
(Text in English)

�]

ê§lΩ∏X Ÿ�x 1»¸ ı°\ X¯`@ ê§lΩ∏ ⌅\¯®‰X âŸD �UXå ttX0 ¥

5å Ã‡‰. lê‰@ t| t∞X‡ê ‰ë\ ê§lΩ∏ �� Ñ�0‰D ⌧⌧tT¿Ã, t‰@
®P ⇠Ÿ<\ $ƒ� ⇠»0– xŸ—}�t‡ $X– Ë}X‰. ⇣\, 2014D –Ä0 ê§lΩ∏X
∏¥ Ö8� ‰D 1‡⇠0 ‹ëXt⌧ t 8⌧î T Ï�tL‰. ¯ Y⌅ |8–⌧î ê§lΩ∏ ∏¥
Ö8\Ä0êŸ<\ê§lΩ∏��Ñ�0| ƒt¥î»\¥)›D⌧H\‰. tî 1)0ƒTÖ8
îú, 2) 0ƒT Ö8 ®1 Ä¨, ¯¨‡ 3) �� Ñ�0 ƒX 8 �¿ Ëƒ\ l1⌧‰. ¯ |8–⌧î
0ƒT Ö8 îú 0 D ⌧HX‡, t| t©t �• \‡ ê§lΩ∏ Ö8\Ä0 0ƒT Ö8| îú
\‰. ⇣\, ê§lΩ∏ ‘ƒD t©\ N+1-Ñ⌅ (Ñ L§⇧¸ 0ƒT Ö8X ¿Ö Ñ�D ⌧HX‡,
t| µt Ö8 ✏ ‘ƒX ∞hD Äú\‰. \Ö�<\, T¿ �� Ñ� 0 D ⌧HX‡, îú\ 0ƒT
Ö8\Ä0 êŸ<\ ê§lΩ∏ �� Ñ�0| ƒ\‰. ¯ Y⌅ |8–⌧ ⌧‹\)›@ ⌅\¯ò�
∏¥| ⌅\ Ö8, L§∏, ¯¨‡ ƒl‰X ıƒT| ⌅\ lX 0¿D »(` É<\ 0�\‰.

u Ï ± – ê§lΩ∏, 0ƒT Ö8 îú, Ö8 ¿Ö Ñ�, N+1-Ñ⌅ (Ñ L§⇧, T¿ �� Ñ�

Abstract
The highly dynamic nature and complex semantics of JavaScript make it difficult to correctly understand
the behaviors of JavaScript programs. To automatically reason about them, researchers have developed
various JavaScript static analyzers that conform to ECMAScript, the standard specification of JavaScript.
However, all the existing JavaScript static analyzers are manually designed; thus, the current approach
is labor-intensive and error-prone. Moreover, since late 2014, this problem becomes more critical because
the JavaScript language itself rapidly evolves with a yearly release cadence and open development process.

In this thesis, we introduce a novel approach to automatically derive JavaScript static analyzers
from any version of ECMAScript. Our approach consists of three steps: 1) mechanized specification
extraction, 2) mechanized specification validity check, and 3) derivation of static analyzers. First, we
present a tool JISET that automatically extracts a mechanized specification from ECMAScript. We show
that it successfully extracts a mechanized specification from the latest ECMAScript. Then, we present
two different tools to detect bugs in JavaScript specifications and engines; JEST performs N+1-version
differential testing with JavaScript engines and JSTAR performs a type analysis for the mechanized
specification. Finally, we present JSAVER that automatically derives JavaScript static analyzers from
mechanized specifications using a meta-level static analysis. For evaluation, we derive a JavaScript
static analyzer from the latest ECMAScript and show that it successfully analyzes all applicable official
conformance tests in a sound way. We believe that the thesis would be the first step towards the
co-evolution of specifications, tests, and tools for programming languages.

Keywords JavaScript, mechanized specification extraction, N+1-version differential testing, specifica-
tion type analysis, meta-level static analysis.

DCS �¿�. 1•Xî ⌅\¯ò� ∏¥ Ö8| ⌅\ ê§lΩ∏ �� Ñ�.
⌅∞YÄ . 2022D. 46+iv Ω. ¿ƒP⇠: X��. (�8 |8)
Jihyeok Park. JavaScript Static Analysis for Evolving Language Specifica-
tions. School of Computing . 2022. 46+iv pages. Advisor: Sukyoung Ryu.
(Text in English)

�]

ê§lΩ∏X Ÿ�x 1»¸ ı°\ X¯`@ ê§lΩ∏ ⌅\¯®‰X âŸD �UXå ttX0 ¥

5å Ã‡‰. lê‰@ t| t∞X‡ê ‰ë\ ê§lΩ∏ �� Ñ�0‰D ⌧⌧tT¿Ã, t‰@
®P ⇠Ÿ<\ $ƒ� ⇠»0– xŸ—}�t‡ $X– Ë}X‰. ⇣\, 2014D –Ä0 ê§lΩ∏X
∏¥ Ö8� ‰D 1‡⇠0 ‹ëXt⌧ t 8⌧î T Ï�tL‰. ¯ Y⌅ |8–⌧î ê§lΩ∏ ∏¥
Ö8\Ä0êŸ<\ê§lΩ∏��Ñ�0| ƒt¥î»\¥)›D⌧H\‰. tî 1)0ƒTÖ8
îú, 2) 0ƒT Ö8 ®1 Ä¨, ¯¨‡ 3) �� Ñ�0 ƒX 8 �¿ Ëƒ\ l1⌧‰. ¯ |8–⌧î
0ƒT Ö8 îú 0 D ⌧HX‡, t| t©t �• \‡ ê§lΩ∏ Ö8\Ä0 0ƒT Ö8| îú
\‰. ⇣\, ê§lΩ∏ ‘ƒD t©\ N+1-Ñ⌅ (Ñ L§⇧¸ 0ƒT Ö8X ¿Ö Ñ�D ⌧HX‡,
t| µt Ö8 ✏ ‘ƒX ∞hD Äú\‰. \Ö�<\, T¿ �� Ñ� 0 D ⌧HX‡, îú\ 0ƒT
Ö8\Ä0 êŸ<\ ê§lΩ∏ �� Ñ�0| ƒ\‰. ¯ Y⌅ |8–⌧ ⌧‹\)›@ ⌅\¯ò�
∏¥| ⌅\ Ö8, L§∏, ¯¨‡ ƒl‰X ıƒT| ⌅\ lX 0¿D »(` É<\ 0�\‰.

u Ï ± – ê§lΩ∏, 0ƒT Ö8 îú, Ö8 ¿Ö Ñ�, N+1-Ñ⌅ (Ñ L§⇧, T¿ �� Ñ�

Abstract
The highly dynamic nature and complex semantics of JavaScript make it difficult to correctly understand
the behaviors of JavaScript programs. To automatically reason about them, researchers have developed
various JavaScript static analyzers that conform to ECMAScript, the standard specification of JavaScript.
However, all the existing JavaScript static analyzers are manually designed; thus, the current approach
is labor-intensive and error-prone. Moreover, since late 2014, this problem becomes more critical because
the JavaScript language itself rapidly evolves with a yearly release cadence and open development process.

In this thesis, we introduce a novel approach to automatically derive JavaScript static analyzers
from any version of ECMAScript. Our approach consists of three steps: 1) mechanized specification
extraction, 2) mechanized specification validity check, and 3) derivation of static analyzers. First, we
present a tool JISET that automatically extracts a mechanized specification from ECMAScript. We show
that it successfully extracts a mechanized specification from the latest ECMAScript. Then, we present
two different tools to detect bugs in JavaScript specifications and engines; JEST performs N+1-version
differential testing with JavaScript engines and JSTAR performs a type analysis for the mechanized
specification. Finally, we present JSAVER that automatically derives JavaScript static analyzers from
mechanized specifications using a meta-level static analysis. For evaluation, we derive a JavaScript
static analyzer from the latest ECMAScript and show that it successfully analyzes all applicable official
conformance tests in a sound way. We believe that the thesis would be the first step towards the
co-evolution of specifications, tests, and tools for programming languages.

Keywords JavaScript, mechanized specification extraction, N+1-version differential testing, specifica-
tion type analysis, meta-level static analysis.

2. Specification
Validity Check

[ICSE'21] [ASE'21]
Distinguished Paper!!

Conformance Test

Synthesis

Type Analysis for

Specification

JavaScript Static Analysis for Evolving Language Specifications / 35

Analysis

Result

JavaScript

Programs

Derived Static

Analyzerspecification. Finally, we present JSAVER

3. Derivation of
Static Analyzers

erent tools to detect bugs in JavaScript specifications and engines; JESTerential testing with JavaScript engines and JSTAR

2. Specification
Validity Check

[ICSE'21] [ASE'21]
Distinguished Paper!!

Mechanized

Specification

11

ECMA-262

DCS �¿�. 1•Xî ⌅\¯ò� ∏¥ Ö8| ⌅\ ê§lΩ∏ �� Ñ�.
⌅∞YÄ . 2022D. 46+iv Ω. ¿ƒP⇠: X��. (�8 |8)
Jihyeok Park. JavaScript Static Analysis for Evolving Language Specifica-
tions. School of Computing . 2022. 46+iv pages. Advisor: Sukyoung Ryu.
(Text in English)

�]

ê§lΩ∏X Ÿ�x 1»¸ ı°\ X¯`@ ê§lΩ∏ ⌅\¯®‰X âŸD �UXå ttX0 ¥

5å Ã‡‰. lê‰@ t| t∞X‡ê ‰ë\ ê§lΩ∏ �� Ñ�0‰D ⌧⌧tT¿Ã, t‰@
®P ⇠Ÿ<\ $ƒ� ⇠»0– xŸ—}�t‡ $X– Ë}X‰. ⇣\, 2014D –Ä0 ê§lΩ∏X
∏¥ Ö8� ‰D 1‡⇠0 ‹ëXt⌧ t 8⌧î T Ï�tL‰. ¯ Y⌅ |8–⌧î ê§lΩ∏ ∏¥
Ö8\Ä0êŸ<\ê§lΩ∏��Ñ�0| ƒt¥î»\¥)›D⌧H\‰. tî 1)0ƒTÖ8
îú, 2) 0ƒT Ö8 ®1 Ä¨, ¯¨‡ 3) �� Ñ�0 ƒX 8 �¿ Ëƒ\ l1⌧‰. ¯ |8–⌧î
0ƒT Ö8 îú 0 D ⌧HX‡, t| t©t �• \‡ ê§lΩ∏ Ö8\Ä0 0ƒT Ö8| îú
\‰. ⇣\, ê§lΩ∏ ‘ƒD t©\ N+1-Ñ⌅ (Ñ L§⇧¸ 0ƒT Ö8X ¿Ö Ñ�D ⌧HX‡,
t| µt Ö8 ✏ ‘ƒX ∞hD Äú\‰. \Ö�<\, T¿ �� Ñ� 0 D ⌧HX‡, îú\ 0ƒT
Ö8\Ä0 êŸ<\ ê§lΩ∏ �� Ñ�0| ƒ\‰. ¯ Y⌅ |8–⌧ ⌧‹\)›@ ⌅\¯ò�
∏¥| ⌅\ Ö8, L§∏, ¯¨‡ ƒl‰X ıƒT| ⌅\ lX 0¿D »(` É<\ 0�\‰.

u Ï ± – ê§lΩ∏, 0ƒT Ö8 îú, Ö8 ¿Ö Ñ�, N+1-Ñ⌅ (Ñ L§⇧, T¿ �� Ñ�

Abstract
The highly dynamic nature and complex semantics of JavaScript make it difficult to correctly understand
the behaviors of JavaScript programs. To automatically reason about them, researchers have developed
various JavaScript static analyzers that conform to ECMAScript, the standard specification of JavaScript.
However, all the existing JavaScript static analyzers are manually designed; thus, the current approach
is labor-intensive and error-prone. Moreover, since late 2014, this problem becomes more critical because
the JavaScript language itself rapidly evolves with a yearly release cadence and open development process.

In this thesis, we introduce a novel approach to automatically derive JavaScript static analyzers
from any version of ECMAScript. Our approach consists of three steps: 1) mechanized specification
extraction, 2) mechanized specification validity check, and 3) derivation of static analyzers. First, we
present a tool JISET that automatically extracts a mechanized specification from ECMAScript. We show
that it successfully extracts a mechanized specification from the latest ECMAScript. Then, we present
two different tools to detect bugs in JavaScript specifications and engines; JEST performs N+1-version
differential testing with JavaScript engines and JSTAR performs a type analysis for the mechanized
specification. Finally, we present JSAVER that automatically derives JavaScript static analyzers from
mechanized specifications using a meta-level static analysis. For evaluation, we derive a JavaScript
static analyzer from the latest ECMAScript and show that it successfully analyzes all applicable official
conformance tests in a sound way. We believe that the thesis would be the first step towards the
co-evolution of specifications, tests, and tools for programming languages.

Keywords JavaScript, mechanized specification extraction, N+1-version differential testing, specifica-
tion type analysis, meta-level static analysis.

1. Mechanized Spec.
Extraction

[ASE'20]

Conformance Test

Synthesis

Type Analysis for

Specification

JISET: JavaScript IR-based Semantics Extraction Toolchain
Jihyeok Park, Jihee Park, Seungmin An, and Sukyoung Ryu

(Published in ASE'20)

In submission

JavaScript Static Analysis for Evolving Language Specifications / 3512

Motivation: Patterns in Writing Style of ECMA-262

The Evaluation algorithm for
the third alternative of ArrayLiteral in ES12

JavaScript Static Analysis for Evolving Language Specifications / 35

JISET [ASE'20]

13

ECMA-262 IRES

Functions

JavaScript IR-based Semantics Extraction Toolchain

DCS �¿�. 1•Xî ⌅\¯ò� ∏¥ Ö8| ⌅\ ê§lΩ∏ �� Ñ�.
⌅∞YÄ . 2022D. 46+iv Ω. ¿ƒP⇠: X��. (�8 |8)
Jihyeok Park. JavaScript Static Analysis for Evolving Language Specifica-
tions. School of Computing . 2022. 46+iv pages. Advisor: Sukyoung Ryu.
(Text in English)

�]

ê§lΩ∏X Ÿ�x 1»¸ ı°\ X¯`@ ê§lΩ∏ ⌅\¯®‰X âŸD �UXå ttX0 ¥

5å Ã‡‰. lê‰@ t| t∞X‡ê ‰ë\ ê§lΩ∏ �� Ñ�0‰D ⌧⌧tT¿Ã, t‰@
®P ⇠Ÿ<\ $ƒ� ⇠»0– xŸ—}�t‡ $X– Ë}X‰. ⇣\, 2014D –Ä0 ê§lΩ∏X
∏¥ Ö8� ‰D 1‡⇠0 ‹ëXt⌧ t 8⌧î T Ï�tL‰. ¯ Y⌅ |8–⌧î ê§lΩ∏ ∏¥
Ö8\Ä0êŸ<\ê§lΩ∏��Ñ�0| ƒt¥î»\¥)›D⌧H\‰. tî 1)0ƒTÖ8
îú, 2) 0ƒT Ö8 ®1 Ä¨, ¯¨‡ 3) �� Ñ�0 ƒX 8 �¿ Ëƒ\ l1⌧‰. ¯ |8–⌧î
0ƒT Ö8 îú 0 D ⌧HX‡, t| t©t �• \‡ ê§lΩ∏ Ö8\Ä0 0ƒT Ö8| îú
\‰. ⇣\, ê§lΩ∏ ‘ƒD t©\ N+1-Ñ⌅ (Ñ L§⇧¸ 0ƒT Ö8X ¿Ö Ñ�D ⌧HX‡,
t| µt Ö8 ✏ ‘ƒX ∞hD Äú\‰. \Ö�<\, T¿ �� Ñ� 0 D ⌧HX‡, îú\ 0ƒT
Ö8\Ä0 êŸ<\ ê§lΩ∏ �� Ñ�0| ƒ\‰. ¯ Y⌅ |8–⌧ ⌧‹\)›@ ⌅\¯ò�
∏¥| ⌅\ Ö8, L§∏, ¯¨‡ ƒl‰X ıƒT| ⌅\ lX 0¿D »(` É<\ 0�\‰.

u Ï ± – ê§lΩ∏, 0ƒT Ö8 îú, Ö8 ¿Ö Ñ�, N+1-Ñ⌅ (Ñ L§⇧, T¿ �� Ñ�

Abstract
The highly dynamic nature and complex semantics of JavaScript make it difficult to correctly understand
the behaviors of JavaScript programs. To automatically reason about them, researchers have developed
various JavaScript static analyzers that conform to ECMAScript, the standard specification of JavaScript.
However, all the existing JavaScript static analyzers are manually designed; thus, the current approach
is labor-intensive and error-prone. Moreover, since late 2014, this problem becomes more critical because
the JavaScript language itself rapidly evolves with a yearly release cadence and open development process.

In this thesis, we introduce a novel approach to automatically derive JavaScript static analyzers
from any version of ECMAScript. Our approach consists of three steps: 1) mechanized specification
extraction, 2) mechanized specification validity check, and 3) derivation of static analyzers. First, we
present a tool JISET that automatically extracts a mechanized specification from ECMAScript. We show
that it successfully extracts a mechanized specification from the latest ECMAScript. Then, we present
two different tools to detect bugs in JavaScript specifications and engines; JEST performs N+1-version
differential testing with JavaScript engines and JSTAR performs a type analysis for the mechanized
specification. Finally, we present JSAVER that automatically derives JavaScript static analyzers from
mechanized specifications using a meta-level static analysis. For evaluation, we derive a JavaScript
static analyzer from the latest ECMAScript and show that it successfully analyzes all applicable official
conformance tests in a sound way. We believe that the thesis would be the first step towards the
co-evolution of specifications, tests, and tools for programming languages.

Keywords JavaScript, mechanized specification extraction, N+1-version differential testing, specifica-
tion type analysis, meta-level static analysis.

Spec.

Extractor

BNFES

Productions

Mechanized
Specification

Abstract

Algorithms

JavaScript

Parser

Parser

Generator

Algorithm

Compiler

Compile

Rules

Syntax

Semantics

JavaScript Static Analysis for Evolving Language Specifications / 3514

JISET - Parser Generator (Syntax)

Parsing Expression Grammar
(+ Lookahead Parsing)

(POPL'04) Bryan Ford, "Parsing Expression Grammars: A Recognition-based Syntactic Foundation"

JavaScript Parser
in Scala

JavaScript Static Analysis for Evolving Language Specifications / 3515

JISET - Algorithm Compiler (Semantics)

118 Compile Rules for
Steps in Abstract Algorithms

IRES
Functions

JavaScript Static Analysis for Evolving Language Specifications / 3516

JISET - Evaluation ≈ 95% Compiled

JavaScript Static Analysis for Evolving Language Specifications / 3516

JISET - Evaluation ≈ 95% Compiled

Complete
Missing Parts

JavaScript Static Analysis for Evolving Language Specifications / 3516

JISET - Evaluation ≈ 95% Compiled

Complete
Missing Parts

Passed All Tests
• Test262 

(Official Conformance Tests)

- 18,556 applicable tests

• Parsing tests

- Passed all 18,556 tests

• Evaluation Tests

- Passed all 18,556 tests

JavaScript Static Analysis for Evolving Language Specifications / 35

Analysis

Result

JavaScript

Programs

Derived Static

Analyzerspecification. Finally, we present JSAVER

3. Derivation of
Static Analyzers

DCS �¿�. 1•Xî ⌅\¯ò� ∏¥ Ö8| ⌅\ ê§lΩ∏ �� Ñ�.
⌅∞YÄ . 2022D. 46+iv Ω. ¿ƒP⇠: X��. (�8 |8)
Jihyeok Park. JavaScript Static Analysis for Evolving Language Specifica-
tions. School of Computing . 2022. 46+iv pages. Advisor: Sukyoung Ryu.
(Text in English)

�]

ê§lΩ∏X Ÿ�x 1»¸ ı°\ X¯`@ ê§lΩ∏ ⌅\¯®‰X âŸD �UXå ttX0 ¥

5å Ã‡‰. lê‰@ t| t∞X‡ê ‰ë\ ê§lΩ∏ �� Ñ�0‰D ⌧⌧tT¿Ã, t‰@
®P ⇠Ÿ<\ $ƒ� ⇠»0– xŸ—}�t‡ $X– Ë}X‰. ⇣\, 2014D –Ä0 ê§lΩ∏X
∏¥ Ö8� ‰D 1‡⇠0 ‹ëXt⌧ t 8⌧î T Ï�tL‰. ¯ Y⌅ |8–⌧î ê§lΩ∏ ∏¥
Ö8\Ä0êŸ<\ê§lΩ∏��Ñ�0| ƒt¥î»\¥)›D⌧H\‰. tî 1)0ƒTÖ8
îú, 2) 0ƒT Ö8 ®1 Ä¨, ¯¨‡ 3) �� Ñ�0 ƒX 8 �¿ Ëƒ\ l1⌧‰. ¯ |8–⌧î
0ƒT Ö8 îú 0 D ⌧HX‡, t| t©t �• \‡ ê§lΩ∏ Ö8\Ä0 0ƒT Ö8| îú
\‰. ⇣\, ê§lΩ∏ ‘ƒD t©\ N+1-Ñ⌅ (Ñ L§⇧¸ 0ƒT Ö8X ¿Ö Ñ�D ⌧HX‡,
t| µt Ö8 ✏ ‘ƒX ∞hD Äú\‰. \Ö�<\, T¿ �� Ñ� 0 D ⌧HX‡, îú\ 0ƒT
Ö8\Ä0 êŸ<\ ê§lΩ∏ �� Ñ�0| ƒ\‰. ¯ Y⌅ |8–⌧ ⌧‹\)›@ ⌅\¯ò�
∏¥| ⌅\ Ö8, L§∏, ¯¨‡ ƒl‰X ıƒT| ⌅\ lX 0¿D »(` É<\ 0�\‰.

u Ï ± – ê§lΩ∏, 0ƒT Ö8 îú, Ö8 ¿Ö Ñ�, N+1-Ñ⌅ (Ñ L§⇧, T¿ �� Ñ�

Abstract
The highly dynamic nature and complex semantics of JavaScript make it difficult to correctly understand
the behaviors of JavaScript programs. To automatically reason about them, researchers have developed
various JavaScript static analyzers that conform to ECMAScript, the standard specification of JavaScript.
However, all the existing JavaScript static analyzers are manually designed; thus, the current approach
is labor-intensive and error-prone. Moreover, since late 2014, this problem becomes more critical because
the JavaScript language itself rapidly evolves with a yearly release cadence and open development process.

In this thesis, we introduce a novel approach to automatically derive JavaScript static analyzers
from any version of ECMAScript. Our approach consists of three steps: 1) mechanized specification
extraction, 2) mechanized specification validity check, and 3) derivation of static analyzers. First, we
present a tool JISET that automatically extracts a mechanized specification from ECMAScript. We show
that it successfully extracts a mechanized specification from the latest ECMAScript. Then, we present
two different tools to detect bugs in JavaScript specifications and engines; JEST performs N+1-version
differential testing with JavaScript engines and JSTAR performs a type analysis for the mechanized
specification. Finally, we present JSAVER that automatically derives JavaScript static analyzers from
mechanized specifications using a meta-level static analysis. For evaluation, we derive a JavaScript
static analyzer from the latest ECMAScript and show that it successfully analyzes all applicable official
conformance tests in a sound way. We believe that the thesis would be the first step towards the
co-evolution of specifications, tests, and tools for programming languages.

Keywords JavaScript, mechanized specification extraction, N+1-version differential testing, specifica-
tion type analysis, meta-level static analysis.

erential testing with JavaScript engines and JSTAR

2. Specification
Validity Check

[ICSE'21] [ASE'21]
Distinguished Paper!!

Mechanized

Specification

17

ECMA-262

DCS �¿�. 1•Xî ⌅\¯ò� ∏¥ Ö8| ⌅\ ê§lΩ∏ �� Ñ�.
⌅∞YÄ . 2022D. 46+iv Ω. ¿ƒP⇠: X��. (�8 |8)
Jihyeok Park. JavaScript Static Analysis for Evolving Language Specifica-
tions. School of Computing . 2022. 46+iv pages. Advisor: Sukyoung Ryu.
(Text in English)

�]

ê§lΩ∏X Ÿ�x 1»¸ ı°\ X¯`@ ê§lΩ∏ ⌅\¯®‰X âŸD �UXå ttX0 ¥

5å Ã‡‰. lê‰@ t| t∞X‡ê ‰ë\ ê§lΩ∏ �� Ñ�0‰D ⌧⌧tT¿Ã, t‰@
®P ⇠Ÿ<\ $ƒ� ⇠»0– xŸ—}�t‡ $X– Ë}X‰. ⇣\, 2014D –Ä0 ê§lΩ∏X
∏¥ Ö8� ‰D 1‡⇠0 ‹ëXt⌧ t 8⌧î T Ï�tL‰. ¯ Y⌅ |8–⌧î ê§lΩ∏ ∏¥
Ö8\Ä0êŸ<\ê§lΩ∏��Ñ�0| ƒt¥î»\¥)›D⌧H\‰. tî 1)0ƒTÖ8
îú, 2) 0ƒT Ö8 ®1 Ä¨, ¯¨‡ 3) �� Ñ�0 ƒX 8 �¿ Ëƒ\ l1⌧‰. ¯ |8–⌧î
0ƒT Ö8 îú 0 D ⌧HX‡, t| t©t �• \‡ ê§lΩ∏ Ö8\Ä0 0ƒT Ö8| îú
\‰. ⇣\, ê§lΩ∏ ‘ƒD t©\ N+1-Ñ⌅ (Ñ L§⇧¸ 0ƒT Ö8X ¿Ö Ñ�D ⌧HX‡,
t| µt Ö8 ✏ ‘ƒX ∞hD Äú\‰. \Ö�<\, T¿ �� Ñ� 0 D ⌧HX‡, îú\ 0ƒT
Ö8\Ä0 êŸ<\ ê§lΩ∏ �� Ñ�0| ƒ\‰. ¯ Y⌅ |8–⌧ ⌧‹\)›@ ⌅\¯ò�
∏¥| ⌅\ Ö8, L§∏, ¯¨‡ ƒl‰X ıƒT| ⌅\ lX 0¿D »(` É<\ 0�\‰.

u Ï ± – ê§lΩ∏, 0ƒT Ö8 îú, Ö8 ¿Ö Ñ�, N+1-Ñ⌅ (Ñ L§⇧, T¿ �� Ñ�

Abstract
The highly dynamic nature and complex semantics of JavaScript make it difficult to correctly understand
the behaviors of JavaScript programs. To automatically reason about them, researchers have developed
various JavaScript static analyzers that conform to ECMAScript, the standard specification of JavaScript.
However, all the existing JavaScript static analyzers are manually designed; thus, the current approach
is labor-intensive and error-prone. Moreover, since late 2014, this problem becomes more critical because
the JavaScript language itself rapidly evolves with a yearly release cadence and open development process.

In this thesis, we introduce a novel approach to automatically derive JavaScript static analyzers
from any version of ECMAScript. Our approach consists of three steps: 1) mechanized specification
extraction, 2) mechanized specification validity check, and 3) derivation of static analyzers. First, we
present a tool JISET that automatically extracts a mechanized specification from ECMAScript. We show
that it successfully extracts a mechanized specification from the latest ECMAScript. Then, we present
two different tools to detect bugs in JavaScript specifications and engines; JEST performs N+1-version
differential testing with JavaScript engines and JSTAR performs a type analysis for the mechanized
specification. Finally, we present JSAVER that automatically derives JavaScript static analyzers from
mechanized specifications using a meta-level static analysis. For evaluation, we derive a JavaScript
static analyzer from the latest ECMAScript and show that it successfully analyzes all applicable official
conformance tests in a sound way. We believe that the thesis would be the first step towards the
co-evolution of specifications, tests, and tools for programming languages.

Keywords JavaScript, mechanized specification extraction, N+1-version differential testing, specifica-
tion type analysis, meta-level static analysis.

1. Mechanized Spec.
Extraction

[ASE'20]

Conformance Test

Synthesis

Type Analysis for

Specification

JEST: N+1-version Differential Testing of Both JavaScript Engines
Jihyeok Park, Seungmin An, Dongjun Youn, Gyeongwon Kim, and Sukyoung Ryu

(Published in ICSE'21)

In submission

JavaScript Static Analysis for Evolving Language Specifications / 3518

JEST - Conformance with Engines

Conform

Reference number
ECMA-123:2009

© Ecma International 2009

ECMA-262
11th Edition / June 2020

ECMAScript® 2020
Language Specification

JavaScript
Engines

ECMA-262

QuickJS
?

JavaScript Static Analysis for Evolving Language Specifications / 3519

JEST - N+1-version Differential Testing

Synthesize

Reference number
ECMA-123:2009

© Ecma International 2009

ECMA-262
11th Edition / June 2020

ECMAScript® 2020
Language Specification

JavaScript
Engines

ECMA-262

Test QuickJS

test

test

test

test

JavaScript Static Analysis for Evolving Language Specifications / 3519

JEST - N+1-version Differential Testing

Synthesize

Reference number
ECMA-123:2009

© Ecma International 2009

ECMA-262
11th Edition / June 2020

ECMAScript® 2020
Language Specification

JavaScript
Engines

ECMA-262

Test QuickJS

test

test

test

test

JavaScript Static Analysis for Evolving Language Specifications / 3519

JEST - N+1-version Differential Testing

Synthesize

Reference number
ECMA-123:2009

© Ecma International 2009

ECMA-262
11th Edition / June 2020

ECMAScript® 2020
Language Specification

JavaScript
Engines

ECMA-262

Test QuickJS

test

An engine bug in

test

test

test

JavaScript Static Analysis for Evolving Language Specifications / 3520

JEST - N+1-version Differential Testing

TestSynthesize

Reference number
ECMA-123:2009

© Ecma International 2009

ECMA-262
11th Edition / June 2020

ECMAScript® 2020
Language Specification

ECMA-262
JavaScript

Engines

QuickJS

test

test

test

test

JavaScript Static Analysis for Evolving Language Specifications / 3520

JEST - N+1-version Differential Testing

TestSynthesize

Reference number
ECMA-123:2009

© Ecma International 2009

ECMA-262
11th Edition / June 2020

ECMAScript® 2020
Language Specification

ECMA-262
JavaScript

Engines

QuickJS

test

test

test

test

JavaScript Static Analysis for Evolving Language Specifications / 3520

JEST - N+1-version Differential Testing

A specification bug in ECMA-262

TestSynthesize

Reference number
ECMA-123:2009

© Ecma International 2009

ECMA-262
11th Edition / June 2020

ECMAScript® 2020
Language Specification

ECMA-262
JavaScript

Engines

QuickJS

test

test

test

test

JavaScript Static Analysis for Evolving Language Specifications / 3520

JEST - N+1-version Differential Testing

A specification bug in ECMA-262A specification bug in ECMA-262
An engine bug in

TestSynthesize

Reference number
ECMA-123:2009

© Ecma International 2009

ECMA-262
11th Edition / June 2020

ECMAScript® 2020
Language Specification

ECMA-262
JavaScript

Engines

QuickJS

test

test

test

test

JavaScript Static Analysis for Evolving Language Specifications / 35

JEST [ICSE'21]

21

Mechanized

Specification

JavaScript

Engines

Mechanized
Specification

Assertion

Injector

Engine

Bugs

Program

Mutator

Coverage-guided

Mutation

JavaScript Engines and Specification Tester

DCS �¿�. 1•Xî ⌅\¯ò� ∏¥ Ö8| ⌅\ ê§lΩ∏ �� Ñ�.
⌅∞YÄ . 2022D. 46+iv Ω. ¿ƒP⇠: X��. (�8 |8)
Jihyeok Park. JavaScript Static Analysis for Evolving Language Specifica-
tions. School of Computing . 2022. 46+iv pages. Advisor: Sukyoung Ryu.
(Text in English)

�]

ê§lΩ∏X Ÿ�x 1»¸ ı°\ X¯`@ ê§lΩ∏ ⌅\¯®‰X âŸD �UXå ttX0 ¥

5å Ã‡‰. lê‰@ t| t∞X‡ê ‰ë\ ê§lΩ∏ �� Ñ�0‰D ⌧⌧tT¿Ã, t‰@
®P ⇠Ÿ<\ $ƒ� ⇠»0– xŸ—}�t‡ $X– Ë}X‰. ⇣\, 2014D –Ä0 ê§lΩ∏X
∏¥ Ö8� ‰D 1‡⇠0 ‹ëXt⌧ t 8⌧î T Ï�tL‰. ¯ Y⌅ |8–⌧î ê§lΩ∏ ∏¥
Ö8\Ä0êŸ<\ê§lΩ∏��Ñ�0| ƒt¥î»\¥)›D⌧H\‰. tî 1)0ƒTÖ8
îú, 2) 0ƒT Ö8 ®1 Ä¨, ¯¨‡ 3) �� Ñ�0 ƒX 8 �¿ Ëƒ\ l1⌧‰. ¯ |8–⌧î
0ƒT Ö8 îú 0 D ⌧HX‡, t| t©t �• \‡ ê§lΩ∏ Ö8\Ä0 0ƒT Ö8| îú
\‰. ⇣\, ê§lΩ∏ ‘ƒD t©\ N+1-Ñ⌅ (Ñ L§⇧¸ 0ƒT Ö8X ¿Ö Ñ�D ⌧HX‡,
t| µt Ö8 ✏ ‘ƒX ∞hD Äú\‰. \Ö�<\, T¿ �� Ñ� 0 D ⌧HX‡, îú\ 0ƒT
Ö8\Ä0 êŸ<\ ê§lΩ∏ �� Ñ�0| ƒ\‰. ¯ Y⌅ |8–⌧ ⌧‹\)›@ ⌅\¯ò�
∏¥| ⌅\ Ö8, L§∏, ¯¨‡ ƒl‰X ıƒT| ⌅\ lX 0¿D »(` É<\ 0�\‰.

u Ï ± – ê§lΩ∏, 0ƒT Ö8 îú, Ö8 ¿Ö Ñ�, N+1-Ñ⌅ (Ñ L§⇧, T¿ �� Ñ�

Abstract
The highly dynamic nature and complex semantics of JavaScript make it difficult to correctly understand
the behaviors of JavaScript programs. To automatically reason about them, researchers have developed
various JavaScript static analyzers that conform to ECMAScript, the standard specification of JavaScript.
However, all the existing JavaScript static analyzers are manually designed; thus, the current approach
is labor-intensive and error-prone. Moreover, since late 2014, this problem becomes more critical because
the JavaScript language itself rapidly evolves with a yearly release cadence and open development process.

In this thesis, we introduce a novel approach to automatically derive JavaScript static analyzers
from any version of ECMAScript. Our approach consists of three steps: 1) mechanized specification
extraction, 2) mechanized specification validity check, and 3) derivation of static analyzers. First, we
present a tool JISET that automatically extracts a mechanized specification from ECMAScript. We show
that it successfully extracts a mechanized specification from the latest ECMAScript. Then, we present
two different tools to detect bugs in JavaScript specifications and engines; JEST performs N+1-version
differential testing with JavaScript engines and JSTAR performs a type analysis for the mechanized
specification. Finally, we present JSAVER that automatically derives JavaScript static analyzers from
mechanized specifications using a meta-level static analysis. For evaluation, we derive a JavaScript
static analyzer from the latest ECMAScript and show that it successfully analyzes all applicable official
conformance tests in a sound way. We believe that the thesis would be the first step towards the
co-evolution of specifications, tests, and tools for programming languages.

Keywords JavaScript, mechanized specification extraction, N+1-version differential testing, specifica-
tion type analysis, meta-level static analysis.

Seed

Synthesizer

JS Programs

Conformance

Tests

Specification

Bugs

Syntax-directed

Program Generation

Final State-based

Assertions

Conformance Bugs

JavaScript Static Analysis for Evolving Language Specifications / 3522

JEST - Assertion Injector (7 Kinds)

 var x = 1 + 2;

JavaScript Static Analysis for Evolving Language Specifications / 3522

JEST - Assertion Injector (7 Kinds)

 var x = 1 + 2;

+ $assert.sameValue(x, 3);

JavaScript Static Analysis for Evolving Language Specifications / 35

1. Exceptions (Exc) 
 

2. Aborts (Abort) 
 

3. Variable Values (Var) 
 

4. Object Values (Obj)

23

JEST - Assertion Injector (7 Kinds)

+ // Throw
 let x = 42;
 function x() {};

 var x = 1 + 2;
+ $assert.sameValue(x, 3);

+ // Abort
 var x = 42; x++;

 var x = {}, y = {}, z = { p: x, q: y };
+ $assert.sameValue(z.p, x);
+ $assert.sameValue(z.q, y);

JavaScript Static Analysis for Evolving Language Specifications / 35

5. Object Properties (Desc) 
 
 
 

6. Property Keys (Key) 
 
 
 

7. Internal Methods and 
Slots (In)

24

JEST - Assertion Injector (7 Kinds)
 var x = { p: 42 };
+ $verifyProperty(x, "p", {
+ value: 42.0, writable: true,
+ enumerable: true, configurable: true
+ });

 var x = {[Symbol.match]: 0, p: 0, 3: 0, q: 0, 1: 0}
+ $assert.compareArray(
+ Reflect.ownKeys(x),
+ ["1", "3", "p", "q", Symbol.match]
+);

 function f() {}
+ $assert.sameValue(Object.getPrototypeOf(f),
+ Function.prototype);
+ $assert.sameValue(Object.isExtensible(x), true);
+ $assert.callable(f);
+ $assert.constructable(f);

JavaScript Static Analysis for Evolving Language Specifications / 3525

JEST - Evaluation 44 Bugs in Engines

27 Bugs in Spec.

JavaScript Static Analysis for Evolving Language Specifications / 35

Analysis

Result

JavaScript

Programs

Derived Static

Analyzerspecification. Finally, we present JSAVER

3. Derivation of
Static Analyzers

DCS �¿�. 1•Xî ⌅\¯ò� ∏¥ Ö8| ⌅\ ê§lΩ∏ �� Ñ�.
⌅∞YÄ . 2022D. 46+iv Ω. ¿ƒP⇠: X��. (�8 |8)
Jihyeok Park. JavaScript Static Analysis for Evolving Language Specifica-
tions. School of Computing . 2022. 46+iv pages. Advisor: Sukyoung Ryu.
(Text in English)

�]

ê§lΩ∏X Ÿ�x 1»¸ ı°\ X¯`@ ê§lΩ∏ ⌅\¯®‰X âŸD �UXå ttX0 ¥

5å Ã‡‰. lê‰@ t| t∞X‡ê ‰ë\ ê§lΩ∏ �� Ñ�0‰D ⌧⌧tT¿Ã, t‰@
®P ⇠Ÿ<\ $ƒ� ⇠»0– xŸ—}�t‡ $X– Ë}X‰. ⇣\, 2014D –Ä0 ê§lΩ∏X
∏¥ Ö8� ‰D 1‡⇠0 ‹ëXt⌧ t 8⌧î T Ï�tL‰. ¯ Y⌅ |8–⌧î ê§lΩ∏ ∏¥
Ö8\Ä0êŸ<\ê§lΩ∏��Ñ�0| ƒt¥î»\¥)›D⌧H\‰. tî 1)0ƒTÖ8
îú, 2) 0ƒT Ö8 ®1 Ä¨, ¯¨‡ 3) �� Ñ�0 ƒX 8 �¿ Ëƒ\ l1⌧‰. ¯ |8–⌧î
0ƒT Ö8 îú 0 D ⌧HX‡, t| t©t �• \‡ ê§lΩ∏ Ö8\Ä0 0ƒT Ö8| îú
\‰. ⇣\, ê§lΩ∏ ‘ƒD t©\ N+1-Ñ⌅ (Ñ L§⇧¸ 0ƒT Ö8X ¿Ö Ñ�D ⌧HX‡,
t| µt Ö8 ✏ ‘ƒX ∞hD Äú\‰. \Ö�<\, T¿ �� Ñ� 0 D ⌧HX‡, îú\ 0ƒT
Ö8\Ä0 êŸ<\ ê§lΩ∏ �� Ñ�0| ƒ\‰. ¯ Y⌅ |8–⌧ ⌧‹\)›@ ⌅\¯ò�
∏¥| ⌅\ Ö8, L§∏, ¯¨‡ ƒl‰X ıƒT| ⌅\ lX 0¿D »(` É<\ 0�\‰.

u Ï ± – ê§lΩ∏, 0ƒT Ö8 îú, Ö8 ¿Ö Ñ�, N+1-Ñ⌅ (Ñ L§⇧, T¿ �� Ñ�

Abstract
The highly dynamic nature and complex semantics of JavaScript make it difficult to correctly understand
the behaviors of JavaScript programs. To automatically reason about them, researchers have developed
various JavaScript static analyzers that conform to ECMAScript, the standard specification of JavaScript.
However, all the existing JavaScript static analyzers are manually designed; thus, the current approach
is labor-intensive and error-prone. Moreover, since late 2014, this problem becomes more critical because
the JavaScript language itself rapidly evolves with a yearly release cadence and open development process.

In this thesis, we introduce a novel approach to automatically derive JavaScript static analyzers
from any version of ECMAScript. Our approach consists of three steps: 1) mechanized specification
extraction, 2) mechanized specification validity check, and 3) derivation of static analyzers. First, we
present a tool JISET that automatically extracts a mechanized specification from ECMAScript. We show
that it successfully extracts a mechanized specification from the latest ECMAScript. Then, we present
two different tools to detect bugs in JavaScript specifications and engines; JEST performs N+1-version
differential testing with JavaScript engines and JSTAR performs a type analysis for the mechanized
specification. Finally, we present JSAVER that automatically derives JavaScript static analyzers from
mechanized specifications using a meta-level static analysis. For evaluation, we derive a JavaScript
static analyzer from the latest ECMAScript and show that it successfully analyzes all applicable official
conformance tests in a sound way. We believe that the thesis would be the first step towards the
co-evolution of specifications, tests, and tools for programming languages.

Keywords JavaScript, mechanized specification extraction, N+1-version differential testing, specifica-
tion type analysis, meta-level static analysis.

DCS �¿�. 1•Xî ⌅\¯ò� ∏¥ Ö8| ⌅\ ê§lΩ∏ �� Ñ�.
⌅∞YÄ . 2022D. 46+iv Ω. ¿ƒP⇠: X��. (�8 |8)
Jihyeok Park. JavaScript Static Analysis for Evolving Language Specifica-
tions. School of Computing . 2022. 46+iv pages. Advisor: Sukyoung Ryu.
(Text in English)

�]

ê§lΩ∏X Ÿ�x 1»¸ ı°\ X¯`@ ê§lΩ∏ ⌅\¯®‰X âŸD �UXå ttX0 ¥

5å Ã‡‰. lê‰@ t| t∞X‡ê ‰ë\ ê§lΩ∏ �� Ñ�0‰D ⌧⌧tT¿Ã, t‰@
®P ⇠Ÿ<\ $ƒ� ⇠»0– xŸ—}�t‡ $X– Ë}X‰. ⇣\, 2014D –Ä0 ê§lΩ∏X
∏¥ Ö8� ‰D 1‡⇠0 ‹ëXt⌧ t 8⌧î T Ï�tL‰. ¯ Y⌅ |8–⌧î ê§lΩ∏ ∏¥
Ö8\Ä0êŸ<\ê§lΩ∏��Ñ�0| ƒt¥î»\¥)›D⌧H\‰. tî 1)0ƒTÖ8
îú, 2) 0ƒT Ö8 ®1 Ä¨, ¯¨‡ 3) �� Ñ�0 ƒX 8 �¿ Ëƒ\ l1⌧‰. ¯ |8–⌧î
0ƒT Ö8 îú 0 D ⌧HX‡, t| t©t �• \‡ ê§lΩ∏ Ö8\Ä0 0ƒT Ö8| îú
\‰. ⇣\, ê§lΩ∏ ‘ƒD t©\ N+1-Ñ⌅ (Ñ L§⇧¸ 0ƒT Ö8X ¿Ö Ñ�D ⌧HX‡,
t| µt Ö8 ✏ ‘ƒX ∞hD Äú\‰. \Ö�<\, T¿ �� Ñ� 0 D ⌧HX‡, îú\ 0ƒT
Ö8\Ä0 êŸ<\ ê§lΩ∏ �� Ñ�0| ƒ\‰. ¯ Y⌅ |8–⌧ ⌧‹\)›@ ⌅\¯ò�
∏¥| ⌅\ Ö8, L§∏, ¯¨‡ ƒl‰X ıƒT| ⌅\ lX 0¿D »(` É<\ 0�\‰.

u Ï ± – ê§lΩ∏, 0ƒT Ö8 îú, Ö8 ¿Ö Ñ�, N+1-Ñ⌅ (Ñ L§⇧, T¿ �� Ñ�

Abstract
The highly dynamic nature and complex semantics of JavaScript make it difficult to correctly understand
the behaviors of JavaScript programs. To automatically reason about them, researchers have developed
various JavaScript static analyzers that conform to ECMAScript, the standard specification of JavaScript.
However, all the existing JavaScript static analyzers are manually designed; thus, the current approach
is labor-intensive and error-prone. Moreover, since late 2014, this problem becomes more critical because
the JavaScript language itself rapidly evolves with a yearly release cadence and open development process.

In this thesis, we introduce a novel approach to automatically derive JavaScript static analyzers
from any version of ECMAScript. Our approach consists of three steps: 1) mechanized specification
extraction, 2) mechanized specification validity check, and 3) derivation of static analyzers. First, we
present a tool JISET that automatically extracts a mechanized specification from ECMAScript. We show
that it successfully extracts a mechanized specification from the latest ECMAScript. Then, we present
two different tools to detect bugs in JavaScript specifications and engines; JEST performs N+1-version
differential testing with JavaScript engines and JSTAR performs a type analysis for the mechanized
specification. Finally, we present JSAVER that automatically derives JavaScript static analyzers from
mechanized specifications using a meta-level static analysis. For evaluation, we derive a JavaScript
static analyzer from the latest ECMAScript and show that it successfully analyzes all applicable official
conformance tests in a sound way. We believe that the thesis would be the first step towards the
co-evolution of specifications, tests, and tools for programming languages.

Keywords JavaScript, mechanized specification extraction, N+1-version differential testing, specifica-
tion type analysis, meta-level static analysis.

2. Specification
Validity Check

[ICSE'21] [ASE'21]
Distinguished Paper!!

Mechanized

Specification

26

ECMA-262

DCS �¿�. 1•Xî ⌅\¯ò� ∏¥ Ö8| ⌅\ ê§lΩ∏ �� Ñ�.
⌅∞YÄ . 2022D. 46+iv Ω. ¿ƒP⇠: X��. (�8 |8)
Jihyeok Park. JavaScript Static Analysis for Evolving Language Specifica-
tions. School of Computing . 2022. 46+iv pages. Advisor: Sukyoung Ryu.
(Text in English)

�]

ê§lΩ∏X Ÿ�x 1»¸ ı°\ X¯`@ ê§lΩ∏ ⌅\¯®‰X âŸD �UXå ttX0 ¥

5å Ã‡‰. lê‰@ t| t∞X‡ê ‰ë\ ê§lΩ∏ �� Ñ�0‰D ⌧⌧tT¿Ã, t‰@
®P ⇠Ÿ<\ $ƒ� ⇠»0– xŸ—}�t‡ $X– Ë}X‰. ⇣\, 2014D –Ä0 ê§lΩ∏X
∏¥ Ö8� ‰D 1‡⇠0 ‹ëXt⌧ t 8⌧î T Ï�tL‰. ¯ Y⌅ |8–⌧î ê§lΩ∏ ∏¥
Ö8\Ä0êŸ<\ê§lΩ∏��Ñ�0| ƒt¥î»\¥)›D⌧H\‰. tî 1)0ƒTÖ8
îú, 2) 0ƒT Ö8 ®1 Ä¨, ¯¨‡ 3) �� Ñ�0 ƒX 8 �¿ Ëƒ\ l1⌧‰. ¯ |8–⌧î
0ƒT Ö8 îú 0 D ⌧HX‡, t| t©t �• \‡ ê§lΩ∏ Ö8\Ä0 0ƒT Ö8| îú
\‰. ⇣\, ê§lΩ∏ ‘ƒD t©\ N+1-Ñ⌅ (Ñ L§⇧¸ 0ƒT Ö8X ¿Ö Ñ�D ⌧HX‡,
t| µt Ö8 ✏ ‘ƒX ∞hD Äú\‰. \Ö�<\, T¿ �� Ñ� 0 D ⌧HX‡, îú\ 0ƒT
Ö8\Ä0 êŸ<\ ê§lΩ∏ �� Ñ�0| ƒ\‰. ¯ Y⌅ |8–⌧ ⌧‹\)›@ ⌅\¯ò�
∏¥| ⌅\ Ö8, L§∏, ¯¨‡ ƒl‰X ıƒT| ⌅\ lX 0¿D »(` É<\ 0�\‰.

u Ï ± – ê§lΩ∏, 0ƒT Ö8 îú, Ö8 ¿Ö Ñ�, N+1-Ñ⌅ (Ñ L§⇧, T¿ �� Ñ�

Abstract
The highly dynamic nature and complex semantics of JavaScript make it difficult to correctly understand
the behaviors of JavaScript programs. To automatically reason about them, researchers have developed
various JavaScript static analyzers that conform to ECMAScript, the standard specification of JavaScript.
However, all the existing JavaScript static analyzers are manually designed; thus, the current approach
is labor-intensive and error-prone. Moreover, since late 2014, this problem becomes more critical because
the JavaScript language itself rapidly evolves with a yearly release cadence and open development process.

In this thesis, we introduce a novel approach to automatically derive JavaScript static analyzers
from any version of ECMAScript. Our approach consists of three steps: 1) mechanized specification
extraction, 2) mechanized specification validity check, and 3) derivation of static analyzers. First, we
present a tool JISET that automatically extracts a mechanized specification from ECMAScript. We show
that it successfully extracts a mechanized specification from the latest ECMAScript. Then, we present
two different tools to detect bugs in JavaScript specifications and engines; JEST performs N+1-version
differential testing with JavaScript engines and JSTAR performs a type analysis for the mechanized
specification. Finally, we present JSAVER that automatically derives JavaScript static analyzers from
mechanized specifications using a meta-level static analysis. For evaluation, we derive a JavaScript
static analyzer from the latest ECMAScript and show that it successfully analyzes all applicable official
conformance tests in a sound way. We believe that the thesis would be the first step towards the
co-evolution of specifications, tests, and tools for programming languages.

Keywords JavaScript, mechanized specification extraction, N+1-version differential testing, specifica-
tion type analysis, meta-level static analysis.

1. Mechanized Spec.
Extraction

[ASE'20]

Conformance Test

Synthesis

Type Analysis for

Specification

JSTAR: JavaScript Specification Type Analyzer using Refinement
Jihyeok Park, Seungmin An, Wonho Shin, Yusung Sim, and Sukyoung Ryu

(Published in ASE'21)

In submission

JavaScript Static Analysis for Evolving Language Specifications / 35

JSTAR - Types in Specification

27

...

https://github.com/tc39/ecma262/tree/575149cfd77aebcf3a129e165bd89e14caafc31c

https://github.com/tc39/ecma262/tree/575149cfd77aebcf3a129e165bd89e14caafc31c

JavaScript Static Analysis for Evolving Language Specifications / 35

JSTAR - Types in Specification

27

...

https://github.com/tc39/ecma262/tree/575149cfd77aebcf3a129e165bd89e14caafc31c

x: (String v Boolean v Number v Object v ...)

https://github.com/tc39/ecma262/tree/575149cfd77aebcf3a129e165bd89e14caafc31c

JavaScript Static Analysis for Evolving Language Specifications / 35

JSTAR - Types in Specification

27

...

https://github.com/tc39/ecma262/tree/575149cfd77aebcf3a129e165bd89e14caafc31c

x: (String v Boolean v Number v Object v ...)

ToNumber(x): (Number v Exception)

https://github.com/tc39/ecma262/tree/575149cfd77aebcf3a129e165bd89e14caafc31c

JavaScript Static Analysis for Evolving Language Specifications / 35

JSTAR - Types in Specification

27

...

https://github.com/tc39/ecma262/tree/575149cfd77aebcf3a129e165bd89e14caafc31c

x: (String v Boolean v Number v Object v ...)

∧ n: (Number)ToNumber(x): (Number v Exception)

https://github.com/tc39/ecma262/tree/575149cfd77aebcf3a129e165bd89e14caafc31c

JavaScript Static Analysis for Evolving Language Specifications / 35

JSTAR - Types in Specification

27

...

https://github.com/tc39/ecma262/tree/575149cfd77aebcf3a129e165bd89e14caafc31c

x: (String v Boolean v Number v Object v ...)

Type Mismatch for
numeric operator `>`

∧ n: (Number)ToNumber(x): (Number v Exception)

https://github.com/tc39/ecma262/tree/575149cfd77aebcf3a129e165bd89e14caafc31c

JavaScript Static Analysis for Evolving Language Specifications / 35

JSTAR - Types in Specification

27

...

https://github.com/tc39/ecma262/tree/575149cfd77aebcf3a129e165bd89e14caafc31c

x: (String v Boolean v Number v Object v ...)

Type Mismatch for
numeric operator `>`

Math.round(true) = ???
Math.round(false) = ???

∧ n: (Number)ToNumber(x): (Number v Exception)

https://github.com/tc39/ecma262/tree/575149cfd77aebcf3a129e165bd89e14caafc31c

JavaScript Static Analysis for Evolving Language Specifications / 35

JSTAR - Types in Specification

27

...

https://github.com/tc39/ecma262/tree/575149cfd77aebcf3a129e165bd89e14caafc31c

x: (String v Boolean v Number v Object v ...)

Type Mismatch for
numeric operator `>`

Math.round(true) = ???
Math.round(false) = ???

Math.round(true) = 1
Math.round(false) = 0

∧ n: (Number)ToNumber(x): (Number v Exception)

https://github.com/tc39/ecma262/tree/575149cfd77aebcf3a129e165bd89e14caafc31c

JavaScript Static Analysis for Evolving Language Specifications / 35

JSTAR [ASE'21]

28

Mechanized

Specification

Abstract

Transfer Func.

Analysis

Initializer

Initial

Abstract State

JavaScript Specification Type Analyzer using Refinement

DCS �¿�. 1•Xî ⌅\¯ò� ∏¥ Ö8| ⌅\ ê§lΩ∏ �� Ñ�.
⌅∞YÄ . 2022D. 46+iv Ω. ¿ƒP⇠: X��. (�8 |8)
Jihyeok Park. JavaScript Static Analysis for Evolving Language Specifica-
tions. School of Computing . 2022. 46+iv pages. Advisor: Sukyoung Ryu.
(Text in English)

�]

ê§lΩ∏X Ÿ�x 1»¸ ı°\ X¯`@ ê§lΩ∏ ⌅\¯®‰X âŸD �UXå ttX0 ¥

5å Ã‡‰. lê‰@ t| t∞X‡ê ‰ë\ ê§lΩ∏ �� Ñ�0‰D ⌧⌧tT¿Ã, t‰@
®P ⇠Ÿ<\ $ƒ� ⇠»0– xŸ—}�t‡ $X– Ë}X‰. ⇣\, 2014D –Ä0 ê§lΩ∏X
∏¥ Ö8� ‰D 1‡⇠0 ‹ëXt⌧ t 8⌧î T Ï�tL‰. ¯ Y⌅ |8–⌧î ê§lΩ∏ ∏¥
Ö8\Ä0êŸ<\ê§lΩ∏��Ñ�0| ƒt¥î»\¥)›D⌧H\‰. tî 1)0ƒTÖ8
îú, 2) 0ƒT Ö8 ®1 Ä¨, ¯¨‡ 3) �� Ñ�0 ƒX 8 �¿ Ëƒ\ l1⌧‰. ¯ |8–⌧î
0ƒT Ö8 îú 0 D ⌧HX‡, t| t©t �• \‡ ê§lΩ∏ Ö8\Ä0 0ƒT Ö8| îú
\‰. ⇣\, ê§lΩ∏ ‘ƒD t©\ N+1-Ñ⌅ (Ñ L§⇧¸ 0ƒT Ö8X ¿Ö Ñ�D ⌧HX‡,
t| µt Ö8 ✏ ‘ƒX ∞hD Äú\‰. \Ö�<\, T¿ �� Ñ� 0 D ⌧HX‡, îú\ 0ƒT
Ö8\Ä0 êŸ<\ ê§lΩ∏ �� Ñ�0| ƒ\‰. ¯ Y⌅ |8–⌧ ⌧‹\)›@ ⌅\¯ò�
∏¥| ⌅\ Ö8, L§∏, ¯¨‡ ƒl‰X ıƒT| ⌅\ lX 0¿D »(` É<\ 0�\‰.

u Ï ± – ê§lΩ∏, 0ƒT Ö8 îú, Ö8 ¿Ö Ñ�, N+1-Ñ⌅ (Ñ L§⇧, T¿ �� Ñ�

Abstract
The highly dynamic nature and complex semantics of JavaScript make it difficult to correctly understand
the behaviors of JavaScript programs. To automatically reason about them, researchers have developed
various JavaScript static analyzers that conform to ECMAScript, the standard specification of JavaScript.
However, all the existing JavaScript static analyzers are manually designed; thus, the current approach
is labor-intensive and error-prone. Moreover, since late 2014, this problem becomes more critical because
the JavaScript language itself rapidly evolves with a yearly release cadence and open development process.

In this thesis, we introduce a novel approach to automatically derive JavaScript static analyzers
from any version of ECMAScript. Our approach consists of three steps: 1) mechanized specification
extraction, 2) mechanized specification validity check, and 3) derivation of static analyzers. First, we
present a tool JISET that automatically extracts a mechanized specification from ECMAScript. We show
that it successfully extracts a mechanized specification from the latest ECMAScript. Then, we present
two different tools to detect bugs in JavaScript specifications and engines; JEST performs N+1-version
differential testing with JavaScript engines and JSTAR performs a type analysis for the mechanized
specification. Finally, we present JSAVER that automatically derives JavaScript static analyzers from
mechanized specifications using a meta-level static analysis. For evaluation, we derive a JavaScript
static analyzer from the latest ECMAScript and show that it successfully analyzes all applicable official
conformance tests in a sound way. We believe that the thesis would be the first step towards the
co-evolution of specifications, tests, and tools for programming languages.

Keywords JavaScript, mechanized specification extraction, N+1-version differential testing, specifica-
tion type analysis, meta-level static analysis.

Type Analysis

Result

Operand

Checker

Assertion

Checker

Arity

Checker

Reference

Checker

Specification

Bugs

JavaScript Static Analysis for Evolving Language Specifications / 35

• Type Analysis for 864 versions of ECMA-262

JSTAR - Evaluation 93 Bugs Detected

29

TABLE II: The analysis precision of JSTAR without refinement (no-refine), with refinement (refine), and their difference (�)

Checker Bug Kind Precision = (# True Bugs) / (# Detected Bugs)
no-refine refine �

Reference
UnknownVar 62 / 106 17 / 60 63 / 78 17 / 31 +1 / -28 / -29
DuplicatedVar 45 / 46 46 / 47 +1 / +1

Arity MissingParam 4 / 4 4 / 4 4 / 4 4 / 4 / /
Assertion Assertion 4 / 56 4 / 56 4 / 31 4 / 31 / -25 / -25

Operand
NoNumber 22 / 113 2 / 65 22 / 44 2 / 6 / -69 / -59
Abrupt 20 / 48 20 / 38 / -10

Total 92 / 279 (33.0%) 93 / 157 (59.2%) +1 / -122 (+26.3%)

(a) Life spans sorted by creation (b) The histogram of life spans

Fig. 7: Life spans of true bugs

A. Performance

Figure 6 shows the statistics of the type analysis using
JSTAR for 864 versions of ECMAScript: (a) the number of
analyzed functions, (b) the number of flow- and type-sensitive
views, (c) the number of worklist iterations, and (d) the analy-
sis time. For each version, JSTAR analyzed 1,696.6 functions
on average. Since ECMAScript has gradually evolved, it ana-
lyzed 1,491 functions for the first version in 2018 but analyzed
1,864 functions in the latest. JSTAR analyzes functions with
flow- and type-sensitive views. On average, each version has
92.0K views and each function has 54.1 views.

We measured the performance of JSTAR with the worklist
iteration number and the analysis time. For each version of
ECMAScript, JSTAR took 137.3 seconds with 301.6K worklist
iterations on average. The average analysis time is 8.0 seconds
for specification extraction (extract), 128.5 seconds for type
analysis (analyze), and 0.8 seconds for bug detection (detect).
The performance overhead is modest enough for JSTAR to be
integrated in the open development process of ECMAScript.

B. Precision

We measured the analysis precision with the ratio of true
bugs in the reported bugs by JSTAR. As summarized in the
refine column of Table II, the analysis precision is 59.2%; 93
out of 157 detected bugs are true bugs. The reference checker
detected the most bugs with 80.8% precision; 17 unknown
variables (UnknownVar) and 46 duplicated variable declara-
tions (DuplicatedVar) are true bugs. We found four missing
parameters (MissingParam) with 100.0% precision and four
assertion failures (Assertion) with 12.9% precision. Finally,
the operand checker detected two non-numeric operand bugs

(NoNumber) with 33.3% precision and 20 unchecked abrupt
completion bugs (Abrupt) with 52.6% precision.

To understand the impact of the detected true bugs, we
extended JSTAR to automatically extract when they are created
and resolved in the ECMAScript official repository. A bug is
created when it exists in a specific version but does not exist in
its previous version, and a bug is resolved vice versa. The life

span of a bug denotes the number of days between the created
date and the resolved date. Figure 7 illustrates the life spans of
true bugs; Figure 7(a) depicts the life spans sorted by creation
and Figure 7(b) depicts the histogram of the life spans in a
logarithmic scale. Among 93 true bugs, 49 bugs are inherited,
which means that they are created before 2018. Moreover, 14
bugs still exist in the latest ECMAScript, which are newly
detected by JSTAR. We discuss the details of 14 newly found
bugs in Section V-D. Even though we assume that 49 inherited
bugs are created on January 1, 2018, the average life span is
422.8 and the maximum life span is 1,164. All the bugs with
the maximum life span are inherited ones and they are all
newly detected.

We manually investigated 64 false-positive bugs to under-
stand why JSTAR detected them. Among them, 17 bugs are
due to extraction failure of mechanized specifications caused
by wrong writing styles. Because ECMAScript is written in
HTML, JISET extracts abstract algorithms using the emu-alg
HTML tag. Unfortunately, several abstract algorithms are
defined with the opening tag <emu-alg> but without the
closing tag </emu-alg>, which causes extraction failure of
mechanized specifications leading to false-positive bugs. The
remaining 47 bugs are due to imprecise analysis. We found
that 28 bugs are due to imprecise analysis of the conditions
of assertions and branches for specific function calls. For
example, consider the following algorithm step for GetValue:

Since IsPropertyReference always returns false when the
Base field of a given reference record is cunresolvable, the
field access V .[[Base]] cannot be cunresolvable on line 4.a.
However, because the type analysis does not compute such in-
formation, cunresolvable is also passed as the argument of
ToObject. We believe that an advanced refinement technique

14 Bugs in ES12

59.2% Precision

JavaScript Static Analysis for Evolving Language Specifications / 35

Analysis

Result

JavaScript

Programs

Derived Static

Analyzer

DCS �¿�. 1•Xî ⌅\¯ò� ∏¥ Ö8| ⌅\ ê§lΩ∏ �� Ñ�.
⌅∞YÄ . 2022D. 46+iv Ω. ¿ƒP⇠: X��. (�8 |8)
Jihyeok Park. JavaScript Static Analysis for Evolving Language Specifica-
tions. School of Computing . 2022. 46+iv pages. Advisor: Sukyoung Ryu.
(Text in English)

�]

ê§lΩ∏X Ÿ�x 1»¸ ı°\ X¯`@ ê§lΩ∏ ⌅\¯®‰X âŸD �UXå ttX0 ¥

5å Ã‡‰. lê‰@ t| t∞X‡ê ‰ë\ ê§lΩ∏ �� Ñ�0‰D ⌧⌧tT¿Ã, t‰@
®P ⇠Ÿ<\ $ƒ� ⇠»0– xŸ—}�t‡ $X– Ë}X‰. ⇣\, 2014D –Ä0 ê§lΩ∏X
∏¥ Ö8� ‰D 1‡⇠0 ‹ëXt⌧ t 8⌧î T Ï�tL‰. ¯ Y⌅ |8–⌧î ê§lΩ∏ ∏¥
Ö8\Ä0êŸ<\ê§lΩ∏��Ñ�0| ƒt¥î»\¥)›D⌧H\‰. tî 1)0ƒTÖ8
îú, 2) 0ƒT Ö8 ®1 Ä¨, ¯¨‡ 3) �� Ñ�0 ƒX 8 �¿ Ëƒ\ l1⌧‰. ¯ |8–⌧î
0ƒT Ö8 îú 0 D ⌧HX‡, t| t©t �• \‡ ê§lΩ∏ Ö8\Ä0 0ƒT Ö8| îú
\‰. ⇣\, ê§lΩ∏ ‘ƒD t©\ N+1-Ñ⌅ (Ñ L§⇧¸ 0ƒT Ö8X ¿Ö Ñ�D ⌧HX‡,
t| µt Ö8 ✏ ‘ƒX ∞hD Äú\‰. \Ö�<\, T¿ �� Ñ� 0 D ⌧HX‡, îú\ 0ƒT
Ö8\Ä0 êŸ<\ ê§lΩ∏ �� Ñ�0| ƒ\‰. ¯ Y⌅ |8–⌧ ⌧‹\)›@ ⌅\¯ò�
∏¥| ⌅\ Ö8, L§∏, ¯¨‡ ƒl‰X ıƒT| ⌅\ lX 0¿D »(` É<\ 0�\‰.

u Ï ± – ê§lΩ∏, 0ƒT Ö8 îú, Ö8 ¿Ö Ñ�, N+1-Ñ⌅ (Ñ L§⇧, T¿ �� Ñ�

Abstract
The highly dynamic nature and complex semantics of JavaScript make it difficult to correctly understand
the behaviors of JavaScript programs. To automatically reason about them, researchers have developed
various JavaScript static analyzers that conform to ECMAScript, the standard specification of JavaScript.
However, all the existing JavaScript static analyzers are manually designed; thus, the current approach
is labor-intensive and error-prone. Moreover, since late 2014, this problem becomes more critical because
the JavaScript language itself rapidly evolves with a yearly release cadence and open development process.

In this thesis, we introduce a novel approach to automatically derive JavaScript static analyzers
from any version of ECMAScript. Our approach consists of three steps: 1) mechanized specification
extraction, 2) mechanized specification validity check, and 3) derivation of static analyzers. First, we
present a tool JISET that automatically extracts a mechanized specification from ECMAScript. We show
that it successfully extracts a mechanized specification from the latest ECMAScript. Then, we present
two different tools to detect bugs in JavaScript specifications and engines; JEST performs N+1-version
differential testing with JavaScript engines and JSTAR performs a type analysis for the mechanized
specification. Finally, we present JSAVER that automatically derives JavaScript static analyzers from
mechanized specifications using a meta-level static analysis. For evaluation, we derive a JavaScript
static analyzer from the latest ECMAScript and show that it successfully analyzes all applicable official
conformance tests in a sound way. We believe that the thesis would be the first step towards the
co-evolution of specifications, tests, and tools for programming languages.

Keywords JavaScript, mechanized specification extraction, N+1-version differential testing, specifica-
tion type analysis, meta-level static analysis.

3. Derivation of
Static Analyzers

DCS �¿�. 1•Xî ⌅\¯ò� ∏¥ Ö8| ⌅\ ê§lΩ∏ �� Ñ�.
⌅∞YÄ . 2022D. 46+iv Ω. ¿ƒP⇠: X��. (�8 |8)
Jihyeok Park. JavaScript Static Analysis for Evolving Language Specifica-
tions. School of Computing . 2022. 46+iv pages. Advisor: Sukyoung Ryu.
(Text in English)

�]

ê§lΩ∏X Ÿ�x 1»¸ ı°\ X¯`@ ê§lΩ∏ ⌅\¯®‰X âŸD �UXå ttX0 ¥

5å Ã‡‰. lê‰@ t| t∞X‡ê ‰ë\ ê§lΩ∏ �� Ñ�0‰D ⌧⌧tT¿Ã, t‰@
®P ⇠Ÿ<\ $ƒ� ⇠»0– xŸ—}�t‡ $X– Ë}X‰. ⇣\, 2014D –Ä0 ê§lΩ∏X
∏¥ Ö8� ‰D 1‡⇠0 ‹ëXt⌧ t 8⌧î T Ï�tL‰. ¯ Y⌅ |8–⌧î ê§lΩ∏ ∏¥
Ö8\Ä0êŸ<\ê§lΩ∏��Ñ�0| ƒt¥î»\¥)›D⌧H\‰. tî 1)0ƒTÖ8
îú, 2) 0ƒT Ö8 ®1 Ä¨, ¯¨‡ 3) �� Ñ�0 ƒX 8 �¿ Ëƒ\ l1⌧‰. ¯ |8–⌧î
0ƒT Ö8 îú 0 D ⌧HX‡, t| t©t �• \‡ ê§lΩ∏ Ö8\Ä0 0ƒT Ö8| îú
\‰. ⇣\, ê§lΩ∏ ‘ƒD t©\ N+1-Ñ⌅ (Ñ L§⇧¸ 0ƒT Ö8X ¿Ö Ñ�D ⌧HX‡,
t| µt Ö8 ✏ ‘ƒX ∞hD Äú\‰. \Ö�<\, T¿ �� Ñ� 0 D ⌧HX‡, îú\ 0ƒT
Ö8\Ä0 êŸ<\ ê§lΩ∏ �� Ñ�0| ƒ\‰. ¯ Y⌅ |8–⌧ ⌧‹\)›@ ⌅\¯ò�
∏¥| ⌅\ Ö8, L§∏, ¯¨‡ ƒl‰X ıƒT| ⌅\ lX 0¿D »(` É<\ 0�\‰.

u Ï ± – ê§lΩ∏, 0ƒT Ö8 îú, Ö8 ¿Ö Ñ�, N+1-Ñ⌅ (Ñ L§⇧, T¿ �� Ñ�

Abstract
The highly dynamic nature and complex semantics of JavaScript make it difficult to correctly understand
the behaviors of JavaScript programs. To automatically reason about them, researchers have developed
various JavaScript static analyzers that conform to ECMAScript, the standard specification of JavaScript.
However, all the existing JavaScript static analyzers are manually designed; thus, the current approach
is labor-intensive and error-prone. Moreover, since late 2014, this problem becomes more critical because
the JavaScript language itself rapidly evolves with a yearly release cadence and open development process.

In this thesis, we introduce a novel approach to automatically derive JavaScript static analyzers
from any version of ECMAScript. Our approach consists of three steps: 1) mechanized specification
extraction, 2) mechanized specification validity check, and 3) derivation of static analyzers. First, we
present a tool JISET that automatically extracts a mechanized specification from ECMAScript. We show
that it successfully extracts a mechanized specification from the latest ECMAScript. Then, we present
two different tools to detect bugs in JavaScript specifications and engines; JEST performs N+1-version
differential testing with JavaScript engines and JSTAR performs a type analysis for the mechanized
specification. Finally, we present JSAVER that automatically derives JavaScript static analyzers from
mechanized specifications using a meta-level static analysis. For evaluation, we derive a JavaScript
static analyzer from the latest ECMAScript and show that it successfully analyzes all applicable official
conformance tests in a sound way. We believe that the thesis would be the first step towards the
co-evolution of specifications, tests, and tools for programming languages.

Keywords JavaScript, mechanized specification extraction, N+1-version differential testing, specifica-
tion type analysis, meta-level static analysis.

DCS �¿�. 1•Xî ⌅\¯ò� ∏¥ Ö8| ⌅\ ê§lΩ∏ �� Ñ�.
⌅∞YÄ . 2022D. 46+iv Ω. ¿ƒP⇠: X��. (�8 |8)
Jihyeok Park. JavaScript Static Analysis for Evolving Language Specifica-
tions. School of Computing . 2022. 46+iv pages. Advisor: Sukyoung Ryu.
(Text in English)

�]

ê§lΩ∏X Ÿ�x 1»¸ ı°\ X¯`@ ê§lΩ∏ ⌅\¯®‰X âŸD �UXå ttX0 ¥

5å Ã‡‰. lê‰@ t| t∞X‡ê ‰ë\ ê§lΩ∏ �� Ñ�0‰D ⌧⌧tT¿Ã, t‰@
®P ⇠Ÿ<\ $ƒ� ⇠»0– xŸ—}�t‡ $X– Ë}X‰. ⇣\, 2014D –Ä0 ê§lΩ∏X
∏¥ Ö8� ‰D 1‡⇠0 ‹ëXt⌧ t 8⌧î T Ï�tL‰. ¯ Y⌅ |8–⌧î ê§lΩ∏ ∏¥
Ö8\Ä0êŸ<\ê§lΩ∏��Ñ�0| ƒt¥î»\¥)›D⌧H\‰. tî 1)0ƒTÖ8
îú, 2) 0ƒT Ö8 ®1 Ä¨, ¯¨‡ 3) �� Ñ�0 ƒX 8 �¿ Ëƒ\ l1⌧‰. ¯ |8–⌧î
0ƒT Ö8 îú 0 D ⌧HX‡, t| t©t �• \‡ ê§lΩ∏ Ö8\Ä0 0ƒT Ö8| îú
\‰. ⇣\, ê§lΩ∏ ‘ƒD t©\ N+1-Ñ⌅ (Ñ L§⇧¸ 0ƒT Ö8X ¿Ö Ñ�D ⌧HX‡,
t| µt Ö8 ✏ ‘ƒX ∞hD Äú\‰. \Ö�<\, T¿ �� Ñ� 0 D ⌧HX‡, îú\ 0ƒT
Ö8\Ä0 êŸ<\ ê§lΩ∏ �� Ñ�0| ƒ\‰. ¯ Y⌅ |8–⌧ ⌧‹\)›@ ⌅\¯ò�
∏¥| ⌅\ Ö8, L§∏, ¯¨‡ ƒl‰X ıƒT| ⌅\ lX 0¿D »(` É<\ 0�\‰.

u Ï ± – ê§lΩ∏, 0ƒT Ö8 îú, Ö8 ¿Ö Ñ�, N+1-Ñ⌅ (Ñ L§⇧, T¿ �� Ñ�

Abstract
The highly dynamic nature and complex semantics of JavaScript make it difficult to correctly understand
the behaviors of JavaScript programs. To automatically reason about them, researchers have developed
various JavaScript static analyzers that conform to ECMAScript, the standard specification of JavaScript.
However, all the existing JavaScript static analyzers are manually designed; thus, the current approach
is labor-intensive and error-prone. Moreover, since late 2014, this problem becomes more critical because
the JavaScript language itself rapidly evolves with a yearly release cadence and open development process.

In this thesis, we introduce a novel approach to automatically derive JavaScript static analyzers
from any version of ECMAScript. Our approach consists of three steps: 1) mechanized specification
extraction, 2) mechanized specification validity check, and 3) derivation of static analyzers. First, we
present a tool JISET that automatically extracts a mechanized specification from ECMAScript. We show
that it successfully extracts a mechanized specification from the latest ECMAScript. Then, we present
two different tools to detect bugs in JavaScript specifications and engines; JEST performs N+1-version
differential testing with JavaScript engines and JSTAR performs a type analysis for the mechanized
specification. Finally, we present JSAVER that automatically derives JavaScript static analyzers from
mechanized specifications using a meta-level static analysis. For evaluation, we derive a JavaScript
static analyzer from the latest ECMAScript and show that it successfully analyzes all applicable official
conformance tests in a sound way. We believe that the thesis would be the first step towards the
co-evolution of specifications, tests, and tools for programming languages.

Keywords JavaScript, mechanized specification extraction, N+1-version differential testing, specifica-
tion type analysis, meta-level static analysis.

2. Specification
Validity Check

[ICSE'21] [ASE'21]
Distinguished Paper!!

Mechanized

Specification

30

ECMA-262

DCS �¿�. 1•Xî ⌅\¯ò� ∏¥ Ö8| ⌅\ ê§lΩ∏ �� Ñ�.
⌅∞YÄ . 2022D. 46+iv Ω. ¿ƒP⇠: X��. (�8 |8)
Jihyeok Park. JavaScript Static Analysis for Evolving Language Specifica-
tions. School of Computing . 2022. 46+iv pages. Advisor: Sukyoung Ryu.
(Text in English)

�]

ê§lΩ∏X Ÿ�x 1»¸ ı°\ X¯`@ ê§lΩ∏ ⌅\¯®‰X âŸD �UXå ttX0 ¥

5å Ã‡‰. lê‰@ t| t∞X‡ê ‰ë\ ê§lΩ∏ �� Ñ�0‰D ⌧⌧tT¿Ã, t‰@
®P ⇠Ÿ<\ $ƒ� ⇠»0– xŸ—}�t‡ $X– Ë}X‰. ⇣\, 2014D –Ä0 ê§lΩ∏X
∏¥ Ö8� ‰D 1‡⇠0 ‹ëXt⌧ t 8⌧î T Ï�tL‰. ¯ Y⌅ |8–⌧î ê§lΩ∏ ∏¥
Ö8\Ä0êŸ<\ê§lΩ∏��Ñ�0| ƒt¥î»\¥)›D⌧H\‰. tî 1)0ƒTÖ8
îú, 2) 0ƒT Ö8 ®1 Ä¨, ¯¨‡ 3) �� Ñ�0 ƒX 8 �¿ Ëƒ\ l1⌧‰. ¯ |8–⌧î
0ƒT Ö8 îú 0 D ⌧HX‡, t| t©t �• \‡ ê§lΩ∏ Ö8\Ä0 0ƒT Ö8| îú
\‰. ⇣\, ê§lΩ∏ ‘ƒD t©\ N+1-Ñ⌅ (Ñ L§⇧¸ 0ƒT Ö8X ¿Ö Ñ�D ⌧HX‡,
t| µt Ö8 ✏ ‘ƒX ∞hD Äú\‰. \Ö�<\, T¿ �� Ñ� 0 D ⌧HX‡, îú\ 0ƒT
Ö8\Ä0 êŸ<\ ê§lΩ∏ �� Ñ�0| ƒ\‰. ¯ Y⌅ |8–⌧ ⌧‹\)›@ ⌅\¯ò�
∏¥| ⌅\ Ö8, L§∏, ¯¨‡ ƒl‰X ıƒT| ⌅\ lX 0¿D »(` É<\ 0�\‰.

u Ï ± – ê§lΩ∏, 0ƒT Ö8 îú, Ö8 ¿Ö Ñ�, N+1-Ñ⌅ (Ñ L§⇧, T¿ �� Ñ�

Abstract
The highly dynamic nature and complex semantics of JavaScript make it difficult to correctly understand
the behaviors of JavaScript programs. To automatically reason about them, researchers have developed
various JavaScript static analyzers that conform to ECMAScript, the standard specification of JavaScript.
However, all the existing JavaScript static analyzers are manually designed; thus, the current approach
is labor-intensive and error-prone. Moreover, since late 2014, this problem becomes more critical because
the JavaScript language itself rapidly evolves with a yearly release cadence and open development process.

In this thesis, we introduce a novel approach to automatically derive JavaScript static analyzers
from any version of ECMAScript. Our approach consists of three steps: 1) mechanized specification
extraction, 2) mechanized specification validity check, and 3) derivation of static analyzers. First, we
present a tool JISET that automatically extracts a mechanized specification from ECMAScript. We show
that it successfully extracts a mechanized specification from the latest ECMAScript. Then, we present
two different tools to detect bugs in JavaScript specifications and engines; JEST performs N+1-version
differential testing with JavaScript engines and JSTAR performs a type analysis for the mechanized
specification. Finally, we present JSAVER that automatically derives JavaScript static analyzers from
mechanized specifications using a meta-level static analysis. For evaluation, we derive a JavaScript
static analyzer from the latest ECMAScript and show that it successfully analyzes all applicable official
conformance tests in a sound way. We believe that the thesis would be the first step towards the
co-evolution of specifications, tests, and tools for programming languages.

Keywords JavaScript, mechanized specification extraction, N+1-version differential testing, specifica-
tion type analysis, meta-level static analysis.

1. Mechanized Spec.
Extraction

[ASE'20]

Conformance Test

Synthesis

Type Analysis for

Specification

Automatically Deriving JavaScript Static Analyzers from Language Specifications
Jihyeok Park, Seungmin An, and Sukyoung Ryu

(In submission)

In submission

JavaScript Static Analysis for Evolving Language Specifications / 35

JSAVER - Meta-Level Static Analysis

31

compiler-based approach (existing)

JavaScript Static Analysis for Evolving Language Specifications / 35

JSAVER - Meta-Level Static Analysis

31

compiler-based approach (existing)

interpreter-based approach (ours)

JavaScript Static Analysis for Evolving Language Specifications / 35

JSAVER - Meta-Level Static Analysis

32

x ||= y

defining-language
(IRES)

defined-language
(JavaScript)

JavaScript Static Analysis for Evolving Language Specifications / 35

JSAVER - Meta-Level Static Analysis

32

x ||= y

defining-language
(IRES)

defined-language
(JavaScript) parse · · ·<latexit sha1_base64="Kef69hW4e/raBfVz+DaK6/NBFbQ=">AAACHXicbVDJSgNBEK1xjXFL9OhlMAiewowKeozLwYsQITFCJkhPp2Ka9Cx01whxmI/wqge/xpt4Ff/GnnEObg8aHu9VdVU9P5ZCk+N8WDOzc/MLi5Wl6vLK6tp6rb5xpaNEcezySEbq2mcapQixS4IkXscKWeBL7PmT09zv3aHSIgo7NI1xELDbUIwEZ2SknseHEenqTa3hNJ0C9l/ilqQBJdo3dQu8YcSTAEPikmndd52YBilTJLjErOolGmPGJ+wW+4aGLEA9SIt9M3vHKEN7FCnzQrIL9XtHygKtp4FvKgNGY/3by8X/vH5Co6NBKsI4IQz516BRIm2K7Px4eygUcpJTQxhXwuxq8zFTjJOJqOqdoblF4YX591jGY+YjpV4+Jb7nWdpxs7QgQZYKykxm7u+E/pKrvaa739y7PGi0Tsr0KrAF27ALLhxCC86hDV3gMIEHeIQn69l6sV6tt6/SGavs2YQfsN4/AabGomA=</latexit> · · ·<latexit sha1_base64="Kef69hW4e/raBfVz+DaK6/NBFbQ=">AAACHXicbVDJSgNBEK1xjXFL9OhlMAiewowKeozLwYsQITFCJkhPp2Ka9Cx01whxmI/wqge/xpt4Ff/GnnEObg8aHu9VdVU9P5ZCk+N8WDOzc/MLi5Wl6vLK6tp6rb5xpaNEcezySEbq2mcapQixS4IkXscKWeBL7PmT09zv3aHSIgo7NI1xELDbUIwEZ2SknseHEenqTa3hNJ0C9l/ilqQBJdo3dQu8YcSTAEPikmndd52YBilTJLjErOolGmPGJ+wW+4aGLEA9SIt9M3vHKEN7FCnzQrIL9XtHygKtp4FvKgNGY/3by8X/vH5Co6NBKsI4IQz516BRIm2K7Px4eygUcpJTQxhXwuxq8zFTjJOJqOqdoblF4YX591jGY+YjpV4+Jb7nWdpxs7QgQZYKykxm7u+E/pKrvaa739y7PGi0Tsr0KrAF27ALLhxCC86hDV3gMIEHeIQn69l6sV6tt6/SGavs2YQfsN4/AabGomA=</latexit>

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Automatically Deriving JavaScript Static Analyzers from Language Specifications ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

function error(e) { throw e; }

const n = ...; // [0, 99]

n |> x => x + 1 // [1, 100]

|> x => x * 2 // [2, 200]

|> x => x + 1n; // TypeError

|> error (42);

of representative techniques to increase the precision of JavaScript
static analysis for loops. It discriminates contexts using a stack of
loop contexts containing loop iterations. We de�ne it under view-
based analysis sensitivity and implement it in JSAVER to increase
the precision of IRES static analysis. Moreover, we also de�ne and
implement the loop sensitivity for JavaScript using the loop sensitiv-
ity for IRES. Therefore, our tool discriminates contexts for explicit
loops, such as for-in or for-of, and even implicit loops, such as the
length property assignment of arrays.

6 EVALUATION
• AdditiveExpression
• Identi�erReference
• Identi�er
• AssignmentExpression
• LeftHandSideExpression
• ArrowFunction

• RQ1: Coverage) How much does JSAVER cover JavaScript
language features in the latest ECMAScript (ES12, 2021)?

• RQ2: Adaptability) Could JSAVER adapt a new language
features not yet introduced in ES12?

• RQ3: Expressiveness) What kinds of abstract sensitivities
and abstract domains JSAVER can support?

• RQ4: Performance) Could JSAVER analyze JavaScript pro-
grams in a durable time?

TODO

7 RELATEDWORK
TODO

• JavaScript Static Analyzers [9, 10, 14, 27]
• JavaScript Static Analysis Techniques [1, 12, 13, 15, 18–21,
30, 34–36]

• Partial Evaluation? (maybe no - * SE conf.)

7.1 JavaScript Mechanized Speci�cation
A speci�cation is mechanized if and only if it is both formalized
and executable. For JavaScript, researchers have proposed various
mechanized speci�cation in their own approaches. In 2010, Guha
et al. [8] presented �JS, the �rst mechanized speci�cation for a core
calculus of ES3 semantics by desugaring most of syntax into �JS, an
extended standard lambda calculus. Thus, the shape of �JS seman-
tics is quite di�erent with original algorithm steps. In mid 2010s,
researchers tried to de�ne mechanized speci�cation for the ES5
and 5.1 semantics having a similar shape of semantics with original
algorithm steps as much as possible. Bodin et al. [2] de�ned JSCert,
a semantics of a small subset of ES5, using Coq and extracts a refer-
ence interpreter JSRef. Park et al. [22] de�ned an entire semantics
of ES5, KJS, using the K [29], which is a framework for de�ning
language semantics. Fragoso Santos et al. [7] presented JaVerT, a

JavaScript veri�cation toolchain, including a JavaScript semantics
de�ned in their own Intermediate language, JSIL.

However, the fundamental problem of their approaches is that
they are manually de�ned thus they are labor-intensive and error-
prone. Due to such limitation, there is no existing mechanized
speci�cation for full semantics of ES6 or later versions. Therefore,
most of existing JavaScript static analyzers only focus on ES5.1
features or rarely support ES6 features even though already six
more versions from ES7 to ES12 are released since 2015.

Moreover, Park et al. [23] successfully showed that JISET is useful
tomechanically handle recent versions of ECMAScript by extending
JISET to perform N+1-version di�erential testing of both JavaScript
engines and ES11 (2020).

8 CONCLUSION
TODO

REFERENCES
[1] Roberto Amadini, Alexander Jordan, Graeme Gange, François Gauthier, Peter

Schachte, Harald Søndergaard, Peter J Stuckey, and Chenyi Zhang. 2017. Com-
bining String Abstract Domains for JavaScript Analysis: An Evaluation. In Pro-
ceedings of the 23rd International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS). https://doi.org/10.1007/978-3-
662-54577-5_3

[2] Martin Bodin, Arthur Charguéraud, Daniele Filaretti, Philippa Gardner, Sergio
Ma�eis, Daiva Naudziuniene, Alan Schmitt, and Gareth Smith. 2014. A Trusted
Mechanised JavaScript Speci�cation. Proceedings of the 41st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming (POPL) 49, 1 (2014), 87–100.
https://doi.org/10.1145/2535838.2535876

[3] David R. Chase, Mark Wegman, and F. Kenneth Zadeck. 1990. Analysis of
Pointers and Structures. In Proceedings of the ACM SIGPLAN 1990 Conference on
Programming Language Design and Implementation (PLDI) (PLDI ’90). Association
for Computing Machinery, New York, NY, USA, 296–310. https://doi.org/10.
1145/93542.93585

[4] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Uni�ed
Lattice Model for Static Analysis of Programs by Construction or Approximation
of Fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming languages (POPL). https://doi.org/10.1145/512950.
512973

[5] Patrick Cousot and Radhia Cousot. 1977. Static Determination of Dynamic
Properties of Generalized Type Unions. In Proceedings of an ACM Conference on
Language Design for Reliable Software. Association for Computing Machinery,
New York, NY, USA, 77–94. https://doi.org/10.1145/800022.808314

[6] Patrick Cousot and Radhia Cousot. 1992. Abstract Interpretation Frameworks.
Journal of Logic and Computation (JLC) 2, 4 (1992), 511–547. https://doi.org/10.
1093/logcom/2.4.511

[7] José Fragoso Santos, Petar Maksimović, Daiva Naudži = unienė, Thomas Wood,
and Philippa Gardner. 2017. JaVerT: JavaScript Veri�cation Toolchain. Proceedings
of the 44th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
(POPL) 2, POPL (2017), 1–33. https://doi.org/10.1145/3158138

[8] Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. 2010. The essence
of JavaScript. In Proceedings of the 24th European Conference on Object-Oriented
Programming (ECOOP). Springer, 126–150. https://doi.org/10.1007/978-3-642-
14107-2_7

[9] Simon Holm Jensen, Anders Møller, and Peter Thiemann. 2009. Type Analysis for
JavaScript. In Proceedings of the 16th International Symposium on Static Analysis
(SAS). https://doi.org/10.1007/978-3-642-03237-0_17

[10] Vineeth Kashyap, Kyle Dewey, Ethan A. Kuefner, John Wagner, Kevin Gib-
bons, John Sarracino, Ben Wiedermann, and Ben Hardekopf. 2014. JSAI: A
Static Analysis Platform for JavaScript. In Proceedings of the 22nd ACM SIG-
SOFT International Symposium on Foundations of Software Engineering (FSE).
https://doi.org/10.1145/2635868.2635904

[11] Se-Won Kim, Xavier Rival, and Sukyoung Ryu. 2018. A Theoretical Foundation
of Sensitivity in an Abstract Interpretation Framework. ACM Transactions on
Programming Languages and Systems (TOPLAS) 40, 3, Article 13 (2018), 44 pages.
https://doi.org/10.1145/3230624

[12] Yoonseok Ko, Xavier Rival, and Sukyoung Ryu. 2017. Weakly Sensitive Analysis
for Unbounded Iteration over JavaScript Objects. In Proceedings of the 15th Asian
Symposium on Programming Languages and Systems (APLAS). https://doi.org/10.
1007/978-3-319-71237-6_8

7

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

(a) Evaluation algorithm for logical OR assignments.

1 syntax def AssignmentExpression [8]. Evaluation(

2 this , LeftHandSideExpression , AssignmentExpression

3) { /* entry */

4 let lref = (LeftHandSideExpression.Evaluation)

5 let lval = [? (GetValue lref)]

6 let lbool = [! (ToBoolean lval)] /* #1 */

7 if (= lbool true) /* #2 */ return lval else { /* #3 */ }

8 if (&& (IsAnonymousFunctionDefinition AssignmentExpression)

9 (LeftHandSideExpression.IsIdentifierRef)) { /* #4 */

10 let rval = (AssignmentExpression.NamedEvaluation

11 lref.ReferencedName)

12 } else { /* #5 */

13 let rref = (AssignmentExpression.Evaluation)

14 let rval = [? (GetValue rref)]

15 } /* #6 */

16 [? (PutValue lref rval)]

17 return rval

18 } /* exit */

(b) The extracted IRES function.

Figure 1: Evaluation algorithm for the eighth alternative of AssignmentExpression in ES12 and the extracted IRES function.

To alleviate this problem, we propose a novel technique called
meta-level static analysis to automatically derive a JavaScript static
analyzer from any version of ECMAScript. The main idea of the
meta-level static analysis is to indirectly analyze a target language
program by performing static analysis for a language speci�ca-
tion of the target language written in a speci�cation language with
the program as the initial input. Thus, it can signi�cantly reduce
the burden to manually design and implement static analyzers by
automatically deriving them from given language speci�cations.
Moreover, it even guarantees the soundness of derived static analyz-
ers for the target language by constructing sound abstract semantics
for the speci�cation language.

For the expressiveness of a meta-level static analysis, we also
present ways to con�gure analysis sensitivities and abstract do-
mains for a target language. Con�guring them is a typical way
to manage analysis precision and performance. First, we present
the AST sensitivity in a meta-level static analysis to express analy-
sis sensitivities for a target language such as �ow-sensitivity and
k-callsite-sensitivity (Section 4.2). Second, we present a way to
con�gure abstract domains for structures and values in a target
language (Section 4.3).

To actualize our approach for JavaScript, we present JSAVER,
JavaScript Static Analyzers via ECMAScript Representations. First,
we utilize JISET [26] to extract a mechanized speci�cation written
in an intermediate representation, IRES, from a given ECMAScript.
Thus, target and speci�cation languages are JavaScript and IRES,
respectively, for the meta-level static analysis in JSAVER. In addition,
we implement several analysis techniques to improve the perfor-
mance and precision of derived static analyzers (Section 5). We
evaluated JSAVER by deriving a JavaScript static analyzer from the
latest ECMAScript, ES12, and using the o�cial conformance tests,
Test2622.

Our contributions are as follows:
• We propose a novel concept called meta-level static analysis,
which automatically derives a static analyzer for a target

2https://github.com/tc39/test262

let f = Math.floor(Math.random () * 100);

// f: [0, 99]

f ||= x => x;

// f: [1, 99] or { name: �f�, ... }

let x = f.name;

// f: [1, 99] or { name: �f�, ... }, x: undefined or �f�

Figure 2: A running JavaScript program with a logical OR
assignment newly introduced in ES12.

language from its language speci�cation written in a speci�-
cation language.

• We actualize meta-level static analysis for JavaScript as a tool
called JSAVER. It is the �rst tool that automatically derives a
JavaScript static analyzer from any version of ECMAScript.

• We derive a static analyzer from the latest ECMAScript, ES12,
to evaluate JSAVER. The synthesized static analyzer success-
fully analyzes all applicable 18,556 o�cial conformance tests.
Moreover, we demonstrate the adaptability and expressive-
ness of JSAVER with several case studies.

2 BACKGROUND
In this section, we explain the detail of ECMAScript, the o�cial
speci�cation of JavaScript. We then introduce JISET and how it
extracts a mechanized speci�cation from it. Since our work is to
perform meta-level static analysis for JavaScript using extracted
mechanized speci�cations, it is essential to understand how EC-
MAScript describes JavaScript semantics and how JISET extracts a
mechanized speci�cation from it.

For the detailed explanation, we explain a new language feature
introduced in ES12 called logical OR assignments (Figure 1) and
use a JavaScript program (Figure 2) as a running example. It �rst
de�nes a variable f with a random integer from 0 to 99. Then, it
uses a logical OR assignment to update f with an arrow function
whose name is �f� only if f has 0 because 0 represents false but
other integers represent true. Finally, it de�nes a variable x with
f.name and its value is undefined if f has an integer or �f� otherwise.

2

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Automatically Deriving JavaScript Static Analyzers from Language Specifications ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

function error(e) { throw e; }

const n = ...; // [0, 99]

n |> x => x + 1 // [1, 100]

|> x => x * 2 // [2, 200]

|> x => x + 1n; // TypeError

|> error (42);

of representative techniques to increase the precision of JavaScript
static analysis for loops. It discriminates contexts using a stack of
loop contexts containing loop iterations. We de�ne it under view-
based analysis sensitivity and implement it in JSAVER to increase
the precision of IRES static analysis. Moreover, we also de�ne and
implement the loop sensitivity for JavaScript using the loop sensitiv-
ity for IRES. Therefore, our tool discriminates contexts for explicit
loops, such as for-in or for-of, and even implicit loops, such as the
length property assignment of arrays.

6 EVALUATION
• AdditiveExpression
• Identi�erReference
• Identi�er
• AssignmentExpression
• LeftHandSideExpression
• ArrowFunction

• RQ1: Coverage) How much does JSAVER cover JavaScript
language features in the latest ECMAScript (ES12, 2021)?

• RQ2: Adaptability) Could JSAVER adapt a new language
features not yet introduced in ES12?

• RQ3: Expressiveness) What kinds of abstract sensitivities
and abstract domains JSAVER can support?

• RQ4: Performance) Could JSAVER analyze JavaScript pro-
grams in a durable time?

TODO

7 RELATEDWORK
TODO

• JavaScript Static Analyzers [9, 10, 14, 27]
• JavaScript Static Analysis Techniques [1, 12, 13, 15, 18–21,
30, 34–36]

• Partial Evaluation? (maybe no - * SE conf.)

7.1 JavaScript Mechanized Speci�cation
A speci�cation is mechanized if and only if it is both formalized
and executable. For JavaScript, researchers have proposed various
mechanized speci�cation in their own approaches. In 2010, Guha
et al. [8] presented �JS, the �rst mechanized speci�cation for a core
calculus of ES3 semantics by desugaring most of syntax into �JS, an
extended standard lambda calculus. Thus, the shape of �JS seman-
tics is quite di�erent with original algorithm steps. In mid 2010s,
researchers tried to de�ne mechanized speci�cation for the ES5
and 5.1 semantics having a similar shape of semantics with original
algorithm steps as much as possible. Bodin et al. [2] de�ned JSCert,
a semantics of a small subset of ES5, using Coq and extracts a refer-
ence interpreter JSRef. Park et al. [22] de�ned an entire semantics
of ES5, KJS, using the K [29], which is a framework for de�ning
language semantics. Fragoso Santos et al. [7] presented JaVerT, a

JavaScript veri�cation toolchain, including a JavaScript semantics
de�ned in their own Intermediate language, JSIL.

However, the fundamental problem of their approaches is that
they are manually de�ned thus they are labor-intensive and error-
prone. Due to such limitation, there is no existing mechanized
speci�cation for full semantics of ES6 or later versions. Therefore,
most of existing JavaScript static analyzers only focus on ES5.1
features or rarely support ES6 features even though already six
more versions from ES7 to ES12 are released since 2015.

Moreover, Park et al. [23] successfully showed that JISET is useful
tomechanically handle recent versions of ECMAScript by extending
JISET to perform N+1-version di�erential testing of both JavaScript
engines and ES11 (2020).

8 CONCLUSION
TODO

REFERENCES
[1] Roberto Amadini, Alexander Jordan, Graeme Gange, François Gauthier, Peter

Schachte, Harald Søndergaard, Peter J Stuckey, and Chenyi Zhang. 2017. Com-
bining String Abstract Domains for JavaScript Analysis: An Evaluation. In Pro-
ceedings of the 23rd International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS). https://doi.org/10.1007/978-3-
662-54577-5_3

[2] Martin Bodin, Arthur Charguéraud, Daniele Filaretti, Philippa Gardner, Sergio
Ma�eis, Daiva Naudziuniene, Alan Schmitt, and Gareth Smith. 2014. A Trusted
Mechanised JavaScript Speci�cation. Proceedings of the 41st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming (POPL) 49, 1 (2014), 87–100.
https://doi.org/10.1145/2535838.2535876

[3] David R. Chase, Mark Wegman, and F. Kenneth Zadeck. 1990. Analysis of
Pointers and Structures. In Proceedings of the ACM SIGPLAN 1990 Conference on
Programming Language Design and Implementation (PLDI) (PLDI ’90). Association
for Computing Machinery, New York, NY, USA, 296–310. https://doi.org/10.
1145/93542.93585

[4] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Uni�ed
Lattice Model for Static Analysis of Programs by Construction or Approximation
of Fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming languages (POPL). https://doi.org/10.1145/512950.
512973

[5] Patrick Cousot and Radhia Cousot. 1977. Static Determination of Dynamic
Properties of Generalized Type Unions. In Proceedings of an ACM Conference on
Language Design for Reliable Software. Association for Computing Machinery,
New York, NY, USA, 77–94. https://doi.org/10.1145/800022.808314

[6] Patrick Cousot and Radhia Cousot. 1992. Abstract Interpretation Frameworks.
Journal of Logic and Computation (JLC) 2, 4 (1992), 511–547. https://doi.org/10.
1093/logcom/2.4.511

[7] José Fragoso Santos, Petar Maksimović, Daiva Naudži = unienė, Thomas Wood,
and Philippa Gardner. 2017. JaVerT: JavaScript Veri�cation Toolchain. Proceedings
of the 44th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
(POPL) 2, POPL (2017), 1–33. https://doi.org/10.1145/3158138

[8] Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. 2010. The essence
of JavaScript. In Proceedings of the 24th European Conference on Object-Oriented
Programming (ECOOP). Springer, 126–150. https://doi.org/10.1007/978-3-642-
14107-2_7

[9] Simon Holm Jensen, Anders Møller, and Peter Thiemann. 2009. Type Analysis for
JavaScript. In Proceedings of the 16th International Symposium on Static Analysis
(SAS). https://doi.org/10.1007/978-3-642-03237-0_17

[10] Vineeth Kashyap, Kyle Dewey, Ethan A. Kuefner, John Wagner, Kevin Gib-
bons, John Sarracino, Ben Wiedermann, and Ben Hardekopf. 2014. JSAI: A
Static Analysis Platform for JavaScript. In Proceedings of the 22nd ACM SIG-
SOFT International Symposium on Foundations of Software Engineering (FSE).
https://doi.org/10.1145/2635868.2635904

[11] Se-Won Kim, Xavier Rival, and Sukyoung Ryu. 2018. A Theoretical Foundation
of Sensitivity in an Abstract Interpretation Framework. ACM Transactions on
Programming Languages and Systems (TOPLAS) 40, 3, Article 13 (2018), 44 pages.
https://doi.org/10.1145/3230624

[12] Yoonseok Ko, Xavier Rival, and Sukyoung Ryu. 2017. Weakly Sensitive Analysis
for Unbounded Iteration over JavaScript Objects. In Proceedings of the 15th Asian
Symposium on Programming Languages and Systems (APLAS). https://doi.org/10.
1007/978-3-319-71237-6_8

7

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Automatically Deriving JavaScript Static Analyzers from Language Specifications ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

function error(e) { throw e; }

const n = ...; // [0, 99]

n |> x => x + 1 // [1, 100]

|> x => x * 2 // [2, 200]

|> x => x + 1n; // TypeError

|> error (42);

of representative techniques to increase the precision of JavaScript
static analysis for loops. It discriminates contexts using a stack of
loop contexts containing loop iterations. We de�ne it under view-
based analysis sensitivity and implement it in JSAVER to increase
the precision of IRES static analysis. Moreover, we also de�ne and
implement the loop sensitivity for JavaScript using the loop sensitiv-
ity for IRES. Therefore, our tool discriminates contexts for explicit
loops, such as for-in or for-of, and even implicit loops, such as the
length property assignment of arrays.

6 EVALUATION
• AdditiveExpression
• Identi�erReference
• Identi�er
• AssignmentExpression
• LeftHandSideExpression
• ArrowFunction

• RQ1: Coverage) How much does JSAVER cover JavaScript
language features in the latest ECMAScript (ES12, 2021)?

• RQ2: Adaptability) Could JSAVER adapt a new language
features not yet introduced in ES12?

• RQ3: Expressiveness) What kinds of abstract sensitivities
and abstract domains JSAVER can support?

• RQ4: Performance) Could JSAVER analyze JavaScript pro-
grams in a durable time?

TODO

7 RELATEDWORK
TODO

• JavaScript Static Analyzers [9, 10, 14, 27]
• JavaScript Static Analysis Techniques [1, 12, 13, 15, 18–21,
30, 34–36]

• Partial Evaluation? (maybe no - * SE conf.)

7.1 JavaScript Mechanized Speci�cation
A speci�cation is mechanized if and only if it is both formalized
and executable. For JavaScript, researchers have proposed various
mechanized speci�cation in their own approaches. In 2010, Guha
et al. [8] presented �JS, the �rst mechanized speci�cation for a core
calculus of ES3 semantics by desugaring most of syntax into �JS, an
extended standard lambda calculus. Thus, the shape of �JS seman-
tics is quite di�erent with original algorithm steps. In mid 2010s,
researchers tried to de�ne mechanized speci�cation for the ES5
and 5.1 semantics having a similar shape of semantics with original
algorithm steps as much as possible. Bodin et al. [2] de�ned JSCert,
a semantics of a small subset of ES5, using Coq and extracts a refer-
ence interpreter JSRef. Park et al. [22] de�ned an entire semantics
of ES5, KJS, using the K [29], which is a framework for de�ning
language semantics. Fragoso Santos et al. [7] presented JaVerT, a

JavaScript veri�cation toolchain, including a JavaScript semantics
de�ned in their own Intermediate language, JSIL.

However, the fundamental problem of their approaches is that
they are manually de�ned thus they are labor-intensive and error-
prone. Due to such limitation, there is no existing mechanized
speci�cation for full semantics of ES6 or later versions. Therefore,
most of existing JavaScript static analyzers only focus on ES5.1
features or rarely support ES6 features even though already six
more versions from ES7 to ES12 are released since 2015.

Moreover, Park et al. [23] successfully showed that JISET is useful
tomechanically handle recent versions of ECMAScript by extending
JISET to perform N+1-version di�erential testing of both JavaScript
engines and ES11 (2020).

8 CONCLUSION
TODO

REFERENCES
[1] Roberto Amadini, Alexander Jordan, Graeme Gange, François Gauthier, Peter

Schachte, Harald Søndergaard, Peter J Stuckey, and Chenyi Zhang. 2017. Com-
bining String Abstract Domains for JavaScript Analysis: An Evaluation. In Pro-
ceedings of the 23rd International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS). https://doi.org/10.1007/978-3-
662-54577-5_3

[2] Martin Bodin, Arthur Charguéraud, Daniele Filaretti, Philippa Gardner, Sergio
Ma�eis, Daiva Naudziuniene, Alan Schmitt, and Gareth Smith. 2014. A Trusted
Mechanised JavaScript Speci�cation. Proceedings of the 41st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming (POPL) 49, 1 (2014), 87–100.
https://doi.org/10.1145/2535838.2535876

[3] David R. Chase, Mark Wegman, and F. Kenneth Zadeck. 1990. Analysis of
Pointers and Structures. In Proceedings of the ACM SIGPLAN 1990 Conference on
Programming Language Design and Implementation (PLDI) (PLDI ’90). Association
for Computing Machinery, New York, NY, USA, 296–310. https://doi.org/10.
1145/93542.93585

[4] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Uni�ed
Lattice Model for Static Analysis of Programs by Construction or Approximation
of Fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming languages (POPL). https://doi.org/10.1145/512950.
512973

[5] Patrick Cousot and Radhia Cousot. 1977. Static Determination of Dynamic
Properties of Generalized Type Unions. In Proceedings of an ACM Conference on
Language Design for Reliable Software. Association for Computing Machinery,
New York, NY, USA, 77–94. https://doi.org/10.1145/800022.808314

[6] Patrick Cousot and Radhia Cousot. 1992. Abstract Interpretation Frameworks.
Journal of Logic and Computation (JLC) 2, 4 (1992), 511–547. https://doi.org/10.
1093/logcom/2.4.511

[7] José Fragoso Santos, Petar Maksimović, Daiva Naudži = unienė, Thomas Wood,
and Philippa Gardner. 2017. JaVerT: JavaScript Veri�cation Toolchain. Proceedings
of the 44th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
(POPL) 2, POPL (2017), 1–33. https://doi.org/10.1145/3158138

[8] Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. 2010. The essence
of JavaScript. In Proceedings of the 24th European Conference on Object-Oriented
Programming (ECOOP). Springer, 126–150. https://doi.org/10.1007/978-3-642-
14107-2_7

[9] Simon Holm Jensen, Anders Møller, and Peter Thiemann. 2009. Type Analysis for
JavaScript. In Proceedings of the 16th International Symposium on Static Analysis
(SAS). https://doi.org/10.1007/978-3-642-03237-0_17

[10] Vineeth Kashyap, Kyle Dewey, Ethan A. Kuefner, John Wagner, Kevin Gib-
bons, John Sarracino, Ben Wiedermann, and Ben Hardekopf. 2014. JSAI: A
Static Analysis Platform for JavaScript. In Proceedings of the 22nd ACM SIG-
SOFT International Symposium on Foundations of Software Engineering (FSE).
https://doi.org/10.1145/2635868.2635904

[11] Se-Won Kim, Xavier Rival, and Sukyoung Ryu. 2018. A Theoretical Foundation
of Sensitivity in an Abstract Interpretation Framework. ACM Transactions on
Programming Languages and Systems (TOPLAS) 40, 3, Article 13 (2018), 44 pages.
https://doi.org/10.1145/3230624

[12] Yoonseok Ko, Xavier Rival, and Sukyoung Ryu. 2017. Weakly Sensitive Analysis
for Unbounded Iteration over JavaScript Objects. In Proceedings of the 15th Asian
Symposium on Programming Languages and Systems (APLAS). https://doi.org/10.
1007/978-3-319-71237-6_8

7

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Automatically Deriving JavaScript Static Analyzers from Language Specifications ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

function error(e) { throw e; }

const n = ...; // [0, 99]

n |> x => x + 1 // [1, 100]

|> x => x * 2 // [2, 200]

|> x => x + 1n; // TypeError

|> error (42);

of representative techniques to increase the precision of JavaScript
static analysis for loops. It discriminates contexts using a stack of
loop contexts containing loop iterations. We de�ne it under view-
based analysis sensitivity and implement it in JSAVER to increase
the precision of IRES static analysis. Moreover, we also de�ne and
implement the loop sensitivity for JavaScript using the loop sensitiv-
ity for IRES. Therefore, our tool discriminates contexts for explicit
loops, such as for-in or for-of, and even implicit loops, such as the
length property assignment of arrays.

6 EVALUATION
• AdditiveExpression
• Identi�erReference
• Identi�er
• AssignmentExpression
• LeftHandSideExpression
• ArrowFunction

• RQ1: Coverage) How much does JSAVER cover JavaScript
language features in the latest ECMAScript (ES12, 2021)?

• RQ2: Adaptability) Could JSAVER adapt a new language
features not yet introduced in ES12?

• RQ3: Expressiveness) What kinds of abstract sensitivities
and abstract domains JSAVER can support?

• RQ4: Performance) Could JSAVER analyze JavaScript pro-
grams in a durable time?

TODO

7 RELATEDWORK
TODO

• JavaScript Static Analyzers [9, 10, 14, 27]
• JavaScript Static Analysis Techniques [1, 12, 13, 15, 18–21,
30, 34–36]

• Partial Evaluation? (maybe no - * SE conf.)

7.1 JavaScript Mechanized Speci�cation
A speci�cation is mechanized if and only if it is both formalized
and executable. For JavaScript, researchers have proposed various
mechanized speci�cation in their own approaches. In 2010, Guha
et al. [8] presented �JS, the �rst mechanized speci�cation for a core
calculus of ES3 semantics by desugaring most of syntax into �JS, an
extended standard lambda calculus. Thus, the shape of �JS seman-
tics is quite di�erent with original algorithm steps. In mid 2010s,
researchers tried to de�ne mechanized speci�cation for the ES5
and 5.1 semantics having a similar shape of semantics with original
algorithm steps as much as possible. Bodin et al. [2] de�ned JSCert,
a semantics of a small subset of ES5, using Coq and extracts a refer-
ence interpreter JSRef. Park et al. [22] de�ned an entire semantics
of ES5, KJS, using the K [29], which is a framework for de�ning
language semantics. Fragoso Santos et al. [7] presented JaVerT, a

JavaScript veri�cation toolchain, including a JavaScript semantics
de�ned in their own Intermediate language, JSIL.

However, the fundamental problem of their approaches is that
they are manually de�ned thus they are labor-intensive and error-
prone. Due to such limitation, there is no existing mechanized
speci�cation for full semantics of ES6 or later versions. Therefore,
most of existing JavaScript static analyzers only focus on ES5.1
features or rarely support ES6 features even though already six
more versions from ES7 to ES12 are released since 2015.

Moreover, Park et al. [23] successfully showed that JISET is useful
tomechanically handle recent versions of ECMAScript by extending
JISET to perform N+1-version di�erential testing of both JavaScript
engines and ES11 (2020).

8 CONCLUSION
TODO

REFERENCES
[1] Roberto Amadini, Alexander Jordan, Graeme Gange, François Gauthier, Peter

Schachte, Harald Søndergaard, Peter J Stuckey, and Chenyi Zhang. 2017. Com-
bining String Abstract Domains for JavaScript Analysis: An Evaluation. In Pro-
ceedings of the 23rd International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS). https://doi.org/10.1007/978-3-
662-54577-5_3

[2] Martin Bodin, Arthur Charguéraud, Daniele Filaretti, Philippa Gardner, Sergio
Ma�eis, Daiva Naudziuniene, Alan Schmitt, and Gareth Smith. 2014. A Trusted
Mechanised JavaScript Speci�cation. Proceedings of the 41st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming (POPL) 49, 1 (2014), 87–100.
https://doi.org/10.1145/2535838.2535876

[3] David R. Chase, Mark Wegman, and F. Kenneth Zadeck. 1990. Analysis of
Pointers and Structures. In Proceedings of the ACM SIGPLAN 1990 Conference on
Programming Language Design and Implementation (PLDI) (PLDI ’90). Association
for Computing Machinery, New York, NY, USA, 296–310. https://doi.org/10.
1145/93542.93585

[4] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Uni�ed
Lattice Model for Static Analysis of Programs by Construction or Approximation
of Fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming languages (POPL). https://doi.org/10.1145/512950.
512973

[5] Patrick Cousot and Radhia Cousot. 1977. Static Determination of Dynamic
Properties of Generalized Type Unions. In Proceedings of an ACM Conference on
Language Design for Reliable Software. Association for Computing Machinery,
New York, NY, USA, 77–94. https://doi.org/10.1145/800022.808314

[6] Patrick Cousot and Radhia Cousot. 1992. Abstract Interpretation Frameworks.
Journal of Logic and Computation (JLC) 2, 4 (1992), 511–547. https://doi.org/10.
1093/logcom/2.4.511

[7] José Fragoso Santos, Petar Maksimović, Daiva Naudži = unienė, Thomas Wood,
and Philippa Gardner. 2017. JaVerT: JavaScript Veri�cation Toolchain. Proceedings
of the 44th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
(POPL) 2, POPL (2017), 1–33. https://doi.org/10.1145/3158138

[8] Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. 2010. The essence
of JavaScript. In Proceedings of the 24th European Conference on Object-Oriented
Programming (ECOOP). Springer, 126–150. https://doi.org/10.1007/978-3-642-
14107-2_7

[9] Simon Holm Jensen, Anders Møller, and Peter Thiemann. 2009. Type Analysis for
JavaScript. In Proceedings of the 16th International Symposium on Static Analysis
(SAS). https://doi.org/10.1007/978-3-642-03237-0_17

[10] Vineeth Kashyap, Kyle Dewey, Ethan A. Kuefner, John Wagner, Kevin Gib-
bons, John Sarracino, Ben Wiedermann, and Ben Hardekopf. 2014. JSAI: A
Static Analysis Platform for JavaScript. In Proceedings of the 22nd ACM SIG-
SOFT International Symposium on Foundations of Software Engineering (FSE).
https://doi.org/10.1145/2635868.2635904

[11] Se-Won Kim, Xavier Rival, and Sukyoung Ryu. 2018. A Theoretical Foundation
of Sensitivity in an Abstract Interpretation Framework. ACM Transactions on
Programming Languages and Systems (TOPLAS) 40, 3, Article 13 (2018), 44 pages.
https://doi.org/10.1145/3230624

[12] Yoonseok Ko, Xavier Rival, and Sukyoung Ryu. 2017. Weakly Sensitive Analysis
for Unbounded Iteration over JavaScript Objects. In Proceedings of the 15th Asian
Symposium on Programming Languages and Systems (APLAS). https://doi.org/10.
1007/978-3-319-71237-6_8

7

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

(a) Evaluation algorithm for logical OR assignments.

1 syntax def AssignmentExpression [8]. Evaluation(

2 this , LeftHandSideExpression , AssignmentExpression

3) { /* entry */

4 let lref = (LeftHandSideExpression.Evaluation)

5 let lval = [? (GetValue lref)]

6 let lbool = [! (ToBoolean lval)] /* #1 */

7 if (= lbool true) /* #2 */ return lval else { /* #3 */ }

8 if (&& (IsAnonymousFunctionDefinition AssignmentExpression)

9 (LeftHandSideExpression.IsIdentifierRef)) { /* #4 */

10 let rval = (AssignmentExpression.NamedEvaluation

11 lref.ReferencedName)

12 } else { /* #5 */

13 let rref = (AssignmentExpression.Evaluation)

14 let rval = [? (GetValue rref)]

15 } /* #6 */

16 [? (PutValue lref rval)]

17 return rval

18 } /* exit */

(b) The extracted IRES function.

Figure 1: Evaluation algorithm for the eighth alternative of AssignmentExpression in ES12 and the extracted IRES function.

To alleviate this problem, we propose a novel technique called
meta-level static analysis to automatically derive a JavaScript static
analyzer from any version of ECMAScript. The main idea of the
meta-level static analysis is to indirectly analyze a target language
program by performing static analysis for a language speci�ca-
tion of the target language written in a speci�cation language with
the program as the initial input. Thus, it can signi�cantly reduce
the burden to manually design and implement static analyzers by
automatically deriving them from given language speci�cations.
Moreover, it even guarantees the soundness of derived static analyz-
ers for the target language by constructing sound abstract semantics
for the speci�cation language.

For the expressiveness of a meta-level static analysis, we also
present ways to con�gure analysis sensitivities and abstract do-
mains for a target language. Con�guring them is a typical way
to manage analysis precision and performance. First, we present
the AST sensitivity in a meta-level static analysis to express analy-
sis sensitivities for a target language such as �ow-sensitivity and
k-callsite-sensitivity (Section 4.2). Second, we present a way to
con�gure abstract domains for structures and values in a target
language (Section 4.3).

To actualize our approach for JavaScript, we present JSAVER,
JavaScript Static Analyzers via ECMAScript Representations. First,
we utilize JISET [26] to extract a mechanized speci�cation written
in an intermediate representation, IRES, from a given ECMAScript.
Thus, target and speci�cation languages are JavaScript and IRES,
respectively, for the meta-level static analysis in JSAVER. In addition,
we implement several analysis techniques to improve the perfor-
mance and precision of derived static analyzers (Section 5). We
evaluated JSAVER by deriving a JavaScript static analyzer from the
latest ECMAScript, ES12, and using the o�cial conformance tests,
Test2622.

Our contributions are as follows:
• We propose a novel concept called meta-level static analysis,
which automatically derives a static analyzer for a target

2https://github.com/tc39/test262

let f = Math.floor(Math.random () * 100);

// f: [0, 99]

f ||= x => x;

// f: [1, 99] or { name: �f�, ... }

let x = f.name;

// f: [1, 99] or { name: �f�, ... }, x: undefined or �f�

Figure 2: A running JavaScript program with a logical OR
assignment newly introduced in ES12.

language from its language speci�cation written in a speci�-
cation language.

• We actualize meta-level static analysis for JavaScript as a tool
called JSAVER. It is the �rst tool that automatically derives a
JavaScript static analyzer from any version of ECMAScript.

• We derive a static analyzer from the latest ECMAScript, ES12,
to evaluate JSAVER. The synthesized static analyzer success-
fully analyzes all applicable 18,556 o�cial conformance tests.
Moreover, we demonstrate the adaptability and expressive-
ness of JSAVER with several case studies.

2 BACKGROUND
In this section, we explain the detail of ECMAScript, the o�cial
speci�cation of JavaScript. We then introduce JISET and how it
extracts a mechanized speci�cation from it. Since our work is to
perform meta-level static analysis for JavaScript using extracted
mechanized speci�cations, it is essential to understand how EC-
MAScript describes JavaScript semantics and how JISET extracts a
mechanized speci�cation from it.

For the detailed explanation, we explain a new language feature
introduced in ES12 called logical OR assignments (Figure 1) and
use a JavaScript program (Figure 2) as a running example. It �rst
de�nes a variable f with a random integer from 0 to 99. Then, it
uses a logical OR assignment to update f with an arrow function
whose name is �f� only if f has 0 because 0 represents false but
other integers represent true. Finally, it de�nes a variable x with
f.name and its value is undefined if f has an integer or �f� otherwise.

2

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Automatically Deriving JavaScript Static Analyzers from Language Specifications ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

otherwise, a normal function. An instruction i is a primitive value
assignment, an operation between values, a internal �eld access, a
external �eld access, a record allocations, a function call, or a return
instruction.

States � 2 S = H ⇥ C
Heaps h 2 H = A �n��!R
Contexts c 2 C = L ⇥ (X �n��!V) ⇥ C?
Values � 2 V = Vp] A] T] F
Records r 2 R = (Vstr

�n��!V) ⇥ (Vstr
�n��!V)

States S consists of heaps H and contexts C. A heap h 2 H is a
�nite mapping from addresses to records. Each record allocation
instruction x = {} creates a unique address a 2 A di�erent with
existing addresses. A context c 2 C is a triple of 1) the program
point, 2) a local environment which is a �nite mapping from vari-
ables to values, and 3) an optional calling context. A value � 2 V
is a primitive value, an address, an AST, or a function. A record
r 2 R consists of two �nite mappings from strings to values. The
left mapping represents internal �elds accessible by internal �eld
accesses x = x[x]. On the other hand, the right one represents ex-
ternal �elds, such as variables in JavaScript environment records or
properties in JavaScript objects, and they are accessible by a exter-
nal �eld access x = x[x]ext. We formulate the concrete semantics
of a program P as a transition system ({, S�) where{✓ S⇥ S is a
transition relation between concrete states and S� is a set of initial
states.

For a meta-level static analysis, we de�ne its abstract semantics
in the abstract interpretation framework [4, 6]. Since our analysis
supports view-based analysis sensitivities [11, 24], the abstract
domain is de�ned as a mapping from views to abstract states, D# =
� ! D#, with a view abstraction � : � ! P(S) which represents
the meaning of each view � 2 �. Then, we de�ne abstract states as
follows:

Abstract States � # 2 D# = H# ⇥ C#

Abstract Heaps h# 2 H# = A# �n��!(R# ⇥ R#
ext

)
Abstract Addresses a# 2 A# = L
Abstract Contexts c# 2 C# = X �n��!V#

An abstract heaph# 2 H# is a �nitemapping from abstract addresses
A
to pairs of abstract internal records R# and abstract external

records R#
ext

. Each abstract address a# 2 A# is de�ned with the
allocation-site abstraction [3] that partitions concrete addresses A
based on their allocation sites L. An abstract context c# 2 C# is a
�nite mapping from variables to abstract values. Shapes of abstract
values V#, abstract internal (or external) records R# (or R#

ext
) are

parametric thus we can freely con�gure them.

4.2 Analysis Sensitivities
In a meta-level static analysis, analysis sensitivities of the target
language (JavaScript) are di�erent with them of the speci�cation
language (IRES). For example, we explain what happens during anal-
ysis of the following JavaScript program with the �ow-sensitivity
for IRES:

let x = 1, y = 2;

x + y; // 3

(a) Evaluation algorithm for identi�er references.

1 syntax def IdentifierReference [0]. Evaluation(

2 this , Identifier

3) {

4 return [? (ResolveBinding (Identifier.StringValue))

5 }

(b) The extracted IRES function.

(c) Parsing result of x + y (bottom) and the initial local environment
(top) of the IRES function.

Figure 7: An example of the di�erence between analysis sen-
sitivities of target and speci�cation language.

Figure 7 describes (a) the Evaluation algorithm of identi�er refer-
ences, (b) its extracted IRES function, and (c) the parsing result of
x + y and the initial local environment of the IRES function. Since
the �ow-sensitivity merges states based on the program points,
contexts for the evaluation of both identi�er references x and y are
merged. Thus, the IRES variable Identifier points to their ASTs
as described in Figure 7. Due to the imprecise merge of contexts,
StringValue of Identifier returns �x� and �y�, and ResolveBinding
with them returns both 1 and 2. Finally, the analysis result of x + y

becomes { 2, 3, 4 }.

Flow Sensitivity. To resolve this problem, we present an AST sen-
sitivity for the speci�cation language to represent �ow-sensitivity
of the target language. It is a variant of object sensitivity [17, 33]
which uses abstract addresses A# of receiver objects as views. How-
ever, unlike the object sensitivity, the AST sensitivity utilizes ASTs
T stored in the parameter this only for syntax-directed functions:

� flow(t 2 T) = {� = (_, c) 2 S | syntax-ctxt(c) = c 0 ^ c 0(this) = t}
where syntax-ctxt(c) denotes the top-most context whose function
is syntax-directed and c 0(this) denotes a lookup of the variable
this in the mapping in the context c 0. We de�ne the �ow sensitivity
for the target language using the AST sensitivity and it successfully
divides contexts for the evaluation of JavaScript identi�ers x and y

in the above example using their ASTs even though their program
points are same.

Callsite Sensitivity. We also formally de�ne the callsite sensitiv-
ity [31, 32] for the target language by extending AST sensitivity
for speci�c normal IRES functions. The original callsite sensitivity
discriminates calling contexts based on their top most callsites. In
ECMAScript, all explicit and even implicit JavaScript function calls

5

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Automatically Deriving JavaScript Static Analyzers from Language Specifications ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

function error(e) { throw e; }

const n = ...; // [0, 99]

n |> x => x + 1 // [1, 100]

|> x => x * 2 // [2, 200]

|> x => x + 1n; // TypeError

|> error (42);

of representative techniques to increase the precision of JavaScript
static analysis for loops. It discriminates contexts using a stack of
loop contexts containing loop iterations. We de�ne it under view-
based analysis sensitivity and implement it in JSAVER to increase
the precision of IRES static analysis. Moreover, we also de�ne and
implement the loop sensitivity for JavaScript using the loop sensitiv-
ity for IRES. Therefore, our tool discriminates contexts for explicit
loops, such as for-in or for-of, and even implicit loops, such as the
length property assignment of arrays.

6 EVALUATION
• AdditiveExpression
• Identi�erReference
• Identi�er
• AssignmentExpression
• LeftHandSideExpression
• ArrowFunction

• RQ1: Coverage) How much does JSAVER cover JavaScript
language features in the latest ECMAScript (ES12, 2021)?

• RQ2: Adaptability) Could JSAVER adapt a new language
features not yet introduced in ES12?

• RQ3: Expressiveness) What kinds of abstract sensitivities
and abstract domains JSAVER can support?

• RQ4: Performance) Could JSAVER analyze JavaScript pro-
grams in a durable time?

TODO

7 RELATEDWORK
TODO

• JavaScript Static Analyzers [9, 10, 14, 27]
• JavaScript Static Analysis Techniques [1, 12, 13, 15, 18–21,
30, 34–36]

• Partial Evaluation? (maybe no - * SE conf.)

7.1 JavaScript Mechanized Speci�cation
A speci�cation is mechanized if and only if it is both formalized
and executable. For JavaScript, researchers have proposed various
mechanized speci�cation in their own approaches. In 2010, Guha
et al. [8] presented �JS, the �rst mechanized speci�cation for a core
calculus of ES3 semantics by desugaring most of syntax into �JS, an
extended standard lambda calculus. Thus, the shape of �JS seman-
tics is quite di�erent with original algorithm steps. In mid 2010s,
researchers tried to de�ne mechanized speci�cation for the ES5
and 5.1 semantics having a similar shape of semantics with original
algorithm steps as much as possible. Bodin et al. [2] de�ned JSCert,
a semantics of a small subset of ES5, using Coq and extracts a refer-
ence interpreter JSRef. Park et al. [22] de�ned an entire semantics
of ES5, KJS, using the K [29], which is a framework for de�ning
language semantics. Fragoso Santos et al. [7] presented JaVerT, a

JavaScript veri�cation toolchain, including a JavaScript semantics
de�ned in their own Intermediate language, JSIL.

However, the fundamental problem of their approaches is that
they are manually de�ned thus they are labor-intensive and error-
prone. Due to such limitation, there is no existing mechanized
speci�cation for full semantics of ES6 or later versions. Therefore,
most of existing JavaScript static analyzers only focus on ES5.1
features or rarely support ES6 features even though already six
more versions from ES7 to ES12 are released since 2015.

Moreover, Park et al. [23] successfully showed that JISET is useful
tomechanically handle recent versions of ECMAScript by extending
JISET to perform N+1-version di�erential testing of both JavaScript
engines and ES11 (2020).

8 CONCLUSION
TODO

REFERENCES
[1] Roberto Amadini, Alexander Jordan, Graeme Gange, François Gauthier, Peter

Schachte, Harald Søndergaard, Peter J Stuckey, and Chenyi Zhang. 2017. Com-
bining String Abstract Domains for JavaScript Analysis: An Evaluation. In Pro-
ceedings of the 23rd International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS). https://doi.org/10.1007/978-3-
662-54577-5_3

[2] Martin Bodin, Arthur Charguéraud, Daniele Filaretti, Philippa Gardner, Sergio
Ma�eis, Daiva Naudziuniene, Alan Schmitt, and Gareth Smith. 2014. A Trusted
Mechanised JavaScript Speci�cation. Proceedings of the 41st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming (POPL) 49, 1 (2014), 87–100.
https://doi.org/10.1145/2535838.2535876

[3] David R. Chase, Mark Wegman, and F. Kenneth Zadeck. 1990. Analysis of
Pointers and Structures. In Proceedings of the ACM SIGPLAN 1990 Conference on
Programming Language Design and Implementation (PLDI) (PLDI ’90). Association
for Computing Machinery, New York, NY, USA, 296–310. https://doi.org/10.
1145/93542.93585

[4] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Uni�ed
Lattice Model for Static Analysis of Programs by Construction or Approximation
of Fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming languages (POPL). https://doi.org/10.1145/512950.
512973

[5] Patrick Cousot and Radhia Cousot. 1977. Static Determination of Dynamic
Properties of Generalized Type Unions. In Proceedings of an ACM Conference on
Language Design for Reliable Software. Association for Computing Machinery,
New York, NY, USA, 77–94. https://doi.org/10.1145/800022.808314

[6] Patrick Cousot and Radhia Cousot. 1992. Abstract Interpretation Frameworks.
Journal of Logic and Computation (JLC) 2, 4 (1992), 511–547. https://doi.org/10.
1093/logcom/2.4.511

[7] José Fragoso Santos, Petar Maksimović, Daiva Naudži = unienė, Thomas Wood,
and Philippa Gardner. 2017. JaVerT: JavaScript Veri�cation Toolchain. Proceedings
of the 44th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
(POPL) 2, POPL (2017), 1–33. https://doi.org/10.1145/3158138

[8] Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. 2010. The essence
of JavaScript. In Proceedings of the 24th European Conference on Object-Oriented
Programming (ECOOP). Springer, 126–150. https://doi.org/10.1007/978-3-642-
14107-2_7

[9] Simon Holm Jensen, Anders Møller, and Peter Thiemann. 2009. Type Analysis for
JavaScript. In Proceedings of the 16th International Symposium on Static Analysis
(SAS). https://doi.org/10.1007/978-3-642-03237-0_17

[10] Vineeth Kashyap, Kyle Dewey, Ethan A. Kuefner, John Wagner, Kevin Gib-
bons, John Sarracino, Ben Wiedermann, and Ben Hardekopf. 2014. JSAI: A
Static Analysis Platform for JavaScript. In Proceedings of the 22nd ACM SIG-
SOFT International Symposium on Foundations of Software Engineering (FSE).
https://doi.org/10.1145/2635868.2635904

[11] Se-Won Kim, Xavier Rival, and Sukyoung Ryu. 2018. A Theoretical Foundation
of Sensitivity in an Abstract Interpretation Framework. ACM Transactions on
Programming Languages and Systems (TOPLAS) 40, 3, Article 13 (2018), 44 pages.
https://doi.org/10.1145/3230624

[12] Yoonseok Ko, Xavier Rival, and Sukyoung Ryu. 2017. Weakly Sensitive Analysis
for Unbounded Iteration over JavaScript Objects. In Proceedings of the 15th Asian
Symposium on Programming Languages and Systems (APLAS). https://doi.org/10.
1007/978-3-319-71237-6_8

7

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

(a) Evaluation algorithm for identi�er references

1 syntax def IdentifierReference [0]. Evaluation(
2 this , Identifier
3) {
4 return [? (ResolveBinding (Identifier.StringValue))]
5 }

(b) Extracted IRES function for identi�er references

(c) Result of x + y via a mechanized speci�cation

Figure 7: Analysis sensitivities of the target language
(JavaScript) and the speci�cation language (IRES)

divides contexts for the evaluation of JavaScript identi�ers x and y

in the above example using their ASTs even though their program
points in IRES are the same.

Callsite Sensitivity. We also formally de�ne the callsite sensitiv-
ity [37, 38] for the target language by extending the AST sensitivity
for speci�c normal IRES functions. The original callsite sensitivity
discriminates calling contexts using their top most callsites. In EC-
MAScript, all explicit and even implicit JavaScript function calls
invoke normal IRES functions Call and Construct. Thus, we de�ne
the callsite sensitivity for the target language by extending the AST
sensitivity with two normal IRES functions:

� cfa(t 2 T) = {� = (_, c) 2 S |
syntax-ctxt � js-call-ctxt(c) = c 0 ^ c 0(this) = t}

where js-call-ctxt(c) denotes the top-most context whose function is
Call or Construct and f �� denotes a function composition. Moreover,
we extend it to the k-callsite sensitivity by recursively taking ASTs
representing callsites of the target language:

�k -cfa(t 2 Tk) = {� = (_, c) 2 S |
t = [t1, · · · , tn] ^ n k^
(ö(syntax-ctxt � js-call-ctxt)n+1(c) _ n = k)^
81 i n.
((syntax-ctxt � js-call-ctxt)i (c) = ci ^ ci (this) = ti)}

Using this callsite sensitivity for the target language, the meta-
level static analyzer could discriminate not only explicit JavaScript
function calls (e.g. f()) but also implicit JavaScript function calls,
including getters/setters, user-de�ned implicit conversions, and
implicit function calls in built-in libraries.

5 IMPLEMENTATION
We developed a prototype implementation called JSAVER, which per-
forms a meta-level static analysis for JavaScript with ECMAScript.
The tool is an extension of JISET4 and it is an open-source project5.
In this section, we describe the challenges in implementing a meta-
level static analyzer and present our solutions for them.

Layered Abstract States. Unlike traditional JavaScript static anal-
yses, a meta-level static analysis for JavaScript should track analysis
results not only for the target language JavaScript but also for the
speci�cation language IRES. Thus, the sizes of abstract states are
much larger than those of the other JavaScript static analyzers. We
implement layered abstract states to maintain only updated analysis
results compared to the initial abstract state. It signi�cantly reduces
the time to perform the join (t), meet (u), and partial order (v)
operations by considering only the updated parts in abstract states.

Closures and Continuations. The speci�cation language IRES for
ECMAScript contains more complex language features than its
simpli�ed version presented in Section 4.1, such as symbols, lists,
and list operations. Among them, the two most complex features
are closures with captured variables and �rst-class continuations be-
cause they introduce new kinds of control �ows. ECMAScript uses
closures to de�ne implicit and explicit JavaScript iterators and uses
continuations for iterators, generators, and asynchronous features
such as async, await, and the Proxy object. Therefore, we de�ne and
implement abstract closures and abstract continuations; an abstract
closure is a pair of a function and a mapping from captured vari-
ables to their abstract values, and an abstract continuation consists
of a program point, a view for analysis sensitivity, parameters, and
an abstract context.

Abstract Counting. Properties of JavaScript objects could be dy-
namically added, modi�ed, or deleted and even accessible by �rst-
class property names. Thus, in JavaScript static analysis, performing
strong updates rather than weak updates for object properties as
many as possible is important for precise analysis results. Since
records of IRES are even more dynamic than JavaScript objects, it is
also important to increase analysis precision. Therefore, we imple-
ment abstract counting [19] to increase chances to perform strong
updates for �elds of records. It checks how many times records in
the same allocation site have been allocated and performs strong
updates only for singleton records with singleton �eld values.

Loop Sensitivity. Similar to function calls, loops are also typical
merging points in static analysis. A loop sensitivity [24] is one of the
representative techniques to increase the precision of JavaScript
static analysis for loops. It discriminates contexts using a stack
of loop contexts containing loop iterations. We de�ne it under
the view-based analysis sensitivity and implement it in JSAVER to
increase the precision of IRES static analysis. Moreover, we also
de�ne and implement the loop sensitivity for JavaScript using the
loop sensitivity for IRES. Therefore, JSAVER discriminates contexts
for explicit loops such as for-in and for-of and even implicit loops
such as the assignment of arguments or the length property of
arrays.

4https://github.com/kaist-plrg/jiset
5The URL of the tool is anonymized due to a double-blind review process.

6

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

(a) Evaluation algorithm for identi�er references

1 syntax def IdentifierReference [0]. Evaluation(
2 this , Identifier
3) {
4 return [? (ResolveBinding (Identifier.StringValue))]
5 }

(b) Extracted IRES function for identi�er references

(c) Result of x + y via a mechanized speci�cation

Figure 7: Analysis sensitivities of the target language
(JavaScript) and the speci�cation language (IRES)

divides contexts for the evaluation of JavaScript identi�ers x and y

in the above example using their ASTs even though their program
points in IRES are the same.

Callsite Sensitivity. We also formally de�ne the callsite sensitiv-
ity [37, 38] for the target language by extending the AST sensitivity
for speci�c normal IRES functions. The original callsite sensitivity
discriminates calling contexts using their top most callsites. In EC-
MAScript, all explicit and even implicit JavaScript function calls
invoke normal IRES functions Call and Construct. Thus, we de�ne
the callsite sensitivity for the target language by extending the AST
sensitivity with two normal IRES functions:

� cfa(t 2 T) = {� = (_, c) 2 S |
syntax-ctxt � js-call-ctxt(c) = c 0 ^ c 0(this) = t}

where js-call-ctxt(c) denotes the top-most context whose function is
Call or Construct and f �� denotes a function composition. Moreover,
we extend it to the k-callsite sensitivity by recursively taking ASTs
representing callsites of the target language:

�k -cfa(t 2 Tk) = {� = (_, c) 2 S |
t = [t1, · · · , tn] ^ n k^
(ö(syntax-ctxt � js-call-ctxt)n+1(c) _ n = k)^
81 i n.
((syntax-ctxt � js-call-ctxt)i (c) = ci ^ ci (this) = ti)}

Using this callsite sensitivity for the target language, the meta-
level static analyzer could discriminate not only explicit JavaScript
function calls (e.g. f()) but also implicit JavaScript function calls,
including getters/setters, user-de�ned implicit conversions, and
implicit function calls in built-in libraries.

5 IMPLEMENTATION
We developed a prototype implementation called JSAVER, which per-
forms a meta-level static analysis for JavaScript with ECMAScript.
The tool is an extension of JISET4 and it is an open-source project5.
In this section, we describe the challenges in implementing a meta-
level static analyzer and present our solutions for them.

Layered Abstract States. Unlike traditional JavaScript static anal-
yses, a meta-level static analysis for JavaScript should track analysis
results not only for the target language JavaScript but also for the
speci�cation language IRES. Thus, the sizes of abstract states are
much larger than those of the other JavaScript static analyzers. We
implement layered abstract states to maintain only updated analysis
results compared to the initial abstract state. It signi�cantly reduces
the time to perform the join (t), meet (u), and partial order (v)
operations by considering only the updated parts in abstract states.

Closures and Continuations. The speci�cation language IRES for
ECMAScript contains more complex language features than its
simpli�ed version presented in Section 4.1, such as symbols, lists,
and list operations. Among them, the two most complex features
are closures with captured variables and �rst-class continuations be-
cause they introduce new kinds of control �ows. ECMAScript uses
closures to de�ne implicit and explicit JavaScript iterators and uses
continuations for iterators, generators, and asynchronous features
such as async, await, and the Proxy object. Therefore, we de�ne and
implement abstract closures and abstract continuations; an abstract
closure is a pair of a function and a mapping from captured vari-
ables to their abstract values, and an abstract continuation consists
of a program point, a view for analysis sensitivity, parameters, and
an abstract context.

Abstract Counting. Properties of JavaScript objects could be dy-
namically added, modi�ed, or deleted and even accessible by �rst-
class property names. Thus, in JavaScript static analysis, performing
strong updates rather than weak updates for object properties as
many as possible is important for precise analysis results. Since
records of IRES are even more dynamic than JavaScript objects, it is
also important to increase analysis precision. Therefore, we imple-
ment abstract counting [19] to increase chances to perform strong
updates for �elds of records. It checks how many times records in
the same allocation site have been allocated and performs strong
updates only for singleton records with singleton �eld values.

Loop Sensitivity. Similar to function calls, loops are also typical
merging points in static analysis. A loop sensitivity [24] is one of the
representative techniques to increase the precision of JavaScript
static analysis for loops. It discriminates contexts using a stack
of loop contexts containing loop iterations. We de�ne it under
the view-based analysis sensitivity and implement it in JSAVER to
increase the precision of IRES static analysis. Moreover, we also
de�ne and implement the loop sensitivity for JavaScript using the
loop sensitivity for IRES. Therefore, JSAVER discriminates contexts
for explicit loops such as for-in and for-of and even implicit loops
such as the assignment of arguments or the length property of
arrays.

4https://github.com/kaist-plrg/jiset
5The URL of the tool is anonymized due to a double-blind review process.

6

JavaScript Static Analysis for Evolving Language Specifications / 35

JSAVER - Meta-Level Static Analysis

32

x ||= y

defining-language
(IRES)

defined-language
(JavaScript) parse · · ·<latexit sha1_base64="Kef69hW4e/raBfVz+DaK6/NBFbQ=">AAACHXicbVDJSgNBEK1xjXFL9OhlMAiewowKeozLwYsQITFCJkhPp2Ka9Cx01whxmI/wqge/xpt4Ff/GnnEObg8aHu9VdVU9P5ZCk+N8WDOzc/MLi5Wl6vLK6tp6rb5xpaNEcezySEbq2mcapQixS4IkXscKWeBL7PmT09zv3aHSIgo7NI1xELDbUIwEZ2SknseHEenqTa3hNJ0C9l/ilqQBJdo3dQu8YcSTAEPikmndd52YBilTJLjErOolGmPGJ+wW+4aGLEA9SIt9M3vHKEN7FCnzQrIL9XtHygKtp4FvKgNGY/3by8X/vH5Co6NBKsI4IQz516BRIm2K7Px4eygUcpJTQxhXwuxq8zFTjJOJqOqdoblF4YX591jGY+YjpV4+Jb7nWdpxs7QgQZYKykxm7u+E/pKrvaa739y7PGi0Tsr0KrAF27ALLhxCC86hDV3gMIEHeIQn69l6sV6tt6/SGavs2YQfsN4/AabGomA=</latexit> · · ·<latexit sha1_base64="Kef69hW4e/raBfVz+DaK6/NBFbQ=">AAACHXicbVDJSgNBEK1xjXFL9OhlMAiewowKeozLwYsQITFCJkhPp2Ka9Cx01whxmI/wqge/xpt4Ff/GnnEObg8aHu9VdVU9P5ZCk+N8WDOzc/MLi5Wl6vLK6tp6rb5xpaNEcezySEbq2mcapQixS4IkXscKWeBL7PmT09zv3aHSIgo7NI1xELDbUIwEZ2SknseHEenqTa3hNJ0C9l/ilqQBJdo3dQu8YcSTAEPikmndd52YBilTJLjErOolGmPGJ+wW+4aGLEA9SIt9M3vHKEN7FCnzQrIL9XtHygKtp4FvKgNGY/3by8X/vH5Co6NBKsI4IQz516BRIm2K7Px4eygUcpJTQxhXwuxq8zFTjJOJqOqdoblF4YX591jGY+YjpV4+Jb7nWdpxs7QgQZYKykxm7u+E/pKrvaa739y7PGi0Tsr0KrAF27ALLhxCC86hDV3gMIEHeIQn69l6sV6tt6/SGavs2YQfsN4/AabGomA=</latexit>

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Automatically Deriving JavaScript Static Analyzers from Language Specifications ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

function error(e) { throw e; }

const n = ...; // [0, 99]

n |> x => x + 1 // [1, 100]

|> x => x * 2 // [2, 200]

|> x => x + 1n; // TypeError

|> error (42);

of representative techniques to increase the precision of JavaScript
static analysis for loops. It discriminates contexts using a stack of
loop contexts containing loop iterations. We de�ne it under view-
based analysis sensitivity and implement it in JSAVER to increase
the precision of IRES static analysis. Moreover, we also de�ne and
implement the loop sensitivity for JavaScript using the loop sensitiv-
ity for IRES. Therefore, our tool discriminates contexts for explicit
loops, such as for-in or for-of, and even implicit loops, such as the
length property assignment of arrays.

6 EVALUATION
• AdditiveExpression
• Identi�erReference
• Identi�er
• AssignmentExpression
• LeftHandSideExpression
• ArrowFunction

• RQ1: Coverage) How much does JSAVER cover JavaScript
language features in the latest ECMAScript (ES12, 2021)?

• RQ2: Adaptability) Could JSAVER adapt a new language
features not yet introduced in ES12?

• RQ3: Expressiveness) What kinds of abstract sensitivities
and abstract domains JSAVER can support?

• RQ4: Performance) Could JSAVER analyze JavaScript pro-
grams in a durable time?

TODO

7 RELATEDWORK
TODO

• JavaScript Static Analyzers [9, 10, 14, 27]
• JavaScript Static Analysis Techniques [1, 12, 13, 15, 18–21,
30, 34–36]

• Partial Evaluation? (maybe no - * SE conf.)

7.1 JavaScript Mechanized Speci�cation
A speci�cation is mechanized if and only if it is both formalized
and executable. For JavaScript, researchers have proposed various
mechanized speci�cation in their own approaches. In 2010, Guha
et al. [8] presented �JS, the �rst mechanized speci�cation for a core
calculus of ES3 semantics by desugaring most of syntax into �JS, an
extended standard lambda calculus. Thus, the shape of �JS seman-
tics is quite di�erent with original algorithm steps. In mid 2010s,
researchers tried to de�ne mechanized speci�cation for the ES5
and 5.1 semantics having a similar shape of semantics with original
algorithm steps as much as possible. Bodin et al. [2] de�ned JSCert,
a semantics of a small subset of ES5, using Coq and extracts a refer-
ence interpreter JSRef. Park et al. [22] de�ned an entire semantics
of ES5, KJS, using the K [29], which is a framework for de�ning
language semantics. Fragoso Santos et al. [7] presented JaVerT, a

JavaScript veri�cation toolchain, including a JavaScript semantics
de�ned in their own Intermediate language, JSIL.

However, the fundamental problem of their approaches is that
they are manually de�ned thus they are labor-intensive and error-
prone. Due to such limitation, there is no existing mechanized
speci�cation for full semantics of ES6 or later versions. Therefore,
most of existing JavaScript static analyzers only focus on ES5.1
features or rarely support ES6 features even though already six
more versions from ES7 to ES12 are released since 2015.

Moreover, Park et al. [23] successfully showed that JISET is useful
tomechanically handle recent versions of ECMAScript by extending
JISET to perform N+1-version di�erential testing of both JavaScript
engines and ES11 (2020).

8 CONCLUSION
TODO

REFERENCES
[1] Roberto Amadini, Alexander Jordan, Graeme Gange, François Gauthier, Peter

Schachte, Harald Søndergaard, Peter J Stuckey, and Chenyi Zhang. 2017. Com-
bining String Abstract Domains for JavaScript Analysis: An Evaluation. In Pro-
ceedings of the 23rd International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS). https://doi.org/10.1007/978-3-
662-54577-5_3

[2] Martin Bodin, Arthur Charguéraud, Daniele Filaretti, Philippa Gardner, Sergio
Ma�eis, Daiva Naudziuniene, Alan Schmitt, and Gareth Smith. 2014. A Trusted
Mechanised JavaScript Speci�cation. Proceedings of the 41st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming (POPL) 49, 1 (2014), 87–100.
https://doi.org/10.1145/2535838.2535876

[3] David R. Chase, Mark Wegman, and F. Kenneth Zadeck. 1990. Analysis of
Pointers and Structures. In Proceedings of the ACM SIGPLAN 1990 Conference on
Programming Language Design and Implementation (PLDI) (PLDI ’90). Association
for Computing Machinery, New York, NY, USA, 296–310. https://doi.org/10.
1145/93542.93585

[4] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Uni�ed
Lattice Model for Static Analysis of Programs by Construction or Approximation
of Fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming languages (POPL). https://doi.org/10.1145/512950.
512973

[5] Patrick Cousot and Radhia Cousot. 1977. Static Determination of Dynamic
Properties of Generalized Type Unions. In Proceedings of an ACM Conference on
Language Design for Reliable Software. Association for Computing Machinery,
New York, NY, USA, 77–94. https://doi.org/10.1145/800022.808314

[6] Patrick Cousot and Radhia Cousot. 1992. Abstract Interpretation Frameworks.
Journal of Logic and Computation (JLC) 2, 4 (1992), 511–547. https://doi.org/10.
1093/logcom/2.4.511

[7] José Fragoso Santos, Petar Maksimović, Daiva Naudži = unienė, Thomas Wood,
and Philippa Gardner. 2017. JaVerT: JavaScript Veri�cation Toolchain. Proceedings
of the 44th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
(POPL) 2, POPL (2017), 1–33. https://doi.org/10.1145/3158138

[8] Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. 2010. The essence
of JavaScript. In Proceedings of the 24th European Conference on Object-Oriented
Programming (ECOOP). Springer, 126–150. https://doi.org/10.1007/978-3-642-
14107-2_7

[9] Simon Holm Jensen, Anders Møller, and Peter Thiemann. 2009. Type Analysis for
JavaScript. In Proceedings of the 16th International Symposium on Static Analysis
(SAS). https://doi.org/10.1007/978-3-642-03237-0_17

[10] Vineeth Kashyap, Kyle Dewey, Ethan A. Kuefner, John Wagner, Kevin Gib-
bons, John Sarracino, Ben Wiedermann, and Ben Hardekopf. 2014. JSAI: A
Static Analysis Platform for JavaScript. In Proceedings of the 22nd ACM SIG-
SOFT International Symposium on Foundations of Software Engineering (FSE).
https://doi.org/10.1145/2635868.2635904

[11] Se-Won Kim, Xavier Rival, and Sukyoung Ryu. 2018. A Theoretical Foundation
of Sensitivity in an Abstract Interpretation Framework. ACM Transactions on
Programming Languages and Systems (TOPLAS) 40, 3, Article 13 (2018), 44 pages.
https://doi.org/10.1145/3230624

[12] Yoonseok Ko, Xavier Rival, and Sukyoung Ryu. 2017. Weakly Sensitive Analysis
for Unbounded Iteration over JavaScript Objects. In Proceedings of the 15th Asian
Symposium on Programming Languages and Systems (APLAS). https://doi.org/10.
1007/978-3-319-71237-6_8

7

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

(a) Evaluation algorithm for logical OR assignments.

1 syntax def AssignmentExpression [8]. Evaluation(

2 this , LeftHandSideExpression , AssignmentExpression

3) { /* entry */

4 let lref = (LeftHandSideExpression.Evaluation)

5 let lval = [? (GetValue lref)]

6 let lbool = [! (ToBoolean lval)] /* #1 */

7 if (= lbool true) /* #2 */ return lval else { /* #3 */ }

8 if (&& (IsAnonymousFunctionDefinition AssignmentExpression)

9 (LeftHandSideExpression.IsIdentifierRef)) { /* #4 */

10 let rval = (AssignmentExpression.NamedEvaluation

11 lref.ReferencedName)

12 } else { /* #5 */

13 let rref = (AssignmentExpression.Evaluation)

14 let rval = [? (GetValue rref)]

15 } /* #6 */

16 [? (PutValue lref rval)]

17 return rval

18 } /* exit */

(b) The extracted IRES function.

Figure 1: Evaluation algorithm for the eighth alternative of AssignmentExpression in ES12 and the extracted IRES function.

To alleviate this problem, we propose a novel technique called
meta-level static analysis to automatically derive a JavaScript static
analyzer from any version of ECMAScript. The main idea of the
meta-level static analysis is to indirectly analyze a target language
program by performing static analysis for a language speci�ca-
tion of the target language written in a speci�cation language with
the program as the initial input. Thus, it can signi�cantly reduce
the burden to manually design and implement static analyzers by
automatically deriving them from given language speci�cations.
Moreover, it even guarantees the soundness of derived static analyz-
ers for the target language by constructing sound abstract semantics
for the speci�cation language.

For the expressiveness of a meta-level static analysis, we also
present ways to con�gure analysis sensitivities and abstract do-
mains for a target language. Con�guring them is a typical way
to manage analysis precision and performance. First, we present
the AST sensitivity in a meta-level static analysis to express analy-
sis sensitivities for a target language such as �ow-sensitivity and
k-callsite-sensitivity (Section 4.2). Second, we present a way to
con�gure abstract domains for structures and values in a target
language (Section 4.3).

To actualize our approach for JavaScript, we present JSAVER,
JavaScript Static Analyzers via ECMAScript Representations. First,
we utilize JISET [26] to extract a mechanized speci�cation written
in an intermediate representation, IRES, from a given ECMAScript.
Thus, target and speci�cation languages are JavaScript and IRES,
respectively, for the meta-level static analysis in JSAVER. In addition,
we implement several analysis techniques to improve the perfor-
mance and precision of derived static analyzers (Section 5). We
evaluated JSAVER by deriving a JavaScript static analyzer from the
latest ECMAScript, ES12, and using the o�cial conformance tests,
Test2622.

Our contributions are as follows:
• We propose a novel concept called meta-level static analysis,
which automatically derives a static analyzer for a target

2https://github.com/tc39/test262

let f = Math.floor(Math.random () * 100);

// f: [0, 99]

f ||= x => x;

// f: [1, 99] or { name: �f�, ... }

let x = f.name;

// f: [1, 99] or { name: �f�, ... }, x: undefined or �f�

Figure 2: A running JavaScript program with a logical OR
assignment newly introduced in ES12.

language from its language speci�cation written in a speci�-
cation language.

• We actualize meta-level static analysis for JavaScript as a tool
called JSAVER. It is the �rst tool that automatically derives a
JavaScript static analyzer from any version of ECMAScript.

• We derive a static analyzer from the latest ECMAScript, ES12,
to evaluate JSAVER. The synthesized static analyzer success-
fully analyzes all applicable 18,556 o�cial conformance tests.
Moreover, we demonstrate the adaptability and expressive-
ness of JSAVER with several case studies.

2 BACKGROUND
In this section, we explain the detail of ECMAScript, the o�cial
speci�cation of JavaScript. We then introduce JISET and how it
extracts a mechanized speci�cation from it. Since our work is to
perform meta-level static analysis for JavaScript using extracted
mechanized speci�cations, it is essential to understand how EC-
MAScript describes JavaScript semantics and how JISET extracts a
mechanized speci�cation from it.

For the detailed explanation, we explain a new language feature
introduced in ES12 called logical OR assignments (Figure 1) and
use a JavaScript program (Figure 2) as a running example. It �rst
de�nes a variable f with a random integer from 0 to 99. Then, it
uses a logical OR assignment to update f with an arrow function
whose name is �f� only if f has 0 because 0 represents false but
other integers represent true. Finally, it de�nes a variable x with
f.name and its value is undefined if f has an integer or �f� otherwise.

2

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Automatically Deriving JavaScript Static Analyzers from Language Specifications ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

function error(e) { throw e; }

const n = ...; // [0, 99]

n |> x => x + 1 // [1, 100]

|> x => x * 2 // [2, 200]

|> x => x + 1n; // TypeError

|> error (42);

of representative techniques to increase the precision of JavaScript
static analysis for loops. It discriminates contexts using a stack of
loop contexts containing loop iterations. We de�ne it under view-
based analysis sensitivity and implement it in JSAVER to increase
the precision of IRES static analysis. Moreover, we also de�ne and
implement the loop sensitivity for JavaScript using the loop sensitiv-
ity for IRES. Therefore, our tool discriminates contexts for explicit
loops, such as for-in or for-of, and even implicit loops, such as the
length property assignment of arrays.

6 EVALUATION
• AdditiveExpression
• Identi�erReference
• Identi�er
• AssignmentExpression
• LeftHandSideExpression
• ArrowFunction

• RQ1: Coverage) How much does JSAVER cover JavaScript
language features in the latest ECMAScript (ES12, 2021)?

• RQ2: Adaptability) Could JSAVER adapt a new language
features not yet introduced in ES12?

• RQ3: Expressiveness) What kinds of abstract sensitivities
and abstract domains JSAVER can support?

• RQ4: Performance) Could JSAVER analyze JavaScript pro-
grams in a durable time?

TODO

7 RELATEDWORK
TODO

• JavaScript Static Analyzers [9, 10, 14, 27]
• JavaScript Static Analysis Techniques [1, 12, 13, 15, 18–21,
30, 34–36]

• Partial Evaluation? (maybe no - * SE conf.)

7.1 JavaScript Mechanized Speci�cation
A speci�cation is mechanized if and only if it is both formalized
and executable. For JavaScript, researchers have proposed various
mechanized speci�cation in their own approaches. In 2010, Guha
et al. [8] presented �JS, the �rst mechanized speci�cation for a core
calculus of ES3 semantics by desugaring most of syntax into �JS, an
extended standard lambda calculus. Thus, the shape of �JS seman-
tics is quite di�erent with original algorithm steps. In mid 2010s,
researchers tried to de�ne mechanized speci�cation for the ES5
and 5.1 semantics having a similar shape of semantics with original
algorithm steps as much as possible. Bodin et al. [2] de�ned JSCert,
a semantics of a small subset of ES5, using Coq and extracts a refer-
ence interpreter JSRef. Park et al. [22] de�ned an entire semantics
of ES5, KJS, using the K [29], which is a framework for de�ning
language semantics. Fragoso Santos et al. [7] presented JaVerT, a

JavaScript veri�cation toolchain, including a JavaScript semantics
de�ned in their own Intermediate language, JSIL.

However, the fundamental problem of their approaches is that
they are manually de�ned thus they are labor-intensive and error-
prone. Due to such limitation, there is no existing mechanized
speci�cation for full semantics of ES6 or later versions. Therefore,
most of existing JavaScript static analyzers only focus on ES5.1
features or rarely support ES6 features even though already six
more versions from ES7 to ES12 are released since 2015.

Moreover, Park et al. [23] successfully showed that JISET is useful
tomechanically handle recent versions of ECMAScript by extending
JISET to perform N+1-version di�erential testing of both JavaScript
engines and ES11 (2020).

8 CONCLUSION
TODO

REFERENCES
[1] Roberto Amadini, Alexander Jordan, Graeme Gange, François Gauthier, Peter

Schachte, Harald Søndergaard, Peter J Stuckey, and Chenyi Zhang. 2017. Com-
bining String Abstract Domains for JavaScript Analysis: An Evaluation. In Pro-
ceedings of the 23rd International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS). https://doi.org/10.1007/978-3-
662-54577-5_3

[2] Martin Bodin, Arthur Charguéraud, Daniele Filaretti, Philippa Gardner, Sergio
Ma�eis, Daiva Naudziuniene, Alan Schmitt, and Gareth Smith. 2014. A Trusted
Mechanised JavaScript Speci�cation. Proceedings of the 41st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming (POPL) 49, 1 (2014), 87–100.
https://doi.org/10.1145/2535838.2535876

[3] David R. Chase, Mark Wegman, and F. Kenneth Zadeck. 1990. Analysis of
Pointers and Structures. In Proceedings of the ACM SIGPLAN 1990 Conference on
Programming Language Design and Implementation (PLDI) (PLDI ’90). Association
for Computing Machinery, New York, NY, USA, 296–310. https://doi.org/10.
1145/93542.93585

[4] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Uni�ed
Lattice Model for Static Analysis of Programs by Construction or Approximation
of Fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming languages (POPL). https://doi.org/10.1145/512950.
512973

[5] Patrick Cousot and Radhia Cousot. 1977. Static Determination of Dynamic
Properties of Generalized Type Unions. In Proceedings of an ACM Conference on
Language Design for Reliable Software. Association for Computing Machinery,
New York, NY, USA, 77–94. https://doi.org/10.1145/800022.808314

[6] Patrick Cousot and Radhia Cousot. 1992. Abstract Interpretation Frameworks.
Journal of Logic and Computation (JLC) 2, 4 (1992), 511–547. https://doi.org/10.
1093/logcom/2.4.511

[7] José Fragoso Santos, Petar Maksimović, Daiva Naudži = unienė, Thomas Wood,
and Philippa Gardner. 2017. JaVerT: JavaScript Veri�cation Toolchain. Proceedings
of the 44th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
(POPL) 2, POPL (2017), 1–33. https://doi.org/10.1145/3158138

[8] Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. 2010. The essence
of JavaScript. In Proceedings of the 24th European Conference on Object-Oriented
Programming (ECOOP). Springer, 126–150. https://doi.org/10.1007/978-3-642-
14107-2_7

[9] Simon Holm Jensen, Anders Møller, and Peter Thiemann. 2009. Type Analysis for
JavaScript. In Proceedings of the 16th International Symposium on Static Analysis
(SAS). https://doi.org/10.1007/978-3-642-03237-0_17

[10] Vineeth Kashyap, Kyle Dewey, Ethan A. Kuefner, John Wagner, Kevin Gib-
bons, John Sarracino, Ben Wiedermann, and Ben Hardekopf. 2014. JSAI: A
Static Analysis Platform for JavaScript. In Proceedings of the 22nd ACM SIG-
SOFT International Symposium on Foundations of Software Engineering (FSE).
https://doi.org/10.1145/2635868.2635904

[11] Se-Won Kim, Xavier Rival, and Sukyoung Ryu. 2018. A Theoretical Foundation
of Sensitivity in an Abstract Interpretation Framework. ACM Transactions on
Programming Languages and Systems (TOPLAS) 40, 3, Article 13 (2018), 44 pages.
https://doi.org/10.1145/3230624

[12] Yoonseok Ko, Xavier Rival, and Sukyoung Ryu. 2017. Weakly Sensitive Analysis
for Unbounded Iteration over JavaScript Objects. In Proceedings of the 15th Asian
Symposium on Programming Languages and Systems (APLAS). https://doi.org/10.
1007/978-3-319-71237-6_8

7

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Automatically Deriving JavaScript Static Analyzers from Language Specifications ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

function error(e) { throw e; }

const n = ...; // [0, 99]

n |> x => x + 1 // [1, 100]

|> x => x * 2 // [2, 200]

|> x => x + 1n; // TypeError

|> error (42);

of representative techniques to increase the precision of JavaScript
static analysis for loops. It discriminates contexts using a stack of
loop contexts containing loop iterations. We de�ne it under view-
based analysis sensitivity and implement it in JSAVER to increase
the precision of IRES static analysis. Moreover, we also de�ne and
implement the loop sensitivity for JavaScript using the loop sensitiv-
ity for IRES. Therefore, our tool discriminates contexts for explicit
loops, such as for-in or for-of, and even implicit loops, such as the
length property assignment of arrays.

6 EVALUATION
• AdditiveExpression
• Identi�erReference
• Identi�er
• AssignmentExpression
• LeftHandSideExpression
• ArrowFunction

• RQ1: Coverage) How much does JSAVER cover JavaScript
language features in the latest ECMAScript (ES12, 2021)?

• RQ2: Adaptability) Could JSAVER adapt a new language
features not yet introduced in ES12?

• RQ3: Expressiveness) What kinds of abstract sensitivities
and abstract domains JSAVER can support?

• RQ4: Performance) Could JSAVER analyze JavaScript pro-
grams in a durable time?

TODO

7 RELATEDWORK
TODO

• JavaScript Static Analyzers [9, 10, 14, 27]
• JavaScript Static Analysis Techniques [1, 12, 13, 15, 18–21,
30, 34–36]

• Partial Evaluation? (maybe no - * SE conf.)

7.1 JavaScript Mechanized Speci�cation
A speci�cation is mechanized if and only if it is both formalized
and executable. For JavaScript, researchers have proposed various
mechanized speci�cation in their own approaches. In 2010, Guha
et al. [8] presented �JS, the �rst mechanized speci�cation for a core
calculus of ES3 semantics by desugaring most of syntax into �JS, an
extended standard lambda calculus. Thus, the shape of �JS seman-
tics is quite di�erent with original algorithm steps. In mid 2010s,
researchers tried to de�ne mechanized speci�cation for the ES5
and 5.1 semantics having a similar shape of semantics with original
algorithm steps as much as possible. Bodin et al. [2] de�ned JSCert,
a semantics of a small subset of ES5, using Coq and extracts a refer-
ence interpreter JSRef. Park et al. [22] de�ned an entire semantics
of ES5, KJS, using the K [29], which is a framework for de�ning
language semantics. Fragoso Santos et al. [7] presented JaVerT, a

JavaScript veri�cation toolchain, including a JavaScript semantics
de�ned in their own Intermediate language, JSIL.

However, the fundamental problem of their approaches is that
they are manually de�ned thus they are labor-intensive and error-
prone. Due to such limitation, there is no existing mechanized
speci�cation for full semantics of ES6 or later versions. Therefore,
most of existing JavaScript static analyzers only focus on ES5.1
features or rarely support ES6 features even though already six
more versions from ES7 to ES12 are released since 2015.

Moreover, Park et al. [23] successfully showed that JISET is useful
tomechanically handle recent versions of ECMAScript by extending
JISET to perform N+1-version di�erential testing of both JavaScript
engines and ES11 (2020).

8 CONCLUSION
TODO

REFERENCES
[1] Roberto Amadini, Alexander Jordan, Graeme Gange, François Gauthier, Peter

Schachte, Harald Søndergaard, Peter J Stuckey, and Chenyi Zhang. 2017. Com-
bining String Abstract Domains for JavaScript Analysis: An Evaluation. In Pro-
ceedings of the 23rd International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS). https://doi.org/10.1007/978-3-
662-54577-5_3

[2] Martin Bodin, Arthur Charguéraud, Daniele Filaretti, Philippa Gardner, Sergio
Ma�eis, Daiva Naudziuniene, Alan Schmitt, and Gareth Smith. 2014. A Trusted
Mechanised JavaScript Speci�cation. Proceedings of the 41st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming (POPL) 49, 1 (2014), 87–100.
https://doi.org/10.1145/2535838.2535876

[3] David R. Chase, Mark Wegman, and F. Kenneth Zadeck. 1990. Analysis of
Pointers and Structures. In Proceedings of the ACM SIGPLAN 1990 Conference on
Programming Language Design and Implementation (PLDI) (PLDI ’90). Association
for Computing Machinery, New York, NY, USA, 296–310. https://doi.org/10.
1145/93542.93585

[4] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Uni�ed
Lattice Model for Static Analysis of Programs by Construction or Approximation
of Fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming languages (POPL). https://doi.org/10.1145/512950.
512973

[5] Patrick Cousot and Radhia Cousot. 1977. Static Determination of Dynamic
Properties of Generalized Type Unions. In Proceedings of an ACM Conference on
Language Design for Reliable Software. Association for Computing Machinery,
New York, NY, USA, 77–94. https://doi.org/10.1145/800022.808314

[6] Patrick Cousot and Radhia Cousot. 1992. Abstract Interpretation Frameworks.
Journal of Logic and Computation (JLC) 2, 4 (1992), 511–547. https://doi.org/10.
1093/logcom/2.4.511

[7] José Fragoso Santos, Petar Maksimović, Daiva Naudži = unienė, Thomas Wood,
and Philippa Gardner. 2017. JaVerT: JavaScript Veri�cation Toolchain. Proceedings
of the 44th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
(POPL) 2, POPL (2017), 1–33. https://doi.org/10.1145/3158138

[8] Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. 2010. The essence
of JavaScript. In Proceedings of the 24th European Conference on Object-Oriented
Programming (ECOOP). Springer, 126–150. https://doi.org/10.1007/978-3-642-
14107-2_7

[9] Simon Holm Jensen, Anders Møller, and Peter Thiemann. 2009. Type Analysis for
JavaScript. In Proceedings of the 16th International Symposium on Static Analysis
(SAS). https://doi.org/10.1007/978-3-642-03237-0_17

[10] Vineeth Kashyap, Kyle Dewey, Ethan A. Kuefner, John Wagner, Kevin Gib-
bons, John Sarracino, Ben Wiedermann, and Ben Hardekopf. 2014. JSAI: A
Static Analysis Platform for JavaScript. In Proceedings of the 22nd ACM SIG-
SOFT International Symposium on Foundations of Software Engineering (FSE).
https://doi.org/10.1145/2635868.2635904

[11] Se-Won Kim, Xavier Rival, and Sukyoung Ryu. 2018. A Theoretical Foundation
of Sensitivity in an Abstract Interpretation Framework. ACM Transactions on
Programming Languages and Systems (TOPLAS) 40, 3, Article 13 (2018), 44 pages.
https://doi.org/10.1145/3230624

[12] Yoonseok Ko, Xavier Rival, and Sukyoung Ryu. 2017. Weakly Sensitive Analysis
for Unbounded Iteration over JavaScript Objects. In Proceedings of the 15th Asian
Symposium on Programming Languages and Systems (APLAS). https://doi.org/10.
1007/978-3-319-71237-6_8

7

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Automatically Deriving JavaScript Static Analyzers from Language Specifications ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

function error(e) { throw e; }

const n = ...; // [0, 99]

n |> x => x + 1 // [1, 100]

|> x => x * 2 // [2, 200]

|> x => x + 1n; // TypeError

|> error (42);

of representative techniques to increase the precision of JavaScript
static analysis for loops. It discriminates contexts using a stack of
loop contexts containing loop iterations. We de�ne it under view-
based analysis sensitivity and implement it in JSAVER to increase
the precision of IRES static analysis. Moreover, we also de�ne and
implement the loop sensitivity for JavaScript using the loop sensitiv-
ity for IRES. Therefore, our tool discriminates contexts for explicit
loops, such as for-in or for-of, and even implicit loops, such as the
length property assignment of arrays.

6 EVALUATION
• AdditiveExpression
• Identi�erReference
• Identi�er
• AssignmentExpression
• LeftHandSideExpression
• ArrowFunction

• RQ1: Coverage) How much does JSAVER cover JavaScript
language features in the latest ECMAScript (ES12, 2021)?

• RQ2: Adaptability) Could JSAVER adapt a new language
features not yet introduced in ES12?

• RQ3: Expressiveness) What kinds of abstract sensitivities
and abstract domains JSAVER can support?

• RQ4: Performance) Could JSAVER analyze JavaScript pro-
grams in a durable time?

TODO

7 RELATEDWORK
TODO

• JavaScript Static Analyzers [9, 10, 14, 27]
• JavaScript Static Analysis Techniques [1, 12, 13, 15, 18–21,
30, 34–36]

• Partial Evaluation? (maybe no - * SE conf.)

7.1 JavaScript Mechanized Speci�cation
A speci�cation is mechanized if and only if it is both formalized
and executable. For JavaScript, researchers have proposed various
mechanized speci�cation in their own approaches. In 2010, Guha
et al. [8] presented �JS, the �rst mechanized speci�cation for a core
calculus of ES3 semantics by desugaring most of syntax into �JS, an
extended standard lambda calculus. Thus, the shape of �JS seman-
tics is quite di�erent with original algorithm steps. In mid 2010s,
researchers tried to de�ne mechanized speci�cation for the ES5
and 5.1 semantics having a similar shape of semantics with original
algorithm steps as much as possible. Bodin et al. [2] de�ned JSCert,
a semantics of a small subset of ES5, using Coq and extracts a refer-
ence interpreter JSRef. Park et al. [22] de�ned an entire semantics
of ES5, KJS, using the K [29], which is a framework for de�ning
language semantics. Fragoso Santos et al. [7] presented JaVerT, a

JavaScript veri�cation toolchain, including a JavaScript semantics
de�ned in their own Intermediate language, JSIL.

However, the fundamental problem of their approaches is that
they are manually de�ned thus they are labor-intensive and error-
prone. Due to such limitation, there is no existing mechanized
speci�cation for full semantics of ES6 or later versions. Therefore,
most of existing JavaScript static analyzers only focus on ES5.1
features or rarely support ES6 features even though already six
more versions from ES7 to ES12 are released since 2015.

Moreover, Park et al. [23] successfully showed that JISET is useful
tomechanically handle recent versions of ECMAScript by extending
JISET to perform N+1-version di�erential testing of both JavaScript
engines and ES11 (2020).

8 CONCLUSION
TODO

REFERENCES
[1] Roberto Amadini, Alexander Jordan, Graeme Gange, François Gauthier, Peter

Schachte, Harald Søndergaard, Peter J Stuckey, and Chenyi Zhang. 2017. Com-
bining String Abstract Domains for JavaScript Analysis: An Evaluation. In Pro-
ceedings of the 23rd International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS). https://doi.org/10.1007/978-3-
662-54577-5_3

[2] Martin Bodin, Arthur Charguéraud, Daniele Filaretti, Philippa Gardner, Sergio
Ma�eis, Daiva Naudziuniene, Alan Schmitt, and Gareth Smith. 2014. A Trusted
Mechanised JavaScript Speci�cation. Proceedings of the 41st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming (POPL) 49, 1 (2014), 87–100.
https://doi.org/10.1145/2535838.2535876

[3] David R. Chase, Mark Wegman, and F. Kenneth Zadeck. 1990. Analysis of
Pointers and Structures. In Proceedings of the ACM SIGPLAN 1990 Conference on
Programming Language Design and Implementation (PLDI) (PLDI ’90). Association
for Computing Machinery, New York, NY, USA, 296–310. https://doi.org/10.
1145/93542.93585

[4] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Uni�ed
Lattice Model for Static Analysis of Programs by Construction or Approximation
of Fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming languages (POPL). https://doi.org/10.1145/512950.
512973

[5] Patrick Cousot and Radhia Cousot. 1977. Static Determination of Dynamic
Properties of Generalized Type Unions. In Proceedings of an ACM Conference on
Language Design for Reliable Software. Association for Computing Machinery,
New York, NY, USA, 77–94. https://doi.org/10.1145/800022.808314

[6] Patrick Cousot and Radhia Cousot. 1992. Abstract Interpretation Frameworks.
Journal of Logic and Computation (JLC) 2, 4 (1992), 511–547. https://doi.org/10.
1093/logcom/2.4.511

[7] José Fragoso Santos, Petar Maksimović, Daiva Naudži = unienė, Thomas Wood,
and Philippa Gardner. 2017. JaVerT: JavaScript Veri�cation Toolchain. Proceedings
of the 44th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
(POPL) 2, POPL (2017), 1–33. https://doi.org/10.1145/3158138

[8] Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. 2010. The essence
of JavaScript. In Proceedings of the 24th European Conference on Object-Oriented
Programming (ECOOP). Springer, 126–150. https://doi.org/10.1007/978-3-642-
14107-2_7

[9] Simon Holm Jensen, Anders Møller, and Peter Thiemann. 2009. Type Analysis for
JavaScript. In Proceedings of the 16th International Symposium on Static Analysis
(SAS). https://doi.org/10.1007/978-3-642-03237-0_17

[10] Vineeth Kashyap, Kyle Dewey, Ethan A. Kuefner, John Wagner, Kevin Gib-
bons, John Sarracino, Ben Wiedermann, and Ben Hardekopf. 2014. JSAI: A
Static Analysis Platform for JavaScript. In Proceedings of the 22nd ACM SIG-
SOFT International Symposium on Foundations of Software Engineering (FSE).
https://doi.org/10.1145/2635868.2635904

[11] Se-Won Kim, Xavier Rival, and Sukyoung Ryu. 2018. A Theoretical Foundation
of Sensitivity in an Abstract Interpretation Framework. ACM Transactions on
Programming Languages and Systems (TOPLAS) 40, 3, Article 13 (2018), 44 pages.
https://doi.org/10.1145/3230624

[12] Yoonseok Ko, Xavier Rival, and Sukyoung Ryu. 2017. Weakly Sensitive Analysis
for Unbounded Iteration over JavaScript Objects. In Proceedings of the 15th Asian
Symposium on Programming Languages and Systems (APLAS). https://doi.org/10.
1007/978-3-319-71237-6_8

7

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

(a) Evaluation algorithm for logical OR assignments.

1 syntax def AssignmentExpression [8]. Evaluation(

2 this , LeftHandSideExpression , AssignmentExpression

3) { /* entry */

4 let lref = (LeftHandSideExpression.Evaluation)

5 let lval = [? (GetValue lref)]

6 let lbool = [! (ToBoolean lval)] /* #1 */

7 if (= lbool true) /* #2 */ return lval else { /* #3 */ }

8 if (&& (IsAnonymousFunctionDefinition AssignmentExpression)

9 (LeftHandSideExpression.IsIdentifierRef)) { /* #4 */

10 let rval = (AssignmentExpression.NamedEvaluation

11 lref.ReferencedName)

12 } else { /* #5 */

13 let rref = (AssignmentExpression.Evaluation)

14 let rval = [? (GetValue rref)]

15 } /* #6 */

16 [? (PutValue lref rval)]

17 return rval

18 } /* exit */

(b) The extracted IRES function.

Figure 1: Evaluation algorithm for the eighth alternative of AssignmentExpression in ES12 and the extracted IRES function.

To alleviate this problem, we propose a novel technique called
meta-level static analysis to automatically derive a JavaScript static
analyzer from any version of ECMAScript. The main idea of the
meta-level static analysis is to indirectly analyze a target language
program by performing static analysis for a language speci�ca-
tion of the target language written in a speci�cation language with
the program as the initial input. Thus, it can signi�cantly reduce
the burden to manually design and implement static analyzers by
automatically deriving them from given language speci�cations.
Moreover, it even guarantees the soundness of derived static analyz-
ers for the target language by constructing sound abstract semantics
for the speci�cation language.

For the expressiveness of a meta-level static analysis, we also
present ways to con�gure analysis sensitivities and abstract do-
mains for a target language. Con�guring them is a typical way
to manage analysis precision and performance. First, we present
the AST sensitivity in a meta-level static analysis to express analy-
sis sensitivities for a target language such as �ow-sensitivity and
k-callsite-sensitivity (Section 4.2). Second, we present a way to
con�gure abstract domains for structures and values in a target
language (Section 4.3).

To actualize our approach for JavaScript, we present JSAVER,
JavaScript Static Analyzers via ECMAScript Representations. First,
we utilize JISET [26] to extract a mechanized speci�cation written
in an intermediate representation, IRES, from a given ECMAScript.
Thus, target and speci�cation languages are JavaScript and IRES,
respectively, for the meta-level static analysis in JSAVER. In addition,
we implement several analysis techniques to improve the perfor-
mance and precision of derived static analyzers (Section 5). We
evaluated JSAVER by deriving a JavaScript static analyzer from the
latest ECMAScript, ES12, and using the o�cial conformance tests,
Test2622.

Our contributions are as follows:
• We propose a novel concept called meta-level static analysis,
which automatically derives a static analyzer for a target

2https://github.com/tc39/test262

let f = Math.floor(Math.random () * 100);

// f: [0, 99]

f ||= x => x;

// f: [1, 99] or { name: �f�, ... }

let x = f.name;

// f: [1, 99] or { name: �f�, ... }, x: undefined or �f�

Figure 2: A running JavaScript program with a logical OR
assignment newly introduced in ES12.

language from its language speci�cation written in a speci�-
cation language.

• We actualize meta-level static analysis for JavaScript as a tool
called JSAVER. It is the �rst tool that automatically derives a
JavaScript static analyzer from any version of ECMAScript.

• We derive a static analyzer from the latest ECMAScript, ES12,
to evaluate JSAVER. The synthesized static analyzer success-
fully analyzes all applicable 18,556 o�cial conformance tests.
Moreover, we demonstrate the adaptability and expressive-
ness of JSAVER with several case studies.

2 BACKGROUND
In this section, we explain the detail of ECMAScript, the o�cial
speci�cation of JavaScript. We then introduce JISET and how it
extracts a mechanized speci�cation from it. Since our work is to
perform meta-level static analysis for JavaScript using extracted
mechanized speci�cations, it is essential to understand how EC-
MAScript describes JavaScript semantics and how JISET extracts a
mechanized speci�cation from it.

For the detailed explanation, we explain a new language feature
introduced in ES12 called logical OR assignments (Figure 1) and
use a JavaScript program (Figure 2) as a running example. It �rst
de�nes a variable f with a random integer from 0 to 99. Then, it
uses a logical OR assignment to update f with an arrow function
whose name is �f� only if f has 0 because 0 represents false but
other integers represent true. Finally, it de�nes a variable x with
f.name and its value is undefined if f has an integer or �f� otherwise.

2

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Automatically Deriving JavaScript Static Analyzers from Language Specifications ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

otherwise, a normal function. An instruction i is a primitive value
assignment, an operation between values, a internal �eld access, a
external �eld access, a record allocations, a function call, or a return
instruction.

States � 2 S = H ⇥ C
Heaps h 2 H = A �n��!R
Contexts c 2 C = L ⇥ (X �n��!V) ⇥ C?
Values � 2 V = Vp] A] T] F
Records r 2 R = (Vstr

�n��!V) ⇥ (Vstr
�n��!V)

States S consists of heaps H and contexts C. A heap h 2 H is a
�nite mapping from addresses to records. Each record allocation
instruction x = {} creates a unique address a 2 A di�erent with
existing addresses. A context c 2 C is a triple of 1) the program
point, 2) a local environment which is a �nite mapping from vari-
ables to values, and 3) an optional calling context. A value � 2 V
is a primitive value, an address, an AST, or a function. A record
r 2 R consists of two �nite mappings from strings to values. The
left mapping represents internal �elds accessible by internal �eld
accesses x = x[x]. On the other hand, the right one represents ex-
ternal �elds, such as variables in JavaScript environment records or
properties in JavaScript objects, and they are accessible by a exter-
nal �eld access x = x[x]ext. We formulate the concrete semantics
of a program P as a transition system ({, S�) where{✓ S⇥ S is a
transition relation between concrete states and S� is a set of initial
states.

For a meta-level static analysis, we de�ne its abstract semantics
in the abstract interpretation framework [4, 6]. Since our analysis
supports view-based analysis sensitivities [11, 24], the abstract
domain is de�ned as a mapping from views to abstract states, D# =
� ! D#, with a view abstraction � : � ! P(S) which represents
the meaning of each view � 2 �. Then, we de�ne abstract states as
follows:

Abstract States � # 2 D# = H# ⇥ C#

Abstract Heaps h# 2 H# = A# �n��!(R# ⇥ R#
ext

)
Abstract Addresses a# 2 A# = L
Abstract Contexts c# 2 C# = X �n��!V#

An abstract heaph# 2 H# is a �nitemapping from abstract addresses
A
to pairs of abstract internal records R# and abstract external

records R#
ext

. Each abstract address a# 2 A# is de�ned with the
allocation-site abstraction [3] that partitions concrete addresses A
based on their allocation sites L. An abstract context c# 2 C# is a
�nite mapping from variables to abstract values. Shapes of abstract
values V#, abstract internal (or external) records R# (or R#

ext
) are

parametric thus we can freely con�gure them.

4.2 Analysis Sensitivities
In a meta-level static analysis, analysis sensitivities of the target
language (JavaScript) are di�erent with them of the speci�cation
language (IRES). For example, we explain what happens during anal-
ysis of the following JavaScript program with the �ow-sensitivity
for IRES:

let x = 1, y = 2;

x + y; // 3

(a) Evaluation algorithm for identi�er references.

1 syntax def IdentifierReference [0]. Evaluation(

2 this , Identifier

3) {

4 return [? (ResolveBinding (Identifier.StringValue))

5 }

(b) The extracted IRES function.

(c) Parsing result of x + y (bottom) and the initial local environment
(top) of the IRES function.

Figure 7: An example of the di�erence between analysis sen-
sitivities of target and speci�cation language.

Figure 7 describes (a) the Evaluation algorithm of identi�er refer-
ences, (b) its extracted IRES function, and (c) the parsing result of
x + y and the initial local environment of the IRES function. Since
the �ow-sensitivity merges states based on the program points,
contexts for the evaluation of both identi�er references x and y are
merged. Thus, the IRES variable Identifier points to their ASTs
as described in Figure 7. Due to the imprecise merge of contexts,
StringValue of Identifier returns �x� and �y�, and ResolveBinding
with them returns both 1 and 2. Finally, the analysis result of x + y

becomes { 2, 3, 4 }.

Flow Sensitivity. To resolve this problem, we present an AST sen-
sitivity for the speci�cation language to represent �ow-sensitivity
of the target language. It is a variant of object sensitivity [17, 33]
which uses abstract addresses A# of receiver objects as views. How-
ever, unlike the object sensitivity, the AST sensitivity utilizes ASTs
T stored in the parameter this only for syntax-directed functions:

� flow(t 2 T) = {� = (_, c) 2 S | syntax-ctxt(c) = c 0 ^ c 0(this) = t}
where syntax-ctxt(c) denotes the top-most context whose function
is syntax-directed and c 0(this) denotes a lookup of the variable
this in the mapping in the context c 0. We de�ne the �ow sensitivity
for the target language using the AST sensitivity and it successfully
divides contexts for the evaluation of JavaScript identi�ers x and y

in the above example using their ASTs even though their program
points are same.

Callsite Sensitivity. We also formally de�ne the callsite sensitiv-
ity [31, 32] for the target language by extending AST sensitivity
for speci�c normal IRES functions. The original callsite sensitivity
discriminates calling contexts based on their top most callsites. In
ECMAScript, all explicit and even implicit JavaScript function calls

5

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Automatically Deriving JavaScript Static Analyzers from Language Specifications ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

function error(e) { throw e; }

const n = ...; // [0, 99]

n |> x => x + 1 // [1, 100]

|> x => x * 2 // [2, 200]

|> x => x + 1n; // TypeError

|> error (42);

of representative techniques to increase the precision of JavaScript
static analysis for loops. It discriminates contexts using a stack of
loop contexts containing loop iterations. We de�ne it under view-
based analysis sensitivity and implement it in JSAVER to increase
the precision of IRES static analysis. Moreover, we also de�ne and
implement the loop sensitivity for JavaScript using the loop sensitiv-
ity for IRES. Therefore, our tool discriminates contexts for explicit
loops, such as for-in or for-of, and even implicit loops, such as the
length property assignment of arrays.

6 EVALUATION
• AdditiveExpression
• Identi�erReference
• Identi�er
• AssignmentExpression
• LeftHandSideExpression
• ArrowFunction

• RQ1: Coverage) How much does JSAVER cover JavaScript
language features in the latest ECMAScript (ES12, 2021)?

• RQ2: Adaptability) Could JSAVER adapt a new language
features not yet introduced in ES12?

• RQ3: Expressiveness) What kinds of abstract sensitivities
and abstract domains JSAVER can support?

• RQ4: Performance) Could JSAVER analyze JavaScript pro-
grams in a durable time?

TODO

7 RELATEDWORK
TODO

• JavaScript Static Analyzers [9, 10, 14, 27]
• JavaScript Static Analysis Techniques [1, 12, 13, 15, 18–21,
30, 34–36]

• Partial Evaluation? (maybe no - * SE conf.)

7.1 JavaScript Mechanized Speci�cation
A speci�cation is mechanized if and only if it is both formalized
and executable. For JavaScript, researchers have proposed various
mechanized speci�cation in their own approaches. In 2010, Guha
et al. [8] presented �JS, the �rst mechanized speci�cation for a core
calculus of ES3 semantics by desugaring most of syntax into �JS, an
extended standard lambda calculus. Thus, the shape of �JS seman-
tics is quite di�erent with original algorithm steps. In mid 2010s,
researchers tried to de�ne mechanized speci�cation for the ES5
and 5.1 semantics having a similar shape of semantics with original
algorithm steps as much as possible. Bodin et al. [2] de�ned JSCert,
a semantics of a small subset of ES5, using Coq and extracts a refer-
ence interpreter JSRef. Park et al. [22] de�ned an entire semantics
of ES5, KJS, using the K [29], which is a framework for de�ning
language semantics. Fragoso Santos et al. [7] presented JaVerT, a

JavaScript veri�cation toolchain, including a JavaScript semantics
de�ned in their own Intermediate language, JSIL.

However, the fundamental problem of their approaches is that
they are manually de�ned thus they are labor-intensive and error-
prone. Due to such limitation, there is no existing mechanized
speci�cation for full semantics of ES6 or later versions. Therefore,
most of existing JavaScript static analyzers only focus on ES5.1
features or rarely support ES6 features even though already six
more versions from ES7 to ES12 are released since 2015.

Moreover, Park et al. [23] successfully showed that JISET is useful
tomechanically handle recent versions of ECMAScript by extending
JISET to perform N+1-version di�erential testing of both JavaScript
engines and ES11 (2020).

8 CONCLUSION
TODO

REFERENCES
[1] Roberto Amadini, Alexander Jordan, Graeme Gange, François Gauthier, Peter

Schachte, Harald Søndergaard, Peter J Stuckey, and Chenyi Zhang. 2017. Com-
bining String Abstract Domains for JavaScript Analysis: An Evaluation. In Pro-
ceedings of the 23rd International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS). https://doi.org/10.1007/978-3-
662-54577-5_3

[2] Martin Bodin, Arthur Charguéraud, Daniele Filaretti, Philippa Gardner, Sergio
Ma�eis, Daiva Naudziuniene, Alan Schmitt, and Gareth Smith. 2014. A Trusted
Mechanised JavaScript Speci�cation. Proceedings of the 41st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming (POPL) 49, 1 (2014), 87–100.
https://doi.org/10.1145/2535838.2535876

[3] David R. Chase, Mark Wegman, and F. Kenneth Zadeck. 1990. Analysis of
Pointers and Structures. In Proceedings of the ACM SIGPLAN 1990 Conference on
Programming Language Design and Implementation (PLDI) (PLDI ’90). Association
for Computing Machinery, New York, NY, USA, 296–310. https://doi.org/10.
1145/93542.93585

[4] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Uni�ed
Lattice Model for Static Analysis of Programs by Construction or Approximation
of Fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming languages (POPL). https://doi.org/10.1145/512950.
512973

[5] Patrick Cousot and Radhia Cousot. 1977. Static Determination of Dynamic
Properties of Generalized Type Unions. In Proceedings of an ACM Conference on
Language Design for Reliable Software. Association for Computing Machinery,
New York, NY, USA, 77–94. https://doi.org/10.1145/800022.808314

[6] Patrick Cousot and Radhia Cousot. 1992. Abstract Interpretation Frameworks.
Journal of Logic and Computation (JLC) 2, 4 (1992), 511–547. https://doi.org/10.
1093/logcom/2.4.511

[7] José Fragoso Santos, Petar Maksimović, Daiva Naudži = unienė, Thomas Wood,
and Philippa Gardner. 2017. JaVerT: JavaScript Veri�cation Toolchain. Proceedings
of the 44th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
(POPL) 2, POPL (2017), 1–33. https://doi.org/10.1145/3158138

[8] Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. 2010. The essence
of JavaScript. In Proceedings of the 24th European Conference on Object-Oriented
Programming (ECOOP). Springer, 126–150. https://doi.org/10.1007/978-3-642-
14107-2_7

[9] Simon Holm Jensen, Anders Møller, and Peter Thiemann. 2009. Type Analysis for
JavaScript. In Proceedings of the 16th International Symposium on Static Analysis
(SAS). https://doi.org/10.1007/978-3-642-03237-0_17

[10] Vineeth Kashyap, Kyle Dewey, Ethan A. Kuefner, John Wagner, Kevin Gib-
bons, John Sarracino, Ben Wiedermann, and Ben Hardekopf. 2014. JSAI: A
Static Analysis Platform for JavaScript. In Proceedings of the 22nd ACM SIG-
SOFT International Symposium on Foundations of Software Engineering (FSE).
https://doi.org/10.1145/2635868.2635904

[11] Se-Won Kim, Xavier Rival, and Sukyoung Ryu. 2018. A Theoretical Foundation
of Sensitivity in an Abstract Interpretation Framework. ACM Transactions on
Programming Languages and Systems (TOPLAS) 40, 3, Article 13 (2018), 44 pages.
https://doi.org/10.1145/3230624

[12] Yoonseok Ko, Xavier Rival, and Sukyoung Ryu. 2017. Weakly Sensitive Analysis
for Unbounded Iteration over JavaScript Objects. In Proceedings of the 15th Asian
Symposium on Programming Languages and Systems (APLAS). https://doi.org/10.
1007/978-3-319-71237-6_8

7

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

(a) Evaluation algorithm for identi�er references

1 syntax def IdentifierReference [0]. Evaluation(
2 this , Identifier
3) {
4 return [? (ResolveBinding (Identifier.StringValue))]
5 }

(b) Extracted IRES function for identi�er references

(c) Result of x + y via a mechanized speci�cation

Figure 7: Analysis sensitivities of the target language
(JavaScript) and the speci�cation language (IRES)

divides contexts for the evaluation of JavaScript identi�ers x and y

in the above example using their ASTs even though their program
points in IRES are the same.

Callsite Sensitivity. We also formally de�ne the callsite sensitiv-
ity [37, 38] for the target language by extending the AST sensitivity
for speci�c normal IRES functions. The original callsite sensitivity
discriminates calling contexts using their top most callsites. In EC-
MAScript, all explicit and even implicit JavaScript function calls
invoke normal IRES functions Call and Construct. Thus, we de�ne
the callsite sensitivity for the target language by extending the AST
sensitivity with two normal IRES functions:

� cfa(t 2 T) = {� = (_, c) 2 S |
syntax-ctxt � js-call-ctxt(c) = c 0 ^ c 0(this) = t}

where js-call-ctxt(c) denotes the top-most context whose function is
Call or Construct and f �� denotes a function composition. Moreover,
we extend it to the k-callsite sensitivity by recursively taking ASTs
representing callsites of the target language:

�k -cfa(t 2 Tk) = {� = (_, c) 2 S |
t = [t1, · · · , tn] ^ n k^
(ö(syntax-ctxt � js-call-ctxt)n+1(c) _ n = k)^
81 i n.
((syntax-ctxt � js-call-ctxt)i (c) = ci ^ ci (this) = ti)}

Using this callsite sensitivity for the target language, the meta-
level static analyzer could discriminate not only explicit JavaScript
function calls (e.g. f()) but also implicit JavaScript function calls,
including getters/setters, user-de�ned implicit conversions, and
implicit function calls in built-in libraries.

5 IMPLEMENTATION
We developed a prototype implementation called JSAVER, which per-
forms a meta-level static analysis for JavaScript with ECMAScript.
The tool is an extension of JISET4 and it is an open-source project5.
In this section, we describe the challenges in implementing a meta-
level static analyzer and present our solutions for them.

Layered Abstract States. Unlike traditional JavaScript static anal-
yses, a meta-level static analysis for JavaScript should track analysis
results not only for the target language JavaScript but also for the
speci�cation language IRES. Thus, the sizes of abstract states are
much larger than those of the other JavaScript static analyzers. We
implement layered abstract states to maintain only updated analysis
results compared to the initial abstract state. It signi�cantly reduces
the time to perform the join (t), meet (u), and partial order (v)
operations by considering only the updated parts in abstract states.

Closures and Continuations. The speci�cation language IRES for
ECMAScript contains more complex language features than its
simpli�ed version presented in Section 4.1, such as symbols, lists,
and list operations. Among them, the two most complex features
are closures with captured variables and �rst-class continuations be-
cause they introduce new kinds of control �ows. ECMAScript uses
closures to de�ne implicit and explicit JavaScript iterators and uses
continuations for iterators, generators, and asynchronous features
such as async, await, and the Proxy object. Therefore, we de�ne and
implement abstract closures and abstract continuations; an abstract
closure is a pair of a function and a mapping from captured vari-
ables to their abstract values, and an abstract continuation consists
of a program point, a view for analysis sensitivity, parameters, and
an abstract context.

Abstract Counting. Properties of JavaScript objects could be dy-
namically added, modi�ed, or deleted and even accessible by �rst-
class property names. Thus, in JavaScript static analysis, performing
strong updates rather than weak updates for object properties as
many as possible is important for precise analysis results. Since
records of IRES are even more dynamic than JavaScript objects, it is
also important to increase analysis precision. Therefore, we imple-
ment abstract counting [19] to increase chances to perform strong
updates for �elds of records. It checks how many times records in
the same allocation site have been allocated and performs strong
updates only for singleton records with singleton �eld values.

Loop Sensitivity. Similar to function calls, loops are also typical
merging points in static analysis. A loop sensitivity [24] is one of the
representative techniques to increase the precision of JavaScript
static analysis for loops. It discriminates contexts using a stack
of loop contexts containing loop iterations. We de�ne it under
the view-based analysis sensitivity and implement it in JSAVER to
increase the precision of IRES static analysis. Moreover, we also
de�ne and implement the loop sensitivity for JavaScript using the
loop sensitivity for IRES. Therefore, JSAVER discriminates contexts
for explicit loops such as for-in and for-of and even implicit loops
such as the assignment of arguments or the length property of
arrays.

4https://github.com/kaist-plrg/jiset
5The URL of the tool is anonymized due to a double-blind review process.

6

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

(a) Evaluation algorithm for identi�er references

1 syntax def IdentifierReference [0]. Evaluation(
2 this , Identifier
3) {
4 return [? (ResolveBinding (Identifier.StringValue))]
5 }

(b) Extracted IRES function for identi�er references

(c) Result of x + y via a mechanized speci�cation

Figure 7: Analysis sensitivities of the target language
(JavaScript) and the speci�cation language (IRES)

divides contexts for the evaluation of JavaScript identi�ers x and y

in the above example using their ASTs even though their program
points in IRES are the same.

Callsite Sensitivity. We also formally de�ne the callsite sensitiv-
ity [37, 38] for the target language by extending the AST sensitivity
for speci�c normal IRES functions. The original callsite sensitivity
discriminates calling contexts using their top most callsites. In EC-
MAScript, all explicit and even implicit JavaScript function calls
invoke normal IRES functions Call and Construct. Thus, we de�ne
the callsite sensitivity for the target language by extending the AST
sensitivity with two normal IRES functions:

� cfa(t 2 T) = {� = (_, c) 2 S |
syntax-ctxt � js-call-ctxt(c) = c 0 ^ c 0(this) = t}

where js-call-ctxt(c) denotes the top-most context whose function is
Call or Construct and f �� denotes a function composition. Moreover,
we extend it to the k-callsite sensitivity by recursively taking ASTs
representing callsites of the target language:

�k -cfa(t 2 Tk) = {� = (_, c) 2 S |
t = [t1, · · · , tn] ^ n k^
(ö(syntax-ctxt � js-call-ctxt)n+1(c) _ n = k)^
81 i n.
((syntax-ctxt � js-call-ctxt)i (c) = ci ^ ci (this) = ti)}

Using this callsite sensitivity for the target language, the meta-
level static analyzer could discriminate not only explicit JavaScript
function calls (e.g. f()) but also implicit JavaScript function calls,
including getters/setters, user-de�ned implicit conversions, and
implicit function calls in built-in libraries.

5 IMPLEMENTATION
We developed a prototype implementation called JSAVER, which per-
forms a meta-level static analysis for JavaScript with ECMAScript.
The tool is an extension of JISET4 and it is an open-source project5.
In this section, we describe the challenges in implementing a meta-
level static analyzer and present our solutions for them.

Layered Abstract States. Unlike traditional JavaScript static anal-
yses, a meta-level static analysis for JavaScript should track analysis
results not only for the target language JavaScript but also for the
speci�cation language IRES. Thus, the sizes of abstract states are
much larger than those of the other JavaScript static analyzers. We
implement layered abstract states to maintain only updated analysis
results compared to the initial abstract state. It signi�cantly reduces
the time to perform the join (t), meet (u), and partial order (v)
operations by considering only the updated parts in abstract states.

Closures and Continuations. The speci�cation language IRES for
ECMAScript contains more complex language features than its
simpli�ed version presented in Section 4.1, such as symbols, lists,
and list operations. Among them, the two most complex features
are closures with captured variables and �rst-class continuations be-
cause they introduce new kinds of control �ows. ECMAScript uses
closures to de�ne implicit and explicit JavaScript iterators and uses
continuations for iterators, generators, and asynchronous features
such as async, await, and the Proxy object. Therefore, we de�ne and
implement abstract closures and abstract continuations; an abstract
closure is a pair of a function and a mapping from captured vari-
ables to their abstract values, and an abstract continuation consists
of a program point, a view for analysis sensitivity, parameters, and
an abstract context.

Abstract Counting. Properties of JavaScript objects could be dy-
namically added, modi�ed, or deleted and even accessible by �rst-
class property names. Thus, in JavaScript static analysis, performing
strong updates rather than weak updates for object properties as
many as possible is important for precise analysis results. Since
records of IRES are even more dynamic than JavaScript objects, it is
also important to increase analysis precision. Therefore, we imple-
ment abstract counting [19] to increase chances to perform strong
updates for �elds of records. It checks how many times records in
the same allocation site have been allocated and performs strong
updates only for singleton records with singleton �eld values.

Loop Sensitivity. Similar to function calls, loops are also typical
merging points in static analysis. A loop sensitivity [24] is one of the
representative techniques to increase the precision of JavaScript
static analysis for loops. It discriminates contexts using a stack
of loop contexts containing loop iterations. We de�ne it under
the view-based analysis sensitivity and implement it in JSAVER to
increase the precision of IRES static analysis. Moreover, we also
de�ne and implement the loop sensitivity for JavaScript using the
loop sensitivity for IRES. Therefore, JSAVER discriminates contexts
for explicit loops such as for-in and for-of and even implicit loops
such as the assignment of arguments or the length property of
arrays.

4https://github.com/kaist-plrg/jiset
5The URL of the tool is anonymized due to a double-blind review process.

6

A mechanized specification from ES12

= A JavaScript interpreter

= An IRES program

JavaScript Static Analysis for Evolving Language Specifications / 35

JSAVER - Meta-Level Static Analysis

32

x ||= y

defining-language
(IRES)

defined-language
(JavaScript) parse · · ·<latexit sha1_base64="Kef69hW4e/raBfVz+DaK6/NBFbQ=">AAACHXicbVDJSgNBEK1xjXFL9OhlMAiewowKeozLwYsQITFCJkhPp2Ka9Cx01whxmI/wqge/xpt4Ff/GnnEObg8aHu9VdVU9P5ZCk+N8WDOzc/MLi5Wl6vLK6tp6rb5xpaNEcezySEbq2mcapQixS4IkXscKWeBL7PmT09zv3aHSIgo7NI1xELDbUIwEZ2SknseHEenqTa3hNJ0C9l/ilqQBJdo3dQu8YcSTAEPikmndd52YBilTJLjErOolGmPGJ+wW+4aGLEA9SIt9M3vHKEN7FCnzQrIL9XtHygKtp4FvKgNGY/3by8X/vH5Co6NBKsI4IQz516BRIm2K7Px4eygUcpJTQxhXwuxq8zFTjJOJqOqdoblF4YX591jGY+YjpV4+Jb7nWdpxs7QgQZYKykxm7u+E/pKrvaa739y7PGi0Tsr0KrAF27ALLhxCC86hDV3gMIEHeIQn69l6sV6tt6/SGavs2YQfsN4/AabGomA=</latexit> · · ·<latexit sha1_base64="Kef69hW4e/raBfVz+DaK6/NBFbQ=">AAACHXicbVDJSgNBEK1xjXFL9OhlMAiewowKeozLwYsQITFCJkhPp2Ka9Cx01whxmI/wqge/xpt4Ff/GnnEObg8aHu9VdVU9P5ZCk+N8WDOzc/MLi5Wl6vLK6tp6rb5xpaNEcezySEbq2mcapQixS4IkXscKWeBL7PmT09zv3aHSIgo7NI1xELDbUIwEZ2SknseHEenqTa3hNJ0C9l/ilqQBJdo3dQu8YcSTAEPikmndd52YBilTJLjErOolGmPGJ+wW+4aGLEA9SIt9M3vHKEN7FCnzQrIL9XtHygKtp4FvKgNGY/3by8X/vH5Co6NBKsI4IQz516BRIm2K7Px4eygUcpJTQxhXwuxq8zFTjJOJqOqdoblF4YX591jGY+YjpV4+Jb7nWdpxs7QgQZYKykxm7u+E/pKrvaa739y7PGi0Tsr0KrAF27ALLhxCC86hDV3gMIEHeIQn69l6sV6tt6/SGavs2YQfsN4/AabGomA=</latexit>

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Automatically Deriving JavaScript Static Analyzers from Language Specifications ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

function error(e) { throw e; }

const n = ...; // [0, 99]

n |> x => x + 1 // [1, 100]

|> x => x * 2 // [2, 200]

|> x => x + 1n; // TypeError

|> error (42);

of representative techniques to increase the precision of JavaScript
static analysis for loops. It discriminates contexts using a stack of
loop contexts containing loop iterations. We de�ne it under view-
based analysis sensitivity and implement it in JSAVER to increase
the precision of IRES static analysis. Moreover, we also de�ne and
implement the loop sensitivity for JavaScript using the loop sensitiv-
ity for IRES. Therefore, our tool discriminates contexts for explicit
loops, such as for-in or for-of, and even implicit loops, such as the
length property assignment of arrays.

6 EVALUATION
• AdditiveExpression
• Identi�erReference
• Identi�er
• AssignmentExpression
• LeftHandSideExpression
• ArrowFunction

• RQ1: Coverage) How much does JSAVER cover JavaScript
language features in the latest ECMAScript (ES12, 2021)?

• RQ2: Adaptability) Could JSAVER adapt a new language
features not yet introduced in ES12?

• RQ3: Expressiveness) What kinds of abstract sensitivities
and abstract domains JSAVER can support?

• RQ4: Performance) Could JSAVER analyze JavaScript pro-
grams in a durable time?

TODO

7 RELATEDWORK
TODO

• JavaScript Static Analyzers [9, 10, 14, 27]
• JavaScript Static Analysis Techniques [1, 12, 13, 15, 18–21,
30, 34–36]

• Partial Evaluation? (maybe no - * SE conf.)

7.1 JavaScript Mechanized Speci�cation
A speci�cation is mechanized if and only if it is both formalized
and executable. For JavaScript, researchers have proposed various
mechanized speci�cation in their own approaches. In 2010, Guha
et al. [8] presented �JS, the �rst mechanized speci�cation for a core
calculus of ES3 semantics by desugaring most of syntax into �JS, an
extended standard lambda calculus. Thus, the shape of �JS seman-
tics is quite di�erent with original algorithm steps. In mid 2010s,
researchers tried to de�ne mechanized speci�cation for the ES5
and 5.1 semantics having a similar shape of semantics with original
algorithm steps as much as possible. Bodin et al. [2] de�ned JSCert,
a semantics of a small subset of ES5, using Coq and extracts a refer-
ence interpreter JSRef. Park et al. [22] de�ned an entire semantics
of ES5, KJS, using the K [29], which is a framework for de�ning
language semantics. Fragoso Santos et al. [7] presented JaVerT, a

JavaScript veri�cation toolchain, including a JavaScript semantics
de�ned in their own Intermediate language, JSIL.

However, the fundamental problem of their approaches is that
they are manually de�ned thus they are labor-intensive and error-
prone. Due to such limitation, there is no existing mechanized
speci�cation for full semantics of ES6 or later versions. Therefore,
most of existing JavaScript static analyzers only focus on ES5.1
features or rarely support ES6 features even though already six
more versions from ES7 to ES12 are released since 2015.

Moreover, Park et al. [23] successfully showed that JISET is useful
tomechanically handle recent versions of ECMAScript by extending
JISET to perform N+1-version di�erential testing of both JavaScript
engines and ES11 (2020).

8 CONCLUSION
TODO

REFERENCES
[1] Roberto Amadini, Alexander Jordan, Graeme Gange, François Gauthier, Peter

Schachte, Harald Søndergaard, Peter J Stuckey, and Chenyi Zhang. 2017. Com-
bining String Abstract Domains for JavaScript Analysis: An Evaluation. In Pro-
ceedings of the 23rd International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS). https://doi.org/10.1007/978-3-
662-54577-5_3

[2] Martin Bodin, Arthur Charguéraud, Daniele Filaretti, Philippa Gardner, Sergio
Ma�eis, Daiva Naudziuniene, Alan Schmitt, and Gareth Smith. 2014. A Trusted
Mechanised JavaScript Speci�cation. Proceedings of the 41st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming (POPL) 49, 1 (2014), 87–100.
https://doi.org/10.1145/2535838.2535876

[3] David R. Chase, Mark Wegman, and F. Kenneth Zadeck. 1990. Analysis of
Pointers and Structures. In Proceedings of the ACM SIGPLAN 1990 Conference on
Programming Language Design and Implementation (PLDI) (PLDI ’90). Association
for Computing Machinery, New York, NY, USA, 296–310. https://doi.org/10.
1145/93542.93585

[4] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Uni�ed
Lattice Model for Static Analysis of Programs by Construction or Approximation
of Fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming languages (POPL). https://doi.org/10.1145/512950.
512973

[5] Patrick Cousot and Radhia Cousot. 1977. Static Determination of Dynamic
Properties of Generalized Type Unions. In Proceedings of an ACM Conference on
Language Design for Reliable Software. Association for Computing Machinery,
New York, NY, USA, 77–94. https://doi.org/10.1145/800022.808314

[6] Patrick Cousot and Radhia Cousot. 1992. Abstract Interpretation Frameworks.
Journal of Logic and Computation (JLC) 2, 4 (1992), 511–547. https://doi.org/10.
1093/logcom/2.4.511

[7] José Fragoso Santos, Petar Maksimović, Daiva Naudži = unienė, Thomas Wood,
and Philippa Gardner. 2017. JaVerT: JavaScript Veri�cation Toolchain. Proceedings
of the 44th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
(POPL) 2, POPL (2017), 1–33. https://doi.org/10.1145/3158138

[8] Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. 2010. The essence
of JavaScript. In Proceedings of the 24th European Conference on Object-Oriented
Programming (ECOOP). Springer, 126–150. https://doi.org/10.1007/978-3-642-
14107-2_7

[9] Simon Holm Jensen, Anders Møller, and Peter Thiemann. 2009. Type Analysis for
JavaScript. In Proceedings of the 16th International Symposium on Static Analysis
(SAS). https://doi.org/10.1007/978-3-642-03237-0_17

[10] Vineeth Kashyap, Kyle Dewey, Ethan A. Kuefner, John Wagner, Kevin Gib-
bons, John Sarracino, Ben Wiedermann, and Ben Hardekopf. 2014. JSAI: A
Static Analysis Platform for JavaScript. In Proceedings of the 22nd ACM SIG-
SOFT International Symposium on Foundations of Software Engineering (FSE).
https://doi.org/10.1145/2635868.2635904

[11] Se-Won Kim, Xavier Rival, and Sukyoung Ryu. 2018. A Theoretical Foundation
of Sensitivity in an Abstract Interpretation Framework. ACM Transactions on
Programming Languages and Systems (TOPLAS) 40, 3, Article 13 (2018), 44 pages.
https://doi.org/10.1145/3230624

[12] Yoonseok Ko, Xavier Rival, and Sukyoung Ryu. 2017. Weakly Sensitive Analysis
for Unbounded Iteration over JavaScript Objects. In Proceedings of the 15th Asian
Symposium on Programming Languages and Systems (APLAS). https://doi.org/10.
1007/978-3-319-71237-6_8

7

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

(a) Evaluation algorithm for logical OR assignments.

1 syntax def AssignmentExpression [8]. Evaluation(

2 this , LeftHandSideExpression , AssignmentExpression

3) { /* entry */

4 let lref = (LeftHandSideExpression.Evaluation)

5 let lval = [? (GetValue lref)]

6 let lbool = [! (ToBoolean lval)] /* #1 */

7 if (= lbool true) /* #2 */ return lval else { /* #3 */ }

8 if (&& (IsAnonymousFunctionDefinition AssignmentExpression)

9 (LeftHandSideExpression.IsIdentifierRef)) { /* #4 */

10 let rval = (AssignmentExpression.NamedEvaluation

11 lref.ReferencedName)

12 } else { /* #5 */

13 let rref = (AssignmentExpression.Evaluation)

14 let rval = [? (GetValue rref)]

15 } /* #6 */

16 [? (PutValue lref rval)]

17 return rval

18 } /* exit */

(b) The extracted IRES function.

Figure 1: Evaluation algorithm for the eighth alternative of AssignmentExpression in ES12 and the extracted IRES function.

To alleviate this problem, we propose a novel technique called
meta-level static analysis to automatically derive a JavaScript static
analyzer from any version of ECMAScript. The main idea of the
meta-level static analysis is to indirectly analyze a target language
program by performing static analysis for a language speci�ca-
tion of the target language written in a speci�cation language with
the program as the initial input. Thus, it can signi�cantly reduce
the burden to manually design and implement static analyzers by
automatically deriving them from given language speci�cations.
Moreover, it even guarantees the soundness of derived static analyz-
ers for the target language by constructing sound abstract semantics
for the speci�cation language.

For the expressiveness of a meta-level static analysis, we also
present ways to con�gure analysis sensitivities and abstract do-
mains for a target language. Con�guring them is a typical way
to manage analysis precision and performance. First, we present
the AST sensitivity in a meta-level static analysis to express analy-
sis sensitivities for a target language such as �ow-sensitivity and
k-callsite-sensitivity (Section 4.2). Second, we present a way to
con�gure abstract domains for structures and values in a target
language (Section 4.3).

To actualize our approach for JavaScript, we present JSAVER,
JavaScript Static Analyzers via ECMAScript Representations. First,
we utilize JISET [26] to extract a mechanized speci�cation written
in an intermediate representation, IRES, from a given ECMAScript.
Thus, target and speci�cation languages are JavaScript and IRES,
respectively, for the meta-level static analysis in JSAVER. In addition,
we implement several analysis techniques to improve the perfor-
mance and precision of derived static analyzers (Section 5). We
evaluated JSAVER by deriving a JavaScript static analyzer from the
latest ECMAScript, ES12, and using the o�cial conformance tests,
Test2622.

Our contributions are as follows:
• We propose a novel concept called meta-level static analysis,
which automatically derives a static analyzer for a target

2https://github.com/tc39/test262

let f = Math.floor(Math.random () * 100);

// f: [0, 99]

f ||= x => x;

// f: [1, 99] or { name: �f�, ... }

let x = f.name;

// f: [1, 99] or { name: �f�, ... }, x: undefined or �f�

Figure 2: A running JavaScript program with a logical OR
assignment newly introduced in ES12.

language from its language speci�cation written in a speci�-
cation language.

• We actualize meta-level static analysis for JavaScript as a tool
called JSAVER. It is the �rst tool that automatically derives a
JavaScript static analyzer from any version of ECMAScript.

• We derive a static analyzer from the latest ECMAScript, ES12,
to evaluate JSAVER. The synthesized static analyzer success-
fully analyzes all applicable 18,556 o�cial conformance tests.
Moreover, we demonstrate the adaptability and expressive-
ness of JSAVER with several case studies.

2 BACKGROUND
In this section, we explain the detail of ECMAScript, the o�cial
speci�cation of JavaScript. We then introduce JISET and how it
extracts a mechanized speci�cation from it. Since our work is to
perform meta-level static analysis for JavaScript using extracted
mechanized speci�cations, it is essential to understand how EC-
MAScript describes JavaScript semantics and how JISET extracts a
mechanized speci�cation from it.

For the detailed explanation, we explain a new language feature
introduced in ES12 called logical OR assignments (Figure 1) and
use a JavaScript program (Figure 2) as a running example. It �rst
de�nes a variable f with a random integer from 0 to 99. Then, it
uses a logical OR assignment to update f with an arrow function
whose name is �f� only if f has 0 because 0 represents false but
other integers represent true. Finally, it de�nes a variable x with
f.name and its value is undefined if f has an integer or �f� otherwise.

2

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Automatically Deriving JavaScript Static Analyzers from Language Specifications ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

function error(e) { throw e; }

const n = ...; // [0, 99]

n |> x => x + 1 // [1, 100]

|> x => x * 2 // [2, 200]

|> x => x + 1n; // TypeError

|> error (42);

of representative techniques to increase the precision of JavaScript
static analysis for loops. It discriminates contexts using a stack of
loop contexts containing loop iterations. We de�ne it under view-
based analysis sensitivity and implement it in JSAVER to increase
the precision of IRES static analysis. Moreover, we also de�ne and
implement the loop sensitivity for JavaScript using the loop sensitiv-
ity for IRES. Therefore, our tool discriminates contexts for explicit
loops, such as for-in or for-of, and even implicit loops, such as the
length property assignment of arrays.

6 EVALUATION
• AdditiveExpression
• Identi�erReference
• Identi�er
• AssignmentExpression
• LeftHandSideExpression
• ArrowFunction

• RQ1: Coverage) How much does JSAVER cover JavaScript
language features in the latest ECMAScript (ES12, 2021)?

• RQ2: Adaptability) Could JSAVER adapt a new language
features not yet introduced in ES12?

• RQ3: Expressiveness) What kinds of abstract sensitivities
and abstract domains JSAVER can support?

• RQ4: Performance) Could JSAVER analyze JavaScript pro-
grams in a durable time?

TODO

7 RELATEDWORK
TODO

• JavaScript Static Analyzers [9, 10, 14, 27]
• JavaScript Static Analysis Techniques [1, 12, 13, 15, 18–21,
30, 34–36]

• Partial Evaluation? (maybe no - * SE conf.)

7.1 JavaScript Mechanized Speci�cation
A speci�cation is mechanized if and only if it is both formalized
and executable. For JavaScript, researchers have proposed various
mechanized speci�cation in their own approaches. In 2010, Guha
et al. [8] presented �JS, the �rst mechanized speci�cation for a core
calculus of ES3 semantics by desugaring most of syntax into �JS, an
extended standard lambda calculus. Thus, the shape of �JS seman-
tics is quite di�erent with original algorithm steps. In mid 2010s,
researchers tried to de�ne mechanized speci�cation for the ES5
and 5.1 semantics having a similar shape of semantics with original
algorithm steps as much as possible. Bodin et al. [2] de�ned JSCert,
a semantics of a small subset of ES5, using Coq and extracts a refer-
ence interpreter JSRef. Park et al. [22] de�ned an entire semantics
of ES5, KJS, using the K [29], which is a framework for de�ning
language semantics. Fragoso Santos et al. [7] presented JaVerT, a

JavaScript veri�cation toolchain, including a JavaScript semantics
de�ned in their own Intermediate language, JSIL.

However, the fundamental problem of their approaches is that
they are manually de�ned thus they are labor-intensive and error-
prone. Due to such limitation, there is no existing mechanized
speci�cation for full semantics of ES6 or later versions. Therefore,
most of existing JavaScript static analyzers only focus on ES5.1
features or rarely support ES6 features even though already six
more versions from ES7 to ES12 are released since 2015.

Moreover, Park et al. [23] successfully showed that JISET is useful
tomechanically handle recent versions of ECMAScript by extending
JISET to perform N+1-version di�erential testing of both JavaScript
engines and ES11 (2020).

8 CONCLUSION
TODO

REFERENCES
[1] Roberto Amadini, Alexander Jordan, Graeme Gange, François Gauthier, Peter

Schachte, Harald Søndergaard, Peter J Stuckey, and Chenyi Zhang. 2017. Com-
bining String Abstract Domains for JavaScript Analysis: An Evaluation. In Pro-
ceedings of the 23rd International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS). https://doi.org/10.1007/978-3-
662-54577-5_3

[2] Martin Bodin, Arthur Charguéraud, Daniele Filaretti, Philippa Gardner, Sergio
Ma�eis, Daiva Naudziuniene, Alan Schmitt, and Gareth Smith. 2014. A Trusted
Mechanised JavaScript Speci�cation. Proceedings of the 41st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming (POPL) 49, 1 (2014), 87–100.
https://doi.org/10.1145/2535838.2535876

[3] David R. Chase, Mark Wegman, and F. Kenneth Zadeck. 1990. Analysis of
Pointers and Structures. In Proceedings of the ACM SIGPLAN 1990 Conference on
Programming Language Design and Implementation (PLDI) (PLDI ’90). Association
for Computing Machinery, New York, NY, USA, 296–310. https://doi.org/10.
1145/93542.93585

[4] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Uni�ed
Lattice Model for Static Analysis of Programs by Construction or Approximation
of Fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming languages (POPL). https://doi.org/10.1145/512950.
512973

[5] Patrick Cousot and Radhia Cousot. 1977. Static Determination of Dynamic
Properties of Generalized Type Unions. In Proceedings of an ACM Conference on
Language Design for Reliable Software. Association for Computing Machinery,
New York, NY, USA, 77–94. https://doi.org/10.1145/800022.808314

[6] Patrick Cousot and Radhia Cousot. 1992. Abstract Interpretation Frameworks.
Journal of Logic and Computation (JLC) 2, 4 (1992), 511–547. https://doi.org/10.
1093/logcom/2.4.511

[7] José Fragoso Santos, Petar Maksimović, Daiva Naudži = unienė, Thomas Wood,
and Philippa Gardner. 2017. JaVerT: JavaScript Veri�cation Toolchain. Proceedings
of the 44th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
(POPL) 2, POPL (2017), 1–33. https://doi.org/10.1145/3158138

[8] Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. 2010. The essence
of JavaScript. In Proceedings of the 24th European Conference on Object-Oriented
Programming (ECOOP). Springer, 126–150. https://doi.org/10.1007/978-3-642-
14107-2_7

[9] Simon Holm Jensen, Anders Møller, and Peter Thiemann. 2009. Type Analysis for
JavaScript. In Proceedings of the 16th International Symposium on Static Analysis
(SAS). https://doi.org/10.1007/978-3-642-03237-0_17

[10] Vineeth Kashyap, Kyle Dewey, Ethan A. Kuefner, John Wagner, Kevin Gib-
bons, John Sarracino, Ben Wiedermann, and Ben Hardekopf. 2014. JSAI: A
Static Analysis Platform for JavaScript. In Proceedings of the 22nd ACM SIG-
SOFT International Symposium on Foundations of Software Engineering (FSE).
https://doi.org/10.1145/2635868.2635904

[11] Se-Won Kim, Xavier Rival, and Sukyoung Ryu. 2018. A Theoretical Foundation
of Sensitivity in an Abstract Interpretation Framework. ACM Transactions on
Programming Languages and Systems (TOPLAS) 40, 3, Article 13 (2018), 44 pages.
https://doi.org/10.1145/3230624

[12] Yoonseok Ko, Xavier Rival, and Sukyoung Ryu. 2017. Weakly Sensitive Analysis
for Unbounded Iteration over JavaScript Objects. In Proceedings of the 15th Asian
Symposium on Programming Languages and Systems (APLAS). https://doi.org/10.
1007/978-3-319-71237-6_8

7

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Automatically Deriving JavaScript Static Analyzers from Language Specifications ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

function error(e) { throw e; }

const n = ...; // [0, 99]

n |> x => x + 1 // [1, 100]

|> x => x * 2 // [2, 200]

|> x => x + 1n; // TypeError

|> error (42);

of representative techniques to increase the precision of JavaScript
static analysis for loops. It discriminates contexts using a stack of
loop contexts containing loop iterations. We de�ne it under view-
based analysis sensitivity and implement it in JSAVER to increase
the precision of IRES static analysis. Moreover, we also de�ne and
implement the loop sensitivity for JavaScript using the loop sensitiv-
ity for IRES. Therefore, our tool discriminates contexts for explicit
loops, such as for-in or for-of, and even implicit loops, such as the
length property assignment of arrays.

6 EVALUATION
• AdditiveExpression
• Identi�erReference
• Identi�er
• AssignmentExpression
• LeftHandSideExpression
• ArrowFunction

• RQ1: Coverage) How much does JSAVER cover JavaScript
language features in the latest ECMAScript (ES12, 2021)?

• RQ2: Adaptability) Could JSAVER adapt a new language
features not yet introduced in ES12?

• RQ3: Expressiveness) What kinds of abstract sensitivities
and abstract domains JSAVER can support?

• RQ4: Performance) Could JSAVER analyze JavaScript pro-
grams in a durable time?

TODO

7 RELATEDWORK
TODO

• JavaScript Static Analyzers [9, 10, 14, 27]
• JavaScript Static Analysis Techniques [1, 12, 13, 15, 18–21,
30, 34–36]

• Partial Evaluation? (maybe no - * SE conf.)

7.1 JavaScript Mechanized Speci�cation
A speci�cation is mechanized if and only if it is both formalized
and executable. For JavaScript, researchers have proposed various
mechanized speci�cation in their own approaches. In 2010, Guha
et al. [8] presented �JS, the �rst mechanized speci�cation for a core
calculus of ES3 semantics by desugaring most of syntax into �JS, an
extended standard lambda calculus. Thus, the shape of �JS seman-
tics is quite di�erent with original algorithm steps. In mid 2010s,
researchers tried to de�ne mechanized speci�cation for the ES5
and 5.1 semantics having a similar shape of semantics with original
algorithm steps as much as possible. Bodin et al. [2] de�ned JSCert,
a semantics of a small subset of ES5, using Coq and extracts a refer-
ence interpreter JSRef. Park et al. [22] de�ned an entire semantics
of ES5, KJS, using the K [29], which is a framework for de�ning
language semantics. Fragoso Santos et al. [7] presented JaVerT, a

JavaScript veri�cation toolchain, including a JavaScript semantics
de�ned in their own Intermediate language, JSIL.

However, the fundamental problem of their approaches is that
they are manually de�ned thus they are labor-intensive and error-
prone. Due to such limitation, there is no existing mechanized
speci�cation for full semantics of ES6 or later versions. Therefore,
most of existing JavaScript static analyzers only focus on ES5.1
features or rarely support ES6 features even though already six
more versions from ES7 to ES12 are released since 2015.

Moreover, Park et al. [23] successfully showed that JISET is useful
tomechanically handle recent versions of ECMAScript by extending
JISET to perform N+1-version di�erential testing of both JavaScript
engines and ES11 (2020).

8 CONCLUSION
TODO

REFERENCES
[1] Roberto Amadini, Alexander Jordan, Graeme Gange, François Gauthier, Peter

Schachte, Harald Søndergaard, Peter J Stuckey, and Chenyi Zhang. 2017. Com-
bining String Abstract Domains for JavaScript Analysis: An Evaluation. In Pro-
ceedings of the 23rd International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS). https://doi.org/10.1007/978-3-
662-54577-5_3

[2] Martin Bodin, Arthur Charguéraud, Daniele Filaretti, Philippa Gardner, Sergio
Ma�eis, Daiva Naudziuniene, Alan Schmitt, and Gareth Smith. 2014. A Trusted
Mechanised JavaScript Speci�cation. Proceedings of the 41st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming (POPL) 49, 1 (2014), 87–100.
https://doi.org/10.1145/2535838.2535876

[3] David R. Chase, Mark Wegman, and F. Kenneth Zadeck. 1990. Analysis of
Pointers and Structures. In Proceedings of the ACM SIGPLAN 1990 Conference on
Programming Language Design and Implementation (PLDI) (PLDI ’90). Association
for Computing Machinery, New York, NY, USA, 296–310. https://doi.org/10.
1145/93542.93585

[4] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Uni�ed
Lattice Model for Static Analysis of Programs by Construction or Approximation
of Fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming languages (POPL). https://doi.org/10.1145/512950.
512973

[5] Patrick Cousot and Radhia Cousot. 1977. Static Determination of Dynamic
Properties of Generalized Type Unions. In Proceedings of an ACM Conference on
Language Design for Reliable Software. Association for Computing Machinery,
New York, NY, USA, 77–94. https://doi.org/10.1145/800022.808314

[6] Patrick Cousot and Radhia Cousot. 1992. Abstract Interpretation Frameworks.
Journal of Logic and Computation (JLC) 2, 4 (1992), 511–547. https://doi.org/10.
1093/logcom/2.4.511

[7] José Fragoso Santos, Petar Maksimović, Daiva Naudži = unienė, Thomas Wood,
and Philippa Gardner. 2017. JaVerT: JavaScript Veri�cation Toolchain. Proceedings
of the 44th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
(POPL) 2, POPL (2017), 1–33. https://doi.org/10.1145/3158138

[8] Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. 2010. The essence
of JavaScript. In Proceedings of the 24th European Conference on Object-Oriented
Programming (ECOOP). Springer, 126–150. https://doi.org/10.1007/978-3-642-
14107-2_7

[9] Simon Holm Jensen, Anders Møller, and Peter Thiemann. 2009. Type Analysis for
JavaScript. In Proceedings of the 16th International Symposium on Static Analysis
(SAS). https://doi.org/10.1007/978-3-642-03237-0_17

[10] Vineeth Kashyap, Kyle Dewey, Ethan A. Kuefner, John Wagner, Kevin Gib-
bons, John Sarracino, Ben Wiedermann, and Ben Hardekopf. 2014. JSAI: A
Static Analysis Platform for JavaScript. In Proceedings of the 22nd ACM SIG-
SOFT International Symposium on Foundations of Software Engineering (FSE).
https://doi.org/10.1145/2635868.2635904

[11] Se-Won Kim, Xavier Rival, and Sukyoung Ryu. 2018. A Theoretical Foundation
of Sensitivity in an Abstract Interpretation Framework. ACM Transactions on
Programming Languages and Systems (TOPLAS) 40, 3, Article 13 (2018), 44 pages.
https://doi.org/10.1145/3230624

[12] Yoonseok Ko, Xavier Rival, and Sukyoung Ryu. 2017. Weakly Sensitive Analysis
for Unbounded Iteration over JavaScript Objects. In Proceedings of the 15th Asian
Symposium on Programming Languages and Systems (APLAS). https://doi.org/10.
1007/978-3-319-71237-6_8

7

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Automatically Deriving JavaScript Static Analyzers from Language Specifications ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

function error(e) { throw e; }

const n = ...; // [0, 99]

n |> x => x + 1 // [1, 100]

|> x => x * 2 // [2, 200]

|> x => x + 1n; // TypeError

|> error (42);

of representative techniques to increase the precision of JavaScript
static analysis for loops. It discriminates contexts using a stack of
loop contexts containing loop iterations. We de�ne it under view-
based analysis sensitivity and implement it in JSAVER to increase
the precision of IRES static analysis. Moreover, we also de�ne and
implement the loop sensitivity for JavaScript using the loop sensitiv-
ity for IRES. Therefore, our tool discriminates contexts for explicit
loops, such as for-in or for-of, and even implicit loops, such as the
length property assignment of arrays.

6 EVALUATION
• AdditiveExpression
• Identi�erReference
• Identi�er
• AssignmentExpression
• LeftHandSideExpression
• ArrowFunction

• RQ1: Coverage) How much does JSAVER cover JavaScript
language features in the latest ECMAScript (ES12, 2021)?

• RQ2: Adaptability) Could JSAVER adapt a new language
features not yet introduced in ES12?

• RQ3: Expressiveness) What kinds of abstract sensitivities
and abstract domains JSAVER can support?

• RQ4: Performance) Could JSAVER analyze JavaScript pro-
grams in a durable time?

TODO

7 RELATEDWORK
TODO

• JavaScript Static Analyzers [9, 10, 14, 27]
• JavaScript Static Analysis Techniques [1, 12, 13, 15, 18–21,
30, 34–36]

• Partial Evaluation? (maybe no - * SE conf.)

7.1 JavaScript Mechanized Speci�cation
A speci�cation is mechanized if and only if it is both formalized
and executable. For JavaScript, researchers have proposed various
mechanized speci�cation in their own approaches. In 2010, Guha
et al. [8] presented �JS, the �rst mechanized speci�cation for a core
calculus of ES3 semantics by desugaring most of syntax into �JS, an
extended standard lambda calculus. Thus, the shape of �JS seman-
tics is quite di�erent with original algorithm steps. In mid 2010s,
researchers tried to de�ne mechanized speci�cation for the ES5
and 5.1 semantics having a similar shape of semantics with original
algorithm steps as much as possible. Bodin et al. [2] de�ned JSCert,
a semantics of a small subset of ES5, using Coq and extracts a refer-
ence interpreter JSRef. Park et al. [22] de�ned an entire semantics
of ES5, KJS, using the K [29], which is a framework for de�ning
language semantics. Fragoso Santos et al. [7] presented JaVerT, a

JavaScript veri�cation toolchain, including a JavaScript semantics
de�ned in their own Intermediate language, JSIL.

However, the fundamental problem of their approaches is that
they are manually de�ned thus they are labor-intensive and error-
prone. Due to such limitation, there is no existing mechanized
speci�cation for full semantics of ES6 or later versions. Therefore,
most of existing JavaScript static analyzers only focus on ES5.1
features or rarely support ES6 features even though already six
more versions from ES7 to ES12 are released since 2015.

Moreover, Park et al. [23] successfully showed that JISET is useful
tomechanically handle recent versions of ECMAScript by extending
JISET to perform N+1-version di�erential testing of both JavaScript
engines and ES11 (2020).

8 CONCLUSION
TODO

REFERENCES
[1] Roberto Amadini, Alexander Jordan, Graeme Gange, François Gauthier, Peter

Schachte, Harald Søndergaard, Peter J Stuckey, and Chenyi Zhang. 2017. Com-
bining String Abstract Domains for JavaScript Analysis: An Evaluation. In Pro-
ceedings of the 23rd International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS). https://doi.org/10.1007/978-3-
662-54577-5_3

[2] Martin Bodin, Arthur Charguéraud, Daniele Filaretti, Philippa Gardner, Sergio
Ma�eis, Daiva Naudziuniene, Alan Schmitt, and Gareth Smith. 2014. A Trusted
Mechanised JavaScript Speci�cation. Proceedings of the 41st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming (POPL) 49, 1 (2014), 87–100.
https://doi.org/10.1145/2535838.2535876

[3] David R. Chase, Mark Wegman, and F. Kenneth Zadeck. 1990. Analysis of
Pointers and Structures. In Proceedings of the ACM SIGPLAN 1990 Conference on
Programming Language Design and Implementation (PLDI) (PLDI ’90). Association
for Computing Machinery, New York, NY, USA, 296–310. https://doi.org/10.
1145/93542.93585

[4] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Uni�ed
Lattice Model for Static Analysis of Programs by Construction or Approximation
of Fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming languages (POPL). https://doi.org/10.1145/512950.
512973

[5] Patrick Cousot and Radhia Cousot. 1977. Static Determination of Dynamic
Properties of Generalized Type Unions. In Proceedings of an ACM Conference on
Language Design for Reliable Software. Association for Computing Machinery,
New York, NY, USA, 77–94. https://doi.org/10.1145/800022.808314

[6] Patrick Cousot and Radhia Cousot. 1992. Abstract Interpretation Frameworks.
Journal of Logic and Computation (JLC) 2, 4 (1992), 511–547. https://doi.org/10.
1093/logcom/2.4.511

[7] José Fragoso Santos, Petar Maksimović, Daiva Naudži = unienė, Thomas Wood,
and Philippa Gardner. 2017. JaVerT: JavaScript Veri�cation Toolchain. Proceedings
of the 44th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
(POPL) 2, POPL (2017), 1–33. https://doi.org/10.1145/3158138

[8] Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. 2010. The essence
of JavaScript. In Proceedings of the 24th European Conference on Object-Oriented
Programming (ECOOP). Springer, 126–150. https://doi.org/10.1007/978-3-642-
14107-2_7

[9] Simon Holm Jensen, Anders Møller, and Peter Thiemann. 2009. Type Analysis for
JavaScript. In Proceedings of the 16th International Symposium on Static Analysis
(SAS). https://doi.org/10.1007/978-3-642-03237-0_17

[10] Vineeth Kashyap, Kyle Dewey, Ethan A. Kuefner, John Wagner, Kevin Gib-
bons, John Sarracino, Ben Wiedermann, and Ben Hardekopf. 2014. JSAI: A
Static Analysis Platform for JavaScript. In Proceedings of the 22nd ACM SIG-
SOFT International Symposium on Foundations of Software Engineering (FSE).
https://doi.org/10.1145/2635868.2635904

[11] Se-Won Kim, Xavier Rival, and Sukyoung Ryu. 2018. A Theoretical Foundation
of Sensitivity in an Abstract Interpretation Framework. ACM Transactions on
Programming Languages and Systems (TOPLAS) 40, 3, Article 13 (2018), 44 pages.
https://doi.org/10.1145/3230624

[12] Yoonseok Ko, Xavier Rival, and Sukyoung Ryu. 2017. Weakly Sensitive Analysis
for Unbounded Iteration over JavaScript Objects. In Proceedings of the 15th Asian
Symposium on Programming Languages and Systems (APLAS). https://doi.org/10.
1007/978-3-319-71237-6_8

7

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

(a) Evaluation algorithm for logical OR assignments.

1 syntax def AssignmentExpression [8]. Evaluation(

2 this , LeftHandSideExpression , AssignmentExpression

3) { /* entry */

4 let lref = (LeftHandSideExpression.Evaluation)

5 let lval = [? (GetValue lref)]

6 let lbool = [! (ToBoolean lval)] /* #1 */

7 if (= lbool true) /* #2 */ return lval else { /* #3 */ }

8 if (&& (IsAnonymousFunctionDefinition AssignmentExpression)

9 (LeftHandSideExpression.IsIdentifierRef)) { /* #4 */

10 let rval = (AssignmentExpression.NamedEvaluation

11 lref.ReferencedName)

12 } else { /* #5 */

13 let rref = (AssignmentExpression.Evaluation)

14 let rval = [? (GetValue rref)]

15 } /* #6 */

16 [? (PutValue lref rval)]

17 return rval

18 } /* exit */

(b) The extracted IRES function.

Figure 1: Evaluation algorithm for the eighth alternative of AssignmentExpression in ES12 and the extracted IRES function.

To alleviate this problem, we propose a novel technique called
meta-level static analysis to automatically derive a JavaScript static
analyzer from any version of ECMAScript. The main idea of the
meta-level static analysis is to indirectly analyze a target language
program by performing static analysis for a language speci�ca-
tion of the target language written in a speci�cation language with
the program as the initial input. Thus, it can signi�cantly reduce
the burden to manually design and implement static analyzers by
automatically deriving them from given language speci�cations.
Moreover, it even guarantees the soundness of derived static analyz-
ers for the target language by constructing sound abstract semantics
for the speci�cation language.

For the expressiveness of a meta-level static analysis, we also
present ways to con�gure analysis sensitivities and abstract do-
mains for a target language. Con�guring them is a typical way
to manage analysis precision and performance. First, we present
the AST sensitivity in a meta-level static analysis to express analy-
sis sensitivities for a target language such as �ow-sensitivity and
k-callsite-sensitivity (Section 4.2). Second, we present a way to
con�gure abstract domains for structures and values in a target
language (Section 4.3).

To actualize our approach for JavaScript, we present JSAVER,
JavaScript Static Analyzers via ECMAScript Representations. First,
we utilize JISET [26] to extract a mechanized speci�cation written
in an intermediate representation, IRES, from a given ECMAScript.
Thus, target and speci�cation languages are JavaScript and IRES,
respectively, for the meta-level static analysis in JSAVER. In addition,
we implement several analysis techniques to improve the perfor-
mance and precision of derived static analyzers (Section 5). We
evaluated JSAVER by deriving a JavaScript static analyzer from the
latest ECMAScript, ES12, and using the o�cial conformance tests,
Test2622.

Our contributions are as follows:
• We propose a novel concept called meta-level static analysis,
which automatically derives a static analyzer for a target

2https://github.com/tc39/test262

let f = Math.floor(Math.random () * 100);

// f: [0, 99]

f ||= x => x;

// f: [1, 99] or { name: �f�, ... }

let x = f.name;

// f: [1, 99] or { name: �f�, ... }, x: undefined or �f�

Figure 2: A running JavaScript program with a logical OR
assignment newly introduced in ES12.

language from its language speci�cation written in a speci�-
cation language.

• We actualize meta-level static analysis for JavaScript as a tool
called JSAVER. It is the �rst tool that automatically derives a
JavaScript static analyzer from any version of ECMAScript.

• We derive a static analyzer from the latest ECMAScript, ES12,
to evaluate JSAVER. The synthesized static analyzer success-
fully analyzes all applicable 18,556 o�cial conformance tests.
Moreover, we demonstrate the adaptability and expressive-
ness of JSAVER with several case studies.

2 BACKGROUND
In this section, we explain the detail of ECMAScript, the o�cial
speci�cation of JavaScript. We then introduce JISET and how it
extracts a mechanized speci�cation from it. Since our work is to
perform meta-level static analysis for JavaScript using extracted
mechanized speci�cations, it is essential to understand how EC-
MAScript describes JavaScript semantics and how JISET extracts a
mechanized speci�cation from it.

For the detailed explanation, we explain a new language feature
introduced in ES12 called logical OR assignments (Figure 1) and
use a JavaScript program (Figure 2) as a running example. It �rst
de�nes a variable f with a random integer from 0 to 99. Then, it
uses a logical OR assignment to update f with an arrow function
whose name is �f� only if f has 0 because 0 represents false but
other integers represent true. Finally, it de�nes a variable x with
f.name and its value is undefined if f has an integer or �f� otherwise.

2

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Automatically Deriving JavaScript Static Analyzers from Language Specifications ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

otherwise, a normal function. An instruction i is a primitive value
assignment, an operation between values, a internal �eld access, a
external �eld access, a record allocations, a function call, or a return
instruction.

States � 2 S = H ⇥ C
Heaps h 2 H = A �n��!R
Contexts c 2 C = L ⇥ (X �n��!V) ⇥ C?
Values � 2 V = Vp] A] T] F
Records r 2 R = (Vstr

�n��!V) ⇥ (Vstr
�n��!V)

States S consists of heaps H and contexts C. A heap h 2 H is a
�nite mapping from addresses to records. Each record allocation
instruction x = {} creates a unique address a 2 A di�erent with
existing addresses. A context c 2 C is a triple of 1) the program
point, 2) a local environment which is a �nite mapping from vari-
ables to values, and 3) an optional calling context. A value � 2 V
is a primitive value, an address, an AST, or a function. A record
r 2 R consists of two �nite mappings from strings to values. The
left mapping represents internal �elds accessible by internal �eld
accesses x = x[x]. On the other hand, the right one represents ex-
ternal �elds, such as variables in JavaScript environment records or
properties in JavaScript objects, and they are accessible by a exter-
nal �eld access x = x[x]ext. We formulate the concrete semantics
of a program P as a transition system ({, S�) where{✓ S⇥ S is a
transition relation between concrete states and S� is a set of initial
states.

For a meta-level static analysis, we de�ne its abstract semantics
in the abstract interpretation framework [4, 6]. Since our analysis
supports view-based analysis sensitivities [11, 24], the abstract
domain is de�ned as a mapping from views to abstract states, D# =
� ! D#, with a view abstraction � : � ! P(S) which represents
the meaning of each view � 2 �. Then, we de�ne abstract states as
follows:

Abstract States � # 2 D# = H# ⇥ C#

Abstract Heaps h# 2 H# = A# �n��!(R# ⇥ R#
ext

)
Abstract Addresses a# 2 A# = L
Abstract Contexts c# 2 C# = X �n��!V#

An abstract heaph# 2 H# is a �nitemapping from abstract addresses
A
to pairs of abstract internal records R# and abstract external

records R#
ext

. Each abstract address a# 2 A# is de�ned with the
allocation-site abstraction [3] that partitions concrete addresses A
based on their allocation sites L. An abstract context c# 2 C# is a
�nite mapping from variables to abstract values. Shapes of abstract
values V#, abstract internal (or external) records R# (or R#

ext
) are

parametric thus we can freely con�gure them.

4.2 Analysis Sensitivities
In a meta-level static analysis, analysis sensitivities of the target
language (JavaScript) are di�erent with them of the speci�cation
language (IRES). For example, we explain what happens during anal-
ysis of the following JavaScript program with the �ow-sensitivity
for IRES:

let x = 1, y = 2;

x + y; // 3

(a) Evaluation algorithm for identi�er references.

1 syntax def IdentifierReference [0]. Evaluation(

2 this , Identifier

3) {

4 return [? (ResolveBinding (Identifier.StringValue))

5 }

(b) The extracted IRES function.

(c) Parsing result of x + y (bottom) and the initial local environment
(top) of the IRES function.

Figure 7: An example of the di�erence between analysis sen-
sitivities of target and speci�cation language.

Figure 7 describes (a) the Evaluation algorithm of identi�er refer-
ences, (b) its extracted IRES function, and (c) the parsing result of
x + y and the initial local environment of the IRES function. Since
the �ow-sensitivity merges states based on the program points,
contexts for the evaluation of both identi�er references x and y are
merged. Thus, the IRES variable Identifier points to their ASTs
as described in Figure 7. Due to the imprecise merge of contexts,
StringValue of Identifier returns �x� and �y�, and ResolveBinding
with them returns both 1 and 2. Finally, the analysis result of x + y

becomes { 2, 3, 4 }.

Flow Sensitivity. To resolve this problem, we present an AST sen-
sitivity for the speci�cation language to represent �ow-sensitivity
of the target language. It is a variant of object sensitivity [17, 33]
which uses abstract addresses A# of receiver objects as views. How-
ever, unlike the object sensitivity, the AST sensitivity utilizes ASTs
T stored in the parameter this only for syntax-directed functions:

� flow(t 2 T) = {� = (_, c) 2 S | syntax-ctxt(c) = c 0 ^ c 0(this) = t}
where syntax-ctxt(c) denotes the top-most context whose function
is syntax-directed and c 0(this) denotes a lookup of the variable
this in the mapping in the context c 0. We de�ne the �ow sensitivity
for the target language using the AST sensitivity and it successfully
divides contexts for the evaluation of JavaScript identi�ers x and y

in the above example using their ASTs even though their program
points are same.

Callsite Sensitivity. We also formally de�ne the callsite sensitiv-
ity [31, 32] for the target language by extending AST sensitivity
for speci�c normal IRES functions. The original callsite sensitivity
discriminates calling contexts based on their top most callsites. In
ECMAScript, all explicit and even implicit JavaScript function calls

5

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Automatically Deriving JavaScript Static Analyzers from Language Specifications ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

function error(e) { throw e; }

const n = ...; // [0, 99]

n |> x => x + 1 // [1, 100]

|> x => x * 2 // [2, 200]

|> x => x + 1n; // TypeError

|> error (42);

of representative techniques to increase the precision of JavaScript
static analysis for loops. It discriminates contexts using a stack of
loop contexts containing loop iterations. We de�ne it under view-
based analysis sensitivity and implement it in JSAVER to increase
the precision of IRES static analysis. Moreover, we also de�ne and
implement the loop sensitivity for JavaScript using the loop sensitiv-
ity for IRES. Therefore, our tool discriminates contexts for explicit
loops, such as for-in or for-of, and even implicit loops, such as the
length property assignment of arrays.

6 EVALUATION
• AdditiveExpression
• Identi�erReference
• Identi�er
• AssignmentExpression
• LeftHandSideExpression
• ArrowFunction

• RQ1: Coverage) How much does JSAVER cover JavaScript
language features in the latest ECMAScript (ES12, 2021)?

• RQ2: Adaptability) Could JSAVER adapt a new language
features not yet introduced in ES12?

• RQ3: Expressiveness) What kinds of abstract sensitivities
and abstract domains JSAVER can support?

• RQ4: Performance) Could JSAVER analyze JavaScript pro-
grams in a durable time?

TODO

7 RELATEDWORK
TODO

• JavaScript Static Analyzers [9, 10, 14, 27]
• JavaScript Static Analysis Techniques [1, 12, 13, 15, 18–21,
30, 34–36]

• Partial Evaluation? (maybe no - * SE conf.)

7.1 JavaScript Mechanized Speci�cation
A speci�cation is mechanized if and only if it is both formalized
and executable. For JavaScript, researchers have proposed various
mechanized speci�cation in their own approaches. In 2010, Guha
et al. [8] presented �JS, the �rst mechanized speci�cation for a core
calculus of ES3 semantics by desugaring most of syntax into �JS, an
extended standard lambda calculus. Thus, the shape of �JS seman-
tics is quite di�erent with original algorithm steps. In mid 2010s,
researchers tried to de�ne mechanized speci�cation for the ES5
and 5.1 semantics having a similar shape of semantics with original
algorithm steps as much as possible. Bodin et al. [2] de�ned JSCert,
a semantics of a small subset of ES5, using Coq and extracts a refer-
ence interpreter JSRef. Park et al. [22] de�ned an entire semantics
of ES5, KJS, using the K [29], which is a framework for de�ning
language semantics. Fragoso Santos et al. [7] presented JaVerT, a

JavaScript veri�cation toolchain, including a JavaScript semantics
de�ned in their own Intermediate language, JSIL.

However, the fundamental problem of their approaches is that
they are manually de�ned thus they are labor-intensive and error-
prone. Due to such limitation, there is no existing mechanized
speci�cation for full semantics of ES6 or later versions. Therefore,
most of existing JavaScript static analyzers only focus on ES5.1
features or rarely support ES6 features even though already six
more versions from ES7 to ES12 are released since 2015.

Moreover, Park et al. [23] successfully showed that JISET is useful
tomechanically handle recent versions of ECMAScript by extending
JISET to perform N+1-version di�erential testing of both JavaScript
engines and ES11 (2020).

8 CONCLUSION
TODO

REFERENCES
[1] Roberto Amadini, Alexander Jordan, Graeme Gange, François Gauthier, Peter

Schachte, Harald Søndergaard, Peter J Stuckey, and Chenyi Zhang. 2017. Com-
bining String Abstract Domains for JavaScript Analysis: An Evaluation. In Pro-
ceedings of the 23rd International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS). https://doi.org/10.1007/978-3-
662-54577-5_3

[2] Martin Bodin, Arthur Charguéraud, Daniele Filaretti, Philippa Gardner, Sergio
Ma�eis, Daiva Naudziuniene, Alan Schmitt, and Gareth Smith. 2014. A Trusted
Mechanised JavaScript Speci�cation. Proceedings of the 41st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming (POPL) 49, 1 (2014), 87–100.
https://doi.org/10.1145/2535838.2535876

[3] David R. Chase, Mark Wegman, and F. Kenneth Zadeck. 1990. Analysis of
Pointers and Structures. In Proceedings of the ACM SIGPLAN 1990 Conference on
Programming Language Design and Implementation (PLDI) (PLDI ’90). Association
for Computing Machinery, New York, NY, USA, 296–310. https://doi.org/10.
1145/93542.93585

[4] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Uni�ed
Lattice Model for Static Analysis of Programs by Construction or Approximation
of Fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming languages (POPL). https://doi.org/10.1145/512950.
512973

[5] Patrick Cousot and Radhia Cousot. 1977. Static Determination of Dynamic
Properties of Generalized Type Unions. In Proceedings of an ACM Conference on
Language Design for Reliable Software. Association for Computing Machinery,
New York, NY, USA, 77–94. https://doi.org/10.1145/800022.808314

[6] Patrick Cousot and Radhia Cousot. 1992. Abstract Interpretation Frameworks.
Journal of Logic and Computation (JLC) 2, 4 (1992), 511–547. https://doi.org/10.
1093/logcom/2.4.511

[7] José Fragoso Santos, Petar Maksimović, Daiva Naudži = unienė, Thomas Wood,
and Philippa Gardner. 2017. JaVerT: JavaScript Veri�cation Toolchain. Proceedings
of the 44th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
(POPL) 2, POPL (2017), 1–33. https://doi.org/10.1145/3158138

[8] Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. 2010. The essence
of JavaScript. In Proceedings of the 24th European Conference on Object-Oriented
Programming (ECOOP). Springer, 126–150. https://doi.org/10.1007/978-3-642-
14107-2_7

[9] Simon Holm Jensen, Anders Møller, and Peter Thiemann. 2009. Type Analysis for
JavaScript. In Proceedings of the 16th International Symposium on Static Analysis
(SAS). https://doi.org/10.1007/978-3-642-03237-0_17

[10] Vineeth Kashyap, Kyle Dewey, Ethan A. Kuefner, John Wagner, Kevin Gib-
bons, John Sarracino, Ben Wiedermann, and Ben Hardekopf. 2014. JSAI: A
Static Analysis Platform for JavaScript. In Proceedings of the 22nd ACM SIG-
SOFT International Symposium on Foundations of Software Engineering (FSE).
https://doi.org/10.1145/2635868.2635904

[11] Se-Won Kim, Xavier Rival, and Sukyoung Ryu. 2018. A Theoretical Foundation
of Sensitivity in an Abstract Interpretation Framework. ACM Transactions on
Programming Languages and Systems (TOPLAS) 40, 3, Article 13 (2018), 44 pages.
https://doi.org/10.1145/3230624

[12] Yoonseok Ko, Xavier Rival, and Sukyoung Ryu. 2017. Weakly Sensitive Analysis
for Unbounded Iteration over JavaScript Objects. In Proceedings of the 15th Asian
Symposium on Programming Languages and Systems (APLAS). https://doi.org/10.
1007/978-3-319-71237-6_8

7

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

(a) Evaluation algorithm for identi�er references

1 syntax def IdentifierReference [0]. Evaluation(
2 this , Identifier
3) {
4 return [? (ResolveBinding (Identifier.StringValue))]
5 }

(b) Extracted IRES function for identi�er references

(c) Result of x + y via a mechanized speci�cation

Figure 7: Analysis sensitivities of the target language
(JavaScript) and the speci�cation language (IRES)

divides contexts for the evaluation of JavaScript identi�ers x and y

in the above example using their ASTs even though their program
points in IRES are the same.

Callsite Sensitivity. We also formally de�ne the callsite sensitiv-
ity [37, 38] for the target language by extending the AST sensitivity
for speci�c normal IRES functions. The original callsite sensitivity
discriminates calling contexts using their top most callsites. In EC-
MAScript, all explicit and even implicit JavaScript function calls
invoke normal IRES functions Call and Construct. Thus, we de�ne
the callsite sensitivity for the target language by extending the AST
sensitivity with two normal IRES functions:

� cfa(t 2 T) = {� = (_, c) 2 S |
syntax-ctxt � js-call-ctxt(c) = c 0 ^ c 0(this) = t}

where js-call-ctxt(c) denotes the top-most context whose function is
Call or Construct and f �� denotes a function composition. Moreover,
we extend it to the k-callsite sensitivity by recursively taking ASTs
representing callsites of the target language:

�k -cfa(t 2 Tk) = {� = (_, c) 2 S |
t = [t1, · · · , tn] ^ n k^
(ö(syntax-ctxt � js-call-ctxt)n+1(c) _ n = k)^
81 i n.
((syntax-ctxt � js-call-ctxt)i (c) = ci ^ ci (this) = ti)}

Using this callsite sensitivity for the target language, the meta-
level static analyzer could discriminate not only explicit JavaScript
function calls (e.g. f()) but also implicit JavaScript function calls,
including getters/setters, user-de�ned implicit conversions, and
implicit function calls in built-in libraries.

5 IMPLEMENTATION
We developed a prototype implementation called JSAVER, which per-
forms a meta-level static analysis for JavaScript with ECMAScript.
The tool is an extension of JISET4 and it is an open-source project5.
In this section, we describe the challenges in implementing a meta-
level static analyzer and present our solutions for them.

Layered Abstract States. Unlike traditional JavaScript static anal-
yses, a meta-level static analysis for JavaScript should track analysis
results not only for the target language JavaScript but also for the
speci�cation language IRES. Thus, the sizes of abstract states are
much larger than those of the other JavaScript static analyzers. We
implement layered abstract states to maintain only updated analysis
results compared to the initial abstract state. It signi�cantly reduces
the time to perform the join (t), meet (u), and partial order (v)
operations by considering only the updated parts in abstract states.

Closures and Continuations. The speci�cation language IRES for
ECMAScript contains more complex language features than its
simpli�ed version presented in Section 4.1, such as symbols, lists,
and list operations. Among them, the two most complex features
are closures with captured variables and �rst-class continuations be-
cause they introduce new kinds of control �ows. ECMAScript uses
closures to de�ne implicit and explicit JavaScript iterators and uses
continuations for iterators, generators, and asynchronous features
such as async, await, and the Proxy object. Therefore, we de�ne and
implement abstract closures and abstract continuations; an abstract
closure is a pair of a function and a mapping from captured vari-
ables to their abstract values, and an abstract continuation consists
of a program point, a view for analysis sensitivity, parameters, and
an abstract context.

Abstract Counting. Properties of JavaScript objects could be dy-
namically added, modi�ed, or deleted and even accessible by �rst-
class property names. Thus, in JavaScript static analysis, performing
strong updates rather than weak updates for object properties as
many as possible is important for precise analysis results. Since
records of IRES are even more dynamic than JavaScript objects, it is
also important to increase analysis precision. Therefore, we imple-
ment abstract counting [19] to increase chances to perform strong
updates for �elds of records. It checks how many times records in
the same allocation site have been allocated and performs strong
updates only for singleton records with singleton �eld values.

Loop Sensitivity. Similar to function calls, loops are also typical
merging points in static analysis. A loop sensitivity [24] is one of the
representative techniques to increase the precision of JavaScript
static analysis for loops. It discriminates contexts using a stack
of loop contexts containing loop iterations. We de�ne it under
the view-based analysis sensitivity and implement it in JSAVER to
increase the precision of IRES static analysis. Moreover, we also
de�ne and implement the loop sensitivity for JavaScript using the
loop sensitivity for IRES. Therefore, JSAVER discriminates contexts
for explicit loops such as for-in and for-of and even implicit loops
such as the assignment of arguments or the length property of
arrays.

4https://github.com/kaist-plrg/jiset
5The URL of the tool is anonymized due to a double-blind review process.

6

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

(a) Evaluation algorithm for identi�er references

1 syntax def IdentifierReference [0]. Evaluation(
2 this , Identifier
3) {
4 return [? (ResolveBinding (Identifier.StringValue))]
5 }

(b) Extracted IRES function for identi�er references

(c) Result of x + y via a mechanized speci�cation

Figure 7: Analysis sensitivities of the target language
(JavaScript) and the speci�cation language (IRES)

divides contexts for the evaluation of JavaScript identi�ers x and y

in the above example using their ASTs even though their program
points in IRES are the same.

Callsite Sensitivity. We also formally de�ne the callsite sensitiv-
ity [37, 38] for the target language by extending the AST sensitivity
for speci�c normal IRES functions. The original callsite sensitivity
discriminates calling contexts using their top most callsites. In EC-
MAScript, all explicit and even implicit JavaScript function calls
invoke normal IRES functions Call and Construct. Thus, we de�ne
the callsite sensitivity for the target language by extending the AST
sensitivity with two normal IRES functions:

� cfa(t 2 T) = {� = (_, c) 2 S |
syntax-ctxt � js-call-ctxt(c) = c 0 ^ c 0(this) = t}

where js-call-ctxt(c) denotes the top-most context whose function is
Call or Construct and f �� denotes a function composition. Moreover,
we extend it to the k-callsite sensitivity by recursively taking ASTs
representing callsites of the target language:

�k -cfa(t 2 Tk) = {� = (_, c) 2 S |
t = [t1, · · · , tn] ^ n k^
(ö(syntax-ctxt � js-call-ctxt)n+1(c) _ n = k)^
81 i n.
((syntax-ctxt � js-call-ctxt)i (c) = ci ^ ci (this) = ti)}

Using this callsite sensitivity for the target language, the meta-
level static analyzer could discriminate not only explicit JavaScript
function calls (e.g. f()) but also implicit JavaScript function calls,
including getters/setters, user-de�ned implicit conversions, and
implicit function calls in built-in libraries.

5 IMPLEMENTATION
We developed a prototype implementation called JSAVER, which per-
forms a meta-level static analysis for JavaScript with ECMAScript.
The tool is an extension of JISET4 and it is an open-source project5.
In this section, we describe the challenges in implementing a meta-
level static analyzer and present our solutions for them.

Layered Abstract States. Unlike traditional JavaScript static anal-
yses, a meta-level static analysis for JavaScript should track analysis
results not only for the target language JavaScript but also for the
speci�cation language IRES. Thus, the sizes of abstract states are
much larger than those of the other JavaScript static analyzers. We
implement layered abstract states to maintain only updated analysis
results compared to the initial abstract state. It signi�cantly reduces
the time to perform the join (t), meet (u), and partial order (v)
operations by considering only the updated parts in abstract states.

Closures and Continuations. The speci�cation language IRES for
ECMAScript contains more complex language features than its
simpli�ed version presented in Section 4.1, such as symbols, lists,
and list operations. Among them, the two most complex features
are closures with captured variables and �rst-class continuations be-
cause they introduce new kinds of control �ows. ECMAScript uses
closures to de�ne implicit and explicit JavaScript iterators and uses
continuations for iterators, generators, and asynchronous features
such as async, await, and the Proxy object. Therefore, we de�ne and
implement abstract closures and abstract continuations; an abstract
closure is a pair of a function and a mapping from captured vari-
ables to their abstract values, and an abstract continuation consists
of a program point, a view for analysis sensitivity, parameters, and
an abstract context.

Abstract Counting. Properties of JavaScript objects could be dy-
namically added, modi�ed, or deleted and even accessible by �rst-
class property names. Thus, in JavaScript static analysis, performing
strong updates rather than weak updates for object properties as
many as possible is important for precise analysis results. Since
records of IRES are even more dynamic than JavaScript objects, it is
also important to increase analysis precision. Therefore, we imple-
ment abstract counting [19] to increase chances to perform strong
updates for �elds of records. It checks how many times records in
the same allocation site have been allocated and performs strong
updates only for singleton records with singleton �eld values.

Loop Sensitivity. Similar to function calls, loops are also typical
merging points in static analysis. A loop sensitivity [24] is one of the
representative techniques to increase the precision of JavaScript
static analysis for loops. It discriminates contexts using a stack
of loop contexts containing loop iterations. We de�ne it under
the view-based analysis sensitivity and implement it in JSAVER to
increase the precision of IRES static analysis. Moreover, we also
de�ne and implement the loop sensitivity for JavaScript using the
loop sensitivity for IRES. Therefore, JSAVER discriminates contexts
for explicit loops such as for-in and for-of and even implicit loops
such as the assignment of arguments or the length property of
arrays.

4https://github.com/kaist-plrg/jiset
5The URL of the tool is anonymized due to a double-blind review process.

6

A mechanized specification from ES12

= A JavaScript interpreter

= An IRES program

JavaScript Static Analysis for Evolving Language Specifications / 35

JSAVER In submission

33

JavaScript Static Analyzer via ECMAScript Representation

Abstract

Transfer Func.

Initial

Abstract State

Analysis

Result

DCS �¿�. 1•Xî ⌅\¯ò� ∏¥ Ö8| ⌅\ ê§lΩ∏ �� Ñ�.
⌅∞YÄ . 2022D. 46+iv Ω. ¿ƒP⇠: X��. (�8 |8)
Jihyeok Park. JavaScript Static Analysis for Evolving Language Specifica-
tions. School of Computing . 2022. 46+iv pages. Advisor: Sukyoung Ryu.
(Text in English)

�]

ê§lΩ∏X Ÿ�x 1»¸ ı°\ X¯`@ ê§lΩ∏ ⌅\¯®‰X âŸD �UXå ttX0 ¥

5å Ã‡‰. lê‰@ t| t∞X‡ê ‰ë\ ê§lΩ∏ �� Ñ�0‰D ⌧⌧tT¿Ã, t‰@
®P ⇠Ÿ<\ $ƒ� ⇠»0– xŸ—}�t‡ $X– Ë}X‰. ⇣\, 2014D –Ä0 ê§lΩ∏X
∏¥ Ö8� ‰D 1‡⇠0 ‹ëXt⌧ t 8⌧î T Ï�tL‰. ¯ Y⌅ |8–⌧î ê§lΩ∏ ∏¥
Ö8\Ä0êŸ<\ê§lΩ∏��Ñ�0| ƒt¥î»\¥)›D⌧H\‰. tî 1)0ƒTÖ8
îú, 2) 0ƒT Ö8 ®1 Ä¨, ¯¨‡ 3) �� Ñ�0 ƒX 8 �¿ Ëƒ\ l1⌧‰. ¯ |8–⌧î
0ƒT Ö8 îú 0 D ⌧HX‡, t| t©t �• \‡ ê§lΩ∏ Ö8\Ä0 0ƒT Ö8| îú
\‰. ⇣\, ê§lΩ∏ ‘ƒD t©\ N+1-Ñ⌅ (Ñ L§⇧¸ 0ƒT Ö8X ¿Ö Ñ�D ⌧HX‡,
t| µt Ö8 ✏ ‘ƒX ∞hD Äú\‰. \Ö�<\, T¿ �� Ñ� 0 D ⌧HX‡, îú\ 0ƒT
Ö8\Ä0 êŸ<\ ê§lΩ∏ �� Ñ�0| ƒ\‰. ¯ Y⌅ |8–⌧ ⌧‹\)›@ ⌅\¯ò�
∏¥| ⌅\ Ö8, L§∏, ¯¨‡ ƒl‰X ıƒT| ⌅\ lX 0¿D »(` É<\ 0�\‰.

u Ï ± – ê§lΩ∏, 0ƒT Ö8 îú, Ö8 ¿Ö Ñ�, N+1-Ñ⌅ (Ñ L§⇧, T¿ �� Ñ�

Abstract
The highly dynamic nature and complex semantics of JavaScript make it difficult to correctly understand
the behaviors of JavaScript programs. To automatically reason about them, researchers have developed
various JavaScript static analyzers that conform to ECMAScript, the standard specification of JavaScript.
However, all the existing JavaScript static analyzers are manually designed; thus, the current approach
is labor-intensive and error-prone. Moreover, since late 2014, this problem becomes more critical because
the JavaScript language itself rapidly evolves with a yearly release cadence and open development process.

In this thesis, we introduce a novel approach to automatically derive JavaScript static analyzers
from any version of ECMAScript. Our approach consists of three steps: 1) mechanized specification
extraction, 2) mechanized specification validity check, and 3) derivation of static analyzers. First, we
present a tool JISET that automatically extracts a mechanized specification from ECMAScript. We show
that it successfully extracts a mechanized specification from the latest ECMAScript. Then, we present
two different tools to detect bugs in JavaScript specifications and engines; JEST performs N+1-version
differential testing with JavaScript engines and JSTAR performs a type analysis for the mechanized
specification. Finally, we present JSAVER that automatically derives JavaScript static analyzers from
mechanized specifications using a meta-level static analysis. For evaluation, we derive a JavaScript
static analyzer from the latest ECMAScript and show that it successfully analyzes all applicable official
conformance tests in a sound way. We believe that the thesis would be the first step towards the
co-evolution of specifications, tests, and tools for programming languages.

Keywords JavaScript, mechanized specification extraction, N+1-version differential testing, specifica-
tion type analysis, meta-level static analysis.

Analysis

initializer

Abstract

Syntax Tree

IRES

Functions

JavaScript

Parser

JavaScript

Programs

Mechanized

Specification

JavaScript Static Analysis for Evolving Language Specifications / 35

JSAVER - Static Analyzer Derivation

34

Mechanized

Spec. for ES12

JavaScript

Programs

DCS �¿�. 1•Xî ⌅\¯ò� ∏¥ Ö8| ⌅\ ê§lΩ∏ �� Ñ�.
⌅∞YÄ . 2022D. 46+iv Ω. ¿ƒP⇠: X��. (�8 |8)
Jihyeok Park. JavaScript Static Analysis for Evolving Language Specifica-
tions. School of Computing . 2022. 46+iv pages. Advisor: Sukyoung Ryu.
(Text in English)

�]

ê§lΩ∏X Ÿ�x 1»¸ ı°\ X¯`@ ê§lΩ∏ ⌅\¯®‰X âŸD �UXå ttX0 ¥

5å Ã‡‰. lê‰@ t| t∞X‡ê ‰ë\ ê§lΩ∏ �� Ñ�0‰D ⌧⌧tT¿Ã, t‰@
®P ⇠Ÿ<\ $ƒ� ⇠»0– xŸ—}�t‡ $X– Ë}X‰. ⇣\, 2014D –Ä0 ê§lΩ∏X
∏¥ Ö8� ‰D 1‡⇠0 ‹ëXt⌧ t 8⌧î T Ï�tL‰. ¯ Y⌅ |8–⌧î ê§lΩ∏ ∏¥
Ö8\Ä0êŸ<\ê§lΩ∏��Ñ�0| ƒt¥î»\¥)›D⌧H\‰. tî 1)0ƒTÖ8
îú, 2) 0ƒT Ö8 ®1 Ä¨, ¯¨‡ 3) �� Ñ�0 ƒX 8 �¿ Ëƒ\ l1⌧‰. ¯ |8–⌧î
0ƒT Ö8 îú 0 D ⌧HX‡, t| t©t �• \‡ ê§lΩ∏ Ö8\Ä0 0ƒT Ö8| îú
\‰. ⇣\, ê§lΩ∏ ‘ƒD t©\ N+1-Ñ⌅ (Ñ L§⇧¸ 0ƒT Ö8X ¿Ö Ñ�D ⌧HX‡,
t| µt Ö8 ✏ ‘ƒX ∞hD Äú\‰. \Ö�<\, T¿ �� Ñ� 0 D ⌧HX‡, îú\ 0ƒT
Ö8\Ä0 êŸ<\ ê§lΩ∏ �� Ñ�0| ƒ\‰. ¯ Y⌅ |8–⌧ ⌧‹\)›@ ⌅\¯ò�
∏¥| ⌅\ Ö8, L§∏, ¯¨‡ ƒl‰X ıƒT| ⌅\ lX 0¿D »(` É<\ 0�\‰.

u Ï ± – ê§lΩ∏, 0ƒT Ö8 îú, Ö8 ¿Ö Ñ�, N+1-Ñ⌅ (Ñ L§⇧, T¿ �� Ñ�

Abstract
The highly dynamic nature and complex semantics of JavaScript make it difficult to correctly understand
the behaviors of JavaScript programs. To automatically reason about them, researchers have developed
various JavaScript static analyzers that conform to ECMAScript, the standard specification of JavaScript.
However, all the existing JavaScript static analyzers are manually designed; thus, the current approach
is labor-intensive and error-prone. Moreover, since late 2014, this problem becomes more critical because
the JavaScript language itself rapidly evolves with a yearly release cadence and open development process.

In this thesis, we introduce a novel approach to automatically derive JavaScript static analyzers
from any version of ECMAScript. Our approach consists of three steps: 1) mechanized specification
extraction, 2) mechanized specification validity check, and 3) derivation of static analyzers. First, we
present a tool JISET that automatically extracts a mechanized specification from ECMAScript. We show
that it successfully extracts a mechanized specification from the latest ECMAScript. Then, we present
two different tools to detect bugs in JavaScript specifications and engines; JEST performs N+1-version
differential testing with JavaScript engines and JSTAR performs a type analysis for the mechanized
specification. Finally, we present JSAVER that automatically derives JavaScript static analyzers from
mechanized specifications using a meta-level static analysis. For evaluation, we derive a JavaScript
static analyzer from the latest ECMAScript and show that it successfully analyzes all applicable official
conformance tests in a sound way. We believe that the thesis would be the first step towards the
co-evolution of specifications, tests, and tools for programming languages.

Keywords JavaScript, mechanized specification extraction, N+1-version differential testing, specifica-
tion type analysis, meta-level static analysis.

Analysis

Result

JavaScript Static Analysis for Evolving Language Specifications / 35

JSAVER - Static Analyzer Derivation

34

Mechanized

Spec. for ES12

JavaScript

Programs

DCS �¿�. 1•Xî ⌅\¯ò� ∏¥ Ö8| ⌅\ ê§lΩ∏ �� Ñ�.
⌅∞YÄ . 2022D. 46+iv Ω. ¿ƒP⇠: X��. (�8 |8)
Jihyeok Park. JavaScript Static Analysis for Evolving Language Specifica-
tions. School of Computing . 2022. 46+iv pages. Advisor: Sukyoung Ryu.
(Text in English)

�]

ê§lΩ∏X Ÿ�x 1»¸ ı°\ X¯`@ ê§lΩ∏ ⌅\¯®‰X âŸD �UXå ttX0 ¥

5å Ã‡‰. lê‰@ t| t∞X‡ê ‰ë\ ê§lΩ∏ �� Ñ�0‰D ⌧⌧tT¿Ã, t‰@
®P ⇠Ÿ<\ $ƒ� ⇠»0– xŸ—}�t‡ $X– Ë}X‰. ⇣\, 2014D –Ä0 ê§lΩ∏X
∏¥ Ö8� ‰D 1‡⇠0 ‹ëXt⌧ t 8⌧î T Ï�tL‰. ¯ Y⌅ |8–⌧î ê§lΩ∏ ∏¥
Ö8\Ä0êŸ<\ê§lΩ∏��Ñ�0| ƒt¥î»\¥)›D⌧H\‰. tî 1)0ƒTÖ8
îú, 2) 0ƒT Ö8 ®1 Ä¨, ¯¨‡ 3) �� Ñ�0 ƒX 8 �¿ Ëƒ\ l1⌧‰. ¯ |8–⌧î
0ƒT Ö8 îú 0 D ⌧HX‡, t| t©t �• \‡ ê§lΩ∏ Ö8\Ä0 0ƒT Ö8| îú
\‰. ⇣\, ê§lΩ∏ ‘ƒD t©\ N+1-Ñ⌅ (Ñ L§⇧¸ 0ƒT Ö8X ¿Ö Ñ�D ⌧HX‡,
t| µt Ö8 ✏ ‘ƒX ∞hD Äú\‰. \Ö�<\, T¿ �� Ñ� 0 D ⌧HX‡, îú\ 0ƒT
Ö8\Ä0 êŸ<\ ê§lΩ∏ �� Ñ�0| ƒ\‰. ¯ Y⌅ |8–⌧ ⌧‹\)›@ ⌅\¯ò�
∏¥| ⌅\ Ö8, L§∏, ¯¨‡ ƒl‰X ıƒT| ⌅\ lX 0¿D »(` É<\ 0�\‰.

u Ï ± – ê§lΩ∏, 0ƒT Ö8 îú, Ö8 ¿Ö Ñ�, N+1-Ñ⌅ (Ñ L§⇧, T¿ �� Ñ�

Abstract
The highly dynamic nature and complex semantics of JavaScript make it difficult to correctly understand
the behaviors of JavaScript programs. To automatically reason about them, researchers have developed
various JavaScript static analyzers that conform to ECMAScript, the standard specification of JavaScript.
However, all the existing JavaScript static analyzers are manually designed; thus, the current approach
is labor-intensive and error-prone. Moreover, since late 2014, this problem becomes more critical because
the JavaScript language itself rapidly evolves with a yearly release cadence and open development process.

In this thesis, we introduce a novel approach to automatically derive JavaScript static analyzers
from any version of ECMAScript. Our approach consists of three steps: 1) mechanized specification
extraction, 2) mechanized specification validity check, and 3) derivation of static analyzers. First, we
present a tool JISET that automatically extracts a mechanized specification from ECMAScript. We show
that it successfully extracts a mechanized specification from the latest ECMAScript. Then, we present
two different tools to detect bugs in JavaScript specifications and engines; JEST performs N+1-version
differential testing with JavaScript engines and JSTAR performs a type analysis for the mechanized
specification. Finally, we present JSAVER that automatically derives JavaScript static analyzers from
mechanized specifications using a meta-level static analysis. For evaluation, we derive a JavaScript
static analyzer from the latest ECMAScript and show that it successfully analyzes all applicable official
conformance tests in a sound way. We believe that the thesis would be the first step towards the
co-evolution of specifications, tests, and tools for programming languages.

Keywords JavaScript, mechanized specification extraction, N+1-version differential testing, specifica-
tion type analysis, meta-level static analysis.

Analysis

Result

Static Analyzer for ES12

DCS �¿�. 1•Xî ⌅\¯ò� ∏¥ Ö8| ⌅\ ê§lΩ∏ �� Ñ�.
⌅∞YÄ . 2022D. 46+iv Ω. ¿ƒP⇠: X��. (�8 |8)
Jihyeok Park. JavaScript Static Analysis for Evolving Language Specifica-
tions. School of Computing . 2022. 46+iv pages. Advisor: Sukyoung Ryu.
(Text in English)

�]

ê§lΩ∏X Ÿ�x 1»¸ ı°\ X¯`@ ê§lΩ∏ ⌅\¯®‰X âŸD �UXå ttX0 ¥

5å Ã‡‰. lê‰@ t| t∞X‡ê ‰ë\ ê§lΩ∏ �� Ñ�0‰D ⌧⌧tT¿Ã, t‰@
®P ⇠Ÿ<\ $ƒ� ⇠»0– xŸ—}�t‡ $X– Ë}X‰. ⇣\, 2014D –Ä0 ê§lΩ∏X
∏¥ Ö8� ‰D 1‡⇠0 ‹ëXt⌧ t 8⌧î T Ï�tL‰. ¯ Y⌅ |8–⌧î ê§lΩ∏ ∏¥
Ö8\Ä0êŸ<\ê§lΩ∏��Ñ�0| ƒt¥î»\¥)›D⌧H\‰. tî 1)0ƒTÖ8
îú, 2) 0ƒT Ö8 ®1 Ä¨, ¯¨‡ 3) �� Ñ�0 ƒX 8 �¿ Ëƒ\ l1⌧‰. ¯ |8–⌧î
0ƒT Ö8 îú 0 D ⌧HX‡, t| t©t �• \‡ ê§lΩ∏ Ö8\Ä0 0ƒT Ö8| îú
\‰. ⇣\, ê§lΩ∏ ‘ƒD t©\ N+1-Ñ⌅ (Ñ L§⇧¸ 0ƒT Ö8X ¿Ö Ñ�D ⌧HX‡,
t| µt Ö8 ✏ ‘ƒX ∞hD Äú\‰. \Ö�<\, T¿ �� Ñ� 0 D ⌧HX‡, îú\ 0ƒT
Ö8\Ä0 êŸ<\ ê§lΩ∏ �� Ñ�0| ƒ\‰. ¯ Y⌅ |8–⌧ ⌧‹\)›@ ⌅\¯ò�
∏¥| ⌅\ Ö8, L§∏, ¯¨‡ ƒl‰X ıƒT| ⌅\ lX 0¿D »(` É<\ 0�\‰.

u Ï ± – ê§lΩ∏, 0ƒT Ö8 îú, Ö8 ¿Ö Ñ�, N+1-Ñ⌅ (Ñ L§⇧, T¿ �� Ñ�

Abstract
The highly dynamic nature and complex semantics of JavaScript make it difficult to correctly understand
the behaviors of JavaScript programs. To automatically reason about them, researchers have developed
various JavaScript static analyzers that conform to ECMAScript, the standard specification of JavaScript.
However, all the existing JavaScript static analyzers are manually designed; thus, the current approach
is labor-intensive and error-prone. Moreover, since late 2014, this problem becomes more critical because
the JavaScript language itself rapidly evolves with a yearly release cadence and open development process.

In this thesis, we introduce a novel approach to automatically derive JavaScript static analyzers
from any version of ECMAScript. Our approach consists of three steps: 1) mechanized specification
extraction, 2) mechanized specification validity check, and 3) derivation of static analyzers. First, we
present a tool JISET that automatically extracts a mechanized specification from ECMAScript. We show
that it successfully extracts a mechanized specification from the latest ECMAScript. Then, we present
two different tools to detect bugs in JavaScript specifications and engines; JEST performs N+1-version
differential testing with JavaScript engines and JSTAR performs a type analysis for the mechanized
specification. Finally, we present JSAVER that automatically derives JavaScript static analyzers from
mechanized specifications using a meta-level static analysis. For evaluation, we derive a JavaScript
static analyzer from the latest ECMAScript and show that it successfully analyzes all applicable official
conformance tests in a sound way. We believe that the thesis would be the first step towards the
co-evolution of specifications, tests, and tools for programming languages.

Keywords JavaScript, mechanized specification extraction, N+1-version differential testing, specifica-
tion type analysis, meta-level static analysis.

Mechanized

Spec. for ES12

JavaScript

Programs

Analysis

Result

derive

JavaScript Static Analysis for Evolving Language Specifications / 35

• Soundness / Precision / Performance

- 18,556 applicable tests in Test262

- 3,903 tests analyzable by all the three
analyzers

35

JSAVER - Evaluation

Analysis

Result

JavaScript

Programs

Derived Static

Analyzer

DCS �¿�. 1•Xî ⌅\¯ò� ∏¥ Ö8| ⌅\ ê§lΩ∏ �� Ñ�.
⌅∞YÄ . 2022D. 46+iv Ω. ¿ƒP⇠: X��. (�8 |8)
Jihyeok Park. JavaScript Static Analysis for Evolving Language Specifica-
tions. School of Computing . 2022. 46+iv pages. Advisor: Sukyoung Ryu.
(Text in English)

�]

ê§lΩ∏X Ÿ�x 1»¸ ı°\ X¯`@ ê§lΩ∏ ⌅\¯®‰X âŸD �UXå ttX0 ¥

5å Ã‡‰. lê‰@ t| t∞X‡ê ‰ë\ ê§lΩ∏ �� Ñ�0‰D ⌧⌧tT¿Ã, t‰@
®P ⇠Ÿ<\ $ƒ� ⇠»0– xŸ—}�t‡ $X– Ë}X‰. ⇣\, 2014D –Ä0 ê§lΩ∏X
∏¥ Ö8� ‰D 1‡⇠0 ‹ëXt⌧ t 8⌧î T Ï�tL‰. ¯ Y⌅ |8–⌧î ê§lΩ∏ ∏¥
Ö8\Ä0êŸ<\ê§lΩ∏��Ñ�0| ƒt¥î»\¥)›D⌧H\‰. tî 1)0ƒTÖ8
îú, 2) 0ƒT Ö8 ®1 Ä¨, ¯¨‡ 3) �� Ñ�0 ƒX 8 �¿ Ëƒ\ l1⌧‰. ¯ |8–⌧î
0ƒT Ö8 îú 0 D ⌧HX‡, t| t©t �• \‡ ê§lΩ∏ Ö8\Ä0 0ƒT Ö8| îú
\‰. ⇣\, ê§lΩ∏ ‘ƒD t©\ N+1-Ñ⌅ (Ñ L§⇧¸ 0ƒT Ö8X ¿Ö Ñ�D ⌧HX‡,
t| µt Ö8 ✏ ‘ƒX ∞hD Äú\‰. \Ö�<\, T¿ �� Ñ� 0 D ⌧HX‡, îú\ 0ƒT
Ö8\Ä0 êŸ<\ ê§lΩ∏ �� Ñ�0| ƒ\‰. ¯ Y⌅ |8–⌧ ⌧‹\)›@ ⌅\¯ò�
∏¥| ⌅\ Ö8, L§∏, ¯¨‡ ƒl‰X ıƒT| ⌅\ lX 0¿D »(` É<\ 0�\‰.

u Ï ± – ê§lΩ∏, 0ƒT Ö8 îú, Ö8 ¿Ö Ñ�, N+1-Ñ⌅ (Ñ L§⇧, T¿ �� Ñ�

Abstract
The highly dynamic nature and complex semantics of JavaScript make it difficult to correctly understand
the behaviors of JavaScript programs. To automatically reason about them, researchers have developed
various JavaScript static analyzers that conform to ECMAScript, the standard specification of JavaScript.
However, all the existing JavaScript static analyzers are manually designed; thus, the current approach
is labor-intensive and error-prone. Moreover, since late 2014, this problem becomes more critical because
the JavaScript language itself rapidly evolves with a yearly release cadence and open development process.

In this thesis, we introduce a novel approach to automatically derive JavaScript static analyzers
from any version of ECMAScript. Our approach consists of three steps: 1) mechanized specification
extraction, 2) mechanized specification validity check, and 3) derivation of static analyzers. First, we
present a tool JISET that automatically extracts a mechanized specification from ECMAScript. We show
that it successfully extracts a mechanized specification from the latest ECMAScript. Then, we present
two different tools to detect bugs in JavaScript specifications and engines; JEST performs N+1-version
differential testing with JavaScript engines and JSTAR performs a type analysis for the mechanized
specification. Finally, we present JSAVER that automatically derives JavaScript static analyzers from
mechanized specifications using a meta-level static analysis. For evaluation, we derive a JavaScript
static analyzer from the latest ECMAScript and show that it successfully analyzes all applicable official
conformance tests in a sound way. We believe that the thesis would be the first step towards the
co-evolution of specifications, tests, and tools for programming languages.

Keywords JavaScript, mechanized specification extraction, N+1-version differential testing, specifica-
tion type analysis, meta-level static analysis.

3. Derivation of
Static Analyzers

DCS �¿�. 1•Xî ⌅\¯ò� ∏¥ Ö8| ⌅\ ê§lΩ∏ �� Ñ�.
⌅∞YÄ . 2022D. 46+iv Ω. ¿ƒP⇠: X��. (�8 |8)
Jihyeok Park. JavaScript Static Analysis for Evolving Language Specifica-
tions. School of Computing . 2022. 46+iv pages. Advisor: Sukyoung Ryu.
(Text in English)

�]

ê§lΩ∏X Ÿ�x 1»¸ ı°\ X¯`@ ê§lΩ∏ ⌅\¯®‰X âŸD �UXå ttX0 ¥

5å Ã‡‰. lê‰@ t| t∞X‡ê ‰ë\ ê§lΩ∏ �� Ñ�0‰D ⌧⌧tT¿Ã, t‰@
®P ⇠Ÿ<\ $ƒ� ⇠»0– xŸ—}�t‡ $X– Ë}X‰. ⇣\, 2014D –Ä0 ê§lΩ∏X
∏¥ Ö8� ‰D 1‡⇠0 ‹ëXt⌧ t 8⌧î T Ï�tL‰. ¯ Y⌅ |8–⌧î ê§lΩ∏ ∏¥
Ö8\Ä0êŸ<\ê§lΩ∏��Ñ�0| ƒt¥î»\¥)›D⌧H\‰. tî 1)0ƒTÖ8
îú, 2) 0ƒT Ö8 ®1 Ä¨, ¯¨‡ 3) �� Ñ�0 ƒX 8 �¿ Ëƒ\ l1⌧‰. ¯ |8–⌧î
0ƒT Ö8 îú 0 D ⌧HX‡, t| t©t �• \‡ ê§lΩ∏ Ö8\Ä0 0ƒT Ö8| îú
\‰. ⇣\, ê§lΩ∏ ‘ƒD t©\ N+1-Ñ⌅ (Ñ L§⇧¸ 0ƒT Ö8X ¿Ö Ñ�D ⌧HX‡,
t| µt Ö8 ✏ ‘ƒX ∞hD Äú\‰. \Ö�<\, T¿ �� Ñ� 0 D ⌧HX‡, îú\ 0ƒT
Ö8\Ä0 êŸ<\ ê§lΩ∏ �� Ñ�0| ƒ\‰. ¯ Y⌅ |8–⌧ ⌧‹\)›@ ⌅\¯ò�
∏¥| ⌅\ Ö8, L§∏, ¯¨‡ ƒl‰X ıƒT| ⌅\ lX 0¿D »(` É<\ 0�\‰.

u Ï ± – ê§lΩ∏, 0ƒT Ö8 îú, Ö8 ¿Ö Ñ�, N+1-Ñ⌅ (Ñ L§⇧, T¿ �� Ñ�

Abstract
The highly dynamic nature and complex semantics of JavaScript make it difficult to correctly understand
the behaviors of JavaScript programs. To automatically reason about them, researchers have developed
various JavaScript static analyzers that conform to ECMAScript, the standard specification of JavaScript.
However, all the existing JavaScript static analyzers are manually designed; thus, the current approach
is labor-intensive and error-prone. Moreover, since late 2014, this problem becomes more critical because
the JavaScript language itself rapidly evolves with a yearly release cadence and open development process.

In this thesis, we introduce a novel approach to automatically derive JavaScript static analyzers
from any version of ECMAScript. Our approach consists of three steps: 1) mechanized specification
extraction, 2) mechanized specification validity check, and 3) derivation of static analyzers. First, we
present a tool JISET that automatically extracts a mechanized specification from ECMAScript. We show
that it successfully extracts a mechanized specification from the latest ECMAScript. Then, we present
two different tools to detect bugs in JavaScript specifications and engines; JEST performs N+1-version
differential testing with JavaScript engines and JSTAR performs a type analysis for the mechanized
specification. Finally, we present JSAVER that automatically derives JavaScript static analyzers from
mechanized specifications using a meta-level static analysis. For evaluation, we derive a JavaScript
static analyzer from the latest ECMAScript and show that it successfully analyzes all applicable official
conformance tests in a sound way. We believe that the thesis would be the first step towards the
co-evolution of specifications, tests, and tools for programming languages.

Keywords JavaScript, mechanized specification extraction, N+1-version differential testing, specifica-
tion type analysis, meta-level static analysis.

DCS �¿�. 1•Xî ⌅\¯ò� ∏¥ Ö8| ⌅\ ê§lΩ∏ �� Ñ�.
⌅∞YÄ . 2022D. 46+iv Ω. ¿ƒP⇠: X��. (�8 |8)
Jihyeok Park. JavaScript Static Analysis for Evolving Language Specifica-
tions. School of Computing . 2022. 46+iv pages. Advisor: Sukyoung Ryu.
(Text in English)

�]

ê§lΩ∏X Ÿ�x 1»¸ ı°\ X¯`@ ê§lΩ∏ ⌅\¯®‰X âŸD �UXå ttX0 ¥

5å Ã‡‰. lê‰@ t| t∞X‡ê ‰ë\ ê§lΩ∏ �� Ñ�0‰D ⌧⌧tT¿Ã, t‰@
®P ⇠Ÿ<\ $ƒ� ⇠»0– xŸ—}�t‡ $X– Ë}X‰. ⇣\, 2014D –Ä0 ê§lΩ∏X
∏¥ Ö8� ‰D 1‡⇠0 ‹ëXt⌧ t 8⌧î T Ï�tL‰. ¯ Y⌅ |8–⌧î ê§lΩ∏ ∏¥
Ö8\Ä0êŸ<\ê§lΩ∏��Ñ�0| ƒt¥î»\¥)›D⌧H\‰. tî 1)0ƒTÖ8
îú, 2) 0ƒT Ö8 ®1 Ä¨, ¯¨‡ 3) �� Ñ�0 ƒX 8 �¿ Ëƒ\ l1⌧‰. ¯ |8–⌧î
0ƒT Ö8 îú 0 D ⌧HX‡, t| t©t �• \‡ ê§lΩ∏ Ö8\Ä0 0ƒT Ö8| îú
\‰. ⇣\, ê§lΩ∏ ‘ƒD t©\ N+1-Ñ⌅ (Ñ L§⇧¸ 0ƒT Ö8X ¿Ö Ñ�D ⌧HX‡,
t| µt Ö8 ✏ ‘ƒX ∞hD Äú\‰. \Ö�<\, T¿ �� Ñ� 0 D ⌧HX‡, îú\ 0ƒT
Ö8\Ä0 êŸ<\ ê§lΩ∏ �� Ñ�0| ƒ\‰. ¯ Y⌅ |8–⌧ ⌧‹\)›@ ⌅\¯ò�
∏¥| ⌅\ Ö8, L§∏, ¯¨‡ ƒl‰X ıƒT| ⌅\ lX 0¿D »(` É<\ 0�\‰.

u Ï ± – ê§lΩ∏, 0ƒT Ö8 îú, Ö8 ¿Ö Ñ�, N+1-Ñ⌅ (Ñ L§⇧, T¿ �� Ñ�

Abstract
The highly dynamic nature and complex semantics of JavaScript make it difficult to correctly understand
the behaviors of JavaScript programs. To automatically reason about them, researchers have developed
various JavaScript static analyzers that conform to ECMAScript, the standard specification of JavaScript.
However, all the existing JavaScript static analyzers are manually designed; thus, the current approach
is labor-intensive and error-prone. Moreover, since late 2014, this problem becomes more critical because
the JavaScript language itself rapidly evolves with a yearly release cadence and open development process.

In this thesis, we introduce a novel approach to automatically derive JavaScript static analyzers
from any version of ECMAScript. Our approach consists of three steps: 1) mechanized specification
extraction, 2) mechanized specification validity check, and 3) derivation of static analyzers. First, we
present a tool JISET that automatically extracts a mechanized specification from ECMAScript. We show
that it successfully extracts a mechanized specification from the latest ECMAScript. Then, we present
two different tools to detect bugs in JavaScript specifications and engines; JEST performs N+1-version
differential testing with JavaScript engines and JSTAR performs a type analysis for the mechanized
specification. Finally, we present JSAVER that automatically derives JavaScript static analyzers from
mechanized specifications using a meta-level static analysis. For evaluation, we derive a JavaScript
static analyzer from the latest ECMAScript and show that it successfully analyzes all applicable official
conformance tests in a sound way. We believe that the thesis would be the first step towards the
co-evolution of specifications, tests, and tools for programming languages.

Keywords JavaScript, mechanized specification extraction, N+1-version differential testing, specifica-
tion type analysis, meta-level static analysis.

2. Specification
Validity Check

[ICSE'21] [ASE'21]
Distinguished Paper!!

Mechanized

SpecificationECMA-262

DCS �¿�. 1•Xî ⌅\¯ò� ∏¥ Ö8| ⌅\ ê§lΩ∏ �� Ñ�.
⌅∞YÄ . 2022D. 46+iv Ω. ¿ƒP⇠: X��. (�8 |8)
Jihyeok Park. JavaScript Static Analysis for Evolving Language Specifica-
tions. School of Computing . 2022. 46+iv pages. Advisor: Sukyoung Ryu.
(Text in English)

�]

ê§lΩ∏X Ÿ�x 1»¸ ı°\ X¯`@ ê§lΩ∏ ⌅\¯®‰X âŸD �UXå ttX0 ¥

5å Ã‡‰. lê‰@ t| t∞X‡ê ‰ë\ ê§lΩ∏ �� Ñ�0‰D ⌧⌧tT¿Ã, t‰@
®P ⇠Ÿ<\ $ƒ� ⇠»0– xŸ—}�t‡ $X– Ë}X‰. ⇣\, 2014D –Ä0 ê§lΩ∏X
∏¥ Ö8� ‰D 1‡⇠0 ‹ëXt⌧ t 8⌧î T Ï�tL‰. ¯ Y⌅ |8–⌧î ê§lΩ∏ ∏¥
Ö8\Ä0êŸ<\ê§lΩ∏��Ñ�0| ƒt¥î»\¥)›D⌧H\‰. tî 1)0ƒTÖ8
îú, 2) 0ƒT Ö8 ®1 Ä¨, ¯¨‡ 3) �� Ñ�0 ƒX 8 �¿ Ëƒ\ l1⌧‰. ¯ |8–⌧î
0ƒT Ö8 îú 0 D ⌧HX‡, t| t©t �• \‡ ê§lΩ∏ Ö8\Ä0 0ƒT Ö8| îú
\‰. ⇣\, ê§lΩ∏ ‘ƒD t©\ N+1-Ñ⌅ (Ñ L§⇧¸ 0ƒT Ö8X ¿Ö Ñ�D ⌧HX‡,
t| µt Ö8 ✏ ‘ƒX ∞hD Äú\‰. \Ö�<\, T¿ �� Ñ� 0 D ⌧HX‡, îú\ 0ƒT
Ö8\Ä0 êŸ<\ ê§lΩ∏ �� Ñ�0| ƒ\‰. ¯ Y⌅ |8–⌧ ⌧‹\)›@ ⌅\¯ò�
∏¥| ⌅\ Ö8, L§∏, ¯¨‡ ƒl‰X ıƒT| ⌅\ lX 0¿D »(` É<\ 0�\‰.

u Ï ± – ê§lΩ∏, 0ƒT Ö8 îú, Ö8 ¿Ö Ñ�, N+1-Ñ⌅ (Ñ L§⇧, T¿ �� Ñ�

Abstract
The highly dynamic nature and complex semantics of JavaScript make it difficult to correctly understand
the behaviors of JavaScript programs. To automatically reason about them, researchers have developed
various JavaScript static analyzers that conform to ECMAScript, the standard specification of JavaScript.
However, all the existing JavaScript static analyzers are manually designed; thus, the current approach
is labor-intensive and error-prone. Moreover, since late 2014, this problem becomes more critical because
the JavaScript language itself rapidly evolves with a yearly release cadence and open development process.

In this thesis, we introduce a novel approach to automatically derive JavaScript static analyzers
from any version of ECMAScript. Our approach consists of three steps: 1) mechanized specification
extraction, 2) mechanized specification validity check, and 3) derivation of static analyzers. First, we
present a tool JISET that automatically extracts a mechanized specification from ECMAScript. We show
that it successfully extracts a mechanized specification from the latest ECMAScript. Then, we present
two different tools to detect bugs in JavaScript specifications and engines; JEST performs N+1-version
differential testing with JavaScript engines and JSTAR performs a type analysis for the mechanized
specification. Finally, we present JSAVER that automatically derives JavaScript static analyzers from
mechanized specifications using a meta-level static analysis. For evaluation, we derive a JavaScript
static analyzer from the latest ECMAScript and show that it successfully analyzes all applicable official
conformance tests in a sound way. We believe that the thesis would be the first step towards the
co-evolution of specifications, tests, and tools for programming languages.

Keywords JavaScript, mechanized specification extraction, N+1-version differential testing, specifica-
tion type analysis, meta-level static analysis.

1. Mechanized Spec.
Extraction

[ASE'20]

Conformance Test

Synthesis

Type Analysis for

Specification

In submission

https://github.com/es-meta/esmeta

https://github.com/es-meta/esmeta

Backup Slides

JavaScript Static Analysis for Evolving Language Specifications / 35

JSTAR - Precision ⇧ - 1) Type Sensitivity

39

String,
Number,
BigInt,

...

ToNumber (x)

Number,
Exception

JavaScript Static Analysis for Evolving Language Specifications / 35

JSTAR - Precision ⇧ - 1) Type Sensitivity

39

String,
Number,
BigInt,

...

ToNumber (x)

Number,
Exception

Type
Sensitivity

String

Number

...

Number

Number

Null

+0

BigInt

Exception

JavaScript Static Analysis for Evolving Language Specifications / 35

JSTAR - Precision ⇧ - 2) Type Refinement

40

TABLE I: Type-related specification bugs fixed by pull re-
quests for the recent three years from 2018 to 2021

Category Bug Kind # Pull Requests # Bug Fixes

Reference
UnknownVar 5 12

DuplicatedVar 2 12

Arity MissingParam 2 4

Assertion Assertion 4 5

Operand
NoNumber 1 2

Abrupt 5 6

Total 19 41

refine(!e, b)(�]) = refine(e,¬b)(�])

refine(e0 || e1, b)(�]) =

⇢
�]
0 t �]

1 if b
�]
0 u �]

1 if ¬b

refine(e0 && e1, b)(�]) =

⇢
�]
0 u �]

1 if b
�]
0 t �]

1 if ¬b
refine(x.Type == cnormal, #t)(�

]) = �][x 7! ⌧]x u normal(T)]
refine(x.Type == cnormal, #f)(�

]) = �][x 7! ⌧]x u {abrupt}]
refine(x == e, #t)(�]) = �][x 7! ⌧]x u ⌧]e]
refine(x == e, #f)(�]) = �][x 7! ⌧]x \ b⌧]ec]
refine(x : ⌧, #t)(�]) = �][x 7! ⌧]x u {⌧}]
refine(x : ⌧, #f)(�]) = �][x 7! ⌧]x \ {⌧ 0 | ⌧ 0 <: ⌧}]

refine(e, b)(�]) = �]

where �]
j = refine(ej , b)(�]) for j = 0, 1, ⌧]e = JeK]e(�]),

and b⌧]c returns {⌧} if ⌧] denotes a singleton type ⌧ , or returns
?, otherwise.

IV. BUG DETECTOR

We develop a bug detector to statically detect type-related
specification bugs in ECMAScript using an augmented ab-
stract transfer function F]

a with additional checkers. Before
implementing checkers, we manually investigated pull requests
for the recent three years from 2018 to 2021 to identify
important bugs to detect. As summarized in Table I, we found
19 pull requests that fixed 41 type-related specification bugs,
and classified the bugs into four categories with six kinds.
To detect them automatically, we implement four checkers: a
reference checker, an arity checker, an assertion checker, and
an operand checker.

A. Reference Checker

ECMAScript abstract algorithms dynamically introduce
variables in any contexts. A reference bug occurs when trying
to access variables not yet defined (UnknownVar) or to redefine
variables already defined (DuplicatedVar). According to our
manual investigation of the pull requests, the reference bug
is the most prevalent type-related specification bugs; five pull
requests fixed 12 unknown variable bugs and two pull requests
fixed 12 duplicated variable declaration bugs. We implement a
reference checker by adding additional checks to the abstract
semantics of variable lookups and variable declarations as
follows:

JxK]e(�]) =

⇢
unknown variable x if JxK]r(�]) = {?}
· · · otherwise

Jlet x = eK]i(l , ⌧)(d]) =
⇢

already defined variable x if ⌧] = {#t}
· · · otherwise

where ⌧] = Jx?K]e(d](l , ⌧))

If the abstract semantics of a variable lookup for x is a
singleton {?}, x is always an unknown variable. For example,
consider the syntax-directed algorithm in Figure 2(a). Since
the GetReferencedName algorithm is removed, the variable
GetReferencedName does not exist in abstract environments
and its lookup returns {?}. Thus, the reference checker reports
the unknown variable bug for GetReferencedName. For
duplicated variable declarations, the reference checker utilizes
the abstract semantics of the existence check Jx?K]e to see
whether the variable x of each variable declaration is already
defined.

B. Arity Checker

The arity of a function f = def f(p1, · · · ,pn,[· · · , pm])l
is an interval [n,m] where n and m� n denote the numbers
of normal and optional parameters, respectively. In function
invocations, an arity bug occurs when the number of argu-
ments does not match with the function arity (MissingParam).
In the last three years, two pull requests fixed four missing
parameter bugs. The arity checker detects them by adding an
additional check to the abstract semantics of the function call
instruction:

Jx = (e e1 · · · ek)K]i(l , ⌧)(d]) =⇢
missing parameters pk+1, · · · , pnf

if 9f 2 ⌧]. s.t. k < nf

· · · otherwise
where f = def f(p1, · · · , pnf

, [· · · , pmf])l ^
⌧] = JeK]e(d](l , ⌧)).

For each function f in the abstract semantics of the function
expression e, the arity checker compares the number of
arguments with the arity of f to detect missing parameters.
For example, consider the syntax-directed algorithm in Fig-
ure 2(b). The algorithm invocation on line 2 is compiled to
the following function call instruction:

x = (formals.IteratorBindingInitialization formals)

using a temporary variable x. Because it passes only a single
argument formals even though the function arity is [3, 3], the
arity checker reports missing parameter bugs for two additional
parameters iteratorRecord and environment.

C. Assertion Checker

An assertion failure (Assertion) is a specification bug that
occurs when the condition of an assertion instruction is not
true. We found four pull requests that fixed five assertion
failures. The assertion checker detects them using an additional
check in the abstract semantics of the assertion instruction:

Jassert eK]i(l , ⌧)(d]) =
⇢

assertion failure e if {#t} 6v ⌧]

· · · otherwise
where ⌧] = JeK]e(d](l , ⌧))

It checks whether the abstract semantics of the condi-
tion expression e subsumes {#t}. For example, consider
the syntax-directed algorithm in Figure 2(c). The parameter
environment of this algorithm has an environment record or
undefined. Since type sensitivity divides the abstract types

x: number
#t #f

x: number v
 boolean v
 string

x: number v
 boolean v
 string

x: number v
 boolean v
 string

JavaScript Static Analysis for Evolving Language Specifications / 35

JSTAR - Precision ⇧ - 2) Type Refinement

40

TABLE I: Type-related specification bugs fixed by pull re-
quests for the recent three years from 2018 to 2021

Category Bug Kind # Pull Requests # Bug Fixes

Reference
UnknownVar 5 12

DuplicatedVar 2 12

Arity MissingParam 2 4

Assertion Assertion 4 5

Operand
NoNumber 1 2

Abrupt 5 6

Total 19 41

refine(!e, b)(�]) = refine(e,¬b)(�])

refine(e0 || e1, b)(�]) =

⇢
�]
0 t �]

1 if b
�]
0 u �]

1 if ¬b

refine(e0 && e1, b)(�]) =

⇢
�]
0 u �]

1 if b
�]
0 t �]

1 if ¬b
refine(x.Type == cnormal, #t)(�

]) = �][x 7! ⌧]x u normal(T)]
refine(x.Type == cnormal, #f)(�

]) = �][x 7! ⌧]x u {abrupt}]
refine(x == e, #t)(�]) = �][x 7! ⌧]x u ⌧]e]
refine(x == e, #f)(�]) = �][x 7! ⌧]x \ b⌧]ec]
refine(x : ⌧, #t)(�]) = �][x 7! ⌧]x u {⌧}]
refine(x : ⌧, #f)(�]) = �][x 7! ⌧]x \ {⌧ 0 | ⌧ 0 <: ⌧}]

refine(e, b)(�]) = �]

where �]
j = refine(ej , b)(�]) for j = 0, 1, ⌧]e = JeK]e(�]),

and b⌧]c returns {⌧} if ⌧] denotes a singleton type ⌧ , or returns
?, otherwise.

IV. BUG DETECTOR

We develop a bug detector to statically detect type-related
specification bugs in ECMAScript using an augmented ab-
stract transfer function F]

a with additional checkers. Before
implementing checkers, we manually investigated pull requests
for the recent three years from 2018 to 2021 to identify
important bugs to detect. As summarized in Table I, we found
19 pull requests that fixed 41 type-related specification bugs,
and classified the bugs into four categories with six kinds.
To detect them automatically, we implement four checkers: a
reference checker, an arity checker, an assertion checker, and
an operand checker.

A. Reference Checker

ECMAScript abstract algorithms dynamically introduce
variables in any contexts. A reference bug occurs when trying
to access variables not yet defined (UnknownVar) or to redefine
variables already defined (DuplicatedVar). According to our
manual investigation of the pull requests, the reference bug
is the most prevalent type-related specification bugs; five pull
requests fixed 12 unknown variable bugs and two pull requests
fixed 12 duplicated variable declaration bugs. We implement a
reference checker by adding additional checks to the abstract
semantics of variable lookups and variable declarations as
follows:

JxK]e(�]) =

⇢
unknown variable x if JxK]r(�]) = {?}
· · · otherwise

Jlet x = eK]i(l , ⌧)(d]) =
⇢

already defined variable x if ⌧] = {#t}
· · · otherwise

where ⌧] = Jx?K]e(d](l , ⌧))

If the abstract semantics of a variable lookup for x is a
singleton {?}, x is always an unknown variable. For example,
consider the syntax-directed algorithm in Figure 2(a). Since
the GetReferencedName algorithm is removed, the variable
GetReferencedName does not exist in abstract environments
and its lookup returns {?}. Thus, the reference checker reports
the unknown variable bug for GetReferencedName. For
duplicated variable declarations, the reference checker utilizes
the abstract semantics of the existence check Jx?K]e to see
whether the variable x of each variable declaration is already
defined.

B. Arity Checker

The arity of a function f = def f(p1, · · · ,pn,[· · · , pm])l
is an interval [n,m] where n and m� n denote the numbers
of normal and optional parameters, respectively. In function
invocations, an arity bug occurs when the number of argu-
ments does not match with the function arity (MissingParam).
In the last three years, two pull requests fixed four missing
parameter bugs. The arity checker detects them by adding an
additional check to the abstract semantics of the function call
instruction:

Jx = (e e1 · · · ek)K]i(l , ⌧)(d]) =⇢
missing parameters pk+1, · · · , pnf

if 9f 2 ⌧]. s.t. k < nf

· · · otherwise
where f = def f(p1, · · · , pnf

, [· · · , pmf])l ^
⌧] = JeK]e(d](l , ⌧)).

For each function f in the abstract semantics of the function
expression e, the arity checker compares the number of
arguments with the arity of f to detect missing parameters.
For example, consider the syntax-directed algorithm in Fig-
ure 2(b). The algorithm invocation on line 2 is compiled to
the following function call instruction:

x = (formals.IteratorBindingInitialization formals)

using a temporary variable x. Because it passes only a single
argument formals even though the function arity is [3, 3], the
arity checker reports missing parameter bugs for two additional
parameters iteratorRecord and environment.

C. Assertion Checker

An assertion failure (Assertion) is a specification bug that
occurs when the condition of an assertion instruction is not
true. We found four pull requests that fixed five assertion
failures. The assertion checker detects them using an additional
check in the abstract semantics of the assertion instruction:

Jassert eK]i(l , ⌧)(d]) =
⇢

assertion failure e if {#t} 6v ⌧]

· · · otherwise
where ⌧] = JeK]e(d](l , ⌧))

It checks whether the abstract semantics of the condi-
tion expression e subsumes {#t}. For example, consider
the syntax-directed algorithm in Figure 2(c). The parameter
environment of this algorithm has an environment record or
undefined. Since type sensitivity divides the abstract types

x: number
#t #f

x: number v
 boolean v
 string

x: number v
 boolean v
 string

x: number v
 boolean v
 string

x: number v
 boolean v
 string

x: number v
 boolean v
 string

JavaScript Static Analysis for Evolving Language Specifications / 35

parse · · ·<latexit sha1_base64="Kef69hW4e/raBfVz+DaK6/NBFbQ=">AAACHXicbVDJSgNBEK1xjXFL9OhlMAiewowKeozLwYsQITFCJkhPp2Ka9Cx01whxmI/wqge/xpt4Ff/GnnEObg8aHu9VdVU9P5ZCk+N8WDOzc/MLi5Wl6vLK6tp6rb5xpaNEcezySEbq2mcapQixS4IkXscKWeBL7PmT09zv3aHSIgo7NI1xELDbUIwEZ2SknseHEenqTa3hNJ0C9l/ilqQBJdo3dQu8YcSTAEPikmndd52YBilTJLjErOolGmPGJ+wW+4aGLEA9SIt9M3vHKEN7FCnzQrIL9XtHygKtp4FvKgNGY/3by8X/vH5Co6NBKsI4IQz516BRIm2K7Px4eygUcpJTQxhXwuxq8zFTjJOJqOqdoblF4YX591jGY+YjpV4+Jb7nWdpxs7QgQZYKykxm7u+E/pKrvaa739y7PGi0Tsr0KrAF27ALLhxCC86hDV3gMIEHeIQn69l6sV6tt6/SGavs2YQfsN4/AabGomA=</latexit> · · ·<latexit sha1_base64="Kef69hW4e/raBfVz+DaK6/NBFbQ=">AAACHXicbVDJSgNBEK1xjXFL9OhlMAiewowKeozLwYsQITFCJkhPp2Ka9Cx01whxmI/wqge/xpt4Ff/GnnEObg8aHu9VdVU9P5ZCk+N8WDOzc/MLi5Wl6vLK6tp6rb5xpaNEcezySEbq2mcapQixS4IkXscKWeBL7PmT09zv3aHSIgo7NI1xELDbUIwEZ2SknseHEenqTa3hNJ0C9l/ilqQBJdo3dQu8YcSTAEPikmndd52YBilTJLjErOolGmPGJ+wW+4aGLEA9SIt9M3vHKEN7FCnzQrIL9XtHygKtp4FvKgNGY/3by8X/vH5Co6NBKsI4IQz516BRIm2K7Px4eygUcpJTQxhXwuxq8zFTjJOJqOqdoblF4YX591jGY+YjpV4+Jb7nWdpxs7QgQZYKykxm7u+E/pKrvaa739y7PGi0Tsr0KrAF27ALLhxCC86hDV3gMIEHeIQn69l6sV6tt6/SGavs2YQfsN4/AabGomA=</latexit>

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Automatically Deriving JavaScript Static Analyzers from Language Specifications ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

function error(e) { throw e; }

const n = ...; // [0, 99]

n |> x => x + 1 // [1, 100]

|> x => x * 2 // [2, 200]

|> x => x + 1n; // TypeError

|> error (42);

of representative techniques to increase the precision of JavaScript
static analysis for loops. It discriminates contexts using a stack of
loop contexts containing loop iterations. We de�ne it under view-
based analysis sensitivity and implement it in JSAVER to increase
the precision of IRES static analysis. Moreover, we also de�ne and
implement the loop sensitivity for JavaScript using the loop sensitiv-
ity for IRES. Therefore, our tool discriminates contexts for explicit
loops, such as for-in or for-of, and even implicit loops, such as the
length property assignment of arrays.

6 EVALUATION
• AdditiveExpression
• Identi�erReference
• Identi�er
• AssignmentExpression
• LeftHandSideExpression
• ArrowFunction

• RQ1: Coverage) How much does JSAVER cover JavaScript
language features in the latest ECMAScript (ES12, 2021)?

• RQ2: Adaptability) Could JSAVER adapt a new language
features not yet introduced in ES12?

• RQ3: Expressiveness) What kinds of abstract sensitivities
and abstract domains JSAVER can support?

• RQ4: Performance) Could JSAVER analyze JavaScript pro-
grams in a durable time?

TODO

7 RELATEDWORK
TODO

• JavaScript Static Analyzers [9, 10, 14, 27]
• JavaScript Static Analysis Techniques [1, 12, 13, 15, 18–21,
30, 34–36]

• Partial Evaluation? (maybe no - * SE conf.)

7.1 JavaScript Mechanized Speci�cation
A speci�cation is mechanized if and only if it is both formalized
and executable. For JavaScript, researchers have proposed various
mechanized speci�cation in their own approaches. In 2010, Guha
et al. [8] presented �JS, the �rst mechanized speci�cation for a core
calculus of ES3 semantics by desugaring most of syntax into �JS, an
extended standard lambda calculus. Thus, the shape of �JS seman-
tics is quite di�erent with original algorithm steps. In mid 2010s,
researchers tried to de�ne mechanized speci�cation for the ES5
and 5.1 semantics having a similar shape of semantics with original
algorithm steps as much as possible. Bodin et al. [2] de�ned JSCert,
a semantics of a small subset of ES5, using Coq and extracts a refer-
ence interpreter JSRef. Park et al. [22] de�ned an entire semantics
of ES5, KJS, using the K [29], which is a framework for de�ning
language semantics. Fragoso Santos et al. [7] presented JaVerT, a

JavaScript veri�cation toolchain, including a JavaScript semantics
de�ned in their own Intermediate language, JSIL.

However, the fundamental problem of their approaches is that
they are manually de�ned thus they are labor-intensive and error-
prone. Due to such limitation, there is no existing mechanized
speci�cation for full semantics of ES6 or later versions. Therefore,
most of existing JavaScript static analyzers only focus on ES5.1
features or rarely support ES6 features even though already six
more versions from ES7 to ES12 are released since 2015.

Moreover, Park et al. [23] successfully showed that JISET is useful
tomechanically handle recent versions of ECMAScript by extending
JISET to perform N+1-version di�erential testing of both JavaScript
engines and ES11 (2020).

8 CONCLUSION
TODO

REFERENCES
[1] Roberto Amadini, Alexander Jordan, Graeme Gange, François Gauthier, Peter

Schachte, Harald Søndergaard, Peter J Stuckey, and Chenyi Zhang. 2017. Com-
bining String Abstract Domains for JavaScript Analysis: An Evaluation. In Pro-
ceedings of the 23rd International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS). https://doi.org/10.1007/978-3-
662-54577-5_3

[2] Martin Bodin, Arthur Charguéraud, Daniele Filaretti, Philippa Gardner, Sergio
Ma�eis, Daiva Naudziuniene, Alan Schmitt, and Gareth Smith. 2014. A Trusted
Mechanised JavaScript Speci�cation. Proceedings of the 41st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming (POPL) 49, 1 (2014), 87–100.
https://doi.org/10.1145/2535838.2535876

[3] David R. Chase, Mark Wegman, and F. Kenneth Zadeck. 1990. Analysis of
Pointers and Structures. In Proceedings of the ACM SIGPLAN 1990 Conference on
Programming Language Design and Implementation (PLDI) (PLDI ’90). Association
for Computing Machinery, New York, NY, USA, 296–310. https://doi.org/10.
1145/93542.93585

[4] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Uni�ed
Lattice Model for Static Analysis of Programs by Construction or Approximation
of Fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming languages (POPL). https://doi.org/10.1145/512950.
512973

[5] Patrick Cousot and Radhia Cousot. 1977. Static Determination of Dynamic
Properties of Generalized Type Unions. In Proceedings of an ACM Conference on
Language Design for Reliable Software. Association for Computing Machinery,
New York, NY, USA, 77–94. https://doi.org/10.1145/800022.808314

[6] Patrick Cousot and Radhia Cousot. 1992. Abstract Interpretation Frameworks.
Journal of Logic and Computation (JLC) 2, 4 (1992), 511–547. https://doi.org/10.
1093/logcom/2.4.511

[7] José Fragoso Santos, Petar Maksimović, Daiva Naudži = unienė, Thomas Wood,
and Philippa Gardner. 2017. JaVerT: JavaScript Veri�cation Toolchain. Proceedings
of the 44th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
(POPL) 2, POPL (2017), 1–33. https://doi.org/10.1145/3158138

[8] Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. 2010. The essence
of JavaScript. In Proceedings of the 24th European Conference on Object-Oriented
Programming (ECOOP). Springer, 126–150. https://doi.org/10.1007/978-3-642-
14107-2_7

[9] Simon Holm Jensen, Anders Møller, and Peter Thiemann. 2009. Type Analysis for
JavaScript. In Proceedings of the 16th International Symposium on Static Analysis
(SAS). https://doi.org/10.1007/978-3-642-03237-0_17

[10] Vineeth Kashyap, Kyle Dewey, Ethan A. Kuefner, John Wagner, Kevin Gib-
bons, John Sarracino, Ben Wiedermann, and Ben Hardekopf. 2014. JSAI: A
Static Analysis Platform for JavaScript. In Proceedings of the 22nd ACM SIG-
SOFT International Symposium on Foundations of Software Engineering (FSE).
https://doi.org/10.1145/2635868.2635904

[11] Se-Won Kim, Xavier Rival, and Sukyoung Ryu. 2018. A Theoretical Foundation
of Sensitivity in an Abstract Interpretation Framework. ACM Transactions on
Programming Languages and Systems (TOPLAS) 40, 3, Article 13 (2018), 44 pages.
https://doi.org/10.1145/3230624

[12] Yoonseok Ko, Xavier Rival, and Sukyoung Ryu. 2017. Weakly Sensitive Analysis
for Unbounded Iteration over JavaScript Objects. In Proceedings of the 15th Asian
Symposium on Programming Languages and Systems (APLAS). https://doi.org/10.
1007/978-3-319-71237-6_8

7

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

(a) Evaluation algorithm for logical OR assignments.

1 syntax def AssignmentExpression [8]. Evaluation(

2 this , LeftHandSideExpression , AssignmentExpression

3) { /* entry */

4 let lref = (LeftHandSideExpression.Evaluation)

5 let lval = [? (GetValue lref)]

6 let lbool = [! (ToBoolean lval)] /* #1 */

7 if (= lbool true) /* #2 */ return lval else { /* #3 */ }

8 if (&& (IsAnonymousFunctionDefinition AssignmentExpression)

9 (LeftHandSideExpression.IsIdentifierRef)) { /* #4 */

10 let rval = (AssignmentExpression.NamedEvaluation

11 lref.ReferencedName)

12 } else { /* #5 */

13 let rref = (AssignmentExpression.Evaluation)

14 let rval = [? (GetValue rref)]

15 } /* #6 */

16 [? (PutValue lref rval)]

17 return rval

18 } /* exit */

(b) The extracted IRES function.

Figure 1: Evaluation algorithm for the eighth alternative of AssignmentExpression in ES12 and the extracted IRES function.

To alleviate this problem, we propose a novel technique called
meta-level static analysis to automatically derive a JavaScript static
analyzer from any version of ECMAScript. The main idea of the
meta-level static analysis is to indirectly analyze a target language
program by performing static analysis for a language speci�ca-
tion of the target language written in a speci�cation language with
the program as the initial input. Thus, it can signi�cantly reduce
the burden to manually design and implement static analyzers by
automatically deriving them from given language speci�cations.
Moreover, it even guarantees the soundness of derived static analyz-
ers for the target language by constructing sound abstract semantics
for the speci�cation language.

For the expressiveness of a meta-level static analysis, we also
present ways to con�gure analysis sensitivities and abstract do-
mains for a target language. Con�guring them is a typical way
to manage analysis precision and performance. First, we present
the AST sensitivity in a meta-level static analysis to express analy-
sis sensitivities for a target language such as �ow-sensitivity and
k-callsite-sensitivity (Section 4.2). Second, we present a way to
con�gure abstract domains for structures and values in a target
language (Section 4.3).

To actualize our approach for JavaScript, we present JSAVER,
JavaScript Static Analyzers via ECMAScript Representations. First,
we utilize JISET [26] to extract a mechanized speci�cation written
in an intermediate representation, IRES, from a given ECMAScript.
Thus, target and speci�cation languages are JavaScript and IRES,
respectively, for the meta-level static analysis in JSAVER. In addition,
we implement several analysis techniques to improve the perfor-
mance and precision of derived static analyzers (Section 5). We
evaluated JSAVER by deriving a JavaScript static analyzer from the
latest ECMAScript, ES12, and using the o�cial conformance tests,
Test2622.

Our contributions are as follows:
• We propose a novel concept called meta-level static analysis,
which automatically derives a static analyzer for a target

2https://github.com/tc39/test262

let f = Math.floor(Math.random () * 100);

// f: [0, 99]

f ||= x => x;

// f: [1, 99] or { name: �f�, ... }

let x = f.name;

// f: [1, 99] or { name: �f�, ... }, x: undefined or �f�

Figure 2: A running JavaScript program with a logical OR
assignment newly introduced in ES12.

language from its language speci�cation written in a speci�-
cation language.

• We actualize meta-level static analysis for JavaScript as a tool
called JSAVER. It is the �rst tool that automatically derives a
JavaScript static analyzer from any version of ECMAScript.

• We derive a static analyzer from the latest ECMAScript, ES12,
to evaluate JSAVER. The synthesized static analyzer success-
fully analyzes all applicable 18,556 o�cial conformance tests.
Moreover, we demonstrate the adaptability and expressive-
ness of JSAVER with several case studies.

2 BACKGROUND
In this section, we explain the detail of ECMAScript, the o�cial
speci�cation of JavaScript. We then introduce JISET and how it
extracts a mechanized speci�cation from it. Since our work is to
perform meta-level static analysis for JavaScript using extracted
mechanized speci�cations, it is essential to understand how EC-
MAScript describes JavaScript semantics and how JISET extracts a
mechanized speci�cation from it.

For the detailed explanation, we explain a new language feature
introduced in ES12 called logical OR assignments (Figure 1) and
use a JavaScript program (Figure 2) as a running example. It �rst
de�nes a variable f with a random integer from 0 to 99. Then, it
uses a logical OR assignment to update f with an arrow function
whose name is �f� only if f has 0 because 0 represents false but
other integers represent true. Finally, it de�nes a variable x with
f.name and its value is undefined if f has an integer or �f� otherwise.

2

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Automatically Deriving JavaScript Static Analyzers from Language Specifications ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

function error(e) { throw e; }

const n = ...; // [0, 99]

n |> x => x + 1 // [1, 100]

|> x => x * 2 // [2, 200]

|> x => x + 1n; // TypeError

|> error (42);

of representative techniques to increase the precision of JavaScript
static analysis for loops. It discriminates contexts using a stack of
loop contexts containing loop iterations. We de�ne it under view-
based analysis sensitivity and implement it in JSAVER to increase
the precision of IRES static analysis. Moreover, we also de�ne and
implement the loop sensitivity for JavaScript using the loop sensitiv-
ity for IRES. Therefore, our tool discriminates contexts for explicit
loops, such as for-in or for-of, and even implicit loops, such as the
length property assignment of arrays.

6 EVALUATION
• AdditiveExpression
• Identi�erReference
• Identi�er
• AssignmentExpression
• LeftHandSideExpression
• ArrowFunction

• RQ1: Coverage) How much does JSAVER cover JavaScript
language features in the latest ECMAScript (ES12, 2021)?

• RQ2: Adaptability) Could JSAVER adapt a new language
features not yet introduced in ES12?

• RQ3: Expressiveness) What kinds of abstract sensitivities
and abstract domains JSAVER can support?

• RQ4: Performance) Could JSAVER analyze JavaScript pro-
grams in a durable time?

TODO

7 RELATEDWORK
TODO

• JavaScript Static Analyzers [9, 10, 14, 27]
• JavaScript Static Analysis Techniques [1, 12, 13, 15, 18–21,
30, 34–36]

• Partial Evaluation? (maybe no - * SE conf.)

7.1 JavaScript Mechanized Speci�cation
A speci�cation is mechanized if and only if it is both formalized
and executable. For JavaScript, researchers have proposed various
mechanized speci�cation in their own approaches. In 2010, Guha
et al. [8] presented �JS, the �rst mechanized speci�cation for a core
calculus of ES3 semantics by desugaring most of syntax into �JS, an
extended standard lambda calculus. Thus, the shape of �JS seman-
tics is quite di�erent with original algorithm steps. In mid 2010s,
researchers tried to de�ne mechanized speci�cation for the ES5
and 5.1 semantics having a similar shape of semantics with original
algorithm steps as much as possible. Bodin et al. [2] de�ned JSCert,
a semantics of a small subset of ES5, using Coq and extracts a refer-
ence interpreter JSRef. Park et al. [22] de�ned an entire semantics
of ES5, KJS, using the K [29], which is a framework for de�ning
language semantics. Fragoso Santos et al. [7] presented JaVerT, a

JavaScript veri�cation toolchain, including a JavaScript semantics
de�ned in their own Intermediate language, JSIL.

However, the fundamental problem of their approaches is that
they are manually de�ned thus they are labor-intensive and error-
prone. Due to such limitation, there is no existing mechanized
speci�cation for full semantics of ES6 or later versions. Therefore,
most of existing JavaScript static analyzers only focus on ES5.1
features or rarely support ES6 features even though already six
more versions from ES7 to ES12 are released since 2015.

Moreover, Park et al. [23] successfully showed that JISET is useful
tomechanically handle recent versions of ECMAScript by extending
JISET to perform N+1-version di�erential testing of both JavaScript
engines and ES11 (2020).

8 CONCLUSION
TODO

REFERENCES
[1] Roberto Amadini, Alexander Jordan, Graeme Gange, François Gauthier, Peter

Schachte, Harald Søndergaard, Peter J Stuckey, and Chenyi Zhang. 2017. Com-
bining String Abstract Domains for JavaScript Analysis: An Evaluation. In Pro-
ceedings of the 23rd International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS). https://doi.org/10.1007/978-3-
662-54577-5_3

[2] Martin Bodin, Arthur Charguéraud, Daniele Filaretti, Philippa Gardner, Sergio
Ma�eis, Daiva Naudziuniene, Alan Schmitt, and Gareth Smith. 2014. A Trusted
Mechanised JavaScript Speci�cation. Proceedings of the 41st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming (POPL) 49, 1 (2014), 87–100.
https://doi.org/10.1145/2535838.2535876

[3] David R. Chase, Mark Wegman, and F. Kenneth Zadeck. 1990. Analysis of
Pointers and Structures. In Proceedings of the ACM SIGPLAN 1990 Conference on
Programming Language Design and Implementation (PLDI) (PLDI ’90). Association
for Computing Machinery, New York, NY, USA, 296–310. https://doi.org/10.
1145/93542.93585

[4] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Uni�ed
Lattice Model for Static Analysis of Programs by Construction or Approximation
of Fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming languages (POPL). https://doi.org/10.1145/512950.
512973

[5] Patrick Cousot and Radhia Cousot. 1977. Static Determination of Dynamic
Properties of Generalized Type Unions. In Proceedings of an ACM Conference on
Language Design for Reliable Software. Association for Computing Machinery,
New York, NY, USA, 77–94. https://doi.org/10.1145/800022.808314

[6] Patrick Cousot and Radhia Cousot. 1992. Abstract Interpretation Frameworks.
Journal of Logic and Computation (JLC) 2, 4 (1992), 511–547. https://doi.org/10.
1093/logcom/2.4.511

[7] José Fragoso Santos, Petar Maksimović, Daiva Naudži = unienė, Thomas Wood,
and Philippa Gardner. 2017. JaVerT: JavaScript Veri�cation Toolchain. Proceedings
of the 44th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
(POPL) 2, POPL (2017), 1–33. https://doi.org/10.1145/3158138

[8] Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. 2010. The essence
of JavaScript. In Proceedings of the 24th European Conference on Object-Oriented
Programming (ECOOP). Springer, 126–150. https://doi.org/10.1007/978-3-642-
14107-2_7

[9] Simon Holm Jensen, Anders Møller, and Peter Thiemann. 2009. Type Analysis for
JavaScript. In Proceedings of the 16th International Symposium on Static Analysis
(SAS). https://doi.org/10.1007/978-3-642-03237-0_17

[10] Vineeth Kashyap, Kyle Dewey, Ethan A. Kuefner, John Wagner, Kevin Gib-
bons, John Sarracino, Ben Wiedermann, and Ben Hardekopf. 2014. JSAI: A
Static Analysis Platform for JavaScript. In Proceedings of the 22nd ACM SIG-
SOFT International Symposium on Foundations of Software Engineering (FSE).
https://doi.org/10.1145/2635868.2635904

[11] Se-Won Kim, Xavier Rival, and Sukyoung Ryu. 2018. A Theoretical Foundation
of Sensitivity in an Abstract Interpretation Framework. ACM Transactions on
Programming Languages and Systems (TOPLAS) 40, 3, Article 13 (2018), 44 pages.
https://doi.org/10.1145/3230624

[12] Yoonseok Ko, Xavier Rival, and Sukyoung Ryu. 2017. Weakly Sensitive Analysis
for Unbounded Iteration over JavaScript Objects. In Proceedings of the 15th Asian
Symposium on Programming Languages and Systems (APLAS). https://doi.org/10.
1007/978-3-319-71237-6_8

7

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Automatically Deriving JavaScript Static Analyzers from Language Specifications ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

function error(e) { throw e; }

const n = ...; // [0, 99]

n |> x => x + 1 // [1, 100]

|> x => x * 2 // [2, 200]

|> x => x + 1n; // TypeError

|> error (42);

of representative techniques to increase the precision of JavaScript
static analysis for loops. It discriminates contexts using a stack of
loop contexts containing loop iterations. We de�ne it under view-
based analysis sensitivity and implement it in JSAVER to increase
the precision of IRES static analysis. Moreover, we also de�ne and
implement the loop sensitivity for JavaScript using the loop sensitiv-
ity for IRES. Therefore, our tool discriminates contexts for explicit
loops, such as for-in or for-of, and even implicit loops, such as the
length property assignment of arrays.

6 EVALUATION
• AdditiveExpression
• Identi�erReference
• Identi�er
• AssignmentExpression
• LeftHandSideExpression
• ArrowFunction

• RQ1: Coverage) How much does JSAVER cover JavaScript
language features in the latest ECMAScript (ES12, 2021)?

• RQ2: Adaptability) Could JSAVER adapt a new language
features not yet introduced in ES12?

• RQ3: Expressiveness) What kinds of abstract sensitivities
and abstract domains JSAVER can support?

• RQ4: Performance) Could JSAVER analyze JavaScript pro-
grams in a durable time?

TODO

7 RELATEDWORK
TODO

• JavaScript Static Analyzers [9, 10, 14, 27]
• JavaScript Static Analysis Techniques [1, 12, 13, 15, 18–21,
30, 34–36]

• Partial Evaluation? (maybe no - * SE conf.)

7.1 JavaScript Mechanized Speci�cation
A speci�cation is mechanized if and only if it is both formalized
and executable. For JavaScript, researchers have proposed various
mechanized speci�cation in their own approaches. In 2010, Guha
et al. [8] presented �JS, the �rst mechanized speci�cation for a core
calculus of ES3 semantics by desugaring most of syntax into �JS, an
extended standard lambda calculus. Thus, the shape of �JS seman-
tics is quite di�erent with original algorithm steps. In mid 2010s,
researchers tried to de�ne mechanized speci�cation for the ES5
and 5.1 semantics having a similar shape of semantics with original
algorithm steps as much as possible. Bodin et al. [2] de�ned JSCert,
a semantics of a small subset of ES5, using Coq and extracts a refer-
ence interpreter JSRef. Park et al. [22] de�ned an entire semantics
of ES5, KJS, using the K [29], which is a framework for de�ning
language semantics. Fragoso Santos et al. [7] presented JaVerT, a

JavaScript veri�cation toolchain, including a JavaScript semantics
de�ned in their own Intermediate language, JSIL.

However, the fundamental problem of their approaches is that
they are manually de�ned thus they are labor-intensive and error-
prone. Due to such limitation, there is no existing mechanized
speci�cation for full semantics of ES6 or later versions. Therefore,
most of existing JavaScript static analyzers only focus on ES5.1
features or rarely support ES6 features even though already six
more versions from ES7 to ES12 are released since 2015.

Moreover, Park et al. [23] successfully showed that JISET is useful
tomechanically handle recent versions of ECMAScript by extending
JISET to perform N+1-version di�erential testing of both JavaScript
engines and ES11 (2020).

8 CONCLUSION
TODO

REFERENCES
[1] Roberto Amadini, Alexander Jordan, Graeme Gange, François Gauthier, Peter

Schachte, Harald Søndergaard, Peter J Stuckey, and Chenyi Zhang. 2017. Com-
bining String Abstract Domains for JavaScript Analysis: An Evaluation. In Pro-
ceedings of the 23rd International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS). https://doi.org/10.1007/978-3-
662-54577-5_3

[2] Martin Bodin, Arthur Charguéraud, Daniele Filaretti, Philippa Gardner, Sergio
Ma�eis, Daiva Naudziuniene, Alan Schmitt, and Gareth Smith. 2014. A Trusted
Mechanised JavaScript Speci�cation. Proceedings of the 41st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming (POPL) 49, 1 (2014), 87–100.
https://doi.org/10.1145/2535838.2535876

[3] David R. Chase, Mark Wegman, and F. Kenneth Zadeck. 1990. Analysis of
Pointers and Structures. In Proceedings of the ACM SIGPLAN 1990 Conference on
Programming Language Design and Implementation (PLDI) (PLDI ’90). Association
for Computing Machinery, New York, NY, USA, 296–310. https://doi.org/10.
1145/93542.93585

[4] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Uni�ed
Lattice Model for Static Analysis of Programs by Construction or Approximation
of Fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming languages (POPL). https://doi.org/10.1145/512950.
512973

[5] Patrick Cousot and Radhia Cousot. 1977. Static Determination of Dynamic
Properties of Generalized Type Unions. In Proceedings of an ACM Conference on
Language Design for Reliable Software. Association for Computing Machinery,
New York, NY, USA, 77–94. https://doi.org/10.1145/800022.808314

[6] Patrick Cousot and Radhia Cousot. 1992. Abstract Interpretation Frameworks.
Journal of Logic and Computation (JLC) 2, 4 (1992), 511–547. https://doi.org/10.
1093/logcom/2.4.511

[7] José Fragoso Santos, Petar Maksimović, Daiva Naudži = unienė, Thomas Wood,
and Philippa Gardner. 2017. JaVerT: JavaScript Veri�cation Toolchain. Proceedings
of the 44th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
(POPL) 2, POPL (2017), 1–33. https://doi.org/10.1145/3158138

[8] Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. 2010. The essence
of JavaScript. In Proceedings of the 24th European Conference on Object-Oriented
Programming (ECOOP). Springer, 126–150. https://doi.org/10.1007/978-3-642-
14107-2_7

[9] Simon Holm Jensen, Anders Møller, and Peter Thiemann. 2009. Type Analysis for
JavaScript. In Proceedings of the 16th International Symposium on Static Analysis
(SAS). https://doi.org/10.1007/978-3-642-03237-0_17

[10] Vineeth Kashyap, Kyle Dewey, Ethan A. Kuefner, John Wagner, Kevin Gib-
bons, John Sarracino, Ben Wiedermann, and Ben Hardekopf. 2014. JSAI: A
Static Analysis Platform for JavaScript. In Proceedings of the 22nd ACM SIG-
SOFT International Symposium on Foundations of Software Engineering (FSE).
https://doi.org/10.1145/2635868.2635904

[11] Se-Won Kim, Xavier Rival, and Sukyoung Ryu. 2018. A Theoretical Foundation
of Sensitivity in an Abstract Interpretation Framework. ACM Transactions on
Programming Languages and Systems (TOPLAS) 40, 3, Article 13 (2018), 44 pages.
https://doi.org/10.1145/3230624

[12] Yoonseok Ko, Xavier Rival, and Sukyoung Ryu. 2017. Weakly Sensitive Analysis
for Unbounded Iteration over JavaScript Objects. In Proceedings of the 15th Asian
Symposium on Programming Languages and Systems (APLAS). https://doi.org/10.
1007/978-3-319-71237-6_8

7

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Automatically Deriving JavaScript Static Analyzers from Language Specifications ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

function error(e) { throw e; }

const n = ...; // [0, 99]

n |> x => x + 1 // [1, 100]

|> x => x * 2 // [2, 200]

|> x => x + 1n; // TypeError

|> error (42);

of representative techniques to increase the precision of JavaScript
static analysis for loops. It discriminates contexts using a stack of
loop contexts containing loop iterations. We de�ne it under view-
based analysis sensitivity and implement it in JSAVER to increase
the precision of IRES static analysis. Moreover, we also de�ne and
implement the loop sensitivity for JavaScript using the loop sensitiv-
ity for IRES. Therefore, our tool discriminates contexts for explicit
loops, such as for-in or for-of, and even implicit loops, such as the
length property assignment of arrays.

6 EVALUATION
• AdditiveExpression
• Identi�erReference
• Identi�er
• AssignmentExpression
• LeftHandSideExpression
• ArrowFunction

• RQ1: Coverage) How much does JSAVER cover JavaScript
language features in the latest ECMAScript (ES12, 2021)?

• RQ2: Adaptability) Could JSAVER adapt a new language
features not yet introduced in ES12?

• RQ3: Expressiveness) What kinds of abstract sensitivities
and abstract domains JSAVER can support?

• RQ4: Performance) Could JSAVER analyze JavaScript pro-
grams in a durable time?

TODO

7 RELATEDWORK
TODO

• JavaScript Static Analyzers [9, 10, 14, 27]
• JavaScript Static Analysis Techniques [1, 12, 13, 15, 18–21,
30, 34–36]

• Partial Evaluation? (maybe no - * SE conf.)

7.1 JavaScript Mechanized Speci�cation
A speci�cation is mechanized if and only if it is both formalized
and executable. For JavaScript, researchers have proposed various
mechanized speci�cation in their own approaches. In 2010, Guha
et al. [8] presented �JS, the �rst mechanized speci�cation for a core
calculus of ES3 semantics by desugaring most of syntax into �JS, an
extended standard lambda calculus. Thus, the shape of �JS seman-
tics is quite di�erent with original algorithm steps. In mid 2010s,
researchers tried to de�ne mechanized speci�cation for the ES5
and 5.1 semantics having a similar shape of semantics with original
algorithm steps as much as possible. Bodin et al. [2] de�ned JSCert,
a semantics of a small subset of ES5, using Coq and extracts a refer-
ence interpreter JSRef. Park et al. [22] de�ned an entire semantics
of ES5, KJS, using the K [29], which is a framework for de�ning
language semantics. Fragoso Santos et al. [7] presented JaVerT, a

JavaScript veri�cation toolchain, including a JavaScript semantics
de�ned in their own Intermediate language, JSIL.

However, the fundamental problem of their approaches is that
they are manually de�ned thus they are labor-intensive and error-
prone. Due to such limitation, there is no existing mechanized
speci�cation for full semantics of ES6 or later versions. Therefore,
most of existing JavaScript static analyzers only focus on ES5.1
features or rarely support ES6 features even though already six
more versions from ES7 to ES12 are released since 2015.

Moreover, Park et al. [23] successfully showed that JISET is useful
tomechanically handle recent versions of ECMAScript by extending
JISET to perform N+1-version di�erential testing of both JavaScript
engines and ES11 (2020).

8 CONCLUSION
TODO

REFERENCES
[1] Roberto Amadini, Alexander Jordan, Graeme Gange, François Gauthier, Peter

Schachte, Harald Søndergaard, Peter J Stuckey, and Chenyi Zhang. 2017. Com-
bining String Abstract Domains for JavaScript Analysis: An Evaluation. In Pro-
ceedings of the 23rd International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS). https://doi.org/10.1007/978-3-
662-54577-5_3

[2] Martin Bodin, Arthur Charguéraud, Daniele Filaretti, Philippa Gardner, Sergio
Ma�eis, Daiva Naudziuniene, Alan Schmitt, and Gareth Smith. 2014. A Trusted
Mechanised JavaScript Speci�cation. Proceedings of the 41st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming (POPL) 49, 1 (2014), 87–100.
https://doi.org/10.1145/2535838.2535876

[3] David R. Chase, Mark Wegman, and F. Kenneth Zadeck. 1990. Analysis of
Pointers and Structures. In Proceedings of the ACM SIGPLAN 1990 Conference on
Programming Language Design and Implementation (PLDI) (PLDI ’90). Association
for Computing Machinery, New York, NY, USA, 296–310. https://doi.org/10.
1145/93542.93585

[4] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Uni�ed
Lattice Model for Static Analysis of Programs by Construction or Approximation
of Fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming languages (POPL). https://doi.org/10.1145/512950.
512973

[5] Patrick Cousot and Radhia Cousot. 1977. Static Determination of Dynamic
Properties of Generalized Type Unions. In Proceedings of an ACM Conference on
Language Design for Reliable Software. Association for Computing Machinery,
New York, NY, USA, 77–94. https://doi.org/10.1145/800022.808314

[6] Patrick Cousot and Radhia Cousot. 1992. Abstract Interpretation Frameworks.
Journal of Logic and Computation (JLC) 2, 4 (1992), 511–547. https://doi.org/10.
1093/logcom/2.4.511

[7] José Fragoso Santos, Petar Maksimović, Daiva Naudži = unienė, Thomas Wood,
and Philippa Gardner. 2017. JaVerT: JavaScript Veri�cation Toolchain. Proceedings
of the 44th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
(POPL) 2, POPL (2017), 1–33. https://doi.org/10.1145/3158138

[8] Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. 2010. The essence
of JavaScript. In Proceedings of the 24th European Conference on Object-Oriented
Programming (ECOOP). Springer, 126–150. https://doi.org/10.1007/978-3-642-
14107-2_7

[9] Simon Holm Jensen, Anders Møller, and Peter Thiemann. 2009. Type Analysis for
JavaScript. In Proceedings of the 16th International Symposium on Static Analysis
(SAS). https://doi.org/10.1007/978-3-642-03237-0_17

[10] Vineeth Kashyap, Kyle Dewey, Ethan A. Kuefner, John Wagner, Kevin Gib-
bons, John Sarracino, Ben Wiedermann, and Ben Hardekopf. 2014. JSAI: A
Static Analysis Platform for JavaScript. In Proceedings of the 22nd ACM SIG-
SOFT International Symposium on Foundations of Software Engineering (FSE).
https://doi.org/10.1145/2635868.2635904

[11] Se-Won Kim, Xavier Rival, and Sukyoung Ryu. 2018. A Theoretical Foundation
of Sensitivity in an Abstract Interpretation Framework. ACM Transactions on
Programming Languages and Systems (TOPLAS) 40, 3, Article 13 (2018), 44 pages.
https://doi.org/10.1145/3230624

[12] Yoonseok Ko, Xavier Rival, and Sukyoung Ryu. 2017. Weakly Sensitive Analysis
for Unbounded Iteration over JavaScript Objects. In Proceedings of the 15th Asian
Symposium on Programming Languages and Systems (APLAS). https://doi.org/10.
1007/978-3-319-71237-6_8

7

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

(a) Evaluation algorithm for logical OR assignments.

1 syntax def AssignmentExpression [8]. Evaluation(

2 this , LeftHandSideExpression , AssignmentExpression

3) { /* entry */

4 let lref = (LeftHandSideExpression.Evaluation)

5 let lval = [? (GetValue lref)]

6 let lbool = [! (ToBoolean lval)] /* #1 */

7 if (= lbool true) /* #2 */ return lval else { /* #3 */ }

8 if (&& (IsAnonymousFunctionDefinition AssignmentExpression)

9 (LeftHandSideExpression.IsIdentifierRef)) { /* #4 */

10 let rval = (AssignmentExpression.NamedEvaluation

11 lref.ReferencedName)

12 } else { /* #5 */

13 let rref = (AssignmentExpression.Evaluation)

14 let rval = [? (GetValue rref)]

15 } /* #6 */

16 [? (PutValue lref rval)]

17 return rval

18 } /* exit */

(b) The extracted IRES function.

Figure 1: Evaluation algorithm for the eighth alternative of AssignmentExpression in ES12 and the extracted IRES function.

To alleviate this problem, we propose a novel technique called
meta-level static analysis to automatically derive a JavaScript static
analyzer from any version of ECMAScript. The main idea of the
meta-level static analysis is to indirectly analyze a target language
program by performing static analysis for a language speci�ca-
tion of the target language written in a speci�cation language with
the program as the initial input. Thus, it can signi�cantly reduce
the burden to manually design and implement static analyzers by
automatically deriving them from given language speci�cations.
Moreover, it even guarantees the soundness of derived static analyz-
ers for the target language by constructing sound abstract semantics
for the speci�cation language.

For the expressiveness of a meta-level static analysis, we also
present ways to con�gure analysis sensitivities and abstract do-
mains for a target language. Con�guring them is a typical way
to manage analysis precision and performance. First, we present
the AST sensitivity in a meta-level static analysis to express analy-
sis sensitivities for a target language such as �ow-sensitivity and
k-callsite-sensitivity (Section 4.2). Second, we present a way to
con�gure abstract domains for structures and values in a target
language (Section 4.3).

To actualize our approach for JavaScript, we present JSAVER,
JavaScript Static Analyzers via ECMAScript Representations. First,
we utilize JISET [26] to extract a mechanized speci�cation written
in an intermediate representation, IRES, from a given ECMAScript.
Thus, target and speci�cation languages are JavaScript and IRES,
respectively, for the meta-level static analysis in JSAVER. In addition,
we implement several analysis techniques to improve the perfor-
mance and precision of derived static analyzers (Section 5). We
evaluated JSAVER by deriving a JavaScript static analyzer from the
latest ECMAScript, ES12, and using the o�cial conformance tests,
Test2622.

Our contributions are as follows:
• We propose a novel concept called meta-level static analysis,
which automatically derives a static analyzer for a target

2https://github.com/tc39/test262

let f = Math.floor(Math.random () * 100);

// f: [0, 99]

f ||= x => x;

// f: [1, 99] or { name: �f�, ... }

let x = f.name;

// f: [1, 99] or { name: �f�, ... }, x: undefined or �f�

Figure 2: A running JavaScript program with a logical OR
assignment newly introduced in ES12.

language from its language speci�cation written in a speci�-
cation language.

• We actualize meta-level static analysis for JavaScript as a tool
called JSAVER. It is the �rst tool that automatically derives a
JavaScript static analyzer from any version of ECMAScript.

• We derive a static analyzer from the latest ECMAScript, ES12,
to evaluate JSAVER. The synthesized static analyzer success-
fully analyzes all applicable 18,556 o�cial conformance tests.
Moreover, we demonstrate the adaptability and expressive-
ness of JSAVER with several case studies.

2 BACKGROUND
In this section, we explain the detail of ECMAScript, the o�cial
speci�cation of JavaScript. We then introduce JISET and how it
extracts a mechanized speci�cation from it. Since our work is to
perform meta-level static analysis for JavaScript using extracted
mechanized speci�cations, it is essential to understand how EC-
MAScript describes JavaScript semantics and how JISET extracts a
mechanized speci�cation from it.

For the detailed explanation, we explain a new language feature
introduced in ES12 called logical OR assignments (Figure 1) and
use a JavaScript program (Figure 2) as a running example. It �rst
de�nes a variable f with a random integer from 0 to 99. Then, it
uses a logical OR assignment to update f with an arrow function
whose name is �f� only if f has 0 because 0 represents false but
other integers represent true. Finally, it de�nes a variable x with
f.name and its value is undefined if f has an integer or �f� otherwise.

2

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Automatically Deriving JavaScript Static Analyzers from Language Specifications ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

otherwise, a normal function. An instruction i is a primitive value
assignment, an operation between values, a internal �eld access, a
external �eld access, a record allocations, a function call, or a return
instruction.

States � 2 S = H ⇥ C
Heaps h 2 H = A �n��!R
Contexts c 2 C = L ⇥ (X �n��!V) ⇥ C?
Values � 2 V = Vp] A] T] F
Records r 2 R = (Vstr

�n��!V) ⇥ (Vstr
�n��!V)

States S consists of heaps H and contexts C. A heap h 2 H is a
�nite mapping from addresses to records. Each record allocation
instruction x = {} creates a unique address a 2 A di�erent with
existing addresses. A context c 2 C is a triple of 1) the program
point, 2) a local environment which is a �nite mapping from vari-
ables to values, and 3) an optional calling context. A value � 2 V
is a primitive value, an address, an AST, or a function. A record
r 2 R consists of two �nite mappings from strings to values. The
left mapping represents internal �elds accessible by internal �eld
accesses x = x[x]. On the other hand, the right one represents ex-
ternal �elds, such as variables in JavaScript environment records or
properties in JavaScript objects, and they are accessible by a exter-
nal �eld access x = x[x]ext. We formulate the concrete semantics
of a program P as a transition system ({, S�) where{✓ S⇥ S is a
transition relation between concrete states and S� is a set of initial
states.

For a meta-level static analysis, we de�ne its abstract semantics
in the abstract interpretation framework [4, 6]. Since our analysis
supports view-based analysis sensitivities [11, 24], the abstract
domain is de�ned as a mapping from views to abstract states, D# =
� ! D#, with a view abstraction � : � ! P(S) which represents
the meaning of each view � 2 �. Then, we de�ne abstract states as
follows:

Abstract States � # 2 D# = H# ⇥ C#

Abstract Heaps h# 2 H# = A# �n��!(R# ⇥ R#
ext

)
Abstract Addresses a# 2 A# = L
Abstract Contexts c# 2 C# = X �n��!V#

An abstract heaph# 2 H# is a �nitemapping from abstract addresses
A
to pairs of abstract internal records R# and abstract external

records R#
ext

. Each abstract address a# 2 A# is de�ned with the
allocation-site abstraction [3] that partitions concrete addresses A
based on their allocation sites L. An abstract context c# 2 C# is a
�nite mapping from variables to abstract values. Shapes of abstract
values V#, abstract internal (or external) records R# (or R#

ext
) are

parametric thus we can freely con�gure them.

4.2 Analysis Sensitivities
In a meta-level static analysis, analysis sensitivities of the target
language (JavaScript) are di�erent with them of the speci�cation
language (IRES). For example, we explain what happens during anal-
ysis of the following JavaScript program with the �ow-sensitivity
for IRES:

let x = 1, y = 2;

x + y; // 3

(a) Evaluation algorithm for identi�er references.

1 syntax def IdentifierReference [0]. Evaluation(

2 this , Identifier

3) {

4 return [? (ResolveBinding (Identifier.StringValue))

5 }

(b) The extracted IRES function.

(c) Parsing result of x + y (bottom) and the initial local environment
(top) of the IRES function.

Figure 7: An example of the di�erence between analysis sen-
sitivities of target and speci�cation language.

Figure 7 describes (a) the Evaluation algorithm of identi�er refer-
ences, (b) its extracted IRES function, and (c) the parsing result of
x + y and the initial local environment of the IRES function. Since
the �ow-sensitivity merges states based on the program points,
contexts for the evaluation of both identi�er references x and y are
merged. Thus, the IRES variable Identifier points to their ASTs
as described in Figure 7. Due to the imprecise merge of contexts,
StringValue of Identifier returns �x� and �y�, and ResolveBinding
with them returns both 1 and 2. Finally, the analysis result of x + y

becomes { 2, 3, 4 }.

Flow Sensitivity. To resolve this problem, we present an AST sen-
sitivity for the speci�cation language to represent �ow-sensitivity
of the target language. It is a variant of object sensitivity [17, 33]
which uses abstract addresses A# of receiver objects as views. How-
ever, unlike the object sensitivity, the AST sensitivity utilizes ASTs
T stored in the parameter this only for syntax-directed functions:

� flow(t 2 T) = {� = (_, c) 2 S | syntax-ctxt(c) = c 0 ^ c 0(this) = t}
where syntax-ctxt(c) denotes the top-most context whose function
is syntax-directed and c 0(this) denotes a lookup of the variable
this in the mapping in the context c 0. We de�ne the �ow sensitivity
for the target language using the AST sensitivity and it successfully
divides contexts for the evaluation of JavaScript identi�ers x and y

in the above example using their ASTs even though their program
points are same.

Callsite Sensitivity. We also formally de�ne the callsite sensitiv-
ity [31, 32] for the target language by extending AST sensitivity
for speci�c normal IRES functions. The original callsite sensitivity
discriminates calling contexts based on their top most callsites. In
ECMAScript, all explicit and even implicit JavaScript function calls

5

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Automatically Deriving JavaScript Static Analyzers from Language Specifications ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

function error(e) { throw e; }

const n = ...; // [0, 99]

n |> x => x + 1 // [1, 100]

|> x => x * 2 // [2, 200]

|> x => x + 1n; // TypeError

|> error (42);

of representative techniques to increase the precision of JavaScript
static analysis for loops. It discriminates contexts using a stack of
loop contexts containing loop iterations. We de�ne it under view-
based analysis sensitivity and implement it in JSAVER to increase
the precision of IRES static analysis. Moreover, we also de�ne and
implement the loop sensitivity for JavaScript using the loop sensitiv-
ity for IRES. Therefore, our tool discriminates contexts for explicit
loops, such as for-in or for-of, and even implicit loops, such as the
length property assignment of arrays.

6 EVALUATION
• AdditiveExpression
• Identi�erReference
• Identi�er
• AssignmentExpression
• LeftHandSideExpression
• ArrowFunction

• RQ1: Coverage) How much does JSAVER cover JavaScript
language features in the latest ECMAScript (ES12, 2021)?

• RQ2: Adaptability) Could JSAVER adapt a new language
features not yet introduced in ES12?

• RQ3: Expressiveness) What kinds of abstract sensitivities
and abstract domains JSAVER can support?

• RQ4: Performance) Could JSAVER analyze JavaScript pro-
grams in a durable time?

TODO

7 RELATEDWORK
TODO

• JavaScript Static Analyzers [9, 10, 14, 27]
• JavaScript Static Analysis Techniques [1, 12, 13, 15, 18–21,
30, 34–36]

• Partial Evaluation? (maybe no - * SE conf.)

7.1 JavaScript Mechanized Speci�cation
A speci�cation is mechanized if and only if it is both formalized
and executable. For JavaScript, researchers have proposed various
mechanized speci�cation in their own approaches. In 2010, Guha
et al. [8] presented �JS, the �rst mechanized speci�cation for a core
calculus of ES3 semantics by desugaring most of syntax into �JS, an
extended standard lambda calculus. Thus, the shape of �JS seman-
tics is quite di�erent with original algorithm steps. In mid 2010s,
researchers tried to de�ne mechanized speci�cation for the ES5
and 5.1 semantics having a similar shape of semantics with original
algorithm steps as much as possible. Bodin et al. [2] de�ned JSCert,
a semantics of a small subset of ES5, using Coq and extracts a refer-
ence interpreter JSRef. Park et al. [22] de�ned an entire semantics
of ES5, KJS, using the K [29], which is a framework for de�ning
language semantics. Fragoso Santos et al. [7] presented JaVerT, a

JavaScript veri�cation toolchain, including a JavaScript semantics
de�ned in their own Intermediate language, JSIL.

However, the fundamental problem of their approaches is that
they are manually de�ned thus they are labor-intensive and error-
prone. Due to such limitation, there is no existing mechanized
speci�cation for full semantics of ES6 or later versions. Therefore,
most of existing JavaScript static analyzers only focus on ES5.1
features or rarely support ES6 features even though already six
more versions from ES7 to ES12 are released since 2015.

Moreover, Park et al. [23] successfully showed that JISET is useful
tomechanically handle recent versions of ECMAScript by extending
JISET to perform N+1-version di�erential testing of both JavaScript
engines and ES11 (2020).

8 CONCLUSION
TODO

REFERENCES
[1] Roberto Amadini, Alexander Jordan, Graeme Gange, François Gauthier, Peter

Schachte, Harald Søndergaard, Peter J Stuckey, and Chenyi Zhang. 2017. Com-
bining String Abstract Domains for JavaScript Analysis: An Evaluation. In Pro-
ceedings of the 23rd International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS). https://doi.org/10.1007/978-3-
662-54577-5_3

[2] Martin Bodin, Arthur Charguéraud, Daniele Filaretti, Philippa Gardner, Sergio
Ma�eis, Daiva Naudziuniene, Alan Schmitt, and Gareth Smith. 2014. A Trusted
Mechanised JavaScript Speci�cation. Proceedings of the 41st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming (POPL) 49, 1 (2014), 87–100.
https://doi.org/10.1145/2535838.2535876

[3] David R. Chase, Mark Wegman, and F. Kenneth Zadeck. 1990. Analysis of
Pointers and Structures. In Proceedings of the ACM SIGPLAN 1990 Conference on
Programming Language Design and Implementation (PLDI) (PLDI ’90). Association
for Computing Machinery, New York, NY, USA, 296–310. https://doi.org/10.
1145/93542.93585

[4] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Uni�ed
Lattice Model for Static Analysis of Programs by Construction or Approximation
of Fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming languages (POPL). https://doi.org/10.1145/512950.
512973

[5] Patrick Cousot and Radhia Cousot. 1977. Static Determination of Dynamic
Properties of Generalized Type Unions. In Proceedings of an ACM Conference on
Language Design for Reliable Software. Association for Computing Machinery,
New York, NY, USA, 77–94. https://doi.org/10.1145/800022.808314

[6] Patrick Cousot and Radhia Cousot. 1992. Abstract Interpretation Frameworks.
Journal of Logic and Computation (JLC) 2, 4 (1992), 511–547. https://doi.org/10.
1093/logcom/2.4.511

[7] José Fragoso Santos, Petar Maksimović, Daiva Naudži = unienė, Thomas Wood,
and Philippa Gardner. 2017. JaVerT: JavaScript Veri�cation Toolchain. Proceedings
of the 44th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
(POPL) 2, POPL (2017), 1–33. https://doi.org/10.1145/3158138

[8] Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. 2010. The essence
of JavaScript. In Proceedings of the 24th European Conference on Object-Oriented
Programming (ECOOP). Springer, 126–150. https://doi.org/10.1007/978-3-642-
14107-2_7

[9] Simon Holm Jensen, Anders Møller, and Peter Thiemann. 2009. Type Analysis for
JavaScript. In Proceedings of the 16th International Symposium on Static Analysis
(SAS). https://doi.org/10.1007/978-3-642-03237-0_17

[10] Vineeth Kashyap, Kyle Dewey, Ethan A. Kuefner, John Wagner, Kevin Gib-
bons, John Sarracino, Ben Wiedermann, and Ben Hardekopf. 2014. JSAI: A
Static Analysis Platform for JavaScript. In Proceedings of the 22nd ACM SIG-
SOFT International Symposium on Foundations of Software Engineering (FSE).
https://doi.org/10.1145/2635868.2635904

[11] Se-Won Kim, Xavier Rival, and Sukyoung Ryu. 2018. A Theoretical Foundation
of Sensitivity in an Abstract Interpretation Framework. ACM Transactions on
Programming Languages and Systems (TOPLAS) 40, 3, Article 13 (2018), 44 pages.
https://doi.org/10.1145/3230624

[12] Yoonseok Ko, Xavier Rival, and Sukyoung Ryu. 2017. Weakly Sensitive Analysis
for Unbounded Iteration over JavaScript Objects. In Proceedings of the 15th Asian
Symposium on Programming Languages and Systems (APLAS). https://doi.org/10.
1007/978-3-319-71237-6_8

7

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

(a) Evaluation algorithm for identi�er references

1 syntax def IdentifierReference [0]. Evaluation(
2 this , Identifier
3) {
4 return [? (ResolveBinding (Identifier.StringValue))]
5 }

(b) Extracted IRES function for identi�er references

(c) Result of x + y via a mechanized speci�cation

Figure 7: Analysis sensitivities of the target language
(JavaScript) and the speci�cation language (IRES)

divides contexts for the evaluation of JavaScript identi�ers x and y

in the above example using their ASTs even though their program
points in IRES are the same.

Callsite Sensitivity. We also formally de�ne the callsite sensitiv-
ity [37, 38] for the target language by extending the AST sensitivity
for speci�c normal IRES functions. The original callsite sensitivity
discriminates calling contexts using their top most callsites. In EC-
MAScript, all explicit and even implicit JavaScript function calls
invoke normal IRES functions Call and Construct. Thus, we de�ne
the callsite sensitivity for the target language by extending the AST
sensitivity with two normal IRES functions:

� cfa(t 2 T) = {� = (_, c) 2 S |
syntax-ctxt � js-call-ctxt(c) = c 0 ^ c 0(this) = t}

where js-call-ctxt(c) denotes the top-most context whose function is
Call or Construct and f �� denotes a function composition. Moreover,
we extend it to the k-callsite sensitivity by recursively taking ASTs
representing callsites of the target language:

�k -cfa(t 2 Tk) = {� = (_, c) 2 S |
t = [t1, · · · , tn] ^ n k^
(ö(syntax-ctxt � js-call-ctxt)n+1(c) _ n = k)^
81 i n.
((syntax-ctxt � js-call-ctxt)i (c) = ci ^ ci (this) = ti)}

Using this callsite sensitivity for the target language, the meta-
level static analyzer could discriminate not only explicit JavaScript
function calls (e.g. f()) but also implicit JavaScript function calls,
including getters/setters, user-de�ned implicit conversions, and
implicit function calls in built-in libraries.

5 IMPLEMENTATION
We developed a prototype implementation called JSAVER, which per-
forms a meta-level static analysis for JavaScript with ECMAScript.
The tool is an extension of JISET4 and it is an open-source project5.
In this section, we describe the challenges in implementing a meta-
level static analyzer and present our solutions for them.

Layered Abstract States. Unlike traditional JavaScript static anal-
yses, a meta-level static analysis for JavaScript should track analysis
results not only for the target language JavaScript but also for the
speci�cation language IRES. Thus, the sizes of abstract states are
much larger than those of the other JavaScript static analyzers. We
implement layered abstract states to maintain only updated analysis
results compared to the initial abstract state. It signi�cantly reduces
the time to perform the join (t), meet (u), and partial order (v)
operations by considering only the updated parts in abstract states.

Closures and Continuations. The speci�cation language IRES for
ECMAScript contains more complex language features than its
simpli�ed version presented in Section 4.1, such as symbols, lists,
and list operations. Among them, the two most complex features
are closures with captured variables and �rst-class continuations be-
cause they introduce new kinds of control �ows. ECMAScript uses
closures to de�ne implicit and explicit JavaScript iterators and uses
continuations for iterators, generators, and asynchronous features
such as async, await, and the Proxy object. Therefore, we de�ne and
implement abstract closures and abstract continuations; an abstract
closure is a pair of a function and a mapping from captured vari-
ables to their abstract values, and an abstract continuation consists
of a program point, a view for analysis sensitivity, parameters, and
an abstract context.

Abstract Counting. Properties of JavaScript objects could be dy-
namically added, modi�ed, or deleted and even accessible by �rst-
class property names. Thus, in JavaScript static analysis, performing
strong updates rather than weak updates for object properties as
many as possible is important for precise analysis results. Since
records of IRES are even more dynamic than JavaScript objects, it is
also important to increase analysis precision. Therefore, we imple-
ment abstract counting [19] to increase chances to perform strong
updates for �elds of records. It checks how many times records in
the same allocation site have been allocated and performs strong
updates only for singleton records with singleton �eld values.

Loop Sensitivity. Similar to function calls, loops are also typical
merging points in static analysis. A loop sensitivity [24] is one of the
representative techniques to increase the precision of JavaScript
static analysis for loops. It discriminates contexts using a stack
of loop contexts containing loop iterations. We de�ne it under
the view-based analysis sensitivity and implement it in JSAVER to
increase the precision of IRES static analysis. Moreover, we also
de�ne and implement the loop sensitivity for JavaScript using the
loop sensitivity for IRES. Therefore, JSAVER discriminates contexts
for explicit loops such as for-in and for-of and even implicit loops
such as the assignment of arguments or the length property of
arrays.

4https://github.com/kaist-plrg/jiset
5The URL of the tool is anonymized due to a double-blind review process.

6

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

(a) Evaluation algorithm for identi�er references

1 syntax def IdentifierReference [0]. Evaluation(
2 this , Identifier
3) {
4 return [? (ResolveBinding (Identifier.StringValue))]
5 }

(b) Extracted IRES function for identi�er references

(c) Result of x + y via a mechanized speci�cation

Figure 7: Analysis sensitivities of the target language
(JavaScript) and the speci�cation language (IRES)

divides contexts for the evaluation of JavaScript identi�ers x and y

in the above example using their ASTs even though their program
points in IRES are the same.

Callsite Sensitivity. We also formally de�ne the callsite sensitiv-
ity [37, 38] for the target language by extending the AST sensitivity
for speci�c normal IRES functions. The original callsite sensitivity
discriminates calling contexts using their top most callsites. In EC-
MAScript, all explicit and even implicit JavaScript function calls
invoke normal IRES functions Call and Construct. Thus, we de�ne
the callsite sensitivity for the target language by extending the AST
sensitivity with two normal IRES functions:

� cfa(t 2 T) = {� = (_, c) 2 S |
syntax-ctxt � js-call-ctxt(c) = c 0 ^ c 0(this) = t}

where js-call-ctxt(c) denotes the top-most context whose function is
Call or Construct and f �� denotes a function composition. Moreover,
we extend it to the k-callsite sensitivity by recursively taking ASTs
representing callsites of the target language:

�k -cfa(t 2 Tk) = {� = (_, c) 2 S |
t = [t1, · · · , tn] ^ n k^
(ö(syntax-ctxt � js-call-ctxt)n+1(c) _ n = k)^
81 i n.
((syntax-ctxt � js-call-ctxt)i (c) = ci ^ ci (this) = ti)}

Using this callsite sensitivity for the target language, the meta-
level static analyzer could discriminate not only explicit JavaScript
function calls (e.g. f()) but also implicit JavaScript function calls,
including getters/setters, user-de�ned implicit conversions, and
implicit function calls in built-in libraries.

5 IMPLEMENTATION
We developed a prototype implementation called JSAVER, which per-
forms a meta-level static analysis for JavaScript with ECMAScript.
The tool is an extension of JISET4 and it is an open-source project5.
In this section, we describe the challenges in implementing a meta-
level static analyzer and present our solutions for them.

Layered Abstract States. Unlike traditional JavaScript static anal-
yses, a meta-level static analysis for JavaScript should track analysis
results not only for the target language JavaScript but also for the
speci�cation language IRES. Thus, the sizes of abstract states are
much larger than those of the other JavaScript static analyzers. We
implement layered abstract states to maintain only updated analysis
results compared to the initial abstract state. It signi�cantly reduces
the time to perform the join (t), meet (u), and partial order (v)
operations by considering only the updated parts in abstract states.

Closures and Continuations. The speci�cation language IRES for
ECMAScript contains more complex language features than its
simpli�ed version presented in Section 4.1, such as symbols, lists,
and list operations. Among them, the two most complex features
are closures with captured variables and �rst-class continuations be-
cause they introduce new kinds of control �ows. ECMAScript uses
closures to de�ne implicit and explicit JavaScript iterators and uses
continuations for iterators, generators, and asynchronous features
such as async, await, and the Proxy object. Therefore, we de�ne and
implement abstract closures and abstract continuations; an abstract
closure is a pair of a function and a mapping from captured vari-
ables to their abstract values, and an abstract continuation consists
of a program point, a view for analysis sensitivity, parameters, and
an abstract context.

Abstract Counting. Properties of JavaScript objects could be dy-
namically added, modi�ed, or deleted and even accessible by �rst-
class property names. Thus, in JavaScript static analysis, performing
strong updates rather than weak updates for object properties as
many as possible is important for precise analysis results. Since
records of IRES are even more dynamic than JavaScript objects, it is
also important to increase analysis precision. Therefore, we imple-
ment abstract counting [19] to increase chances to perform strong
updates for �elds of records. It checks how many times records in
the same allocation site have been allocated and performs strong
updates only for singleton records with singleton �eld values.

Loop Sensitivity. Similar to function calls, loops are also typical
merging points in static analysis. A loop sensitivity [24] is one of the
representative techniques to increase the precision of JavaScript
static analysis for loops. It discriminates contexts using a stack
of loop contexts containing loop iterations. We de�ne it under
the view-based analysis sensitivity and implement it in JSAVER to
increase the precision of IRES static analysis. Moreover, we also
de�ne and implement the loop sensitivity for JavaScript using the
loop sensitivity for IRES. Therefore, JSAVER discriminates contexts
for explicit loops such as for-in and for-of and even implicit loops
such as the assignment of arguments or the length property of
arrays.

4https://github.com/kaist-plrg/jiset
5The URL of the tool is anonymized due to a double-blind review process.

6

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

(a) Evaluation algorithm for identi�er references

1 syntax def IdentifierReference [0]
2 .Evaluation(
3 this , Identifier
4) {
5 return [?
6 (ResolveBinding
7 (Identifier.StringValue))]
8 }

(b) Extracted IRES function for identi�er references

(c) Result of x + y via a mechanized speci�cation

Figure 7: Analysis sensitivities of the target language
(JavaScript) and the speci�cation language (IRES)

divides contexts for the evaluation of JavaScript identi�ers x and y

in the above example using their ASTs even though their program
points in IRES are the same.

Callsite Sensitivity. We also formally de�ne the callsite sensitiv-
ity [37, 38] for the target language by extending the AST sensitivity
for speci�c normal IRES functions. The original callsite sensitivity
discriminates calling contexts using their top most callsites. In EC-
MAScript, all explicit and even implicit JavaScript function calls
invoke normal IRES functions Call and Construct. Thus, we de�ne
the callsite sensitivity for the target language by extending the AST
sensitivity with two normal IRES functions:

� cfa(t 2 T) = {� = (_, c) 2 S |
syntax-ctxt � js-call-ctxt(c) = c 0 ^ c 0(this) = t}

where js-call-ctxt(c) denotes the top-most context whose function is
Call or Construct and f �� denotes a function composition. Moreover,
we extend it to the k-callsite sensitivity by recursively taking ASTs
representing callsites of the target language:

�k -cfa(t 2 Tk) = {� = (_, c) 2 S |
t = [t1, · · · , tn] ^ n k^
(ö(syntax-ctxt � js-call-ctxt)n+1(c) _ n = k)^
81 i n.
((syntax-ctxt � js-call-ctxt)i (c) = ci ^ ci (this) = ti)}

Using this callsite sensitivity for the target language, the meta-
level static analyzer could discriminate not only explicit JavaScript
function calls (e.g. f()) but also implicit JavaScript function calls,

including getters/setters, user-de�ned implicit conversions, and
implicit function calls in built-in libraries.

5 IMPLEMENTATION
We developed a prototype implementation called JSAVER, which per-
forms a meta-level static analysis for JavaScript with ECMAScript.
The tool is an extension of JISET4 and it is an open-source project5.
In this section, we describe the challenges in implementing a meta-
level static analyzer and present our solutions for them.

Layered Abstract States. Unlike traditional JavaScript static anal-
yses, a meta-level static analysis for JavaScript should track analysis
results not only for the target language JavaScript but also for the
speci�cation language IRES. Thus, the sizes of abstract states are
much larger than those of the other JavaScript static analyzers. We
implement layered abstract states to maintain only updated analysis
results compared to the initial abstract state. It signi�cantly reduces
the time to perform the join (t), meet (u), and partial order (v)
operations by considering only the updated parts in abstract states.

Closures and Continuations. The speci�cation language IRES for
ECMAScript contains more complex language features than its
simpli�ed version presented in Section 4.1, such as symbols, lists,
and list operations. Among them, the two most complex features
are closures with captured variables and �rst-class continuations be-
cause they introduce new kinds of control �ows. ECMAScript uses
closures to de�ne implicit and explicit JavaScript iterators and uses
continuations for iterators, generators, and asynchronous features
such as async, await, and the Proxy object. Therefore, we de�ne and
implement abstract closures and abstract continuations; an abstract
closure is a pair of a function and a mapping from captured vari-
ables to their abstract values, and an abstract continuation consists
of a program point, a view for analysis sensitivity, parameters, and
an abstract context.

Abstract Counting. Properties of JavaScript objects could be dy-
namically added, modi�ed, or deleted and even accessible by �rst-
class property names. Thus, in JavaScript static analysis, performing
strong updates rather than weak updates for object properties as
many as possible is important for precise analysis results. Since
records of IRES are even more dynamic than JavaScript objects, it is
also important to increase analysis precision. Therefore, we imple-
ment abstract counting [19] to increase chances to perform strong
updates for �elds of records. It checks how many times records in
the same allocation site have been allocated and performs strong
updates only for singleton records with singleton �eld values.

Loop Sensitivity. Similar to function calls, loops are also typical
merging points in static analysis. A loop sensitivity [24] is one of the
representative techniques to increase the precision of JavaScript
static analysis for loops. It discriminates contexts using a stack
of loop contexts containing loop iterations. We de�ne it under
the view-based analysis sensitivity and implement it in JSAVER to
increase the precision of IRES static analysis. Moreover, we also
de�ne and implement the loop sensitivity for JavaScript using the
loop sensitivity for IRES. Therefore, JSAVER discriminates contexts

4https://github.com/kaist-plrg/jiset
5The URL of the tool is anonymized due to a double-blind review process.

6

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

(a) Evaluation algorithm for identi�er references

1 syntax def IdentifierReference [0]
2 .Evaluation(
3 this , Identifier
4) {
5 return [?
6 (ResolveBinding
7 (Identifier.StringValue))]
8 }

(b) Extracted IRES function for identi�er references

(c) Result of x + y via a mechanized speci�cation

Figure 7: Analysis sensitivities of the target language
(JavaScript) and the speci�cation language (IRES)

divides contexts for the evaluation of JavaScript identi�ers x and y

in the above example using their ASTs even though their program
points in IRES are the same.

Callsite Sensitivity. We also formally de�ne the callsite sensitiv-
ity [37, 38] for the target language by extending the AST sensitivity
for speci�c normal IRES functions. The original callsite sensitivity
discriminates calling contexts using their top most callsites. In EC-
MAScript, all explicit and even implicit JavaScript function calls
invoke normal IRES functions Call and Construct. Thus, we de�ne
the callsite sensitivity for the target language by extending the AST
sensitivity with two normal IRES functions:

� cfa(t 2 T) = {� = (_, c) 2 S |
syntax-ctxt � js-call-ctxt(c) = c 0 ^ c 0(this) = t}

where js-call-ctxt(c) denotes the top-most context whose function is
Call or Construct and f �� denotes a function composition. Moreover,
we extend it to the k-callsite sensitivity by recursively taking ASTs
representing callsites of the target language:

�k -cfa(t 2 Tk) = {� = (_, c) 2 S |
t = [t1, · · · , tn] ^ n k^
(ö(syntax-ctxt � js-call-ctxt)n+1(c) _ n = k)^
81 i n.
((syntax-ctxt � js-call-ctxt)i (c) = ci ^ ci (this) = ti)}

Using this callsite sensitivity for the target language, the meta-
level static analyzer could discriminate not only explicit JavaScript
function calls (e.g. f()) but also implicit JavaScript function calls,

including getters/setters, user-de�ned implicit conversions, and
implicit function calls in built-in libraries.

5 IMPLEMENTATION
We developed a prototype implementation called JSAVER, which per-
forms a meta-level static analysis for JavaScript with ECMAScript.
The tool is an extension of JISET4 and it is an open-source project5.
In this section, we describe the challenges in implementing a meta-
level static analyzer and present our solutions for them.

Layered Abstract States. Unlike traditional JavaScript static anal-
yses, a meta-level static analysis for JavaScript should track analysis
results not only for the target language JavaScript but also for the
speci�cation language IRES. Thus, the sizes of abstract states are
much larger than those of the other JavaScript static analyzers. We
implement layered abstract states to maintain only updated analysis
results compared to the initial abstract state. It signi�cantly reduces
the time to perform the join (t), meet (u), and partial order (v)
operations by considering only the updated parts in abstract states.

Closures and Continuations. The speci�cation language IRES for
ECMAScript contains more complex language features than its
simpli�ed version presented in Section 4.1, such as symbols, lists,
and list operations. Among them, the two most complex features
are closures with captured variables and �rst-class continuations be-
cause they introduce new kinds of control �ows. ECMAScript uses
closures to de�ne implicit and explicit JavaScript iterators and uses
continuations for iterators, generators, and asynchronous features
such as async, await, and the Proxy object. Therefore, we de�ne and
implement abstract closures and abstract continuations; an abstract
closure is a pair of a function and a mapping from captured vari-
ables to their abstract values, and an abstract continuation consists
of a program point, a view for analysis sensitivity, parameters, and
an abstract context.

Abstract Counting. Properties of JavaScript objects could be dy-
namically added, modi�ed, or deleted and even accessible by �rst-
class property names. Thus, in JavaScript static analysis, performing
strong updates rather than weak updates for object properties as
many as possible is important for precise analysis results. Since
records of IRES are even more dynamic than JavaScript objects, it is
also important to increase analysis precision. Therefore, we imple-
ment abstract counting [19] to increase chances to perform strong
updates for �elds of records. It checks how many times records in
the same allocation site have been allocated and performs strong
updates only for singleton records with singleton �eld values.

Loop Sensitivity. Similar to function calls, loops are also typical
merging points in static analysis. A loop sensitivity [24] is one of the
representative techniques to increase the precision of JavaScript
static analysis for loops. It discriminates contexts using a stack
of loop contexts containing loop iterations. We de�ne it under
the view-based analysis sensitivity and implement it in JSAVER to
increase the precision of IRES static analysis. Moreover, we also
de�ne and implement the loop sensitivity for JavaScript using the
loop sensitivity for IRES. Therefore, JSAVER discriminates contexts

4https://github.com/kaist-plrg/jiset
5The URL of the tool is anonymized due to a double-blind review process.

6

JSAVER - AST Sensitivity

41

defining-language
(IRES)

defined-language
(JavaScript) x ||= y

JavaScript Static Analysis for Evolving Language Specifications / 35

parse · · ·<latexit sha1_base64="Kef69hW4e/raBfVz+DaK6/NBFbQ=">AAACHXicbVDJSgNBEK1xjXFL9OhlMAiewowKeozLwYsQITFCJkhPp2Ka9Cx01whxmI/wqge/xpt4Ff/GnnEObg8aHu9VdVU9P5ZCk+N8WDOzc/MLi5Wl6vLK6tp6rb5xpaNEcezySEbq2mcapQixS4IkXscKWeBL7PmT09zv3aHSIgo7NI1xELDbUIwEZ2SknseHEenqTa3hNJ0C9l/ilqQBJdo3dQu8YcSTAEPikmndd52YBilTJLjErOolGmPGJ+wW+4aGLEA9SIt9M3vHKEN7FCnzQrIL9XtHygKtp4FvKgNGY/3by8X/vH5Co6NBKsI4IQz516BRIm2K7Px4eygUcpJTQxhXwuxq8zFTjJOJqOqdoblF4YX591jGY+YjpV4+Jb7nWdpxs7QgQZYKykxm7u+E/pKrvaa739y7PGi0Tsr0KrAF27ALLhxCC86hDV3gMIEHeIQn69l6sV6tt6/SGavs2YQfsN4/AabGomA=</latexit> · · ·<latexit sha1_base64="Kef69hW4e/raBfVz+DaK6/NBFbQ=">AAACHXicbVDJSgNBEK1xjXFL9OhlMAiewowKeozLwYsQITFCJkhPp2Ka9Cx01whxmI/wqge/xpt4Ff/GnnEObg8aHu9VdVU9P5ZCk+N8WDOzc/MLi5Wl6vLK6tp6rb5xpaNEcezySEbq2mcapQixS4IkXscKWeBL7PmT09zv3aHSIgo7NI1xELDbUIwEZ2SknseHEenqTa3hNJ0C9l/ilqQBJdo3dQu8YcSTAEPikmndd52YBilTJLjErOolGmPGJ+wW+4aGLEA9SIt9M3vHKEN7FCnzQrIL9XtHygKtp4FvKgNGY/3by8X/vH5Co6NBKsI4IQz516BRIm2K7Px4eygUcpJTQxhXwuxq8zFTjJOJqOqdoblF4YX591jGY+YjpV4+Jb7nWdpxs7QgQZYKykxm7u+E/pKrvaa739y7PGi0Tsr0KrAF27ALLhxCC86hDV3gMIEHeIQn69l6sV6tt6/SGavs2YQfsN4/AabGomA=</latexit>

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Automatically Deriving JavaScript Static Analyzers from Language Specifications ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

function error(e) { throw e; }

const n = ...; // [0, 99]

n |> x => x + 1 // [1, 100]

|> x => x * 2 // [2, 200]

|> x => x + 1n; // TypeError

|> error (42);

of representative techniques to increase the precision of JavaScript
static analysis for loops. It discriminates contexts using a stack of
loop contexts containing loop iterations. We de�ne it under view-
based analysis sensitivity and implement it in JSAVER to increase
the precision of IRES static analysis. Moreover, we also de�ne and
implement the loop sensitivity for JavaScript using the loop sensitiv-
ity for IRES. Therefore, our tool discriminates contexts for explicit
loops, such as for-in or for-of, and even implicit loops, such as the
length property assignment of arrays.

6 EVALUATION
• AdditiveExpression
• Identi�erReference
• Identi�er
• AssignmentExpression
• LeftHandSideExpression
• ArrowFunction

• RQ1: Coverage) How much does JSAVER cover JavaScript
language features in the latest ECMAScript (ES12, 2021)?

• RQ2: Adaptability) Could JSAVER adapt a new language
features not yet introduced in ES12?

• RQ3: Expressiveness) What kinds of abstract sensitivities
and abstract domains JSAVER can support?

• RQ4: Performance) Could JSAVER analyze JavaScript pro-
grams in a durable time?

TODO

7 RELATEDWORK
TODO

• JavaScript Static Analyzers [9, 10, 14, 27]
• JavaScript Static Analysis Techniques [1, 12, 13, 15, 18–21,
30, 34–36]

• Partial Evaluation? (maybe no - * SE conf.)

7.1 JavaScript Mechanized Speci�cation
A speci�cation is mechanized if and only if it is both formalized
and executable. For JavaScript, researchers have proposed various
mechanized speci�cation in their own approaches. In 2010, Guha
et al. [8] presented �JS, the �rst mechanized speci�cation for a core
calculus of ES3 semantics by desugaring most of syntax into �JS, an
extended standard lambda calculus. Thus, the shape of �JS seman-
tics is quite di�erent with original algorithm steps. In mid 2010s,
researchers tried to de�ne mechanized speci�cation for the ES5
and 5.1 semantics having a similar shape of semantics with original
algorithm steps as much as possible. Bodin et al. [2] de�ned JSCert,
a semantics of a small subset of ES5, using Coq and extracts a refer-
ence interpreter JSRef. Park et al. [22] de�ned an entire semantics
of ES5, KJS, using the K [29], which is a framework for de�ning
language semantics. Fragoso Santos et al. [7] presented JaVerT, a

JavaScript veri�cation toolchain, including a JavaScript semantics
de�ned in their own Intermediate language, JSIL.

However, the fundamental problem of their approaches is that
they are manually de�ned thus they are labor-intensive and error-
prone. Due to such limitation, there is no existing mechanized
speci�cation for full semantics of ES6 or later versions. Therefore,
most of existing JavaScript static analyzers only focus on ES5.1
features or rarely support ES6 features even though already six
more versions from ES7 to ES12 are released since 2015.

Moreover, Park et al. [23] successfully showed that JISET is useful
tomechanically handle recent versions of ECMAScript by extending
JISET to perform N+1-version di�erential testing of both JavaScript
engines and ES11 (2020).

8 CONCLUSION
TODO

REFERENCES
[1] Roberto Amadini, Alexander Jordan, Graeme Gange, François Gauthier, Peter

Schachte, Harald Søndergaard, Peter J Stuckey, and Chenyi Zhang. 2017. Com-
bining String Abstract Domains for JavaScript Analysis: An Evaluation. In Pro-
ceedings of the 23rd International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS). https://doi.org/10.1007/978-3-
662-54577-5_3

[2] Martin Bodin, Arthur Charguéraud, Daniele Filaretti, Philippa Gardner, Sergio
Ma�eis, Daiva Naudziuniene, Alan Schmitt, and Gareth Smith. 2014. A Trusted
Mechanised JavaScript Speci�cation. Proceedings of the 41st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming (POPL) 49, 1 (2014), 87–100.
https://doi.org/10.1145/2535838.2535876

[3] David R. Chase, Mark Wegman, and F. Kenneth Zadeck. 1990. Analysis of
Pointers and Structures. In Proceedings of the ACM SIGPLAN 1990 Conference on
Programming Language Design and Implementation (PLDI) (PLDI ’90). Association
for Computing Machinery, New York, NY, USA, 296–310. https://doi.org/10.
1145/93542.93585

[4] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Uni�ed
Lattice Model for Static Analysis of Programs by Construction or Approximation
of Fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming languages (POPL). https://doi.org/10.1145/512950.
512973

[5] Patrick Cousot and Radhia Cousot. 1977. Static Determination of Dynamic
Properties of Generalized Type Unions. In Proceedings of an ACM Conference on
Language Design for Reliable Software. Association for Computing Machinery,
New York, NY, USA, 77–94. https://doi.org/10.1145/800022.808314

[6] Patrick Cousot and Radhia Cousot. 1992. Abstract Interpretation Frameworks.
Journal of Logic and Computation (JLC) 2, 4 (1992), 511–547. https://doi.org/10.
1093/logcom/2.4.511

[7] José Fragoso Santos, Petar Maksimović, Daiva Naudži = unienė, Thomas Wood,
and Philippa Gardner. 2017. JaVerT: JavaScript Veri�cation Toolchain. Proceedings
of the 44th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
(POPL) 2, POPL (2017), 1–33. https://doi.org/10.1145/3158138

[8] Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. 2010. The essence
of JavaScript. In Proceedings of the 24th European Conference on Object-Oriented
Programming (ECOOP). Springer, 126–150. https://doi.org/10.1007/978-3-642-
14107-2_7

[9] Simon Holm Jensen, Anders Møller, and Peter Thiemann. 2009. Type Analysis for
JavaScript. In Proceedings of the 16th International Symposium on Static Analysis
(SAS). https://doi.org/10.1007/978-3-642-03237-0_17

[10] Vineeth Kashyap, Kyle Dewey, Ethan A. Kuefner, John Wagner, Kevin Gib-
bons, John Sarracino, Ben Wiedermann, and Ben Hardekopf. 2014. JSAI: A
Static Analysis Platform for JavaScript. In Proceedings of the 22nd ACM SIG-
SOFT International Symposium on Foundations of Software Engineering (FSE).
https://doi.org/10.1145/2635868.2635904

[11] Se-Won Kim, Xavier Rival, and Sukyoung Ryu. 2018. A Theoretical Foundation
of Sensitivity in an Abstract Interpretation Framework. ACM Transactions on
Programming Languages and Systems (TOPLAS) 40, 3, Article 13 (2018), 44 pages.
https://doi.org/10.1145/3230624

[12] Yoonseok Ko, Xavier Rival, and Sukyoung Ryu. 2017. Weakly Sensitive Analysis
for Unbounded Iteration over JavaScript Objects. In Proceedings of the 15th Asian
Symposium on Programming Languages and Systems (APLAS). https://doi.org/10.
1007/978-3-319-71237-6_8

7

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

(a) Evaluation algorithm for logical OR assignments.

1 syntax def AssignmentExpression [8]. Evaluation(

2 this , LeftHandSideExpression , AssignmentExpression

3) { /* entry */

4 let lref = (LeftHandSideExpression.Evaluation)

5 let lval = [? (GetValue lref)]

6 let lbool = [! (ToBoolean lval)] /* #1 */

7 if (= lbool true) /* #2 */ return lval else { /* #3 */ }

8 if (&& (IsAnonymousFunctionDefinition AssignmentExpression)

9 (LeftHandSideExpression.IsIdentifierRef)) { /* #4 */

10 let rval = (AssignmentExpression.NamedEvaluation

11 lref.ReferencedName)

12 } else { /* #5 */

13 let rref = (AssignmentExpression.Evaluation)

14 let rval = [? (GetValue rref)]

15 } /* #6 */

16 [? (PutValue lref rval)]

17 return rval

18 } /* exit */

(b) The extracted IRES function.

Figure 1: Evaluation algorithm for the eighth alternative of AssignmentExpression in ES12 and the extracted IRES function.

To alleviate this problem, we propose a novel technique called
meta-level static analysis to automatically derive a JavaScript static
analyzer from any version of ECMAScript. The main idea of the
meta-level static analysis is to indirectly analyze a target language
program by performing static analysis for a language speci�ca-
tion of the target language written in a speci�cation language with
the program as the initial input. Thus, it can signi�cantly reduce
the burden to manually design and implement static analyzers by
automatically deriving them from given language speci�cations.
Moreover, it even guarantees the soundness of derived static analyz-
ers for the target language by constructing sound abstract semantics
for the speci�cation language.

For the expressiveness of a meta-level static analysis, we also
present ways to con�gure analysis sensitivities and abstract do-
mains for a target language. Con�guring them is a typical way
to manage analysis precision and performance. First, we present
the AST sensitivity in a meta-level static analysis to express analy-
sis sensitivities for a target language such as �ow-sensitivity and
k-callsite-sensitivity (Section 4.2). Second, we present a way to
con�gure abstract domains for structures and values in a target
language (Section 4.3).

To actualize our approach for JavaScript, we present JSAVER,
JavaScript Static Analyzers via ECMAScript Representations. First,
we utilize JISET [26] to extract a mechanized speci�cation written
in an intermediate representation, IRES, from a given ECMAScript.
Thus, target and speci�cation languages are JavaScript and IRES,
respectively, for the meta-level static analysis in JSAVER. In addition,
we implement several analysis techniques to improve the perfor-
mance and precision of derived static analyzers (Section 5). We
evaluated JSAVER by deriving a JavaScript static analyzer from the
latest ECMAScript, ES12, and using the o�cial conformance tests,
Test2622.

Our contributions are as follows:
• We propose a novel concept called meta-level static analysis,
which automatically derives a static analyzer for a target

2https://github.com/tc39/test262

let f = Math.floor(Math.random () * 100);

// f: [0, 99]

f ||= x => x;

// f: [1, 99] or { name: �f�, ... }

let x = f.name;

// f: [1, 99] or { name: �f�, ... }, x: undefined or �f�

Figure 2: A running JavaScript program with a logical OR
assignment newly introduced in ES12.

language from its language speci�cation written in a speci�-
cation language.

• We actualize meta-level static analysis for JavaScript as a tool
called JSAVER. It is the �rst tool that automatically derives a
JavaScript static analyzer from any version of ECMAScript.

• We derive a static analyzer from the latest ECMAScript, ES12,
to evaluate JSAVER. The synthesized static analyzer success-
fully analyzes all applicable 18,556 o�cial conformance tests.
Moreover, we demonstrate the adaptability and expressive-
ness of JSAVER with several case studies.

2 BACKGROUND
In this section, we explain the detail of ECMAScript, the o�cial
speci�cation of JavaScript. We then introduce JISET and how it
extracts a mechanized speci�cation from it. Since our work is to
perform meta-level static analysis for JavaScript using extracted
mechanized speci�cations, it is essential to understand how EC-
MAScript describes JavaScript semantics and how JISET extracts a
mechanized speci�cation from it.

For the detailed explanation, we explain a new language feature
introduced in ES12 called logical OR assignments (Figure 1) and
use a JavaScript program (Figure 2) as a running example. It �rst
de�nes a variable f with a random integer from 0 to 99. Then, it
uses a logical OR assignment to update f with an arrow function
whose name is �f� only if f has 0 because 0 represents false but
other integers represent true. Finally, it de�nes a variable x with
f.name and its value is undefined if f has an integer or �f� otherwise.

2

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Automatically Deriving JavaScript Static Analyzers from Language Specifications ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

function error(e) { throw e; }

const n = ...; // [0, 99]

n |> x => x + 1 // [1, 100]

|> x => x * 2 // [2, 200]

|> x => x + 1n; // TypeError

|> error (42);

of representative techniques to increase the precision of JavaScript
static analysis for loops. It discriminates contexts using a stack of
loop contexts containing loop iterations. We de�ne it under view-
based analysis sensitivity and implement it in JSAVER to increase
the precision of IRES static analysis. Moreover, we also de�ne and
implement the loop sensitivity for JavaScript using the loop sensitiv-
ity for IRES. Therefore, our tool discriminates contexts for explicit
loops, such as for-in or for-of, and even implicit loops, such as the
length property assignment of arrays.

6 EVALUATION
• AdditiveExpression
• Identi�erReference
• Identi�er
• AssignmentExpression
• LeftHandSideExpression
• ArrowFunction

• RQ1: Coverage) How much does JSAVER cover JavaScript
language features in the latest ECMAScript (ES12, 2021)?

• RQ2: Adaptability) Could JSAVER adapt a new language
features not yet introduced in ES12?

• RQ3: Expressiveness) What kinds of abstract sensitivities
and abstract domains JSAVER can support?

• RQ4: Performance) Could JSAVER analyze JavaScript pro-
grams in a durable time?

TODO

7 RELATEDWORK
TODO

• JavaScript Static Analyzers [9, 10, 14, 27]
• JavaScript Static Analysis Techniques [1, 12, 13, 15, 18–21,
30, 34–36]

• Partial Evaluation? (maybe no - * SE conf.)

7.1 JavaScript Mechanized Speci�cation
A speci�cation is mechanized if and only if it is both formalized
and executable. For JavaScript, researchers have proposed various
mechanized speci�cation in their own approaches. In 2010, Guha
et al. [8] presented �JS, the �rst mechanized speci�cation for a core
calculus of ES3 semantics by desugaring most of syntax into �JS, an
extended standard lambda calculus. Thus, the shape of �JS seman-
tics is quite di�erent with original algorithm steps. In mid 2010s,
researchers tried to de�ne mechanized speci�cation for the ES5
and 5.1 semantics having a similar shape of semantics with original
algorithm steps as much as possible. Bodin et al. [2] de�ned JSCert,
a semantics of a small subset of ES5, using Coq and extracts a refer-
ence interpreter JSRef. Park et al. [22] de�ned an entire semantics
of ES5, KJS, using the K [29], which is a framework for de�ning
language semantics. Fragoso Santos et al. [7] presented JaVerT, a

JavaScript veri�cation toolchain, including a JavaScript semantics
de�ned in their own Intermediate language, JSIL.

However, the fundamental problem of their approaches is that
they are manually de�ned thus they are labor-intensive and error-
prone. Due to such limitation, there is no existing mechanized
speci�cation for full semantics of ES6 or later versions. Therefore,
most of existing JavaScript static analyzers only focus on ES5.1
features or rarely support ES6 features even though already six
more versions from ES7 to ES12 are released since 2015.

Moreover, Park et al. [23] successfully showed that JISET is useful
tomechanically handle recent versions of ECMAScript by extending
JISET to perform N+1-version di�erential testing of both JavaScript
engines and ES11 (2020).

8 CONCLUSION
TODO

REFERENCES
[1] Roberto Amadini, Alexander Jordan, Graeme Gange, François Gauthier, Peter

Schachte, Harald Søndergaard, Peter J Stuckey, and Chenyi Zhang. 2017. Com-
bining String Abstract Domains for JavaScript Analysis: An Evaluation. In Pro-
ceedings of the 23rd International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS). https://doi.org/10.1007/978-3-
662-54577-5_3

[2] Martin Bodin, Arthur Charguéraud, Daniele Filaretti, Philippa Gardner, Sergio
Ma�eis, Daiva Naudziuniene, Alan Schmitt, and Gareth Smith. 2014. A Trusted
Mechanised JavaScript Speci�cation. Proceedings of the 41st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming (POPL) 49, 1 (2014), 87–100.
https://doi.org/10.1145/2535838.2535876

[3] David R. Chase, Mark Wegman, and F. Kenneth Zadeck. 1990. Analysis of
Pointers and Structures. In Proceedings of the ACM SIGPLAN 1990 Conference on
Programming Language Design and Implementation (PLDI) (PLDI ’90). Association
for Computing Machinery, New York, NY, USA, 296–310. https://doi.org/10.
1145/93542.93585

[4] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Uni�ed
Lattice Model for Static Analysis of Programs by Construction or Approximation
of Fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming languages (POPL). https://doi.org/10.1145/512950.
512973

[5] Patrick Cousot and Radhia Cousot. 1977. Static Determination of Dynamic
Properties of Generalized Type Unions. In Proceedings of an ACM Conference on
Language Design for Reliable Software. Association for Computing Machinery,
New York, NY, USA, 77–94. https://doi.org/10.1145/800022.808314

[6] Patrick Cousot and Radhia Cousot. 1992. Abstract Interpretation Frameworks.
Journal of Logic and Computation (JLC) 2, 4 (1992), 511–547. https://doi.org/10.
1093/logcom/2.4.511

[7] José Fragoso Santos, Petar Maksimović, Daiva Naudži = unienė, Thomas Wood,
and Philippa Gardner. 2017. JaVerT: JavaScript Veri�cation Toolchain. Proceedings
of the 44th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
(POPL) 2, POPL (2017), 1–33. https://doi.org/10.1145/3158138

[8] Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. 2010. The essence
of JavaScript. In Proceedings of the 24th European Conference on Object-Oriented
Programming (ECOOP). Springer, 126–150. https://doi.org/10.1007/978-3-642-
14107-2_7

[9] Simon Holm Jensen, Anders Møller, and Peter Thiemann. 2009. Type Analysis for
JavaScript. In Proceedings of the 16th International Symposium on Static Analysis
(SAS). https://doi.org/10.1007/978-3-642-03237-0_17

[10] Vineeth Kashyap, Kyle Dewey, Ethan A. Kuefner, John Wagner, Kevin Gib-
bons, John Sarracino, Ben Wiedermann, and Ben Hardekopf. 2014. JSAI: A
Static Analysis Platform for JavaScript. In Proceedings of the 22nd ACM SIG-
SOFT International Symposium on Foundations of Software Engineering (FSE).
https://doi.org/10.1145/2635868.2635904

[11] Se-Won Kim, Xavier Rival, and Sukyoung Ryu. 2018. A Theoretical Foundation
of Sensitivity in an Abstract Interpretation Framework. ACM Transactions on
Programming Languages and Systems (TOPLAS) 40, 3, Article 13 (2018), 44 pages.
https://doi.org/10.1145/3230624

[12] Yoonseok Ko, Xavier Rival, and Sukyoung Ryu. 2017. Weakly Sensitive Analysis
for Unbounded Iteration over JavaScript Objects. In Proceedings of the 15th Asian
Symposium on Programming Languages and Systems (APLAS). https://doi.org/10.
1007/978-3-319-71237-6_8

7

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Automatically Deriving JavaScript Static Analyzers from Language Specifications ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

function error(e) { throw e; }

const n = ...; // [0, 99]

n |> x => x + 1 // [1, 100]

|> x => x * 2 // [2, 200]

|> x => x + 1n; // TypeError

|> error (42);

of representative techniques to increase the precision of JavaScript
static analysis for loops. It discriminates contexts using a stack of
loop contexts containing loop iterations. We de�ne it under view-
based analysis sensitivity and implement it in JSAVER to increase
the precision of IRES static analysis. Moreover, we also de�ne and
implement the loop sensitivity for JavaScript using the loop sensitiv-
ity for IRES. Therefore, our tool discriminates contexts for explicit
loops, such as for-in or for-of, and even implicit loops, such as the
length property assignment of arrays.

6 EVALUATION
• AdditiveExpression
• Identi�erReference
• Identi�er
• AssignmentExpression
• LeftHandSideExpression
• ArrowFunction

• RQ1: Coverage) How much does JSAVER cover JavaScript
language features in the latest ECMAScript (ES12, 2021)?

• RQ2: Adaptability) Could JSAVER adapt a new language
features not yet introduced in ES12?

• RQ3: Expressiveness) What kinds of abstract sensitivities
and abstract domains JSAVER can support?

• RQ4: Performance) Could JSAVER analyze JavaScript pro-
grams in a durable time?

TODO

7 RELATEDWORK
TODO

• JavaScript Static Analyzers [9, 10, 14, 27]
• JavaScript Static Analysis Techniques [1, 12, 13, 15, 18–21,
30, 34–36]

• Partial Evaluation? (maybe no - * SE conf.)

7.1 JavaScript Mechanized Speci�cation
A speci�cation is mechanized if and only if it is both formalized
and executable. For JavaScript, researchers have proposed various
mechanized speci�cation in their own approaches. In 2010, Guha
et al. [8] presented �JS, the �rst mechanized speci�cation for a core
calculus of ES3 semantics by desugaring most of syntax into �JS, an
extended standard lambda calculus. Thus, the shape of �JS seman-
tics is quite di�erent with original algorithm steps. In mid 2010s,
researchers tried to de�ne mechanized speci�cation for the ES5
and 5.1 semantics having a similar shape of semantics with original
algorithm steps as much as possible. Bodin et al. [2] de�ned JSCert,
a semantics of a small subset of ES5, using Coq and extracts a refer-
ence interpreter JSRef. Park et al. [22] de�ned an entire semantics
of ES5, KJS, using the K [29], which is a framework for de�ning
language semantics. Fragoso Santos et al. [7] presented JaVerT, a

JavaScript veri�cation toolchain, including a JavaScript semantics
de�ned in their own Intermediate language, JSIL.

However, the fundamental problem of their approaches is that
they are manually de�ned thus they are labor-intensive and error-
prone. Due to such limitation, there is no existing mechanized
speci�cation for full semantics of ES6 or later versions. Therefore,
most of existing JavaScript static analyzers only focus on ES5.1
features or rarely support ES6 features even though already six
more versions from ES7 to ES12 are released since 2015.

Moreover, Park et al. [23] successfully showed that JISET is useful
tomechanically handle recent versions of ECMAScript by extending
JISET to perform N+1-version di�erential testing of both JavaScript
engines and ES11 (2020).

8 CONCLUSION
TODO

REFERENCES
[1] Roberto Amadini, Alexander Jordan, Graeme Gange, François Gauthier, Peter

Schachte, Harald Søndergaard, Peter J Stuckey, and Chenyi Zhang. 2017. Com-
bining String Abstract Domains for JavaScript Analysis: An Evaluation. In Pro-
ceedings of the 23rd International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS). https://doi.org/10.1007/978-3-
662-54577-5_3

[2] Martin Bodin, Arthur Charguéraud, Daniele Filaretti, Philippa Gardner, Sergio
Ma�eis, Daiva Naudziuniene, Alan Schmitt, and Gareth Smith. 2014. A Trusted
Mechanised JavaScript Speci�cation. Proceedings of the 41st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming (POPL) 49, 1 (2014), 87–100.
https://doi.org/10.1145/2535838.2535876

[3] David R. Chase, Mark Wegman, and F. Kenneth Zadeck. 1990. Analysis of
Pointers and Structures. In Proceedings of the ACM SIGPLAN 1990 Conference on
Programming Language Design and Implementation (PLDI) (PLDI ’90). Association
for Computing Machinery, New York, NY, USA, 296–310. https://doi.org/10.
1145/93542.93585

[4] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Uni�ed
Lattice Model for Static Analysis of Programs by Construction or Approximation
of Fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming languages (POPL). https://doi.org/10.1145/512950.
512973

[5] Patrick Cousot and Radhia Cousot. 1977. Static Determination of Dynamic
Properties of Generalized Type Unions. In Proceedings of an ACM Conference on
Language Design for Reliable Software. Association for Computing Machinery,
New York, NY, USA, 77–94. https://doi.org/10.1145/800022.808314

[6] Patrick Cousot and Radhia Cousot. 1992. Abstract Interpretation Frameworks.
Journal of Logic and Computation (JLC) 2, 4 (1992), 511–547. https://doi.org/10.
1093/logcom/2.4.511

[7] José Fragoso Santos, Petar Maksimović, Daiva Naudži = unienė, Thomas Wood,
and Philippa Gardner. 2017. JaVerT: JavaScript Veri�cation Toolchain. Proceedings
of the 44th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
(POPL) 2, POPL (2017), 1–33. https://doi.org/10.1145/3158138

[8] Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. 2010. The essence
of JavaScript. In Proceedings of the 24th European Conference on Object-Oriented
Programming (ECOOP). Springer, 126–150. https://doi.org/10.1007/978-3-642-
14107-2_7

[9] Simon Holm Jensen, Anders Møller, and Peter Thiemann. 2009. Type Analysis for
JavaScript. In Proceedings of the 16th International Symposium on Static Analysis
(SAS). https://doi.org/10.1007/978-3-642-03237-0_17

[10] Vineeth Kashyap, Kyle Dewey, Ethan A. Kuefner, John Wagner, Kevin Gib-
bons, John Sarracino, Ben Wiedermann, and Ben Hardekopf. 2014. JSAI: A
Static Analysis Platform for JavaScript. In Proceedings of the 22nd ACM SIG-
SOFT International Symposium on Foundations of Software Engineering (FSE).
https://doi.org/10.1145/2635868.2635904

[11] Se-Won Kim, Xavier Rival, and Sukyoung Ryu. 2018. A Theoretical Foundation
of Sensitivity in an Abstract Interpretation Framework. ACM Transactions on
Programming Languages and Systems (TOPLAS) 40, 3, Article 13 (2018), 44 pages.
https://doi.org/10.1145/3230624

[12] Yoonseok Ko, Xavier Rival, and Sukyoung Ryu. 2017. Weakly Sensitive Analysis
for Unbounded Iteration over JavaScript Objects. In Proceedings of the 15th Asian
Symposium on Programming Languages and Systems (APLAS). https://doi.org/10.
1007/978-3-319-71237-6_8

7

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Automatically Deriving JavaScript Static Analyzers from Language Specifications ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

function error(e) { throw e; }

const n = ...; // [0, 99]

n |> x => x + 1 // [1, 100]

|> x => x * 2 // [2, 200]

|> x => x + 1n; // TypeError

|> error (42);

of representative techniques to increase the precision of JavaScript
static analysis for loops. It discriminates contexts using a stack of
loop contexts containing loop iterations. We de�ne it under view-
based analysis sensitivity and implement it in JSAVER to increase
the precision of IRES static analysis. Moreover, we also de�ne and
implement the loop sensitivity for JavaScript using the loop sensitiv-
ity for IRES. Therefore, our tool discriminates contexts for explicit
loops, such as for-in or for-of, and even implicit loops, such as the
length property assignment of arrays.

6 EVALUATION
• AdditiveExpression
• Identi�erReference
• Identi�er
• AssignmentExpression
• LeftHandSideExpression
• ArrowFunction

• RQ1: Coverage) How much does JSAVER cover JavaScript
language features in the latest ECMAScript (ES12, 2021)?

• RQ2: Adaptability) Could JSAVER adapt a new language
features not yet introduced in ES12?

• RQ3: Expressiveness) What kinds of abstract sensitivities
and abstract domains JSAVER can support?

• RQ4: Performance) Could JSAVER analyze JavaScript pro-
grams in a durable time?

TODO

7 RELATEDWORK
TODO

• JavaScript Static Analyzers [9, 10, 14, 27]
• JavaScript Static Analysis Techniques [1, 12, 13, 15, 18–21,
30, 34–36]

• Partial Evaluation? (maybe no - * SE conf.)

7.1 JavaScript Mechanized Speci�cation
A speci�cation is mechanized if and only if it is both formalized
and executable. For JavaScript, researchers have proposed various
mechanized speci�cation in their own approaches. In 2010, Guha
et al. [8] presented �JS, the �rst mechanized speci�cation for a core
calculus of ES3 semantics by desugaring most of syntax into �JS, an
extended standard lambda calculus. Thus, the shape of �JS seman-
tics is quite di�erent with original algorithm steps. In mid 2010s,
researchers tried to de�ne mechanized speci�cation for the ES5
and 5.1 semantics having a similar shape of semantics with original
algorithm steps as much as possible. Bodin et al. [2] de�ned JSCert,
a semantics of a small subset of ES5, using Coq and extracts a refer-
ence interpreter JSRef. Park et al. [22] de�ned an entire semantics
of ES5, KJS, using the K [29], which is a framework for de�ning
language semantics. Fragoso Santos et al. [7] presented JaVerT, a

JavaScript veri�cation toolchain, including a JavaScript semantics
de�ned in their own Intermediate language, JSIL.

However, the fundamental problem of their approaches is that
they are manually de�ned thus they are labor-intensive and error-
prone. Due to such limitation, there is no existing mechanized
speci�cation for full semantics of ES6 or later versions. Therefore,
most of existing JavaScript static analyzers only focus on ES5.1
features or rarely support ES6 features even though already six
more versions from ES7 to ES12 are released since 2015.

Moreover, Park et al. [23] successfully showed that JISET is useful
tomechanically handle recent versions of ECMAScript by extending
JISET to perform N+1-version di�erential testing of both JavaScript
engines and ES11 (2020).

8 CONCLUSION
TODO

REFERENCES
[1] Roberto Amadini, Alexander Jordan, Graeme Gange, François Gauthier, Peter

Schachte, Harald Søndergaard, Peter J Stuckey, and Chenyi Zhang. 2017. Com-
bining String Abstract Domains for JavaScript Analysis: An Evaluation. In Pro-
ceedings of the 23rd International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS). https://doi.org/10.1007/978-3-
662-54577-5_3

[2] Martin Bodin, Arthur Charguéraud, Daniele Filaretti, Philippa Gardner, Sergio
Ma�eis, Daiva Naudziuniene, Alan Schmitt, and Gareth Smith. 2014. A Trusted
Mechanised JavaScript Speci�cation. Proceedings of the 41st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming (POPL) 49, 1 (2014), 87–100.
https://doi.org/10.1145/2535838.2535876

[3] David R. Chase, Mark Wegman, and F. Kenneth Zadeck. 1990. Analysis of
Pointers and Structures. In Proceedings of the ACM SIGPLAN 1990 Conference on
Programming Language Design and Implementation (PLDI) (PLDI ’90). Association
for Computing Machinery, New York, NY, USA, 296–310. https://doi.org/10.
1145/93542.93585

[4] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Uni�ed
Lattice Model for Static Analysis of Programs by Construction or Approximation
of Fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming languages (POPL). https://doi.org/10.1145/512950.
512973

[5] Patrick Cousot and Radhia Cousot. 1977. Static Determination of Dynamic
Properties of Generalized Type Unions. In Proceedings of an ACM Conference on
Language Design for Reliable Software. Association for Computing Machinery,
New York, NY, USA, 77–94. https://doi.org/10.1145/800022.808314

[6] Patrick Cousot and Radhia Cousot. 1992. Abstract Interpretation Frameworks.
Journal of Logic and Computation (JLC) 2, 4 (1992), 511–547. https://doi.org/10.
1093/logcom/2.4.511

[7] José Fragoso Santos, Petar Maksimović, Daiva Naudži = unienė, Thomas Wood,
and Philippa Gardner. 2017. JaVerT: JavaScript Veri�cation Toolchain. Proceedings
of the 44th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
(POPL) 2, POPL (2017), 1–33. https://doi.org/10.1145/3158138

[8] Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. 2010. The essence
of JavaScript. In Proceedings of the 24th European Conference on Object-Oriented
Programming (ECOOP). Springer, 126–150. https://doi.org/10.1007/978-3-642-
14107-2_7

[9] Simon Holm Jensen, Anders Møller, and Peter Thiemann. 2009. Type Analysis for
JavaScript. In Proceedings of the 16th International Symposium on Static Analysis
(SAS). https://doi.org/10.1007/978-3-642-03237-0_17

[10] Vineeth Kashyap, Kyle Dewey, Ethan A. Kuefner, John Wagner, Kevin Gib-
bons, John Sarracino, Ben Wiedermann, and Ben Hardekopf. 2014. JSAI: A
Static Analysis Platform for JavaScript. In Proceedings of the 22nd ACM SIG-
SOFT International Symposium on Foundations of Software Engineering (FSE).
https://doi.org/10.1145/2635868.2635904

[11] Se-Won Kim, Xavier Rival, and Sukyoung Ryu. 2018. A Theoretical Foundation
of Sensitivity in an Abstract Interpretation Framework. ACM Transactions on
Programming Languages and Systems (TOPLAS) 40, 3, Article 13 (2018), 44 pages.
https://doi.org/10.1145/3230624

[12] Yoonseok Ko, Xavier Rival, and Sukyoung Ryu. 2017. Weakly Sensitive Analysis
for Unbounded Iteration over JavaScript Objects. In Proceedings of the 15th Asian
Symposium on Programming Languages and Systems (APLAS). https://doi.org/10.
1007/978-3-319-71237-6_8

7

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

(a) Evaluation algorithm for logical OR assignments.

1 syntax def AssignmentExpression [8]. Evaluation(

2 this , LeftHandSideExpression , AssignmentExpression

3) { /* entry */

4 let lref = (LeftHandSideExpression.Evaluation)

5 let lval = [? (GetValue lref)]

6 let lbool = [! (ToBoolean lval)] /* #1 */

7 if (= lbool true) /* #2 */ return lval else { /* #3 */ }

8 if (&& (IsAnonymousFunctionDefinition AssignmentExpression)

9 (LeftHandSideExpression.IsIdentifierRef)) { /* #4 */

10 let rval = (AssignmentExpression.NamedEvaluation

11 lref.ReferencedName)

12 } else { /* #5 */

13 let rref = (AssignmentExpression.Evaluation)

14 let rval = [? (GetValue rref)]

15 } /* #6 */

16 [? (PutValue lref rval)]

17 return rval

18 } /* exit */

(b) The extracted IRES function.

Figure 1: Evaluation algorithm for the eighth alternative of AssignmentExpression in ES12 and the extracted IRES function.

To alleviate this problem, we propose a novel technique called
meta-level static analysis to automatically derive a JavaScript static
analyzer from any version of ECMAScript. The main idea of the
meta-level static analysis is to indirectly analyze a target language
program by performing static analysis for a language speci�ca-
tion of the target language written in a speci�cation language with
the program as the initial input. Thus, it can signi�cantly reduce
the burden to manually design and implement static analyzers by
automatically deriving them from given language speci�cations.
Moreover, it even guarantees the soundness of derived static analyz-
ers for the target language by constructing sound abstract semantics
for the speci�cation language.

For the expressiveness of a meta-level static analysis, we also
present ways to con�gure analysis sensitivities and abstract do-
mains for a target language. Con�guring them is a typical way
to manage analysis precision and performance. First, we present
the AST sensitivity in a meta-level static analysis to express analy-
sis sensitivities for a target language such as �ow-sensitivity and
k-callsite-sensitivity (Section 4.2). Second, we present a way to
con�gure abstract domains for structures and values in a target
language (Section 4.3).

To actualize our approach for JavaScript, we present JSAVER,
JavaScript Static Analyzers via ECMAScript Representations. First,
we utilize JISET [26] to extract a mechanized speci�cation written
in an intermediate representation, IRES, from a given ECMAScript.
Thus, target and speci�cation languages are JavaScript and IRES,
respectively, for the meta-level static analysis in JSAVER. In addition,
we implement several analysis techniques to improve the perfor-
mance and precision of derived static analyzers (Section 5). We
evaluated JSAVER by deriving a JavaScript static analyzer from the
latest ECMAScript, ES12, and using the o�cial conformance tests,
Test2622.

Our contributions are as follows:
• We propose a novel concept called meta-level static analysis,
which automatically derives a static analyzer for a target

2https://github.com/tc39/test262

let f = Math.floor(Math.random () * 100);

// f: [0, 99]

f ||= x => x;

// f: [1, 99] or { name: �f�, ... }

let x = f.name;

// f: [1, 99] or { name: �f�, ... }, x: undefined or �f�

Figure 2: A running JavaScript program with a logical OR
assignment newly introduced in ES12.

language from its language speci�cation written in a speci�-
cation language.

• We actualize meta-level static analysis for JavaScript as a tool
called JSAVER. It is the �rst tool that automatically derives a
JavaScript static analyzer from any version of ECMAScript.

• We derive a static analyzer from the latest ECMAScript, ES12,
to evaluate JSAVER. The synthesized static analyzer success-
fully analyzes all applicable 18,556 o�cial conformance tests.
Moreover, we demonstrate the adaptability and expressive-
ness of JSAVER with several case studies.

2 BACKGROUND
In this section, we explain the detail of ECMAScript, the o�cial
speci�cation of JavaScript. We then introduce JISET and how it
extracts a mechanized speci�cation from it. Since our work is to
perform meta-level static analysis for JavaScript using extracted
mechanized speci�cations, it is essential to understand how EC-
MAScript describes JavaScript semantics and how JISET extracts a
mechanized speci�cation from it.

For the detailed explanation, we explain a new language feature
introduced in ES12 called logical OR assignments (Figure 1) and
use a JavaScript program (Figure 2) as a running example. It �rst
de�nes a variable f with a random integer from 0 to 99. Then, it
uses a logical OR assignment to update f with an arrow function
whose name is �f� only if f has 0 because 0 represents false but
other integers represent true. Finally, it de�nes a variable x with
f.name and its value is undefined if f has an integer or �f� otherwise.

2

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Automatically Deriving JavaScript Static Analyzers from Language Specifications ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

otherwise, a normal function. An instruction i is a primitive value
assignment, an operation between values, a internal �eld access, a
external �eld access, a record allocations, a function call, or a return
instruction.

States � 2 S = H ⇥ C
Heaps h 2 H = A �n��!R
Contexts c 2 C = L ⇥ (X �n��!V) ⇥ C?
Values � 2 V = Vp] A] T] F
Records r 2 R = (Vstr

�n��!V) ⇥ (Vstr
�n��!V)

States S consists of heaps H and contexts C. A heap h 2 H is a
�nite mapping from addresses to records. Each record allocation
instruction x = {} creates a unique address a 2 A di�erent with
existing addresses. A context c 2 C is a triple of 1) the program
point, 2) a local environment which is a �nite mapping from vari-
ables to values, and 3) an optional calling context. A value � 2 V
is a primitive value, an address, an AST, or a function. A record
r 2 R consists of two �nite mappings from strings to values. The
left mapping represents internal �elds accessible by internal �eld
accesses x = x[x]. On the other hand, the right one represents ex-
ternal �elds, such as variables in JavaScript environment records or
properties in JavaScript objects, and they are accessible by a exter-
nal �eld access x = x[x]ext. We formulate the concrete semantics
of a program P as a transition system ({, S�) where{✓ S⇥ S is a
transition relation between concrete states and S� is a set of initial
states.

For a meta-level static analysis, we de�ne its abstract semantics
in the abstract interpretation framework [4, 6]. Since our analysis
supports view-based analysis sensitivities [11, 24], the abstract
domain is de�ned as a mapping from views to abstract states, D# =
� ! D#, with a view abstraction � : � ! P(S) which represents
the meaning of each view � 2 �. Then, we de�ne abstract states as
follows:

Abstract States � # 2 D# = H# ⇥ C#

Abstract Heaps h# 2 H# = A# �n��!(R# ⇥ R#
ext

)
Abstract Addresses a# 2 A# = L
Abstract Contexts c# 2 C# = X �n��!V#

An abstract heaph# 2 H# is a �nitemapping from abstract addresses
A
to pairs of abstract internal records R# and abstract external

records R#
ext

. Each abstract address a# 2 A# is de�ned with the
allocation-site abstraction [3] that partitions concrete addresses A
based on their allocation sites L. An abstract context c# 2 C# is a
�nite mapping from variables to abstract values. Shapes of abstract
values V#, abstract internal (or external) records R# (or R#

ext
) are

parametric thus we can freely con�gure them.

4.2 Analysis Sensitivities
In a meta-level static analysis, analysis sensitivities of the target
language (JavaScript) are di�erent with them of the speci�cation
language (IRES). For example, we explain what happens during anal-
ysis of the following JavaScript program with the �ow-sensitivity
for IRES:

let x = 1, y = 2;

x + y; // 3

(a) Evaluation algorithm for identi�er references.

1 syntax def IdentifierReference [0]. Evaluation(

2 this , Identifier

3) {

4 return [? (ResolveBinding (Identifier.StringValue))

5 }

(b) The extracted IRES function.

(c) Parsing result of x + y (bottom) and the initial local environment
(top) of the IRES function.

Figure 7: An example of the di�erence between analysis sen-
sitivities of target and speci�cation language.

Figure 7 describes (a) the Evaluation algorithm of identi�er refer-
ences, (b) its extracted IRES function, and (c) the parsing result of
x + y and the initial local environment of the IRES function. Since
the �ow-sensitivity merges states based on the program points,
contexts for the evaluation of both identi�er references x and y are
merged. Thus, the IRES variable Identifier points to their ASTs
as described in Figure 7. Due to the imprecise merge of contexts,
StringValue of Identifier returns �x� and �y�, and ResolveBinding
with them returns both 1 and 2. Finally, the analysis result of x + y

becomes { 2, 3, 4 }.

Flow Sensitivity. To resolve this problem, we present an AST sen-
sitivity for the speci�cation language to represent �ow-sensitivity
of the target language. It is a variant of object sensitivity [17, 33]
which uses abstract addresses A# of receiver objects as views. How-
ever, unlike the object sensitivity, the AST sensitivity utilizes ASTs
T stored in the parameter this only for syntax-directed functions:

� flow(t 2 T) = {� = (_, c) 2 S | syntax-ctxt(c) = c 0 ^ c 0(this) = t}
where syntax-ctxt(c) denotes the top-most context whose function
is syntax-directed and c 0(this) denotes a lookup of the variable
this in the mapping in the context c 0. We de�ne the �ow sensitivity
for the target language using the AST sensitivity and it successfully
divides contexts for the evaluation of JavaScript identi�ers x and y

in the above example using their ASTs even though their program
points are same.

Callsite Sensitivity. We also formally de�ne the callsite sensitiv-
ity [31, 32] for the target language by extending AST sensitivity
for speci�c normal IRES functions. The original callsite sensitivity
discriminates calling contexts based on their top most callsites. In
ECMAScript, all explicit and even implicit JavaScript function calls

5

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Automatically Deriving JavaScript Static Analyzers from Language Specifications ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

function error(e) { throw e; }

const n = ...; // [0, 99]

n |> x => x + 1 // [1, 100]

|> x => x * 2 // [2, 200]

|> x => x + 1n; // TypeError

|> error (42);

of representative techniques to increase the precision of JavaScript
static analysis for loops. It discriminates contexts using a stack of
loop contexts containing loop iterations. We de�ne it under view-
based analysis sensitivity and implement it in JSAVER to increase
the precision of IRES static analysis. Moreover, we also de�ne and
implement the loop sensitivity for JavaScript using the loop sensitiv-
ity for IRES. Therefore, our tool discriminates contexts for explicit
loops, such as for-in or for-of, and even implicit loops, such as the
length property assignment of arrays.

6 EVALUATION
• AdditiveExpression
• Identi�erReference
• Identi�er
• AssignmentExpression
• LeftHandSideExpression
• ArrowFunction

• RQ1: Coverage) How much does JSAVER cover JavaScript
language features in the latest ECMAScript (ES12, 2021)?

• RQ2: Adaptability) Could JSAVER adapt a new language
features not yet introduced in ES12?

• RQ3: Expressiveness) What kinds of abstract sensitivities
and abstract domains JSAVER can support?

• RQ4: Performance) Could JSAVER analyze JavaScript pro-
grams in a durable time?

TODO

7 RELATEDWORK
TODO

• JavaScript Static Analyzers [9, 10, 14, 27]
• JavaScript Static Analysis Techniques [1, 12, 13, 15, 18–21,
30, 34–36]

• Partial Evaluation? (maybe no - * SE conf.)

7.1 JavaScript Mechanized Speci�cation
A speci�cation is mechanized if and only if it is both formalized
and executable. For JavaScript, researchers have proposed various
mechanized speci�cation in their own approaches. In 2010, Guha
et al. [8] presented �JS, the �rst mechanized speci�cation for a core
calculus of ES3 semantics by desugaring most of syntax into �JS, an
extended standard lambda calculus. Thus, the shape of �JS seman-
tics is quite di�erent with original algorithm steps. In mid 2010s,
researchers tried to de�ne mechanized speci�cation for the ES5
and 5.1 semantics having a similar shape of semantics with original
algorithm steps as much as possible. Bodin et al. [2] de�ned JSCert,
a semantics of a small subset of ES5, using Coq and extracts a refer-
ence interpreter JSRef. Park et al. [22] de�ned an entire semantics
of ES5, KJS, using the K [29], which is a framework for de�ning
language semantics. Fragoso Santos et al. [7] presented JaVerT, a

JavaScript veri�cation toolchain, including a JavaScript semantics
de�ned in their own Intermediate language, JSIL.

However, the fundamental problem of their approaches is that
they are manually de�ned thus they are labor-intensive and error-
prone. Due to such limitation, there is no existing mechanized
speci�cation for full semantics of ES6 or later versions. Therefore,
most of existing JavaScript static analyzers only focus on ES5.1
features or rarely support ES6 features even though already six
more versions from ES7 to ES12 are released since 2015.

Moreover, Park et al. [23] successfully showed that JISET is useful
tomechanically handle recent versions of ECMAScript by extending
JISET to perform N+1-version di�erential testing of both JavaScript
engines and ES11 (2020).

8 CONCLUSION
TODO

REFERENCES
[1] Roberto Amadini, Alexander Jordan, Graeme Gange, François Gauthier, Peter

Schachte, Harald Søndergaard, Peter J Stuckey, and Chenyi Zhang. 2017. Com-
bining String Abstract Domains for JavaScript Analysis: An Evaluation. In Pro-
ceedings of the 23rd International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS). https://doi.org/10.1007/978-3-
662-54577-5_3

[2] Martin Bodin, Arthur Charguéraud, Daniele Filaretti, Philippa Gardner, Sergio
Ma�eis, Daiva Naudziuniene, Alan Schmitt, and Gareth Smith. 2014. A Trusted
Mechanised JavaScript Speci�cation. Proceedings of the 41st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming (POPL) 49, 1 (2014), 87–100.
https://doi.org/10.1145/2535838.2535876

[3] David R. Chase, Mark Wegman, and F. Kenneth Zadeck. 1990. Analysis of
Pointers and Structures. In Proceedings of the ACM SIGPLAN 1990 Conference on
Programming Language Design and Implementation (PLDI) (PLDI ’90). Association
for Computing Machinery, New York, NY, USA, 296–310. https://doi.org/10.
1145/93542.93585

[4] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Uni�ed
Lattice Model for Static Analysis of Programs by Construction or Approximation
of Fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming languages (POPL). https://doi.org/10.1145/512950.
512973

[5] Patrick Cousot and Radhia Cousot. 1977. Static Determination of Dynamic
Properties of Generalized Type Unions. In Proceedings of an ACM Conference on
Language Design for Reliable Software. Association for Computing Machinery,
New York, NY, USA, 77–94. https://doi.org/10.1145/800022.808314

[6] Patrick Cousot and Radhia Cousot. 1992. Abstract Interpretation Frameworks.
Journal of Logic and Computation (JLC) 2, 4 (1992), 511–547. https://doi.org/10.
1093/logcom/2.4.511

[7] José Fragoso Santos, Petar Maksimović, Daiva Naudži = unienė, Thomas Wood,
and Philippa Gardner. 2017. JaVerT: JavaScript Veri�cation Toolchain. Proceedings
of the 44th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
(POPL) 2, POPL (2017), 1–33. https://doi.org/10.1145/3158138

[8] Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. 2010. The essence
of JavaScript. In Proceedings of the 24th European Conference on Object-Oriented
Programming (ECOOP). Springer, 126–150. https://doi.org/10.1007/978-3-642-
14107-2_7

[9] Simon Holm Jensen, Anders Møller, and Peter Thiemann. 2009. Type Analysis for
JavaScript. In Proceedings of the 16th International Symposium on Static Analysis
(SAS). https://doi.org/10.1007/978-3-642-03237-0_17

[10] Vineeth Kashyap, Kyle Dewey, Ethan A. Kuefner, John Wagner, Kevin Gib-
bons, John Sarracino, Ben Wiedermann, and Ben Hardekopf. 2014. JSAI: A
Static Analysis Platform for JavaScript. In Proceedings of the 22nd ACM SIG-
SOFT International Symposium on Foundations of Software Engineering (FSE).
https://doi.org/10.1145/2635868.2635904

[11] Se-Won Kim, Xavier Rival, and Sukyoung Ryu. 2018. A Theoretical Foundation
of Sensitivity in an Abstract Interpretation Framework. ACM Transactions on
Programming Languages and Systems (TOPLAS) 40, 3, Article 13 (2018), 44 pages.
https://doi.org/10.1145/3230624

[12] Yoonseok Ko, Xavier Rival, and Sukyoung Ryu. 2017. Weakly Sensitive Analysis
for Unbounded Iteration over JavaScript Objects. In Proceedings of the 15th Asian
Symposium on Programming Languages and Systems (APLAS). https://doi.org/10.
1007/978-3-319-71237-6_8

7

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

(a) Evaluation algorithm for identi�er references

1 syntax def IdentifierReference [0]. Evaluation(
2 this , Identifier
3) {
4 return [? (ResolveBinding (Identifier.StringValue))]
5 }

(b) Extracted IRES function for identi�er references

(c) Result of x + y via a mechanized speci�cation

Figure 7: Analysis sensitivities of the target language
(JavaScript) and the speci�cation language (IRES)

divides contexts for the evaluation of JavaScript identi�ers x and y

in the above example using their ASTs even though their program
points in IRES are the same.

Callsite Sensitivity. We also formally de�ne the callsite sensitiv-
ity [37, 38] for the target language by extending the AST sensitivity
for speci�c normal IRES functions. The original callsite sensitivity
discriminates calling contexts using their top most callsites. In EC-
MAScript, all explicit and even implicit JavaScript function calls
invoke normal IRES functions Call and Construct. Thus, we de�ne
the callsite sensitivity for the target language by extending the AST
sensitivity with two normal IRES functions:

� cfa(t 2 T) = {� = (_, c) 2 S |
syntax-ctxt � js-call-ctxt(c) = c 0 ^ c 0(this) = t}

where js-call-ctxt(c) denotes the top-most context whose function is
Call or Construct and f �� denotes a function composition. Moreover,
we extend it to the k-callsite sensitivity by recursively taking ASTs
representing callsites of the target language:

�k -cfa(t 2 Tk) = {� = (_, c) 2 S |
t = [t1, · · · , tn] ^ n k^
(ö(syntax-ctxt � js-call-ctxt)n+1(c) _ n = k)^
81 i n.
((syntax-ctxt � js-call-ctxt)i (c) = ci ^ ci (this) = ti)}

Using this callsite sensitivity for the target language, the meta-
level static analyzer could discriminate not only explicit JavaScript
function calls (e.g. f()) but also implicit JavaScript function calls,
including getters/setters, user-de�ned implicit conversions, and
implicit function calls in built-in libraries.

5 IMPLEMENTATION
We developed a prototype implementation called JSAVER, which per-
forms a meta-level static analysis for JavaScript with ECMAScript.
The tool is an extension of JISET4 and it is an open-source project5.
In this section, we describe the challenges in implementing a meta-
level static analyzer and present our solutions for them.

Layered Abstract States. Unlike traditional JavaScript static anal-
yses, a meta-level static analysis for JavaScript should track analysis
results not only for the target language JavaScript but also for the
speci�cation language IRES. Thus, the sizes of abstract states are
much larger than those of the other JavaScript static analyzers. We
implement layered abstract states to maintain only updated analysis
results compared to the initial abstract state. It signi�cantly reduces
the time to perform the join (t), meet (u), and partial order (v)
operations by considering only the updated parts in abstract states.

Closures and Continuations. The speci�cation language IRES for
ECMAScript contains more complex language features than its
simpli�ed version presented in Section 4.1, such as symbols, lists,
and list operations. Among them, the two most complex features
are closures with captured variables and �rst-class continuations be-
cause they introduce new kinds of control �ows. ECMAScript uses
closures to de�ne implicit and explicit JavaScript iterators and uses
continuations for iterators, generators, and asynchronous features
such as async, await, and the Proxy object. Therefore, we de�ne and
implement abstract closures and abstract continuations; an abstract
closure is a pair of a function and a mapping from captured vari-
ables to their abstract values, and an abstract continuation consists
of a program point, a view for analysis sensitivity, parameters, and
an abstract context.

Abstract Counting. Properties of JavaScript objects could be dy-
namically added, modi�ed, or deleted and even accessible by �rst-
class property names. Thus, in JavaScript static analysis, performing
strong updates rather than weak updates for object properties as
many as possible is important for precise analysis results. Since
records of IRES are even more dynamic than JavaScript objects, it is
also important to increase analysis precision. Therefore, we imple-
ment abstract counting [19] to increase chances to perform strong
updates for �elds of records. It checks how many times records in
the same allocation site have been allocated and performs strong
updates only for singleton records with singleton �eld values.

Loop Sensitivity. Similar to function calls, loops are also typical
merging points in static analysis. A loop sensitivity [24] is one of the
representative techniques to increase the precision of JavaScript
static analysis for loops. It discriminates contexts using a stack
of loop contexts containing loop iterations. We de�ne it under
the view-based analysis sensitivity and implement it in JSAVER to
increase the precision of IRES static analysis. Moreover, we also
de�ne and implement the loop sensitivity for JavaScript using the
loop sensitivity for IRES. Therefore, JSAVER discriminates contexts
for explicit loops such as for-in and for-of and even implicit loops
such as the assignment of arguments or the length property of
arrays.

4https://github.com/kaist-plrg/jiset
5The URL of the tool is anonymized due to a double-blind review process.

6

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

(a) Evaluation algorithm for identi�er references

1 syntax def IdentifierReference [0]. Evaluation(
2 this , Identifier
3) {
4 return [? (ResolveBinding (Identifier.StringValue))]
5 }

(b) Extracted IRES function for identi�er references

(c) Result of x + y via a mechanized speci�cation

Figure 7: Analysis sensitivities of the target language
(JavaScript) and the speci�cation language (IRES)

divides contexts for the evaluation of JavaScript identi�ers x and y

in the above example using their ASTs even though their program
points in IRES are the same.

Callsite Sensitivity. We also formally de�ne the callsite sensitiv-
ity [37, 38] for the target language by extending the AST sensitivity
for speci�c normal IRES functions. The original callsite sensitivity
discriminates calling contexts using their top most callsites. In EC-
MAScript, all explicit and even implicit JavaScript function calls
invoke normal IRES functions Call and Construct. Thus, we de�ne
the callsite sensitivity for the target language by extending the AST
sensitivity with two normal IRES functions:

� cfa(t 2 T) = {� = (_, c) 2 S |
syntax-ctxt � js-call-ctxt(c) = c 0 ^ c 0(this) = t}

where js-call-ctxt(c) denotes the top-most context whose function is
Call or Construct and f �� denotes a function composition. Moreover,
we extend it to the k-callsite sensitivity by recursively taking ASTs
representing callsites of the target language:

�k -cfa(t 2 Tk) = {� = (_, c) 2 S |
t = [t1, · · · , tn] ^ n k^
(ö(syntax-ctxt � js-call-ctxt)n+1(c) _ n = k)^
81 i n.
((syntax-ctxt � js-call-ctxt)i (c) = ci ^ ci (this) = ti)}

Using this callsite sensitivity for the target language, the meta-
level static analyzer could discriminate not only explicit JavaScript
function calls (e.g. f()) but also implicit JavaScript function calls,
including getters/setters, user-de�ned implicit conversions, and
implicit function calls in built-in libraries.

5 IMPLEMENTATION
We developed a prototype implementation called JSAVER, which per-
forms a meta-level static analysis for JavaScript with ECMAScript.
The tool is an extension of JISET4 and it is an open-source project5.
In this section, we describe the challenges in implementing a meta-
level static analyzer and present our solutions for them.

Layered Abstract States. Unlike traditional JavaScript static anal-
yses, a meta-level static analysis for JavaScript should track analysis
results not only for the target language JavaScript but also for the
speci�cation language IRES. Thus, the sizes of abstract states are
much larger than those of the other JavaScript static analyzers. We
implement layered abstract states to maintain only updated analysis
results compared to the initial abstract state. It signi�cantly reduces
the time to perform the join (t), meet (u), and partial order (v)
operations by considering only the updated parts in abstract states.

Closures and Continuations. The speci�cation language IRES for
ECMAScript contains more complex language features than its
simpli�ed version presented in Section 4.1, such as symbols, lists,
and list operations. Among them, the two most complex features
are closures with captured variables and �rst-class continuations be-
cause they introduce new kinds of control �ows. ECMAScript uses
closures to de�ne implicit and explicit JavaScript iterators and uses
continuations for iterators, generators, and asynchronous features
such as async, await, and the Proxy object. Therefore, we de�ne and
implement abstract closures and abstract continuations; an abstract
closure is a pair of a function and a mapping from captured vari-
ables to their abstract values, and an abstract continuation consists
of a program point, a view for analysis sensitivity, parameters, and
an abstract context.

Abstract Counting. Properties of JavaScript objects could be dy-
namically added, modi�ed, or deleted and even accessible by �rst-
class property names. Thus, in JavaScript static analysis, performing
strong updates rather than weak updates for object properties as
many as possible is important for precise analysis results. Since
records of IRES are even more dynamic than JavaScript objects, it is
also important to increase analysis precision. Therefore, we imple-
ment abstract counting [19] to increase chances to perform strong
updates for �elds of records. It checks how many times records in
the same allocation site have been allocated and performs strong
updates only for singleton records with singleton �eld values.

Loop Sensitivity. Similar to function calls, loops are also typical
merging points in static analysis. A loop sensitivity [24] is one of the
representative techniques to increase the precision of JavaScript
static analysis for loops. It discriminates contexts using a stack
of loop contexts containing loop iterations. We de�ne it under
the view-based analysis sensitivity and implement it in JSAVER to
increase the precision of IRES static analysis. Moreover, we also
de�ne and implement the loop sensitivity for JavaScript using the
loop sensitivity for IRES. Therefore, JSAVER discriminates contexts
for explicit loops such as for-in and for-of and even implicit loops
such as the assignment of arguments or the length property of
arrays.

4https://github.com/kaist-plrg/jiset
5The URL of the tool is anonymized due to a double-blind review process.

6

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

(a) Evaluation algorithm for identi�er references

1 syntax def IdentifierReference [0]
2 .Evaluation(
3 this , Identifier
4) {
5 return [?
6 (ResolveBinding
7 (Identifier.StringValue))]
8 }

(b) Extracted IRES function for identi�er references

(c) Result of x + y via a mechanized speci�cation

Figure 7: Analysis sensitivities of the target language
(JavaScript) and the speci�cation language (IRES)

divides contexts for the evaluation of JavaScript identi�ers x and y

in the above example using their ASTs even though their program
points in IRES are the same.

Callsite Sensitivity. We also formally de�ne the callsite sensitiv-
ity [37, 38] for the target language by extending the AST sensitivity
for speci�c normal IRES functions. The original callsite sensitivity
discriminates calling contexts using their top most callsites. In EC-
MAScript, all explicit and even implicit JavaScript function calls
invoke normal IRES functions Call and Construct. Thus, we de�ne
the callsite sensitivity for the target language by extending the AST
sensitivity with two normal IRES functions:

� cfa(t 2 T) = {� = (_, c) 2 S |
syntax-ctxt � js-call-ctxt(c) = c 0 ^ c 0(this) = t}

where js-call-ctxt(c) denotes the top-most context whose function is
Call or Construct and f �� denotes a function composition. Moreover,
we extend it to the k-callsite sensitivity by recursively taking ASTs
representing callsites of the target language:

�k -cfa(t 2 Tk) = {� = (_, c) 2 S |
t = [t1, · · · , tn] ^ n k^
(ö(syntax-ctxt � js-call-ctxt)n+1(c) _ n = k)^
81 i n.
((syntax-ctxt � js-call-ctxt)i (c) = ci ^ ci (this) = ti)}

Using this callsite sensitivity for the target language, the meta-
level static analyzer could discriminate not only explicit JavaScript
function calls (e.g. f()) but also implicit JavaScript function calls,

including getters/setters, user-de�ned implicit conversions, and
implicit function calls in built-in libraries.

5 IMPLEMENTATION
We developed a prototype implementation called JSAVER, which per-
forms a meta-level static analysis for JavaScript with ECMAScript.
The tool is an extension of JISET4 and it is an open-source project5.
In this section, we describe the challenges in implementing a meta-
level static analyzer and present our solutions for them.

Layered Abstract States. Unlike traditional JavaScript static anal-
yses, a meta-level static analysis for JavaScript should track analysis
results not only for the target language JavaScript but also for the
speci�cation language IRES. Thus, the sizes of abstract states are
much larger than those of the other JavaScript static analyzers. We
implement layered abstract states to maintain only updated analysis
results compared to the initial abstract state. It signi�cantly reduces
the time to perform the join (t), meet (u), and partial order (v)
operations by considering only the updated parts in abstract states.

Closures and Continuations. The speci�cation language IRES for
ECMAScript contains more complex language features than its
simpli�ed version presented in Section 4.1, such as symbols, lists,
and list operations. Among them, the two most complex features
are closures with captured variables and �rst-class continuations be-
cause they introduce new kinds of control �ows. ECMAScript uses
closures to de�ne implicit and explicit JavaScript iterators and uses
continuations for iterators, generators, and asynchronous features
such as async, await, and the Proxy object. Therefore, we de�ne and
implement abstract closures and abstract continuations; an abstract
closure is a pair of a function and a mapping from captured vari-
ables to their abstract values, and an abstract continuation consists
of a program point, a view for analysis sensitivity, parameters, and
an abstract context.

Abstract Counting. Properties of JavaScript objects could be dy-
namically added, modi�ed, or deleted and even accessible by �rst-
class property names. Thus, in JavaScript static analysis, performing
strong updates rather than weak updates for object properties as
many as possible is important for precise analysis results. Since
records of IRES are even more dynamic than JavaScript objects, it is
also important to increase analysis precision. Therefore, we imple-
ment abstract counting [19] to increase chances to perform strong
updates for �elds of records. It checks how many times records in
the same allocation site have been allocated and performs strong
updates only for singleton records with singleton �eld values.

Loop Sensitivity. Similar to function calls, loops are also typical
merging points in static analysis. A loop sensitivity [24] is one of the
representative techniques to increase the precision of JavaScript
static analysis for loops. It discriminates contexts using a stack
of loop contexts containing loop iterations. We de�ne it under
the view-based analysis sensitivity and implement it in JSAVER to
increase the precision of IRES static analysis. Moreover, we also
de�ne and implement the loop sensitivity for JavaScript using the
loop sensitivity for IRES. Therefore, JSAVER discriminates contexts

4https://github.com/kaist-plrg/jiset
5The URL of the tool is anonymized due to a double-blind review process.

6

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

(a) Evaluation algorithm for identi�er references

1 syntax def IdentifierReference [0]
2 .Evaluation(
3 this , Identifier
4) {
5 return [?
6 (ResolveBinding
7 (Identifier.StringValue))]
8 }

(b) Extracted IRES function for identi�er references

(c) Result of x + y via a mechanized speci�cation

Figure 7: Analysis sensitivities of the target language
(JavaScript) and the speci�cation language (IRES)

divides contexts for the evaluation of JavaScript identi�ers x and y

in the above example using their ASTs even though their program
points in IRES are the same.

Callsite Sensitivity. We also formally de�ne the callsite sensitiv-
ity [37, 38] for the target language by extending the AST sensitivity
for speci�c normal IRES functions. The original callsite sensitivity
discriminates calling contexts using their top most callsites. In EC-
MAScript, all explicit and even implicit JavaScript function calls
invoke normal IRES functions Call and Construct. Thus, we de�ne
the callsite sensitivity for the target language by extending the AST
sensitivity with two normal IRES functions:

� cfa(t 2 T) = {� = (_, c) 2 S |
syntax-ctxt � js-call-ctxt(c) = c 0 ^ c 0(this) = t}

where js-call-ctxt(c) denotes the top-most context whose function is
Call or Construct and f �� denotes a function composition. Moreover,
we extend it to the k-callsite sensitivity by recursively taking ASTs
representing callsites of the target language:

�k -cfa(t 2 Tk) = {� = (_, c) 2 S |
t = [t1, · · · , tn] ^ n k^
(ö(syntax-ctxt � js-call-ctxt)n+1(c) _ n = k)^
81 i n.
((syntax-ctxt � js-call-ctxt)i (c) = ci ^ ci (this) = ti)}

Using this callsite sensitivity for the target language, the meta-
level static analyzer could discriminate not only explicit JavaScript
function calls (e.g. f()) but also implicit JavaScript function calls,

including getters/setters, user-de�ned implicit conversions, and
implicit function calls in built-in libraries.

5 IMPLEMENTATION
We developed a prototype implementation called JSAVER, which per-
forms a meta-level static analysis for JavaScript with ECMAScript.
The tool is an extension of JISET4 and it is an open-source project5.
In this section, we describe the challenges in implementing a meta-
level static analyzer and present our solutions for them.

Layered Abstract States. Unlike traditional JavaScript static anal-
yses, a meta-level static analysis for JavaScript should track analysis
results not only for the target language JavaScript but also for the
speci�cation language IRES. Thus, the sizes of abstract states are
much larger than those of the other JavaScript static analyzers. We
implement layered abstract states to maintain only updated analysis
results compared to the initial abstract state. It signi�cantly reduces
the time to perform the join (t), meet (u), and partial order (v)
operations by considering only the updated parts in abstract states.

Closures and Continuations. The speci�cation language IRES for
ECMAScript contains more complex language features than its
simpli�ed version presented in Section 4.1, such as symbols, lists,
and list operations. Among them, the two most complex features
are closures with captured variables and �rst-class continuations be-
cause they introduce new kinds of control �ows. ECMAScript uses
closures to de�ne implicit and explicit JavaScript iterators and uses
continuations for iterators, generators, and asynchronous features
such as async, await, and the Proxy object. Therefore, we de�ne and
implement abstract closures and abstract continuations; an abstract
closure is a pair of a function and a mapping from captured vari-
ables to their abstract values, and an abstract continuation consists
of a program point, a view for analysis sensitivity, parameters, and
an abstract context.

Abstract Counting. Properties of JavaScript objects could be dy-
namically added, modi�ed, or deleted and even accessible by �rst-
class property names. Thus, in JavaScript static analysis, performing
strong updates rather than weak updates for object properties as
many as possible is important for precise analysis results. Since
records of IRES are even more dynamic than JavaScript objects, it is
also important to increase analysis precision. Therefore, we imple-
ment abstract counting [19] to increase chances to perform strong
updates for �elds of records. It checks how many times records in
the same allocation site have been allocated and performs strong
updates only for singleton records with singleton �eld values.

Loop Sensitivity. Similar to function calls, loops are also typical
merging points in static analysis. A loop sensitivity [24] is one of the
representative techniques to increase the precision of JavaScript
static analysis for loops. It discriminates contexts using a stack
of loop contexts containing loop iterations. We de�ne it under
the view-based analysis sensitivity and implement it in JSAVER to
increase the precision of IRES static analysis. Moreover, we also
de�ne and implement the loop sensitivity for JavaScript using the
loop sensitivity for IRES. Therefore, JSAVER discriminates contexts

4https://github.com/kaist-plrg/jiset
5The URL of the tool is anonymized due to a double-blind review process.

6

JSAVER - AST Sensitivity

42

defining-language
(IRES)

defined-language
(JavaScript) x ||= y581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

(a) Evaluation algorithm for identi�er references

1 syntax def IdentifierReference [0]
2 .Evaluation(
3 this , Identifier
4) {
5 return [?
6 (ResolveBinding
7 (Identifier.StringValue))]
8 }

(b) Extracted IRES function for identi�er references

(c) Result of x + y via a mechanized speci�cation

Figure 7: Analysis sensitivities of the target language
(JavaScript) and the speci�cation language (IRES)

divides contexts for the evaluation of JavaScript identi�ers x and y

in the above example using their ASTs even though their program
points in IRES are the same.

Callsite Sensitivity. We also formally de�ne the callsite sensitiv-
ity [37, 38] for the target language by extending the AST sensitivity
for speci�c normal IRES functions. The original callsite sensitivity
discriminates calling contexts using their top most callsites. In EC-
MAScript, all explicit and even implicit JavaScript function calls
invoke normal IRES functions Call and Construct. Thus, we de�ne
the callsite sensitivity for the target language by extending the AST
sensitivity with two normal IRES functions:

� cfa(t 2 T) = {� = (_, c) 2 S |
syntax-ctxt � js-call-ctxt(c) = c 0 ^ c 0(this) = t}

where js-call-ctxt(c) denotes the top-most context whose function is
Call or Construct and f �� denotes a function composition. Moreover,
we extend it to the k-callsite sensitivity by recursively taking ASTs
representing callsites of the target language:

�k -cfa(t 2 Tk) = {� = (_, c) 2 S |
t = [t1, · · · , tn] ^ n k^
(ö(syntax-ctxt � js-call-ctxt)n+1(c) _ n = k)^
81 i n.
((syntax-ctxt � js-call-ctxt)i (c) = ci ^ ci (this) = ti)}

Using this callsite sensitivity for the target language, the meta-
level static analyzer could discriminate not only explicit JavaScript
function calls (e.g. f()) but also implicit JavaScript function calls,

including getters/setters, user-de�ned implicit conversions, and
implicit function calls in built-in libraries.

5 IMPLEMENTATION
We developed a prototype implementation called JSAVER, which per-
forms a meta-level static analysis for JavaScript with ECMAScript.
The tool is an extension of JISET4 and it is an open-source project5.
In this section, we describe the challenges in implementing a meta-
level static analyzer and present our solutions for them.

Layered Abstract States. Unlike traditional JavaScript static anal-
yses, a meta-level static analysis for JavaScript should track analysis
results not only for the target language JavaScript but also for the
speci�cation language IRES. Thus, the sizes of abstract states are
much larger than those of the other JavaScript static analyzers. We
implement layered abstract states to maintain only updated analysis
results compared to the initial abstract state. It signi�cantly reduces
the time to perform the join (t), meet (u), and partial order (v)
operations by considering only the updated parts in abstract states.

Closures and Continuations. The speci�cation language IRES for
ECMAScript contains more complex language features than its
simpli�ed version presented in Section 4.1, such as symbols, lists,
and list operations. Among them, the two most complex features
are closures with captured variables and �rst-class continuations be-
cause they introduce new kinds of control �ows. ECMAScript uses
closures to de�ne implicit and explicit JavaScript iterators and uses
continuations for iterators, generators, and asynchronous features
such as async, await, and the Proxy object. Therefore, we de�ne and
implement abstract closures and abstract continuations; an abstract
closure is a pair of a function and a mapping from captured vari-
ables to their abstract values, and an abstract continuation consists
of a program point, a view for analysis sensitivity, parameters, and
an abstract context.

Abstract Counting. Properties of JavaScript objects could be dy-
namically added, modi�ed, or deleted and even accessible by �rst-
class property names. Thus, in JavaScript static analysis, performing
strong updates rather than weak updates for object properties as
many as possible is important for precise analysis results. Since
records of IRES are even more dynamic than JavaScript objects, it is
also important to increase analysis precision. Therefore, we imple-
ment abstract counting [19] to increase chances to perform strong
updates for �elds of records. It checks how many times records in
the same allocation site have been allocated and performs strong
updates only for singleton records with singleton �eld values.

Loop Sensitivity. Similar to function calls, loops are also typical
merging points in static analysis. A loop sensitivity [24] is one of the
representative techniques to increase the precision of JavaScript
static analysis for loops. It discriminates contexts using a stack
of loop contexts containing loop iterations. We de�ne it under
the view-based analysis sensitivity and implement it in JSAVER to
increase the precision of IRES static analysis. Moreover, we also
de�ne and implement the loop sensitivity for JavaScript using the
loop sensitivity for IRES. Therefore, JSAVER discriminates contexts

4https://github.com/kaist-plrg/jiset
5The URL of the tool is anonymized due to a double-blind review process.

6

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

(a) Evaluation algorithm for identi�er references

1 syntax def IdentifierReference [0]
2 .Evaluation(
3 this , Identifier
4) {
5 return [?
6 (ResolveBinding
7 (Identifier.StringValue))]
8 }

(b) Extracted IRES function for identi�er references

(c) Result of x + y via a mechanized speci�cation

Figure 7: Analysis sensitivities of the target language
(JavaScript) and the speci�cation language (IRES)

divides contexts for the evaluation of JavaScript identi�ers x and y

in the above example using their ASTs even though their program
points in IRES are the same.

Callsite Sensitivity. We also formally de�ne the callsite sensitiv-
ity [37, 38] for the target language by extending the AST sensitivity
for speci�c normal IRES functions. The original callsite sensitivity
discriminates calling contexts using their top most callsites. In EC-
MAScript, all explicit and even implicit JavaScript function calls
invoke normal IRES functions Call and Construct. Thus, we de�ne
the callsite sensitivity for the target language by extending the AST
sensitivity with two normal IRES functions:

� cfa(t 2 T) = {� = (_, c) 2 S |
syntax-ctxt � js-call-ctxt(c) = c 0 ^ c 0(this) = t}

where js-call-ctxt(c) denotes the top-most context whose function is
Call or Construct and f �� denotes a function composition. Moreover,
we extend it to the k-callsite sensitivity by recursively taking ASTs
representing callsites of the target language:

�k -cfa(t 2 Tk) = {� = (_, c) 2 S |
t = [t1, · · · , tn] ^ n k^
(ö(syntax-ctxt � js-call-ctxt)n+1(c) _ n = k)^
81 i n.
((syntax-ctxt � js-call-ctxt)i (c) = ci ^ ci (this) = ti)}

Using this callsite sensitivity for the target language, the meta-
level static analyzer could discriminate not only explicit JavaScript
function calls (e.g. f()) but also implicit JavaScript function calls,

including getters/setters, user-de�ned implicit conversions, and
implicit function calls in built-in libraries.

5 IMPLEMENTATION
We developed a prototype implementation called JSAVER, which per-
forms a meta-level static analysis for JavaScript with ECMAScript.
The tool is an extension of JISET4 and it is an open-source project5.
In this section, we describe the challenges in implementing a meta-
level static analyzer and present our solutions for them.

Layered Abstract States. Unlike traditional JavaScript static anal-
yses, a meta-level static analysis for JavaScript should track analysis
results not only for the target language JavaScript but also for the
speci�cation language IRES. Thus, the sizes of abstract states are
much larger than those of the other JavaScript static analyzers. We
implement layered abstract states to maintain only updated analysis
results compared to the initial abstract state. It signi�cantly reduces
the time to perform the join (t), meet (u), and partial order (v)
operations by considering only the updated parts in abstract states.

Closures and Continuations. The speci�cation language IRES for
ECMAScript contains more complex language features than its
simpli�ed version presented in Section 4.1, such as symbols, lists,
and list operations. Among them, the two most complex features
are closures with captured variables and �rst-class continuations be-
cause they introduce new kinds of control �ows. ECMAScript uses
closures to de�ne implicit and explicit JavaScript iterators and uses
continuations for iterators, generators, and asynchronous features
such as async, await, and the Proxy object. Therefore, we de�ne and
implement abstract closures and abstract continuations; an abstract
closure is a pair of a function and a mapping from captured vari-
ables to their abstract values, and an abstract continuation consists
of a program point, a view for analysis sensitivity, parameters, and
an abstract context.

Abstract Counting. Properties of JavaScript objects could be dy-
namically added, modi�ed, or deleted and even accessible by �rst-
class property names. Thus, in JavaScript static analysis, performing
strong updates rather than weak updates for object properties as
many as possible is important for precise analysis results. Since
records of IRES are even more dynamic than JavaScript objects, it is
also important to increase analysis precision. Therefore, we imple-
ment abstract counting [19] to increase chances to perform strong
updates for �elds of records. It checks how many times records in
the same allocation site have been allocated and performs strong
updates only for singleton records with singleton �eld values.

Loop Sensitivity. Similar to function calls, loops are also typical
merging points in static analysis. A loop sensitivity [24] is one of the
representative techniques to increase the precision of JavaScript
static analysis for loops. It discriminates contexts using a stack
of loop contexts containing loop iterations. We de�ne it under
the view-based analysis sensitivity and implement it in JSAVER to
increase the precision of IRES static analysis. Moreover, we also
de�ne and implement the loop sensitivity for JavaScript using the
loop sensitivity for IRES. Therefore, JSAVER discriminates contexts

4https://github.com/kaist-plrg/jiset
5The URL of the tool is anonymized due to a double-blind review process.

6

this = AST of `x` this = AST of `y`

JavaScript Static Analysis for Evolving Language Specifications / 35

JSAVER - AST Sensitivity

43

defining-language
(IRES)

defined-language
(JavaScript)

flow-sensitivity

k-callsite sensitivity

