
Automatically Deriving JavaScript Static Analyzers
from Specifications using Meta-level Static Analysis

Jihyeok Park 1, Seungmin An 2, and Sukyoung Ryu 2

1 Oracle Labs, Australia and 2 KAIST, South Korea
KSC2022 Top Conference IV - 소프트웨어 공학

학회명: ESEC/FSE 2022

December 23, 2022

KSC2022 Top Conference IV - 소프트웨어 공학 - ESEC/FSE 2022 - JSAVER / 19

Background - JavaScript Static Analysis

2

JS
Program

IR
Program

JS-IR
Compiler

IR
Analyzer

Analysis
Result

Compiler-based Approach

JavaScript Static Analyzer

f = /*0 to 99*/;
f ||= x => x;

f == [1,99] | x => x
f.name == undefined | "f"

1: f = ...
2: %0 = @bool(f)
3: if %0 -> 4
...
13: f.name = %5

KSC2022 Top Conference IV - 소프트웨어 공학 - ESEC/FSE 2022 - JSAVER / 19

Problem - Manual Update of JS-IR Compiler

3

JS
Program

IR
Program

JS-IR
Compiler

IR
Analyzer

Analysis
Result

Compiler-based Approach

JavaScript Static Analyzer

Analyzer
Developer

JS Spec.
(ECMA-262)

read & understand

update

maintained by

KSC2022 Top Conference IV - 소프트웨어 공학 - ESEC/FSE 2022 - JSAVER / 19

Problem - Fast Evolving JavaScript

4

20052000 2010 2015 2020

1997 - ES1
First edition

1998 - ES2
Editorial
Changes

1999 - ES3
RegExp, String,
Try/catch, etc.

2009 - ES5
Getters/Setters,

Strict mode,
Exceptions, etc

2011 - ES5.1
Editorial
Changes

2015 - ES6

2016 - ES7

2017 - ES8

2018 - ES9

2019 - ES10

2020 - ES11

2021 - ES12

- KJS
- SAFE
- TAJS

- WALA
- JSAI
- JSIL

Annual Update

ECMAScript 2021 (ES12) - 879 pages

JS Spec.
(ECMA-262)

maintained by

KSC2022 Top Conference IV - 소프트웨어 공학 - ESEC/FSE 2022 - JSAVER / 19

Core Idea - Meta-level Static Analysis

5

JS Interpreter
(IR Program)

Interpreter-based Approach
JavaScript Static Analyzer

IR
Analyzer

Analysis
Result

JS
Program

Initial state
restrction

KSC2022 Top Conference IV - 소프트웨어 공학 - ESEC/FSE 2022 - JSAVER / 19

Core Idea - Meta-level Static Analysis

6

4. Let rval be ? GetValue(rref).
5. Perform ? DestructuringAssignmentEvaluation of assignmentPattern using rval as the argument.
6. Return rval.

AssignmentExpression : LeftHandSideExpression AssignmentOperator AssignmentExpression

1. Let lref be the result of evaluating LeftHandSideExpression.
2. Let lval be ? GetValue(lref).
3. Let rref be the result of evaluating AssignmentExpression.
4. Let rval be ? GetValue(rref).
5. Let assignmentOpText be the source text matched by AssignmentOperator.
6. Let opText be the sequence of Unicode code points associated with assignmentOpText in the following table:

assignmentOpText opText
**= **
*= *
/= /
%= %
+= +
-= -
<<= <<
>>= >>
>>>= >>>
&= &
^= ^
|= |

7. Let r be ApplyStringOrNumericBinaryOperator(lval, opText, rval).
8. Perform ? PutValue(lref, r).
9. Return r.

AssignmentExpression : LeftHandSideExpression &&= AssignmentExpression

1. Let lref be the result of evaluating LeftHandSideExpression.
2. Let lval be ? GetValue(lref).
3. Let lbool be ! ToBoolean(lval).
4. If lbool is false, return lval.
5. If IsAnonymousFunctionDefinition(AssignmentExpression) is true and IsIdentifierRef of LeftHandSideExpression is true,

then
a. Let rval be NamedEvaluation of AssignmentExpression with argument lref.[[ReferencedName]].

6. Else,
a. Let rref be the result of evaluating AssignmentExpression.
b. Let rval be ? GetValue(rref).

7. Perform ? PutValue(lref, rval).
8. Return rval.

AssignmentExpression : LeftHandSideExpression ||= AssignmentExpression

1. Let lref be the result of evaluating LeftHandSideExpression.
2. Let lval be ? GetValue(lref).
3. Let lbool be ! ToBoolean(lval).
4. If lbool is true, return lval.
5. If IsAnonymousFunctionDefinition(AssignmentExpression) is true and IsIdentifierRef of LeftHandSideExpression is true,

then
a. Let rval be NamedEvaluation of AssignmentExpression with argument lref.[[ReferencedName]].

6. Else,
a. Let rref be the result of evaluating AssignmentExpression.
b. Let rval be ? GetValue(rref).

7. Perform ? PutValue(lref, rval).
8. Return rval.

AssignmentExpression : LeftHandSideExpression ??= AssignmentExpression

1. Let lref be the result of evaluating LeftHandSideExpression.
2. Let lval be ? GetValue(lref).
3. If lval is neither undefined nor null, return lval.
4. If IsAnonymousFunctionDefinition(AssignmentExpression) is true and IsIdentifierRef of LeftHandSideExpression is true,

then
a. Let rval be NamedEvaluation of AssignmentExpression with argument lref.[[ReferencedName]].

5. Else,
a. Let rref be the result of evaluating AssignmentExpression.
b. Let rval be ? GetValue(rref).

6. Perform ? PutValue(lref, rval).
7. Return rval.

NOTE When this expression occurs within strict mode code, it is a runtime error if lref in step 1.e, 2, 2, 2, 2 is an
unresolvable reference. If it is, a ReferenceError exception is thrown. Additionally, it is a runtime error if
the lref in step 8, 7, 7, 6 is a reference to a data property with the attribute value { [[Writable]]: false }, to
an accessor property with the attribute value { [[Set]]: undefined }, or to a non-existent property of an
object for which the IsExtensible predicate returns the value false. In these cases a TypeError exception
is thrown.

The abstract operation ApplyStringOrNumericBinaryOperator takes arguments lval (an ECMAScript language value), opText
(a sequence of Unicode code points), and rval (an ECMAScript language value). It performs the following steps when called:

1. Assert: opText is present in the table in step 8.
2. If opText is +, then

a. Let lprim be ? ToPrimitive(lval).
b. Let rprim be ? ToPrimitive(rval).
c. If Type(lprim) is String or Type(rprim) is String, then

i. Let lstr be ? ToString(lprim).
ii. Let rstr be ? ToString(rprim).

iii. Return the string-concatenation of lstr and rstr.
d. Set lval to lprim.
e. Set rval to rprim.

3. NOTE: At this point, it must be a numeric operation.
4. Let lnum be ? ToNumeric(lval).
5. Let rnum be ? ToNumeric(rval).
6. If Type(lnum) is different from Type(rnum), throw a TypeError exception.
7. Let T be Type(lnum).
8. Let operation be the abstract operation associated with opText in the following table:

opText operation
** T::exponentiate
* T::multiply
/ T::divide
% T::remainder
+ T::add

13.15.3 ApplyStringOrNumericBinaryOperator (lval, opText, rval)

AssignmentExpression[In, Yield, Await] :

ConditionalExpression[?In, ?Yield, ?Await]
[+Yield]YieldExpression[?In, ?Await]
ArrowFunction[?In, ?Yield, ?Await]
AsyncArrowFunction[?In, ?Yield, ?Await]
LeftHandSideExpression[?Yield, ?Await] = AssignmentExpression[?In, ?Yield, ?Await]
LeftHandSideExpression[?Yield, ?Await] AssignmentOperator AssignmentExpression[?In, ?Yield, ?Await]
LeftHandSideExpression[?Yield, ?Await] &&= AssignmentExpression[?In, ?Yield, ?Await]
LeftHandSideExpression[?Yield, ?Await] ||= AssignmentExpression[?In, ?Yield, ?Await]
LeftHandSideExpression[?Yield, ?Await] ??= AssignmentExpression[?In, ?Yield, ?Await]

AssignmentOperator : one of
*= /= %= += -= <<= >>= >>>= &= ^= |= **=

AssignmentExpression : LeftHandSideExpression = AssignmentExpression

If LeftHandSideExpression is an ObjectLiteral or an ArrayLiteral, the following Early Error rules are applied:

It is a Syntax Error if LeftHandSideExpression is not covering an AssignmentPattern.
All Early Error rules for AssignmentPattern and its derived productions also apply to the AssignmentPattern that is
covered by LeftHandSideExpression.

If LeftHandSideExpression is neither an ObjectLiteral nor an ArrayLiteral, the following Early Error rule is applied:

It is a Syntax Error if AssignmentTargetType of LeftHandSideExpression is not simple.

AssignmentExpression :
LeftHandSideExpression AssignmentOperator AssignmentExpression
LeftHandSideExpression &&= AssignmentExpression
LeftHandSideExpression ||= AssignmentExpression
LeftHandSideExpression ??= AssignmentExpression

It is a Syntax Error if AssignmentTargetType of LeftHandSideExpression is not simple.

AssignmentExpression : LeftHandSideExpression = AssignmentExpression

1. If LeftHandSideExpression is neither an ObjectLiteral nor an ArrayLiteral, then
a. Let lref be the result of evaluating LeftHandSideExpression.
b. ReturnIfAbrupt(lref).
c. If IsAnonymousFunctionDefinition(AssignmentExpression) and IsIdentifierRef of LeftHandSideExpression are

both true, then
i. Let rval be NamedEvaluation of AssignmentExpression with argument lref.[[ReferencedName]].

d. Else,
i. Let rref be the result of evaluating AssignmentExpression.

ii. Let rval be ? GetValue(rref).
e. Perform ? PutValue(lref, rval).
f. Return rval.

2. Let assignmentPattern be the AssignmentPattern that is covered by LeftHandSideExpression.
3. Let rref be the result of evaluating AssignmentExpression.

Syntax

13.15.1 Static Semantics: Early Errors

13.15.2 Runtime Semantics: Evaluation

4. Let rval be ? GetValue(rref).
5. Perform ? DestructuringAssignmentEvaluation of assignmentPattern using rval as the argument.
6. Return rval.

AssignmentExpression : LeftHandSideExpression AssignmentOperator AssignmentExpression

1. Let lref be the result of evaluating LeftHandSideExpression.
2. Let lval be ? GetValue(lref).
3. Let rref be the result of evaluating AssignmentExpression.
4. Let rval be ? GetValue(rref).
5. Let assignmentOpText be the source text matched by AssignmentOperator.
6. Let opText be the sequence of Unicode code points associated with assignmentOpText in the following table:

assignmentOpText opText
**= **
*= *
/= /
%= %
+= +
-= -
<<= <<
>>= >>
>>>= >>>
&= &
^= ^
|= |

7. Let r be ApplyStringOrNumericBinaryOperator(lval, opText, rval).
8. Perform ? PutValue(lref, r).
9. Return r.

AssignmentExpression : LeftHandSideExpression &&= AssignmentExpression

1. Let lref be the result of evaluating LeftHandSideExpression.
2. Let lval be ? GetValue(lref).
3. Let lbool be ! ToBoolean(lval).
4. If lbool is false, return lval.
5. If IsAnonymousFunctionDefinition(AssignmentExpression) is true and IsIdentifierRef of LeftHandSideExpression is true,

then
a. Let rval be NamedEvaluation of AssignmentExpression with argument lref.[[ReferencedName]].

6. Else,
a. Let rref be the result of evaluating AssignmentExpression.
b. Let rval be ? GetValue(rref).

7. Perform ? PutValue(lref, rval).
8. Return rval.

AssignmentExpression : LeftHandSideExpression ||= AssignmentExpression

1. Let lref be the result of evaluating LeftHandSideExpression.
2. Let lval be ? GetValue(lref).
3. Let lbool be ! ToBoolean(lval).
4. If lbool is true, return lval.
5. If IsAnonymousFunctionDefinition(AssignmentExpression) is true and IsIdentifierRef of LeftHandSideExpression is true,

then
a. Let rval be NamedEvaluation of AssignmentExpression with argument lref.[[ReferencedName]].

4. Let rval be ? GetValue(rref).
5. Perform ? DestructuringAssignmentEvaluation of assignmentPattern using rval as the argument.
6. Return rval.

AssignmentExpression : LeftHandSideExpression AssignmentOperator AssignmentExpression

1. Let lref be the result of evaluating LeftHandSideExpression.
2. Let lval be ? GetValue(lref).
3. Let rref be the result of evaluating AssignmentExpression.
4. Let rval be ? GetValue(rref).
5. Let assignmentOpText be the source text matched by AssignmentOperator.
6. Let opText be the sequence of Unicode code points associated with assignmentOpText in the following table:

assignmentOpText opText
**= **
*= *
/= /
%= %
+= +
-= -
<<= <<
>>= >>
>>>= >>>
&= &
^= ^
|= |

7. Let r be ApplyStringOrNumericBinaryOperator(lval, opText, rval).
8. Perform ? PutValue(lref, r).
9. Return r.

AssignmentExpression : LeftHandSideExpression &&= AssignmentExpression

1. Let lref be the result of evaluating LeftHandSideExpression.
2. Let lval be ? GetValue(lref).
3. Let lbool be ! ToBoolean(lval).
4. If lbool is false, return lval.
5. If IsAnonymousFunctionDefinition(AssignmentExpression) is true and IsIdentifierRef of LeftHandSideExpression is true,

then
a. Let rval be NamedEvaluation of AssignmentExpression with argument lref.[[ReferencedName]].

6. Else,
a. Let rref be the result of evaluating AssignmentExpression.
b. Let rval be ? GetValue(rref).

7. Perform ? PutValue(lref, rval).
8. Return rval.

AssignmentExpression : LeftHandSideExpression ||= AssignmentExpression

1. Let lref be the result of evaluating LeftHandSideExpression.
2. Let lval be ? GetValue(lref).
3. Let lbool be ! ToBoolean(lval).
4. If lbool is true, return lval.
5. If IsAnonymousFunctionDefinition(AssignmentExpression) is true and IsIdentifierRef of LeftHandSideExpression is true,

then
a. Let rval be NamedEvaluation of AssignmentExpression with argument lref.[[ReferencedName]].

4. Let rval be ? GetValue(rref).
5. Perform ? DestructuringAssignmentEvaluation of assignmentPattern using rval as the argument.
6. Return rval.

AssignmentExpression : LeftHandSideExpression AssignmentOperator AssignmentExpression

1. Let lref be the result of evaluating LeftHandSideExpression.
2. Let lval be ? GetValue(lref).
3. Let rref be the result of evaluating AssignmentExpression.
4. Let rval be ? GetValue(rref).
5. Let assignmentOpText be the source text matched by AssignmentOperator.
6. Let opText be the sequence of Unicode code points associated with assignmentOpText in the following table:

assignmentOpText opText
**= **
*= *
/= /
%= %
+= +
-= -
<<= <<
>>= >>
>>>= >>>
&= &
^= ^
|= |

7. Let r be ApplyStringOrNumericBinaryOperator(lval, opText, rval).
8. Perform ? PutValue(lref, r).
9. Return r.

AssignmentExpression : LeftHandSideExpression &&= AssignmentExpression

1. Let lref be the result of evaluating LeftHandSideExpression.
2. Let lval be ? GetValue(lref).
3. Let lbool be ! ToBoolean(lval).
4. If lbool is false, return lval.
5. If IsAnonymousFunctionDefinition(AssignmentExpression) is true and IsIdentifierRef of LeftHandSideExpression is true,

then
a. Let rval be NamedEvaluation of AssignmentExpression with argument lref.[[ReferencedName]].

6. Else,
a. Let rref be the result of evaluating AssignmentExpression.
b. Let rval be ? GetValue(rref).

7. Perform ? PutValue(lref, rval).
8. Return rval.

AssignmentExpression : LeftHandSideExpression ||= AssignmentExpression

1. Let lref be the result of evaluating LeftHandSideExpression.
2. Let lval be ? GetValue(lref).
3. Let lbool be ! ToBoolean(lval).
4. If lbool is true, return lval.
5. If IsAnonymousFunctionDefinition(AssignmentExpression) is true and IsIdentifierRef of LeftHandSideExpression is true,

then
a. Let rval be NamedEvaluation of AssignmentExpression with argument lref.[[ReferencedName]].

4. Let rval be ? GetValue(rref).
5. Perform ? DestructuringAssignmentEvaluation of assignmentPattern using rval as the argument.
6. Return rval.

AssignmentExpression : LeftHandSideExpression AssignmentOperator AssignmentExpression

1. Let lref be the result of evaluating LeftHandSideExpression.
2. Let lval be ? GetValue(lref).
3. Let rref be the result of evaluating AssignmentExpression.
4. Let rval be ? GetValue(rref).
5. Let assignmentOpText be the source text matched by AssignmentOperator.
6. Let opText be the sequence of Unicode code points associated with assignmentOpText in the following table:

assignmentOpText opText
**= **
*= *
/= /
%= %
+= +
-= -
<<= <<
>>= >>
>>>= >>>
&= &
^= ^
|= |

7. Let r be ApplyStringOrNumericBinaryOperator(lval, opText, rval).
8. Perform ? PutValue(lref, r).
9. Return r.

AssignmentExpression : LeftHandSideExpression &&= AssignmentExpression

1. Let lref be the result of evaluating LeftHandSideExpression.
2. Let lval be ? GetValue(lref).
3. Let lbool be ! ToBoolean(lval).
4. If lbool is false, return lval.
5. If IsAnonymousFunctionDefinition(AssignmentExpression) is true and IsIdentifierRef of LeftHandSideExpression is true,

then
a. Let rval be NamedEvaluation of AssignmentExpression with argument lref.[[ReferencedName]].

6. Else,
a. Let rref be the result of evaluating AssignmentExpression.
b. Let rval be ? GetValue(rref).

7. Perform ? PutValue(lref, rval).
8. Return rval.

AssignmentExpression : LeftHandSideExpression ||= AssignmentExpression

1. Let lref be the result of evaluating LeftHandSideExpression.
2. Let lval be ? GetValue(lref).
3. Let lbool be ! ToBoolean(lval).
4. If lbool is true, return lval.
5. If IsAnonymousFunctionDefinition(AssignmentExpression) is true and IsIdentifierRef of LeftHandSideExpression is true,

then
a. Let rval be NamedEvaluation of AssignmentExpression with argument lref.[[ReferencedName]].

4. Let rval be ? GetValue(rref).
5. Perform ? DestructuringAssignmentEvaluation of assignmentPattern using rval as the argument.
6. Return rval.

AssignmentExpression : LeftHandSideExpression AssignmentOperator AssignmentExpression

1. Let lref be the result of evaluating LeftHandSideExpression.
2. Let lval be ? GetValue(lref).
3. Let rref be the result of evaluating AssignmentExpression.
4. Let rval be ? GetValue(rref).
5. Let assignmentOpText be the source text matched by AssignmentOperator.
6. Let opText be the sequence of Unicode code points associated with assignmentOpText in the following table:

assignmentOpText opText
**= **
*= *
/= /
%= %
+= +
-= -
<<= <<
>>= >>
>>>= >>>
&= &
^= ^
|= |

7. Let r be ApplyStringOrNumericBinaryOperator(lval, opText, rval).
8. Perform ? PutValue(lref, r).
9. Return r.

AssignmentExpression : LeftHandSideExpression &&= AssignmentExpression

1. Let lref be the result of evaluating LeftHandSideExpression.
2. Let lval be ? GetValue(lref).
3. Let lbool be ! ToBoolean(lval).
4. If lbool is false, return lval.
5. If IsAnonymousFunctionDefinition(AssignmentExpression) is true and IsIdentifierRef of LeftHandSideExpression is true,

then
a. Let rval be NamedEvaluation of AssignmentExpression with argument lref.[[ReferencedName]].

6. Else,
a. Let rref be the result of evaluating AssignmentExpression.
b. Let rval be ? GetValue(rref).

7. Perform ? PutValue(lref, rval).
8. Return rval.

AssignmentExpression : LeftHandSideExpression ||= AssignmentExpression

1. Let lref be the result of evaluating LeftHandSideExpression.
2. Let lval be ? GetValue(lref).
3. Let lbool be ! ToBoolean(lval).
4. If lbool is true, return lval.
5. If IsAnonymousFunctionDefinition(AssignmentExpression) is true and IsIdentifierRef of LeftHandSideExpression is true,

then
a. Let rval be NamedEvaluation of AssignmentExpression with argument lref.[[ReferencedName]].

4. Let rval be ? GetValue(rref).
5. Perform ? DestructuringAssignmentEvaluation of assignmentPattern using rval as the argument.
6. Return rval.

AssignmentExpression : LeftHandSideExpression AssignmentOperator AssignmentExpression

1. Let lref be the result of evaluating LeftHandSideExpression.
2. Let lval be ? GetValue(lref).
3. Let rref be the result of evaluating AssignmentExpression.
4. Let rval be ? GetValue(rref).
5. Let assignmentOpText be the source text matched by AssignmentOperator.
6. Let opText be the sequence of Unicode code points associated with assignmentOpText in the following table:

assignmentOpText opText
**= **
*= *
/= /
%= %
+= +
-= -
<<= <<
>>= >>
>>>= >>>
&= &
^= ^
|= |

7. Let r be ApplyStringOrNumericBinaryOperator(lval, opText, rval).
8. Perform ? PutValue(lref, r).
9. Return r.

AssignmentExpression : LeftHandSideExpression &&= AssignmentExpression

1. Let lref be the result of evaluating LeftHandSideExpression.
2. Let lval be ? GetValue(lref).
3. Let lbool be ! ToBoolean(lval).
4. If lbool is false, return lval.
5. If IsAnonymousFunctionDefinition(AssignmentExpression) is true and IsIdentifierRef of LeftHandSideExpression is true,

then
a. Let rval be NamedEvaluation of AssignmentExpression with argument lref.[[ReferencedName]].

6. Else,
a. Let rref be the result of evaluating AssignmentExpression.
b. Let rval be ? GetValue(rref).

7. Perform ? PutValue(lref, rval).
8. Return rval.

AssignmentExpression : LeftHandSideExpression ||= AssignmentExpression

1. Let lref be the result of evaluating LeftHandSideExpression.
2. Let lval be ? GetValue(lref).
3. Let lbool be ! ToBoolean(lval).
4. If lbool is true, return lval.
5. If IsAnonymousFunctionDefinition(AssignmentExpression) is true and IsIdentifierRef of LeftHandSideExpression is true,

then
a. Let rval be NamedEvaluation of AssignmentExpression with argument lref.[[ReferencedName]].

Evaluation algorithm for logical OR assignments in ES12 (ES2021)

• Why Interpreter-based
Approach?
- JavaScript specifications are

written in an interpreter-
based style

KSC2022 Top Conference IV - 소프트웨어 공학 - ESEC/FSE 2022 - JSAVER / 19

Core Idea - Meta-level Static Analysis

7

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Jihyeok Park, Seungmin An, and Sukyoung Ryu

(a) Evaluation algorithm for the logical OR assignment

1 syntax def AssignmentExpression [8]. Evaluation(

2 this , LeftHandSideExpression , AssignmentExpression

3) { /* entry */

4 let lref = (LeftHandSideExpression.Evaluation)

5 let lval = [? (GetValue lref)]

6 let lbool = [! (ToBoolean lval)] /* #1 */

7 if (= lbool true) { /* #2 */ return lval } else {} /* #3 */

8 if (&& (IsAnonymousFunctionDefinition AssignmentExpression)

9 (LeftHandSideExpression.IsIdentifierRef)) { /* #4 */

10 let rval = (AssignmentExpression.NamedEvaluation

11 lref.ReferencedName)

12 } else { /* #5 */

13 let rref = (AssignmentExpression.Evaluation)

14 let rval = [? (GetValue rref)]

15 } /* #6 */

16 [? (PutValue lref rval)]

17 return rval

18 } /* exit */

(b) Extracted IRES function for the logical OR assignment

Figure 2: Evaluation algorithm for the eighth alternative of AssignmentExpression in ES12 and its extracted IRES function

However, static analyzers with the compiler-based approach
are unable to keep up with fast-evolving JavaScript because they
requiremanual updates for new language semantics. The JavaScript
language itself is rapidly evolving nowadays. Since 2015, the Ecma
Technical Committee 39 (TC39) has maintained the speci!cation
as an open-source GitHub project and released its o"cial versions
annually. The speci!cation size has been getting bigger as well, and
the latest version of ECMA-262 (ES12, 2021) [19] is 879 pages. Since
existing JavaScript static analyzers cannot update JavaScript-IR
compilers automatically, they still focus on ES5.1 and only support
a few ES6 features manually. Because recent JavaScript programs
often use new features like arrow functions, and promises, the lack
of their support becomes increasingly problematic.

To alleviate this problem, we present JSAVER, a JavaScript Static
Analyzer via ECMAScript Representations. It is the !rst tool that
automatically derives JavaScript static analyzers from language
speci!cations. The main idea of JSAVER is to shift the paradigm
from compiler-based approaches to interpreter-based ones to uti-
lize “the interpreter-based nature” of JavaScript. The history of
JavaScript [57] testi!es that the working group designing JavaScript
in the 1990s de!ned the semantics using reference interpreters:

Guy Steele would ask a question about some edge-
case feature behavior. [. . .] they would each turn to
their respective implementation and try a test case. If
they got the same answer, that became the speci!ed
behavior.

The interpreter-based nature also a#ects the writing style of the
speci!cations. ECMA-262 describes the language semantics with
pseudocode algorithms consisting of sequentially numbered steps to
represent program executions. To fully utilize this interpreter-based
nature of JavaScript, JSAVER derives a static analyzer by 1) extracting
a de!nitional interpreter [47] from ECMA-262 and 2) performing a
meta-level static analysis with the extracted interpreter.

First, JSAVER extracts de!nitional interpreters from ECMAScript
language speci!cations. A de!nitional interpreter provides a way
to represent the language semantics of a de!ned-language using its
interpreter written in a de!ning-language. We extract a JavaScript
de!nitional interpreter from ECMA-262 using JISET [43], which

automatically extracts a de!nitional interpreter from ECMA-262
taking advantage of its writing style. In the extracted de!nitional
interpreter, the de!ned-language is JavaScript, and the de!ning-
language is IRES, which is an intermediate representation for EC-
MAScript language speci!cations. JISET shows its adaptability by
extracting de!nitional interpreters from future versions of ECMA-
262 without extending IRES.

Then, we present ameta-level static analysis to analyze JavaScript
programs indirectly using the extracted interpreters. A meta-level
static analysis is an interpreter-based approach for static analy-
sis of a de!ned-language !1 using a static analyzer of a de!ning-
language !2 as depicted in Figure 1(b). Since an !1 interpreter is an
!2 program, it indirectly analyzes an !1 program by analyzing the
interpreter using a static analyzer of !2 with the !1 program as the
input. Thus, we develop a static analyzer of IRES for a meta-level
static analysis for JavaScript and experimentally show that it can
indirectly analyze JavaScript programs e#ectively. Moreover, for
its expressivenss, we present ways to indirectly con!gure abstract
domains and analysis sensitivities for JavaScript in the static analysis
of IRES. First, we provide a method to con!gure abstract domains
for JavaScript values and structures. Second, we present the AST
sensitivity to express analysis sensitivities for JavaScript such as
$ow-sensitivity and "-callsite-sensitivity.

The contributions of this paper are as follows:

• We propose a novel meta-level static analysis technique. It
indirectly analyzes a de!ned-language program by analyz-
ing its de!nitional interpreter using a static analyzer of the
de!ning-language with the program as the input.

• We present JSAVER, the !rst tool that derives JavaScript static
analyzers from language speci!cations by 1) extracting a
de!nitional interpreter from ECMA-262 and 2) performing a
meta-level static analysis with the extracted interpreter.

• We derive a static analyzer JSAES12 from the latest ECMA-
262, ES12, to evaluate JSAVER. The derived analyzer JSAES12

soundly analyzes all applicable 18,556 o"cial conformance
tests with 99.0% of precision in 590 ms on average. More-
over, we demonstrate the con!gurability and adaptability of
JSAVER with several case studies.

1023

Extracted IRES function for logical OR assignments via JISET

• Why Interpreter-based
Approach?
- JavaScript specifications are

written in an interpreter-
based style

- JISET: JavaScript IR-based
Semantics Extraction
(ASE 2020)
• Extracting JavaScript

definitional interpreters as
IRES programs from JS Lang.
Spec. (ECMA-262).

KSC2022 Top Conference IV - 소프트웨어 공학 - ESEC/FSE 2022 - JSAVER / 19

Core Idea - Meta-level Static Analysis

8

JS Interpreter
(IR Program)

Interpreter-based Approach
JavaScript Static Analyzer

IR
Analyzer

Analysis
Result

JS
Program

JS Spec.
(ECMA-262)

Initial state
restrction

automatic
extraction

KSC2022 Top Conference IV - 소프트웨어 공학 - ESEC/FSE 2022 - JSAVER / 19

Example

9

x ||= y PARSE

x ||= yJavaScript

IRES

AssignmentExpression

AssignmentExpressionLeftHandSideExpression

IdentifierReference IdentifierReference

IdentifierIdentifier

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Jihyeok Park, Seungmin An, and Sukyoung Ryu

(a) Evaluation algorithm for the logical OR assignment

1 syntax def AssignmentExpression [8]. Evaluation(
2 this , LeftHandSideExpression , AssignmentExpression
3) {
4 let lref = (LeftHandSideExpression.Evaluation)
5 let lval = [? (GetValue lref)]
6 let lbool = [! (ToBoolean lval)]
7 if (= lbool true) return lval
8 ...
9 }

(b) Extracted IRES function for the logical OR assignment

1 syntax def IdentifierReference [0]
2 .Evaluation(this , Identifier) {
3 return [?
4 (ResolveBinding
5 (Identifier.StringValue)
6)
7]
8 }

(c) Extracted IRES function for the logical
OR assignment

Figure 2: Evaluation algorithm for the eighth alternative of AssignmentExpression in ES12 and its extracted IRES function

However, static analyzers with the compiler-based approach
are unable to keep up with fast-evolving JavaScript because they
requiremanual updates for new language semantics. The JavaScript
language itself is rapidly evolving nowadays. Since 2015, the Ecma
Technical Committee 39 (TC39) has maintained the speci�cation
as an open-source GitHub project and released its o�cial versions
annually. The speci�cation size has been getting bigger as well, and
the latest version of ECMA-262 (ES12, 2021) [20] is 879 pages. Since
existing JavaScript static analyzers cannot update JavaScript-IR
compilers automatically, they still focus on ES5.1 and only support
a few ES6 features manually. Because recent JavaScript programs
often use new features like arrow functions, and promises, the lack
of their support becomes increasingly problematic.

To alleviate this problem, we present JSAVER, a JavaScript Static
Analyzer via ECMAScript Representations. It is the �rst tool that
automatically derives JavaScript static analyzers from language
speci�cations. The main idea of JSAVER is to shift the paradigm
from compiler-based approaches to interpreter-based ones to uti-
lize “the interpreter-based nature” of JavaScript. The history of
JavaScript [56] testi�es that the working group designing JavaScript
in the 1990s de�ned the semantics using reference interpreters:

Guy Steele would ask a question about some edge-
case feature behavior. [. . .] they would each turn to
their respective implementation and try a test case. If
they got the same answer, that became the speci�ed
behavior.

The interpreter-based nature also a�ects the writing style of the
speci�cations. ECMA-262 describes the language semantics with

pseudocode algorithms consisting of sequentially numbered steps to
represent program executions. To fully utilize this interpreter-based
nature of JavaScript, JSAVER derives a static analyzer by 1) extracting
a de�nitional interpreter [46] from ECMA-262 and 2) performing a
meta-level static analysis with the extracted interpreter.

First, JSAVER extracts de�nitional interpreters from ECMAScript
language speci�cations. A de�nitional interpreter provides a way
to represent the language semantics of a de�ned-language using its
interpreter written in a de�ning-language. We extract a JavaScript
de�nitional interpreter from ECMA-262 using JISET [42], which
automatically extracts a de�nitional interpreter from ECMA-262
taking advantage of its writing style. In the extracted de�nitional
interpreter, the de�ned-language is JavaScript, and the de�ning-
language is IRES, which is an intermediate representation for EC-
MAScript language speci�cations. JISET shows its adaptability by
extracting de�nitional interpreters from future versions of ECMA-
262 without extending IRES.

Then, we present ameta-level static analysis to analyze JavaScript
programs indirectly using the extracted interpreters. A meta-level
static analysis is an interpreter-based approach for static analy-
sis of a de�ned-language !1 using a static analyzer of a de�ning-
language !2 as depicted in Figure 1(b). Since an !1 interpreter is an
!2 program, it indirectly analyzes an !1 program by analyzing the
interpreter using a static analyzer of !2 with the !1 program as the
input. Thus, we develop a static analyzer of IRES for a meta-level
static analysis for JavaScript and experimentally show that it can
indirectly analyze JavaScript programs e�ectively. Moreover, for
its expressivenss, we present ways to indirectly con�gure abstract

KSC2022 Top Conference IV - 소프트웨어 공학 - ESEC/FSE 2022 - JSAVER / 19

Example

10

x ||= y PARSE

x ||= yJavaScript

IRES

AssignmentExpression

AssignmentExpressionLeftHandSideExpression

IdentifierReference IdentifierReference

IdentifierIdentifier

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Jihyeok Park, Seungmin An, and Sukyoung Ryu

(a) Evaluation algorithm for the logical OR assignment

1 syntax def AssignmentExpression [8]. Evaluation(
2 this , LeftHandSideExpression , AssignmentExpression
3) {
4 let lref = (LeftHandSideExpression.Evaluation)
5 let lval = [? (GetValue lref)]
6 let lbool = [! (ToBoolean lval)]
7 if (= lbool true) return lval
8 ...
9 }

(b) Extracted IRES function for the logical OR assignment

1 syntax def IdentifierReference [0]
2 .Evaluation(this , Identifier) {
3 return [?
4 (ResolveBinding
5 (Identifier.StringValue)
6)
7]
8 }

(c) Extracted IRES function for the logical
OR assignment

Figure 2: Evaluation algorithm for the eighth alternative of AssignmentExpression in ES12 and its extracted IRES function

However, static analyzers with the compiler-based approach
are unable to keep up with fast-evolving JavaScript because they
requiremanual updates for new language semantics. The JavaScript
language itself is rapidly evolving nowadays. Since 2015, the Ecma
Technical Committee 39 (TC39) has maintained the speci�cation
as an open-source GitHub project and released its o�cial versions
annually. The speci�cation size has been getting bigger as well, and
the latest version of ECMA-262 (ES12, 2021) [20] is 879 pages. Since
existing JavaScript static analyzers cannot update JavaScript-IR
compilers automatically, they still focus on ES5.1 and only support
a few ES6 features manually. Because recent JavaScript programs
often use new features like arrow functions, and promises, the lack
of their support becomes increasingly problematic.

To alleviate this problem, we present JSAVER, a JavaScript Static
Analyzer via ECMAScript Representations. It is the �rst tool that
automatically derives JavaScript static analyzers from language
speci�cations. The main idea of JSAVER is to shift the paradigm
from compiler-based approaches to interpreter-based ones to uti-
lize “the interpreter-based nature” of JavaScript. The history of
JavaScript [56] testi�es that the working group designing JavaScript
in the 1990s de�ned the semantics using reference interpreters:

Guy Steele would ask a question about some edge-
case feature behavior. [. . .] they would each turn to
their respective implementation and try a test case. If
they got the same answer, that became the speci�ed
behavior.

The interpreter-based nature also a�ects the writing style of the
speci�cations. ECMA-262 describes the language semantics with

pseudocode algorithms consisting of sequentially numbered steps to
represent program executions. To fully utilize this interpreter-based
nature of JavaScript, JSAVER derives a static analyzer by 1) extracting
a de�nitional interpreter [46] from ECMA-262 and 2) performing a
meta-level static analysis with the extracted interpreter.

First, JSAVER extracts de�nitional interpreters from ECMAScript
language speci�cations. A de�nitional interpreter provides a way
to represent the language semantics of a de�ned-language using its
interpreter written in a de�ning-language. We extract a JavaScript
de�nitional interpreter from ECMA-262 using JISET [42], which
automatically extracts a de�nitional interpreter from ECMA-262
taking advantage of its writing style. In the extracted de�nitional
interpreter, the de�ned-language is JavaScript, and the de�ning-
language is IRES, which is an intermediate representation for EC-
MAScript language speci�cations. JISET shows its adaptability by
extracting de�nitional interpreters from future versions of ECMA-
262 without extending IRES.

Then, we present ameta-level static analysis to analyze JavaScript
programs indirectly using the extracted interpreters. A meta-level
static analysis is an interpreter-based approach for static analy-
sis of a de�ned-language !1 using a static analyzer of a de�ning-
language !2 as depicted in Figure 1(b). Since an !1 interpreter is an
!2 program, it indirectly analyzes an !1 program by analyzing the
interpreter using a static analyzer of !2 with the !1 program as the
input. Thus, we develop a static analyzer of IRES for a meta-level
static analysis for JavaScript and experimentally show that it can
indirectly analyze JavaScript programs e�ectively. Moreover, for
its expressivenss, we present ways to indirectly con�gure abstract

KSC2022 Top Conference IV - 소프트웨어 공학 - ESEC/FSE 2022 - JSAVER / 19

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Jihyeok Park, Seungmin An, and Sukyoung Ryu

(a) Evaluation algorithm for the logical OR assignment

1 syntax def AssignmentExpression [8]. Evaluation(
2 this , LeftHandSideExpression , AssignmentExpression
3) {
4 let lref = (LeftHandSideExpression.Evaluation)
5 let lval = [? (GetValue lref)]
6 let lbool = [! (ToBoolean lval)]
7 if (= lbool true) return lval
8 ...
9 }

(b) Extracted IRES function for the logical OR assignment

1 syntax def IdentifierReference [0]
2 .Evaluation(this , Identifier) {
3 return [?
4 (ResolveBinding
5 (Identifier.StringValue)
6)
7]
8 }

(c) Extracted IRES function for the logical
OR assignment

Figure 2: Evaluation algorithm for the eighth alternative of AssignmentExpression in ES12 and its extracted IRES function

However, static analyzers with the compiler-based approach
are unable to keep up with fast-evolving JavaScript because they
requiremanual updates for new language semantics. The JavaScript
language itself is rapidly evolving nowadays. Since 2015, the Ecma
Technical Committee 39 (TC39) has maintained the speci�cation
as an open-source GitHub project and released its o�cial versions
annually. The speci�cation size has been getting bigger as well, and
the latest version of ECMA-262 (ES12, 2021) [20] is 879 pages. Since
existing JavaScript static analyzers cannot update JavaScript-IR
compilers automatically, they still focus on ES5.1 and only support
a few ES6 features manually. Because recent JavaScript programs
often use new features like arrow functions, and promises, the lack
of their support becomes increasingly problematic.

To alleviate this problem, we present JSAVER, a JavaScript Static
Analyzer via ECMAScript Representations. It is the �rst tool that
automatically derives JavaScript static analyzers from language
speci�cations. The main idea of JSAVER is to shift the paradigm
from compiler-based approaches to interpreter-based ones to uti-
lize “the interpreter-based nature” of JavaScript. The history of
JavaScript [56] testi�es that the working group designing JavaScript
in the 1990s de�ned the semantics using reference interpreters:

Guy Steele would ask a question about some edge-
case feature behavior. [. . .] they would each turn to
their respective implementation and try a test case. If
they got the same answer, that became the speci�ed
behavior.

The interpreter-based nature also a�ects the writing style of the
speci�cations. ECMA-262 describes the language semantics with

pseudocode algorithms consisting of sequentially numbered steps to
represent program executions. To fully utilize this interpreter-based
nature of JavaScript, JSAVER derives a static analyzer by 1) extracting
a de�nitional interpreter [46] from ECMA-262 and 2) performing a
meta-level static analysis with the extracted interpreter.

First, JSAVER extracts de�nitional interpreters from ECMAScript
language speci�cations. A de�nitional interpreter provides a way
to represent the language semantics of a de�ned-language using its
interpreter written in a de�ning-language. We extract a JavaScript
de�nitional interpreter from ECMA-262 using JISET [42], which
automatically extracts a de�nitional interpreter from ECMA-262
taking advantage of its writing style. In the extracted de�nitional
interpreter, the de�ned-language is JavaScript, and the de�ning-
language is IRES, which is an intermediate representation for EC-
MAScript language speci�cations. JISET shows its adaptability by
extracting de�nitional interpreters from future versions of ECMA-
262 without extending IRES.

Then, we present ameta-level static analysis to analyze JavaScript
programs indirectly using the extracted interpreters. A meta-level
static analysis is an interpreter-based approach for static analy-
sis of a de�ned-language !1 using a static analyzer of a de�ning-
language !2 as depicted in Figure 1(b). Since an !1 interpreter is an
!2 program, it indirectly analyzes an !1 program by analyzing the
interpreter using a static analyzer of !2 with the !1 program as the
input. Thus, we develop a static analyzer of IRES for a meta-level
static analysis for JavaScript and experimentally show that it can
indirectly analyze JavaScript programs e�ectively. Moreover, for
its expressivenss, we present ways to indirectly con�gure abstract

AST Sensitivity

11

x ||= y PARSE

x ||= yJavaScript

IRES

AssignmentExpression

AssignmentExpressionLeftHandSideExpression

IdentifierReference IdentifierReference

IdentifierIdentifier

KSC2022 Top Conference IV - 소프트웨어 공학 - ESEC/FSE 2022 - JSAVER / 19

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Jihyeok Park, Seungmin An, and Sukyoung Ryu

(a) Evaluation algorithm for the logical OR assignment

1 syntax def AssignmentExpression [8]. Evaluation(
2 this , LeftHandSideExpression , AssignmentExpression
3) {
4 let lref = (LeftHandSideExpression.Evaluation)
5 let lval = [? (GetValue lref)]
6 let lbool = [! (ToBoolean lval)]
7 if (= lbool true) return lval
8 ...
9 }

(b) Extracted IRES function for the logical OR assignment

1 syntax def IdentifierReference [0]
2 .Evaluation(this , Identifier) {
3 return [?
4 (ResolveBinding
5 (Identifier.StringValue)
6)
7]
8 }

(c) Extracted IRES function for the logical
OR assignment

Figure 2: Evaluation algorithm for the eighth alternative of AssignmentExpression in ES12 and its extracted IRES function

However, static analyzers with the compiler-based approach
are unable to keep up with fast-evolving JavaScript because they
requiremanual updates for new language semantics. The JavaScript
language itself is rapidly evolving nowadays. Since 2015, the Ecma
Technical Committee 39 (TC39) has maintained the speci�cation
as an open-source GitHub project and released its o�cial versions
annually. The speci�cation size has been getting bigger as well, and
the latest version of ECMA-262 (ES12, 2021) [20] is 879 pages. Since
existing JavaScript static analyzers cannot update JavaScript-IR
compilers automatically, they still focus on ES5.1 and only support
a few ES6 features manually. Because recent JavaScript programs
often use new features like arrow functions, and promises, the lack
of their support becomes increasingly problematic.

To alleviate this problem, we present JSAVER, a JavaScript Static
Analyzer via ECMAScript Representations. It is the �rst tool that
automatically derives JavaScript static analyzers from language
speci�cations. The main idea of JSAVER is to shift the paradigm
from compiler-based approaches to interpreter-based ones to uti-
lize “the interpreter-based nature” of JavaScript. The history of
JavaScript [56] testi�es that the working group designing JavaScript
in the 1990s de�ned the semantics using reference interpreters:

Guy Steele would ask a question about some edge-
case feature behavior. [. . .] they would each turn to
their respective implementation and try a test case. If
they got the same answer, that became the speci�ed
behavior.

The interpreter-based nature also a�ects the writing style of the
speci�cations. ECMA-262 describes the language semantics with

pseudocode algorithms consisting of sequentially numbered steps to
represent program executions. To fully utilize this interpreter-based
nature of JavaScript, JSAVER derives a static analyzer by 1) extracting
a de�nitional interpreter [46] from ECMA-262 and 2) performing a
meta-level static analysis with the extracted interpreter.

First, JSAVER extracts de�nitional interpreters from ECMAScript
language speci�cations. A de�nitional interpreter provides a way
to represent the language semantics of a de�ned-language using its
interpreter written in a de�ning-language. We extract a JavaScript
de�nitional interpreter from ECMA-262 using JISET [42], which
automatically extracts a de�nitional interpreter from ECMA-262
taking advantage of its writing style. In the extracted de�nitional
interpreter, the de�ned-language is JavaScript, and the de�ning-
language is IRES, which is an intermediate representation for EC-
MAScript language speci�cations. JISET shows its adaptability by
extracting de�nitional interpreters from future versions of ECMA-
262 without extending IRES.

Then, we present ameta-level static analysis to analyze JavaScript
programs indirectly using the extracted interpreters. A meta-level
static analysis is an interpreter-based approach for static analy-
sis of a de�ned-language !1 using a static analyzer of a de�ning-
language !2 as depicted in Figure 1(b). Since an !1 interpreter is an
!2 program, it indirectly analyzes an !1 program by analyzing the
interpreter using a static analyzer of !2 with the !1 program as the
input. Thus, we develop a static analyzer of IRES for a meta-level
static analysis for JavaScript and experimentally show that it can
indirectly analyze JavaScript programs e�ectively. Moreover, for
its expressivenss, we present ways to indirectly con�gure abstract

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Jihyeok Park, Seungmin An, and Sukyoung Ryu

(a) Evaluation algorithm for the logical OR assignment

1 syntax def AssignmentExpression [8]. Evaluation(
2 this , LeftHandSideExpression , AssignmentExpression
3) {
4 let lref = (LeftHandSideExpression.Evaluation)
5 let lval = [? (GetValue lref)]
6 let lbool = [! (ToBoolean lval)]
7 if (= lbool true) return lval
8 ...
9 }

(b) Extracted IRES function for the logical OR assignment

1 syntax def IdentifierReference [0]
2 .Evaluation(this , Identifier) {
3 return [?
4 (ResolveBinding
5 (Identifier.StringValue)
6)
7]
8 }

(c) Extracted IRES function for the logical
OR assignment

Figure 2: Evaluation algorithm for the eighth alternative of AssignmentExpression in ES12 and its extracted IRES function

However, static analyzers with the compiler-based approach
are unable to keep up with fast-evolving JavaScript because they
requiremanual updates for new language semantics. The JavaScript
language itself is rapidly evolving nowadays. Since 2015, the Ecma
Technical Committee 39 (TC39) has maintained the speci�cation
as an open-source GitHub project and released its o�cial versions
annually. The speci�cation size has been getting bigger as well, and
the latest version of ECMA-262 (ES12, 2021) [20] is 879 pages. Since
existing JavaScript static analyzers cannot update JavaScript-IR
compilers automatically, they still focus on ES5.1 and only support
a few ES6 features manually. Because recent JavaScript programs
often use new features like arrow functions, and promises, the lack
of their support becomes increasingly problematic.

To alleviate this problem, we present JSAVER, a JavaScript Static
Analyzer via ECMAScript Representations. It is the �rst tool that
automatically derives JavaScript static analyzers from language
speci�cations. The main idea of JSAVER is to shift the paradigm
from compiler-based approaches to interpreter-based ones to uti-
lize “the interpreter-based nature” of JavaScript. The history of
JavaScript [56] testi�es that the working group designing JavaScript
in the 1990s de�ned the semantics using reference interpreters:

Guy Steele would ask a question about some edge-
case feature behavior. [. . .] they would each turn to
their respective implementation and try a test case. If
they got the same answer, that became the speci�ed
behavior.

The interpreter-based nature also a�ects the writing style of the
speci�cations. ECMA-262 describes the language semantics with

pseudocode algorithms consisting of sequentially numbered steps to
represent program executions. To fully utilize this interpreter-based
nature of JavaScript, JSAVER derives a static analyzer by 1) extracting
a de�nitional interpreter [46] from ECMA-262 and 2) performing a
meta-level static analysis with the extracted interpreter.

First, JSAVER extracts de�nitional interpreters from ECMAScript
language speci�cations. A de�nitional interpreter provides a way
to represent the language semantics of a de�ned-language using its
interpreter written in a de�ning-language. We extract a JavaScript
de�nitional interpreter from ECMA-262 using JISET [42], which
automatically extracts a de�nitional interpreter from ECMA-262
taking advantage of its writing style. In the extracted de�nitional
interpreter, the de�ned-language is JavaScript, and the de�ning-
language is IRES, which is an intermediate representation for EC-
MAScript language speci�cations. JISET shows its adaptability by
extracting de�nitional interpreters from future versions of ECMA-
262 without extending IRES.

Then, we present ameta-level static analysis to analyze JavaScript
programs indirectly using the extracted interpreters. A meta-level
static analysis is an interpreter-based approach for static analy-
sis of a de�ned-language !1 using a static analyzer of a de�ning-
language !2 as depicted in Figure 1(b). Since an !1 interpreter is an
!2 program, it indirectly analyzes an !1 program by analyzing the
interpreter using a static analyzer of !2 with the !1 program as the
input. Thus, we develop a static analyzer of IRES for a meta-level
static analysis for JavaScript and experimentally show that it can
indirectly analyze JavaScript programs e�ectively. Moreover, for
its expressivenss, we present ways to indirectly con�gure abstract

AST Sensitivity

12

x ||= y PARSE

x ||= yJavaScript

IRES

AssignmentExpression

AssignmentExpressionLeftHandSideExpression

IdentifierReference IdentifierReference

IdentifierIdentifier

KSC2022 Top Conference IV - 소프트웨어 공학 - ESEC/FSE 2022 - JSAVER / 19

AST Sensitivity

13

JavaScript AST Sensitivity in IRES

Flow-
Sensitivity

k-Callsite-
Sensitivity

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Jihyeok Park, Seungmin An, and Sukyoung Ryu

4.3.1 Values. Since a JavaScript value is also an IRES value E 2 V,
we can con�gure bV for JavaScript values. For example, recall that
Figure 6 shows the �ow-sensitive analysis results of the code in
Figure 3 using the interval domain. Assume that we desire to use
the �at domain whose elements are concrete integer values, the
bottom value ?int for nothing, and the top value >int for JavaScript
integers. Then, it is su�cient to use the �at domain for integers in
the IRES abstract values bV. In this setting, the IRES local variable
lval points to >int at point #1. At the exit point, the IRES function
returns >int and the function object whose name property is �f�.

4.3.2 Data Structures. In JavaScript, data structures including envi-
ronment records and objects have external �elds directly accessible
by JavaScript syntax. For example, an environment record has vari-
ables as external �elds, accessible by identi�er references. Similarly,
an object has properties as external �elds accessible by property
read expressions. However, they also have internal �elds, which
are not directly accessible by JavaScript syntax, and one should
update them only indirectly. For example, [[HasBinding]] in
environment records or [[Prototype]] in objects. While such
internal �elds are pre-de�ned and the number of possible internal
�elds is �nite, the number of external �elds could be in�nite. Thus,
we provide a way to con�gure them di�erently. In Section 4.2, we
de�ne an abstract heap ⌘ 2 H as a �nite mapping from abstract
addresses bA to pairs of two di�erent abstract �elds maps bM anddMjs for internal and external �elds, respectively.

4.4 Analysis Sensitivities for JavaScript
In a JavaScript meta-level static analysis, analysis sensitivities for
JavaScript are di�erent from those for IRES. Consider the analysis
of the following JavaScript code with the �ow-sensitivity for IRES:

let x = 1, y = 2; x + y; // 3

Figure 7 shows (a) its extracted IRES function and (b) the parsing
result of x + y and the initial local environment of the IRES func-
tion. Since the �ow-sensitivity merges states on the same labels,
contexts for the evaluation of both identi�er references x and y

are merged. Thus, the IRES variable Identifier points to their
ASTs as illustrated at the right of Figure 7(b). Due to the imprecise
merge of contexts, StringValue of Identifier returns �x� and
�y�, and ResolveBinding with them returns both 1 and 2. Finally,
the analysis result of x + y becomes { 2, 3, 4 }.

4.4.1 Flow-Sensitivity. To resolve this problem, we present an AST
sensitivity for IRES as a variant of object sensitivity [30, 50] to rep-
resent �ow-sensitivity for JavaScript. It utilizes JavaScript ASTs T
stored in this parameter for syntax-directed functions as views
with a view abstraction X js-flow : T] {?} ! P(S):

X js-flow (C?) = {f = (_, _, 2, _) 2 S | ast(2) = C?}
where ast : C⇤ ! T] {?} denotes the JavaScript AST stored
in this parameter of the top-most syntax-directed function for a
given calling context stack:

ast(2) =

8>>>><
>>>>:

C if 92 . 2 = 21 :: · · · :: 2= :: 2 :: · · · ^ 2 = (l , d)^
func(l) = syntax def · · · ^ d (this) = C^
81 9 =. 2 9 = (l9 , _) ^ func(l9) = def · · ·

? otherwise

1 syntax def IdentifierReference [0]. Evaluation(
2 this , Identifier) {
3 return [? (ResolveBinding (Identifier.StringValue))]
4 }

(a) Extracted IRES function for identi�er references

(b) Result of x + y via a de�nitional interpreter

Figure 7: A JavaScriptmeta-level static analysis with the�ow-
sensitivity for IRES

Note that the number of views for the AST sensitivity is �nite as
well because JavaScript ASTs are �nite in a JavaScript program.
We de�ne the �ow-sensitivity for JavaScript using the AST sensi-
tivity for IRES. It successfully divides contexts for the evaluation
of JavaScript identi�ers x and y in the example even though their
labels in IRES are the same.

4.4.2 Callsite-Sensitivity. We de�ne the callsite-sensitivity [48, 49]
for JavaScript by extending the AST sensitivity for speci�c nor-
mal IRES functions. In ECMA-262, all explicit and even implicit
JavaScript function calls invoke normal IRES functions Call and
Construct. Thus, we de�ne the callsite-sensitivity for JavaScript by
extending the AST sensitivity with two normal IRES functions with
a view abstraction X js-:-cfa : T: ! P(S):

X js-:-cfa ([C1, · · · , C=]) = {f = (_, _, 2, _) 2 S |
=  : ^ (= = : _ js-ctxt=+1 (2) = ?)^
81 8 =. ast � js-ctxt8 (2) = C8 }

where js-ctxt : C⇤ ! C⇤] {?} pops out calling contexts until the
function of the top-most context is Call or Construct:

js-ctxt(2) =

8>>>>>><
>>>>>>:

2 if 2 = (l , d) :: _^
(func(l) = def Call · · ·_
func(l) = def Construct · · ·)

js-ctxt(20) if 2 = _ :: 20
? otherwise

Using this callsite-sensitivity for JavaScript, the meta-level static
analyzer can discriminate implicit JavaScript function calls, includ-
ing getters/setters, user-de�ned implicit conversions, and implicit
function calls in built-in libraries.

We also formally de�ne their abstract semantics X js-flowcJ8K and
X js-:-cfacJ8K in the companion report [1].

5 IMPLEMENTATION
In this section, we describe the challenges in implementing a meta-
level static analyzer and present our solutions for them. The source
code of JSAVER and the dataset of our study are publicly available

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Jihyeok Park, Seungmin An, and Sukyoung Ryu

4.3.1 Values. Since a JavaScript value is also an IRES value E 2 V,
we can con�gure bV for JavaScript values. For example, recall that
Figure 6 shows the �ow-sensitive analysis results of the code in
Figure 3 using the interval domain. Assume that we desire to use
the �at domain whose elements are concrete integer values, the
bottom value ?int for nothing, and the top value >int for JavaScript
integers. Then, it is su�cient to use the �at domain for integers in
the IRES abstract values bV. In this setting, the IRES local variable
lval points to >int at point #1. At the exit point, the IRES function
returns >int and the function object whose name property is �f�.

4.3.2 Data Structures. In JavaScript, data structures including envi-
ronment records and objects have external �elds directly accessible
by JavaScript syntax. For example, an environment record has vari-
ables as external �elds, accessible by identi�er references. Similarly,
an object has properties as external �elds accessible by property
read expressions. However, they also have internal �elds, which
are not directly accessible by JavaScript syntax, and one should
update them only indirectly. For example, [[HasBinding]] in
environment records or [[Prototype]] in objects. While such
internal �elds are pre-de�ned and the number of possible internal
�elds is �nite, the number of external �elds could be in�nite. Thus,
we provide a way to con�gure them di�erently. In Section 4.2, we
de�ne an abstract heap ⌘ 2 H as a �nite mapping from abstract
addresses bA to pairs of two di�erent abstract �elds maps bM anddMjs for internal and external �elds, respectively.

4.4 Analysis Sensitivities for JavaScript
In a JavaScript meta-level static analysis, analysis sensitivities for
JavaScript are di�erent from those for IRES. Consider the analysis
of the following JavaScript code with the �ow-sensitivity for IRES:

let x = 1, y = 2; x + y; // 3

Figure 7 shows (a) its extracted IRES function and (b) the parsing
result of x + y and the initial local environment of the IRES func-
tion. Since the �ow-sensitivity merges states on the same labels,
contexts for the evaluation of both identi�er references x and y

are merged. Thus, the IRES variable Identifier points to their
ASTs as illustrated at the right of Figure 7(b). Due to the imprecise
merge of contexts, StringValue of Identifier returns �x� and
�y�, and ResolveBinding with them returns both 1 and 2. Finally,
the analysis result of x + y becomes { 2, 3, 4 }.

4.4.1 Flow-Sensitivity. To resolve this problem, we present an AST
sensitivity for IRES as a variant of object sensitivity [30, 50] to rep-
resent �ow-sensitivity for JavaScript. It utilizes JavaScript ASTs T
stored in this parameter for syntax-directed functions as views
with a view abstraction X js-flow : T] {?} ! P(S):

X js-flow (C?) = {f = (_, _, 2, _) 2 S | ast(2) = C?}
where ast : C⇤ ! T] {?} denotes the JavaScript AST stored
in this parameter of the top-most syntax-directed function for a
given calling context stack:

ast(2) =

8>>>><
>>>>:

C if 92 . 2 = 21 :: · · · :: 2= :: 2 :: · · · ^ 2 = (l , d)^
func(l) = syntax def · · · ^ d (this) = C^
81 9 =. 2 9 = (l9 , _) ^ func(l9) = def · · ·

? otherwise

1 syntax def IdentifierReference [0]. Evaluation(
2 this , Identifier) {
3 return [? (ResolveBinding (Identifier.StringValue))]
4 }

(a) Extracted IRES function for identi�er references

(b) Result of x + y via a de�nitional interpreter

Figure 7: A JavaScriptmeta-level static analysis with the�ow-
sensitivity for IRES

Note that the number of views for the AST sensitivity is �nite as
well because JavaScript ASTs are �nite in a JavaScript program.
We de�ne the �ow-sensitivity for JavaScript using the AST sensi-
tivity for IRES. It successfully divides contexts for the evaluation
of JavaScript identi�ers x and y in the example even though their
labels in IRES are the same.

4.4.2 Callsite-Sensitivity. We de�ne the callsite-sensitivity [48, 49]
for JavaScript by extending the AST sensitivity for speci�c nor-
mal IRES functions. In ECMA-262, all explicit and even implicit
JavaScript function calls invoke normal IRES functions Call and
Construct. Thus, we de�ne the callsite-sensitivity for JavaScript by
extending the AST sensitivity with two normal IRES functions with
a view abstraction X js-:-cfa : T: ! P(S):

X js-:-cfa ([C1, · · · , C=]) = {f = (_, _, 2, _) 2 S |
=  : ^ (= = : _ js-ctxt=+1 (2) = ?)^
81 8 =. ast � js-ctxt8 (2) = C8 }

where js-ctxt : C⇤ ! C⇤] {?} pops out calling contexts until the
function of the top-most context is Call or Construct:

js-ctxt(2) =

8>>>>>><
>>>>>>:

2 if 2 = (l , d) :: _^
(func(l) = def Call · · ·_
func(l) = def Construct · · ·)

js-ctxt(20) if 2 = _ :: 20
? otherwise

Using this callsite-sensitivity for JavaScript, the meta-level static
analyzer can discriminate implicit JavaScript function calls, includ-
ing getters/setters, user-de�ned implicit conversions, and implicit
function calls in built-in libraries.

We also formally de�ne their abstract semantics X js-flowcJ8K and
X js-:-cfacJ8K in the companion report [1].

5 IMPLEMENTATION
In this section, we describe the challenges in implementing a meta-
level static analyzer and present our solutions for them. The source
code of JSAVER and the dataset of our study are publicly available

KSC2022 Top Conference IV - 소프트웨어 공학 - ESEC/FSE 2022 - JSAVER / 19

Our Tool - JSAVER

14

• JavaScript Static Analyzer via ECMAScript Representation

IRES
Functions

Analysis
Initializer

Analysis
Result

JS
Program

JS Spec.
(ECMA-262) JISET

JS Interpreter

JS
Parser

JS Abstract
Syntax Tree

Initial
Abs. State

Abs. Transfer
Function

Fixpoint
Computation

JSAVER

KSC2022 Top Conference IV - 소프트웨어 공학 - ESEC/FSE 2022 - JSAVER / 19

JS Static Analyzer Derivation via JSAVER

15

JSAVER

Analysis
Result

JS
Program

JS Spec.
(ES12, ES2021)

DERIVE JSAVER

Analysis
Result

JS
Program

JS Spec.
(ES12, ES2021)

JS Static Analyzer for ES12

KSC2022 Top Conference IV - 소프트웨어 공학 - ESEC/FSE 2022 - JSAVER / 19

Evaluation Setting

16

KSC2022 Top Conference IV - 소프트웨어 공학 - ESEC/FSE 2022 - JSAVER / 19

RQ1) Soundness

17

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Jihyeok Park, Seungmin An, and Sukyoung Ryu

(a) Analysis results of TAJS (b) Analysis results of SAFE (c) Analysis results of JSAES12

(d) Analysis results of TAJS with Babel (e) Analysis results of SAFE with Babel

Figure 8: Analysis results of TAJS and SAFE without and with Babel and JSAES12 for 18,556 applicable tests

(a) The analysis precision (b) The analysis performance

Figure 9: The analysis precision and performance for 3,878
tests soundly analyzable by all of �ve analyzers

soundly analyze more than half of Test262 test programs. On the
other hand, JSAES12 successfully analyzes all 18,556 applicable test
programs in a sound way, even without Babel.

6.2 Precision
We measured the analysis precision by counting how many com-
parison targets were precisely analyzed. For all applicable 18,556
Test262 test programs, JSAES12 analyzed them with a high analysis
precision of 99.0% in 590 ms on average. Then, we compared its anal-
ysis precision with that of TAJS and SAFE. For a fair comparison,
we measured the analysis precision for 3,878 test programs soundly
analyzable by all of �ve analyzers: TAJS, TAJS with Babel, SAFE,
SAFE with Babel, and JSAES12. Figure 9(a) depicts the average and
distribution of the analysis precision in violin plots [19]. TAJS and
SAFE analyzed 3,878 test programs with 85.1% and 89.9% precision
on average, respectively. While Babel increased the number of test
programs soundly analyzed by existing analyzers, it decreased the
average analysis precision of TAJS to 84.9% and had no e�ect on

1 let x = /* �a� or �b� */;

2 let y = �c${x}d�; // �cad� or �cbd�

3 let z = �${x}e${x}�; // �aea� or �beb�

Figure 10: A JavaScript program using template literals

SAFE. It is due to that Babel transpiles simple ES6+ features into a
more complex combination of ES5 features even though TAJS di-
rectly supports a small part of the ES6 features like arrow functions
or Symbol. However, JSAES12 has the highest analysis precision of
99.5% on average.

On the other hand, the analysis speed of JSAES12 is slower than
that of TAJS and SAFE, and Figure 9(b) depicts them in violin
plots on a logarithmic scale. TAJS and SAFE took 139 ms and 181
ms, respectively, to analyze 3,878 test programs on average. Babel
increases their average analysis time to 169 ms and 199 ms, respec-
tively, because it transpiles all ES6+ features in test programs to
verbose ES5.1 features. However, JSAES12 took 357 ms on average to
analyze them because JSAVER derives precise abstract semantics for
all language features. On the contrary, TAJS and SAFE developers
often imprecisely or even unsoundly model the abstract semantics
of speci�c language features to increase the analysis speed. For ex-
ample, TAJS does not discriminate positive/negative in�nity values
or positive/negative zeros to reduce the number of possible cases
in abstract values. Similarly, SAFE ignores the semantics of getters
and setters to analyze object property reads quickly.

6.3 Con�gurability
We demonstrate the con�gurability of JSAVER with several case

studies for abstract domains and analysis sensitivities. We discuss
how di�erent abstract domains or analysis sensitivities a�ect anal-
ysis results of JSAES12 with examples.

• Can JSAES12 analyze JavaScript programs using new
language features in a sound way?

KSC2022 Top Conference IV - 소프트웨어 공학 - ESEC/FSE 2022 - JSAVER / 19

RQ2) Precision & Performance

18

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Jihyeok Park, Seungmin An, and Sukyoung Ryu

(a) Analysis results of TAJS (b) Analysis results of SAFE (c) Analysis results of JSAES12

(d) Analysis results of TAJS with Babel (e) Analysis results of SAFE with Babel

Figure 8: Analysis results of TAJS and SAFE without and with Babel and JSAES12 for 18,556 applicable tests

(a) The analysis precision (b) The analysis performance

Figure 9: The analysis precision and performance for 3,878
tests soundly analyzable by all of �ve analyzers

soundly analyze more than half of Test262 test programs. On the
other hand, JSAES12 successfully analyzes all 18,556 applicable test
programs in a sound way, even without Babel.

6.2 Precision
We measured the analysis precision by counting how many com-
parison targets were precisely analyzed. For all applicable 18,556
Test262 test programs, JSAES12 analyzed them with a high analysis
precision of 99.0% in 590 ms on average. Then, we compared its anal-
ysis precision with that of TAJS and SAFE. For a fair comparison,
we measured the analysis precision for 3,878 test programs soundly
analyzable by all of �ve analyzers: TAJS, TAJS with Babel, SAFE,
SAFE with Babel, and JSAES12. Figure 9(a) depicts the average and
distribution of the analysis precision in violin plots [19]. TAJS and
SAFE analyzed 3,878 test programs with 85.1% and 89.9% precision
on average, respectively. While Babel increased the number of test
programs soundly analyzed by existing analyzers, it decreased the
average analysis precision of TAJS to 84.9% and had no e�ect on

1 let x = /* �a� or �b� */;

2 let y = �c${x}d�; // �cad� or �cbd�

3 let z = �${x}e${x}�; // �aea� or �beb�

Figure 10: A JavaScript program using template literals

SAFE. It is due to that Babel transpiles simple ES6+ features into a
more complex combination of ES5 features even though TAJS di-
rectly supports a small part of the ES6 features like arrow functions
or Symbol. However, JSAES12 has the highest analysis precision of
99.5% on average.

On the other hand, the analysis speed of JSAES12 is slower than
that of TAJS and SAFE, and Figure 9(b) depicts them in violin
plots on a logarithmic scale. TAJS and SAFE took 139 ms and 181
ms, respectively, to analyze 3,878 test programs on average. Babel
increases their average analysis time to 169 ms and 199 ms, respec-
tively, because it transpiles all ES6+ features in test programs to
verbose ES5.1 features. However, JSAES12 took 357 ms on average to
analyze them because JSAVER derives precise abstract semantics for
all language features. On the contrary, TAJS and SAFE developers
often imprecisely or even unsoundly model the abstract semantics
of speci�c language features to increase the analysis speed. For ex-
ample, TAJS does not discriminate positive/negative in�nity values
or positive/negative zeros to reduce the number of possible cases
in abstract values. Similarly, SAFE ignores the semantics of getters
and setters to analyze object property reads quickly.

6.3 Con�gurability
We demonstrate the con�gurability of JSAVER with several case

studies for abstract domains and analysis sensitivities. We discuss
how di�erent abstract domains or analysis sensitivities a�ect anal-
ysis results of JSAES12 with examples.

• Can JSAES12 precisely
analyze JavaScript
programs compared
to the existing static
analyzers?
- Targets: 3,878

programs soundly
analyzable by all of
five analyzers

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Jihyeok Park, Seungmin An, and Sukyoung Ryu

(a) Analysis results of TAJS (b) Analysis results of SAFE (c) Analysis results of JSAES12

(d) Analysis results of TAJS with Babel (e) Analysis results of SAFE with Babel

Figure 8: Analysis results of TAJS and SAFE without and with Babel and JSAES12 for 18,556 applicable tests

(a) The analysis precision (b) The analysis performance

Figure 9: The analysis precision and performance for 3,878
tests soundly analyzable by all of �ve analyzers

soundly analyze more than half of Test262 test programs. On the
other hand, JSAES12 successfully analyzes all 18,556 applicable test
programs in a sound way, even without Babel.

6.2 Precision
We measured the analysis precision by counting how many com-
parison targets were precisely analyzed. For all applicable 18,556
Test262 test programs, JSAES12 analyzed them with a high analysis
precision of 99.0% in 590 ms on average. Then, we compared its anal-
ysis precision with that of TAJS and SAFE. For a fair comparison,
we measured the analysis precision for 3,878 test programs soundly
analyzable by all of �ve analyzers: TAJS, TAJS with Babel, SAFE,
SAFE with Babel, and JSAES12. Figure 9(a) depicts the average and
distribution of the analysis precision in violin plots [19]. TAJS and
SAFE analyzed 3,878 test programs with 85.1% and 89.9% precision
on average, respectively. While Babel increased the number of test
programs soundly analyzed by existing analyzers, it decreased the
average analysis precision of TAJS to 84.9% and had no e�ect on

1 let x = /* �a� or �b� */;

2 let y = �c${x}d�; // �cad� or �cbd�

3 let z = �${x}e${x}�; // �aea� or �beb�

Figure 10: A JavaScript program using template literals

SAFE. It is due to that Babel transpiles simple ES6+ features into a
more complex combination of ES5 features even though TAJS di-
rectly supports a small part of the ES6 features like arrow functions
or Symbol. However, JSAES12 has the highest analysis precision of
99.5% on average.

On the other hand, the analysis speed of JSAES12 is slower than
that of TAJS and SAFE, and Figure 9(b) depicts them in violin
plots on a logarithmic scale. TAJS and SAFE took 139 ms and 181
ms, respectively, to analyze 3,878 test programs on average. Babel
increases their average analysis time to 169 ms and 199 ms, respec-
tively, because it transpiles all ES6+ features in test programs to
verbose ES5.1 features. However, JSAES12 took 357 ms on average to
analyze them because JSAVER derives precise abstract semantics for
all language features. On the contrary, TAJS and SAFE developers
often imprecisely or even unsoundly model the abstract semantics
of speci�c language features to increase the analysis speed. For ex-
ample, TAJS does not discriminate positive/negative in�nity values
or positive/negative zeros to reduce the number of possible cases
in abstract values. Similarly, SAFE ignores the semantics of getters
and setters to analyze object property reads quickly.

6.3 Con�gurability
We demonstrate the con�gurability of JSAVER with several case

studies for abstract domains and analysis sensitivities. We discuss
how di�erent abstract domains or analysis sensitivities a�ect anal-
ysis results of JSAES12 with examples.

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Jihyeok Park, Seungmin An, and Sukyoung Ryu

(a) Analysis results of TAJS (b) Analysis results of SAFE (c) Analysis results of JSAES12

(d) Analysis results of TAJS with Babel (e) Analysis results of SAFE with Babel

Figure 8: Analysis results of TAJS and SAFE without and with Babel and JSAES12 for 18,556 applicable tests

(a) The analysis precision (b) The analysis performance

Figure 9: The analysis precision and performance for 3,878
tests soundly analyzable by all of �ve analyzers

soundly analyze more than half of Test262 test programs. On the
other hand, JSAES12 successfully analyzes all 18,556 applicable test
programs in a sound way, even without Babel.

6.2 Precision
We measured the analysis precision by counting how many com-
parison targets were precisely analyzed. For all applicable 18,556
Test262 test programs, JSAES12 analyzed them with a high analysis
precision of 99.0% in 590 ms on average. Then, we compared its anal-
ysis precision with that of TAJS and SAFE. For a fair comparison,
we measured the analysis precision for 3,878 test programs soundly
analyzable by all of �ve analyzers: TAJS, TAJS with Babel, SAFE,
SAFE with Babel, and JSAES12. Figure 9(a) depicts the average and
distribution of the analysis precision in violin plots [19]. TAJS and
SAFE analyzed 3,878 test programs with 85.1% and 89.9% precision
on average, respectively. While Babel increased the number of test
programs soundly analyzed by existing analyzers, it decreased the
average analysis precision of TAJS to 84.9% and had no e�ect on

1 let x = /* �a� or �b� */;

2 let y = �c${x}d�; // �cad� or �cbd�

3 let z = �${x}e${x}�; // �aea� or �beb�

Figure 10: A JavaScript program using template literals

SAFE. It is due to that Babel transpiles simple ES6+ features into a
more complex combination of ES5 features even though TAJS di-
rectly supports a small part of the ES6 features like arrow functions
or Symbol. However, JSAES12 has the highest analysis precision of
99.5% on average.

On the other hand, the analysis speed of JSAES12 is slower than
that of TAJS and SAFE, and Figure 9(b) depicts them in violin
plots on a logarithmic scale. TAJS and SAFE took 139 ms and 181
ms, respectively, to analyze 3,878 test programs on average. Babel
increases their average analysis time to 169 ms and 199 ms, respec-
tively, because it transpiles all ES6+ features in test programs to
verbose ES5.1 features. However, JSAES12 took 357 ms on average to
analyze them because JSAVER derives precise abstract semantics for
all language features. On the contrary, TAJS and SAFE developers
often imprecisely or even unsoundly model the abstract semantics
of speci�c language features to increase the analysis speed. For ex-
ample, TAJS does not discriminate positive/negative in�nity values
or positive/negative zeros to reduce the number of possible cases
in abstract values. Similarly, SAFE ignores the semantics of getters
and setters to analyze object property reads quickly.

6.3 Con�gurability
We demonstrate the con�gurability of JSAVER with several case

studies for abstract domains and analysis sensitivities. We discuss
how di�erent abstract domains or analysis sensitivities a�ect anal-
ysis results of JSAES12 with examples.

