
Filling the gap between
the JavaScript language specification

and tools using the JISET family
Tutorial @ PLDI 2022

Sukyoung Ryu 1, Jihyeok Park 2, Seungmin An 1

1 KAIST, South Korea
2 Oracle Labs, Australia

June 13, 2022

/ 45Filling the gap between the JavaScript language specification and tools using the JISET family 2

JavaScript Is Everywhere

/ 45Filling the gap between the JavaScript language specification and tools using the JISET family 3

https://octoverse.github.com/

https://octoverse.github.com/

/ 45Filling the gap between the JavaScript language specification and tools using the JISET family 4

JavaScript Complex Semantics

function f(x) { return x == !x; }

Always return false?

/ 45Filling the gap between the JavaScript language specification and tools using the JISET family 4

JavaScript Complex Semantics

function f(x) { return x == !x; }

Always return false?

NO!!
f([]) -> [] == ![]
 -> [] == false
 -> +[] == +false
 -> 0 == 0
 -> true

/ 45Filling the gap between the JavaScript language specification and tools using the JISET family 5

ECMA-262: JavaScript Language Specification

The production of ArrayLiteral in ES12
The Evaluation algorithm for

the third alternative of ArrayLiteral in ES12

Syntax

Semantics
maintained by

/ 45Filling the gap between the JavaScript language specification and tools using the JISET family 6

Problem: Hand-Written JavaScript Tools

ECMA-262

Analysis

Result

JavaScript

Programs

JS Static

Analyzer

Formal

Semantics

<latexit sha1_base64="a8rkyxWqADWwo4chPaKrQZo9g6M=">AAACPXicbVC7SgNBFJ2Nr/h+lVqMBsHGsCtBLYM2lgpGA5slzE5ukiHzWGZmxbDkM2z1U/wOP8BObG2dTbYw0QsXDufc54kTzoz1/XevNDe/sLhUXl5ZXVvf2Nza3rk3KtUUGlRxpZsxMcCZhIZllkMz0UBEzOEhHlzl+sMjaMOUvLPDBCJBepJ1GSXWUWHYOgjxCY5aB1F7q+JX/XHgvyAoQAUVcdPe9vZbHUVTAdJSTowJAz+xUUa0ZZTDaKWVGkgIHZAehA5KIsBE2fjmET5yTAd3lXYpLR6zvzsyIowZithVCmL7ZlbLyf+0MLXdiyhjMkktSDpZ1E05tgrnBuAO00AtHzpAqGbuVkz7RBNqnU1Tk+6CKMuPy8dMrX+a/DBVLMgAtFLCPUgkBT5yfgaz7v0F96fV4Kxau61V6peFs2W0hw7RMQrQOaqja3SDGogihZ7RC3r13rwP79P7mpSWvKJnF02F9/0DoGauIA==</latexit>

[[�]] abstractdefine

<latexit sha1_base64="73i+wUK58YewWc1CG/tcNMX86mQ=">AAACn3icbVHLbtNAFB2bVymvFJawMERIrCy7qqDLuhUUKoSCkjRFsRVdT67TUeZhzYyrRlY+kmW/hC3jxEJJy5VGOue+75m85MzYKLrx/Hv3Hzx8tPN498nTZ89fdPZenhtVaYpDqrjSFzkY5Ezi0DLL8aLUCCLnOMrnJ018dIXaMCUHdlFiJmAmWcEoWOeadOZpjjMma9AaFsuaL3dTi9fWFHU/+fJ5mab/+CA562/yUfI92eRn/eTbJg/DcEVRTtvuk043CqOVBXdB3IIuaa032fPepFNFK4HSUg7GjOOotJlrZxnl6HatDJZA5zDDsYMSBJqsXqmyDN47zzQolHZP2mDl3ayoQRizELnLFGAvze1Y4/xfbFzZ4jCrmSwri5KuBxUVD6wKGomDKdNILV84AFQzt2tAL0EDte4jtjoN4qxulmvabI2/Xt+wlSxgjlop4Q4ESZE3esa31bsLzvfD+GN48POge3TcKrtDXpN35AOJySdyRL6SHhkSSn6TPx7xPP+tf+r/8HvrVN9ra16RLfN//QVuVNB8</latexit>

SAFE
TAJS
WALA
JSAI
...

analyzer
developer

manual manual

[ECOOP'10]

[POPL'14]

[PLDI'15]

[POPL'17]

<latexit sha1_base64="MIe41XfV/Rjo6kgw3dO6hEXxyHA=">AAACpnicbVHbattAEF2pl7juzWkf2wdRU8iTkEpI+xialzQtJSVxHLCEO1qNnMWrXbE7CjHC/9n+TOnKViFKOrBw5sz9bFZJYSmKfnv+g4ePHu8MngyfPnv+4uVo99WF1bXhOOFaanOZgUUpFE5IkMTLyiCUmcRptjxq49NrNFZodU6rCtMSFkoUggM5aj4ySYYLoRowBlbrRq6HiXTVOcwTwhuyRXNytk6S4T/va989Ofvyre8foaHbTBiGGxdV3g2Zj8ZRGG0suA/iDoxZZ6fzXe9tkmtel6iIS7B2FkcVpa4dCS7RrVxbrIAvYYEzBxWUaNNmI846eO+YPCi0cU9RsGFvVzRQWrsqM5dZAl3Zu7GW/F9sVlPxKW2EqmpCxbeDiloGpINW6SAXBjnJlQPAjXC7BvwKDHBy/9HrdB6nTbtc26Y3/mZ7Qy+5hCUarUt3ICiOstUzvqvefXDxIYwPwv0f++PDz52yA/aGvWN7LGYf2SE7Zqdswjj7xf54O97A3/O/+xN/uk31va7mNeuZ//Mv5wzUIw==</latexit>

�JS
KJS
JSIL
JSCert
... [FOOL'12]

[SAS'09]

[ECOOP'12]

[FSE'14]

/ 45Filling the gap between the JavaScript language specification and tools using the JISET family 6

Problem: Hand-Written JavaScript Tools

ECMA-262

Analysis

Result

JavaScript

Programs

JS Static

Analyzer

Formal

Semantics

<latexit sha1_base64="a8rkyxWqADWwo4chPaKrQZo9g6M=">AAACPXicbVC7SgNBFJ2Nr/h+lVqMBsHGsCtBLYM2lgpGA5slzE5ukiHzWGZmxbDkM2z1U/wOP8BObG2dTbYw0QsXDufc54kTzoz1/XevNDe/sLhUXl5ZXVvf2Nza3rk3KtUUGlRxpZsxMcCZhIZllkMz0UBEzOEhHlzl+sMjaMOUvLPDBCJBepJ1GSXWUWHYOgjxCY5aB1F7q+JX/XHgvyAoQAUVcdPe9vZbHUVTAdJSTowJAz+xUUa0ZZTDaKWVGkgIHZAehA5KIsBE2fjmET5yTAd3lXYpLR6zvzsyIowZithVCmL7ZlbLyf+0MLXdiyhjMkktSDpZ1E05tgrnBuAO00AtHzpAqGbuVkz7RBNqnU1Tk+6CKMuPy8dMrX+a/DBVLMgAtFLCPUgkBT5yfgaz7v0F96fV4Kxau61V6peFs2W0hw7RMQrQOaqja3SDGogihZ7RC3r13rwP79P7mpSWvKJnF02F9/0DoGauIA==</latexit>

[[�]] abstractdefine

<latexit sha1_base64="73i+wUK58YewWc1CG/tcNMX86mQ=">AAACn3icbVHLbtNAFB2bVymvFJawMERIrCy7qqDLuhUUKoSCkjRFsRVdT67TUeZhzYyrRlY+kmW/hC3jxEJJy5VGOue+75m85MzYKLrx/Hv3Hzx8tPN498nTZ89fdPZenhtVaYpDqrjSFzkY5Ezi0DLL8aLUCCLnOMrnJ018dIXaMCUHdlFiJmAmWcEoWOeadOZpjjMma9AaFsuaL3dTi9fWFHU/+fJ5mab/+CA562/yUfI92eRn/eTbJg/DcEVRTtvuk043CqOVBXdB3IIuaa032fPepFNFK4HSUg7GjOOotJlrZxnl6HatDJZA5zDDsYMSBJqsXqmyDN47zzQolHZP2mDl3ayoQRizELnLFGAvze1Y4/xfbFzZ4jCrmSwri5KuBxUVD6wKGomDKdNILV84AFQzt2tAL0EDte4jtjoN4qxulmvabI2/Xt+wlSxgjlop4Q4ESZE3esa31bsLzvfD+GN48POge3TcKrtDXpN35AOJySdyRL6SHhkSSn6TPx7xPP+tf+r/8HvrVN9ra16RLfN//QVuVNB8</latexit>

SAFE
TAJS
WALA
JSAI
...

analyzer
developer

manual manual

[ECOOP'10]

[POPL'14]

[PLDI'15]

[POPL'17]

<latexit sha1_base64="MIe41XfV/Rjo6kgw3dO6hEXxyHA=">AAACpnicbVHbattAEF2pl7juzWkf2wdRU8iTkEpI+xialzQtJSVxHLCEO1qNnMWrXbE7CjHC/9n+TOnKViFKOrBw5sz9bFZJYSmKfnv+g4ePHu8MngyfPnv+4uVo99WF1bXhOOFaanOZgUUpFE5IkMTLyiCUmcRptjxq49NrNFZodU6rCtMSFkoUggM5aj4ySYYLoRowBlbrRq6HiXTVOcwTwhuyRXNytk6S4T/va989Ofvyre8foaHbTBiGGxdV3g2Zj8ZRGG0suA/iDoxZZ6fzXe9tkmtel6iIS7B2FkcVpa4dCS7RrVxbrIAvYYEzBxWUaNNmI846eO+YPCi0cU9RsGFvVzRQWrsqM5dZAl3Zu7GW/F9sVlPxKW2EqmpCxbeDiloGpINW6SAXBjnJlQPAjXC7BvwKDHBy/9HrdB6nTbtc26Y3/mZ7Qy+5hCUarUt3ICiOstUzvqvefXDxIYwPwv0f++PDz52yA/aGvWN7LGYf2SE7Zqdswjj7xf54O97A3/O/+xN/uk31va7mNeuZ//Mv5wzUIw==</latexit>

�JS
KJS
JSIL
JSCert
... [FOOL'12]

[SAS'09]

[ECOOP'12]

[FSE'14]

/ 45Filling the gap between the JavaScript language specification and tools using the JISET family 6

Problem: Hand-Written JavaScript Tools

ECMA-262

Analysis

Result

JavaScript

Programs

JS Static

Analyzer

Formal

Semantics

<latexit sha1_base64="a8rkyxWqADWwo4chPaKrQZo9g6M=">AAACPXicbVC7SgNBFJ2Nr/h+lVqMBsHGsCtBLYM2lgpGA5slzE5ukiHzWGZmxbDkM2z1U/wOP8BObG2dTbYw0QsXDufc54kTzoz1/XevNDe/sLhUXl5ZXVvf2Nza3rk3KtUUGlRxpZsxMcCZhIZllkMz0UBEzOEhHlzl+sMjaMOUvLPDBCJBepJ1GSXWUWHYOgjxCY5aB1F7q+JX/XHgvyAoQAUVcdPe9vZbHUVTAdJSTowJAz+xUUa0ZZTDaKWVGkgIHZAehA5KIsBE2fjmET5yTAd3lXYpLR6zvzsyIowZithVCmL7ZlbLyf+0MLXdiyhjMkktSDpZ1E05tgrnBuAO00AtHzpAqGbuVkz7RBNqnU1Tk+6CKMuPy8dMrX+a/DBVLMgAtFLCPUgkBT5yfgaz7v0F96fV4Kxau61V6peFs2W0hw7RMQrQOaqja3SDGogihZ7RC3r13rwP79P7mpSWvKJnF02F9/0DoGauIA==</latexit>

[[�]] abstractdefine

<latexit sha1_base64="73i+wUK58YewWc1CG/tcNMX86mQ=">AAACn3icbVHLbtNAFB2bVymvFJawMERIrCy7qqDLuhUUKoSCkjRFsRVdT67TUeZhzYyrRlY+kmW/hC3jxEJJy5VGOue+75m85MzYKLrx/Hv3Hzx8tPN498nTZ89fdPZenhtVaYpDqrjSFzkY5Ezi0DLL8aLUCCLnOMrnJ018dIXaMCUHdlFiJmAmWcEoWOeadOZpjjMma9AaFsuaL3dTi9fWFHU/+fJ5mab/+CA562/yUfI92eRn/eTbJg/DcEVRTtvuk043CqOVBXdB3IIuaa032fPepFNFK4HSUg7GjOOotJlrZxnl6HatDJZA5zDDsYMSBJqsXqmyDN47zzQolHZP2mDl3ayoQRizELnLFGAvze1Y4/xfbFzZ4jCrmSwri5KuBxUVD6wKGomDKdNILV84AFQzt2tAL0EDte4jtjoN4qxulmvabI2/Xt+wlSxgjlop4Q4ESZE3esa31bsLzvfD+GN48POge3TcKrtDXpN35AOJySdyRL6SHhkSSn6TPx7xPP+tf+r/8HvrVN9ra16RLfN//QVuVNB8</latexit>

SAFE
TAJS
WALA
JSAI
...

analyzer
developer

manual manual

[ECOOP'10]

[POPL'14]

[PLDI'15]

[POPL'17]

<latexit sha1_base64="MIe41XfV/Rjo6kgw3dO6hEXxyHA=">AAACpnicbVHbattAEF2pl7juzWkf2wdRU8iTkEpI+xialzQtJSVxHLCEO1qNnMWrXbE7CjHC/9n+TOnKViFKOrBw5sz9bFZJYSmKfnv+g4ePHu8MngyfPnv+4uVo99WF1bXhOOFaanOZgUUpFE5IkMTLyiCUmcRptjxq49NrNFZodU6rCtMSFkoUggM5aj4ySYYLoRowBlbrRq6HiXTVOcwTwhuyRXNytk6S4T/va989Ofvyre8foaHbTBiGGxdV3g2Zj8ZRGG0suA/iDoxZZ6fzXe9tkmtel6iIS7B2FkcVpa4dCS7RrVxbrIAvYYEzBxWUaNNmI846eO+YPCi0cU9RsGFvVzRQWrsqM5dZAl3Zu7GW/F9sVlPxKW2EqmpCxbeDiloGpINW6SAXBjnJlQPAjXC7BvwKDHBy/9HrdB6nTbtc26Y3/mZ7Qy+5hCUarUt3ICiOstUzvqvefXDxIYwPwv0f++PDz52yA/aGvWN7LGYf2SE7Zqdswjj7xf54O97A3/O/+xN/uk31va7mNeuZ//Mv5wzUIw==</latexit>

�JS
KJS
JSIL
JSCert
... [FOOL'12]

[SAS'09]

[ECOOP'12]

[FSE'14]

/ 45Filling the gap between the JavaScript language specification and tools using the JISET family 6

Problem: Hand-Written JavaScript Tools

ECMA-262

Analysis

Result

JavaScript

Programs

JS Static

Analyzer

Formal

Semantics

<latexit sha1_base64="a8rkyxWqADWwo4chPaKrQZo9g6M=">AAACPXicbVC7SgNBFJ2Nr/h+lVqMBsHGsCtBLYM2lgpGA5slzE5ukiHzWGZmxbDkM2z1U/wOP8BObG2dTbYw0QsXDufc54kTzoz1/XevNDe/sLhUXl5ZXVvf2Nza3rk3KtUUGlRxpZsxMcCZhIZllkMz0UBEzOEhHlzl+sMjaMOUvLPDBCJBepJ1GSXWUWHYOgjxCY5aB1F7q+JX/XHgvyAoQAUVcdPe9vZbHUVTAdJSTowJAz+xUUa0ZZTDaKWVGkgIHZAehA5KIsBE2fjmET5yTAd3lXYpLR6zvzsyIowZithVCmL7ZlbLyf+0MLXdiyhjMkktSDpZ1E05tgrnBuAO00AtHzpAqGbuVkz7RBNqnU1Tk+6CKMuPy8dMrX+a/DBVLMgAtFLCPUgkBT5yfgaz7v0F96fV4Kxau61V6peFs2W0hw7RMQrQOaqja3SDGogihZ7RC3r13rwP79P7mpSWvKJnF02F9/0DoGauIA==</latexit>

[[�]] abstractdefine

<latexit sha1_base64="73i+wUK58YewWc1CG/tcNMX86mQ=">AAACn3icbVHLbtNAFB2bVymvFJawMERIrCy7qqDLuhUUKoSCkjRFsRVdT67TUeZhzYyrRlY+kmW/hC3jxEJJy5VGOue+75m85MzYKLrx/Hv3Hzx8tPN498nTZ89fdPZenhtVaYpDqrjSFzkY5Ezi0DLL8aLUCCLnOMrnJ018dIXaMCUHdlFiJmAmWcEoWOeadOZpjjMma9AaFsuaL3dTi9fWFHU/+fJ5mab/+CA562/yUfI92eRn/eTbJg/DcEVRTtvuk043CqOVBXdB3IIuaa032fPepFNFK4HSUg7GjOOotJlrZxnl6HatDJZA5zDDsYMSBJqsXqmyDN47zzQolHZP2mDl3ayoQRizELnLFGAvze1Y4/xfbFzZ4jCrmSwri5KuBxUVD6wKGomDKdNILV84AFQzt2tAL0EDte4jtjoN4qxulmvabI2/Xt+wlSxgjlop4Q4ESZE3esa31bsLzvfD+GN48POge3TcKrtDXpN35AOJySdyRL6SHhkSSn6TPx7xPP+tf+r/8HvrVN9ra16RLfN//QVuVNB8</latexit>

SAFE
TAJS
WALA
JSAI
...

analyzer
developer

manual manual

[ECOOP'10]

[POPL'14]

[PLDI'15]

[POPL'17]

<latexit sha1_base64="MIe41XfV/Rjo6kgw3dO6hEXxyHA=">AAACpnicbVHbattAEF2pl7juzWkf2wdRU8iTkEpI+xialzQtJSVxHLCEO1qNnMWrXbE7CjHC/9n+TOnKViFKOrBw5sz9bFZJYSmKfnv+g4ePHu8MngyfPnv+4uVo99WF1bXhOOFaanOZgUUpFE5IkMTLyiCUmcRptjxq49NrNFZodU6rCtMSFkoUggM5aj4ySYYLoRowBlbrRq6HiXTVOcwTwhuyRXNytk6S4T/va989Ofvyre8foaHbTBiGGxdV3g2Zj8ZRGG0suA/iDoxZZ6fzXe9tkmtel6iIS7B2FkcVpa4dCS7RrVxbrIAvYYEzBxWUaNNmI846eO+YPCi0cU9RsGFvVzRQWrsqM5dZAl3Zu7GW/F9sVlPxKW2EqmpCxbeDiloGpINW6SAXBjnJlQPAjXC7BvwKDHBy/9HrdB6nTbtc26Y3/mZ7Qy+5hCUarUt3ICiOstUzvqvefXDxIYwPwv0f++PDz52yA/aGvWN7LGYf2SE7Zqdswjj7xf54O97A3/O/+xN/uk31va7mNeuZ//Mv5wzUIw==</latexit>

�JS
KJS
JSIL
JSCert
... [FOOL'12]

[SAS'09]

[ECOOP'12]

[FSE'14]

define

/ 45Filling the gap between the JavaScript language specification and tools using the JISET family 6

Problem: Hand-Written JavaScript Tools

ECMA-262

Analysis

Result

JavaScript

Programs

JS Static

Analyzer

Formal

Semantics

<latexit sha1_base64="a8rkyxWqADWwo4chPaKrQZo9g6M=">AAACPXicbVC7SgNBFJ2Nr/h+lVqMBsHGsCtBLYM2lgpGA5slzE5ukiHzWGZmxbDkM2z1U/wOP8BObG2dTbYw0QsXDufc54kTzoz1/XevNDe/sLhUXl5ZXVvf2Nza3rk3KtUUGlRxpZsxMcCZhIZllkMz0UBEzOEhHlzl+sMjaMOUvLPDBCJBepJ1GSXWUWHYOgjxCY5aB1F7q+JX/XHgvyAoQAUVcdPe9vZbHUVTAdJSTowJAz+xUUa0ZZTDaKWVGkgIHZAehA5KIsBE2fjmET5yTAd3lXYpLR6zvzsyIowZithVCmL7ZlbLyf+0MLXdiyhjMkktSDpZ1E05tgrnBuAO00AtHzpAqGbuVkz7RBNqnU1Tk+6CKMuPy8dMrX+a/DBVLMgAtFLCPUgkBT5yfgaz7v0F96fV4Kxau61V6peFs2W0hw7RMQrQOaqja3SDGogihZ7RC3r13rwP79P7mpSWvKJnF02F9/0DoGauIA==</latexit>

[[�]] abstractdefine

<latexit sha1_base64="73i+wUK58YewWc1CG/tcNMX86mQ=">AAACn3icbVHLbtNAFB2bVymvFJawMERIrCy7qqDLuhUUKoSCkjRFsRVdT67TUeZhzYyrRlY+kmW/hC3jxEJJy5VGOue+75m85MzYKLrx/Hv3Hzx8tPN498nTZ89fdPZenhtVaYpDqrjSFzkY5Ezi0DLL8aLUCCLnOMrnJ018dIXaMCUHdlFiJmAmWcEoWOeadOZpjjMma9AaFsuaL3dTi9fWFHU/+fJ5mab/+CA562/yUfI92eRn/eTbJg/DcEVRTtvuk043CqOVBXdB3IIuaa032fPepFNFK4HSUg7GjOOotJlrZxnl6HatDJZA5zDDsYMSBJqsXqmyDN47zzQolHZP2mDl3ayoQRizELnLFGAvze1Y4/xfbFzZ4jCrmSwri5KuBxUVD6wKGomDKdNILV84AFQzt2tAL0EDte4jtjoN4qxulmvabI2/Xt+wlSxgjlop4Q4ESZE3esa31bsLzvfD+GN48POge3TcKrtDXpN35AOJySdyRL6SHhkSSn6TPx7xPP+tf+r/8HvrVN9ra16RLfN//QVuVNB8</latexit>

SAFE
TAJS
WALA
JSAI
...

analyzer
developer

manual manual

[ECOOP'10]

[POPL'14]

[PLDI'15]

[POPL'17]

<latexit sha1_base64="MIe41XfV/Rjo6kgw3dO6hEXxyHA=">AAACpnicbVHbattAEF2pl7juzWkf2wdRU8iTkEpI+xialzQtJSVxHLCEO1qNnMWrXbE7CjHC/9n+TOnKViFKOrBw5sz9bFZJYSmKfnv+g4ePHu8MngyfPnv+4uVo99WF1bXhOOFaanOZgUUpFE5IkMTLyiCUmcRptjxq49NrNFZodU6rCtMSFkoUggM5aj4ySYYLoRowBlbrRq6HiXTVOcwTwhuyRXNytk6S4T/va989Ofvyre8foaHbTBiGGxdV3g2Zj8ZRGG0suA/iDoxZZ6fzXe9tkmtel6iIS7B2FkcVpa4dCS7RrVxbrIAvYYEzBxWUaNNmI846eO+YPCi0cU9RsGFvVzRQWrsqM5dZAl3Zu7GW/F9sVlPxKW2EqmpCxbeDiloGpINW6SAXBjnJlQPAjXC7BvwKDHBy/9HrdB6nTbtc26Y3/mZ7Qy+5hCUarUt3ICiOstUzvqvefXDxIYwPwv0f++PDz52yA/aGvWN7LGYf2SE7Zqdswjj7xf54O97A3/O/+xN/uk31va7mNeuZ//Mv5wzUIw==</latexit>

�JS
KJS
JSIL
JSCert
... [FOOL'12]

[SAS'09]

[ECOOP'12]

[FSE'14]

define abstract

/ 45Filling the gap between the JavaScript language specification and tools using the JISET family 7

Problem: Fast Evolving JavaScript

1996 1998 2000 2002 2004 2008 2010 2012 2014

1997 - ES1
First edition

1998 - ES2
Editorial 
changes

1999 - ES3
RegEx, String, 
Try/catch, etc

2009 - ES5
getters/setters,

strict mode,

exceptions, etc

2011 - ES5.1
Editorial 
Changes

<latexit sha1_base64="MIe41XfV/Rjo6kgw3dO6hEXxyHA=">AAACpnicbVHbattAEF2pl7juzWkf2wdRU8iTkEpI+xialzQtJSVxHLCEO1qNnMWrXbE7CjHC/9n+TOnKViFKOrBw5sz9bFZJYSmKfnv+g4ePHu8MngyfPnv+4uVo99WF1bXhOOFaanOZgUUpFE5IkMTLyiCUmcRptjxq49NrNFZodU6rCtMSFkoUggM5aj4ySYYLoRowBlbrRq6HiXTVOcwTwhuyRXNytk6S4T/va989Ofvyre8foaHbTBiGGxdV3g2Zj8ZRGG0suA/iDoxZZ6fzXe9tkmtel6iIS7B2FkcVpa4dCS7RrVxbrIAvYYEzBxWUaNNmI846eO+YPCi0cU9RsGFvVzRQWrsqM5dZAl3Zu7GW/F9sVlPxKW2EqmpCxbeDiloGpINW6SAXBjnJlQPAjXC7BvwKDHBy/9HrdB6nTbtc26Y3/mZ7Qy+5hCUarUt3ICiOstUzvqvefXDxIYwPwv0f++PDz52yA/aGvWN7LGYf2SE7Zqdswjj7xf54O97A3/O/+xN/uk31va7mNeuZ//Mv5wzUIw==</latexit>

�JS
KJS
JSIL
JSCert
...

<latexit sha1_base64="MJ/kdLY9U4kkYOGJnSN4fLHVAm4=">AAACYHicbVDNTttAEN6YQgOlkMANelgRVeoBRTZChSMqF0p7oIIAUmJF6804rLI/1u64IrLyEjwNV3iLXnkS1kmQamCkkb755v9LMikchuG/WrDwYXHpY3155dPq57X1RnPj0pnccuhwI429TpgDKTR0UKCE68wCU4mEq2R0XOav/oJ1wugLHGcQKzbUIhWcoaf6jd0ewi26tPh1ej7ZpS/R6fnP35XwGCxO+o1W2A6nRt+CaA5aZG5n/WbtS29geK5AI5fMuW4UZhgXzKLgEiYrvdxBxviIDaHroWYKXFxM35rQr54Z0NRY7xrplP2/o2DKubFKfKVieONe50ryvVw3x/QwLoTOcgTNZ4vSXFI0tNSIDoQFjnLsAeNW+Fspv2GWcfRKViZdRHFRHleOqay/nf1QKVZsBNYY5R9kmoMs9Yxeq/cWXO61o+/t/T/7raMfc2XrZJvskG8kIgfkiJyQM9IhnNyRe/JAHmtPQT1YD5qz0qA279kkFQu2ngH3zbl7</latexit>

KJS, JSIL, JSCert

<latexit sha1_base64="MJ/kdLY9U4kkYOGJnSN4fLHVAm4=">AAACYHicbVDNTttAEN6YQgOlkMANelgRVeoBRTZChSMqF0p7oIIAUmJF6804rLI/1u64IrLyEjwNV3iLXnkS1kmQamCkkb755v9LMikchuG/WrDwYXHpY3155dPq57X1RnPj0pnccuhwI429TpgDKTR0UKCE68wCU4mEq2R0XOav/oJ1wugLHGcQKzbUIhWcoaf6jd0ewi26tPh1ej7ZpS/R6fnP35XwGCxO+o1W2A6nRt+CaA5aZG5n/WbtS29geK5AI5fMuW4UZhgXzKLgEiYrvdxBxviIDaHroWYKXFxM35rQr54Z0NRY7xrplP2/o2DKubFKfKVieONe50ryvVw3x/QwLoTOcgTNZ4vSXFI0tNSIDoQFjnLsAeNW+Fspv2GWcfRKViZdRHFRHleOqay/nf1QKVZsBNYY5R9kmoMs9Yxeq/cWXO61o+/t/T/7raMfc2XrZJvskG8kIgfkiJyQM9IhnNyRe/JAHmtPQT1YD5qz0qA279kkFQu2ngH3zbl7</latexit>

KJS, JSIL, JSCert
<latexit sha1_base64="bFjUIf8UdRmAPc2FjPUcR6RCit8=">AAAClnicbVDLattAFB0rfSTpI06yCTSLoaali2KkEtquitWQNg1duNiOA5Ywo/GVM3geYmYUYoT6ffmF/ES27bIjWyl10gsDZ84993WSjDNjff+64a09ePjo8frG5pOnz55vNbd3To3KNYUBVVzps4QY4EzCwDLL4SzTQETCYZjMDqv88AK0YUr27TyDWJCpZCmjxDpq3EyiBKZMFkRrMi8L3il+lrzcjCxcWpMWvfDLUfkWv8a3RD886ZVR9FcwDL+HleD2f9ILvy3yICd103Gz5bf9ReD7IKhBC9XRHW839qOJorkAaSknxowCP7Oxa2cZ5eC2yw1khM7IFEYOSiLAxMXCjBK/cswEp0q7Jy1esP9WFEQYMxeJUwpiz83dXEX+LzfKbfoxLpjMcguSLgelOcdW4cpZPGEaqOVzBwjVzO2K6TnRhFrn/0qnfhAX1XJVm5Xxl8sbVsSCzEArJdyBRFLglZ/BXffug9N37eB9++DHQavzuXZ2Hb1AL9EbFKAPqIOOURcNEEVX6Ab9Qr+9Pe+Td+R9XUq9Rl2zi1bC6/4Be5nOhA==</latexit>

SAFE, TAJS
WALA, JSAI

<latexit sha1_base64="bFjUIf8UdRmAPc2FjPUcR6RCit8=">AAAClnicbVDLattAFB0rfSTpI06yCTSLoaali2KkEtquitWQNg1duNiOA5Ywo/GVM3geYmYUYoT6ffmF/ES27bIjWyl10gsDZ84993WSjDNjff+64a09ePjo8frG5pOnz55vNbd3To3KNYUBVVzps4QY4EzCwDLL4SzTQETCYZjMDqv88AK0YUr27TyDWJCpZCmjxDpq3EyiBKZMFkRrMi8L3il+lrzcjCxcWpMWvfDLUfkWv8a3RD886ZVR9FcwDL+HleD2f9ILvy3yICd103Gz5bf9ReD7IKhBC9XRHW839qOJorkAaSknxowCP7Oxa2cZ5eC2yw1khM7IFEYOSiLAxMXCjBK/cswEp0q7Jy1esP9WFEQYMxeJUwpiz83dXEX+LzfKbfoxLpjMcguSLgelOcdW4cpZPGEaqOVzBwjVzO2K6TnRhFrn/0qnfhAX1XJVm5Xxl8sbVsSCzEArJdyBRFLglZ/BXffug9N37eB9++DHQavzuXZ2Hb1AL9EbFKAPqIOOURcNEEVX6Ab9Qr+9Pe+Td+R9XUq9Rl2zi1bC6/4Be5nOhA==</latexit>

SAFE, TAJS
WALA, JSAI

<latexit sha1_base64="bFjUIf8UdRmAPc2FjPUcR6RCit8=">AAAClnicbVDLattAFB0rfSTpI06yCTSLoaali2KkEtquitWQNg1duNiOA5Ywo/GVM3geYmYUYoT6ffmF/ES27bIjWyl10gsDZ84993WSjDNjff+64a09ePjo8frG5pOnz55vNbd3To3KNYUBVVzps4QY4EzCwDLL4SzTQETCYZjMDqv88AK0YUr27TyDWJCpZCmjxDpq3EyiBKZMFkRrMi8L3il+lrzcjCxcWpMWvfDLUfkWv8a3RD886ZVR9FcwDL+HleD2f9ILvy3yICd103Gz5bf9ReD7IKhBC9XRHW839qOJorkAaSknxowCP7Oxa2cZ5eC2yw1khM7IFEYOSiLAxMXCjBK/cswEp0q7Jy1esP9WFEQYMxeJUwpiz83dXEX+LzfKbfoxLpjMcguSLgelOcdW4cpZPGEaqOVzBwjVzO2K6TnRhFrn/0qnfhAX1XJVm5Xxl8sbVsSCzEArJdyBRFLglZ/BXffug9N37eB9++DHQavzuXZ2Hb1AL9EbFKAPqIOOURcNEEVX6Ab9Qr+9Pe+Td+R9XUq9Rl2zi1bC6/4Be5nOhA==</latexit>

SAFE, TAJS
WALA, JSAI

<latexit sha1_base64="bFjUIf8UdRmAPc2FjPUcR6RCit8=">AAAClnicbVDLattAFB0rfSTpI06yCTSLoaali2KkEtquitWQNg1duNiOA5Ywo/GVM3geYmYUYoT6ffmF/ES27bIjWyl10gsDZ84993WSjDNjff+64a09ePjo8frG5pOnz55vNbd3To3KNYUBVVzps4QY4EzCwDLL4SzTQETCYZjMDqv88AK0YUr27TyDWJCpZCmjxDpq3EyiBKZMFkRrMi8L3il+lrzcjCxcWpMWvfDLUfkWv8a3RD886ZVR9FcwDL+HleD2f9ILvy3yICd103Gz5bf9ReD7IKhBC9XRHW839qOJorkAaSknxowCP7Oxa2cZ5eC2yw1khM7IFEYOSiLAxMXCjBK/cswEp0q7Jy1esP9WFEQYMxeJUwpiz83dXEX+LzfKbfoxLpjMcguSLgelOcdW4cpZPGEaqOVzBwjVzO2K6TnRhFrn/0qnfhAX1XJVm5Xxl8sbVsSCzEArJdyBRFLglZ/BXffug9N37eB9++DHQavzuXZ2Hb1AL9EbFKAPqIOOURcNEEVX6Ab9Qr+9Pe+Td+R9XUq9Rl2zi1bC6/4Be5nOhA==</latexit>

SAFE, TAJS
WALA, JSAI

<latexit sha1_base64="MJ/kdLY9U4kkYOGJnSN4fLHVAm4=">AAACYHicbVDNTttAEN6YQgOlkMANelgRVeoBRTZChSMqF0p7oIIAUmJF6804rLI/1u64IrLyEjwNV3iLXnkS1kmQamCkkb755v9LMikchuG/WrDwYXHpY3155dPq57X1RnPj0pnccuhwI429TpgDKTR0UKCE68wCU4mEq2R0XOav/oJ1wugLHGcQKzbUIhWcoaf6jd0ewi26tPh1ej7ZpS/R6fnP35XwGCxO+o1W2A6nRt+CaA5aZG5n/WbtS29geK5AI5fMuW4UZhgXzKLgEiYrvdxBxviIDaHroWYKXFxM35rQr54Z0NRY7xrplP2/o2DKubFKfKVieONe50ryvVw3x/QwLoTOcgTNZ4vSXFI0tNSIDoQFjnLsAeNW+Fspv2GWcfRKViZdRHFRHleOqay/nf1QKVZsBNYY5R9kmoMs9Yxeq/cWXO61o+/t/T/7raMfc2XrZJvskG8kIgfkiJyQM9IhnNyRe/JAHmtPQT1YD5qz0qA279kkFQu2ngH3zbl7</latexit>

KJS, JSIL, JSCert

/ 45Filling the gap between the JavaScript language specification and tools using the JISET family 8

Problem: Fast Evolving JavaScript

1996 1998 2000 2002 2004 2008 2010 2012 2014 2016 2018 2020 2022

1997 - ES1
First edition

1998 - ES2
Editorial 
changes

1999 - ES3
RegEx, String, 
Try/catch, etc

2009 - ES5
getters/setters,

strict mode,

exceptions, etc

2011 - ES5.1
Editorial 
Changes

2015 - ES6
classes, modules, etc.

2016 - ES7
destructuring patterns, etc.

Annual Releases

2017 - ES8
object manipulation, etc.

2018 - ES9
2020 - ES11

ES.Next

2019 - ES10
2021 - ES12

ECMAScript 2021 (ES12) - 879 pages

<latexit sha1_base64="MIe41XfV/Rjo6kgw3dO6hEXxyHA=">AAACpnicbVHbattAEF2pl7juzWkf2wdRU8iTkEpI+xialzQtJSVxHLCEO1qNnMWrXbE7CjHC/9n+TOnKViFKOrBw5sz9bFZJYSmKfnv+g4ePHu8MngyfPnv+4uVo99WF1bXhOOFaanOZgUUpFE5IkMTLyiCUmcRptjxq49NrNFZodU6rCtMSFkoUggM5aj4ySYYLoRowBlbrRq6HiXTVOcwTwhuyRXNytk6S4T/va989Ofvyre8foaHbTBiGGxdV3g2Zj8ZRGG0suA/iDoxZZ6fzXe9tkmtel6iIS7B2FkcVpa4dCS7RrVxbrIAvYYEzBxWUaNNmI846eO+YPCi0cU9RsGFvVzRQWrsqM5dZAl3Zu7GW/F9sVlPxKW2EqmpCxbeDiloGpINW6SAXBjnJlQPAjXC7BvwKDHBy/9HrdB6nTbtc26Y3/mZ7Qy+5hCUarUt3ICiOstUzvqvefXDxIYwPwv0f++PDz52yA/aGvWN7LGYf2SE7Zqdswjj7xf54O97A3/O/+xN/uk31va7mNeuZ//Mv5wzUIw==</latexit>

�JS
KJS
JSIL
JSCert
...

<latexit sha1_base64="MJ/kdLY9U4kkYOGJnSN4fLHVAm4=">AAACYHicbVDNTttAEN6YQgOlkMANelgRVeoBRTZChSMqF0p7oIIAUmJF6804rLI/1u64IrLyEjwNV3iLXnkS1kmQamCkkb755v9LMikchuG/WrDwYXHpY3155dPq57X1RnPj0pnccuhwI429TpgDKTR0UKCE68wCU4mEq2R0XOav/oJ1wugLHGcQKzbUIhWcoaf6jd0ewi26tPh1ej7ZpS/R6fnP35XwGCxO+o1W2A6nRt+CaA5aZG5n/WbtS29geK5AI5fMuW4UZhgXzKLgEiYrvdxBxviIDaHroWYKXFxM35rQr54Z0NRY7xrplP2/o2DKubFKfKVieONe50ryvVw3x/QwLoTOcgTNZ4vSXFI0tNSIDoQFjnLsAeNW+Fspv2GWcfRKViZdRHFRHleOqay/nf1QKVZsBNYY5R9kmoMs9Yxeq/cWXO61o+/t/T/7raMfc2XrZJvskG8kIgfkiJyQM9IhnNyRe/JAHmtPQT1YD5qz0qA279kkFQu2ngH3zbl7</latexit>

KJS, JSIL, JSCert

<latexit sha1_base64="MJ/kdLY9U4kkYOGJnSN4fLHVAm4=">AAACYHicbVDNTttAEN6YQgOlkMANelgRVeoBRTZChSMqF0p7oIIAUmJF6804rLI/1u64IrLyEjwNV3iLXnkS1kmQamCkkb755v9LMikchuG/WrDwYXHpY3155dPq57X1RnPj0pnccuhwI429TpgDKTR0UKCE68wCU4mEq2R0XOav/oJ1wugLHGcQKzbUIhWcoaf6jd0ewi26tPh1ej7ZpS/R6fnP35XwGCxO+o1W2A6nRt+CaA5aZG5n/WbtS29geK5AI5fMuW4UZhgXzKLgEiYrvdxBxviIDaHroWYKXFxM35rQr54Z0NRY7xrplP2/o2DKubFKfKVieONe50ryvVw3x/QwLoTOcgTNZ4vSXFI0tNSIDoQFjnLsAeNW+Fspv2GWcfRKViZdRHFRHleOqay/nf1QKVZsBNYY5R9kmoMs9Yxeq/cWXO61o+/t/T/7raMfc2XrZJvskG8kIgfkiJyQM9IhnNyRe/JAHmtPQT1YD5qz0qA279kkFQu2ngH3zbl7</latexit>

KJS, JSIL, JSCert
<latexit sha1_base64="bFjUIf8UdRmAPc2FjPUcR6RCit8=">AAAClnicbVDLattAFB0rfSTpI06yCTSLoaali2KkEtquitWQNg1duNiOA5Ywo/GVM3geYmYUYoT6ffmF/ES27bIjWyl10gsDZ84993WSjDNjff+64a09ePjo8frG5pOnz55vNbd3To3KNYUBVVzps4QY4EzCwDLL4SzTQETCYZjMDqv88AK0YUr27TyDWJCpZCmjxDpq3EyiBKZMFkRrMi8L3il+lrzcjCxcWpMWvfDLUfkWv8a3RD886ZVR9FcwDL+HleD2f9ILvy3yICd103Gz5bf9ReD7IKhBC9XRHW839qOJorkAaSknxowCP7Oxa2cZ5eC2yw1khM7IFEYOSiLAxMXCjBK/cswEp0q7Jy1esP9WFEQYMxeJUwpiz83dXEX+LzfKbfoxLpjMcguSLgelOcdW4cpZPGEaqOVzBwjVzO2K6TnRhFrn/0qnfhAX1XJVm5Xxl8sbVsSCzEArJdyBRFLglZ/BXffug9N37eB9++DHQavzuXZ2Hb1AL9EbFKAPqIOOURcNEEVX6Ab9Qr+9Pe+Td+R9XUq9Rl2zi1bC6/4Be5nOhA==</latexit>

SAFE, TAJS
WALA, JSAI

<latexit sha1_base64="bFjUIf8UdRmAPc2FjPUcR6RCit8=">AAAClnicbVDLattAFB0rfSTpI06yCTSLoaali2KkEtquitWQNg1duNiOA5Ywo/GVM3geYmYUYoT6ffmF/ES27bIjWyl10gsDZ84993WSjDNjff+64a09ePjo8frG5pOnz55vNbd3To3KNYUBVVzps4QY4EzCwDLL4SzTQETCYZjMDqv88AK0YUr27TyDWJCpZCmjxDpq3EyiBKZMFkRrMi8L3il+lrzcjCxcWpMWvfDLUfkWv8a3RD886ZVR9FcwDL+HleD2f9ILvy3yICd103Gz5bf9ReD7IKhBC9XRHW839qOJorkAaSknxowCP7Oxa2cZ5eC2yw1khM7IFEYOSiLAxMXCjBK/cswEp0q7Jy1esP9WFEQYMxeJUwpiz83dXEX+LzfKbfoxLpjMcguSLgelOcdW4cpZPGEaqOVzBwjVzO2K6TnRhFrn/0qnfhAX1XJVm5Xxl8sbVsSCzEArJdyBRFLglZ/BXffug9N37eB9++DHQavzuXZ2Hb1AL9EbFKAPqIOOURcNEEVX6Ab9Qr+9Pe+Td+R9XUq9Rl2zi1bC6/4Be5nOhA==</latexit>

SAFE, TAJS
WALA, JSAI

<latexit sha1_base64="bFjUIf8UdRmAPc2FjPUcR6RCit8=">AAAClnicbVDLattAFB0rfSTpI06yCTSLoaali2KkEtquitWQNg1duNiOA5Ywo/GVM3geYmYUYoT6ffmF/ES27bIjWyl10gsDZ84993WSjDNjff+64a09ePjo8frG5pOnz55vNbd3To3KNYUBVVzps4QY4EzCwDLL4SzTQETCYZjMDqv88AK0YUr27TyDWJCpZCmjxDpq3EyiBKZMFkRrMi8L3il+lrzcjCxcWpMWvfDLUfkWv8a3RD886ZVR9FcwDL+HleD2f9ILvy3yICd103Gz5bf9ReD7IKhBC9XRHW839qOJorkAaSknxowCP7Oxa2cZ5eC2yw1khM7IFEYOSiLAxMXCjBK/cswEp0q7Jy1esP9WFEQYMxeJUwpiz83dXEX+LzfKbfoxLpjMcguSLgelOcdW4cpZPGEaqOVzBwjVzO2K6TnRhFrn/0qnfhAX1XJVm5Xxl8sbVsSCzEArJdyBRFLglZ/BXffug9N37eB9++DHQavzuXZ2Hb1AL9EbFKAPqIOOURcNEEVX6Ab9Qr+9Pe+Td+R9XUq9Rl2zi1bC6/4Be5nOhA==</latexit>

SAFE, TAJS
WALA, JSAI

<latexit sha1_base64="bFjUIf8UdRmAPc2FjPUcR6RCit8=">AAAClnicbVDLattAFB0rfSTpI06yCTSLoaali2KkEtquitWQNg1duNiOA5Ywo/GVM3geYmYUYoT6ffmF/ES27bIjWyl10gsDZ84993WSjDNjff+64a09ePjo8frG5pOnz55vNbd3To3KNYUBVVzps4QY4EzCwDLL4SzTQETCYZjMDqv88AK0YUr27TyDWJCpZCmjxDpq3EyiBKZMFkRrMi8L3il+lrzcjCxcWpMWvfDLUfkWv8a3RD886ZVR9FcwDL+HleD2f9ILvy3yICd103Gz5bf9ReD7IKhBC9XRHW839qOJorkAaSknxowCP7Oxa2cZ5eC2yw1khM7IFEYOSiLAxMXCjBK/cswEp0q7Jy1esP9WFEQYMxeJUwpiz83dXEX+LzfKbfoxLpjMcguSLgelOcdW4cpZPGEaqOVzBwjVzO2K6TnRhFrn/0qnfhAX1XJVm5Xxl8sbVsSCzEArJdyBRFLglZ/BXffug9N37eB9++DHQavzuXZ2Hb1AL9EbFKAPqIOOURcNEEVX6Ab9Qr+9Pe+Td+R9XUq9Rl2zi1bC6/4Be5nOhA==</latexit>

SAFE, TAJS
WALA, JSAI

<latexit sha1_base64="MJ/kdLY9U4kkYOGJnSN4fLHVAm4=">AAACYHicbVDNTttAEN6YQgOlkMANelgRVeoBRTZChSMqF0p7oIIAUmJF6804rLI/1u64IrLyEjwNV3iLXnkS1kmQamCkkb755v9LMikchuG/WrDwYXHpY3155dPq57X1RnPj0pnccuhwI429TpgDKTR0UKCE68wCU4mEq2R0XOav/oJ1wugLHGcQKzbUIhWcoaf6jd0ewi26tPh1ej7ZpS/R6fnP35XwGCxO+o1W2A6nRt+CaA5aZG5n/WbtS29geK5AI5fMuW4UZhgXzKLgEiYrvdxBxviIDaHroWYKXFxM35rQr54Z0NRY7xrplP2/o2DKubFKfKVieONe50ryvVw3x/QwLoTOcgTNZ4vSXFI0tNSIDoQFjnLsAeNW+Fspv2GWcfRKViZdRHFRHleOqay/nf1QKVZsBNYY5R9kmoMs9Yxeq/cWXO61o+/t/T/7raMfc2XrZJvskG8kIgfkiJyQM9IhnNyRe/JAHmtPQT1YD5qz0qA279kkFQu2ngH3zbl7</latexit>

KJS, JSIL, JSCert

Filling the gap between the JavaScript language specification and tools using the JISET family / 45

Main Idea: Deriving Static Analyzer from Spec.

9

ECMA-262

Analysis

Result

JavaScript

Programs

JS Static

Analyzer

automatically
derive

?

Filling the gap between the JavaScript language specification and tools using the JISET family / 45

Overall Structure

10

ECMA-262

Analysis

Result

JavaScript

Programs

Derived Static

Analyzer

DCS �¿�. 1•Xî ⌅\¯ò� ∏¥ Ö8| ⌅\ ê§lΩ∏ �� Ñ�.
⌅∞YÄ . 2022D. 46+iv Ω. ¿ƒP⇠: X��. (�8 |8)
Jihyeok Park. JavaScript Static Analysis for Evolving Language Specifica-
tions. School of Computing . 2022. 46+iv pages. Advisor: Sukyoung Ryu.
(Text in English)

�]

ê§lΩ∏X Ÿ�x 1»¸ ı°\ X¯`@ ê§lΩ∏ ⌅\¯®‰X âŸD �UXå ttX0 ¥

5å Ã‡‰. lê‰@ t| t∞X‡ê ‰ë\ ê§lΩ∏ �� Ñ�0‰D ⌧⌧tT¿Ã, t‰@
®P ⇠Ÿ<\ $ƒ� ⇠»0– xŸ—}�t‡ $X– Ë}X‰. ⇣\, 2014D –Ä0 ê§lΩ∏X
∏¥ Ö8� ‰D 1‡⇠0 ‹ëXt⌧ t 8⌧î T Ï�tL‰. ¯ Y⌅ |8–⌧î ê§lΩ∏ ∏¥
Ö8\Ä0êŸ<\ê§lΩ∏��Ñ�0| ƒt¥î»\¥)›D⌧H\‰. tî 1)0ƒTÖ8
îú, 2) 0ƒT Ö8 ®1 Ä¨, ¯¨‡ 3) �� Ñ�0 ƒX 8 �¿ Ëƒ\ l1⌧‰. ¯ |8–⌧î
0ƒT Ö8 îú 0 D ⌧HX‡, t| t©t �• \‡ ê§lΩ∏ Ö8\Ä0 0ƒT Ö8| îú
\‰. ⇣\, ê§lΩ∏ ‘ƒD t©\ N+1-Ñ⌅ (Ñ L§⇧¸ 0ƒT Ö8X ¿Ö Ñ�D ⌧HX‡,
t| µt Ö8 ✏ ‘ƒX ∞hD Äú\‰. \Ö�<\, T¿ �� Ñ� 0 D ⌧HX‡, îú\ 0ƒT
Ö8\Ä0 êŸ<\ ê§lΩ∏ �� Ñ�0| ƒ\‰. ¯ Y⌅ |8–⌧ ⌧‹\)›@ ⌅\¯ò�
∏¥| ⌅\ Ö8, L§∏, ¯¨‡ ƒl‰X ıƒT| ⌅\ lX 0¿D »(` É<\ 0�\‰.

u Ï ± – ê§lΩ∏, 0ƒT Ö8 îú, Ö8 ¿Ö Ñ�, N+1-Ñ⌅ (Ñ L§⇧, T¿ �� Ñ�

Abstract
The highly dynamic nature and complex semantics of JavaScript make it difficult to correctly understand
the behaviors of JavaScript programs. To automatically reason about them, researchers have developed
various JavaScript static analyzers that conform to ECMAScript, the standard specification of JavaScript.
However, all the existing JavaScript static analyzers are manually designed; thus, the current approach
is labor-intensive and error-prone. Moreover, since late 2014, this problem becomes more critical because
the JavaScript language itself rapidly evolves with a yearly release cadence and open development process.

In this thesis, we introduce a novel approach to automatically derive JavaScript static analyzers
from any version of ECMAScript. Our approach consists of three steps: 1) mechanized specification
extraction, 2) mechanized specification validity check, and 3) derivation of static analyzers. First, we
present a tool JISET that automatically extracts a mechanized specification from ECMAScript. We show
that it successfully extracts a mechanized specification from the latest ECMAScript. Then, we present
two different tools to detect bugs in JavaScript specifications and engines; JEST performs N+1-version
differential testing with JavaScript engines and JSTAR performs a type analysis for the mechanized
specification. Finally, we present JSAVER that automatically derives JavaScript static analyzers from
mechanized specifications using a meta-level static analysis. For evaluation, we derive a JavaScript
static analyzer from the latest ECMAScript and show that it successfully analyzes all applicable official
conformance tests in a sound way. We believe that the thesis would be the first step towards the
co-evolution of specifications, tests, and tools for programming languages.

Keywords JavaScript, mechanized specification extraction, N+1-version differential testing, specifica-
tion type analysis, meta-level static analysis.

1. Mechanized Spec.
Extraction

[ASE'20]

DCS �¿�. 1•Xî ⌅\¯ò� ∏¥ Ö8| ⌅\ ê§lΩ∏ �� Ñ�.
⌅∞YÄ . 2022D. 46+iv Ω. ¿ƒP⇠: X��. (�8 |8)
Jihyeok Park. JavaScript Static Analysis for Evolving Language Specifica-
tions. School of Computing . 2022. 46+iv pages. Advisor: Sukyoung Ryu.
(Text in English)

�]

ê§lΩ∏X Ÿ�x 1»¸ ı°\ X¯`@ ê§lΩ∏ ⌅\¯®‰X âŸD �UXå ttX0 ¥

5å Ã‡‰. lê‰@ t| t∞X‡ê ‰ë\ ê§lΩ∏ �� Ñ�0‰D ⌧⌧tT¿Ã, t‰@
®P ⇠Ÿ<\ $ƒ� ⇠»0– xŸ—}�t‡ $X– Ë}X‰. ⇣\, 2014D –Ä0 ê§lΩ∏X
∏¥ Ö8� ‰D 1‡⇠0 ‹ëXt⌧ t 8⌧î T Ï�tL‰. ¯ Y⌅ |8–⌧î ê§lΩ∏ ∏¥
Ö8\Ä0êŸ<\ê§lΩ∏��Ñ�0| ƒt¥î»\¥)›D⌧H\‰. tî 1)0ƒTÖ8
îú, 2) 0ƒT Ö8 ®1 Ä¨, ¯¨‡ 3) �� Ñ�0 ƒX 8 �¿ Ëƒ\ l1⌧‰. ¯ |8–⌧î
0ƒT Ö8 îú 0 D ⌧HX‡, t| t©t �• \‡ ê§lΩ∏ Ö8\Ä0 0ƒT Ö8| îú
\‰. ⇣\, ê§lΩ∏ ‘ƒD t©\ N+1-Ñ⌅ (Ñ L§⇧¸ 0ƒT Ö8X ¿Ö Ñ�D ⌧HX‡,
t| µt Ö8 ✏ ‘ƒX ∞hD Äú\‰. \Ö�<\, T¿ �� Ñ� 0 D ⌧HX‡, îú\ 0ƒT
Ö8\Ä0 êŸ<\ ê§lΩ∏ �� Ñ�0| ƒ\‰. ¯ Y⌅ |8–⌧ ⌧‹\)›@ ⌅\¯ò�
∏¥| ⌅\ Ö8, L§∏, ¯¨‡ ƒl‰X ıƒT| ⌅\ lX 0¿D »(` É<\ 0�\‰.

u Ï ± – ê§lΩ∏, 0ƒT Ö8 îú, Ö8 ¿Ö Ñ�, N+1-Ñ⌅ (Ñ L§⇧, T¿ �� Ñ�

Abstract
The highly dynamic nature and complex semantics of JavaScript make it difficult to correctly understand
the behaviors of JavaScript programs. To automatically reason about them, researchers have developed
various JavaScript static analyzers that conform to ECMAScript, the standard specification of JavaScript.
However, all the existing JavaScript static analyzers are manually designed; thus, the current approach
is labor-intensive and error-prone. Moreover, since late 2014, this problem becomes more critical because
the JavaScript language itself rapidly evolves with a yearly release cadence and open development process.

In this thesis, we introduce a novel approach to automatically derive JavaScript static analyzers
from any version of ECMAScript. Our approach consists of three steps: 1) mechanized specification
extraction, 2) mechanized specification validity check, and 3) derivation of static analyzers. First, we
present a tool JISET that automatically extracts a mechanized specification from ECMAScript. We show
that it successfully extracts a mechanized specification from the latest ECMAScript. Then, we present
two different tools to detect bugs in JavaScript specifications and engines; JEST performs N+1-version
differential testing with JavaScript engines and JSTAR performs a type analysis for the mechanized
specification. Finally, we present JSAVER that automatically derives JavaScript static analyzers from
mechanized specifications using a meta-level static analysis. For evaluation, we derive a JavaScript
static analyzer from the latest ECMAScript and show that it successfully analyzes all applicable official
conformance tests in a sound way. We believe that the thesis would be the first step towards the
co-evolution of specifications, tests, and tools for programming languages.

Keywords JavaScript, mechanized specification extraction, N+1-version differential testing, specifica-
tion type analysis, meta-level static analysis.

3. Derivation of
Static Analyzers

In Submission

Mechanized

Specification

DCS �¿�. 1•Xî ⌅\¯ò� ∏¥ Ö8| ⌅\ ê§lΩ∏ �� Ñ�.
⌅∞YÄ . 2022D. 46+iv Ω. ¿ƒP⇠: X��. (�8 |8)
Jihyeok Park. JavaScript Static Analysis for Evolving Language Specifica-
tions. School of Computing . 2022. 46+iv pages. Advisor: Sukyoung Ryu.
(Text in English)

�]

ê§lΩ∏X Ÿ�x 1»¸ ı°\ X¯`@ ê§lΩ∏ ⌅\¯®‰X âŸD �UXå ttX0 ¥

5å Ã‡‰. lê‰@ t| t∞X‡ê ‰ë\ ê§lΩ∏ �� Ñ�0‰D ⌧⌧tT¿Ã, t‰@
®P ⇠Ÿ<\ $ƒ� ⇠»0– xŸ—}�t‡ $X– Ë}X‰. ⇣\, 2014D –Ä0 ê§lΩ∏X
∏¥ Ö8� ‰D 1‡⇠0 ‹ëXt⌧ t 8⌧î T Ï�tL‰. ¯ Y⌅ |8–⌧î ê§lΩ∏ ∏¥
Ö8\Ä0êŸ<\ê§lΩ∏��Ñ�0| ƒt¥î»\¥)›D⌧H\‰. tî 1)0ƒTÖ8
îú, 2) 0ƒT Ö8 ®1 Ä¨, ¯¨‡ 3) �� Ñ�0 ƒX 8 �¿ Ëƒ\ l1⌧‰. ¯ |8–⌧î
0ƒT Ö8 îú 0 D ⌧HX‡, t| t©t �• \‡ ê§lΩ∏ Ö8\Ä0 0ƒT Ö8| îú
\‰. ⇣\, ê§lΩ∏ ‘ƒD t©\ N+1-Ñ⌅ (Ñ L§⇧¸ 0ƒT Ö8X ¿Ö Ñ�D ⌧HX‡,
t| µt Ö8 ✏ ‘ƒX ∞hD Äú\‰. \Ö�<\, T¿ �� Ñ� 0 D ⌧HX‡, îú\ 0ƒT
Ö8\Ä0 êŸ<\ ê§lΩ∏ �� Ñ�0| ƒ\‰. ¯ Y⌅ |8–⌧ ⌧‹\)›@ ⌅\¯ò�
∏¥| ⌅\ Ö8, L§∏, ¯¨‡ ƒl‰X ıƒT| ⌅\ lX 0¿D »(` É<\ 0�\‰.

u Ï ± – ê§lΩ∏, 0ƒT Ö8 îú, Ö8 ¿Ö Ñ�, N+1-Ñ⌅ (Ñ L§⇧, T¿ �� Ñ�

Abstract
The highly dynamic nature and complex semantics of JavaScript make it difficult to correctly understand
the behaviors of JavaScript programs. To automatically reason about them, researchers have developed
various JavaScript static analyzers that conform to ECMAScript, the standard specification of JavaScript.
However, all the existing JavaScript static analyzers are manually designed; thus, the current approach
is labor-intensive and error-prone. Moreover, since late 2014, this problem becomes more critical because
the JavaScript language itself rapidly evolves with a yearly release cadence and open development process.

In this thesis, we introduce a novel approach to automatically derive JavaScript static analyzers
from any version of ECMAScript. Our approach consists of three steps: 1) mechanized specification
extraction, 2) mechanized specification validity check, and 3) derivation of static analyzers. First, we
present a tool JISET that automatically extracts a mechanized specification from ECMAScript. We show
that it successfully extracts a mechanized specification from the latest ECMAScript. Then, we present
two different tools to detect bugs in JavaScript specifications and engines; JEST performs N+1-version
differential testing with JavaScript engines and JSTAR performs a type analysis for the mechanized
specification. Finally, we present JSAVER that automatically derives JavaScript static analyzers from
mechanized specifications using a meta-level static analysis. For evaluation, we derive a JavaScript
static analyzer from the latest ECMAScript and show that it successfully analyzes all applicable official
conformance tests in a sound way. We believe that the thesis would be the first step towards the
co-evolution of specifications, tests, and tools for programming languages.

Keywords JavaScript, mechanized specification extraction, N+1-version differential testing, specifica-
tion type analysis, meta-level static analysis.

DCS �¿�. 1•Xî ⌅\¯ò� ∏¥ Ö8| ⌅\ ê§lΩ∏ �� Ñ�.
⌅∞YÄ . 2022D. 46+iv Ω. ¿ƒP⇠: X��. (�8 |8)
Jihyeok Park. JavaScript Static Analysis for Evolving Language Specifica-
tions. School of Computing . 2022. 46+iv pages. Advisor: Sukyoung Ryu.
(Text in English)

�]

ê§lΩ∏X Ÿ�x 1»¸ ı°\ X¯`@ ê§lΩ∏ ⌅\¯®‰X âŸD �UXå ttX0 ¥

5å Ã‡‰. lê‰@ t| t∞X‡ê ‰ë\ ê§lΩ∏ �� Ñ�0‰D ⌧⌧tT¿Ã, t‰@
®P ⇠Ÿ<\ $ƒ� ⇠»0– xŸ—}�t‡ $X– Ë}X‰. ⇣\, 2014D –Ä0 ê§lΩ∏X
∏¥ Ö8� ‰D 1‡⇠0 ‹ëXt⌧ t 8⌧î T Ï�tL‰. ¯ Y⌅ |8–⌧î ê§lΩ∏ ∏¥
Ö8\Ä0êŸ<\ê§lΩ∏��Ñ�0| ƒt¥î»\¥)›D⌧H\‰. tî 1)0ƒTÖ8
îú, 2) 0ƒT Ö8 ®1 Ä¨, ¯¨‡ 3) �� Ñ�0 ƒX 8 �¿ Ëƒ\ l1⌧‰. ¯ |8–⌧î
0ƒT Ö8 îú 0 D ⌧HX‡, t| t©t �• \‡ ê§lΩ∏ Ö8\Ä0 0ƒT Ö8| îú
\‰. ⇣\, ê§lΩ∏ ‘ƒD t©\ N+1-Ñ⌅ (Ñ L§⇧¸ 0ƒT Ö8X ¿Ö Ñ�D ⌧HX‡,
t| µt Ö8 ✏ ‘ƒX ∞hD Äú\‰. \Ö�<\, T¿ �� Ñ� 0 D ⌧HX‡, îú\ 0ƒT
Ö8\Ä0 êŸ<\ ê§lΩ∏ �� Ñ�0| ƒ\‰. ¯ Y⌅ |8–⌧ ⌧‹\)›@ ⌅\¯ò�
∏¥| ⌅\ Ö8, L§∏, ¯¨‡ ƒl‰X ıƒT| ⌅\ lX 0¿D »(` É<\ 0�\‰.

u Ï ± – ê§lΩ∏, 0ƒT Ö8 îú, Ö8 ¿Ö Ñ�, N+1-Ñ⌅ (Ñ L§⇧, T¿ �� Ñ�

Abstract
The highly dynamic nature and complex semantics of JavaScript make it difficult to correctly understand
the behaviors of JavaScript programs. To automatically reason about them, researchers have developed
various JavaScript static analyzers that conform to ECMAScript, the standard specification of JavaScript.
However, all the existing JavaScript static analyzers are manually designed; thus, the current approach
is labor-intensive and error-prone. Moreover, since late 2014, this problem becomes more critical because
the JavaScript language itself rapidly evolves with a yearly release cadence and open development process.

In this thesis, we introduce a novel approach to automatically derive JavaScript static analyzers
from any version of ECMAScript. Our approach consists of three steps: 1) mechanized specification
extraction, 2) mechanized specification validity check, and 3) derivation of static analyzers. First, we
present a tool JISET that automatically extracts a mechanized specification from ECMAScript. We show
that it successfully extracts a mechanized specification from the latest ECMAScript. Then, we present
two different tools to detect bugs in JavaScript specifications and engines; JEST performs N+1-version
differential testing with JavaScript engines and JSTAR performs a type analysis for the mechanized
specification. Finally, we present JSAVER that automatically derives JavaScript static analyzers from
mechanized specifications using a meta-level static analysis. For evaluation, we derive a JavaScript
static analyzer from the latest ECMAScript and show that it successfully analyzes all applicable official
conformance tests in a sound way. We believe that the thesis would be the first step towards the
co-evolution of specifications, tests, and tools for programming languages.

Keywords JavaScript, mechanized specification extraction, N+1-version differential testing, specifica-
tion type analysis, meta-level static analysis.

2. Specification
Validity Check

[ICSE'21] [ASE'21]
Distinguished Paper

Conformance Test

Synthesis

Type Analysis for

Specification

Filling the gap between the JavaScript language specification and tools using the JISET family / 45

Analysis

Result

JavaScript

Programs

Derived Static

Analyzerspecification. Finally, we present JSAVER

3. Derivation of
Static Analyzers

erent tools to detect bugs in JavaScript specifications and engines; JESTerential testing with JavaScript engines and JSTAR

2. Specification
Validity Check

[ICSE'21] [ASE'21]
Distinguished Paper

Mechanized

Specification

11

ECMA-262

DCS �¿�. 1•Xî ⌅\¯ò� ∏¥ Ö8| ⌅\ ê§lΩ∏ �� Ñ�.
⌅∞YÄ . 2022D. 46+iv Ω. ¿ƒP⇠: X��. (�8 |8)
Jihyeok Park. JavaScript Static Analysis for Evolving Language Specifica-
tions. School of Computing . 2022. 46+iv pages. Advisor: Sukyoung Ryu.
(Text in English)

�]

ê§lΩ∏X Ÿ�x 1»¸ ı°\ X¯`@ ê§lΩ∏ ⌅\¯®‰X âŸD �UXå ttX0 ¥

5å Ã‡‰. lê‰@ t| t∞X‡ê ‰ë\ ê§lΩ∏ �� Ñ�0‰D ⌧⌧tT¿Ã, t‰@
®P ⇠Ÿ<\ $ƒ� ⇠»0– xŸ—}�t‡ $X– Ë}X‰. ⇣\, 2014D –Ä0 ê§lΩ∏X
∏¥ Ö8� ‰D 1‡⇠0 ‹ëXt⌧ t 8⌧î T Ï�tL‰. ¯ Y⌅ |8–⌧î ê§lΩ∏ ∏¥
Ö8\Ä0êŸ<\ê§lΩ∏��Ñ�0| ƒt¥î»\¥)›D⌧H\‰. tî 1)0ƒTÖ8
îú, 2) 0ƒT Ö8 ®1 Ä¨, ¯¨‡ 3) �� Ñ�0 ƒX 8 �¿ Ëƒ\ l1⌧‰. ¯ |8–⌧î
0ƒT Ö8 îú 0 D ⌧HX‡, t| t©t �• \‡ ê§lΩ∏ Ö8\Ä0 0ƒT Ö8| îú
\‰. ⇣\, ê§lΩ∏ ‘ƒD t©\ N+1-Ñ⌅ (Ñ L§⇧¸ 0ƒT Ö8X ¿Ö Ñ�D ⌧HX‡,
t| µt Ö8 ✏ ‘ƒX ∞hD Äú\‰. \Ö�<\, T¿ �� Ñ� 0 D ⌧HX‡, îú\ 0ƒT
Ö8\Ä0 êŸ<\ ê§lΩ∏ �� Ñ�0| ƒ\‰. ¯ Y⌅ |8–⌧ ⌧‹\)›@ ⌅\¯ò�
∏¥| ⌅\ Ö8, L§∏, ¯¨‡ ƒl‰X ıƒT| ⌅\ lX 0¿D »(` É<\ 0�\‰.

u Ï ± – ê§lΩ∏, 0ƒT Ö8 îú, Ö8 ¿Ö Ñ�, N+1-Ñ⌅ (Ñ L§⇧, T¿ �� Ñ�

Abstract
The highly dynamic nature and complex semantics of JavaScript make it difficult to correctly understand
the behaviors of JavaScript programs. To automatically reason about them, researchers have developed
various JavaScript static analyzers that conform to ECMAScript, the standard specification of JavaScript.
However, all the existing JavaScript static analyzers are manually designed; thus, the current approach
is labor-intensive and error-prone. Moreover, since late 2014, this problem becomes more critical because
the JavaScript language itself rapidly evolves with a yearly release cadence and open development process.

In this thesis, we introduce a novel approach to automatically derive JavaScript static analyzers
from any version of ECMAScript. Our approach consists of three steps: 1) mechanized specification
extraction, 2) mechanized specification validity check, and 3) derivation of static analyzers. First, we
present a tool JISET that automatically extracts a mechanized specification from ECMAScript. We show
that it successfully extracts a mechanized specification from the latest ECMAScript. Then, we present
two different tools to detect bugs in JavaScript specifications and engines; JEST performs N+1-version
differential testing with JavaScript engines and JSTAR performs a type analysis for the mechanized
specification. Finally, we present JSAVER that automatically derives JavaScript static analyzers from
mechanized specifications using a meta-level static analysis. For evaluation, we derive a JavaScript
static analyzer from the latest ECMAScript and show that it successfully analyzes all applicable official
conformance tests in a sound way. We believe that the thesis would be the first step towards the
co-evolution of specifications, tests, and tools for programming languages.

Keywords JavaScript, mechanized specification extraction, N+1-version differential testing, specifica-
tion type analysis, meta-level static analysis.

1. Mechanized Spec.
Extraction

[ASE'20]

Conformance Test

Synthesis

Type Analysis for

Specification

JISET: JavaScript IR-based Semantics Extraction Toolchain
Jihyeok Park, Jihee Park, Seungmin An, and Sukyoung Ryu

(Published in ASE'20)

In Submission

Filling the gap between the JavaScript language specification and tools using the JISET family / 45

Motivation: Writing Style of ECMA-262

12

Filling the gap between the JavaScript language specification and tools using the JISET family / 45

JISET [ASE'20]

13

ECMA-262 IRES

Functions

JavaScript IR-based Semantics Extraction Toolchain

DCS �¿�. 1•Xî ⌅\¯ò� ∏¥ Ö8| ⌅\ ê§lΩ∏ �� Ñ�.
⌅∞YÄ . 2022D. 46+iv Ω. ¿ƒP⇠: X��. (�8 |8)
Jihyeok Park. JavaScript Static Analysis for Evolving Language Specifica-
tions. School of Computing . 2022. 46+iv pages. Advisor: Sukyoung Ryu.
(Text in English)

�]

ê§lΩ∏X Ÿ�x 1»¸ ı°\ X¯`@ ê§lΩ∏ ⌅\¯®‰X âŸD �UXå ttX0 ¥

5å Ã‡‰. lê‰@ t| t∞X‡ê ‰ë\ ê§lΩ∏ �� Ñ�0‰D ⌧⌧tT¿Ã, t‰@
®P ⇠Ÿ<\ $ƒ� ⇠»0– xŸ—}�t‡ $X– Ë}X‰. ⇣\, 2014D –Ä0 ê§lΩ∏X
∏¥ Ö8� ‰D 1‡⇠0 ‹ëXt⌧ t 8⌧î T Ï�tL‰. ¯ Y⌅ |8–⌧î ê§lΩ∏ ∏¥
Ö8\Ä0êŸ<\ê§lΩ∏��Ñ�0| ƒt¥î»\¥)›D⌧H\‰. tî 1)0ƒTÖ8
îú, 2) 0ƒT Ö8 ®1 Ä¨, ¯¨‡ 3) �� Ñ�0 ƒX 8 �¿ Ëƒ\ l1⌧‰. ¯ |8–⌧î
0ƒT Ö8 îú 0 D ⌧HX‡, t| t©t �• \‡ ê§lΩ∏ Ö8\Ä0 0ƒT Ö8| îú
\‰. ⇣\, ê§lΩ∏ ‘ƒD t©\ N+1-Ñ⌅ (Ñ L§⇧¸ 0ƒT Ö8X ¿Ö Ñ�D ⌧HX‡,
t| µt Ö8 ✏ ‘ƒX ∞hD Äú\‰. \Ö�<\, T¿ �� Ñ� 0 D ⌧HX‡, îú\ 0ƒT
Ö8\Ä0 êŸ<\ ê§lΩ∏ �� Ñ�0| ƒ\‰. ¯ Y⌅ |8–⌧ ⌧‹\)›@ ⌅\¯ò�
∏¥| ⌅\ Ö8, L§∏, ¯¨‡ ƒl‰X ıƒT| ⌅\ lX 0¿D »(` É<\ 0�\‰.

u Ï ± – ê§lΩ∏, 0ƒT Ö8 îú, Ö8 ¿Ö Ñ�, N+1-Ñ⌅ (Ñ L§⇧, T¿ �� Ñ�

Abstract
The highly dynamic nature and complex semantics of JavaScript make it difficult to correctly understand
the behaviors of JavaScript programs. To automatically reason about them, researchers have developed
various JavaScript static analyzers that conform to ECMAScript, the standard specification of JavaScript.
However, all the existing JavaScript static analyzers are manually designed; thus, the current approach
is labor-intensive and error-prone. Moreover, since late 2014, this problem becomes more critical because
the JavaScript language itself rapidly evolves with a yearly release cadence and open development process.

In this thesis, we introduce a novel approach to automatically derive JavaScript static analyzers
from any version of ECMAScript. Our approach consists of three steps: 1) mechanized specification
extraction, 2) mechanized specification validity check, and 3) derivation of static analyzers. First, we
present a tool JISET that automatically extracts a mechanized specification from ECMAScript. We show
that it successfully extracts a mechanized specification from the latest ECMAScript. Then, we present
two different tools to detect bugs in JavaScript specifications and engines; JEST performs N+1-version
differential testing with JavaScript engines and JSTAR performs a type analysis for the mechanized
specification. Finally, we present JSAVER that automatically derives JavaScript static analyzers from
mechanized specifications using a meta-level static analysis. For evaluation, we derive a JavaScript
static analyzer from the latest ECMAScript and show that it successfully analyzes all applicable official
conformance tests in a sound way. We believe that the thesis would be the first step towards the
co-evolution of specifications, tests, and tools for programming languages.

Keywords JavaScript, mechanized specification extraction, N+1-version differential testing, specifica-
tion type analysis, meta-level static analysis.

Spec.

Extractor

BNFES

Productions

Mechanized
Specification

Abstract

Algorithms

JavaScript

Parser

Parser

Generator

Algorithm

Compiler

Compile

Rules

Filling the gap between the JavaScript language specification and tools using the JISET family / 45

JISET [ASE'20]

13

ECMA-262 IRES

Functions

JavaScript IR-based Semantics Extraction Toolchain

DCS �¿�. 1•Xî ⌅\¯ò� ∏¥ Ö8| ⌅\ ê§lΩ∏ �� Ñ�.
⌅∞YÄ . 2022D. 46+iv Ω. ¿ƒP⇠: X��. (�8 |8)
Jihyeok Park. JavaScript Static Analysis for Evolving Language Specifica-
tions. School of Computing . 2022. 46+iv pages. Advisor: Sukyoung Ryu.
(Text in English)

�]

ê§lΩ∏X Ÿ�x 1»¸ ı°\ X¯`@ ê§lΩ∏ ⌅\¯®‰X âŸD �UXå ttX0 ¥

5å Ã‡‰. lê‰@ t| t∞X‡ê ‰ë\ ê§lΩ∏ �� Ñ�0‰D ⌧⌧tT¿Ã, t‰@
®P ⇠Ÿ<\ $ƒ� ⇠»0– xŸ—}�t‡ $X– Ë}X‰. ⇣\, 2014D –Ä0 ê§lΩ∏X
∏¥ Ö8� ‰D 1‡⇠0 ‹ëXt⌧ t 8⌧î T Ï�tL‰. ¯ Y⌅ |8–⌧î ê§lΩ∏ ∏¥
Ö8\Ä0êŸ<\ê§lΩ∏��Ñ�0| ƒt¥î»\¥)›D⌧H\‰. tî 1)0ƒTÖ8
îú, 2) 0ƒT Ö8 ®1 Ä¨, ¯¨‡ 3) �� Ñ�0 ƒX 8 �¿ Ëƒ\ l1⌧‰. ¯ |8–⌧î
0ƒT Ö8 îú 0 D ⌧HX‡, t| t©t �• \‡ ê§lΩ∏ Ö8\Ä0 0ƒT Ö8| îú
\‰. ⇣\, ê§lΩ∏ ‘ƒD t©\ N+1-Ñ⌅ (Ñ L§⇧¸ 0ƒT Ö8X ¿Ö Ñ�D ⌧HX‡,
t| µt Ö8 ✏ ‘ƒX ∞hD Äú\‰. \Ö�<\, T¿ �� Ñ� 0 D ⌧HX‡, îú\ 0ƒT
Ö8\Ä0 êŸ<\ ê§lΩ∏ �� Ñ�0| ƒ\‰. ¯ Y⌅ |8–⌧ ⌧‹\)›@ ⌅\¯ò�
∏¥| ⌅\ Ö8, L§∏, ¯¨‡ ƒl‰X ıƒT| ⌅\ lX 0¿D »(` É<\ 0�\‰.

u Ï ± – ê§lΩ∏, 0ƒT Ö8 îú, Ö8 ¿Ö Ñ�, N+1-Ñ⌅ (Ñ L§⇧, T¿ �� Ñ�

Abstract
The highly dynamic nature and complex semantics of JavaScript make it difficult to correctly understand
the behaviors of JavaScript programs. To automatically reason about them, researchers have developed
various JavaScript static analyzers that conform to ECMAScript, the standard specification of JavaScript.
However, all the existing JavaScript static analyzers are manually designed; thus, the current approach
is labor-intensive and error-prone. Moreover, since late 2014, this problem becomes more critical because
the JavaScript language itself rapidly evolves with a yearly release cadence and open development process.

In this thesis, we introduce a novel approach to automatically derive JavaScript static analyzers
from any version of ECMAScript. Our approach consists of three steps: 1) mechanized specification
extraction, 2) mechanized specification validity check, and 3) derivation of static analyzers. First, we
present a tool JISET that automatically extracts a mechanized specification from ECMAScript. We show
that it successfully extracts a mechanized specification from the latest ECMAScript. Then, we present
two different tools to detect bugs in JavaScript specifications and engines; JEST performs N+1-version
differential testing with JavaScript engines and JSTAR performs a type analysis for the mechanized
specification. Finally, we present JSAVER that automatically derives JavaScript static analyzers from
mechanized specifications using a meta-level static analysis. For evaluation, we derive a JavaScript
static analyzer from the latest ECMAScript and show that it successfully analyzes all applicable official
conformance tests in a sound way. We believe that the thesis would be the first step towards the
co-evolution of specifications, tests, and tools for programming languages.

Keywords JavaScript, mechanized specification extraction, N+1-version differential testing, specifica-
tion type analysis, meta-level static analysis.

Spec.

Extractor

BNFES

Productions

Mechanized
Specification

Abstract

Algorithms

JavaScript

Parser

Parser

Generator

Algorithm

Compiler

Compile

Rules

Syntax

Parser

Generator

Filling the gap between the JavaScript language specification and tools using the JISET family / 45

JISET - Parser Generator (Syntax)

14

Parsing Expression Grammar
(PEG)

(POPL'04) Bryan Ford, "Parsing Expression Grammars: A Recognition-based Syntactic Foundation"

Filling the gap between the JavaScript language specification and tools using the JISET family / 45

JISET - Parser Generator (Syntax)

15

• Context-Free Grammar (CFG)

- Unordered Choices

• Parsing Expression Grammar (PEG)

- Ordered Choices

• PEG with Lookahead Parsing

- Ordered Choices with Lookahead Tokens

A ::= B; | B + B;
B ::= x | xy

<latexit sha1_base64="Cx84iCzeaI1ZCQzcAAHOt0S1F5c=">AAACkHicbVHRahQxFM2MVetq67Y++hJcBEFYZlrB0kXsrj6IIFTotoXNsmQyd3dDM5khuSM7hvlQX/wWM9OxauuFwMm55+QmJ0mhpMUo+hGE97buP3i4/aj3+MnO7tP+3v65zUsjYCpylZvLhFtQUsMUJSq4LAzwLFFwkVx9aPoX38BYmeszrAqYZ3yl5VIKjp5a9DcsgZXUjhvDq9qpujemx8fv6IQyhA0iulFNWSbThhndkK89OZr8kTDWm7S+39Smc93sq0bDQKfdqEV/EA2jtuhdEHdgQLo6XewFhKW5KDPQKBS3dhZHBc79cSiFgrrHSgsFF1d8BTMPNc/Azl0bUU1feialy9z4pZG27N8OxzNrqyzxyozj2t7uNeT/erMSl0dzJ3VRImhxPWhZKoo5bfKmqTQgUFUecGGkvysVa264QP8rPfYR/FsMfPHnjlWx5gmgY82U4ruo3VlcuxZktZPYZBbfTuguOD8YxofDg69vBieTLr1t8py8IK9ITN6SE/KJnJIpEeRnsBXsBLvhfngUvg/H19Iw6DzPyD8Vfv4FgJjIKA==</latexit>

xy;
<latexit sha1_base64="U8uPUGiyhrVLaBAFUFKM0a7rj8k=">AAACInicbVDLSsNAFL3xbX3r0k2wCK5KooKCG18LN4JCq0JTZDK9tYOTZJi5EeuQ33CrC7/GnbgS/BgnbRe+DgwczrmvObGSwlAQfHgjo2PjE5NT05WZ2bn5hcWl5QuT5Zpjg2cy01cxMyhFig0SJPFKaWRJLPEyvj0q/cs71EZkaZ16ClsJu0lFR3BGTooiwnsisve9veJ6sRrUgj78vyQckioMcXa95EHUznieYEpcMmOaYaCoZZkmwSUWlSg3qBi/ZTfYdDRlCZqW7R9d+OtOafudTLuXkt9Xv3dYlhjTS2JXmTDqmt9eKf7nNXPq7LasSFVOmPLBok4ufcr8MgG/LTRykj1HGNfC3erzLtOMk8upEh2j+4vGUzf3QKoui5FsVG5RD7yw9bCwfZIUVlCZWfg7ob/kYrMWbtU2z7er+4fD9KZgFdZgA0LYgX04gTNoAAcFj/AEz96L9+q9ee+D0hFv2LMCP+B9fgH7waU8</latexit>

x+x;
<latexit sha1_base64="6tvJ7UVejFATLGDs9OaX6pBpz24=">AAACI3icbVDJSgNBFHzjbtz16GUwCIIQZlRQ8OJ28CIoGBUyg/R0XkyTnsXuN5LYzHd41YNf4028ePBf7Ik5uBU0FFVv64oyKTR53rszNDwyOjY+MVmZmp6ZnZtfWLzQaa441nkqU3UVMY1SJFgnQRKvMoUsjiReRp3D0r+8Q6VFmpxTL8MwZjeJaAnOyEphQNglItNd7+4W1/NVr+b14f4l/oBUYYDT6wUHgmbK8xgT4pJp3fC9jELDFAkusagEucaM8Q67wYalCYtRh6Z/deGuWqXptlJlX0JuX/3eYVisdS+ObGXMqK1/e6X4n9fIqbUTGpFkOWHCvxa1culS6pYRuE2hkJPsWcK4EvZWl7eZYpxsUJXgCO1fFJ7Yufsya7MIyQTlluyeF+bcL0yfxIURVGbm/07oL7nYqPmbtY2zrerewSC9CViGFVgDH7ZhD47hFOrA4RYe4BGenGfnxXl13r5Kh5xBzxL8gPPxCWzSpXA=</latexit>

A ::= B; / B + B;
B ::= x / xy

<latexit sha1_base64="Gy2vXkNCxBEZUx9WCbJKa44pHvA=">AAACjnicbVHvaxQxEM2uP1q3Va/60S/BQxCEc7eKlZZie/qhX4QKvbZwOY5sbu4uNJtdktnSNWz/T8E/xuzeWrV1IPDmzbyZ5CUtlLQYxz+C8N79Bw/X1h9FG5uPnzztbT07tXlpBIxErnJznnILSmoYoUQF54UBnqUKztKLz0397BKMlbk+waqAScYXWs6l4Oipae+SpbCQ2nFjeFU7VUeHdHd3nw4pQ7hCRLdX0+u31w2xd8O9qX02/NPBWDRsZb+pq5XoJq2aFgZ61i2a9vrxIG6D3gVJB/qki+PpVkDYLBdlBhqF4taOk7jAiR+HUiioI1ZaKLi44AsYe6h5BnbiWoNq+sozMzrPjT8aacv+rXA8s7bKUt+ZcVza27WG/F9tXOL848RJXZQIWqwWzUtFMaeN23QmDQhUlQdcGOnvSsWSGy7Q/0nEvoB/i4Gvfu6hKpY8BXSs2VJ8F7U7SWrXgqx2EhvPktsO3QWn24Pk3WD72/v+wbBzb528IC/Ja5KQHXJAjsgxGRFBfgZhsBFshr3wQ7gfflq1hkGneU7+ifDoF235xz4=</latexit>

always
ignored

xy;
<latexit sha1_base64="U8uPUGiyhrVLaBAFUFKM0a7rj8k=">AAACInicbVDLSsNAFL3xbX3r0k2wCK5KooKCG18LN4JCq0JTZDK9tYOTZJi5EeuQ33CrC7/GnbgS/BgnbRe+DgwczrmvObGSwlAQfHgjo2PjE5NT05WZ2bn5hcWl5QuT5Zpjg2cy01cxMyhFig0SJPFKaWRJLPEyvj0q/cs71EZkaZ16ClsJu0lFR3BGTooiwnsisve9veJ6sRrUgj78vyQckioMcXa95EHUznieYEpcMmOaYaCoZZkmwSUWlSg3qBi/ZTfYdDRlCZqW7R9d+OtOafudTLuXkt9Xv3dYlhjTS2JXmTDqmt9eKf7nNXPq7LasSFVOmPLBok4ufcr8MgG/LTRykj1HGNfC3erzLtOMk8upEh2j+4vGUzf3QKoui5FsVG5RD7yw9bCwfZIUVlCZWfg7ob/kYrMWbtU2z7er+4fD9KZgFdZgA0LYgX04gTNoAAcFj/AEz96L9+q9ee+D0hFv2LMCP+B9fgH7waU8</latexit>

x+x;
<latexit sha1_base64="6tvJ7UVejFATLGDs9OaX6pBpz24=">AAACI3icbVDJSgNBFHzjbtz16GUwCIIQZlRQ8OJ28CIoGBUyg/R0XkyTnsXuN5LYzHd41YNf4028ePBf7Ik5uBU0FFVv64oyKTR53rszNDwyOjY+MVmZmp6ZnZtfWLzQaa441nkqU3UVMY1SJFgnQRKvMoUsjiReRp3D0r+8Q6VFmpxTL8MwZjeJaAnOyEphQNglItNd7+4W1/NVr+b14f4l/oBUYYDT6wUHgmbK8xgT4pJp3fC9jELDFAkusagEucaM8Q67wYalCYtRh6Z/deGuWqXptlJlX0JuX/3eYVisdS+ObGXMqK1/e6X4n9fIqbUTGpFkOWHCvxa1culS6pYRuE2hkJPsWcK4EvZWl7eZYpxsUJXgCO1fFJ7Yufsya7MIyQTlluyeF+bcL0yfxIURVGbm/07oL7nYqPmbtY2zrerewSC9CViGFVgDH7ZhD47hFOrA4RYe4BGenGfnxXl13r5Kh5xBzxL8gPPxCWzSpXA=</latexit>

xy;
<latexit sha1_base64="U8uPUGiyhrVLaBAFUFKM0a7rj8k=">AAACInicbVDLSsNAFL3xbX3r0k2wCK5KooKCG18LN4JCq0JTZDK9tYOTZJi5EeuQ33CrC7/GnbgS/BgnbRe+DgwczrmvObGSwlAQfHgjo2PjE5NT05WZ2bn5hcWl5QuT5Zpjg2cy01cxMyhFig0SJPFKaWRJLPEyvj0q/cs71EZkaZ16ClsJu0lFR3BGTooiwnsisve9veJ6sRrUgj78vyQckioMcXa95EHUznieYEpcMmOaYaCoZZkmwSUWlSg3qBi/ZTfYdDRlCZqW7R9d+OtOafudTLuXkt9Xv3dYlhjTS2JXmTDqmt9eKf7nNXPq7LasSFVOmPLBok4ufcr8MgG/LTRykj1HGNfC3erzLtOMk8upEh2j+4vGUzf3QKoui5FsVG5RD7yw9bCwfZIUVlCZWfg7ob/kYrMWbtU2z7er+4fD9KZgFdZgA0LYgX04gTNoAAcFj/AEz96L9+q9ee+D0hFv2LMCP+B9fgH7waU8</latexit>

x+x;
<latexit sha1_base64="6tvJ7UVejFATLGDs9OaX6pBpz24=">AAACI3icbVDJSgNBFHzjbtz16GUwCIIQZlRQ8OJ28CIoGBUyg/R0XkyTnsXuN5LYzHd41YNf4028ePBf7Ik5uBU0FFVv64oyKTR53rszNDwyOjY+MVmZmp6ZnZtfWLzQaa441nkqU3UVMY1SJFgnQRKvMoUsjiReRp3D0r+8Q6VFmpxTL8MwZjeJaAnOyEphQNglItNd7+4W1/NVr+b14f4l/oBUYYDT6wUHgmbK8xgT4pJp3fC9jELDFAkusagEucaM8Q67wYalCYtRh6Z/deGuWqXptlJlX0JuX/3eYVisdS+ObGXMqK1/e6X4n9fIqbUTGpFkOWHCvxa1culS6pYRuE2hkJPsWcK4EvZWl7eZYpxsUJXgCO1fFJ7Yufsya7MIyQTlluyeF+bcL0yfxIURVGbm/07oL7nYqPmbtY2zrerewSC9CViGFVgDH7ZhD47hFOrA4RYe4BGenGfnxXl13r5Kh5xBzxL8gPPxCWzSpXA=</latexit>

A ::= B; / B + B;
B ::= x / xy

<latexit sha1_base64="Gy2vXkNCxBEZUx9WCbJKa44pHvA=">AAACjnicbVHvaxQxEM2uP1q3Va/60S/BQxCEc7eKlZZie/qhX4QKvbZwOY5sbu4uNJtdktnSNWz/T8E/xuzeWrV1IPDmzbyZ5CUtlLQYxz+C8N79Bw/X1h9FG5uPnzztbT07tXlpBIxErnJznnILSmoYoUQF54UBnqUKztKLz0397BKMlbk+waqAScYXWs6l4Oipae+SpbCQ2nFjeFU7VUeHdHd3nw4pQ7hCRLdX0+u31w2xd8O9qX02/NPBWDRsZb+pq5XoJq2aFgZ61i2a9vrxIG6D3gVJB/qki+PpVkDYLBdlBhqF4taOk7jAiR+HUiioI1ZaKLi44AsYe6h5BnbiWoNq+sozMzrPjT8aacv+rXA8s7bKUt+ZcVza27WG/F9tXOL848RJXZQIWqwWzUtFMaeN23QmDQhUlQdcGOnvSsWSGy7Q/0nEvoB/i4Gvfu6hKpY8BXSs2VJ8F7U7SWrXgqx2EhvPktsO3QWn24Pk3WD72/v+wbBzb528IC/Ja5KQHXJAjsgxGRFBfgZhsBFshr3wQ7gfflq1hkGneU7+ifDoF235xz4=</latexit>

Filling the gap between the JavaScript language specification and tools using the JISET family / 45

JISET [ASE'20]

16

ECMA-262 IRES

Functions

JavaScript IR-based Semantics Extraction Toolchain

DCS �¿�. 1•Xî ⌅\¯ò� ∏¥ Ö8| ⌅\ ê§lΩ∏ �� Ñ�.
⌅∞YÄ . 2022D. 46+iv Ω. ¿ƒP⇠: X��. (�8 |8)
Jihyeok Park. JavaScript Static Analysis for Evolving Language Specifica-
tions. School of Computing . 2022. 46+iv pages. Advisor: Sukyoung Ryu.
(Text in English)

�]

ê§lΩ∏X Ÿ�x 1»¸ ı°\ X¯`@ ê§lΩ∏ ⌅\¯®‰X âŸD �UXå ttX0 ¥

5å Ã‡‰. lê‰@ t| t∞X‡ê ‰ë\ ê§lΩ∏ �� Ñ�0‰D ⌧⌧tT¿Ã, t‰@
®P ⇠Ÿ<\ $ƒ� ⇠»0– xŸ—}�t‡ $X– Ë}X‰. ⇣\, 2014D –Ä0 ê§lΩ∏X
∏¥ Ö8� ‰D 1‡⇠0 ‹ëXt⌧ t 8⌧î T Ï�tL‰. ¯ Y⌅ |8–⌧î ê§lΩ∏ ∏¥
Ö8\Ä0êŸ<\ê§lΩ∏��Ñ�0| ƒt¥î»\¥)›D⌧H\‰. tî 1)0ƒTÖ8
îú, 2) 0ƒT Ö8 ®1 Ä¨, ¯¨‡ 3) �� Ñ�0 ƒX 8 �¿ Ëƒ\ l1⌧‰. ¯ |8–⌧î
0ƒT Ö8 îú 0 D ⌧HX‡, t| t©t �• \‡ ê§lΩ∏ Ö8\Ä0 0ƒT Ö8| îú
\‰. ⇣\, ê§lΩ∏ ‘ƒD t©\ N+1-Ñ⌅ (Ñ L§⇧¸ 0ƒT Ö8X ¿Ö Ñ�D ⌧HX‡,
t| µt Ö8 ✏ ‘ƒX ∞hD Äú\‰. \Ö�<\, T¿ �� Ñ� 0 D ⌧HX‡, îú\ 0ƒT
Ö8\Ä0 êŸ<\ ê§lΩ∏ �� Ñ�0| ƒ\‰. ¯ Y⌅ |8–⌧ ⌧‹\)›@ ⌅\¯ò�
∏¥| ⌅\ Ö8, L§∏, ¯¨‡ ƒl‰X ıƒT| ⌅\ lX 0¿D »(` É<\ 0�\‰.

u Ï ± – ê§lΩ∏, 0ƒT Ö8 îú, Ö8 ¿Ö Ñ�, N+1-Ñ⌅ (Ñ L§⇧, T¿ �� Ñ�

Abstract
The highly dynamic nature and complex semantics of JavaScript make it difficult to correctly understand
the behaviors of JavaScript programs. To automatically reason about them, researchers have developed
various JavaScript static analyzers that conform to ECMAScript, the standard specification of JavaScript.
However, all the existing JavaScript static analyzers are manually designed; thus, the current approach
is labor-intensive and error-prone. Moreover, since late 2014, this problem becomes more critical because
the JavaScript language itself rapidly evolves with a yearly release cadence and open development process.

In this thesis, we introduce a novel approach to automatically derive JavaScript static analyzers
from any version of ECMAScript. Our approach consists of three steps: 1) mechanized specification
extraction, 2) mechanized specification validity check, and 3) derivation of static analyzers. First, we
present a tool JISET that automatically extracts a mechanized specification from ECMAScript. We show
that it successfully extracts a mechanized specification from the latest ECMAScript. Then, we present
two different tools to detect bugs in JavaScript specifications and engines; JEST performs N+1-version
differential testing with JavaScript engines and JSTAR performs a type analysis for the mechanized
specification. Finally, we present JSAVER that automatically derives JavaScript static analyzers from
mechanized specifications using a meta-level static analysis. For evaluation, we derive a JavaScript
static analyzer from the latest ECMAScript and show that it successfully analyzes all applicable official
conformance tests in a sound way. We believe that the thesis would be the first step towards the
co-evolution of specifications, tests, and tools for programming languages.

Keywords JavaScript, mechanized specification extraction, N+1-version differential testing, specifica-
tion type analysis, meta-level static analysis.

Spec.

Extractor

BNFES

Productions

Mechanized
Specification

Abstract

Algorithms

JavaScript

Parser

Parser

Generator

Algorithm

Compiler

Compile

Rules

Semantics

Syntax

/ 45Filling the gap between the JavaScript language specification and tools using the JISET family

• IRES - Intermediate Representation for ECMAScript

17

JISET - Metalanguage for ECMA-262

A Meta-Level Static Analysis for JavaScript
Anonymous Author(s)

In this report, we formalize a meta-level static analysis for
JavaScript as a de�ned-language with IRES as a de�ning-
language. We �rst de�ne IRES and a JavaScript de�nitional
interpreter as an IRES program. Then, we de�ne a meta-level
static analysis for JavaScript with the abstract semantics of
IRES in the abstract interpretation framework [2, 3]. In addi-
tion, we explain how to indirectly express abstract domains
and analysis sensitivities for JavaScript.

1 IRES: An IR for ECMAScript
We �rst de�ne IRES, an Intermediate Representation for EC-
MAScript, with its collecting and restricted semantics.

Programs P 3 % ::= 5 ⇤

Functions F 3 5 ::= syntax? def x(x⇤) {[l : 8]⇤}
Variables X 3 x
Labels L 3 l
Instructions I 3 8 ::= A B 4 | x B {} | x B 4(4⇤)

| if 4 l l | return 4
Expressions E 3 4 ::= Ep | op(4⇤) | A
References R 3 A ::= x | 4[4] | 4[4]js
Syntax and Notations. An IRES program % is a sequence

of functions. A function 5 is de�ned with its name, parame-
ters, and body instructions with labels. If it is de�ned with
the pre�x syntax, it is a syntax-directed function, otherwise,
a normal function. An instruction 8 is a reference update,
an object allocation, a function call, a branch, or a return
instruction. An expression 4 is a primitive value, a primitive
operation, or a reference expression. A reference is a vari-
able, an internal �eld access, or an external �eld access. For
a given program % , three helper functions func : L ! F ,
inst : L ! I, and next : L ! L return the function,
instruction, and next label, respectively, of a given label.

States f 2 S = L ⇥ E ⇥ C⇤ ⇥ H
Environments d 2 E = X �n��!V
Calling Contexts 2 2 C = L ⇥ E
Heaps ⌘ 2 H = A

�n��!L ⇥M ⇥Mjs

Internal Field Maps < 2 M = Vstr
�n��!V

External Field Maps <js 2 Mjs = Vstr
�n��!V

Values E 2 V = A] Vp] T] F
Primitive Values Ep 2 Vp = Vbool] Vint] Vstr] · · ·
JS ASTs C 2 T

Concrete States. An IRES state f 2 S consists of a label,
an environment, a stack of calling contexts, and a heap. An
environment d 2 E is a �nite mapping from variables to
values. A calling context 2 2 C consists of a label and an

environment of the caller. A heap ⌘ 2 H is a �nite map-
ping from addresses to labels for allocation sites and two
�nite mappings from strings to values. The former mapping
represents internal �elds accessible by 4[4], and the latter
represents external �elds accessible by 4[4]js. A value E 2 V
is an address, a primitive value (e.g., a boolean 1, an integer : ,
and a string B), a JavaScript AST C 2 T, or a function 5 2 F .
Since IRES treats JavaScript ASTs as its values, we de�ne

them with tree nodes � as follows:
T 3 C ::= g: hq⇤i
� 3 q ::= B | C

A JavaScript AST g: hq1, · · · ,q=i denotes :-th alternative
in the syntactic production of nonterminal symbol g with
multiple tree nodes q1, · · · ,q= . A tree node is a string for a
terminal symbol or another tree for a nonterminal symbol.
We de�ne several notations to easily deal with JavaScript
ASTs. The notation g: .eval denotes an Evaluation function of
:-th alternative in the production g . Similarly, the notation
C .eval denotes the Evaluation function of the AST C , and it
is same with g: .eval when C = g: h· · · i. The Evaluation of
each AST takes the AST itself and its tree nodes that are
nonterminals as arguments. The notation subs(C) denotes
tree nodes that are subtrees of C .

Collecting Semantics. We de�ne denotational semantics
of instructions J8K : S! S and expressions J4K : S! V in
Section 1.1 and Section 1.2, respectively. Then, the collecting
semantics J%K of an IRES program % is a set of reachable states
P(S) from the initial states S] ✓ S. We can compute it using
a �xpoint algorithm:

J%K = lim
=!1

�= (S])

with a transfer function � : P(S) ! P(S):
� (() = ([{f 0 2 S | f 2 (^ f {% f 0}

where f {% f 0 denotes the one-step transition of a state f
to another state f 0 in the program % :

f {% f 0 () f = (l , _, _, _) ^ Jinst(l)K(f) = f 0

Restricted Semantics. Moreover, the restricted semantics
J%KR : P(S) ! P(S) is a set of reachable states from the
initial states restricted by a given set of states:

J%KR (() = lim
=!1

�= (S] \ ()

1.1 Instructions
J8K : S! S

• Variable Assignments:

Jx B 4K(f) = (next(l), d [x 7! E], 2,⌘)
1

A Meta-Level Static Analysis for JavaScript
Anonymous Author(s)

In this report, we formalize a meta-level static analysis for
JavaScript as a de�ned-language with IRES as a de�ning-
language. We �rst de�ne IRES and a JavaScript de�nitional
interpreter as an IRES program. Then, we de�ne a meta-level
static analysis for JavaScript with the abstract semantics of
IRES in the abstract interpretation framework [2, 3]. In addi-
tion, we explain how to indirectly express abstract domains
and analysis sensitivities for JavaScript.

1 IRES: An IR for ECMAScript
We �rst de�ne IRES, an Intermediate Representation for EC-
MAScript, with its collecting and restricted semantics.

Programs P 3 % ::= 5 ⇤

Functions F 3 5 ::= syntax? def x(x⇤) {[l : 8]⇤}
Variables X 3 x
Labels L 3 l
Instructions I 3 8 ::= A B 4 | x B {} | x B 4(4⇤)

| if 4 l l | return 4
Expressions E 3 4 ::= Ep | op(4⇤) | A
References R 3 A ::= x | 4[4] | 4[4]js
Syntax and Notations. An IRES program % is a sequence

of functions. A function 5 is de�ned with its name, parame-
ters, and body instructions with labels. If it is de�ned with
the pre�x syntax, it is a syntax-directed function, otherwise,
a normal function. An instruction 8 is a reference update,
an object allocation, a function call, a branch, or a return
instruction. An expression 4 is a primitive value, a primitive
operation, or a reference expression. A reference is a vari-
able, an internal �eld access, or an external �eld access. For
a given program % , three helper functions func : L ! F ,
inst : L ! I, and next : L ! L return the function,
instruction, and next label, respectively, of a given label.

States f 2 S = L ⇥ E ⇥ C⇤ ⇥ H
Environments d 2 E = X �n��!V
Calling Contexts 2 2 C = L ⇥ E
Heaps ⌘ 2 H = A

�n��!L ⇥M ⇥Mjs

Internal Field Maps < 2 M = Vstr
�n��!V

External Field Maps <js 2 Mjs = Vstr
�n��!V

Values E 2 V = A] Vp] T] F
Primitive Values Ep 2 Vp = Vbool] Vint] Vstr] · · ·
JS ASTs C 2 T

Concrete States. An IRES state f 2 S consists of a label,
an environment, a stack of calling contexts, and a heap. An
environment d 2 E is a �nite mapping from variables to
values. A calling context 2 2 C consists of a label and an

environment of the caller. A heap ⌘ 2 H is a �nite map-
ping from addresses to labels for allocation sites and two
�nite mappings from strings to values. The former mapping
represents internal �elds accessible by 4[4], and the latter
represents external �elds accessible by 4[4]js. A value E 2 V
is an address, a primitive value (e.g., a boolean 1, an integer : ,
and a string B), a JavaScript AST C 2 T, or a function 5 2 F .
Since IRES treats JavaScript ASTs as its values, we de�ne

them with tree nodes � as follows:
T 3 C ::= g: hq⇤i
� 3 q ::= B | C

A JavaScript AST g: hq1, · · · ,q=i denotes :-th alternative
in the syntactic production of nonterminal symbol g with
multiple tree nodes q1, · · · ,q= . A tree node is a string for a
terminal symbol or another tree for a nonterminal symbol.
We de�ne several notations to easily deal with JavaScript
ASTs. The notation g: .eval denotes an Evaluation function of
:-th alternative in the production g . Similarly, the notation
C .eval denotes the Evaluation function of the AST C , and it
is same with g: .eval when C = g: h· · · i. The Evaluation of
each AST takes the AST itself and its tree nodes that are
nonterminals as arguments. The notation subs(C) denotes
tree nodes that are subtrees of C .

Collecting Semantics. We de�ne denotational semantics
of instructions J8K : S! S and expressions J4K : S! V in
Section 1.1 and Section 1.2, respectively. Then, the collecting
semantics J%K of an IRES program % is a set of reachable states
P(S) from the initial states S] ✓ S. We can compute it using
a �xpoint algorithm:

J%K = lim
=!1

�= (S])

with a transfer function � : P(S) ! P(S):
� (() = ([{f 0 2 S | f 2 (^ f {% f 0}

where f {% f 0 denotes the one-step transition of a state f
to another state f 0 in the program % :

f {% f 0 () f = (l , _, _, _) ^ Jinst(l)K(f) = f 0

Restricted Semantics. Moreover, the restricted semantics
J%KR : P(S) ! P(S) is a set of reachable states from the
initial states restricted by a given set of states:

J%KR (() = lim
=!1

�= (S] \ ()

1.1 Instructions
J8K : S! S

• Variable Assignments:

Jx B 4K(f) = (next(l), d [x 7! E], 2,⌘)
1

/ 45Filling the gap between the JavaScript language specification and tools using the JISET family

• IRES - Intermediate Representation for ECMAScript

17

JISET - Metalanguage for ECMA-262

A Meta-Level Static Analysis for JavaScript
Anonymous Author(s)

In this report, we formalize a meta-level static analysis for
JavaScript as a de�ned-language with IRES as a de�ning-
language. We �rst de�ne IRES and a JavaScript de�nitional
interpreter as an IRES program. Then, we de�ne a meta-level
static analysis for JavaScript with the abstract semantics of
IRES in the abstract interpretation framework [2, 3]. In addi-
tion, we explain how to indirectly express abstract domains
and analysis sensitivities for JavaScript.

1 IRES: An IR for ECMAScript
We �rst de�ne IRES, an Intermediate Representation for EC-
MAScript, with its collecting and restricted semantics.

Programs P 3 % ::= 5 ⇤

Functions F 3 5 ::= syntax? def x(x⇤) {[l : 8]⇤}
Variables X 3 x
Labels L 3 l
Instructions I 3 8 ::= A B 4 | x B {} | x B 4(4⇤)

| if 4 l l | return 4
Expressions E 3 4 ::= Ep | op(4⇤) | A
References R 3 A ::= x | 4[4] | 4[4]js
Syntax and Notations. An IRES program % is a sequence

of functions. A function 5 is de�ned with its name, parame-
ters, and body instructions with labels. If it is de�ned with
the pre�x syntax, it is a syntax-directed function, otherwise,
a normal function. An instruction 8 is a reference update,
an object allocation, a function call, a branch, or a return
instruction. An expression 4 is a primitive value, a primitive
operation, or a reference expression. A reference is a vari-
able, an internal �eld access, or an external �eld access. For
a given program % , three helper functions func : L ! F ,
inst : L ! I, and next : L ! L return the function,
instruction, and next label, respectively, of a given label.

States f 2 S = L ⇥ E ⇥ C⇤ ⇥ H
Environments d 2 E = X �n��!V
Calling Contexts 2 2 C = L ⇥ E
Heaps ⌘ 2 H = A

�n��!L ⇥M ⇥Mjs

Internal Field Maps < 2 M = Vstr
�n��!V

External Field Maps <js 2 Mjs = Vstr
�n��!V

Values E 2 V = A] Vp] T] F
Primitive Values Ep 2 Vp = Vbool] Vint] Vstr] · · ·
JS ASTs C 2 T

Concrete States. An IRES state f 2 S consists of a label,
an environment, a stack of calling contexts, and a heap. An
environment d 2 E is a �nite mapping from variables to
values. A calling context 2 2 C consists of a label and an

environment of the caller. A heap ⌘ 2 H is a �nite map-
ping from addresses to labels for allocation sites and two
�nite mappings from strings to values. The former mapping
represents internal �elds accessible by 4[4], and the latter
represents external �elds accessible by 4[4]js. A value E 2 V
is an address, a primitive value (e.g., a boolean 1, an integer : ,
and a string B), a JavaScript AST C 2 T, or a function 5 2 F .
Since IRES treats JavaScript ASTs as its values, we de�ne

them with tree nodes � as follows:
T 3 C ::= g: hq⇤i
� 3 q ::= B | C

A JavaScript AST g: hq1, · · · ,q=i denotes :-th alternative
in the syntactic production of nonterminal symbol g with
multiple tree nodes q1, · · · ,q= . A tree node is a string for a
terminal symbol or another tree for a nonterminal symbol.
We de�ne several notations to easily deal with JavaScript
ASTs. The notation g: .eval denotes an Evaluation function of
:-th alternative in the production g . Similarly, the notation
C .eval denotes the Evaluation function of the AST C , and it
is same with g: .eval when C = g: h· · · i. The Evaluation of
each AST takes the AST itself and its tree nodes that are
nonterminals as arguments. The notation subs(C) denotes
tree nodes that are subtrees of C .

Collecting Semantics. We de�ne denotational semantics
of instructions J8K : S! S and expressions J4K : S! V in
Section 1.1 and Section 1.2, respectively. Then, the collecting
semantics J%K of an IRES program % is a set of reachable states
P(S) from the initial states S] ✓ S. We can compute it using
a �xpoint algorithm:

J%K = lim
=!1

�= (S])

with a transfer function � : P(S) ! P(S):
� (() = ([{f 0 2 S | f 2 (^ f {% f 0}

where f {% f 0 denotes the one-step transition of a state f
to another state f 0 in the program % :

f {% f 0 () f = (l , _, _, _) ^ Jinst(l)K(f) = f 0

Restricted Semantics. Moreover, the restricted semantics
J%KR : P(S) ! P(S) is a set of reachable states from the
initial states restricted by a given set of states:

J%KR (() = lim
=!1

�= (S] \ ()

1.1 Instructions
J8K : S! S

• Variable Assignments:

Jx B 4K(f) = (next(l), d [x 7! E], 2,⌘)
1

A Meta-Level Static Analysis for JavaScript
Anonymous Author(s)

In this report, we formalize a meta-level static analysis for
JavaScript as a de�ned-language with IRES as a de�ning-
language. We �rst de�ne IRES and a JavaScript de�nitional
interpreter as an IRES program. Then, we de�ne a meta-level
static analysis for JavaScript with the abstract semantics of
IRES in the abstract interpretation framework [2, 3]. In addi-
tion, we explain how to indirectly express abstract domains
and analysis sensitivities for JavaScript.

1 IRES: An IR for ECMAScript
We �rst de�ne IRES, an Intermediate Representation for EC-
MAScript, with its collecting and restricted semantics.

Programs P 3 % ::= 5 ⇤

Functions F 3 5 ::= syntax? def x(x⇤) {[l : 8]⇤}
Variables X 3 x
Labels L 3 l
Instructions I 3 8 ::= A B 4 | x B {} | x B 4(4⇤)

| if 4 l l | return 4
Expressions E 3 4 ::= Ep | op(4⇤) | A
References R 3 A ::= x | 4[4] | 4[4]js
Syntax and Notations. An IRES program % is a sequence

of functions. A function 5 is de�ned with its name, parame-
ters, and body instructions with labels. If it is de�ned with
the pre�x syntax, it is a syntax-directed function, otherwise,
a normal function. An instruction 8 is a reference update,
an object allocation, a function call, a branch, or a return
instruction. An expression 4 is a primitive value, a primitive
operation, or a reference expression. A reference is a vari-
able, an internal �eld access, or an external �eld access. For
a given program % , three helper functions func : L ! F ,
inst : L ! I, and next : L ! L return the function,
instruction, and next label, respectively, of a given label.

States f 2 S = L ⇥ E ⇥ C⇤ ⇥ H
Environments d 2 E = X �n��!V
Calling Contexts 2 2 C = L ⇥ E
Heaps ⌘ 2 H = A

�n��!L ⇥M ⇥Mjs

Internal Field Maps < 2 M = Vstr
�n��!V

External Field Maps <js 2 Mjs = Vstr
�n��!V

Values E 2 V = A] Vp] T] F
Primitive Values Ep 2 Vp = Vbool] Vint] Vstr] · · ·
JS ASTs C 2 T

Concrete States. An IRES state f 2 S consists of a label,
an environment, a stack of calling contexts, and a heap. An
environment d 2 E is a �nite mapping from variables to
values. A calling context 2 2 C consists of a label and an

environment of the caller. A heap ⌘ 2 H is a �nite map-
ping from addresses to labels for allocation sites and two
�nite mappings from strings to values. The former mapping
represents internal �elds accessible by 4[4], and the latter
represents external �elds accessible by 4[4]js. A value E 2 V
is an address, a primitive value (e.g., a boolean 1, an integer : ,
and a string B), a JavaScript AST C 2 T, or a function 5 2 F .
Since IRES treats JavaScript ASTs as its values, we de�ne

them with tree nodes � as follows:
T 3 C ::= g: hq⇤i
� 3 q ::= B | C

A JavaScript AST g: hq1, · · · ,q=i denotes :-th alternative
in the syntactic production of nonterminal symbol g with
multiple tree nodes q1, · · · ,q= . A tree node is a string for a
terminal symbol or another tree for a nonterminal symbol.
We de�ne several notations to easily deal with JavaScript
ASTs. The notation g: .eval denotes an Evaluation function of
:-th alternative in the production g . Similarly, the notation
C .eval denotes the Evaluation function of the AST C , and it
is same with g: .eval when C = g: h· · · i. The Evaluation of
each AST takes the AST itself and its tree nodes that are
nonterminals as arguments. The notation subs(C) denotes
tree nodes that are subtrees of C .

Collecting Semantics. We de�ne denotational semantics
of instructions J8K : S! S and expressions J4K : S! V in
Section 1.1 and Section 1.2, respectively. Then, the collecting
semantics J%K of an IRES program % is a set of reachable states
P(S) from the initial states S] ✓ S. We can compute it using
a �xpoint algorithm:

J%K = lim
=!1

�= (S])

with a transfer function � : P(S) ! P(S):
� (() = ([{f 0 2 S | f 2 (^ f {% f 0}

where f {% f 0 denotes the one-step transition of a state f
to another state f 0 in the program % :

f {% f 0 () f = (l , _, _, _) ^ Jinst(l)K(f) = f 0

Restricted Semantics. Moreover, the restricted semantics
J%KR : P(S) ! P(S) is a set of reachable states from the
initial states restricted by a given set of states:

J%KR (() = lim
=!1

�= (S] \ ()

1.1 Instructions
J8K : S! S

• Variable Assignments:

Jx B 4K(f) = (next(l), d [x 7! E], 2,⌘)
1

Filling the gap between the JavaScript language specification and tools using the JISET family / 45

JISET - Algorithm Compiler (Semantics)

18

118 Compile Rules for
Steps in Abstract Algorithms

Filling the gap between the JavaScript language specification and tools using the JISET family / 45

JISET - Algorithm Compiler (Semantics)

18

118 Compile Rules for
Steps in Abstract Algorithms

/ 45Filling the gap between the JavaScript language specification and tools using the JISET family

S = // statements
 Let ~ V ~ be ~ E ~ . ^^ ILet

E = // expressions
 ! E ^^ EAbruptCheck |
 str ~ (~ E ~) ^^ ECall |
 num ^^ _.toDouble

Simplified compile rules

Parsing rules Conversion Rules

19

Simplified compile rules

/ 45Filling the gap between the JavaScript language specification and tools using the JISET family

S = // statements
 Let ~ V ~ be ~ E ~ . ^^ ILet

E = // expressions
 ! E ^^ EAbruptCheck |
 str ~ (~ E ~) ^^ ECall |
 num ^^ _.toDouble

Simplified compile rules

Parsing rules Conversion Rules

19

Simplified compile rules

/ 45Filling the gap between the JavaScript language specification and tools using the JISET family

S = // statements
 Let ~ V ~ be ~ E ~ . ^^ ILet

E = // expressions
 ! E ^^ EAbruptCheck |
 str ~ (~ E ~) ^^ ECall |
 num ^^ _.toDouble

Simplified compile rules

Parsing rules Conversion Rules

19

Simplified compile rules

S = // statements
 Let ~ V ~ be ~ E ~ . ^^ ILet

E = // expressions
 ! E ^^ EAbruptCheck |
 str ~ (~ E ~) ^^ ECall |
 num ^^ _.toDouble

Simplified compile rules

Parsing rules Conversion Rules

Simplified compile rules

/ 45Filling the gap between the JavaScript language specification and tools using the JISET family

S = // statements
 Let ~ V ~ be ~ E ~ . ^^ ILet

E = // expressions
 ! E ^^ EAbruptCheck |
 str ~ (~ E ~) ^^ ECall |
 num ^^ _.toDouble

Simplified compile rules

Parsing rules Conversion Rules

19

Simplified compile rules

S = // statements
 Let ~ V ~ be ~ E ~ . ^^ ILet

E = // expressions
 ! E ^^ EAbruptCheck |
 str ~ (~ E ~) ^^ ECall |
 num ^^ _.toDouble

Simplified compile rules

Parsing rules Conversion Rules

Simplified compile rules

S = // statements
 Let ~ V ~ be ~ E ~ . ^^ ILet

E = // expressions
 ! E ^^ EAbruptCheck |
 str ~ (~ E ~) ^^ ECall |
 num ^^ _.toDouble

Simplified compile rules

Parsing rules Conversion Rules let array = ! (ArrayCreate 0)

ILet(array, EAbruptCheck(
 ECall("ArrayCreate", 0)))

/ 45Filling the gap between the JavaScript language specification and tools using the JISET family 20

JISET - Evaluation ≈ 96% Compiled

/ 45Filling the gap between the JavaScript language specification and tools using the JISET family 20

JISET - Evaluation ≈ 96% Compiled

Complete
Missing Parts

/ 45Filling the gap between the JavaScript language specification and tools using the JISET family 20

JISET - Evaluation ≈ 96% Compiled

Complete
Missing Parts

Passed All Tests
• Test262 

(Official Conformance Tests)

- 18,556 applicable tests

• Parsing tests

- Passed all 18,556 tests

• Evaluation Tests

- Passed all 18,556 tests

Filling the gap between the JavaScript language specification and tools using the JISET family / 45

Analysis

Result

JavaScript

Programs

Derived Static

Analyzerspecification. Finally, we present JSAVER

3. Derivation of
Static Analyzers

DCS �¿�. 1•Xî ⌅\¯ò� ∏¥ Ö8| ⌅\ ê§lΩ∏ �� Ñ�.
⌅∞YÄ . 2022D. 46+iv Ω. ¿ƒP⇠: X��. (�8 |8)
Jihyeok Park. JavaScript Static Analysis for Evolving Language Specifica-
tions. School of Computing . 2022. 46+iv pages. Advisor: Sukyoung Ryu.
(Text in English)

�]

ê§lΩ∏X Ÿ�x 1»¸ ı°\ X¯`@ ê§lΩ∏ ⌅\¯®‰X âŸD �UXå ttX0 ¥

5å Ã‡‰. lê‰@ t| t∞X‡ê ‰ë\ ê§lΩ∏ �� Ñ�0‰D ⌧⌧tT¿Ã, t‰@
®P ⇠Ÿ<\ $ƒ� ⇠»0– xŸ—}�t‡ $X– Ë}X‰. ⇣\, 2014D –Ä0 ê§lΩ∏X
∏¥ Ö8� ‰D 1‡⇠0 ‹ëXt⌧ t 8⌧î T Ï�tL‰. ¯ Y⌅ |8–⌧î ê§lΩ∏ ∏¥
Ö8\Ä0êŸ<\ê§lΩ∏��Ñ�0| ƒt¥î»\¥)›D⌧H\‰. tî 1)0ƒTÖ8
îú, 2) 0ƒT Ö8 ®1 Ä¨, ¯¨‡ 3) �� Ñ�0 ƒX 8 �¿ Ëƒ\ l1⌧‰. ¯ |8–⌧î
0ƒT Ö8 îú 0 D ⌧HX‡, t| t©t �• \‡ ê§lΩ∏ Ö8\Ä0 0ƒT Ö8| îú
\‰. ⇣\, ê§lΩ∏ ‘ƒD t©\ N+1-Ñ⌅ (Ñ L§⇧¸ 0ƒT Ö8X ¿Ö Ñ�D ⌧HX‡,
t| µt Ö8 ✏ ‘ƒX ∞hD Äú\‰. \Ö�<\, T¿ �� Ñ� 0 D ⌧HX‡, îú\ 0ƒT
Ö8\Ä0 êŸ<\ ê§lΩ∏ �� Ñ�0| ƒ\‰. ¯ Y⌅ |8–⌧ ⌧‹\)›@ ⌅\¯ò�
∏¥| ⌅\ Ö8, L§∏, ¯¨‡ ƒl‰X ıƒT| ⌅\ lX 0¿D »(` É<\ 0�\‰.

u Ï ± – ê§lΩ∏, 0ƒT Ö8 îú, Ö8 ¿Ö Ñ�, N+1-Ñ⌅ (Ñ L§⇧, T¿ �� Ñ�

Abstract
The highly dynamic nature and complex semantics of JavaScript make it difficult to correctly understand
the behaviors of JavaScript programs. To automatically reason about them, researchers have developed
various JavaScript static analyzers that conform to ECMAScript, the standard specification of JavaScript.
However, all the existing JavaScript static analyzers are manually designed; thus, the current approach
is labor-intensive and error-prone. Moreover, since late 2014, this problem becomes more critical because
the JavaScript language itself rapidly evolves with a yearly release cadence and open development process.

In this thesis, we introduce a novel approach to automatically derive JavaScript static analyzers
from any version of ECMAScript. Our approach consists of three steps: 1) mechanized specification
extraction, 2) mechanized specification validity check, and 3) derivation of static analyzers. First, we
present a tool JISET that automatically extracts a mechanized specification from ECMAScript. We show
that it successfully extracts a mechanized specification from the latest ECMAScript. Then, we present
two different tools to detect bugs in JavaScript specifications and engines; JEST performs N+1-version
differential testing with JavaScript engines and JSTAR performs a type analysis for the mechanized
specification. Finally, we present JSAVER that automatically derives JavaScript static analyzers from
mechanized specifications using a meta-level static analysis. For evaluation, we derive a JavaScript
static analyzer from the latest ECMAScript and show that it successfully analyzes all applicable official
conformance tests in a sound way. We believe that the thesis would be the first step towards the
co-evolution of specifications, tests, and tools for programming languages.

Keywords JavaScript, mechanized specification extraction, N+1-version differential testing, specifica-
tion type analysis, meta-level static analysis.

erential testing with JavaScript engines and JSTAR

2. Specification
Validity Check

[ICSE'21] [ASE'21]
Distinguished Paper

Mechanized

Specification

21

ECMA-262

DCS �¿�. 1•Xî ⌅\¯ò� ∏¥ Ö8| ⌅\ ê§lΩ∏ �� Ñ�.
⌅∞YÄ . 2022D. 46+iv Ω. ¿ƒP⇠: X��. (�8 |8)
Jihyeok Park. JavaScript Static Analysis for Evolving Language Specifica-
tions. School of Computing . 2022. 46+iv pages. Advisor: Sukyoung Ryu.
(Text in English)

�]

ê§lΩ∏X Ÿ�x 1»¸ ı°\ X¯`@ ê§lΩ∏ ⌅\¯®‰X âŸD �UXå ttX0 ¥

5å Ã‡‰. lê‰@ t| t∞X‡ê ‰ë\ ê§lΩ∏ �� Ñ�0‰D ⌧⌧tT¿Ã, t‰@
®P ⇠Ÿ<\ $ƒ� ⇠»0– xŸ—}�t‡ $X– Ë}X‰. ⇣\, 2014D –Ä0 ê§lΩ∏X
∏¥ Ö8� ‰D 1‡⇠0 ‹ëXt⌧ t 8⌧î T Ï�tL‰. ¯ Y⌅ |8–⌧î ê§lΩ∏ ∏¥
Ö8\Ä0êŸ<\ê§lΩ∏��Ñ�0| ƒt¥î»\¥)›D⌧H\‰. tî 1)0ƒTÖ8
îú, 2) 0ƒT Ö8 ®1 Ä¨, ¯¨‡ 3) �� Ñ�0 ƒX 8 �¿ Ëƒ\ l1⌧‰. ¯ |8–⌧î
0ƒT Ö8 îú 0 D ⌧HX‡, t| t©t �• \‡ ê§lΩ∏ Ö8\Ä0 0ƒT Ö8| îú
\‰. ⇣\, ê§lΩ∏ ‘ƒD t©\ N+1-Ñ⌅ (Ñ L§⇧¸ 0ƒT Ö8X ¿Ö Ñ�D ⌧HX‡,
t| µt Ö8 ✏ ‘ƒX ∞hD Äú\‰. \Ö�<\, T¿ �� Ñ� 0 D ⌧HX‡, îú\ 0ƒT
Ö8\Ä0 êŸ<\ ê§lΩ∏ �� Ñ�0| ƒ\‰. ¯ Y⌅ |8–⌧ ⌧‹\)›@ ⌅\¯ò�
∏¥| ⌅\ Ö8, L§∏, ¯¨‡ ƒl‰X ıƒT| ⌅\ lX 0¿D »(` É<\ 0�\‰.

u Ï ± – ê§lΩ∏, 0ƒT Ö8 îú, Ö8 ¿Ö Ñ�, N+1-Ñ⌅ (Ñ L§⇧, T¿ �� Ñ�

Abstract
The highly dynamic nature and complex semantics of JavaScript make it difficult to correctly understand
the behaviors of JavaScript programs. To automatically reason about them, researchers have developed
various JavaScript static analyzers that conform to ECMAScript, the standard specification of JavaScript.
However, all the existing JavaScript static analyzers are manually designed; thus, the current approach
is labor-intensive and error-prone. Moreover, since late 2014, this problem becomes more critical because
the JavaScript language itself rapidly evolves with a yearly release cadence and open development process.

In this thesis, we introduce a novel approach to automatically derive JavaScript static analyzers
from any version of ECMAScript. Our approach consists of three steps: 1) mechanized specification
extraction, 2) mechanized specification validity check, and 3) derivation of static analyzers. First, we
present a tool JISET that automatically extracts a mechanized specification from ECMAScript. We show
that it successfully extracts a mechanized specification from the latest ECMAScript. Then, we present
two different tools to detect bugs in JavaScript specifications and engines; JEST performs N+1-version
differential testing with JavaScript engines and JSTAR performs a type analysis for the mechanized
specification. Finally, we present JSAVER that automatically derives JavaScript static analyzers from
mechanized specifications using a meta-level static analysis. For evaluation, we derive a JavaScript
static analyzer from the latest ECMAScript and show that it successfully analyzes all applicable official
conformance tests in a sound way. We believe that the thesis would be the first step towards the
co-evolution of specifications, tests, and tools for programming languages.

Keywords JavaScript, mechanized specification extraction, N+1-version differential testing, specifica-
tion type analysis, meta-level static analysis.

1. Mechanized Spec.
Extraction

[ASE'20]

Conformance Test

Synthesis

Type Analysis for

Specification

JEST: N+1-version Differential Testing of Both JavaScript Engines
Jihyeok Park, Seungmin An, Dongjun Youn, Gyeongwon Kim, and Sukyoung Ryu

(Published in ICSE'21)

In Submission

/ 45Filling the gap between the JavaScript language specification and tools using the JISET family 22

JEST - Conformance with Engines

Conform

Reference number
ECMA-123:2009

© Ecma International 2009

ECMA-262
��th Edition / June 20��

ECMAScript® ����
Language Specification

JavaScript
Engines

ECMA-262

QuickJS
?

/ 45Filling the gap between the JavaScript language specification and tools using the JISET family 23

JEST - N+1-version Differential Testing

Synthesize

Reference number
ECMA-123:2009

© Ecma International 2009

ECMA-262
��th Edition / June 20��

ECMAScript® ����
Language Specification

JavaScript
Engines

ECMA-262

Test QuickJS

test

test

test

test

/ 45Filling the gap between the JavaScript language specification and tools using the JISET family 23

JEST - N+1-version Differential Testing

Synthesize

Reference number
ECMA-123:2009

© Ecma International 2009

ECMA-262
��th Edition / June 20��

ECMAScript® ����
Language Specification

JavaScript
Engines

ECMA-262

Test QuickJS

test

test

test

test

/ 45Filling the gap between the JavaScript language specification and tools using the JISET family 23

JEST - N+1-version Differential Testing

Synthesize

Reference number
ECMA-123:2009

© Ecma International 2009

ECMA-262
��th Edition / June 20��

ECMAScript® ����
Language Specification

JavaScript
Engines

ECMA-262

Test QuickJS

test

An engine bug in

test

test

test

/ 45Filling the gap between the JavaScript language specification and tools using the JISET family 24

JEST - N+1-version Differential Testing

TestSynthesize

Reference number
ECMA-123:2009

© Ecma International 2009

ECMA-262
��th Edition / June 20��

ECMAScript® ����
Language Specification

ECMA-262
JavaScript

Engines

QuickJS

test

test

test

test

/ 45Filling the gap between the JavaScript language specification and tools using the JISET family 24

JEST - N+1-version Differential Testing

TestSynthesize

Reference number
ECMA-123:2009

© Ecma International 2009

ECMA-262
��th Edition / June 20��

ECMAScript® ����
Language Specification

ECMA-262
JavaScript

Engines

QuickJS

test

test

test

test

/ 45Filling the gap between the JavaScript language specification and tools using the JISET family 24

JEST - N+1-version Differential Testing

A specification bug in ECMA-262

TestSynthesize

Reference number
ECMA-123:2009

© Ecma International 2009

ECMA-262
��th Edition / June 20��

ECMAScript® ����
Language Specification

ECMA-262
JavaScript

Engines

QuickJS

test

test

test

test

/ 45Filling the gap between the JavaScript language specification and tools using the JISET family 24

JEST - N+1-version Differential Testing

A specification bug in ECMA-262

TestSynthesize

Reference number
ECMA-123:2009

© Ecma International 2009

ECMA-262
��th Edition / June 20��

ECMAScript® ����
Language Specification

ECMA-262
JavaScript

Engines

QuickJS

test

test

test

test

A specification bug in ECMA-262
An engine bug in

Filling the gap between the JavaScript language specification and tools using the JISET family / 45

JEST [ICSE'21]

25

Mechanized

Specification

Assertion

Injector

Program

Mutator

JavaScript Engines and Specification Tester

DCS �¿�. 1•Xî ⌅\¯ò� ∏¥ Ö8| ⌅\ ê§lΩ∏ �� Ñ�.
⌅∞YÄ . 2022D. 46+iv Ω. ¿ƒP⇠: X��. (�8 |8)
Jihyeok Park. JavaScript Static Analysis for Evolving Language Specifica-
tions. School of Computing . 2022. 46+iv pages. Advisor: Sukyoung Ryu.
(Text in English)

�]

ê§lΩ∏X Ÿ�x 1»¸ ı°\ X¯`@ ê§lΩ∏ ⌅\¯®‰X âŸD �UXå ttX0 ¥

5å Ã‡‰. lê‰@ t| t∞X‡ê ‰ë\ ê§lΩ∏ �� Ñ�0‰D ⌧⌧tT¿Ã, t‰@
®P ⇠Ÿ<\ $ƒ� ⇠»0– xŸ—}�t‡ $X– Ë}X‰. ⇣\, 2014D –Ä0 ê§lΩ∏X
∏¥ Ö8� ‰D 1‡⇠0 ‹ëXt⌧ t 8⌧î T Ï�tL‰. ¯ Y⌅ |8–⌧î ê§lΩ∏ ∏¥
Ö8\Ä0êŸ<\ê§lΩ∏��Ñ�0| ƒt¥î»\¥)›D⌧H\‰. tî 1)0ƒTÖ8
îú, 2) 0ƒT Ö8 ®1 Ä¨, ¯¨‡ 3) �� Ñ�0 ƒX 8 �¿ Ëƒ\ l1⌧‰. ¯ |8–⌧î
0ƒT Ö8 îú 0 D ⌧HX‡, t| t©t �• \‡ ê§lΩ∏ Ö8\Ä0 0ƒT Ö8| îú
\‰. ⇣\, ê§lΩ∏ ‘ƒD t©\ N+1-Ñ⌅ (Ñ L§⇧¸ 0ƒT Ö8X ¿Ö Ñ�D ⌧HX‡,
t| µt Ö8 ✏ ‘ƒX ∞hD Äú\‰. \Ö�<\, T¿ �� Ñ� 0 D ⌧HX‡, îú\ 0ƒT
Ö8\Ä0 êŸ<\ ê§lΩ∏ �� Ñ�0| ƒ\‰. ¯ Y⌅ |8–⌧ ⌧‹\)›@ ⌅\¯ò�
∏¥| ⌅\ Ö8, L§∏, ¯¨‡ ƒl‰X ıƒT| ⌅\ lX 0¿D »(` É<\ 0�\‰.

u Ï ± – ê§lΩ∏, 0ƒT Ö8 îú, Ö8 ¿Ö Ñ�, N+1-Ñ⌅ (Ñ L§⇧, T¿ �� Ñ�

Abstract
The highly dynamic nature and complex semantics of JavaScript make it difficult to correctly understand
the behaviors of JavaScript programs. To automatically reason about them, researchers have developed
various JavaScript static analyzers that conform to ECMAScript, the standard specification of JavaScript.
However, all the existing JavaScript static analyzers are manually designed; thus, the current approach
is labor-intensive and error-prone. Moreover, since late 2014, this problem becomes more critical because
the JavaScript language itself rapidly evolves with a yearly release cadence and open development process.

In this thesis, we introduce a novel approach to automatically derive JavaScript static analyzers
from any version of ECMAScript. Our approach consists of three steps: 1) mechanized specification
extraction, 2) mechanized specification validity check, and 3) derivation of static analyzers. First, we
present a tool JISET that automatically extracts a mechanized specification from ECMAScript. We show
that it successfully extracts a mechanized specification from the latest ECMAScript. Then, we present
two different tools to detect bugs in JavaScript specifications and engines; JEST performs N+1-version
differential testing with JavaScript engines and JSTAR performs a type analysis for the mechanized
specification. Finally, we present JSAVER that automatically derives JavaScript static analyzers from
mechanized specifications using a meta-level static analysis. For evaluation, we derive a JavaScript
static analyzer from the latest ECMAScript and show that it successfully analyzes all applicable official
conformance tests in a sound way. We believe that the thesis would be the first step towards the
co-evolution of specifications, tests, and tools for programming languages.

Keywords JavaScript, mechanized specification extraction, N+1-version differential testing, specifica-
tion type analysis, meta-level static analysis.

Seed

Synthesizer Program Pool Conformance

Tests

Program Pool

Filling the gap between the JavaScript language specification and tools using the JISET family / 45

JEST [ICSE'21]

25

Mechanized

Specification

Assertion

Injector

Program

Mutator

JavaScript Engines and Specification Tester

DCS �¿�. 1•Xî ⌅\¯ò� ∏¥ Ö8| ⌅\ ê§lΩ∏ �� Ñ�.
⌅∞YÄ . 2022D. 46+iv Ω. ¿ƒP⇠: X��. (�8 |8)
Jihyeok Park. JavaScript Static Analysis for Evolving Language Specifica-
tions. School of Computing . 2022. 46+iv pages. Advisor: Sukyoung Ryu.
(Text in English)

�]

ê§lΩ∏X Ÿ�x 1»¸ ı°\ X¯`@ ê§lΩ∏ ⌅\¯®‰X âŸD �UXå ttX0 ¥

5å Ã‡‰. lê‰@ t| t∞X‡ê ‰ë\ ê§lΩ∏ �� Ñ�0‰D ⌧⌧tT¿Ã, t‰@
®P ⇠Ÿ<\ $ƒ� ⇠»0– xŸ—}�t‡ $X– Ë}X‰. ⇣\, 2014D –Ä0 ê§lΩ∏X
∏¥ Ö8� ‰D 1‡⇠0 ‹ëXt⌧ t 8⌧î T Ï�tL‰. ¯ Y⌅ |8–⌧î ê§lΩ∏ ∏¥
Ö8\Ä0êŸ<\ê§lΩ∏��Ñ�0| ƒt¥î»\¥)›D⌧H\‰. tî 1)0ƒTÖ8
îú, 2) 0ƒT Ö8 ®1 Ä¨, ¯¨‡ 3) �� Ñ�0 ƒX 8 �¿ Ëƒ\ l1⌧‰. ¯ |8–⌧î
0ƒT Ö8 îú 0 D ⌧HX‡, t| t©t �• \‡ ê§lΩ∏ Ö8\Ä0 0ƒT Ö8| îú
\‰. ⇣\, ê§lΩ∏ ‘ƒD t©\ N+1-Ñ⌅ (Ñ L§⇧¸ 0ƒT Ö8X ¿Ö Ñ�D ⌧HX‡,
t| µt Ö8 ✏ ‘ƒX ∞hD Äú\‰. \Ö�<\, T¿ �� Ñ� 0 D ⌧HX‡, îú\ 0ƒT
Ö8\Ä0 êŸ<\ ê§lΩ∏ �� Ñ�0| ƒ\‰. ¯ Y⌅ |8–⌧ ⌧‹\)›@ ⌅\¯ò�
∏¥| ⌅\ Ö8, L§∏, ¯¨‡ ƒl‰X ıƒT| ⌅\ lX 0¿D »(` É<\ 0�\‰.

u Ï ± – ê§lΩ∏, 0ƒT Ö8 îú, Ö8 ¿Ö Ñ�, N+1-Ñ⌅ (Ñ L§⇧, T¿ �� Ñ�

Abstract
The highly dynamic nature and complex semantics of JavaScript make it difficult to correctly understand
the behaviors of JavaScript programs. To automatically reason about them, researchers have developed
various JavaScript static analyzers that conform to ECMAScript, the standard specification of JavaScript.
However, all the existing JavaScript static analyzers are manually designed; thus, the current approach
is labor-intensive and error-prone. Moreover, since late 2014, this problem becomes more critical because
the JavaScript language itself rapidly evolves with a yearly release cadence and open development process.

In this thesis, we introduce a novel approach to automatically derive JavaScript static analyzers
from any version of ECMAScript. Our approach consists of three steps: 1) mechanized specification
extraction, 2) mechanized specification validity check, and 3) derivation of static analyzers. First, we
present a tool JISET that automatically extracts a mechanized specification from ECMAScript. We show
that it successfully extracts a mechanized specification from the latest ECMAScript. Then, we present
two different tools to detect bugs in JavaScript specifications and engines; JEST performs N+1-version
differential testing with JavaScript engines and JSTAR performs a type analysis for the mechanized
specification. Finally, we present JSAVER that automatically derives JavaScript static analyzers from
mechanized specifications using a meta-level static analysis. For evaluation, we derive a JavaScript
static analyzer from the latest ECMAScript and show that it successfully analyzes all applicable official
conformance tests in a sound way. We believe that the thesis would be the first step towards the
co-evolution of specifications, tests, and tools for programming languages.

Keywords JavaScript, mechanized specification extraction, N+1-version differential testing, specifica-
tion type analysis, meta-level static analysis.

Seed

Synthesizer Program Pool Conformance

Tests

Program Pool

Syntax-directed

Program Generation

let x = 42;

<latexit sha1_base64="PU5w8gjwK6QSKN4ydQ2SLdgYNKU=">AAACBHicbVDLSsNAFJ3UV62vqks3g0VwVRIRdVl047KCfUAbymQyaYfOTMLMjVBCt+7d6i+4E7f+h3/gZzhps7CtBy4czrmXe+8JEsENuO63U1pb39jcKm9Xdnb39g+qh0dtE6eashaNRay7ATFMcMVawEGwbqIZkYFgnWB8l/udJ6YNj9UjTBLmSzJUPOKUgJU6fRrGYCqDas2tuzPgVeIVpIYKNAfVn34Y01QyBVQQY3qem4CfEQ2cCjat9FPDEkLHZMh6lioimfGz2blTfGaVEEextqUAz9S/ExmRxkxkYDslgZFZ9nLxP6+XQnTjZ1wlKTBF54uiVGCIcf47DrlmFMTEEkI1t7diOiKaULAJLWwxIIme6HCaR+MtB7FK2hd176ruPVzWGrdFSGV0gk7ROfLQNWqge9RELUTRGL2gV/TmPDvvzofzOW8tOcXMMVqA8/ULtvKYug==</latexit>· · ·

Seed

Synthesizer

<latexit sha1_base64="PU5w8gjwK6QSKN4ydQ2SLdgYNKU=">AAACBHicbVDLSsNAFJ3UV62vqks3g0VwVRIRdVl047KCfUAbymQyaYfOTMLMjVBCt+7d6i+4E7f+h3/gZzhps7CtBy4czrmXe+8JEsENuO63U1pb39jcKm9Xdnb39g+qh0dtE6eashaNRay7ATFMcMVawEGwbqIZkYFgnWB8l/udJ6YNj9UjTBLmSzJUPOKUgJU6fRrGYCqDas2tuzPgVeIVpIYKNAfVn34Y01QyBVQQY3qem4CfEQ2cCjat9FPDEkLHZMh6lioimfGz2blTfGaVEEextqUAz9S/ExmRxkxkYDslgZFZ9nLxP6+XQnTjZ1wlKTBF54uiVGCIcf47DrlmFMTEEkI1t7diOiKaULAJLWwxIIme6HCaR+MtB7FK2hd176ruPVzWGrdFSGV0gk7ROfLQNWqge9RELUTRGL2gV/TmPDvvzofzOW8tOcXMMVqA8/ULtvKYug==</latexit>· · ·
<latexit sha1_base64="PU5w8gjwK6QSKN4ydQ2SLdgYNKU=">AAACBHicbVDLSsNAFJ3UV62vqks3g0VwVRIRdVl047KCfUAbymQyaYfOTMLMjVBCt+7d6i+4E7f+h3/gZzhps7CtBy4czrmXe+8JEsENuO63U1pb39jcKm9Xdnb39g+qh0dtE6eashaNRay7ATFMcMVawEGwbqIZkYFgnWB8l/udJ6YNj9UjTBLmSzJUPOKUgJU6fRrGYCqDas2tuzPgVeIVpIYKNAfVn34Y01QyBVQQY3qem4CfEQ2cCjat9FPDEkLHZMh6lioimfGz2blTfGaVEEextqUAz9S/ExmRxkxkYDslgZFZ9nLxP6+XQnTjZ1wlKTBF54uiVGCIcf47DrlmFMTEEkI1t7diOiKaULAJLWwxIIme6HCaR+MtB7FK2hd176ruPVzWGrdFSGV0gk7ROfLQNWqge9RELUTRGL2gV/TmPDvvzofzOW8tOcXMMVqA8/ULtvKYug==</latexit>· · ·

Filling the gap between the JavaScript language specification and tools using the JISET family / 45

JEST [ICSE'21]

25

Mechanized

Specification

Assertion

Injector

Program

Mutator

JavaScript Engines and Specification Tester

DCS �¿�. 1•Xî ⌅\¯ò� ∏¥ Ö8| ⌅\ ê§lΩ∏ �� Ñ�.
⌅∞YÄ . 2022D. 46+iv Ω. ¿ƒP⇠: X��. (�8 |8)
Jihyeok Park. JavaScript Static Analysis for Evolving Language Specifica-
tions. School of Computing . 2022. 46+iv pages. Advisor: Sukyoung Ryu.
(Text in English)

�]

ê§lΩ∏X Ÿ�x 1»¸ ı°\ X¯`@ ê§lΩ∏ ⌅\¯®‰X âŸD �UXå ttX0 ¥

5å Ã‡‰. lê‰@ t| t∞X‡ê ‰ë\ ê§lΩ∏ �� Ñ�0‰D ⌧⌧tT¿Ã, t‰@
®P ⇠Ÿ<\ $ƒ� ⇠»0– xŸ—}�t‡ $X– Ë}X‰. ⇣\, 2014D –Ä0 ê§lΩ∏X
∏¥ Ö8� ‰D 1‡⇠0 ‹ëXt⌧ t 8⌧î T Ï�tL‰. ¯ Y⌅ |8–⌧î ê§lΩ∏ ∏¥
Ö8\Ä0êŸ<\ê§lΩ∏��Ñ�0| ƒt¥î»\¥)›D⌧H\‰. tî 1)0ƒTÖ8
îú, 2) 0ƒT Ö8 ®1 Ä¨, ¯¨‡ 3) �� Ñ�0 ƒX 8 �¿ Ëƒ\ l1⌧‰. ¯ |8–⌧î
0ƒT Ö8 îú 0 D ⌧HX‡, t| t©t �• \‡ ê§lΩ∏ Ö8\Ä0 0ƒT Ö8| îú
\‰. ⇣\, ê§lΩ∏ ‘ƒD t©\ N+1-Ñ⌅ (Ñ L§⇧¸ 0ƒT Ö8X ¿Ö Ñ�D ⌧HX‡,
t| µt Ö8 ✏ ‘ƒX ∞hD Äú\‰. \Ö�<\, T¿ �� Ñ� 0 D ⌧HX‡, îú\ 0ƒT
Ö8\Ä0 êŸ<\ ê§lΩ∏ �� Ñ�0| ƒ\‰. ¯ Y⌅ |8–⌧ ⌧‹\)›@ ⌅\¯ò�
∏¥| ⌅\ Ö8, L§∏, ¯¨‡ ƒl‰X ıƒT| ⌅\ lX 0¿D »(` É<\ 0�\‰.

u Ï ± – ê§lΩ∏, 0ƒT Ö8 îú, Ö8 ¿Ö Ñ�, N+1-Ñ⌅ (Ñ L§⇧, T¿ �� Ñ�

Abstract
The highly dynamic nature and complex semantics of JavaScript make it difficult to correctly understand
the behaviors of JavaScript programs. To automatically reason about them, researchers have developed
various JavaScript static analyzers that conform to ECMAScript, the standard specification of JavaScript.
However, all the existing JavaScript static analyzers are manually designed; thus, the current approach
is labor-intensive and error-prone. Moreover, since late 2014, this problem becomes more critical because
the JavaScript language itself rapidly evolves with a yearly release cadence and open development process.

In this thesis, we introduce a novel approach to automatically derive JavaScript static analyzers
from any version of ECMAScript. Our approach consists of three steps: 1) mechanized specification
extraction, 2) mechanized specification validity check, and 3) derivation of static analyzers. First, we
present a tool JISET that automatically extracts a mechanized specification from ECMAScript. We show
that it successfully extracts a mechanized specification from the latest ECMAScript. Then, we present
two different tools to detect bugs in JavaScript specifications and engines; JEST performs N+1-version
differential testing with JavaScript engines and JSTAR performs a type analysis for the mechanized
specification. Finally, we present JSAVER that automatically derives JavaScript static analyzers from
mechanized specifications using a meta-level static analysis. For evaluation, we derive a JavaScript
static analyzer from the latest ECMAScript and show that it successfully analyzes all applicable official
conformance tests in a sound way. We believe that the thesis would be the first step towards the
co-evolution of specifications, tests, and tools for programming languages.

Keywords JavaScript, mechanized specification extraction, N+1-version differential testing, specifica-
tion type analysis, meta-level static analysis.

Seed

Synthesizer Program Pool Conformance

Tests

Program Pool

Syntax-directed

Program Generation

let x = 42;

<latexit sha1_base64="PU5w8gjwK6QSKN4ydQ2SLdgYNKU=">AAACBHicbVDLSsNAFJ3UV62vqks3g0VwVRIRdVl047KCfUAbymQyaYfOTMLMjVBCt+7d6i+4E7f+h3/gZzhps7CtBy4czrmXe+8JEsENuO63U1pb39jcKm9Xdnb39g+qh0dtE6eashaNRay7ATFMcMVawEGwbqIZkYFgnWB8l/udJ6YNj9UjTBLmSzJUPOKUgJU6fRrGYCqDas2tuzPgVeIVpIYKNAfVn34Y01QyBVQQY3qem4CfEQ2cCjat9FPDEkLHZMh6lioimfGz2blTfGaVEEextqUAz9S/ExmRxkxkYDslgZFZ9nLxP6+XQnTjZ1wlKTBF54uiVGCIcf47DrlmFMTEEkI1t7diOiKaULAJLWwxIIme6HCaR+MtB7FK2hd176ruPVzWGrdFSGV0gk7ROfLQNWqge9RELUTRGL2gV/TmPDvvzofzOW8tOcXMMVqA8/ULtvKYug==</latexit>· · ·

Seed

Synthesizer

<latexit sha1_base64="PU5w8gjwK6QSKN4ydQ2SLdgYNKU=">AAACBHicbVDLSsNAFJ3UV62vqks3g0VwVRIRdVl047KCfUAbymQyaYfOTMLMjVBCt+7d6i+4E7f+h3/gZzhps7CtBy4czrmXe+8JEsENuO63U1pb39jcKm9Xdnb39g+qh0dtE6eashaNRay7ATFMcMVawEGwbqIZkYFgnWB8l/udJ6YNj9UjTBLmSzJUPOKUgJU6fRrGYCqDas2tuzPgVeIVpIYKNAfVn34Y01QyBVQQY3qem4CfEQ2cCjat9FPDEkLHZMh6lioimfGz2blTfGaVEEextqUAz9S/ExmRxkxkYDslgZFZ9nLxP6+XQnTjZ1wlKTBF54uiVGCIcf47DrlmFMTEEkI1t7diOiKaULAJLWwxIIme6HCaR+MtB7FK2hd176ruPVzWGrdFSGV0gk7ROfLQNWqge9RELUTRGL2gV/TmPDvvzofzOW8tOcXMMVqA8/ULtvKYug==</latexit>· · ·
<latexit sha1_base64="PU5w8gjwK6QSKN4ydQ2SLdgYNKU=">AAACBHicbVDLSsNAFJ3UV62vqks3g0VwVRIRdVl047KCfUAbymQyaYfOTMLMjVBCt+7d6i+4E7f+h3/gZzhps7CtBy4czrmXe+8JEsENuO63U1pb39jcKm9Xdnb39g+qh0dtE6eashaNRay7ATFMcMVawEGwbqIZkYFgnWB8l/udJ6YNj9UjTBLmSzJUPOKUgJU6fRrGYCqDas2tuzPgVeIVpIYKNAfVn34Y01QyBVQQY3qem4CfEQ2cCjat9FPDEkLHZMh6lioimfGz2blTfGaVEEextqUAz9S/ExmRxkxkYDslgZFZ9nLxP6+XQnTjZ1wlKTBF54uiVGCIcf47DrlmFMTEEkI1t7diOiKaULAJLWwxIIme6HCaR+MtB7FK2hd176ruPVzWGrdFSGV0gk7ROfLQNWqge9RELUTRGL2gV/TmPDvvzofzOW8tOcXMMVqA8/ULtvKYug==</latexit>· · ·

Coverage-guided

Mutation

Program

Mutator

let x = 1 + 2;
<latexit sha1_base64="PU5w8gjwK6QSKN4ydQ2SLdgYNKU=">AAACBHicbVDLSsNAFJ3UV62vqks3g0VwVRIRdVl047KCfUAbymQyaYfOTMLMjVBCt+7d6i+4E7f+h3/gZzhps7CtBy4czrmXe+8JEsENuO63U1pb39jcKm9Xdnb39g+qh0dtE6eashaNRay7ATFMcMVawEGwbqIZkYFgnWB8l/udJ6YNj9UjTBLmSzJUPOKUgJU6fRrGYCqDas2tuzPgVeIVpIYKNAfVn34Y01QyBVQQY3qem4CfEQ2cCjat9FPDEkLHZMh6lioimfGz2blTfGaVEEextqUAz9S/ExmRxkxkYDslgZFZ9nLxP6+XQnTjZ1wlKTBF54uiVGCIcf47DrlmFMTEEkI1t7diOiKaULAJLWwxIIme6HCaR+MtB7FK2hd176ruPVzWGrdFSGV0gk7ROfLQNWqge9RELUTRGL2gV/TmPDvvzofzOW8tOcXMMVqA8/ULtvKYug==</latexit>· · ·

Filling the gap between the JavaScript language specification and tools using the JISET family / 45

JEST [ICSE'21]

25

Mechanized

Specification

Assertion

Injector

Program

Mutator

JavaScript Engines and Specification Tester

DCS �¿�. 1•Xî ⌅\¯ò� ∏¥ Ö8| ⌅\ ê§lΩ∏ �� Ñ�.
⌅∞YÄ . 2022D. 46+iv Ω. ¿ƒP⇠: X��. (�8 |8)
Jihyeok Park. JavaScript Static Analysis for Evolving Language Specifica-
tions. School of Computing . 2022. 46+iv pages. Advisor: Sukyoung Ryu.
(Text in English)

�]

ê§lΩ∏X Ÿ�x 1»¸ ı°\ X¯`@ ê§lΩ∏ ⌅\¯®‰X âŸD �UXå ttX0 ¥

5å Ã‡‰. lê‰@ t| t∞X‡ê ‰ë\ ê§lΩ∏ �� Ñ�0‰D ⌧⌧tT¿Ã, t‰@
®P ⇠Ÿ<\ $ƒ� ⇠»0– xŸ—}�t‡ $X– Ë}X‰. ⇣\, 2014D –Ä0 ê§lΩ∏X
∏¥ Ö8� ‰D 1‡⇠0 ‹ëXt⌧ t 8⌧î T Ï�tL‰. ¯ Y⌅ |8–⌧î ê§lΩ∏ ∏¥
Ö8\Ä0êŸ<\ê§lΩ∏��Ñ�0| ƒt¥î»\¥)›D⌧H\‰. tî 1)0ƒTÖ8
îú, 2) 0ƒT Ö8 ®1 Ä¨, ¯¨‡ 3) �� Ñ�0 ƒX 8 �¿ Ëƒ\ l1⌧‰. ¯ |8–⌧î
0ƒT Ö8 îú 0 D ⌧HX‡, t| t©t �• \‡ ê§lΩ∏ Ö8\Ä0 0ƒT Ö8| îú
\‰. ⇣\, ê§lΩ∏ ‘ƒD t©\ N+1-Ñ⌅ (Ñ L§⇧¸ 0ƒT Ö8X ¿Ö Ñ�D ⌧HX‡,
t| µt Ö8 ✏ ‘ƒX ∞hD Äú\‰. \Ö�<\, T¿ �� Ñ� 0 D ⌧HX‡, îú\ 0ƒT
Ö8\Ä0 êŸ<\ ê§lΩ∏ �� Ñ�0| ƒ\‰. ¯ Y⌅ |8–⌧ ⌧‹\)›@ ⌅\¯ò�
∏¥| ⌅\ Ö8, L§∏, ¯¨‡ ƒl‰X ıƒT| ⌅\ lX 0¿D »(` É<\ 0�\‰.

u Ï ± – ê§lΩ∏, 0ƒT Ö8 îú, Ö8 ¿Ö Ñ�, N+1-Ñ⌅ (Ñ L§⇧, T¿ �� Ñ�

Abstract
The highly dynamic nature and complex semantics of JavaScript make it difficult to correctly understand
the behaviors of JavaScript programs. To automatically reason about them, researchers have developed
various JavaScript static analyzers that conform to ECMAScript, the standard specification of JavaScript.
However, all the existing JavaScript static analyzers are manually designed; thus, the current approach
is labor-intensive and error-prone. Moreover, since late 2014, this problem becomes more critical because
the JavaScript language itself rapidly evolves with a yearly release cadence and open development process.

In this thesis, we introduce a novel approach to automatically derive JavaScript static analyzers
from any version of ECMAScript. Our approach consists of three steps: 1) mechanized specification
extraction, 2) mechanized specification validity check, and 3) derivation of static analyzers. First, we
present a tool JISET that automatically extracts a mechanized specification from ECMAScript. We show
that it successfully extracts a mechanized specification from the latest ECMAScript. Then, we present
two different tools to detect bugs in JavaScript specifications and engines; JEST performs N+1-version
differential testing with JavaScript engines and JSTAR performs a type analysis for the mechanized
specification. Finally, we present JSAVER that automatically derives JavaScript static analyzers from
mechanized specifications using a meta-level static analysis. For evaluation, we derive a JavaScript
static analyzer from the latest ECMAScript and show that it successfully analyzes all applicable official
conformance tests in a sound way. We believe that the thesis would be the first step towards the
co-evolution of specifications, tests, and tools for programming languages.

Keywords JavaScript, mechanized specification extraction, N+1-version differential testing, specifica-
tion type analysis, meta-level static analysis.

Seed

Synthesizer Program Pool Conformance

Tests

Program Pool

Syntax-directed

Program Generation

let x = 42;

<latexit sha1_base64="PU5w8gjwK6QSKN4ydQ2SLdgYNKU=">AAACBHicbVDLSsNAFJ3UV62vqks3g0VwVRIRdVl047KCfUAbymQyaYfOTMLMjVBCt+7d6i+4E7f+h3/gZzhps7CtBy4czrmXe+8JEsENuO63U1pb39jcKm9Xdnb39g+qh0dtE6eashaNRay7ATFMcMVawEGwbqIZkYFgnWB8l/udJ6YNj9UjTBLmSzJUPOKUgJU6fRrGYCqDas2tuzPgVeIVpIYKNAfVn34Y01QyBVQQY3qem4CfEQ2cCjat9FPDEkLHZMh6lioimfGz2blTfGaVEEextqUAz9S/ExmRxkxkYDslgZFZ9nLxP6+XQnTjZ1wlKTBF54uiVGCIcf47DrlmFMTEEkI1t7diOiKaULAJLWwxIIme6HCaR+MtB7FK2hd176ruPVzWGrdFSGV0gk7ROfLQNWqge9RELUTRGL2gV/TmPDvvzofzOW8tOcXMMVqA8/ULtvKYug==</latexit>· · ·

Seed

Synthesizer

<latexit sha1_base64="PU5w8gjwK6QSKN4ydQ2SLdgYNKU=">AAACBHicbVDLSsNAFJ3UV62vqks3g0VwVRIRdVl047KCfUAbymQyaYfOTMLMjVBCt+7d6i+4E7f+h3/gZzhps7CtBy4czrmXe+8JEsENuO63U1pb39jcKm9Xdnb39g+qh0dtE6eashaNRay7ATFMcMVawEGwbqIZkYFgnWB8l/udJ6YNj9UjTBLmSzJUPOKUgJU6fRrGYCqDas2tuzPgVeIVpIYKNAfVn34Y01QyBVQQY3qem4CfEQ2cCjat9FPDEkLHZMh6lioimfGz2blTfGaVEEextqUAz9S/ExmRxkxkYDslgZFZ9nLxP6+XQnTjZ1wlKTBF54uiVGCIcf47DrlmFMTEEkI1t7diOiKaULAJLWwxIIme6HCaR+MtB7FK2hd176ruPVzWGrdFSGV0gk7ROfLQNWqge9RELUTRGL2gV/TmPDvvzofzOW8tOcXMMVqA8/ULtvKYug==</latexit>· · ·
<latexit sha1_base64="PU5w8gjwK6QSKN4ydQ2SLdgYNKU=">AAACBHicbVDLSsNAFJ3UV62vqks3g0VwVRIRdVl047KCfUAbymQyaYfOTMLMjVBCt+7d6i+4E7f+h3/gZzhps7CtBy4czrmXe+8JEsENuO63U1pb39jcKm9Xdnb39g+qh0dtE6eashaNRay7ATFMcMVawEGwbqIZkYFgnWB8l/udJ6YNj9UjTBLmSzJUPOKUgJU6fRrGYCqDas2tuzPgVeIVpIYKNAfVn34Y01QyBVQQY3qem4CfEQ2cCjat9FPDEkLHZMh6lioimfGz2blTfGaVEEextqUAz9S/ExmRxkxkYDslgZFZ9nLxP6+XQnTjZ1wlKTBF54uiVGCIcf47DrlmFMTEEkI1t7diOiKaULAJLWwxIIme6HCaR+MtB7FK2hd176ruPVzWGrdFSGV0gk7ROfLQNWqge9RELUTRGL2gV/TmPDvvzofzOW8tOcXMMVqA8/ULtvKYug==</latexit>· · ·

Coverage-guided

Mutation

Program

Mutator

let x = 1 + 2;
<latexit sha1_base64="PU5w8gjwK6QSKN4ydQ2SLdgYNKU=">AAACBHicbVDLSsNAFJ3UV62vqks3g0VwVRIRdVl047KCfUAbymQyaYfOTMLMjVBCt+7d6i+4E7f+h3/gZzhps7CtBy4czrmXe+8JEsENuO63U1pb39jcKm9Xdnb39g+qh0dtE6eashaNRay7ATFMcMVawEGwbqIZkYFgnWB8l/udJ6YNj9UjTBLmSzJUPOKUgJU6fRrGYCqDas2tuzPgVeIVpIYKNAfVn34Y01QyBVQQY3qem4CfEQ2cCjat9FPDEkLHZMh6lioimfGz2blTfGaVEEextqUAz9S/ExmRxkxkYDslgZFZ9nLxP6+XQnTjZ1wlKTBF54uiVGCIcf47DrlmFMTEEkI1t7diOiKaULAJLWwxIIme6HCaR+MtB7FK2hd176ruPVzWGrdFSGV0gk7ROfLQNWqge9RELUTRGL2gV/TmPDvvzofzOW8tOcXMMVqA8/ULtvKYug==</latexit>· · ·

let x = ![]; <latexit sha1_base64="PU5w8gjwK6QSKN4ydQ2SLdgYNKU=">AAACBHicbVDLSsNAFJ3UV62vqks3g0VwVRIRdVl047KCfUAbymQyaYfOTMLMjVBCt+7d6i+4E7f+h3/gZzhps7CtBy4czrmXe+8JEsENuO63U1pb39jcKm9Xdnb39g+qh0dtE6eashaNRay7ATFMcMVawEGwbqIZkYFgnWB8l/udJ6YNj9UjTBLmSzJUPOKUgJU6fRrGYCqDas2tuzPgVeIVpIYKNAfVn34Y01QyBVQQY3qem4CfEQ2cCjat9FPDEkLHZMh6lioimfGz2blTfGaVEEextqUAz9S/ExmRxkxkYDslgZFZ9nLxP6+XQnTjZ1wlKTBF54uiVGCIcf47DrlmFMTEEkI1t7diOiKaULAJLWwxIIme6HCaR+MtB7FK2hd176ruPVzWGrdFSGV0gk7ROfLQNWqge9RELUTRGL2gV/TmPDvvzofzOW8tOcXMMVqA8/ULtvKYug==</latexit>· · ·

Filling the gap between the JavaScript language specification and tools using the JISET family / 45

JEST [ICSE'21]

25

Mechanized

Specification

Assertion

Injector

Program

Mutator

JavaScript Engines and Specification Tester

DCS �¿�. 1•Xî ⌅\¯ò� ∏¥ Ö8| ⌅\ ê§lΩ∏ �� Ñ�.
⌅∞YÄ . 2022D. 46+iv Ω. ¿ƒP⇠: X��. (�8 |8)
Jihyeok Park. JavaScript Static Analysis for Evolving Language Specifica-
tions. School of Computing . 2022. 46+iv pages. Advisor: Sukyoung Ryu.
(Text in English)

�]

ê§lΩ∏X Ÿ�x 1»¸ ı°\ X¯`@ ê§lΩ∏ ⌅\¯®‰X âŸD �UXå ttX0 ¥

5å Ã‡‰. lê‰@ t| t∞X‡ê ‰ë\ ê§lΩ∏ �� Ñ�0‰D ⌧⌧tT¿Ã, t‰@
®P ⇠Ÿ<\ $ƒ� ⇠»0– xŸ—}�t‡ $X– Ë}X‰. ⇣\, 2014D –Ä0 ê§lΩ∏X
∏¥ Ö8� ‰D 1‡⇠0 ‹ëXt⌧ t 8⌧î T Ï�tL‰. ¯ Y⌅ |8–⌧î ê§lΩ∏ ∏¥
Ö8\Ä0êŸ<\ê§lΩ∏��Ñ�0| ƒt¥î»\¥)›D⌧H\‰. tî 1)0ƒTÖ8
îú, 2) 0ƒT Ö8 ®1 Ä¨, ¯¨‡ 3) �� Ñ�0 ƒX 8 �¿ Ëƒ\ l1⌧‰. ¯ |8–⌧î
0ƒT Ö8 îú 0 D ⌧HX‡, t| t©t �• \‡ ê§lΩ∏ Ö8\Ä0 0ƒT Ö8| îú
\‰. ⇣\, ê§lΩ∏ ‘ƒD t©\ N+1-Ñ⌅ (Ñ L§⇧¸ 0ƒT Ö8X ¿Ö Ñ�D ⌧HX‡,
t| µt Ö8 ✏ ‘ƒX ∞hD Äú\‰. \Ö�<\, T¿ �� Ñ� 0 D ⌧HX‡, îú\ 0ƒT
Ö8\Ä0 êŸ<\ ê§lΩ∏ �� Ñ�0| ƒ\‰. ¯ Y⌅ |8–⌧ ⌧‹\)›@ ⌅\¯ò�
∏¥| ⌅\ Ö8, L§∏, ¯¨‡ ƒl‰X ıƒT| ⌅\ lX 0¿D »(` É<\ 0�\‰.

u Ï ± – ê§lΩ∏, 0ƒT Ö8 îú, Ö8 ¿Ö Ñ�, N+1-Ñ⌅ (Ñ L§⇧, T¿ �� Ñ�

Abstract
The highly dynamic nature and complex semantics of JavaScript make it difficult to correctly understand
the behaviors of JavaScript programs. To automatically reason about them, researchers have developed
various JavaScript static analyzers that conform to ECMAScript, the standard specification of JavaScript.
However, all the existing JavaScript static analyzers are manually designed; thus, the current approach
is labor-intensive and error-prone. Moreover, since late 2014, this problem becomes more critical because
the JavaScript language itself rapidly evolves with a yearly release cadence and open development process.

In this thesis, we introduce a novel approach to automatically derive JavaScript static analyzers
from any version of ECMAScript. Our approach consists of three steps: 1) mechanized specification
extraction, 2) mechanized specification validity check, and 3) derivation of static analyzers. First, we
present a tool JISET that automatically extracts a mechanized specification from ECMAScript. We show
that it successfully extracts a mechanized specification from the latest ECMAScript. Then, we present
two different tools to detect bugs in JavaScript specifications and engines; JEST performs N+1-version
differential testing with JavaScript engines and JSTAR performs a type analysis for the mechanized
specification. Finally, we present JSAVER that automatically derives JavaScript static analyzers from
mechanized specifications using a meta-level static analysis. For evaluation, we derive a JavaScript
static analyzer from the latest ECMAScript and show that it successfully analyzes all applicable official
conformance tests in a sound way. We believe that the thesis would be the first step towards the
co-evolution of specifications, tests, and tools for programming languages.

Keywords JavaScript, mechanized specification extraction, N+1-version differential testing, specifica-
tion type analysis, meta-level static analysis.

Seed

Synthesizer Program Pool Conformance

Tests

Program Pool

Syntax-directed

Program Generation

let x = 42;

<latexit sha1_base64="PU5w8gjwK6QSKN4ydQ2SLdgYNKU=">AAACBHicbVDLSsNAFJ3UV62vqks3g0VwVRIRdVl047KCfUAbymQyaYfOTMLMjVBCt+7d6i+4E7f+h3/gZzhps7CtBy4czrmXe+8JEsENuO63U1pb39jcKm9Xdnb39g+qh0dtE6eashaNRay7ATFMcMVawEGwbqIZkYFgnWB8l/udJ6YNj9UjTBLmSzJUPOKUgJU6fRrGYCqDas2tuzPgVeIVpIYKNAfVn34Y01QyBVQQY3qem4CfEQ2cCjat9FPDEkLHZMh6lioimfGz2blTfGaVEEextqUAz9S/ExmRxkxkYDslgZFZ9nLxP6+XQnTjZ1wlKTBF54uiVGCIcf47DrlmFMTEEkI1t7diOiKaULAJLWwxIIme6HCaR+MtB7FK2hd176ruPVzWGrdFSGV0gk7ROfLQNWqge9RELUTRGL2gV/TmPDvvzofzOW8tOcXMMVqA8/ULtvKYug==</latexit>· · ·

Seed

Synthesizer

<latexit sha1_base64="PU5w8gjwK6QSKN4ydQ2SLdgYNKU=">AAACBHicbVDLSsNAFJ3UV62vqks3g0VwVRIRdVl047KCfUAbymQyaYfOTMLMjVBCt+7d6i+4E7f+h3/gZzhps7CtBy4czrmXe+8JEsENuO63U1pb39jcKm9Xdnb39g+qh0dtE6eashaNRay7ATFMcMVawEGwbqIZkYFgnWB8l/udJ6YNj9UjTBLmSzJUPOKUgJU6fRrGYCqDas2tuzPgVeIVpIYKNAfVn34Y01QyBVQQY3qem4CfEQ2cCjat9FPDEkLHZMh6lioimfGz2blTfGaVEEextqUAz9S/ExmRxkxkYDslgZFZ9nLxP6+XQnTjZ1wlKTBF54uiVGCIcf47DrlmFMTEEkI1t7diOiKaULAJLWwxIIme6HCaR+MtB7FK2hd176ruPVzWGrdFSGV0gk7ROfLQNWqge9RELUTRGL2gV/TmPDvvzofzOW8tOcXMMVqA8/ULtvKYug==</latexit>· · ·
<latexit sha1_base64="PU5w8gjwK6QSKN4ydQ2SLdgYNKU=">AAACBHicbVDLSsNAFJ3UV62vqks3g0VwVRIRdVl047KCfUAbymQyaYfOTMLMjVBCt+7d6i+4E7f+h3/gZzhps7CtBy4czrmXe+8JEsENuO63U1pb39jcKm9Xdnb39g+qh0dtE6eashaNRay7ATFMcMVawEGwbqIZkYFgnWB8l/udJ6YNj9UjTBLmSzJUPOKUgJU6fRrGYCqDas2tuzPgVeIVpIYKNAfVn34Y01QyBVQQY3qem4CfEQ2cCjat9FPDEkLHZMh6lioimfGz2blTfGaVEEextqUAz9S/ExmRxkxkYDslgZFZ9nLxP6+XQnTjZ1wlKTBF54uiVGCIcf47DrlmFMTEEkI1t7diOiKaULAJLWwxIIme6HCaR+MtB7FK2hd176ruPVzWGrdFSGV0gk7ROfLQNWqge9RELUTRGL2gV/TmPDvvzofzOW8tOcXMMVqA8/ULtvKYug==</latexit>· · ·

Coverage-guided

Mutation

Program

Mutator

let x = 1 + 2;
<latexit sha1_base64="PU5w8gjwK6QSKN4ydQ2SLdgYNKU=">AAACBHicbVDLSsNAFJ3UV62vqks3g0VwVRIRdVl047KCfUAbymQyaYfOTMLMjVBCt+7d6i+4E7f+h3/gZzhps7CtBy4czrmXe+8JEsENuO63U1pb39jcKm9Xdnb39g+qh0dtE6eashaNRay7ATFMcMVawEGwbqIZkYFgnWB8l/udJ6YNj9UjTBLmSzJUPOKUgJU6fRrGYCqDas2tuzPgVeIVpIYKNAfVn34Y01QyBVQQY3qem4CfEQ2cCjat9FPDEkLHZMh6lioimfGz2blTfGaVEEextqUAz9S/ExmRxkxkYDslgZFZ9nLxP6+XQnTjZ1wlKTBF54uiVGCIcf47DrlmFMTEEkI1t7diOiKaULAJLWwxIIme6HCaR+MtB7FK2hd176ruPVzWGrdFSGV0gk7ROfLQNWqge9RELUTRGL2gV/TmPDvvzofzOW8tOcXMMVqA8/ULtvKYug==</latexit>· · ·

let x = ![]; <latexit sha1_base64="PU5w8gjwK6QSKN4ydQ2SLdgYNKU=">AAACBHicbVDLSsNAFJ3UV62vqks3g0VwVRIRdVl047KCfUAbymQyaYfOTMLMjVBCt+7d6i+4E7f+h3/gZzhps7CtBy4czrmXe+8JEsENuO63U1pb39jcKm9Xdnb39g+qh0dtE6eashaNRay7ATFMcMVawEGwbqIZkYFgnWB8l/udJ6YNj9UjTBLmSzJUPOKUgJU6fRrGYCqDas2tuzPgVeIVpIYKNAfVn34Y01QyBVQQY3qem4CfEQ2cCjat9FPDEkLHZMh6lioimfGz2blTfGaVEEextqUAz9S/ExmRxkxkYDslgZFZ9nLxP6+XQnTjZ1wlKTBF54uiVGCIcf47DrlmFMTEEkI1t7diOiKaULAJLWwxIIme6HCaR+MtB7FK2hd176ruPVzWGrdFSGV0gk7ROfLQNWqge9RELUTRGL2gV/TmPDvvzofzOW8tOcXMMVqA8/ULtvKYug==</latexit>· · ·

Final State-based

Assertions

let x = 1 + 2;
assert(x == 3);

let x = 42;
assert(x == 42); let x = ![];

assert(x == false);

Assertion

Injector

Filling the gap between the JavaScript language specification and tools using the JISET family / 45

JEST - Assertion Injector (7 Kinds)

26

1. Exceptions (Exc) 
 

2. Aborts (Abort) 
 

3. Variable Values (Var) 
 

4. Object Values (Obj)

+ // Throw
 let x = 42;
 function x() {};

 var x = 1 + 2;
+ $assert.sameValue(x, 3);

+ // Abort
 var x = 42; x++;

 var x = {}, y = {}, z = { p: x, q: y };
+ $assert.sameValue(z.p, x);
+ $assert.sameValue(z.q, y);

Filling the gap between the JavaScript language specification and tools using the JISET family / 45

JEST - Assertion Injector (7 Kinds)

27

5. Object Properties (Desc) 
 
 
 

6. Property Keys (Key) 
 
 
 

7. Internal Methods and 
Slots (In)

 var x = { p: 42 };
+ $verifyProperty(x, "p", {
+ value: 42.0, writable: true,
+ enumerable: true, configurable: true
+ });

 var x = {[Symbol.match]: 0, p: 0, 3: 0, q: 0, 1: 0}
+ $assert.compareArray(
+ Reflect.ownKeys(x),
+ ["1", "3", "p", "q", Symbol.match]
+);

 function f() {}
+ $assert.sameValue(Object.getPrototypeOf(f),
+ Function.prototype);
+ $assert.sameValue(Object.isExtensible(x), true);
+ $assert.callable(f);
+ $assert.constructable(f);

/ 45Filling the gap between the JavaScript language specification and tools using the JISET family

• JEST successfully synthesized 1,700 conformance tests from ES11

28

JEST - Evaluation

27 Bugs in Spec.

JEST: N+1-version Differential Testing of
Both JavaScript Engines and Specification

Jihyeok Park
School of Computing

KAIST

Daejeon, South Korea
jhpark0223@kaist.ac.kr

Seungmin An
School of Computing

KAIST

Daejeon, South Korea
h2oche@kaist.ac.kr

Dongjun Youn
School of Computing

KAIST

Daejeon, South Korea
f52985@kaist.ac.kr

Gyeongwon Kim
School of Computing

KAIST

Daejeon, South Korea
gyeongwon.kim@kaist.ac.kr

Sukyoung Ryu
School of Computing

KAIST

Daejeon, South Korea
sryu.cs@kaist.ac.kr

GraalVM
Abstract—Modern programming follows the continuous inte-

gration (CI) and continuous deployment (CD) approach rather
than the traditional waterfall model. Even the development of
modern programming languages uses the CI/CD approach to
swiftly provide new language features and to adapt to new devel-
opment environments. Unlike in the conventional approach, in the
modern CI/CD approach, a language specification is no more the
oracle of the language semantics because both the specification
and its implementations (interpreters or compilers) can co-evolve.
In this setting, both the specification and implementations may
have bugs, and guaranteeing their correctness is non-trivial.

In this paper, we propose a novel N+1-version differential
testing to resolve the problem. Unlike the traditional differential
testing, our approach consists of three steps: 1) to automatically
synthesize programs guided by the syntax and semantics from a
given language specification, 2) to generate conformance tests by
injecting assertions to the synthesized programs to check their
final program states, 3) to detect bugs in the specification and
implementations via executing the conformance tests on multiple
implementations, and 4) to localize bugs on the specification
using statistical information. We actualize our approach for the
JavaScript programming language via JEST, which performs
N+1-version differential testing for modern JavaScript engines
and ECMAScript, the language specification describing the
syntax and semantics of JavaScript in a natural language. We
evaluated JEST with four JavaScript engines that support all
modern JavaScript language features and the latest version of
ECMAScript (ES11, 2020). JEST automatically synthesized 1,700
programs that covered 97.78% of syntax and 87.70% of semantics
from ES11. Using the assertion-injected JavaScript programs,
it detected 44 engine bugs in four different engines and 27
specification bugs in ES11.

Index Terms—JavaScript, conformance test generation, mech-
anized specification, differential testing

I. INTRODUCTION

In Peter O’Hearn’s keynote speech in ICSE 2020, he quoted
the following from Mark Zuckerberg’s Letter to Investors [1]:

The Hacker Way is an approach to building that in-
volves continuous improvement and iteration. Hack-
ers believe that somethings can always be better, and
that nothing is ever complete.

Indeed, modern programming follows the continuous integra-
tion (CI) and continuous deployment (CD) approach [2] rather
than the traditional waterfall model. Instead of a sequential
model that divides software development into several phases,

each of which takes time, CI/CD amounts to a cycle of quick
software development, deployment, and back to development
with feedback. Even the development of programming lan-
guages uses the CI/CD approach.

Consider JavaScript, one of the most widely used pro-
gramming languages for client-side and server-side program-
ming [3] and embedded systems [4]–[6]. Various JavaScript
engines provide diverse extensions to adapt to fast-changing
user demands. At the same time, ECMAScript, the offi-
cial specification that describes the syntax and semantics of
JavaScript, is annually updated since ECMAScript 6 (ES6,
2015) [7] to support new features in response to user demands.
Such updates in both the specification and implementations in
tandem make it difficult for them to be in sync.

Another example is Solidity [8], the standard smart contract
programming language for the Ethereum blockchain. The
Solidity language specification is continuously updated, and
the Solidity compiler is also frequently released. According to
Hwang and Ryu [9], the average number of days between
consecutive releases from Solidity 0.1.2 to 0.5.7 is 27. In
most cases, the Solidity compiler reflects updates in the
specification, but even the specification is revised according to
the semantics implemented in the compiler. As in JavaScript,
bidirectional effects in the specification and the implementa-
tion make it hard to guarantee their correspondence.

In this approach, both the specification and the implemen-
tation may contain bugs, and guaranteeing their correctness
is a challenging task. The conventional approach to build
a programming language is uni-directional from a language
specification to its implementation. The specification is be-
lieved to be correct and the conformance of an implementation
to the specification is checked by dynamic testing. Unlike in
the conventional approach, in the modern CI/CD approach,
the specification may not be the oracle, because both the
specification and the implementation can co-evolve.

In this paper, we propose a novel N+1-version differential

testing, which enables testing of co-evolving specifications
and their implementations. The differential testing [10] is a
testing technique, which executes N implementations of a
specification concurrently for each input, and detects a prob-
lem when the outputs are in disagreement. In addition to N
implementations, our approach tests the specification as well

44 Bugs in Engines

/ 45Filling the gap between the JavaScript language specification and tools using the JISET family 29

JEST - Example in

TABLE III: Specification bugs in ECMAScript 2020 (ES11) detected by JEST

Name Feature # Description Assertion Known Created Resolved Existed
ES11-1 Function 12 Wrong order between property keys for functions Key O 2019-02-07 2020-04-11 429 days
ES11-2 Function 8 Missing property name for anonymous functions Key O 2015-06-01 2020-04-11 1,776 days

ES11-3 Loop 1 Returning iterator objects instead of iterator records
in ForIn/OfHeadEvaluation for for-in loops Exc O 2017-10-17 2020-04-30 926 days

ES11-4 Expression 4 Using the wrong variable oldvalue instead of
oldValue in Evaluation of UpdateExpression

Abort O 2019-09-27 2020-04-23 209 days

ES11-5 Expression 1 Unhandling abrupt completion
in Abstract Equality Comparison Exc O 2015-06-01 2020-04-28 1,793 days

ES11-6 Object 1 Unhandling abrupt completion in Evaluation of
PropertyDefinition for object literals Exc X 2019-02-07 TBD TBD

TABLE II: The number of engine bugs detected by JEST

Engines Exc Abort Var Obj Desc Key In Total
V8 0 0 0 0 0 2 0 2
GraalJS 6 0 0 0 2 8 0 16
QuickJS 3 0 1 0 0 2 0 6
Moddable XS 12 0 0 0 3 5 0 20

Total 21 0 1 0 5 17 0 44

semantics of ES11. Among 71 bugs, we excluded 7 syntax
bugs and localized only 64 semantics bugs. Figure 5 shows
the ranks of algorithms that caused the semantics bugs. The
average rank is 3.19, and 82.8% of the algorithms causing the
bugs are ranked less than 5, 93.8% less than 10, and 98.4%
less than 15. Note that the location of one bug is ranked 21
because of the limitation of SBFL; its localization accuracy
becomes low for a small number of failed test cases.

C. Bug Detection in JavaScript Engines

From four JavaScript engines, JEST detected 44 bugs: 2
from V8, 16 from GraalJS, 6 from QuickJS, and 20 from
Moddable XS. Table II presents how many bugs for each
assertion are detected for each engine. We injected seven
kinds of assertions: exceptions (Exc), aborts (Abort), variable
values (Var), object values (Obj), object properties (Desc),
property keys (Key), and internal methods and slots (In). The
effectiveness of bug finding is different for different assertions.
The Exc and Key assertions detected engine bugs the most; out
of 44 bugs, the former detected 21 bugs and the latter detected
17 bugs. Desc and Var detected 5 and 1 bugs, respectively, but
the other assertions did not detect any engine bugs.

The most reliable JavaScript engine is V8 because JEST

found only two bugs and the bugs are due to specification
bugs in ES11. Because V8 strictly follows the semantics
of functions described in ES11, it also implemented wrong
semantics that led to ES11-1 and ES11-2 listed in Table III.
The V8 team confirmed the bugs and fixed them.

We detected 16 engine bugs in GraalJS and one of them
caused an engine crash. When we apply the prefix incre-
ment operator for undefined as ++undefined, GraalJS throws
java.lang.IllegalStateException. Because it crashes the
engine, developers even cannot catch the exception as follows:

try { ++undefined; } catch(e) { }

The GraalJS team has been fixing the bugs we reported and
asked whether we plan to publish the conformance test suite,

because the tests generated by JEST detected many semantics
bugs that were not detected by other conformance tests: “Right

now, we are running Test262 and the V8 and Nashorn unit test

suites in our CI for every change, it might make sense to add

your suite as well.”

In QuickJS, JEST detected 6 engine bugs, most of which
are due to corner cases of the function semantics. For example,
the following code should throw a ReferenceError exception:

function f (... { x = x }) { return x; } f()

because the variable x is not yet initialized when it tries to
read the right-hand side of x = x. However, since QuickJS
assumes that the initial value of x is undefined, the function
call f() returns undefined. The QuickJS team confirmed our
bug reports and it has been fixing the bugs.

JEST found the most bugs in Moddable XS; it detected 20
bugs for various language features such as optional chains,
Number.prototype.toString, iterators of Map and Set, and
complex assignment patterns. Among them, optional chains
are newly introduced in ES11, which shows that our approach
is applicable to finding bugs in new language features. We
reported all the bugs found, and the Moddable XS team has
been fixing them. They showed interests in using our test suite:
“As you know, it is difficult to verify changes because the

language specification is so big. Test262, as great a resource

as it is, is not definitive.”

D. Bug Detection in ECMAScript

From the latest ECMAScript ES11, JEST detected 27
specification bugs. Table III summarizes the bugs categorized
by their root causes. Among them, five categories (ES11-1 to
ES11-5) were already reported and fixed in the current draft of
the next ECMAScript but ES11-6 was never reported before.
We reported it to TC39; they confirmed it and they will fix it
in the next version, ECMAScript 2021 (ES12).

ES11-1 contains 12 bugs; it is due to a wrong order between
property keys of all kinds of function values such as async
and generator functions, arrow functions, and classes. For
example, if we define a class declaration with a name A

(class A {}), three properties are defined in the function
stored in the variable A: length with a number value 0,
prototype with an object, and name with a string "A". The
problem is the different order of their keys because of the
wrong order of their creation. From ECMAScript 2015 (ES6),

“Right now, we are running Test262 and the V8 and Nashorn unit test suites

in our CI for every change, it might make sense to add your suite as well.”

- A Developer of GraalVM

Crash

Filling the gap between the JavaScript language specification and tools using the JISET family / 45

Analysis

Result

JavaScript

Programs

Derived Static

Analyzerspecification. Finally, we present JSAVER

3. Derivation of
Static Analyzers

DCS �¿�. 1•Xî ⌅\¯ò� ∏¥ Ö8| ⌅\ ê§lΩ∏ �� Ñ�.
⌅∞YÄ . 2022D. 46+iv Ω. ¿ƒP⇠: X��. (�8 |8)
Jihyeok Park. JavaScript Static Analysis for Evolving Language Specifica-
tions. School of Computing . 2022. 46+iv pages. Advisor: Sukyoung Ryu.
(Text in English)

�]

ê§lΩ∏X Ÿ�x 1»¸ ı°\ X¯`@ ê§lΩ∏ ⌅\¯®‰X âŸD �UXå ttX0 ¥

5å Ã‡‰. lê‰@ t| t∞X‡ê ‰ë\ ê§lΩ∏ �� Ñ�0‰D ⌧⌧tT¿Ã, t‰@
®P ⇠Ÿ<\ $ƒ� ⇠»0– xŸ—}�t‡ $X– Ë}X‰. ⇣\, 2014D –Ä0 ê§lΩ∏X
∏¥ Ö8� ‰D 1‡⇠0 ‹ëXt⌧ t 8⌧î T Ï�tL‰. ¯ Y⌅ |8–⌧î ê§lΩ∏ ∏¥
Ö8\Ä0êŸ<\ê§lΩ∏��Ñ�0| ƒt¥î»\¥)›D⌧H\‰. tî 1)0ƒTÖ8
îú, 2) 0ƒT Ö8 ®1 Ä¨, ¯¨‡ 3) �� Ñ�0 ƒX 8 �¿ Ëƒ\ l1⌧‰. ¯ |8–⌧î
0ƒT Ö8 îú 0 D ⌧HX‡, t| t©t �• \‡ ê§lΩ∏ Ö8\Ä0 0ƒT Ö8| îú
\‰. ⇣\, ê§lΩ∏ ‘ƒD t©\ N+1-Ñ⌅ (Ñ L§⇧¸ 0ƒT Ö8X ¿Ö Ñ�D ⌧HX‡,
t| µt Ö8 ✏ ‘ƒX ∞hD Äú\‰. \Ö�<\, T¿ �� Ñ� 0 D ⌧HX‡, îú\ 0ƒT
Ö8\Ä0 êŸ<\ ê§lΩ∏ �� Ñ�0| ƒ\‰. ¯ Y⌅ |8–⌧ ⌧‹\)›@ ⌅\¯ò�
∏¥| ⌅\ Ö8, L§∏, ¯¨‡ ƒl‰X ıƒT| ⌅\ lX 0¿D »(` É<\ 0�\‰.

u Ï ± – ê§lΩ∏, 0ƒT Ö8 îú, Ö8 ¿Ö Ñ�, N+1-Ñ⌅ (Ñ L§⇧, T¿ �� Ñ�

Abstract
The highly dynamic nature and complex semantics of JavaScript make it difficult to correctly understand
the behaviors of JavaScript programs. To automatically reason about them, researchers have developed
various JavaScript static analyzers that conform to ECMAScript, the standard specification of JavaScript.
However, all the existing JavaScript static analyzers are manually designed; thus, the current approach
is labor-intensive and error-prone. Moreover, since late 2014, this problem becomes more critical because
the JavaScript language itself rapidly evolves with a yearly release cadence and open development process.

In this thesis, we introduce a novel approach to automatically derive JavaScript static analyzers
from any version of ECMAScript. Our approach consists of three steps: 1) mechanized specification
extraction, 2) mechanized specification validity check, and 3) derivation of static analyzers. First, we
present a tool JISET that automatically extracts a mechanized specification from ECMAScript. We show
that it successfully extracts a mechanized specification from the latest ECMAScript. Then, we present
two different tools to detect bugs in JavaScript specifications and engines; JEST performs N+1-version
differential testing with JavaScript engines and JSTAR performs a type analysis for the mechanized
specification. Finally, we present JSAVER that automatically derives JavaScript static analyzers from
mechanized specifications using a meta-level static analysis. For evaluation, we derive a JavaScript
static analyzer from the latest ECMAScript and show that it successfully analyzes all applicable official
conformance tests in a sound way. We believe that the thesis would be the first step towards the
co-evolution of specifications, tests, and tools for programming languages.

Keywords JavaScript, mechanized specification extraction, N+1-version differential testing, specifica-
tion type analysis, meta-level static analysis.

DCS �¿�. 1•Xî ⌅\¯ò� ∏¥ Ö8| ⌅\ ê§lΩ∏ �� Ñ�.
⌅∞YÄ . 2022D. 46+iv Ω. ¿ƒP⇠: X��. (�8 |8)
Jihyeok Park. JavaScript Static Analysis for Evolving Language Specifica-
tions. School of Computing . 2022. 46+iv pages. Advisor: Sukyoung Ryu.
(Text in English)

�]

ê§lΩ∏X Ÿ�x 1»¸ ı°\ X¯`@ ê§lΩ∏ ⌅\¯®‰X âŸD �UXå ttX0 ¥

5å Ã‡‰. lê‰@ t| t∞X‡ê ‰ë\ ê§lΩ∏ �� Ñ�0‰D ⌧⌧tT¿Ã, t‰@
®P ⇠Ÿ<\ $ƒ� ⇠»0– xŸ—}�t‡ $X– Ë}X‰. ⇣\, 2014D –Ä0 ê§lΩ∏X
∏¥ Ö8� ‰D 1‡⇠0 ‹ëXt⌧ t 8⌧î T Ï�tL‰. ¯ Y⌅ |8–⌧î ê§lΩ∏ ∏¥
Ö8\Ä0êŸ<\ê§lΩ∏��Ñ�0| ƒt¥î»\¥)›D⌧H\‰. tî 1)0ƒTÖ8
îú, 2) 0ƒT Ö8 ®1 Ä¨, ¯¨‡ 3) �� Ñ�0 ƒX 8 �¿ Ëƒ\ l1⌧‰. ¯ |8–⌧î
0ƒT Ö8 îú 0 D ⌧HX‡, t| t©t �• \‡ ê§lΩ∏ Ö8\Ä0 0ƒT Ö8| îú
\‰. ⇣\, ê§lΩ∏ ‘ƒD t©\ N+1-Ñ⌅ (Ñ L§⇧¸ 0ƒT Ö8X ¿Ö Ñ�D ⌧HX‡,
t| µt Ö8 ✏ ‘ƒX ∞hD Äú\‰. \Ö�<\, T¿ �� Ñ� 0 D ⌧HX‡, îú\ 0ƒT
Ö8\Ä0 êŸ<\ ê§lΩ∏ �� Ñ�0| ƒ\‰. ¯ Y⌅ |8–⌧ ⌧‹\)›@ ⌅\¯ò�
∏¥| ⌅\ Ö8, L§∏, ¯¨‡ ƒl‰X ıƒT| ⌅\ lX 0¿D »(` É<\ 0�\‰.

u Ï ± – ê§lΩ∏, 0ƒT Ö8 îú, Ö8 ¿Ö Ñ�, N+1-Ñ⌅ (Ñ L§⇧, T¿ �� Ñ�

Abstract
The highly dynamic nature and complex semantics of JavaScript make it difficult to correctly understand
the behaviors of JavaScript programs. To automatically reason about them, researchers have developed
various JavaScript static analyzers that conform to ECMAScript, the standard specification of JavaScript.
However, all the existing JavaScript static analyzers are manually designed; thus, the current approach
is labor-intensive and error-prone. Moreover, since late 2014, this problem becomes more critical because
the JavaScript language itself rapidly evolves with a yearly release cadence and open development process.

In this thesis, we introduce a novel approach to automatically derive JavaScript static analyzers
from any version of ECMAScript. Our approach consists of three steps: 1) mechanized specification
extraction, 2) mechanized specification validity check, and 3) derivation of static analyzers. First, we
present a tool JISET that automatically extracts a mechanized specification from ECMAScript. We show
that it successfully extracts a mechanized specification from the latest ECMAScript. Then, we present
two different tools to detect bugs in JavaScript specifications and engines; JEST performs N+1-version
differential testing with JavaScript engines and JSTAR performs a type analysis for the mechanized
specification. Finally, we present JSAVER that automatically derives JavaScript static analyzers from
mechanized specifications using a meta-level static analysis. For evaluation, we derive a JavaScript
static analyzer from the latest ECMAScript and show that it successfully analyzes all applicable official
conformance tests in a sound way. We believe that the thesis would be the first step towards the
co-evolution of specifications, tests, and tools for programming languages.

Keywords JavaScript, mechanized specification extraction, N+1-version differential testing, specifica-
tion type analysis, meta-level static analysis.

2. Specification
Validity Check

[ICSE'21] [ASE'21]
Distinguished Paper

Mechanized

Specification

30

ECMA-262

DCS �¿�. 1•Xî ⌅\¯ò� ∏¥ Ö8| ⌅\ ê§lΩ∏ �� Ñ�.
⌅∞YÄ . 2022D. 46+iv Ω. ¿ƒP⇠: X��. (�8 |8)
Jihyeok Park. JavaScript Static Analysis for Evolving Language Specifica-
tions. School of Computing . 2022. 46+iv pages. Advisor: Sukyoung Ryu.
(Text in English)

�]

ê§lΩ∏X Ÿ�x 1»¸ ı°\ X¯`@ ê§lΩ∏ ⌅\¯®‰X âŸD �UXå ttX0 ¥

5å Ã‡‰. lê‰@ t| t∞X‡ê ‰ë\ ê§lΩ∏ �� Ñ�0‰D ⌧⌧tT¿Ã, t‰@
®P ⇠Ÿ<\ $ƒ� ⇠»0– xŸ—}�t‡ $X– Ë}X‰. ⇣\, 2014D –Ä0 ê§lΩ∏X
∏¥ Ö8� ‰D 1‡⇠0 ‹ëXt⌧ t 8⌧î T Ï�tL‰. ¯ Y⌅ |8–⌧î ê§lΩ∏ ∏¥
Ö8\Ä0êŸ<\ê§lΩ∏��Ñ�0| ƒt¥î»\¥)›D⌧H\‰. tî 1)0ƒTÖ8
îú, 2) 0ƒT Ö8 ®1 Ä¨, ¯¨‡ 3) �� Ñ�0 ƒX 8 �¿ Ëƒ\ l1⌧‰. ¯ |8–⌧î
0ƒT Ö8 îú 0 D ⌧HX‡, t| t©t �• \‡ ê§lΩ∏ Ö8\Ä0 0ƒT Ö8| îú
\‰. ⇣\, ê§lΩ∏ ‘ƒD t©\ N+1-Ñ⌅ (Ñ L§⇧¸ 0ƒT Ö8X ¿Ö Ñ�D ⌧HX‡,
t| µt Ö8 ✏ ‘ƒX ∞hD Äú\‰. \Ö�<\, T¿ �� Ñ� 0 D ⌧HX‡, îú\ 0ƒT
Ö8\Ä0 êŸ<\ ê§lΩ∏ �� Ñ�0| ƒ\‰. ¯ Y⌅ |8–⌧ ⌧‹\)›@ ⌅\¯ò�
∏¥| ⌅\ Ö8, L§∏, ¯¨‡ ƒl‰X ıƒT| ⌅\ lX 0¿D »(` É<\ 0�\‰.

u Ï ± – ê§lΩ∏, 0ƒT Ö8 îú, Ö8 ¿Ö Ñ�, N+1-Ñ⌅ (Ñ L§⇧, T¿ �� Ñ�

Abstract
The highly dynamic nature and complex semantics of JavaScript make it difficult to correctly understand
the behaviors of JavaScript programs. To automatically reason about them, researchers have developed
various JavaScript static analyzers that conform to ECMAScript, the standard specification of JavaScript.
However, all the existing JavaScript static analyzers are manually designed; thus, the current approach
is labor-intensive and error-prone. Moreover, since late 2014, this problem becomes more critical because
the JavaScript language itself rapidly evolves with a yearly release cadence and open development process.

In this thesis, we introduce a novel approach to automatically derive JavaScript static analyzers
from any version of ECMAScript. Our approach consists of three steps: 1) mechanized specification
extraction, 2) mechanized specification validity check, and 3) derivation of static analyzers. First, we
present a tool JISET that automatically extracts a mechanized specification from ECMAScript. We show
that it successfully extracts a mechanized specification from the latest ECMAScript. Then, we present
two different tools to detect bugs in JavaScript specifications and engines; JEST performs N+1-version
differential testing with JavaScript engines and JSTAR performs a type analysis for the mechanized
specification. Finally, we present JSAVER that automatically derives JavaScript static analyzers from
mechanized specifications using a meta-level static analysis. For evaluation, we derive a JavaScript
static analyzer from the latest ECMAScript and show that it successfully analyzes all applicable official
conformance tests in a sound way. We believe that the thesis would be the first step towards the
co-evolution of specifications, tests, and tools for programming languages.

Keywords JavaScript, mechanized specification extraction, N+1-version differential testing, specifica-
tion type analysis, meta-level static analysis.

1. Mechanized Spec.
Extraction

[ASE'20]

Conformance Test

Synthesis

Type Analysis for

Specification

JSTAR: JavaScript Specification Type Analyzer using Refinement
Jihyeok Park, Seungmin An, Wonho Shin, Yusung Sim, and Sukyoung Ryu

(Published in ASE'21)

In Submission

Filling the gap between the JavaScript language specification and tools using the JISET family / 45

JSTAR - Types in Specification

31

...

https://github.com/tc39/ecma262/tree/575149cfd77aebcf3a129e165bd89e14caafc31c

https://github.com/tc39/ecma262/tree/575149cfd77aebcf3a129e165bd89e14caafc31c

Filling the gap between the JavaScript language specification and tools using the JISET family / 45

JSTAR - Types in Specification

31

...

https://github.com/tc39/ecma262/tree/575149cfd77aebcf3a129e165bd89e14caafc31c

x: (String v Boolean v Number v Object v ...)

https://github.com/tc39/ecma262/tree/575149cfd77aebcf3a129e165bd89e14caafc31c

Filling the gap between the JavaScript language specification and tools using the JISET family / 45

JSTAR - Types in Specification

31

...

https://github.com/tc39/ecma262/tree/575149cfd77aebcf3a129e165bd89e14caafc31c

x: (String v Boolean v Number v Object v ...)

ToNumber(x): (Number v Exception)

https://github.com/tc39/ecma262/tree/575149cfd77aebcf3a129e165bd89e14caafc31c

Filling the gap between the JavaScript language specification and tools using the JISET family / 45

JSTAR - Types in Specification

31

...

https://github.com/tc39/ecma262/tree/575149cfd77aebcf3a129e165bd89e14caafc31c

x: (String v Boolean v Number v Object v ...)

ToNumber(x): (Number v Exception)

https://github.com/tc39/ecma262/tree/575149cfd77aebcf3a129e165bd89e14caafc31c

Filling the gap between the JavaScript language specification and tools using the JISET family / 45

JSTAR - Types in Specification

31

...

https://github.com/tc39/ecma262/tree/575149cfd77aebcf3a129e165bd89e14caafc31c

x: (String v Boolean v Number v Object v ...)

 ∧ n: (Number)ToNumber(x): (Number v Exception)

https://github.com/tc39/ecma262/tree/575149cfd77aebcf3a129e165bd89e14caafc31c

Filling the gap between the JavaScript language specification and tools using the JISET family / 45

JSTAR - Types in Specification

31

...

https://github.com/tc39/ecma262/tree/575149cfd77aebcf3a129e165bd89e14caafc31c

x: (String v Boolean v Number v Object v ...)

 ∧ n: (Number)

Type Mismatch for
numeric operator `>`

ToNumber(x): (Number v Exception)

https://github.com/tc39/ecma262/tree/575149cfd77aebcf3a129e165bd89e14caafc31c

Filling the gap between the JavaScript language specification and tools using the JISET family / 45

JSTAR - Types in Specification

31

...

https://github.com/tc39/ecma262/tree/575149cfd77aebcf3a129e165bd89e14caafc31c

x: (String v Boolean v Number v Object v ...)

 ∧ n: (Number)

Type Mismatch for
numeric operator `>`

Math.round(true) = ???
Math.round(false) = ???

ToNumber(x): (Number v Exception)

https://github.com/tc39/ecma262/tree/575149cfd77aebcf3a129e165bd89e14caafc31c

Filling the gap between the JavaScript language specification and tools using the JISET family / 45

JSTAR - Types in Specification

31

...

https://github.com/tc39/ecma262/tree/575149cfd77aebcf3a129e165bd89e14caafc31c

x: (String v Boolean v Number v Object v ...)

 ∧ n: (Number)

Type Mismatch for
numeric operator `>`

Math.round(true) = ???
Math.round(false) = ???

Math.round(true) = 1
Math.round(false) = 0

ToNumber(x): (Number v Exception)

https://github.com/tc39/ecma262/tree/575149cfd77aebcf3a129e165bd89e14caafc31c

Filling the gap between the JavaScript language specification and tools using the JISET family / 45

JSTAR [ASE'21]

32

JavaScript Specification Type Analyzer using Refinement

Mechanized

Specification

Abstract

Transfer Func.

Analysis

Initializer

Initial

Abstract State

DCS �¿�. 1•Xî ⌅\¯ò� ∏¥ Ö8| ⌅\ ê§lΩ∏ �� Ñ�.
⌅∞YÄ . 2022D. 46+iv Ω. ¿ƒP⇠: X��. (�8 |8)
Jihyeok Park. JavaScript Static Analysis for Evolving Language Specifica-
tions. School of Computing . 2022. 46+iv pages. Advisor: Sukyoung Ryu.
(Text in English)

�]

ê§lΩ∏X Ÿ�x 1»¸ ı°\ X¯`@ ê§lΩ∏ ⌅\¯®‰X âŸD �UXå ttX0 ¥

5å Ã‡‰. lê‰@ t| t∞X‡ê ‰ë\ ê§lΩ∏ �� Ñ�0‰D ⌧⌧tT¿Ã, t‰@
®P ⇠Ÿ<\ $ƒ� ⇠»0– xŸ—}�t‡ $X– Ë}X‰. ⇣\, 2014D –Ä0 ê§lΩ∏X
∏¥ Ö8� ‰D 1‡⇠0 ‹ëXt⌧ t 8⌧î T Ï�tL‰. ¯ Y⌅ |8–⌧î ê§lΩ∏ ∏¥
Ö8\Ä0êŸ<\ê§lΩ∏��Ñ�0| ƒt¥î»\¥)›D⌧H\‰. tî 1)0ƒTÖ8
îú, 2) 0ƒT Ö8 ®1 Ä¨, ¯¨‡ 3) �� Ñ�0 ƒX 8 �¿ Ëƒ\ l1⌧‰. ¯ |8–⌧î
0ƒT Ö8 îú 0 D ⌧HX‡, t| t©t �• \‡ ê§lΩ∏ Ö8\Ä0 0ƒT Ö8| îú
\‰. ⇣\, ê§lΩ∏ ‘ƒD t©\ N+1-Ñ⌅ (Ñ L§⇧¸ 0ƒT Ö8X ¿Ö Ñ�D ⌧HX‡,
t| µt Ö8 ✏ ‘ƒX ∞hD Äú\‰. \Ö�<\, T¿ �� Ñ� 0 D ⌧HX‡, îú\ 0ƒT
Ö8\Ä0 êŸ<\ ê§lΩ∏ �� Ñ�0| ƒ\‰. ¯ Y⌅ |8–⌧ ⌧‹\)›@ ⌅\¯ò�
∏¥| ⌅\ Ö8, L§∏, ¯¨‡ ƒl‰X ıƒT| ⌅\ lX 0¿D »(` É<\ 0�\‰.

u Ï ± – ê§lΩ∏, 0ƒT Ö8 îú, Ö8 ¿Ö Ñ�, N+1-Ñ⌅ (Ñ L§⇧, T¿ �� Ñ�

Abstract
The highly dynamic nature and complex semantics of JavaScript make it difficult to correctly understand
the behaviors of JavaScript programs. To automatically reason about them, researchers have developed
various JavaScript static analyzers that conform to ECMAScript, the standard specification of JavaScript.
However, all the existing JavaScript static analyzers are manually designed; thus, the current approach
is labor-intensive and error-prone. Moreover, since late 2014, this problem becomes more critical because
the JavaScript language itself rapidly evolves with a yearly release cadence and open development process.

In this thesis, we introduce a novel approach to automatically derive JavaScript static analyzers
from any version of ECMAScript. Our approach consists of three steps: 1) mechanized specification
extraction, 2) mechanized specification validity check, and 3) derivation of static analyzers. First, we
present a tool JISET that automatically extracts a mechanized specification from ECMAScript. We show
that it successfully extracts a mechanized specification from the latest ECMAScript. Then, we present
two different tools to detect bugs in JavaScript specifications and engines; JEST performs N+1-version
differential testing with JavaScript engines and JSTAR performs a type analysis for the mechanized
specification. Finally, we present JSAVER that automatically derives JavaScript static analyzers from
mechanized specifications using a meta-level static analysis. For evaluation, we derive a JavaScript
static analyzer from the latest ECMAScript and show that it successfully analyzes all applicable official
conformance tests in a sound way. We believe that the thesis would be the first step towards the
co-evolution of specifications, tests, and tools for programming languages.

Keywords JavaScript, mechanized specification extraction, N+1-version differential testing, specifica-
tion type analysis, meta-level static analysis.

Type Analysis

Result

Operand

Checker

Assertion

Checker

Arity

Checker

Reference

Checker

Specification

Bugs

Filling the gap between the JavaScript language specification and tools using the JISET family / 45

JSTAR [ASE'21]

32

JavaScript Specification Type Analyzer using Refinement

Precision ↑

1. Type Sensitivity

2. Condition-based Refinement

Mechanized

Specification

Abstract

Transfer Func.

Analysis

Initializer

Initial

Abstract State

DCS �¿�. 1•Xî ⌅\¯ò� ∏¥ Ö8| ⌅\ ê§lΩ∏ �� Ñ�.
⌅∞YÄ . 2022D. 46+iv Ω. ¿ƒP⇠: X��. (�8 |8)
Jihyeok Park. JavaScript Static Analysis for Evolving Language Specifica-
tions. School of Computing . 2022. 46+iv pages. Advisor: Sukyoung Ryu.
(Text in English)

�]

ê§lΩ∏X Ÿ�x 1»¸ ı°\ X¯`@ ê§lΩ∏ ⌅\¯®‰X âŸD �UXå ttX0 ¥

5å Ã‡‰. lê‰@ t| t∞X‡ê ‰ë\ ê§lΩ∏ �� Ñ�0‰D ⌧⌧tT¿Ã, t‰@
®P ⇠Ÿ<\ $ƒ� ⇠»0– xŸ—}�t‡ $X– Ë}X‰. ⇣\, 2014D –Ä0 ê§lΩ∏X
∏¥ Ö8� ‰D 1‡⇠0 ‹ëXt⌧ t 8⌧î T Ï�tL‰. ¯ Y⌅ |8–⌧î ê§lΩ∏ ∏¥
Ö8\Ä0êŸ<\ê§lΩ∏��Ñ�0| ƒt¥î»\¥)›D⌧H\‰. tî 1)0ƒTÖ8
îú, 2) 0ƒT Ö8 ®1 Ä¨, ¯¨‡ 3) �� Ñ�0 ƒX 8 �¿ Ëƒ\ l1⌧‰. ¯ |8–⌧î
0ƒT Ö8 îú 0 D ⌧HX‡, t| t©t �• \‡ ê§lΩ∏ Ö8\Ä0 0ƒT Ö8| îú
\‰. ⇣\, ê§lΩ∏ ‘ƒD t©\ N+1-Ñ⌅ (Ñ L§⇧¸ 0ƒT Ö8X ¿Ö Ñ�D ⌧HX‡,
t| µt Ö8 ✏ ‘ƒX ∞hD Äú\‰. \Ö�<\, T¿ �� Ñ� 0 D ⌧HX‡, îú\ 0ƒT
Ö8\Ä0 êŸ<\ ê§lΩ∏ �� Ñ�0| ƒ\‰. ¯ Y⌅ |8–⌧ ⌧‹\)›@ ⌅\¯ò�
∏¥| ⌅\ Ö8, L§∏, ¯¨‡ ƒl‰X ıƒT| ⌅\ lX 0¿D »(` É<\ 0�\‰.

u Ï ± – ê§lΩ∏, 0ƒT Ö8 îú, Ö8 ¿Ö Ñ�, N+1-Ñ⌅ (Ñ L§⇧, T¿ �� Ñ�

Abstract
The highly dynamic nature and complex semantics of JavaScript make it difficult to correctly understand
the behaviors of JavaScript programs. To automatically reason about them, researchers have developed
various JavaScript static analyzers that conform to ECMAScript, the standard specification of JavaScript.
However, all the existing JavaScript static analyzers are manually designed; thus, the current approach
is labor-intensive and error-prone. Moreover, since late 2014, this problem becomes more critical because
the JavaScript language itself rapidly evolves with a yearly release cadence and open development process.

In this thesis, we introduce a novel approach to automatically derive JavaScript static analyzers
from any version of ECMAScript. Our approach consists of three steps: 1) mechanized specification
extraction, 2) mechanized specification validity check, and 3) derivation of static analyzers. First, we
present a tool JISET that automatically extracts a mechanized specification from ECMAScript. We show
that it successfully extracts a mechanized specification from the latest ECMAScript. Then, we present
two different tools to detect bugs in JavaScript specifications and engines; JEST performs N+1-version
differential testing with JavaScript engines and JSTAR performs a type analysis for the mechanized
specification. Finally, we present JSAVER that automatically derives JavaScript static analyzers from
mechanized specifications using a meta-level static analysis. For evaluation, we derive a JavaScript
static analyzer from the latest ECMAScript and show that it successfully analyzes all applicable official
conformance tests in a sound way. We believe that the thesis would be the first step towards the
co-evolution of specifications, tests, and tools for programming languages.

Keywords JavaScript, mechanized specification extraction, N+1-version differential testing, specifica-
tion type analysis, meta-level static analysis.

Type Analysis

Result

Operand

Checker

Assertion

Checker

Arity

Checker

Reference

Checker

Specification

Bugs

Filling the gap between the JavaScript language specification and tools using the JISET family / 45

JSTAR - Type Sensitivity

33

String, Number,
Null Symbol,

...

ToNumber (x)

Number,
Exception

Filling the gap between the JavaScript language specification and tools using the JISET family / 45

JSTAR - Type Sensitivity

33

String, Number,
Null Symbol,

...

ToNumber (x)

Number,
Exception

Type
Sensitivity

String

Number

...

Number

Number

Null

+0

Symbol

Exception

Filling the gap between the JavaScript language specification and tools using the JISET family / 45

JSTAR - Condition-based Refinement

34

TABLE I: Type-related specification bugs fixed by pull re-
quests for the recent three years from 2018 to 2021

Category Bug Kind # Pull Requests # Bug Fixes

Reference
UnknownVar 5 12

DuplicatedVar 2 12

Arity MissingParam 2 4

Assertion Assertion 4 5

Operand
NoNumber 1 2

Abrupt 5 6

Total 19 41

refine(!e, b)(�]) = refine(e,¬b)(�])

refine(e0 || e1, b)(�]) =

⇢
�]
0 t �]

1 if b
�]
0 u �]

1 if ¬b

refine(e0 && e1, b)(�]) =

⇢
�]
0 u �]

1 if b
�]
0 t �]

1 if ¬b
refine(x.Type == cnormal, #t)(�

]) = �][x 7! ⌧]x u normal(T)]
refine(x.Type == cnormal, #f)(�

]) = �][x 7! ⌧]x u {abrupt}]
refine(x == e, #t)(�]) = �][x 7! ⌧]x u ⌧]e]
refine(x == e, #f)(�]) = �][x 7! ⌧]x \ b⌧]ec]
refine(x : ⌧, #t)(�]) = �][x 7! ⌧]x u {⌧}]
refine(x : ⌧, #f)(�]) = �][x 7! ⌧]x \ {⌧ 0 | ⌧ 0 <: ⌧}]

refine(e, b)(�]) = �]

where �]
j = refine(ej , b)(�]) for j = 0, 1, ⌧]e = JeK]e(�]),

and b⌧]c returns {⌧} if ⌧] denotes a singleton type ⌧ , or returns
?, otherwise.

IV. BUG DETECTOR

We develop a bug detector to statically detect type-related
specification bugs in ECMAScript using an augmented ab-
stract transfer function F]

a with additional checkers. Before
implementing checkers, we manually investigated pull requests
for the recent three years from 2018 to 2021 to identify
important bugs to detect. As summarized in Table I, we found
19 pull requests that fixed 41 type-related specification bugs,
and classified the bugs into four categories with six kinds.
To detect them automatically, we implement four checkers: a
reference checker, an arity checker, an assertion checker, and
an operand checker.

A. Reference Checker

ECMAScript abstract algorithms dynamically introduce
variables in any contexts. A reference bug occurs when trying
to access variables not yet defined (UnknownVar) or to redefine
variables already defined (DuplicatedVar). According to our
manual investigation of the pull requests, the reference bug
is the most prevalent type-related specification bugs; five pull
requests fixed 12 unknown variable bugs and two pull requests
fixed 12 duplicated variable declaration bugs. We implement a
reference checker by adding additional checks to the abstract
semantics of variable lookups and variable declarations as
follows:

JxK]e(�]) =

⇢
unknown variable x if JxK]r(�]) = {?}
· · · otherwise

Jlet x = eK]i(l , ⌧)(d]) =
⇢

already defined variable x if ⌧] = {#t}
· · · otherwise

where ⌧] = Jx?K]e(d](l , ⌧))

If the abstract semantics of a variable lookup for x is a
singleton {?}, x is always an unknown variable. For example,
consider the syntax-directed algorithm in Figure 2(a). Since
the GetReferencedName algorithm is removed, the variable
GetReferencedName does not exist in abstract environments
and its lookup returns {?}. Thus, the reference checker reports
the unknown variable bug for GetReferencedName. For
duplicated variable declarations, the reference checker utilizes
the abstract semantics of the existence check Jx?K]e to see
whether the variable x of each variable declaration is already
defined.

B. Arity Checker

The arity of a function f = def f(p1, · · · ,pn,[· · · , pm])l
is an interval [n,m] where n and m� n denote the numbers
of normal and optional parameters, respectively. In function
invocations, an arity bug occurs when the number of argu-
ments does not match with the function arity (MissingParam).
In the last three years, two pull requests fixed four missing
parameter bugs. The arity checker detects them by adding an
additional check to the abstract semantics of the function call
instruction:

Jx = (e e1 · · · ek)K]i(l , ⌧)(d]) =⇢
missing parameters pk+1, · · · , pnf

if 9f 2 ⌧]. s.t. k < nf

· · · otherwise
where f = def f(p1, · · · , pnf

, [· · · , pmf])l ^
⌧] = JeK]e(d](l , ⌧)).

For each function f in the abstract semantics of the function
expression e, the arity checker compares the number of
arguments with the arity of f to detect missing parameters.
For example, consider the syntax-directed algorithm in Fig-
ure 2(b). The algorithm invocation on line 2 is compiled to
the following function call instruction:

x = (formals.IteratorBindingInitialization formals)

using a temporary variable x. Because it passes only a single
argument formals even though the function arity is [3, 3], the
arity checker reports missing parameter bugs for two additional
parameters iteratorRecord and environment.

C. Assertion Checker

An assertion failure (Assertion) is a specification bug that
occurs when the condition of an assertion instruction is not
true. We found four pull requests that fixed five assertion
failures. The assertion checker detects them using an additional
check in the abstract semantics of the assertion instruction:

Jassert eK]i(l , ⌧)(d]) =
⇢

assertion failure e if {#t} 6v ⌧]

· · · otherwise
where ⌧] = JeK]e(d](l , ⌧))

It checks whether the abstract semantics of the condi-
tion expression e subsumes {#t}. For example, consider
the syntax-directed algorithm in Figure 2(c). The parameter
environment of this algorithm has an environment record or
undefined. Since type sensitivity divides the abstract types

x: number
#t #f

x: number v
 boolean v
 string

x: number v
 boolean v
 string

x: number v
 boolean v
 string

Filling the gap between the JavaScript language specification and tools using the JISET family / 45

JSTAR - Condition-based Refinement

34

TABLE I: Type-related specification bugs fixed by pull re-
quests for the recent three years from 2018 to 2021

Category Bug Kind # Pull Requests # Bug Fixes

Reference
UnknownVar 5 12

DuplicatedVar 2 12

Arity MissingParam 2 4

Assertion Assertion 4 5

Operand
NoNumber 1 2

Abrupt 5 6

Total 19 41

refine(!e, b)(�]) = refine(e,¬b)(�])

refine(e0 || e1, b)(�]) =

⇢
�]
0 t �]

1 if b
�]
0 u �]

1 if ¬b

refine(e0 && e1, b)(�]) =

⇢
�]
0 u �]

1 if b
�]
0 t �]

1 if ¬b
refine(x.Type == cnormal, #t)(�

]) = �][x 7! ⌧]x u normal(T)]
refine(x.Type == cnormal, #f)(�

]) = �][x 7! ⌧]x u {abrupt}]
refine(x == e, #t)(�]) = �][x 7! ⌧]x u ⌧]e]
refine(x == e, #f)(�]) = �][x 7! ⌧]x \ b⌧]ec]
refine(x : ⌧, #t)(�]) = �][x 7! ⌧]x u {⌧}]
refine(x : ⌧, #f)(�]) = �][x 7! ⌧]x \ {⌧ 0 | ⌧ 0 <: ⌧}]

refine(e, b)(�]) = �]

where �]
j = refine(ej , b)(�]) for j = 0, 1, ⌧]e = JeK]e(�]),

and b⌧]c returns {⌧} if ⌧] denotes a singleton type ⌧ , or returns
?, otherwise.

IV. BUG DETECTOR

We develop a bug detector to statically detect type-related
specification bugs in ECMAScript using an augmented ab-
stract transfer function F]

a with additional checkers. Before
implementing checkers, we manually investigated pull requests
for the recent three years from 2018 to 2021 to identify
important bugs to detect. As summarized in Table I, we found
19 pull requests that fixed 41 type-related specification bugs,
and classified the bugs into four categories with six kinds.
To detect them automatically, we implement four checkers: a
reference checker, an arity checker, an assertion checker, and
an operand checker.

A. Reference Checker

ECMAScript abstract algorithms dynamically introduce
variables in any contexts. A reference bug occurs when trying
to access variables not yet defined (UnknownVar) or to redefine
variables already defined (DuplicatedVar). According to our
manual investigation of the pull requests, the reference bug
is the most prevalent type-related specification bugs; five pull
requests fixed 12 unknown variable bugs and two pull requests
fixed 12 duplicated variable declaration bugs. We implement a
reference checker by adding additional checks to the abstract
semantics of variable lookups and variable declarations as
follows:

JxK]e(�]) =

⇢
unknown variable x if JxK]r(�]) = {?}
· · · otherwise

Jlet x = eK]i(l , ⌧)(d]) =
⇢

already defined variable x if ⌧] = {#t}
· · · otherwise

where ⌧] = Jx?K]e(d](l , ⌧))

If the abstract semantics of a variable lookup for x is a
singleton {?}, x is always an unknown variable. For example,
consider the syntax-directed algorithm in Figure 2(a). Since
the GetReferencedName algorithm is removed, the variable
GetReferencedName does not exist in abstract environments
and its lookup returns {?}. Thus, the reference checker reports
the unknown variable bug for GetReferencedName. For
duplicated variable declarations, the reference checker utilizes
the abstract semantics of the existence check Jx?K]e to see
whether the variable x of each variable declaration is already
defined.

B. Arity Checker

The arity of a function f = def f(p1, · · · ,pn,[· · · , pm])l
is an interval [n,m] where n and m� n denote the numbers
of normal and optional parameters, respectively. In function
invocations, an arity bug occurs when the number of argu-
ments does not match with the function arity (MissingParam).
In the last three years, two pull requests fixed four missing
parameter bugs. The arity checker detects them by adding an
additional check to the abstract semantics of the function call
instruction:

Jx = (e e1 · · · ek)K]i(l , ⌧)(d]) =⇢
missing parameters pk+1, · · · , pnf

if 9f 2 ⌧]. s.t. k < nf

· · · otherwise
where f = def f(p1, · · · , pnf

, [· · · , pmf])l ^
⌧] = JeK]e(d](l , ⌧)).

For each function f in the abstract semantics of the function
expression e, the arity checker compares the number of
arguments with the arity of f to detect missing parameters.
For example, consider the syntax-directed algorithm in Fig-
ure 2(b). The algorithm invocation on line 2 is compiled to
the following function call instruction:

x = (formals.IteratorBindingInitialization formals)

using a temporary variable x. Because it passes only a single
argument formals even though the function arity is [3, 3], the
arity checker reports missing parameter bugs for two additional
parameters iteratorRecord and environment.

C. Assertion Checker

An assertion failure (Assertion) is a specification bug that
occurs when the condition of an assertion instruction is not
true. We found four pull requests that fixed five assertion
failures. The assertion checker detects them using an additional
check in the abstract semantics of the assertion instruction:

Jassert eK]i(l , ⌧)(d]) =
⇢

assertion failure e if {#t} 6v ⌧]

· · · otherwise
where ⌧] = JeK]e(d](l , ⌧))

It checks whether the abstract semantics of the condi-
tion expression e subsumes {#t}. For example, consider
the syntax-directed algorithm in Figure 2(c). The parameter
environment of this algorithm has an environment record or
undefined. Since type sensitivity divides the abstract types

x: number
#t #f

x: number v
 boolean v
 string

x: number v
 boolean v
 string

x: number v
 boolean v
 string

x: number v
 boolean v
 string

x: number v
 boolean v
 string

/ 45Filling the gap between the JavaScript language specification and tools using the JISET family 35

JSTAR - Evaluation
• Type Analysis for 864 versions of ECMA-262 in 3 years

93 Bugs Detected
TABLE II: The analysis precision of JSTAR without refinement (no-refine), with refinement (refine), and their difference (�)

Checker Bug Kind Precision = (# True Bugs) / (# Detected Bugs)
no-refine refine �

Reference
UnknownVar 62 / 106 17 / 60 63 / 78 17 / 31 +1 / -28 / -29
DuplicatedVar 45 / 46 46 / 47 +1 / +1

Arity MissingParam 4 / 4 4 / 4 4 / 4 4 / 4 / /
Assertion Assertion 4 / 56 4 / 56 4 / 31 4 / 31 / -25 / -25

Operand
NoNumber 22 / 113 2 / 65 22 / 44 2 / 6 / -69 / -59
Abrupt 20 / 48 20 / 38 / -10

Total 92 / 279 (33.0%) 93 / 157 (59.2%) +1 / -122 (+26.3%)

(a) Life spans sorted by creation (b) The histogram of life spans

Fig. 7: Life spans of true bugs

A. Performance

Figure 6 shows the statistics of the type analysis using
JSTAR for 864 versions of ECMAScript: (a) the number of
analyzed functions, (b) the number of flow- and type-sensitive
views, (c) the number of worklist iterations, and (d) the analy-
sis time. For each version, JSTAR analyzed 1,696.6 functions
on average. Since ECMAScript has gradually evolved, it ana-
lyzed 1,491 functions for the first version in 2018 but analyzed
1,864 functions in the latest. JSTAR analyzes functions with
flow- and type-sensitive views. On average, each version has
92.0K views and each function has 54.1 views.

We measured the performance of JSTAR with the worklist
iteration number and the analysis time. For each version of
ECMAScript, JSTAR took 137.3 seconds with 301.6K worklist
iterations on average. The average analysis time is 8.0 seconds
for specification extraction (extract), 128.5 seconds for type
analysis (analyze), and 0.8 seconds for bug detection (detect).
The performance overhead is modest enough for JSTAR to be
integrated in the open development process of ECMAScript.

B. Precision

We measured the analysis precision with the ratio of true
bugs in the reported bugs by JSTAR. As summarized in the
refine column of Table II, the analysis precision is 59.2%; 93
out of 157 detected bugs are true bugs. The reference checker
detected the most bugs with 80.8% precision; 17 unknown
variables (UnknownVar) and 46 duplicated variable declara-
tions (DuplicatedVar) are true bugs. We found four missing
parameters (MissingParam) with 100.0% precision and four
assertion failures (Assertion) with 12.9% precision. Finally,
the operand checker detected two non-numeric operand bugs

(NoNumber) with 33.3% precision and 20 unchecked abrupt
completion bugs (Abrupt) with 52.6% precision.

To understand the impact of the detected true bugs, we
extended JSTAR to automatically extract when they are created
and resolved in the ECMAScript official repository. A bug is
created when it exists in a specific version but does not exist in
its previous version, and a bug is resolved vice versa. The life

span of a bug denotes the number of days between the created
date and the resolved date. Figure 7 illustrates the life spans of
true bugs; Figure 7(a) depicts the life spans sorted by creation
and Figure 7(b) depicts the histogram of the life spans in a
logarithmic scale. Among 93 true bugs, 49 bugs are inherited,
which means that they are created before 2018. Moreover, 14
bugs still exist in the latest ECMAScript, which are newly
detected by JSTAR. We discuss the details of 14 newly found
bugs in Section V-D. Even though we assume that 49 inherited
bugs are created on January 1, 2018, the average life span is
422.8 and the maximum life span is 1,164. All the bugs with
the maximum life span are inherited ones and they are all
newly detected.

We manually investigated 64 false-positive bugs to under-
stand why JSTAR detected them. Among them, 17 bugs are
due to extraction failure of mechanized specifications caused
by wrong writing styles. Because ECMAScript is written in
HTML, JISET extracts abstract algorithms using the emu-alg
HTML tag. Unfortunately, several abstract algorithms are
defined with the opening tag <emu-alg> but without the
closing tag </emu-alg>, which causes extraction failure of
mechanized specifications leading to false-positive bugs. The
remaining 47 bugs are due to imprecise analysis. We found
that 28 bugs are due to imprecise analysis of the conditions
of assertions and branches for specific function calls. For
example, consider the following algorithm step for GetValue:

Since IsPropertyReference always returns false when the
Base field of a given reference record is cunresolvable, the
field access V .[[Base]] cannot be cunresolvable on line 4.a.
However, because the type analysis does not compute such in-
formation, cunresolvable is also passed as the argument of
ToObject. We believe that an advanced refinement technique

14 Bugs in ES12

59.2% Precision

Filling the gap between the JavaScript language specification and tools using the JISET family / 45

Analysis

Result

JavaScript

Programs

Derived Static

Analyzer

DCS �¿�. 1•Xî ⌅\¯ò� ∏¥ Ö8| ⌅\ ê§lΩ∏ �� Ñ�.
⌅∞YÄ . 2022D. 46+iv Ω. ¿ƒP⇠: X��. (�8 |8)
Jihyeok Park. JavaScript Static Analysis for Evolving Language Specifica-
tions. School of Computing . 2022. 46+iv pages. Advisor: Sukyoung Ryu.
(Text in English)

�]

ê§lΩ∏X Ÿ�x 1»¸ ı°\ X¯`@ ê§lΩ∏ ⌅\¯®‰X âŸD �UXå ttX0 ¥

5å Ã‡‰. lê‰@ t| t∞X‡ê ‰ë\ ê§lΩ∏ �� Ñ�0‰D ⌧⌧tT¿Ã, t‰@
®P ⇠Ÿ<\ $ƒ� ⇠»0– xŸ—}�t‡ $X– Ë}X‰. ⇣\, 2014D –Ä0 ê§lΩ∏X
∏¥ Ö8� ‰D 1‡⇠0 ‹ëXt⌧ t 8⌧î T Ï�tL‰. ¯ Y⌅ |8–⌧î ê§lΩ∏ ∏¥
Ö8\Ä0êŸ<\ê§lΩ∏��Ñ�0| ƒt¥î»\¥)›D⌧H\‰. tî 1)0ƒTÖ8
îú, 2) 0ƒT Ö8 ®1 Ä¨, ¯¨‡ 3) �� Ñ�0 ƒX 8 �¿ Ëƒ\ l1⌧‰. ¯ |8–⌧î
0ƒT Ö8 îú 0 D ⌧HX‡, t| t©t �• \‡ ê§lΩ∏ Ö8\Ä0 0ƒT Ö8| îú
\‰. ⇣\, ê§lΩ∏ ‘ƒD t©\ N+1-Ñ⌅ (Ñ L§⇧¸ 0ƒT Ö8X ¿Ö Ñ�D ⌧HX‡,
t| µt Ö8 ✏ ‘ƒX ∞hD Äú\‰. \Ö�<\, T¿ �� Ñ� 0 D ⌧HX‡, îú\ 0ƒT
Ö8\Ä0 êŸ<\ ê§lΩ∏ �� Ñ�0| ƒ\‰. ¯ Y⌅ |8–⌧ ⌧‹\)›@ ⌅\¯ò�
∏¥| ⌅\ Ö8, L§∏, ¯¨‡ ƒl‰X ıƒT| ⌅\ lX 0¿D »(` É<\ 0�\‰.

u Ï ± – ê§lΩ∏, 0ƒT Ö8 îú, Ö8 ¿Ö Ñ�, N+1-Ñ⌅ (Ñ L§⇧, T¿ �� Ñ�

Abstract
The highly dynamic nature and complex semantics of JavaScript make it difficult to correctly understand
the behaviors of JavaScript programs. To automatically reason about them, researchers have developed
various JavaScript static analyzers that conform to ECMAScript, the standard specification of JavaScript.
However, all the existing JavaScript static analyzers are manually designed; thus, the current approach
is labor-intensive and error-prone. Moreover, since late 2014, this problem becomes more critical because
the JavaScript language itself rapidly evolves with a yearly release cadence and open development process.

In this thesis, we introduce a novel approach to automatically derive JavaScript static analyzers
from any version of ECMAScript. Our approach consists of three steps: 1) mechanized specification
extraction, 2) mechanized specification validity check, and 3) derivation of static analyzers. First, we
present a tool JISET that automatically extracts a mechanized specification from ECMAScript. We show
that it successfully extracts a mechanized specification from the latest ECMAScript. Then, we present
two different tools to detect bugs in JavaScript specifications and engines; JEST performs N+1-version
differential testing with JavaScript engines and JSTAR performs a type analysis for the mechanized
specification. Finally, we present JSAVER that automatically derives JavaScript static analyzers from
mechanized specifications using a meta-level static analysis. For evaluation, we derive a JavaScript
static analyzer from the latest ECMAScript and show that it successfully analyzes all applicable official
conformance tests in a sound way. We believe that the thesis would be the first step towards the
co-evolution of specifications, tests, and tools for programming languages.

Keywords JavaScript, mechanized specification extraction, N+1-version differential testing, specifica-
tion type analysis, meta-level static analysis.

3. Derivation of
Static Analyzers

DCS �¿�. 1•Xî ⌅\¯ò� ∏¥ Ö8| ⌅\ ê§lΩ∏ �� Ñ�.
⌅∞YÄ . 2022D. 46+iv Ω. ¿ƒP⇠: X��. (�8 |8)
Jihyeok Park. JavaScript Static Analysis for Evolving Language Specifica-
tions. School of Computing . 2022. 46+iv pages. Advisor: Sukyoung Ryu.
(Text in English)

�]

ê§lΩ∏X Ÿ�x 1»¸ ı°\ X¯`@ ê§lΩ∏ ⌅\¯®‰X âŸD �UXå ttX0 ¥

5å Ã‡‰. lê‰@ t| t∞X‡ê ‰ë\ ê§lΩ∏ �� Ñ�0‰D ⌧⌧tT¿Ã, t‰@
®P ⇠Ÿ<\ $ƒ� ⇠»0– xŸ—}�t‡ $X– Ë}X‰. ⇣\, 2014D –Ä0 ê§lΩ∏X
∏¥ Ö8� ‰D 1‡⇠0 ‹ëXt⌧ t 8⌧î T Ï�tL‰. ¯ Y⌅ |8–⌧î ê§lΩ∏ ∏¥
Ö8\Ä0êŸ<\ê§lΩ∏��Ñ�0| ƒt¥î»\¥)›D⌧H\‰. tî 1)0ƒTÖ8
îú, 2) 0ƒT Ö8 ®1 Ä¨, ¯¨‡ 3) �� Ñ�0 ƒX 8 �¿ Ëƒ\ l1⌧‰. ¯ |8–⌧î
0ƒT Ö8 îú 0 D ⌧HX‡, t| t©t �• \‡ ê§lΩ∏ Ö8\Ä0 0ƒT Ö8| îú
\‰. ⇣\, ê§lΩ∏ ‘ƒD t©\ N+1-Ñ⌅ (Ñ L§⇧¸ 0ƒT Ö8X ¿Ö Ñ�D ⌧HX‡,
t| µt Ö8 ✏ ‘ƒX ∞hD Äú\‰. \Ö�<\, T¿ �� Ñ� 0 D ⌧HX‡, îú\ 0ƒT
Ö8\Ä0 êŸ<\ ê§lΩ∏ �� Ñ�0| ƒ\‰. ¯ Y⌅ |8–⌧ ⌧‹\)›@ ⌅\¯ò�
∏¥| ⌅\ Ö8, L§∏, ¯¨‡ ƒl‰X ıƒT| ⌅\ lX 0¿D »(` É<\ 0�\‰.

u Ï ± – ê§lΩ∏, 0ƒT Ö8 îú, Ö8 ¿Ö Ñ�, N+1-Ñ⌅ (Ñ L§⇧, T¿ �� Ñ�

Abstract
The highly dynamic nature and complex semantics of JavaScript make it difficult to correctly understand
the behaviors of JavaScript programs. To automatically reason about them, researchers have developed
various JavaScript static analyzers that conform to ECMAScript, the standard specification of JavaScript.
However, all the existing JavaScript static analyzers are manually designed; thus, the current approach
is labor-intensive and error-prone. Moreover, since late 2014, this problem becomes more critical because
the JavaScript language itself rapidly evolves with a yearly release cadence and open development process.

In this thesis, we introduce a novel approach to automatically derive JavaScript static analyzers
from any version of ECMAScript. Our approach consists of three steps: 1) mechanized specification
extraction, 2) mechanized specification validity check, and 3) derivation of static analyzers. First, we
present a tool JISET that automatically extracts a mechanized specification from ECMAScript. We show
that it successfully extracts a mechanized specification from the latest ECMAScript. Then, we present
two different tools to detect bugs in JavaScript specifications and engines; JEST performs N+1-version
differential testing with JavaScript engines and JSTAR performs a type analysis for the mechanized
specification. Finally, we present JSAVER that automatically derives JavaScript static analyzers from
mechanized specifications using a meta-level static analysis. For evaluation, we derive a JavaScript
static analyzer from the latest ECMAScript and show that it successfully analyzes all applicable official
conformance tests in a sound way. We believe that the thesis would be the first step towards the
co-evolution of specifications, tests, and tools for programming languages.

Keywords JavaScript, mechanized specification extraction, N+1-version differential testing, specifica-
tion type analysis, meta-level static analysis.

DCS �¿�. 1•Xî ⌅\¯ò� ∏¥ Ö8| ⌅\ ê§lΩ∏ �� Ñ�.
⌅∞YÄ . 2022D. 46+iv Ω. ¿ƒP⇠: X��. (�8 |8)
Jihyeok Park. JavaScript Static Analysis for Evolving Language Specifica-
tions. School of Computing . 2022. 46+iv pages. Advisor: Sukyoung Ryu.
(Text in English)

�]

ê§lΩ∏X Ÿ�x 1»¸ ı°\ X¯`@ ê§lΩ∏ ⌅\¯®‰X âŸD �UXå ttX0 ¥

5å Ã‡‰. lê‰@ t| t∞X‡ê ‰ë\ ê§lΩ∏ �� Ñ�0‰D ⌧⌧tT¿Ã, t‰@
®P ⇠Ÿ<\ $ƒ� ⇠»0– xŸ—}�t‡ $X– Ë}X‰. ⇣\, 2014D –Ä0 ê§lΩ∏X
∏¥ Ö8� ‰D 1‡⇠0 ‹ëXt⌧ t 8⌧î T Ï�tL‰. ¯ Y⌅ |8–⌧î ê§lΩ∏ ∏¥
Ö8\Ä0êŸ<\ê§lΩ∏��Ñ�0| ƒt¥î»\¥)›D⌧H\‰. tî 1)0ƒTÖ8
îú, 2) 0ƒT Ö8 ®1 Ä¨, ¯¨‡ 3) �� Ñ�0 ƒX 8 �¿ Ëƒ\ l1⌧‰. ¯ |8–⌧î
0ƒT Ö8 îú 0 D ⌧HX‡, t| t©t �• \‡ ê§lΩ∏ Ö8\Ä0 0ƒT Ö8| îú
\‰. ⇣\, ê§lΩ∏ ‘ƒD t©\ N+1-Ñ⌅ (Ñ L§⇧¸ 0ƒT Ö8X ¿Ö Ñ�D ⌧HX‡,
t| µt Ö8 ✏ ‘ƒX ∞hD Äú\‰. \Ö�<\, T¿ �� Ñ� 0 D ⌧HX‡, îú\ 0ƒT
Ö8\Ä0 êŸ<\ ê§lΩ∏ �� Ñ�0| ƒ\‰. ¯ Y⌅ |8–⌧ ⌧‹\)›@ ⌅\¯ò�
∏¥| ⌅\ Ö8, L§∏, ¯¨‡ ƒl‰X ıƒT| ⌅\ lX 0¿D »(` É<\ 0�\‰.

u Ï ± – ê§lΩ∏, 0ƒT Ö8 îú, Ö8 ¿Ö Ñ�, N+1-Ñ⌅ (Ñ L§⇧, T¿ �� Ñ�

Abstract
The highly dynamic nature and complex semantics of JavaScript make it difficult to correctly understand
the behaviors of JavaScript programs. To automatically reason about them, researchers have developed
various JavaScript static analyzers that conform to ECMAScript, the standard specification of JavaScript.
However, all the existing JavaScript static analyzers are manually designed; thus, the current approach
is labor-intensive and error-prone. Moreover, since late 2014, this problem becomes more critical because
the JavaScript language itself rapidly evolves with a yearly release cadence and open development process.

In this thesis, we introduce a novel approach to automatically derive JavaScript static analyzers
from any version of ECMAScript. Our approach consists of three steps: 1) mechanized specification
extraction, 2) mechanized specification validity check, and 3) derivation of static analyzers. First, we
present a tool JISET that automatically extracts a mechanized specification from ECMAScript. We show
that it successfully extracts a mechanized specification from the latest ECMAScript. Then, we present
two different tools to detect bugs in JavaScript specifications and engines; JEST performs N+1-version
differential testing with JavaScript engines and JSTAR performs a type analysis for the mechanized
specification. Finally, we present JSAVER that automatically derives JavaScript static analyzers from
mechanized specifications using a meta-level static analysis. For evaluation, we derive a JavaScript
static analyzer from the latest ECMAScript and show that it successfully analyzes all applicable official
conformance tests in a sound way. We believe that the thesis would be the first step towards the
co-evolution of specifications, tests, and tools for programming languages.

Keywords JavaScript, mechanized specification extraction, N+1-version differential testing, specifica-
tion type analysis, meta-level static analysis.

2. Specification
Validity Check

[ICSE'21] [ASE'21]
Distinguished Paper

Mechanized

Specification

36

ECMA-262

DCS �¿�. 1•Xî ⌅\¯ò� ∏¥ Ö8| ⌅\ ê§lΩ∏ �� Ñ�.
⌅∞YÄ . 2022D. 46+iv Ω. ¿ƒP⇠: X��. (�8 |8)
Jihyeok Park. JavaScript Static Analysis for Evolving Language Specifica-
tions. School of Computing . 2022. 46+iv pages. Advisor: Sukyoung Ryu.
(Text in English)

�]

ê§lΩ∏X Ÿ�x 1»¸ ı°\ X¯`@ ê§lΩ∏ ⌅\¯®‰X âŸD �UXå ttX0 ¥

5å Ã‡‰. lê‰@ t| t∞X‡ê ‰ë\ ê§lΩ∏ �� Ñ�0‰D ⌧⌧tT¿Ã, t‰@
®P ⇠Ÿ<\ $ƒ� ⇠»0– xŸ—}�t‡ $X– Ë}X‰. ⇣\, 2014D –Ä0 ê§lΩ∏X
∏¥ Ö8� ‰D 1‡⇠0 ‹ëXt⌧ t 8⌧î T Ï�tL‰. ¯ Y⌅ |8–⌧î ê§lΩ∏ ∏¥
Ö8\Ä0êŸ<\ê§lΩ∏��Ñ�0| ƒt¥î»\¥)›D⌧H\‰. tî 1)0ƒTÖ8
îú, 2) 0ƒT Ö8 ®1 Ä¨, ¯¨‡ 3) �� Ñ�0 ƒX 8 �¿ Ëƒ\ l1⌧‰. ¯ |8–⌧î
0ƒT Ö8 îú 0 D ⌧HX‡, t| t©t �• \‡ ê§lΩ∏ Ö8\Ä0 0ƒT Ö8| îú
\‰. ⇣\, ê§lΩ∏ ‘ƒD t©\ N+1-Ñ⌅ (Ñ L§⇧¸ 0ƒT Ö8X ¿Ö Ñ�D ⌧HX‡,
t| µt Ö8 ✏ ‘ƒX ∞hD Äú\‰. \Ö�<\, T¿ �� Ñ� 0 D ⌧HX‡, îú\ 0ƒT
Ö8\Ä0 êŸ<\ ê§lΩ∏ �� Ñ�0| ƒ\‰. ¯ Y⌅ |8–⌧ ⌧‹\)›@ ⌅\¯ò�
∏¥| ⌅\ Ö8, L§∏, ¯¨‡ ƒl‰X ıƒT| ⌅\ lX 0¿D »(` É<\ 0�\‰.

u Ï ± – ê§lΩ∏, 0ƒT Ö8 îú, Ö8 ¿Ö Ñ�, N+1-Ñ⌅ (Ñ L§⇧, T¿ �� Ñ�

Abstract
The highly dynamic nature and complex semantics of JavaScript make it difficult to correctly understand
the behaviors of JavaScript programs. To automatically reason about them, researchers have developed
various JavaScript static analyzers that conform to ECMAScript, the standard specification of JavaScript.
However, all the existing JavaScript static analyzers are manually designed; thus, the current approach
is labor-intensive and error-prone. Moreover, since late 2014, this problem becomes more critical because
the JavaScript language itself rapidly evolves with a yearly release cadence and open development process.

In this thesis, we introduce a novel approach to automatically derive JavaScript static analyzers
from any version of ECMAScript. Our approach consists of three steps: 1) mechanized specification
extraction, 2) mechanized specification validity check, and 3) derivation of static analyzers. First, we
present a tool JISET that automatically extracts a mechanized specification from ECMAScript. We show
that it successfully extracts a mechanized specification from the latest ECMAScript. Then, we present
two different tools to detect bugs in JavaScript specifications and engines; JEST performs N+1-version
differential testing with JavaScript engines and JSTAR performs a type analysis for the mechanized
specification. Finally, we present JSAVER that automatically derives JavaScript static analyzers from
mechanized specifications using a meta-level static analysis. For evaluation, we derive a JavaScript
static analyzer from the latest ECMAScript and show that it successfully analyzes all applicable official
conformance tests in a sound way. We believe that the thesis would be the first step towards the
co-evolution of specifications, tests, and tools for programming languages.

Keywords JavaScript, mechanized specification extraction, N+1-version differential testing, specifica-
tion type analysis, meta-level static analysis.

1. Mechanized Spec.
Extraction

[ASE'20]

Conformance Test

Synthesis

Type Analysis for

Specification

Automatically Deriving JavaScript Static Analyzers from Language Specifications
Jihyeok Park, Seungmin An, and Sukyoung Ryu

(In Submission)

In Submission

Filling the gap between the JavaScript language specification and tools using the JISET family / 45

JSAVER - Meta-Level Static Analysis

37

ECMA-262

JS-IR

Compiler

JavaScript
Program IR Program IR 

Static Analyzer Analysis Result

JavaScript Static Analyzer

manual

compiler-based approach (existing)

Filling the gap between the JavaScript language specification and tools using the JISET family / 45

JSAVER - Meta-Level Static Analysis

37

ECMA-262

JS-IR

Compiler

JavaScript
Program IR Program IR 

Static Analyzer Analysis Result

JavaScript Static Analyzer

manual

compiler-based approach (existing)

ECMA-262

JavaScript

Program Analysis ResultIR

Static Analyzer

JS Interpreter

(= IR Program)

JavaScript
Static

Analyzer

manual

interpreter-based approach (ours)

Filling the gap between the JavaScript language specification and tools using the JISET family / 45

JSAVER - Meta-Level Static Analysis

38

IRES

JavaScript

x ||= y

Filling the gap between the JavaScript language specification and tools using the JISET family / 45

JSAVER - Meta-Level Static Analysis

38

IRES

JavaScript

· · ·<latexit sha1_base64="Kef69hW4e/raBfVz+DaK6/NBFbQ=">AAACHXicbVDJSgNBEK1xjXFL9OhlMAiewowKeozLwYsQITFCJkhPp2Ka9Cx01whxmI/wqge/xpt4Ff/GnnEObg8aHu9VdVU9P5ZCk+N8WDOzc/MLi5Wl6vLK6tp6rb5xpaNEcezySEbq2mcapQixS4IkXscKWeBL7PmT09zv3aHSIgo7NI1xELDbUIwEZ2SknseHEenqTa3hNJ0C9l/ilqQBJdo3dQu8YcSTAEPikmndd52YBilTJLjErOolGmPGJ+wW+4aGLEA9SIt9M3vHKEN7FCnzQrIL9XtHygKtp4FvKgNGY/3by8X/vH5Co6NBKsI4IQz516BRIm2K7Px4eygUcpJTQxhXwuxq8zFTjJOJqOqdoblF4YX591jGY+YjpV4+Jb7nWdpxs7QgQZYKykxm7u+E/pKrvaa739y7PGi0Tsr0KrAF27ALLhxCC86hDV3gMIEHeIQn69l6sV6tt6/SGavs2YQfsN4/AabGomA=</latexit> · · ·<latexit sha1_base64="Kef69hW4e/raBfVz+DaK6/NBFbQ=">AAACHXicbVDJSgNBEK1xjXFL9OhlMAiewowKeozLwYsQITFCJkhPp2Ka9Cx01whxmI/wqge/xpt4Ff/GnnEObg8aHu9VdVU9P5ZCk+N8WDOzc/MLi5Wl6vLK6tp6rb5xpaNEcezySEbq2mcapQixS4IkXscKWeBL7PmT09zv3aHSIgo7NI1xELDbUIwEZ2SknseHEenqTa3hNJ0C9l/ilqQBJdo3dQu8YcSTAEPikmndd52YBilTJLjErOolGmPGJ+wW+4aGLEA9SIt9M3vHKEN7FCnzQrIL9XtHygKtp4FvKgNGY/3by8X/vH5Co6NBKsI4IQz516BRIm2K7Px4eygUcpJTQxhXwuxq8zFTjJOJqOqdoblF4YX591jGY+YjpV4+Jb7nWdpxs7QgQZYKykxm7u+E/pKrvaa739y7PGi0Tsr0KrAF27ALLhxCC86hDV3gMIEHeIQn69l6sV6tt6/SGavs2YQfsN4/AabGomA=</latexit>

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Automatically Deriving JavaScript Static Analyzers from Language Specifications ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

function error(e) { throw e; }

const n = ...; // [0, 99]

n |> x => x + 1 // [1, 100]

|> x => x * 2 // [2, 200]

|> x => x + 1n; // TypeError

|> error (42);

of representative techniques to increase the precision of JavaScript
static analysis for loops. It discriminates contexts using a stack of
loop contexts containing loop iterations. We de�ne it under view-
based analysis sensitivity and implement it in JSAVER to increase
the precision of IRES static analysis. Moreover, we also de�ne and
implement the loop sensitivity for JavaScript using the loop sensitiv-
ity for IRES. Therefore, our tool discriminates contexts for explicit
loops, such as for-in or for-of, and even implicit loops, such as the
length property assignment of arrays.

6 EVALUATION
• AdditiveExpression
• Identi�erReference
• Identi�er
• AssignmentExpression
• LeftHandSideExpression
• ArrowFunction

• RQ1: Coverage) How much does JSAVER cover JavaScript
language features in the latest ECMAScript (ES12, 2021)?

• RQ2: Adaptability) Could JSAVER adapt a new language
features not yet introduced in ES12?

• RQ3: Expressiveness) What kinds of abstract sensitivities
and abstract domains JSAVER can support?

• RQ4: Performance) Could JSAVER analyze JavaScript pro-
grams in a durable time?

TODO

7 RELATEDWORK
TODO

• JavaScript Static Analyzers [9, 10, 14, 27]
• JavaScript Static Analysis Techniques [1, 12, 13, 15, 18–21,
30, 34–36]

• Partial Evaluation? (maybe no - * SE conf.)

7.1 JavaScript Mechanized Speci�cation
A speci�cation is mechanized if and only if it is both formalized
and executable. For JavaScript, researchers have proposed various
mechanized speci�cation in their own approaches. In 2010, Guha
et al. [8] presented �JS, the �rst mechanized speci�cation for a core
calculus of ES3 semantics by desugaring most of syntax into �JS, an
extended standard lambda calculus. Thus, the shape of �JS seman-
tics is quite di�erent with original algorithm steps. In mid 2010s,
researchers tried to de�ne mechanized speci�cation for the ES5
and 5.1 semantics having a similar shape of semantics with original
algorithm steps as much as possible. Bodin et al. [2] de�ned JSCert,
a semantics of a small subset of ES5, using Coq and extracts a refer-
ence interpreter JSRef. Park et al. [22] de�ned an entire semantics
of ES5, KJS, using the K [29], which is a framework for de�ning
language semantics. Fragoso Santos et al. [7] presented JaVerT, a

JavaScript veri�cation toolchain, including a JavaScript semantics
de�ned in their own Intermediate language, JSIL.

However, the fundamental problem of their approaches is that
they are manually de�ned thus they are labor-intensive and error-
prone. Due to such limitation, there is no existing mechanized
speci�cation for full semantics of ES6 or later versions. Therefore,
most of existing JavaScript static analyzers only focus on ES5.1
features or rarely support ES6 features even though already six
more versions from ES7 to ES12 are released since 2015.

Moreover, Park et al. [23] successfully showed that JISET is useful
tomechanically handle recent versions of ECMAScript by extending
JISET to perform N+1-version di�erential testing of both JavaScript
engines and ES11 (2020).

8 CONCLUSION
TODO

REFERENCES
[1] Roberto Amadini, Alexander Jordan, Graeme Gange, François Gauthier, Peter

Schachte, Harald Søndergaard, Peter J Stuckey, and Chenyi Zhang. 2017. Com-
bining String Abstract Domains for JavaScript Analysis: An Evaluation. In Pro-
ceedings of the 23rd International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS). https://doi.org/10.1007/978-3-
662-54577-5_3

[2] Martin Bodin, Arthur Charguéraud, Daniele Filaretti, Philippa Gardner, Sergio
Ma�eis, Daiva Naudziuniene, Alan Schmitt, and Gareth Smith. 2014. A Trusted
Mechanised JavaScript Speci�cation. Proceedings of the 41st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming (POPL) 49, 1 (2014), 87–100.
https://doi.org/10.1145/2535838.2535876

[3] David R. Chase, Mark Wegman, and F. Kenneth Zadeck. 1990. Analysis of
Pointers and Structures. In Proceedings of the ACM SIGPLAN 1990 Conference on
Programming Language Design and Implementation (PLDI) (PLDI ’90). Association
for Computing Machinery, New York, NY, USA, 296–310. https://doi.org/10.
1145/93542.93585

[4] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Uni�ed
Lattice Model for Static Analysis of Programs by Construction or Approximation
of Fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming languages (POPL). https://doi.org/10.1145/512950.
512973

[5] Patrick Cousot and Radhia Cousot. 1977. Static Determination of Dynamic
Properties of Generalized Type Unions. In Proceedings of an ACM Conference on
Language Design for Reliable Software. Association for Computing Machinery,
New York, NY, USA, 77–94. https://doi.org/10.1145/800022.808314

[6] Patrick Cousot and Radhia Cousot. 1992. Abstract Interpretation Frameworks.
Journal of Logic and Computation (JLC) 2, 4 (1992), 511–547. https://doi.org/10.
1093/logcom/2.4.511

[7] José Fragoso Santos, Petar Maksimović, Daiva Naudži = unienė, Thomas Wood,
and Philippa Gardner. 2017. JaVerT: JavaScript Veri�cation Toolchain. Proceedings
of the 44th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
(POPL) 2, POPL (2017), 1–33. https://doi.org/10.1145/3158138

[8] Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. 2010. The essence
of JavaScript. In Proceedings of the 24th European Conference on Object-Oriented
Programming (ECOOP). Springer, 126–150. https://doi.org/10.1007/978-3-642-
14107-2_7

[9] Simon Holm Jensen, Anders Møller, and Peter Thiemann. 2009. Type Analysis for
JavaScript. In Proceedings of the 16th International Symposium on Static Analysis
(SAS). https://doi.org/10.1007/978-3-642-03237-0_17

[10] Vineeth Kashyap, Kyle Dewey, Ethan A. Kuefner, John Wagner, Kevin Gib-
bons, John Sarracino, Ben Wiedermann, and Ben Hardekopf. 2014. JSAI: A
Static Analysis Platform for JavaScript. In Proceedings of the 22nd ACM SIG-
SOFT International Symposium on Foundations of Software Engineering (FSE).
https://doi.org/10.1145/2635868.2635904

[11] Se-Won Kim, Xavier Rival, and Sukyoung Ryu. 2018. A Theoretical Foundation
of Sensitivity in an Abstract Interpretation Framework. ACM Transactions on
Programming Languages and Systems (TOPLAS) 40, 3, Article 13 (2018), 44 pages.
https://doi.org/10.1145/3230624

[12] Yoonseok Ko, Xavier Rival, and Sukyoung Ryu. 2017. Weakly Sensitive Analysis
for Unbounded Iteration over JavaScript Objects. In Proceedings of the 15th Asian
Symposium on Programming Languages and Systems (APLAS). https://doi.org/10.
1007/978-3-319-71237-6_8

7

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

(a) Evaluation algorithm for logical OR assignments.

1 syntax def AssignmentExpression [8]. Evaluation(

2 this , LeftHandSideExpression , AssignmentExpression

3) { /* entry */

4 let lref = (LeftHandSideExpression.Evaluation)

5 let lval = [? (GetValue lref)]

6 let lbool = [! (ToBoolean lval)] /* #1 */

7 if (= lbool true) /* #2 */ return lval else { /* #3 */ }

8 if (&& (IsAnonymousFunctionDefinition AssignmentExpression)

9 (LeftHandSideExpression.IsIdentifierRef)) { /* #4 */

10 let rval = (AssignmentExpression.NamedEvaluation

11 lref.ReferencedName)

12 } else { /* #5 */

13 let rref = (AssignmentExpression.Evaluation)

14 let rval = [? (GetValue rref)]

15 } /* #6 */

16 [? (PutValue lref rval)]

17 return rval

18 } /* exit */

(b) The extracted IRES function.

Figure 1: Evaluation algorithm for the eighth alternative of AssignmentExpression in ES12 and the extracted IRES function.

To alleviate this problem, we propose a novel technique called
meta-level static analysis to automatically derive a JavaScript static
analyzer from any version of ECMAScript. The main idea of the
meta-level static analysis is to indirectly analyze a target language
program by performing static analysis for a language speci�ca-
tion of the target language written in a speci�cation language with
the program as the initial input. Thus, it can signi�cantly reduce
the burden to manually design and implement static analyzers by
automatically deriving them from given language speci�cations.
Moreover, it even guarantees the soundness of derived static analyz-
ers for the target language by constructing sound abstract semantics
for the speci�cation language.

For the expressiveness of a meta-level static analysis, we also
present ways to con�gure analysis sensitivities and abstract do-
mains for a target language. Con�guring them is a typical way
to manage analysis precision and performance. First, we present
the AST sensitivity in a meta-level static analysis to express analy-
sis sensitivities for a target language such as �ow-sensitivity and
k-callsite-sensitivity (Section 4.2). Second, we present a way to
con�gure abstract domains for structures and values in a target
language (Section 4.3).

To actualize our approach for JavaScript, we present JSAVER,
JavaScript Static Analyzers via ECMAScript Representations. First,
we utilize JISET [26] to extract a mechanized speci�cation written
in an intermediate representation, IRES, from a given ECMAScript.
Thus, target and speci�cation languages are JavaScript and IRES,
respectively, for the meta-level static analysis in JSAVER. In addition,
we implement several analysis techniques to improve the perfor-
mance and precision of derived static analyzers (Section 5). We
evaluated JSAVER by deriving a JavaScript static analyzer from the
latest ECMAScript, ES12, and using the o�cial conformance tests,
Test2622.

Our contributions are as follows:
• We propose a novel concept called meta-level static analysis,
which automatically derives a static analyzer for a target

2https://github.com/tc39/test262

let f = Math.floor(Math.random () * 100);

// f: [0, 99]

f ||= x => x;

// f: [1, 99] or { name: �f�, ... }

let x = f.name;

// f: [1, 99] or { name: �f�, ... }, x: undefined or �f�

Figure 2: A running JavaScript program with a logical OR
assignment newly introduced in ES12.

language from its language speci�cation written in a speci�-
cation language.

• We actualize meta-level static analysis for JavaScript as a tool
called JSAVER. It is the �rst tool that automatically derives a
JavaScript static analyzer from any version of ECMAScript.

• We derive a static analyzer from the latest ECMAScript, ES12,
to evaluate JSAVER. The synthesized static analyzer success-
fully analyzes all applicable 18,556 o�cial conformance tests.
Moreover, we demonstrate the adaptability and expressive-
ness of JSAVER with several case studies.

2 BACKGROUND
In this section, we explain the detail of ECMAScript, the o�cial
speci�cation of JavaScript. We then introduce JISET and how it
extracts a mechanized speci�cation from it. Since our work is to
perform meta-level static analysis for JavaScript using extracted
mechanized speci�cations, it is essential to understand how EC-
MAScript describes JavaScript semantics and how JISET extracts a
mechanized speci�cation from it.

For the detailed explanation, we explain a new language feature
introduced in ES12 called logical OR assignments (Figure 1) and
use a JavaScript program (Figure 2) as a running example. It �rst
de�nes a variable f with a random integer from 0 to 99. Then, it
uses a logical OR assignment to update f with an arrow function
whose name is �f� only if f has 0 because 0 represents false but
other integers represent true. Finally, it de�nes a variable x with
f.name and its value is undefined if f has an integer or �f� otherwise.

2

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Automatically Deriving JavaScript Static Analyzers from Language Specifications ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

function error(e) { throw e; }

const n = ...; // [0, 99]

n |> x => x + 1 // [1, 100]

|> x => x * 2 // [2, 200]

|> x => x + 1n; // TypeError

|> error (42);

of representative techniques to increase the precision of JavaScript
static analysis for loops. It discriminates contexts using a stack of
loop contexts containing loop iterations. We de�ne it under view-
based analysis sensitivity and implement it in JSAVER to increase
the precision of IRES static analysis. Moreover, we also de�ne and
implement the loop sensitivity for JavaScript using the loop sensitiv-
ity for IRES. Therefore, our tool discriminates contexts for explicit
loops, such as for-in or for-of, and even implicit loops, such as the
length property assignment of arrays.

6 EVALUATION
• AdditiveExpression
• Identi�erReference
• Identi�er
• AssignmentExpression
• LeftHandSideExpression
• ArrowFunction

• RQ1: Coverage) How much does JSAVER cover JavaScript
language features in the latest ECMAScript (ES12, 2021)?

• RQ2: Adaptability) Could JSAVER adapt a new language
features not yet introduced in ES12?

• RQ3: Expressiveness) What kinds of abstract sensitivities
and abstract domains JSAVER can support?

• RQ4: Performance) Could JSAVER analyze JavaScript pro-
grams in a durable time?

TODO

7 RELATEDWORK
TODO

• JavaScript Static Analyzers [9, 10, 14, 27]
• JavaScript Static Analysis Techniques [1, 12, 13, 15, 18–21,
30, 34–36]

• Partial Evaluation? (maybe no - * SE conf.)

7.1 JavaScript Mechanized Speci�cation
A speci�cation is mechanized if and only if it is both formalized
and executable. For JavaScript, researchers have proposed various
mechanized speci�cation in their own approaches. In 2010, Guha
et al. [8] presented �JS, the �rst mechanized speci�cation for a core
calculus of ES3 semantics by desugaring most of syntax into �JS, an
extended standard lambda calculus. Thus, the shape of �JS seman-
tics is quite di�erent with original algorithm steps. In mid 2010s,
researchers tried to de�ne mechanized speci�cation for the ES5
and 5.1 semantics having a similar shape of semantics with original
algorithm steps as much as possible. Bodin et al. [2] de�ned JSCert,
a semantics of a small subset of ES5, using Coq and extracts a refer-
ence interpreter JSRef. Park et al. [22] de�ned an entire semantics
of ES5, KJS, using the K [29], which is a framework for de�ning
language semantics. Fragoso Santos et al. [7] presented JaVerT, a

JavaScript veri�cation toolchain, including a JavaScript semantics
de�ned in their own Intermediate language, JSIL.

However, the fundamental problem of their approaches is that
they are manually de�ned thus they are labor-intensive and error-
prone. Due to such limitation, there is no existing mechanized
speci�cation for full semantics of ES6 or later versions. Therefore,
most of existing JavaScript static analyzers only focus on ES5.1
features or rarely support ES6 features even though already six
more versions from ES7 to ES12 are released since 2015.

Moreover, Park et al. [23] successfully showed that JISET is useful
tomechanically handle recent versions of ECMAScript by extending
JISET to perform N+1-version di�erential testing of both JavaScript
engines and ES11 (2020).

8 CONCLUSION
TODO

REFERENCES
[1] Roberto Amadini, Alexander Jordan, Graeme Gange, François Gauthier, Peter

Schachte, Harald Søndergaard, Peter J Stuckey, and Chenyi Zhang. 2017. Com-
bining String Abstract Domains for JavaScript Analysis: An Evaluation. In Pro-
ceedings of the 23rd International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS). https://doi.org/10.1007/978-3-
662-54577-5_3

[2] Martin Bodin, Arthur Charguéraud, Daniele Filaretti, Philippa Gardner, Sergio
Ma�eis, Daiva Naudziuniene, Alan Schmitt, and Gareth Smith. 2014. A Trusted
Mechanised JavaScript Speci�cation. Proceedings of the 41st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming (POPL) 49, 1 (2014), 87–100.
https://doi.org/10.1145/2535838.2535876

[3] David R. Chase, Mark Wegman, and F. Kenneth Zadeck. 1990. Analysis of
Pointers and Structures. In Proceedings of the ACM SIGPLAN 1990 Conference on
Programming Language Design and Implementation (PLDI) (PLDI ’90). Association
for Computing Machinery, New York, NY, USA, 296–310. https://doi.org/10.
1145/93542.93585

[4] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Uni�ed
Lattice Model for Static Analysis of Programs by Construction or Approximation
of Fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming languages (POPL). https://doi.org/10.1145/512950.
512973

[5] Patrick Cousot and Radhia Cousot. 1977. Static Determination of Dynamic
Properties of Generalized Type Unions. In Proceedings of an ACM Conference on
Language Design for Reliable Software. Association for Computing Machinery,
New York, NY, USA, 77–94. https://doi.org/10.1145/800022.808314

[6] Patrick Cousot and Radhia Cousot. 1992. Abstract Interpretation Frameworks.
Journal of Logic and Computation (JLC) 2, 4 (1992), 511–547. https://doi.org/10.
1093/logcom/2.4.511

[7] José Fragoso Santos, Petar Maksimović, Daiva Naudži = unienė, Thomas Wood,
and Philippa Gardner. 2017. JaVerT: JavaScript Veri�cation Toolchain. Proceedings
of the 44th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
(POPL) 2, POPL (2017), 1–33. https://doi.org/10.1145/3158138

[8] Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. 2010. The essence
of JavaScript. In Proceedings of the 24th European Conference on Object-Oriented
Programming (ECOOP). Springer, 126–150. https://doi.org/10.1007/978-3-642-
14107-2_7

[9] Simon Holm Jensen, Anders Møller, and Peter Thiemann. 2009. Type Analysis for
JavaScript. In Proceedings of the 16th International Symposium on Static Analysis
(SAS). https://doi.org/10.1007/978-3-642-03237-0_17

[10] Vineeth Kashyap, Kyle Dewey, Ethan A. Kuefner, John Wagner, Kevin Gib-
bons, John Sarracino, Ben Wiedermann, and Ben Hardekopf. 2014. JSAI: A
Static Analysis Platform for JavaScript. In Proceedings of the 22nd ACM SIG-
SOFT International Symposium on Foundations of Software Engineering (FSE).
https://doi.org/10.1145/2635868.2635904

[11] Se-Won Kim, Xavier Rival, and Sukyoung Ryu. 2018. A Theoretical Foundation
of Sensitivity in an Abstract Interpretation Framework. ACM Transactions on
Programming Languages and Systems (TOPLAS) 40, 3, Article 13 (2018), 44 pages.
https://doi.org/10.1145/3230624

[12] Yoonseok Ko, Xavier Rival, and Sukyoung Ryu. 2017. Weakly Sensitive Analysis
for Unbounded Iteration over JavaScript Objects. In Proceedings of the 15th Asian
Symposium on Programming Languages and Systems (APLAS). https://doi.org/10.
1007/978-3-319-71237-6_8

7

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Automatically Deriving JavaScript Static Analyzers from Language Specifications ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

function error(e) { throw e; }

const n = ...; // [0, 99]

n |> x => x + 1 // [1, 100]

|> x => x * 2 // [2, 200]

|> x => x + 1n; // TypeError

|> error (42);

of representative techniques to increase the precision of JavaScript
static analysis for loops. It discriminates contexts using a stack of
loop contexts containing loop iterations. We de�ne it under view-
based analysis sensitivity and implement it in JSAVER to increase
the precision of IRES static analysis. Moreover, we also de�ne and
implement the loop sensitivity for JavaScript using the loop sensitiv-
ity for IRES. Therefore, our tool discriminates contexts for explicit
loops, such as for-in or for-of, and even implicit loops, such as the
length property assignment of arrays.

6 EVALUATION
• AdditiveExpression
• Identi�erReference
• Identi�er
• AssignmentExpression
• LeftHandSideExpression
• ArrowFunction

• RQ1: Coverage) How much does JSAVER cover JavaScript
language features in the latest ECMAScript (ES12, 2021)?

• RQ2: Adaptability) Could JSAVER adapt a new language
features not yet introduced in ES12?

• RQ3: Expressiveness) What kinds of abstract sensitivities
and abstract domains JSAVER can support?

• RQ4: Performance) Could JSAVER analyze JavaScript pro-
grams in a durable time?

TODO

7 RELATEDWORK
TODO

• JavaScript Static Analyzers [9, 10, 14, 27]
• JavaScript Static Analysis Techniques [1, 12, 13, 15, 18–21,
30, 34–36]

• Partial Evaluation? (maybe no - * SE conf.)

7.1 JavaScript Mechanized Speci�cation
A speci�cation is mechanized if and only if it is both formalized
and executable. For JavaScript, researchers have proposed various
mechanized speci�cation in their own approaches. In 2010, Guha
et al. [8] presented �JS, the �rst mechanized speci�cation for a core
calculus of ES3 semantics by desugaring most of syntax into �JS, an
extended standard lambda calculus. Thus, the shape of �JS seman-
tics is quite di�erent with original algorithm steps. In mid 2010s,
researchers tried to de�ne mechanized speci�cation for the ES5
and 5.1 semantics having a similar shape of semantics with original
algorithm steps as much as possible. Bodin et al. [2] de�ned JSCert,
a semantics of a small subset of ES5, using Coq and extracts a refer-
ence interpreter JSRef. Park et al. [22] de�ned an entire semantics
of ES5, KJS, using the K [29], which is a framework for de�ning
language semantics. Fragoso Santos et al. [7] presented JaVerT, a

JavaScript veri�cation toolchain, including a JavaScript semantics
de�ned in their own Intermediate language, JSIL.

However, the fundamental problem of their approaches is that
they are manually de�ned thus they are labor-intensive and error-
prone. Due to such limitation, there is no existing mechanized
speci�cation for full semantics of ES6 or later versions. Therefore,
most of existing JavaScript static analyzers only focus on ES5.1
features or rarely support ES6 features even though already six
more versions from ES7 to ES12 are released since 2015.

Moreover, Park et al. [23] successfully showed that JISET is useful
tomechanically handle recent versions of ECMAScript by extending
JISET to perform N+1-version di�erential testing of both JavaScript
engines and ES11 (2020).

8 CONCLUSION
TODO

REFERENCES
[1] Roberto Amadini, Alexander Jordan, Graeme Gange, François Gauthier, Peter

Schachte, Harald Søndergaard, Peter J Stuckey, and Chenyi Zhang. 2017. Com-
bining String Abstract Domains for JavaScript Analysis: An Evaluation. In Pro-
ceedings of the 23rd International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS). https://doi.org/10.1007/978-3-
662-54577-5_3

[2] Martin Bodin, Arthur Charguéraud, Daniele Filaretti, Philippa Gardner, Sergio
Ma�eis, Daiva Naudziuniene, Alan Schmitt, and Gareth Smith. 2014. A Trusted
Mechanised JavaScript Speci�cation. Proceedings of the 41st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming (POPL) 49, 1 (2014), 87–100.
https://doi.org/10.1145/2535838.2535876

[3] David R. Chase, Mark Wegman, and F. Kenneth Zadeck. 1990. Analysis of
Pointers and Structures. In Proceedings of the ACM SIGPLAN 1990 Conference on
Programming Language Design and Implementation (PLDI) (PLDI ’90). Association
for Computing Machinery, New York, NY, USA, 296–310. https://doi.org/10.
1145/93542.93585

[4] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Uni�ed
Lattice Model for Static Analysis of Programs by Construction or Approximation
of Fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming languages (POPL). https://doi.org/10.1145/512950.
512973

[5] Patrick Cousot and Radhia Cousot. 1977. Static Determination of Dynamic
Properties of Generalized Type Unions. In Proceedings of an ACM Conference on
Language Design for Reliable Software. Association for Computing Machinery,
New York, NY, USA, 77–94. https://doi.org/10.1145/800022.808314

[6] Patrick Cousot and Radhia Cousot. 1992. Abstract Interpretation Frameworks.
Journal of Logic and Computation (JLC) 2, 4 (1992), 511–547. https://doi.org/10.
1093/logcom/2.4.511

[7] José Fragoso Santos, Petar Maksimović, Daiva Naudži = unienė, Thomas Wood,
and Philippa Gardner. 2017. JaVerT: JavaScript Veri�cation Toolchain. Proceedings
of the 44th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
(POPL) 2, POPL (2017), 1–33. https://doi.org/10.1145/3158138

[8] Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. 2010. The essence
of JavaScript. In Proceedings of the 24th European Conference on Object-Oriented
Programming (ECOOP). Springer, 126–150. https://doi.org/10.1007/978-3-642-
14107-2_7

[9] Simon Holm Jensen, Anders Møller, and Peter Thiemann. 2009. Type Analysis for
JavaScript. In Proceedings of the 16th International Symposium on Static Analysis
(SAS). https://doi.org/10.1007/978-3-642-03237-0_17

[10] Vineeth Kashyap, Kyle Dewey, Ethan A. Kuefner, John Wagner, Kevin Gib-
bons, John Sarracino, Ben Wiedermann, and Ben Hardekopf. 2014. JSAI: A
Static Analysis Platform for JavaScript. In Proceedings of the 22nd ACM SIG-
SOFT International Symposium on Foundations of Software Engineering (FSE).
https://doi.org/10.1145/2635868.2635904

[11] Se-Won Kim, Xavier Rival, and Sukyoung Ryu. 2018. A Theoretical Foundation
of Sensitivity in an Abstract Interpretation Framework. ACM Transactions on
Programming Languages and Systems (TOPLAS) 40, 3, Article 13 (2018), 44 pages.
https://doi.org/10.1145/3230624

[12] Yoonseok Ko, Xavier Rival, and Sukyoung Ryu. 2017. Weakly Sensitive Analysis
for Unbounded Iteration over JavaScript Objects. In Proceedings of the 15th Asian
Symposium on Programming Languages and Systems (APLAS). https://doi.org/10.
1007/978-3-319-71237-6_8

7

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Automatically Deriving JavaScript Static Analyzers from Language Specifications ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

function error(e) { throw e; }

const n = ...; // [0, 99]

n |> x => x + 1 // [1, 100]

|> x => x * 2 // [2, 200]

|> x => x + 1n; // TypeError

|> error (42);

of representative techniques to increase the precision of JavaScript
static analysis for loops. It discriminates contexts using a stack of
loop contexts containing loop iterations. We de�ne it under view-
based analysis sensitivity and implement it in JSAVER to increase
the precision of IRES static analysis. Moreover, we also de�ne and
implement the loop sensitivity for JavaScript using the loop sensitiv-
ity for IRES. Therefore, our tool discriminates contexts for explicit
loops, such as for-in or for-of, and even implicit loops, such as the
length property assignment of arrays.

6 EVALUATION
• AdditiveExpression
• Identi�erReference
• Identi�er
• AssignmentExpression
• LeftHandSideExpression
• ArrowFunction

• RQ1: Coverage) How much does JSAVER cover JavaScript
language features in the latest ECMAScript (ES12, 2021)?

• RQ2: Adaptability) Could JSAVER adapt a new language
features not yet introduced in ES12?

• RQ3: Expressiveness) What kinds of abstract sensitivities
and abstract domains JSAVER can support?

• RQ4: Performance) Could JSAVER analyze JavaScript pro-
grams in a durable time?

TODO

7 RELATEDWORK
TODO

• JavaScript Static Analyzers [9, 10, 14, 27]
• JavaScript Static Analysis Techniques [1, 12, 13, 15, 18–21,
30, 34–36]

• Partial Evaluation? (maybe no - * SE conf.)

7.1 JavaScript Mechanized Speci�cation
A speci�cation is mechanized if and only if it is both formalized
and executable. For JavaScript, researchers have proposed various
mechanized speci�cation in their own approaches. In 2010, Guha
et al. [8] presented �JS, the �rst mechanized speci�cation for a core
calculus of ES3 semantics by desugaring most of syntax into �JS, an
extended standard lambda calculus. Thus, the shape of �JS seman-
tics is quite di�erent with original algorithm steps. In mid 2010s,
researchers tried to de�ne mechanized speci�cation for the ES5
and 5.1 semantics having a similar shape of semantics with original
algorithm steps as much as possible. Bodin et al. [2] de�ned JSCert,
a semantics of a small subset of ES5, using Coq and extracts a refer-
ence interpreter JSRef. Park et al. [22] de�ned an entire semantics
of ES5, KJS, using the K [29], which is a framework for de�ning
language semantics. Fragoso Santos et al. [7] presented JaVerT, a

JavaScript veri�cation toolchain, including a JavaScript semantics
de�ned in their own Intermediate language, JSIL.

However, the fundamental problem of their approaches is that
they are manually de�ned thus they are labor-intensive and error-
prone. Due to such limitation, there is no existing mechanized
speci�cation for full semantics of ES6 or later versions. Therefore,
most of existing JavaScript static analyzers only focus on ES5.1
features or rarely support ES6 features even though already six
more versions from ES7 to ES12 are released since 2015.

Moreover, Park et al. [23] successfully showed that JISET is useful
tomechanically handle recent versions of ECMAScript by extending
JISET to perform N+1-version di�erential testing of both JavaScript
engines and ES11 (2020).

8 CONCLUSION
TODO

REFERENCES
[1] Roberto Amadini, Alexander Jordan, Graeme Gange, François Gauthier, Peter

Schachte, Harald Søndergaard, Peter J Stuckey, and Chenyi Zhang. 2017. Com-
bining String Abstract Domains for JavaScript Analysis: An Evaluation. In Pro-
ceedings of the 23rd International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS). https://doi.org/10.1007/978-3-
662-54577-5_3

[2] Martin Bodin, Arthur Charguéraud, Daniele Filaretti, Philippa Gardner, Sergio
Ma�eis, Daiva Naudziuniene, Alan Schmitt, and Gareth Smith. 2014. A Trusted
Mechanised JavaScript Speci�cation. Proceedings of the 41st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming (POPL) 49, 1 (2014), 87–100.
https://doi.org/10.1145/2535838.2535876

[3] David R. Chase, Mark Wegman, and F. Kenneth Zadeck. 1990. Analysis of
Pointers and Structures. In Proceedings of the ACM SIGPLAN 1990 Conference on
Programming Language Design and Implementation (PLDI) (PLDI ’90). Association
for Computing Machinery, New York, NY, USA, 296–310. https://doi.org/10.
1145/93542.93585

[4] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Uni�ed
Lattice Model for Static Analysis of Programs by Construction or Approximation
of Fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming languages (POPL). https://doi.org/10.1145/512950.
512973

[5] Patrick Cousot and Radhia Cousot. 1977. Static Determination of Dynamic
Properties of Generalized Type Unions. In Proceedings of an ACM Conference on
Language Design for Reliable Software. Association for Computing Machinery,
New York, NY, USA, 77–94. https://doi.org/10.1145/800022.808314

[6] Patrick Cousot and Radhia Cousot. 1992. Abstract Interpretation Frameworks.
Journal of Logic and Computation (JLC) 2, 4 (1992), 511–547. https://doi.org/10.
1093/logcom/2.4.511

[7] José Fragoso Santos, Petar Maksimović, Daiva Naudži = unienė, Thomas Wood,
and Philippa Gardner. 2017. JaVerT: JavaScript Veri�cation Toolchain. Proceedings
of the 44th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
(POPL) 2, POPL (2017), 1–33. https://doi.org/10.1145/3158138

[8] Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. 2010. The essence
of JavaScript. In Proceedings of the 24th European Conference on Object-Oriented
Programming (ECOOP). Springer, 126–150. https://doi.org/10.1007/978-3-642-
14107-2_7

[9] Simon Holm Jensen, Anders Møller, and Peter Thiemann. 2009. Type Analysis for
JavaScript. In Proceedings of the 16th International Symposium on Static Analysis
(SAS). https://doi.org/10.1007/978-3-642-03237-0_17

[10] Vineeth Kashyap, Kyle Dewey, Ethan A. Kuefner, John Wagner, Kevin Gib-
bons, John Sarracino, Ben Wiedermann, and Ben Hardekopf. 2014. JSAI: A
Static Analysis Platform for JavaScript. In Proceedings of the 22nd ACM SIG-
SOFT International Symposium on Foundations of Software Engineering (FSE).
https://doi.org/10.1145/2635868.2635904

[11] Se-Won Kim, Xavier Rival, and Sukyoung Ryu. 2018. A Theoretical Foundation
of Sensitivity in an Abstract Interpretation Framework. ACM Transactions on
Programming Languages and Systems (TOPLAS) 40, 3, Article 13 (2018), 44 pages.
https://doi.org/10.1145/3230624

[12] Yoonseok Ko, Xavier Rival, and Sukyoung Ryu. 2017. Weakly Sensitive Analysis
for Unbounded Iteration over JavaScript Objects. In Proceedings of the 15th Asian
Symposium on Programming Languages and Systems (APLAS). https://doi.org/10.
1007/978-3-319-71237-6_8

7

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

(a) Evaluation algorithm for logical OR assignments.

1 syntax def AssignmentExpression [8]. Evaluation(

2 this , LeftHandSideExpression , AssignmentExpression

3) { /* entry */

4 let lref = (LeftHandSideExpression.Evaluation)

5 let lval = [? (GetValue lref)]

6 let lbool = [! (ToBoolean lval)] /* #1 */

7 if (= lbool true) /* #2 */ return lval else { /* #3 */ }

8 if (&& (IsAnonymousFunctionDefinition AssignmentExpression)

9 (LeftHandSideExpression.IsIdentifierRef)) { /* #4 */

10 let rval = (AssignmentExpression.NamedEvaluation

11 lref.ReferencedName)

12 } else { /* #5 */

13 let rref = (AssignmentExpression.Evaluation)

14 let rval = [? (GetValue rref)]

15 } /* #6 */

16 [? (PutValue lref rval)]

17 return rval

18 } /* exit */

(b) The extracted IRES function.

Figure 1: Evaluation algorithm for the eighth alternative of AssignmentExpression in ES12 and the extracted IRES function.

To alleviate this problem, we propose a novel technique called
meta-level static analysis to automatically derive a JavaScript static
analyzer from any version of ECMAScript. The main idea of the
meta-level static analysis is to indirectly analyze a target language
program by performing static analysis for a language speci�ca-
tion of the target language written in a speci�cation language with
the program as the initial input. Thus, it can signi�cantly reduce
the burden to manually design and implement static analyzers by
automatically deriving them from given language speci�cations.
Moreover, it even guarantees the soundness of derived static analyz-
ers for the target language by constructing sound abstract semantics
for the speci�cation language.

For the expressiveness of a meta-level static analysis, we also
present ways to con�gure analysis sensitivities and abstract do-
mains for a target language. Con�guring them is a typical way
to manage analysis precision and performance. First, we present
the AST sensitivity in a meta-level static analysis to express analy-
sis sensitivities for a target language such as �ow-sensitivity and
k-callsite-sensitivity (Section 4.2). Second, we present a way to
con�gure abstract domains for structures and values in a target
language (Section 4.3).

To actualize our approach for JavaScript, we present JSAVER,
JavaScript Static Analyzers via ECMAScript Representations. First,
we utilize JISET [26] to extract a mechanized speci�cation written
in an intermediate representation, IRES, from a given ECMAScript.
Thus, target and speci�cation languages are JavaScript and IRES,
respectively, for the meta-level static analysis in JSAVER. In addition,
we implement several analysis techniques to improve the perfor-
mance and precision of derived static analyzers (Section 5). We
evaluated JSAVER by deriving a JavaScript static analyzer from the
latest ECMAScript, ES12, and using the o�cial conformance tests,
Test2622.

Our contributions are as follows:
• We propose a novel concept called meta-level static analysis,
which automatically derives a static analyzer for a target

2https://github.com/tc39/test262

let f = Math.floor(Math.random () * 100);

// f: [0, 99]

f ||= x => x;

// f: [1, 99] or { name: �f�, ... }

let x = f.name;

// f: [1, 99] or { name: �f�, ... }, x: undefined or �f�

Figure 2: A running JavaScript program with a logical OR
assignment newly introduced in ES12.

language from its language speci�cation written in a speci�-
cation language.

• We actualize meta-level static analysis for JavaScript as a tool
called JSAVER. It is the �rst tool that automatically derives a
JavaScript static analyzer from any version of ECMAScript.

• We derive a static analyzer from the latest ECMAScript, ES12,
to evaluate JSAVER. The synthesized static analyzer success-
fully analyzes all applicable 18,556 o�cial conformance tests.
Moreover, we demonstrate the adaptability and expressive-
ness of JSAVER with several case studies.

2 BACKGROUND
In this section, we explain the detail of ECMAScript, the o�cial
speci�cation of JavaScript. We then introduce JISET and how it
extracts a mechanized speci�cation from it. Since our work is to
perform meta-level static analysis for JavaScript using extracted
mechanized speci�cations, it is essential to understand how EC-
MAScript describes JavaScript semantics and how JISET extracts a
mechanized speci�cation from it.

For the detailed explanation, we explain a new language feature
introduced in ES12 called logical OR assignments (Figure 1) and
use a JavaScript program (Figure 2) as a running example. It �rst
de�nes a variable f with a random integer from 0 to 99. Then, it
uses a logical OR assignment to update f with an arrow function
whose name is �f� only if f has 0 because 0 represents false but
other integers represent true. Finally, it de�nes a variable x with
f.name and its value is undefined if f has an integer or �f� otherwise.

2

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Automatically Deriving JavaScript Static Analyzers from Language Specifications ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

otherwise, a normal function. An instruction i is a primitive value
assignment, an operation between values, a internal �eld access, a
external �eld access, a record allocations, a function call, or a return
instruction.

States � 2 S = H ⇥ C
Heaps h 2 H = A �n��!R
Contexts c 2 C = L ⇥ (X �n��!V) ⇥ C?
Values � 2 V = Vp] A] T] F
Records r 2 R = (Vstr

�n��!V) ⇥ (Vstr
�n��!V)

States S consists of heaps H and contexts C. A heap h 2 H is a
�nite mapping from addresses to records. Each record allocation
instruction x = {} creates a unique address a 2 A di�erent with
existing addresses. A context c 2 C is a triple of 1) the program
point, 2) a local environment which is a �nite mapping from vari-
ables to values, and 3) an optional calling context. A value � 2 V
is a primitive value, an address, an AST, or a function. A record
r 2 R consists of two �nite mappings from strings to values. The
left mapping represents internal �elds accessible by internal �eld
accesses x = x[x]. On the other hand, the right one represents ex-
ternal �elds, such as variables in JavaScript environment records or
properties in JavaScript objects, and they are accessible by a exter-
nal �eld access x = x[x]ext. We formulate the concrete semantics
of a program P as a transition system ({, S�) where{✓ S⇥ S is a
transition relation between concrete states and S� is a set of initial
states.

For a meta-level static analysis, we de�ne its abstract semantics
in the abstract interpretation framework [4, 6]. Since our analysis
supports view-based analysis sensitivities [11, 24], the abstract
domain is de�ned as a mapping from views to abstract states, D# =
� ! D#, with a view abstraction � : � ! P(S) which represents
the meaning of each view � 2 �. Then, we de�ne abstract states as
follows:

Abstract States � # 2 D# = H# ⇥ C#

Abstract Heaps h# 2 H# = A# �n��!(R# ⇥ R#
ext

)
Abstract Addresses a# 2 A# = L
Abstract Contexts c# 2 C# = X �n��!V#

An abstract heaph# 2 H# is a �nitemapping from abstract addresses
A
to pairs of abstract internal records R# and abstract external

records R#
ext

. Each abstract address a# 2 A# is de�ned with the
allocation-site abstraction [3] that partitions concrete addresses A
based on their allocation sites L. An abstract context c# 2 C# is a
�nite mapping from variables to abstract values. Shapes of abstract
values V#, abstract internal (or external) records R# (or R#

ext
) are

parametric thus we can freely con�gure them.

4.2 Analysis Sensitivities
In a meta-level static analysis, analysis sensitivities of the target
language (JavaScript) are di�erent with them of the speci�cation
language (IRES). For example, we explain what happens during anal-
ysis of the following JavaScript program with the �ow-sensitivity
for IRES:

let x = 1, y = 2;

x + y; // 3

(a) Evaluation algorithm for identi�er references.

1 syntax def IdentifierReference [0]. Evaluation(

2 this , Identifier

3) {

4 return [? (ResolveBinding (Identifier.StringValue))

5 }

(b) The extracted IRES function.

(c) Parsing result of x + y (bottom) and the initial local environment
(top) of the IRES function.

Figure 7: An example of the di�erence between analysis sen-
sitivities of target and speci�cation language.

Figure 7 describes (a) the Evaluation algorithm of identi�er refer-
ences, (b) its extracted IRES function, and (c) the parsing result of
x + y and the initial local environment of the IRES function. Since
the �ow-sensitivity merges states based on the program points,
contexts for the evaluation of both identi�er references x and y are
merged. Thus, the IRES variable Identifier points to their ASTs
as described in Figure 7. Due to the imprecise merge of contexts,
StringValue of Identifier returns �x� and �y�, and ResolveBinding
with them returns both 1 and 2. Finally, the analysis result of x + y

becomes { 2, 3, 4 }.

Flow Sensitivity. To resolve this problem, we present an AST sen-
sitivity for the speci�cation language to represent �ow-sensitivity
of the target language. It is a variant of object sensitivity [17, 33]
which uses abstract addresses A# of receiver objects as views. How-
ever, unlike the object sensitivity, the AST sensitivity utilizes ASTs
T stored in the parameter this only for syntax-directed functions:

� flow(t 2 T) = {� = (_, c) 2 S | syntax-ctxt(c) = c 0 ^ c 0(this) = t}
where syntax-ctxt(c) denotes the top-most context whose function
is syntax-directed and c 0(this) denotes a lookup of the variable
this in the mapping in the context c 0. We de�ne the �ow sensitivity
for the target language using the AST sensitivity and it successfully
divides contexts for the evaluation of JavaScript identi�ers x and y

in the above example using their ASTs even though their program
points are same.

Callsite Sensitivity. We also formally de�ne the callsite sensitiv-
ity [31, 32] for the target language by extending AST sensitivity
for speci�c normal IRES functions. The original callsite sensitivity
discriminates calling contexts based on their top most callsites. In
ECMAScript, all explicit and even implicit JavaScript function calls

5

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Automatically Deriving JavaScript Static Analyzers from Language Specifications ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

function error(e) { throw e; }

const n = ...; // [0, 99]

n |> x => x + 1 // [1, 100]

|> x => x * 2 // [2, 200]

|> x => x + 1n; // TypeError

|> error (42);

of representative techniques to increase the precision of JavaScript
static analysis for loops. It discriminates contexts using a stack of
loop contexts containing loop iterations. We de�ne it under view-
based analysis sensitivity and implement it in JSAVER to increase
the precision of IRES static analysis. Moreover, we also de�ne and
implement the loop sensitivity for JavaScript using the loop sensitiv-
ity for IRES. Therefore, our tool discriminates contexts for explicit
loops, such as for-in or for-of, and even implicit loops, such as the
length property assignment of arrays.

6 EVALUATION
• AdditiveExpression
• Identi�erReference
• Identi�er
• AssignmentExpression
• LeftHandSideExpression
• ArrowFunction

• RQ1: Coverage) How much does JSAVER cover JavaScript
language features in the latest ECMAScript (ES12, 2021)?

• RQ2: Adaptability) Could JSAVER adapt a new language
features not yet introduced in ES12?

• RQ3: Expressiveness) What kinds of abstract sensitivities
and abstract domains JSAVER can support?

• RQ4: Performance) Could JSAVER analyze JavaScript pro-
grams in a durable time?

TODO

7 RELATEDWORK
TODO

• JavaScript Static Analyzers [9, 10, 14, 27]
• JavaScript Static Analysis Techniques [1, 12, 13, 15, 18–21,
30, 34–36]

• Partial Evaluation? (maybe no - * SE conf.)

7.1 JavaScript Mechanized Speci�cation
A speci�cation is mechanized if and only if it is both formalized
and executable. For JavaScript, researchers have proposed various
mechanized speci�cation in their own approaches. In 2010, Guha
et al. [8] presented �JS, the �rst mechanized speci�cation for a core
calculus of ES3 semantics by desugaring most of syntax into �JS, an
extended standard lambda calculus. Thus, the shape of �JS seman-
tics is quite di�erent with original algorithm steps. In mid 2010s,
researchers tried to de�ne mechanized speci�cation for the ES5
and 5.1 semantics having a similar shape of semantics with original
algorithm steps as much as possible. Bodin et al. [2] de�ned JSCert,
a semantics of a small subset of ES5, using Coq and extracts a refer-
ence interpreter JSRef. Park et al. [22] de�ned an entire semantics
of ES5, KJS, using the K [29], which is a framework for de�ning
language semantics. Fragoso Santos et al. [7] presented JaVerT, a

JavaScript veri�cation toolchain, including a JavaScript semantics
de�ned in their own Intermediate language, JSIL.

However, the fundamental problem of their approaches is that
they are manually de�ned thus they are labor-intensive and error-
prone. Due to such limitation, there is no existing mechanized
speci�cation for full semantics of ES6 or later versions. Therefore,
most of existing JavaScript static analyzers only focus on ES5.1
features or rarely support ES6 features even though already six
more versions from ES7 to ES12 are released since 2015.

Moreover, Park et al. [23] successfully showed that JISET is useful
tomechanically handle recent versions of ECMAScript by extending
JISET to perform N+1-version di�erential testing of both JavaScript
engines and ES11 (2020).

8 CONCLUSION
TODO

REFERENCES
[1] Roberto Amadini, Alexander Jordan, Graeme Gange, François Gauthier, Peter

Schachte, Harald Søndergaard, Peter J Stuckey, and Chenyi Zhang. 2017. Com-
bining String Abstract Domains for JavaScript Analysis: An Evaluation. In Pro-
ceedings of the 23rd International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS). https://doi.org/10.1007/978-3-
662-54577-5_3

[2] Martin Bodin, Arthur Charguéraud, Daniele Filaretti, Philippa Gardner, Sergio
Ma�eis, Daiva Naudziuniene, Alan Schmitt, and Gareth Smith. 2014. A Trusted
Mechanised JavaScript Speci�cation. Proceedings of the 41st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming (POPL) 49, 1 (2014), 87–100.
https://doi.org/10.1145/2535838.2535876

[3] David R. Chase, Mark Wegman, and F. Kenneth Zadeck. 1990. Analysis of
Pointers and Structures. In Proceedings of the ACM SIGPLAN 1990 Conference on
Programming Language Design and Implementation (PLDI) (PLDI ’90). Association
for Computing Machinery, New York, NY, USA, 296–310. https://doi.org/10.
1145/93542.93585

[4] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Uni�ed
Lattice Model for Static Analysis of Programs by Construction or Approximation
of Fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming languages (POPL). https://doi.org/10.1145/512950.
512973

[5] Patrick Cousot and Radhia Cousot. 1977. Static Determination of Dynamic
Properties of Generalized Type Unions. In Proceedings of an ACM Conference on
Language Design for Reliable Software. Association for Computing Machinery,
New York, NY, USA, 77–94. https://doi.org/10.1145/800022.808314

[6] Patrick Cousot and Radhia Cousot. 1992. Abstract Interpretation Frameworks.
Journal of Logic and Computation (JLC) 2, 4 (1992), 511–547. https://doi.org/10.
1093/logcom/2.4.511

[7] José Fragoso Santos, Petar Maksimović, Daiva Naudži = unienė, Thomas Wood,
and Philippa Gardner. 2017. JaVerT: JavaScript Veri�cation Toolchain. Proceedings
of the 44th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
(POPL) 2, POPL (2017), 1–33. https://doi.org/10.1145/3158138

[8] Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. 2010. The essence
of JavaScript. In Proceedings of the 24th European Conference on Object-Oriented
Programming (ECOOP). Springer, 126–150. https://doi.org/10.1007/978-3-642-
14107-2_7

[9] Simon Holm Jensen, Anders Møller, and Peter Thiemann. 2009. Type Analysis for
JavaScript. In Proceedings of the 16th International Symposium on Static Analysis
(SAS). https://doi.org/10.1007/978-3-642-03237-0_17

[10] Vineeth Kashyap, Kyle Dewey, Ethan A. Kuefner, John Wagner, Kevin Gib-
bons, John Sarracino, Ben Wiedermann, and Ben Hardekopf. 2014. JSAI: A
Static Analysis Platform for JavaScript. In Proceedings of the 22nd ACM SIG-
SOFT International Symposium on Foundations of Software Engineering (FSE).
https://doi.org/10.1145/2635868.2635904

[11] Se-Won Kim, Xavier Rival, and Sukyoung Ryu. 2018. A Theoretical Foundation
of Sensitivity in an Abstract Interpretation Framework. ACM Transactions on
Programming Languages and Systems (TOPLAS) 40, 3, Article 13 (2018), 44 pages.
https://doi.org/10.1145/3230624

[12] Yoonseok Ko, Xavier Rival, and Sukyoung Ryu. 2017. Weakly Sensitive Analysis
for Unbounded Iteration over JavaScript Objects. In Proceedings of the 15th Asian
Symposium on Programming Languages and Systems (APLAS). https://doi.org/10.
1007/978-3-319-71237-6_8

7

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

(a) Evaluation algorithm for identi�er references

1 syntax def IdentifierReference [0]. Evaluation(
2 this , Identifier
3) {
4 return [? (ResolveBinding (Identifier.StringValue))]
5 }

(b) Extracted IRES function for identi�er references

(c) Result of x + y via a mechanized speci�cation

Figure 7: Analysis sensitivities of the target language
(JavaScript) and the speci�cation language (IRES)

divides contexts for the evaluation of JavaScript identi�ers x and y

in the above example using their ASTs even though their program
points in IRES are the same.

Callsite Sensitivity. We also formally de�ne the callsite sensitiv-
ity [37, 38] for the target language by extending the AST sensitivity
for speci�c normal IRES functions. The original callsite sensitivity
discriminates calling contexts using their top most callsites. In EC-
MAScript, all explicit and even implicit JavaScript function calls
invoke normal IRES functions Call and Construct. Thus, we de�ne
the callsite sensitivity for the target language by extending the AST
sensitivity with two normal IRES functions:

� cfa(t 2 T) = {� = (_, c) 2 S |
syntax-ctxt � js-call-ctxt(c) = c 0 ^ c 0(this) = t}

where js-call-ctxt(c) denotes the top-most context whose function is
Call or Construct and f �� denotes a function composition. Moreover,
we extend it to the k-callsite sensitivity by recursively taking ASTs
representing callsites of the target language:

�k -cfa(t 2 Tk) = {� = (_, c) 2 S |
t = [t1, · · · , tn] ^ n k^
(ö(syntax-ctxt � js-call-ctxt)n+1(c) _ n = k)^
81 i n.
((syntax-ctxt � js-call-ctxt)i (c) = ci ^ ci (this) = ti)}

Using this callsite sensitivity for the target language, the meta-
level static analyzer could discriminate not only explicit JavaScript
function calls (e.g. f()) but also implicit JavaScript function calls,
including getters/setters, user-de�ned implicit conversions, and
implicit function calls in built-in libraries.

5 IMPLEMENTATION
We developed a prototype implementation called JSAVER, which per-
forms a meta-level static analysis for JavaScript with ECMAScript.
The tool is an extension of JISET4 and it is an open-source project5.
In this section, we describe the challenges in implementing a meta-
level static analyzer and present our solutions for them.

Layered Abstract States. Unlike traditional JavaScript static anal-
yses, a meta-level static analysis for JavaScript should track analysis
results not only for the target language JavaScript but also for the
speci�cation language IRES. Thus, the sizes of abstract states are
much larger than those of the other JavaScript static analyzers. We
implement layered abstract states to maintain only updated analysis
results compared to the initial abstract state. It signi�cantly reduces
the time to perform the join (t), meet (u), and partial order (v)
operations by considering only the updated parts in abstract states.

Closures and Continuations. The speci�cation language IRES for
ECMAScript contains more complex language features than its
simpli�ed version presented in Section 4.1, such as symbols, lists,
and list operations. Among them, the two most complex features
are closures with captured variables and �rst-class continuations be-
cause they introduce new kinds of control �ows. ECMAScript uses
closures to de�ne implicit and explicit JavaScript iterators and uses
continuations for iterators, generators, and asynchronous features
such as async, await, and the Proxy object. Therefore, we de�ne and
implement abstract closures and abstract continuations; an abstract
closure is a pair of a function and a mapping from captured vari-
ables to their abstract values, and an abstract continuation consists
of a program point, a view for analysis sensitivity, parameters, and
an abstract context.

Abstract Counting. Properties of JavaScript objects could be dy-
namically added, modi�ed, or deleted and even accessible by �rst-
class property names. Thus, in JavaScript static analysis, performing
strong updates rather than weak updates for object properties as
many as possible is important for precise analysis results. Since
records of IRES are even more dynamic than JavaScript objects, it is
also important to increase analysis precision. Therefore, we imple-
ment abstract counting [19] to increase chances to perform strong
updates for �elds of records. It checks how many times records in
the same allocation site have been allocated and performs strong
updates only for singleton records with singleton �eld values.

Loop Sensitivity. Similar to function calls, loops are also typical
merging points in static analysis. A loop sensitivity [24] is one of the
representative techniques to increase the precision of JavaScript
static analysis for loops. It discriminates contexts using a stack
of loop contexts containing loop iterations. We de�ne it under
the view-based analysis sensitivity and implement it in JSAVER to
increase the precision of IRES static analysis. Moreover, we also
de�ne and implement the loop sensitivity for JavaScript using the
loop sensitivity for IRES. Therefore, JSAVER discriminates contexts
for explicit loops such as for-in and for-of and even implicit loops
such as the assignment of arguments or the length property of
arrays.

4https://github.com/kaist-plrg/jiset
5The URL of the tool is anonymized due to a double-blind review process.

6

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

(a) Evaluation algorithm for identi�er references

1 syntax def IdentifierReference [0]. Evaluation(
2 this , Identifier
3) {
4 return [? (ResolveBinding (Identifier.StringValue))]
5 }

(b) Extracted IRES function for identi�er references

(c) Result of x + y via a mechanized speci�cation

Figure 7: Analysis sensitivities of the target language
(JavaScript) and the speci�cation language (IRES)

divides contexts for the evaluation of JavaScript identi�ers x and y

in the above example using their ASTs even though their program
points in IRES are the same.

Callsite Sensitivity. We also formally de�ne the callsite sensitiv-
ity [37, 38] for the target language by extending the AST sensitivity
for speci�c normal IRES functions. The original callsite sensitivity
discriminates calling contexts using their top most callsites. In EC-
MAScript, all explicit and even implicit JavaScript function calls
invoke normal IRES functions Call and Construct. Thus, we de�ne
the callsite sensitivity for the target language by extending the AST
sensitivity with two normal IRES functions:

� cfa(t 2 T) = {� = (_, c) 2 S |
syntax-ctxt � js-call-ctxt(c) = c 0 ^ c 0(this) = t}

where js-call-ctxt(c) denotes the top-most context whose function is
Call or Construct and f �� denotes a function composition. Moreover,
we extend it to the k-callsite sensitivity by recursively taking ASTs
representing callsites of the target language:

�k -cfa(t 2 Tk) = {� = (_, c) 2 S |
t = [t1, · · · , tn] ^ n k^
(ö(syntax-ctxt � js-call-ctxt)n+1(c) _ n = k)^
81 i n.
((syntax-ctxt � js-call-ctxt)i (c) = ci ^ ci (this) = ti)}

Using this callsite sensitivity for the target language, the meta-
level static analyzer could discriminate not only explicit JavaScript
function calls (e.g. f()) but also implicit JavaScript function calls,
including getters/setters, user-de�ned implicit conversions, and
implicit function calls in built-in libraries.

5 IMPLEMENTATION
We developed a prototype implementation called JSAVER, which per-
forms a meta-level static analysis for JavaScript with ECMAScript.
The tool is an extension of JISET4 and it is an open-source project5.
In this section, we describe the challenges in implementing a meta-
level static analyzer and present our solutions for them.

Layered Abstract States. Unlike traditional JavaScript static anal-
yses, a meta-level static analysis for JavaScript should track analysis
results not only for the target language JavaScript but also for the
speci�cation language IRES. Thus, the sizes of abstract states are
much larger than those of the other JavaScript static analyzers. We
implement layered abstract states to maintain only updated analysis
results compared to the initial abstract state. It signi�cantly reduces
the time to perform the join (t), meet (u), and partial order (v)
operations by considering only the updated parts in abstract states.

Closures and Continuations. The speci�cation language IRES for
ECMAScript contains more complex language features than its
simpli�ed version presented in Section 4.1, such as symbols, lists,
and list operations. Among them, the two most complex features
are closures with captured variables and �rst-class continuations be-
cause they introduce new kinds of control �ows. ECMAScript uses
closures to de�ne implicit and explicit JavaScript iterators and uses
continuations for iterators, generators, and asynchronous features
such as async, await, and the Proxy object. Therefore, we de�ne and
implement abstract closures and abstract continuations; an abstract
closure is a pair of a function and a mapping from captured vari-
ables to their abstract values, and an abstract continuation consists
of a program point, a view for analysis sensitivity, parameters, and
an abstract context.

Abstract Counting. Properties of JavaScript objects could be dy-
namically added, modi�ed, or deleted and even accessible by �rst-
class property names. Thus, in JavaScript static analysis, performing
strong updates rather than weak updates for object properties as
many as possible is important for precise analysis results. Since
records of IRES are even more dynamic than JavaScript objects, it is
also important to increase analysis precision. Therefore, we imple-
ment abstract counting [19] to increase chances to perform strong
updates for �elds of records. It checks how many times records in
the same allocation site have been allocated and performs strong
updates only for singleton records with singleton �eld values.

Loop Sensitivity. Similar to function calls, loops are also typical
merging points in static analysis. A loop sensitivity [24] is one of the
representative techniques to increase the precision of JavaScript
static analysis for loops. It discriminates contexts using a stack
of loop contexts containing loop iterations. We de�ne it under
the view-based analysis sensitivity and implement it in JSAVER to
increase the precision of IRES static analysis. Moreover, we also
de�ne and implement the loop sensitivity for JavaScript using the
loop sensitivity for IRES. Therefore, JSAVER discriminates contexts
for explicit loops such as for-in and for-of and even implicit loops
such as the assignment of arguments or the length property of
arrays.

4https://github.com/kaist-plrg/jiset
5The URL of the tool is anonymized due to a double-blind review process.

6

parsex ||= y

Filling the gap between the JavaScript language specification and tools using the JISET family / 45

JSAVER - Meta-Level Static Analysis

38

IRES

JavaScript

· · ·<latexit sha1_base64="Kef69hW4e/raBfVz+DaK6/NBFbQ=">AAACHXicbVDJSgNBEK1xjXFL9OhlMAiewowKeozLwYsQITFCJkhPp2Ka9Cx01whxmI/wqge/xpt4Ff/GnnEObg8aHu9VdVU9P5ZCk+N8WDOzc/MLi5Wl6vLK6tp6rb5xpaNEcezySEbq2mcapQixS4IkXscKWeBL7PmT09zv3aHSIgo7NI1xELDbUIwEZ2SknseHEenqTa3hNJ0C9l/ilqQBJdo3dQu8YcSTAEPikmndd52YBilTJLjErOolGmPGJ+wW+4aGLEA9SIt9M3vHKEN7FCnzQrIL9XtHygKtp4FvKgNGY/3by8X/vH5Co6NBKsI4IQz516BRIm2K7Px4eygUcpJTQxhXwuxq8zFTjJOJqOqdoblF4YX591jGY+YjpV4+Jb7nWdpxs7QgQZYKykxm7u+E/pKrvaa739y7PGi0Tsr0KrAF27ALLhxCC86hDV3gMIEHeIQn69l6sV6tt6/SGavs2YQfsN4/AabGomA=</latexit> · · ·<latexit sha1_base64="Kef69hW4e/raBfVz+DaK6/NBFbQ=">AAACHXicbVDJSgNBEK1xjXFL9OhlMAiewowKeozLwYsQITFCJkhPp2Ka9Cx01whxmI/wqge/xpt4Ff/GnnEObg8aHu9VdVU9P5ZCk+N8WDOzc/MLi5Wl6vLK6tp6rb5xpaNEcezySEbq2mcapQixS4IkXscKWeBL7PmT09zv3aHSIgo7NI1xELDbUIwEZ2SknseHEenqTa3hNJ0C9l/ilqQBJdo3dQu8YcSTAEPikmndd52YBilTJLjErOolGmPGJ+wW+4aGLEA9SIt9M3vHKEN7FCnzQrIL9XtHygKtp4FvKgNGY/3by8X/vH5Co6NBKsI4IQz516BRIm2K7Px4eygUcpJTQxhXwuxq8zFTjJOJqOqdoblF4YX591jGY+YjpV4+Jb7nWdpxs7QgQZYKykxm7u+E/pKrvaa739y7PGi0Tsr0KrAF27ALLhxCC86hDV3gMIEHeIQn69l6sV6tt6/SGavs2YQfsN4/AabGomA=</latexit>

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Automatically Deriving JavaScript Static Analyzers from Language Specifications ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

function error(e) { throw e; }

const n = ...; // [0, 99]

n |> x => x + 1 // [1, 100]

|> x => x * 2 // [2, 200]

|> x => x + 1n; // TypeError

|> error (42);

of representative techniques to increase the precision of JavaScript
static analysis for loops. It discriminates contexts using a stack of
loop contexts containing loop iterations. We de�ne it under view-
based analysis sensitivity and implement it in JSAVER to increase
the precision of IRES static analysis. Moreover, we also de�ne and
implement the loop sensitivity for JavaScript using the loop sensitiv-
ity for IRES. Therefore, our tool discriminates contexts for explicit
loops, such as for-in or for-of, and even implicit loops, such as the
length property assignment of arrays.

6 EVALUATION
• AdditiveExpression
• Identi�erReference
• Identi�er
• AssignmentExpression
• LeftHandSideExpression
• ArrowFunction

• RQ1: Coverage) How much does JSAVER cover JavaScript
language features in the latest ECMAScript (ES12, 2021)?

• RQ2: Adaptability) Could JSAVER adapt a new language
features not yet introduced in ES12?

• RQ3: Expressiveness) What kinds of abstract sensitivities
and abstract domains JSAVER can support?

• RQ4: Performance) Could JSAVER analyze JavaScript pro-
grams in a durable time?

TODO

7 RELATEDWORK
TODO

• JavaScript Static Analyzers [9, 10, 14, 27]
• JavaScript Static Analysis Techniques [1, 12, 13, 15, 18–21,
30, 34–36]

• Partial Evaluation? (maybe no - * SE conf.)

7.1 JavaScript Mechanized Speci�cation
A speci�cation is mechanized if and only if it is both formalized
and executable. For JavaScript, researchers have proposed various
mechanized speci�cation in their own approaches. In 2010, Guha
et al. [8] presented �JS, the �rst mechanized speci�cation for a core
calculus of ES3 semantics by desugaring most of syntax into �JS, an
extended standard lambda calculus. Thus, the shape of �JS seman-
tics is quite di�erent with original algorithm steps. In mid 2010s,
researchers tried to de�ne mechanized speci�cation for the ES5
and 5.1 semantics having a similar shape of semantics with original
algorithm steps as much as possible. Bodin et al. [2] de�ned JSCert,
a semantics of a small subset of ES5, using Coq and extracts a refer-
ence interpreter JSRef. Park et al. [22] de�ned an entire semantics
of ES5, KJS, using the K [29], which is a framework for de�ning
language semantics. Fragoso Santos et al. [7] presented JaVerT, a

JavaScript veri�cation toolchain, including a JavaScript semantics
de�ned in their own Intermediate language, JSIL.

However, the fundamental problem of their approaches is that
they are manually de�ned thus they are labor-intensive and error-
prone. Due to such limitation, there is no existing mechanized
speci�cation for full semantics of ES6 or later versions. Therefore,
most of existing JavaScript static analyzers only focus on ES5.1
features or rarely support ES6 features even though already six
more versions from ES7 to ES12 are released since 2015.

Moreover, Park et al. [23] successfully showed that JISET is useful
tomechanically handle recent versions of ECMAScript by extending
JISET to perform N+1-version di�erential testing of both JavaScript
engines and ES11 (2020).

8 CONCLUSION
TODO

REFERENCES
[1] Roberto Amadini, Alexander Jordan, Graeme Gange, François Gauthier, Peter

Schachte, Harald Søndergaard, Peter J Stuckey, and Chenyi Zhang. 2017. Com-
bining String Abstract Domains for JavaScript Analysis: An Evaluation. In Pro-
ceedings of the 23rd International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS). https://doi.org/10.1007/978-3-
662-54577-5_3

[2] Martin Bodin, Arthur Charguéraud, Daniele Filaretti, Philippa Gardner, Sergio
Ma�eis, Daiva Naudziuniene, Alan Schmitt, and Gareth Smith. 2014. A Trusted
Mechanised JavaScript Speci�cation. Proceedings of the 41st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming (POPL) 49, 1 (2014), 87–100.
https://doi.org/10.1145/2535838.2535876

[3] David R. Chase, Mark Wegman, and F. Kenneth Zadeck. 1990. Analysis of
Pointers and Structures. In Proceedings of the ACM SIGPLAN 1990 Conference on
Programming Language Design and Implementation (PLDI) (PLDI ’90). Association
for Computing Machinery, New York, NY, USA, 296–310. https://doi.org/10.
1145/93542.93585

[4] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Uni�ed
Lattice Model for Static Analysis of Programs by Construction or Approximation
of Fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming languages (POPL). https://doi.org/10.1145/512950.
512973

[5] Patrick Cousot and Radhia Cousot. 1977. Static Determination of Dynamic
Properties of Generalized Type Unions. In Proceedings of an ACM Conference on
Language Design for Reliable Software. Association for Computing Machinery,
New York, NY, USA, 77–94. https://doi.org/10.1145/800022.808314

[6] Patrick Cousot and Radhia Cousot. 1992. Abstract Interpretation Frameworks.
Journal of Logic and Computation (JLC) 2, 4 (1992), 511–547. https://doi.org/10.
1093/logcom/2.4.511

[7] José Fragoso Santos, Petar Maksimović, Daiva Naudži = unienė, Thomas Wood,
and Philippa Gardner. 2017. JaVerT: JavaScript Veri�cation Toolchain. Proceedings
of the 44th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
(POPL) 2, POPL (2017), 1–33. https://doi.org/10.1145/3158138

[8] Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. 2010. The essence
of JavaScript. In Proceedings of the 24th European Conference on Object-Oriented
Programming (ECOOP). Springer, 126–150. https://doi.org/10.1007/978-3-642-
14107-2_7

[9] Simon Holm Jensen, Anders Møller, and Peter Thiemann. 2009. Type Analysis for
JavaScript. In Proceedings of the 16th International Symposium on Static Analysis
(SAS). https://doi.org/10.1007/978-3-642-03237-0_17

[10] Vineeth Kashyap, Kyle Dewey, Ethan A. Kuefner, John Wagner, Kevin Gib-
bons, John Sarracino, Ben Wiedermann, and Ben Hardekopf. 2014. JSAI: A
Static Analysis Platform for JavaScript. In Proceedings of the 22nd ACM SIG-
SOFT International Symposium on Foundations of Software Engineering (FSE).
https://doi.org/10.1145/2635868.2635904

[11] Se-Won Kim, Xavier Rival, and Sukyoung Ryu. 2018. A Theoretical Foundation
of Sensitivity in an Abstract Interpretation Framework. ACM Transactions on
Programming Languages and Systems (TOPLAS) 40, 3, Article 13 (2018), 44 pages.
https://doi.org/10.1145/3230624

[12] Yoonseok Ko, Xavier Rival, and Sukyoung Ryu. 2017. Weakly Sensitive Analysis
for Unbounded Iteration over JavaScript Objects. In Proceedings of the 15th Asian
Symposium on Programming Languages and Systems (APLAS). https://doi.org/10.
1007/978-3-319-71237-6_8

7

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

(a) Evaluation algorithm for logical OR assignments.

1 syntax def AssignmentExpression [8]. Evaluation(

2 this , LeftHandSideExpression , AssignmentExpression

3) { /* entry */

4 let lref = (LeftHandSideExpression.Evaluation)

5 let lval = [? (GetValue lref)]

6 let lbool = [! (ToBoolean lval)] /* #1 */

7 if (= lbool true) /* #2 */ return lval else { /* #3 */ }

8 if (&& (IsAnonymousFunctionDefinition AssignmentExpression)

9 (LeftHandSideExpression.IsIdentifierRef)) { /* #4 */

10 let rval = (AssignmentExpression.NamedEvaluation

11 lref.ReferencedName)

12 } else { /* #5 */

13 let rref = (AssignmentExpression.Evaluation)

14 let rval = [? (GetValue rref)]

15 } /* #6 */

16 [? (PutValue lref rval)]

17 return rval

18 } /* exit */

(b) The extracted IRES function.

Figure 1: Evaluation algorithm for the eighth alternative of AssignmentExpression in ES12 and the extracted IRES function.

To alleviate this problem, we propose a novel technique called
meta-level static analysis to automatically derive a JavaScript static
analyzer from any version of ECMAScript. The main idea of the
meta-level static analysis is to indirectly analyze a target language
program by performing static analysis for a language speci�ca-
tion of the target language written in a speci�cation language with
the program as the initial input. Thus, it can signi�cantly reduce
the burden to manually design and implement static analyzers by
automatically deriving them from given language speci�cations.
Moreover, it even guarantees the soundness of derived static analyz-
ers for the target language by constructing sound abstract semantics
for the speci�cation language.

For the expressiveness of a meta-level static analysis, we also
present ways to con�gure analysis sensitivities and abstract do-
mains for a target language. Con�guring them is a typical way
to manage analysis precision and performance. First, we present
the AST sensitivity in a meta-level static analysis to express analy-
sis sensitivities for a target language such as �ow-sensitivity and
k-callsite-sensitivity (Section 4.2). Second, we present a way to
con�gure abstract domains for structures and values in a target
language (Section 4.3).

To actualize our approach for JavaScript, we present JSAVER,
JavaScript Static Analyzers via ECMAScript Representations. First,
we utilize JISET [26] to extract a mechanized speci�cation written
in an intermediate representation, IRES, from a given ECMAScript.
Thus, target and speci�cation languages are JavaScript and IRES,
respectively, for the meta-level static analysis in JSAVER. In addition,
we implement several analysis techniques to improve the perfor-
mance and precision of derived static analyzers (Section 5). We
evaluated JSAVER by deriving a JavaScript static analyzer from the
latest ECMAScript, ES12, and using the o�cial conformance tests,
Test2622.

Our contributions are as follows:
• We propose a novel concept called meta-level static analysis,
which automatically derives a static analyzer for a target

2https://github.com/tc39/test262

let f = Math.floor(Math.random () * 100);

// f: [0, 99]

f ||= x => x;

// f: [1, 99] or { name: �f�, ... }

let x = f.name;

// f: [1, 99] or { name: �f�, ... }, x: undefined or �f�

Figure 2: A running JavaScript program with a logical OR
assignment newly introduced in ES12.

language from its language speci�cation written in a speci�-
cation language.

• We actualize meta-level static analysis for JavaScript as a tool
called JSAVER. It is the �rst tool that automatically derives a
JavaScript static analyzer from any version of ECMAScript.

• We derive a static analyzer from the latest ECMAScript, ES12,
to evaluate JSAVER. The synthesized static analyzer success-
fully analyzes all applicable 18,556 o�cial conformance tests.
Moreover, we demonstrate the adaptability and expressive-
ness of JSAVER with several case studies.

2 BACKGROUND
In this section, we explain the detail of ECMAScript, the o�cial
speci�cation of JavaScript. We then introduce JISET and how it
extracts a mechanized speci�cation from it. Since our work is to
perform meta-level static analysis for JavaScript using extracted
mechanized speci�cations, it is essential to understand how EC-
MAScript describes JavaScript semantics and how JISET extracts a
mechanized speci�cation from it.

For the detailed explanation, we explain a new language feature
introduced in ES12 called logical OR assignments (Figure 1) and
use a JavaScript program (Figure 2) as a running example. It �rst
de�nes a variable f with a random integer from 0 to 99. Then, it
uses a logical OR assignment to update f with an arrow function
whose name is �f� only if f has 0 because 0 represents false but
other integers represent true. Finally, it de�nes a variable x with
f.name and its value is undefined if f has an integer or �f� otherwise.

2

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Automatically Deriving JavaScript Static Analyzers from Language Specifications ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

function error(e) { throw e; }

const n = ...; // [0, 99]

n |> x => x + 1 // [1, 100]

|> x => x * 2 // [2, 200]

|> x => x + 1n; // TypeError

|> error (42);

of representative techniques to increase the precision of JavaScript
static analysis for loops. It discriminates contexts using a stack of
loop contexts containing loop iterations. We de�ne it under view-
based analysis sensitivity and implement it in JSAVER to increase
the precision of IRES static analysis. Moreover, we also de�ne and
implement the loop sensitivity for JavaScript using the loop sensitiv-
ity for IRES. Therefore, our tool discriminates contexts for explicit
loops, such as for-in or for-of, and even implicit loops, such as the
length property assignment of arrays.

6 EVALUATION
• AdditiveExpression
• Identi�erReference
• Identi�er
• AssignmentExpression
• LeftHandSideExpression
• ArrowFunction

• RQ1: Coverage) How much does JSAVER cover JavaScript
language features in the latest ECMAScript (ES12, 2021)?

• RQ2: Adaptability) Could JSAVER adapt a new language
features not yet introduced in ES12?

• RQ3: Expressiveness) What kinds of abstract sensitivities
and abstract domains JSAVER can support?

• RQ4: Performance) Could JSAVER analyze JavaScript pro-
grams in a durable time?

TODO

7 RELATEDWORK
TODO

• JavaScript Static Analyzers [9, 10, 14, 27]
• JavaScript Static Analysis Techniques [1, 12, 13, 15, 18–21,
30, 34–36]

• Partial Evaluation? (maybe no - * SE conf.)

7.1 JavaScript Mechanized Speci�cation
A speci�cation is mechanized if and only if it is both formalized
and executable. For JavaScript, researchers have proposed various
mechanized speci�cation in their own approaches. In 2010, Guha
et al. [8] presented �JS, the �rst mechanized speci�cation for a core
calculus of ES3 semantics by desugaring most of syntax into �JS, an
extended standard lambda calculus. Thus, the shape of �JS seman-
tics is quite di�erent with original algorithm steps. In mid 2010s,
researchers tried to de�ne mechanized speci�cation for the ES5
and 5.1 semantics having a similar shape of semantics with original
algorithm steps as much as possible. Bodin et al. [2] de�ned JSCert,
a semantics of a small subset of ES5, using Coq and extracts a refer-
ence interpreter JSRef. Park et al. [22] de�ned an entire semantics
of ES5, KJS, using the K [29], which is a framework for de�ning
language semantics. Fragoso Santos et al. [7] presented JaVerT, a

JavaScript veri�cation toolchain, including a JavaScript semantics
de�ned in their own Intermediate language, JSIL.

However, the fundamental problem of their approaches is that
they are manually de�ned thus they are labor-intensive and error-
prone. Due to such limitation, there is no existing mechanized
speci�cation for full semantics of ES6 or later versions. Therefore,
most of existing JavaScript static analyzers only focus on ES5.1
features or rarely support ES6 features even though already six
more versions from ES7 to ES12 are released since 2015.

Moreover, Park et al. [23] successfully showed that JISET is useful
tomechanically handle recent versions of ECMAScript by extending
JISET to perform N+1-version di�erential testing of both JavaScript
engines and ES11 (2020).

8 CONCLUSION
TODO

REFERENCES
[1] Roberto Amadini, Alexander Jordan, Graeme Gange, François Gauthier, Peter

Schachte, Harald Søndergaard, Peter J Stuckey, and Chenyi Zhang. 2017. Com-
bining String Abstract Domains for JavaScript Analysis: An Evaluation. In Pro-
ceedings of the 23rd International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS). https://doi.org/10.1007/978-3-
662-54577-5_3

[2] Martin Bodin, Arthur Charguéraud, Daniele Filaretti, Philippa Gardner, Sergio
Ma�eis, Daiva Naudziuniene, Alan Schmitt, and Gareth Smith. 2014. A Trusted
Mechanised JavaScript Speci�cation. Proceedings of the 41st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming (POPL) 49, 1 (2014), 87–100.
https://doi.org/10.1145/2535838.2535876

[3] David R. Chase, Mark Wegman, and F. Kenneth Zadeck. 1990. Analysis of
Pointers and Structures. In Proceedings of the ACM SIGPLAN 1990 Conference on
Programming Language Design and Implementation (PLDI) (PLDI ’90). Association
for Computing Machinery, New York, NY, USA, 296–310. https://doi.org/10.
1145/93542.93585

[4] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Uni�ed
Lattice Model for Static Analysis of Programs by Construction or Approximation
of Fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming languages (POPL). https://doi.org/10.1145/512950.
512973

[5] Patrick Cousot and Radhia Cousot. 1977. Static Determination of Dynamic
Properties of Generalized Type Unions. In Proceedings of an ACM Conference on
Language Design for Reliable Software. Association for Computing Machinery,
New York, NY, USA, 77–94. https://doi.org/10.1145/800022.808314

[6] Patrick Cousot and Radhia Cousot. 1992. Abstract Interpretation Frameworks.
Journal of Logic and Computation (JLC) 2, 4 (1992), 511–547. https://doi.org/10.
1093/logcom/2.4.511

[7] José Fragoso Santos, Petar Maksimović, Daiva Naudži = unienė, Thomas Wood,
and Philippa Gardner. 2017. JaVerT: JavaScript Veri�cation Toolchain. Proceedings
of the 44th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
(POPL) 2, POPL (2017), 1–33. https://doi.org/10.1145/3158138

[8] Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. 2010. The essence
of JavaScript. In Proceedings of the 24th European Conference on Object-Oriented
Programming (ECOOP). Springer, 126–150. https://doi.org/10.1007/978-3-642-
14107-2_7

[9] Simon Holm Jensen, Anders Møller, and Peter Thiemann. 2009. Type Analysis for
JavaScript. In Proceedings of the 16th International Symposium on Static Analysis
(SAS). https://doi.org/10.1007/978-3-642-03237-0_17

[10] Vineeth Kashyap, Kyle Dewey, Ethan A. Kuefner, John Wagner, Kevin Gib-
bons, John Sarracino, Ben Wiedermann, and Ben Hardekopf. 2014. JSAI: A
Static Analysis Platform for JavaScript. In Proceedings of the 22nd ACM SIG-
SOFT International Symposium on Foundations of Software Engineering (FSE).
https://doi.org/10.1145/2635868.2635904

[11] Se-Won Kim, Xavier Rival, and Sukyoung Ryu. 2018. A Theoretical Foundation
of Sensitivity in an Abstract Interpretation Framework. ACM Transactions on
Programming Languages and Systems (TOPLAS) 40, 3, Article 13 (2018), 44 pages.
https://doi.org/10.1145/3230624

[12] Yoonseok Ko, Xavier Rival, and Sukyoung Ryu. 2017. Weakly Sensitive Analysis
for Unbounded Iteration over JavaScript Objects. In Proceedings of the 15th Asian
Symposium on Programming Languages and Systems (APLAS). https://doi.org/10.
1007/978-3-319-71237-6_8

7

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Automatically Deriving JavaScript Static Analyzers from Language Specifications ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

function error(e) { throw e; }

const n = ...; // [0, 99]

n |> x => x + 1 // [1, 100]

|> x => x * 2 // [2, 200]

|> x => x + 1n; // TypeError

|> error (42);

of representative techniques to increase the precision of JavaScript
static analysis for loops. It discriminates contexts using a stack of
loop contexts containing loop iterations. We de�ne it under view-
based analysis sensitivity and implement it in JSAVER to increase
the precision of IRES static analysis. Moreover, we also de�ne and
implement the loop sensitivity for JavaScript using the loop sensitiv-
ity for IRES. Therefore, our tool discriminates contexts for explicit
loops, such as for-in or for-of, and even implicit loops, such as the
length property assignment of arrays.

6 EVALUATION
• AdditiveExpression
• Identi�erReference
• Identi�er
• AssignmentExpression
• LeftHandSideExpression
• ArrowFunction

• RQ1: Coverage) How much does JSAVER cover JavaScript
language features in the latest ECMAScript (ES12, 2021)?

• RQ2: Adaptability) Could JSAVER adapt a new language
features not yet introduced in ES12?

• RQ3: Expressiveness) What kinds of abstract sensitivities
and abstract domains JSAVER can support?

• RQ4: Performance) Could JSAVER analyze JavaScript pro-
grams in a durable time?

TODO

7 RELATEDWORK
TODO

• JavaScript Static Analyzers [9, 10, 14, 27]
• JavaScript Static Analysis Techniques [1, 12, 13, 15, 18–21,
30, 34–36]

• Partial Evaluation? (maybe no - * SE conf.)

7.1 JavaScript Mechanized Speci�cation
A speci�cation is mechanized if and only if it is both formalized
and executable. For JavaScript, researchers have proposed various
mechanized speci�cation in their own approaches. In 2010, Guha
et al. [8] presented �JS, the �rst mechanized speci�cation for a core
calculus of ES3 semantics by desugaring most of syntax into �JS, an
extended standard lambda calculus. Thus, the shape of �JS seman-
tics is quite di�erent with original algorithm steps. In mid 2010s,
researchers tried to de�ne mechanized speci�cation for the ES5
and 5.1 semantics having a similar shape of semantics with original
algorithm steps as much as possible. Bodin et al. [2] de�ned JSCert,
a semantics of a small subset of ES5, using Coq and extracts a refer-
ence interpreter JSRef. Park et al. [22] de�ned an entire semantics
of ES5, KJS, using the K [29], which is a framework for de�ning
language semantics. Fragoso Santos et al. [7] presented JaVerT, a

JavaScript veri�cation toolchain, including a JavaScript semantics
de�ned in their own Intermediate language, JSIL.

However, the fundamental problem of their approaches is that
they are manually de�ned thus they are labor-intensive and error-
prone. Due to such limitation, there is no existing mechanized
speci�cation for full semantics of ES6 or later versions. Therefore,
most of existing JavaScript static analyzers only focus on ES5.1
features or rarely support ES6 features even though already six
more versions from ES7 to ES12 are released since 2015.

Moreover, Park et al. [23] successfully showed that JISET is useful
tomechanically handle recent versions of ECMAScript by extending
JISET to perform N+1-version di�erential testing of both JavaScript
engines and ES11 (2020).

8 CONCLUSION
TODO

REFERENCES
[1] Roberto Amadini, Alexander Jordan, Graeme Gange, François Gauthier, Peter

Schachte, Harald Søndergaard, Peter J Stuckey, and Chenyi Zhang. 2017. Com-
bining String Abstract Domains for JavaScript Analysis: An Evaluation. In Pro-
ceedings of the 23rd International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS). https://doi.org/10.1007/978-3-
662-54577-5_3

[2] Martin Bodin, Arthur Charguéraud, Daniele Filaretti, Philippa Gardner, Sergio
Ma�eis, Daiva Naudziuniene, Alan Schmitt, and Gareth Smith. 2014. A Trusted
Mechanised JavaScript Speci�cation. Proceedings of the 41st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming (POPL) 49, 1 (2014), 87–100.
https://doi.org/10.1145/2535838.2535876

[3] David R. Chase, Mark Wegman, and F. Kenneth Zadeck. 1990. Analysis of
Pointers and Structures. In Proceedings of the ACM SIGPLAN 1990 Conference on
Programming Language Design and Implementation (PLDI) (PLDI ’90). Association
for Computing Machinery, New York, NY, USA, 296–310. https://doi.org/10.
1145/93542.93585

[4] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Uni�ed
Lattice Model for Static Analysis of Programs by Construction or Approximation
of Fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming languages (POPL). https://doi.org/10.1145/512950.
512973

[5] Patrick Cousot and Radhia Cousot. 1977. Static Determination of Dynamic
Properties of Generalized Type Unions. In Proceedings of an ACM Conference on
Language Design for Reliable Software. Association for Computing Machinery,
New York, NY, USA, 77–94. https://doi.org/10.1145/800022.808314

[6] Patrick Cousot and Radhia Cousot. 1992. Abstract Interpretation Frameworks.
Journal of Logic and Computation (JLC) 2, 4 (1992), 511–547. https://doi.org/10.
1093/logcom/2.4.511

[7] José Fragoso Santos, Petar Maksimović, Daiva Naudži = unienė, Thomas Wood,
and Philippa Gardner. 2017. JaVerT: JavaScript Veri�cation Toolchain. Proceedings
of the 44th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
(POPL) 2, POPL (2017), 1–33. https://doi.org/10.1145/3158138

[8] Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. 2010. The essence
of JavaScript. In Proceedings of the 24th European Conference on Object-Oriented
Programming (ECOOP). Springer, 126–150. https://doi.org/10.1007/978-3-642-
14107-2_7

[9] Simon Holm Jensen, Anders Møller, and Peter Thiemann. 2009. Type Analysis for
JavaScript. In Proceedings of the 16th International Symposium on Static Analysis
(SAS). https://doi.org/10.1007/978-3-642-03237-0_17

[10] Vineeth Kashyap, Kyle Dewey, Ethan A. Kuefner, John Wagner, Kevin Gib-
bons, John Sarracino, Ben Wiedermann, and Ben Hardekopf. 2014. JSAI: A
Static Analysis Platform for JavaScript. In Proceedings of the 22nd ACM SIG-
SOFT International Symposium on Foundations of Software Engineering (FSE).
https://doi.org/10.1145/2635868.2635904

[11] Se-Won Kim, Xavier Rival, and Sukyoung Ryu. 2018. A Theoretical Foundation
of Sensitivity in an Abstract Interpretation Framework. ACM Transactions on
Programming Languages and Systems (TOPLAS) 40, 3, Article 13 (2018), 44 pages.
https://doi.org/10.1145/3230624

[12] Yoonseok Ko, Xavier Rival, and Sukyoung Ryu. 2017. Weakly Sensitive Analysis
for Unbounded Iteration over JavaScript Objects. In Proceedings of the 15th Asian
Symposium on Programming Languages and Systems (APLAS). https://doi.org/10.
1007/978-3-319-71237-6_8

7

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Automatically Deriving JavaScript Static Analyzers from Language Specifications ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

function error(e) { throw e; }

const n = ...; // [0, 99]

n |> x => x + 1 // [1, 100]

|> x => x * 2 // [2, 200]

|> x => x + 1n; // TypeError

|> error (42);

of representative techniques to increase the precision of JavaScript
static analysis for loops. It discriminates contexts using a stack of
loop contexts containing loop iterations. We de�ne it under view-
based analysis sensitivity and implement it in JSAVER to increase
the precision of IRES static analysis. Moreover, we also de�ne and
implement the loop sensitivity for JavaScript using the loop sensitiv-
ity for IRES. Therefore, our tool discriminates contexts for explicit
loops, such as for-in or for-of, and even implicit loops, such as the
length property assignment of arrays.

6 EVALUATION
• AdditiveExpression
• Identi�erReference
• Identi�er
• AssignmentExpression
• LeftHandSideExpression
• ArrowFunction

• RQ1: Coverage) How much does JSAVER cover JavaScript
language features in the latest ECMAScript (ES12, 2021)?

• RQ2: Adaptability) Could JSAVER adapt a new language
features not yet introduced in ES12?

• RQ3: Expressiveness) What kinds of abstract sensitivities
and abstract domains JSAVER can support?

• RQ4: Performance) Could JSAVER analyze JavaScript pro-
grams in a durable time?

TODO

7 RELATEDWORK
TODO

• JavaScript Static Analyzers [9, 10, 14, 27]
• JavaScript Static Analysis Techniques [1, 12, 13, 15, 18–21,
30, 34–36]

• Partial Evaluation? (maybe no - * SE conf.)

7.1 JavaScript Mechanized Speci�cation
A speci�cation is mechanized if and only if it is both formalized
and executable. For JavaScript, researchers have proposed various
mechanized speci�cation in their own approaches. In 2010, Guha
et al. [8] presented �JS, the �rst mechanized speci�cation for a core
calculus of ES3 semantics by desugaring most of syntax into �JS, an
extended standard lambda calculus. Thus, the shape of �JS seman-
tics is quite di�erent with original algorithm steps. In mid 2010s,
researchers tried to de�ne mechanized speci�cation for the ES5
and 5.1 semantics having a similar shape of semantics with original
algorithm steps as much as possible. Bodin et al. [2] de�ned JSCert,
a semantics of a small subset of ES5, using Coq and extracts a refer-
ence interpreter JSRef. Park et al. [22] de�ned an entire semantics
of ES5, KJS, using the K [29], which is a framework for de�ning
language semantics. Fragoso Santos et al. [7] presented JaVerT, a

JavaScript veri�cation toolchain, including a JavaScript semantics
de�ned in their own Intermediate language, JSIL.

However, the fundamental problem of their approaches is that
they are manually de�ned thus they are labor-intensive and error-
prone. Due to such limitation, there is no existing mechanized
speci�cation for full semantics of ES6 or later versions. Therefore,
most of existing JavaScript static analyzers only focus on ES5.1
features or rarely support ES6 features even though already six
more versions from ES7 to ES12 are released since 2015.

Moreover, Park et al. [23] successfully showed that JISET is useful
tomechanically handle recent versions of ECMAScript by extending
JISET to perform N+1-version di�erential testing of both JavaScript
engines and ES11 (2020).

8 CONCLUSION
TODO

REFERENCES
[1] Roberto Amadini, Alexander Jordan, Graeme Gange, François Gauthier, Peter

Schachte, Harald Søndergaard, Peter J Stuckey, and Chenyi Zhang. 2017. Com-
bining String Abstract Domains for JavaScript Analysis: An Evaluation. In Pro-
ceedings of the 23rd International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS). https://doi.org/10.1007/978-3-
662-54577-5_3

[2] Martin Bodin, Arthur Charguéraud, Daniele Filaretti, Philippa Gardner, Sergio
Ma�eis, Daiva Naudziuniene, Alan Schmitt, and Gareth Smith. 2014. A Trusted
Mechanised JavaScript Speci�cation. Proceedings of the 41st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming (POPL) 49, 1 (2014), 87–100.
https://doi.org/10.1145/2535838.2535876

[3] David R. Chase, Mark Wegman, and F. Kenneth Zadeck. 1990. Analysis of
Pointers and Structures. In Proceedings of the ACM SIGPLAN 1990 Conference on
Programming Language Design and Implementation (PLDI) (PLDI ’90). Association
for Computing Machinery, New York, NY, USA, 296–310. https://doi.org/10.
1145/93542.93585

[4] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Uni�ed
Lattice Model for Static Analysis of Programs by Construction or Approximation
of Fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming languages (POPL). https://doi.org/10.1145/512950.
512973

[5] Patrick Cousot and Radhia Cousot. 1977. Static Determination of Dynamic
Properties of Generalized Type Unions. In Proceedings of an ACM Conference on
Language Design for Reliable Software. Association for Computing Machinery,
New York, NY, USA, 77–94. https://doi.org/10.1145/800022.808314

[6] Patrick Cousot and Radhia Cousot. 1992. Abstract Interpretation Frameworks.
Journal of Logic and Computation (JLC) 2, 4 (1992), 511–547. https://doi.org/10.
1093/logcom/2.4.511

[7] José Fragoso Santos, Petar Maksimović, Daiva Naudži = unienė, Thomas Wood,
and Philippa Gardner. 2017. JaVerT: JavaScript Veri�cation Toolchain. Proceedings
of the 44th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
(POPL) 2, POPL (2017), 1–33. https://doi.org/10.1145/3158138

[8] Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. 2010. The essence
of JavaScript. In Proceedings of the 24th European Conference on Object-Oriented
Programming (ECOOP). Springer, 126–150. https://doi.org/10.1007/978-3-642-
14107-2_7

[9] Simon Holm Jensen, Anders Møller, and Peter Thiemann. 2009. Type Analysis for
JavaScript. In Proceedings of the 16th International Symposium on Static Analysis
(SAS). https://doi.org/10.1007/978-3-642-03237-0_17

[10] Vineeth Kashyap, Kyle Dewey, Ethan A. Kuefner, John Wagner, Kevin Gib-
bons, John Sarracino, Ben Wiedermann, and Ben Hardekopf. 2014. JSAI: A
Static Analysis Platform for JavaScript. In Proceedings of the 22nd ACM SIG-
SOFT International Symposium on Foundations of Software Engineering (FSE).
https://doi.org/10.1145/2635868.2635904

[11] Se-Won Kim, Xavier Rival, and Sukyoung Ryu. 2018. A Theoretical Foundation
of Sensitivity in an Abstract Interpretation Framework. ACM Transactions on
Programming Languages and Systems (TOPLAS) 40, 3, Article 13 (2018), 44 pages.
https://doi.org/10.1145/3230624

[12] Yoonseok Ko, Xavier Rival, and Sukyoung Ryu. 2017. Weakly Sensitive Analysis
for Unbounded Iteration over JavaScript Objects. In Proceedings of the 15th Asian
Symposium on Programming Languages and Systems (APLAS). https://doi.org/10.
1007/978-3-319-71237-6_8

7

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

(a) Evaluation algorithm for logical OR assignments.

1 syntax def AssignmentExpression [8]. Evaluation(

2 this , LeftHandSideExpression , AssignmentExpression

3) { /* entry */

4 let lref = (LeftHandSideExpression.Evaluation)

5 let lval = [? (GetValue lref)]

6 let lbool = [! (ToBoolean lval)] /* #1 */

7 if (= lbool true) /* #2 */ return lval else { /* #3 */ }

8 if (&& (IsAnonymousFunctionDefinition AssignmentExpression)

9 (LeftHandSideExpression.IsIdentifierRef)) { /* #4 */

10 let rval = (AssignmentExpression.NamedEvaluation

11 lref.ReferencedName)

12 } else { /* #5 */

13 let rref = (AssignmentExpression.Evaluation)

14 let rval = [? (GetValue rref)]

15 } /* #6 */

16 [? (PutValue lref rval)]

17 return rval

18 } /* exit */

(b) The extracted IRES function.

Figure 1: Evaluation algorithm for the eighth alternative of AssignmentExpression in ES12 and the extracted IRES function.

To alleviate this problem, we propose a novel technique called
meta-level static analysis to automatically derive a JavaScript static
analyzer from any version of ECMAScript. The main idea of the
meta-level static analysis is to indirectly analyze a target language
program by performing static analysis for a language speci�ca-
tion of the target language written in a speci�cation language with
the program as the initial input. Thus, it can signi�cantly reduce
the burden to manually design and implement static analyzers by
automatically deriving them from given language speci�cations.
Moreover, it even guarantees the soundness of derived static analyz-
ers for the target language by constructing sound abstract semantics
for the speci�cation language.

For the expressiveness of a meta-level static analysis, we also
present ways to con�gure analysis sensitivities and abstract do-
mains for a target language. Con�guring them is a typical way
to manage analysis precision and performance. First, we present
the AST sensitivity in a meta-level static analysis to express analy-
sis sensitivities for a target language such as �ow-sensitivity and
k-callsite-sensitivity (Section 4.2). Second, we present a way to
con�gure abstract domains for structures and values in a target
language (Section 4.3).

To actualize our approach for JavaScript, we present JSAVER,
JavaScript Static Analyzers via ECMAScript Representations. First,
we utilize JISET [26] to extract a mechanized speci�cation written
in an intermediate representation, IRES, from a given ECMAScript.
Thus, target and speci�cation languages are JavaScript and IRES,
respectively, for the meta-level static analysis in JSAVER. In addition,
we implement several analysis techniques to improve the perfor-
mance and precision of derived static analyzers (Section 5). We
evaluated JSAVER by deriving a JavaScript static analyzer from the
latest ECMAScript, ES12, and using the o�cial conformance tests,
Test2622.

Our contributions are as follows:
• We propose a novel concept called meta-level static analysis,
which automatically derives a static analyzer for a target

2https://github.com/tc39/test262

let f = Math.floor(Math.random () * 100);

// f: [0, 99]

f ||= x => x;

// f: [1, 99] or { name: �f�, ... }

let x = f.name;

// f: [1, 99] or { name: �f�, ... }, x: undefined or �f�

Figure 2: A running JavaScript program with a logical OR
assignment newly introduced in ES12.

language from its language speci�cation written in a speci�-
cation language.

• We actualize meta-level static analysis for JavaScript as a tool
called JSAVER. It is the �rst tool that automatically derives a
JavaScript static analyzer from any version of ECMAScript.

• We derive a static analyzer from the latest ECMAScript, ES12,
to evaluate JSAVER. The synthesized static analyzer success-
fully analyzes all applicable 18,556 o�cial conformance tests.
Moreover, we demonstrate the adaptability and expressive-
ness of JSAVER with several case studies.

2 BACKGROUND
In this section, we explain the detail of ECMAScript, the o�cial
speci�cation of JavaScript. We then introduce JISET and how it
extracts a mechanized speci�cation from it. Since our work is to
perform meta-level static analysis for JavaScript using extracted
mechanized speci�cations, it is essential to understand how EC-
MAScript describes JavaScript semantics and how JISET extracts a
mechanized speci�cation from it.

For the detailed explanation, we explain a new language feature
introduced in ES12 called logical OR assignments (Figure 1) and
use a JavaScript program (Figure 2) as a running example. It �rst
de�nes a variable f with a random integer from 0 to 99. Then, it
uses a logical OR assignment to update f with an arrow function
whose name is �f� only if f has 0 because 0 represents false but
other integers represent true. Finally, it de�nes a variable x with
f.name and its value is undefined if f has an integer or �f� otherwise.

2

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Automatically Deriving JavaScript Static Analyzers from Language Specifications ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

otherwise, a normal function. An instruction i is a primitive value
assignment, an operation between values, a internal �eld access, a
external �eld access, a record allocations, a function call, or a return
instruction.

States � 2 S = H ⇥ C
Heaps h 2 H = A �n��!R
Contexts c 2 C = L ⇥ (X �n��!V) ⇥ C?
Values � 2 V = Vp] A] T] F
Records r 2 R = (Vstr

�n��!V) ⇥ (Vstr
�n��!V)

States S consists of heaps H and contexts C. A heap h 2 H is a
�nite mapping from addresses to records. Each record allocation
instruction x = {} creates a unique address a 2 A di�erent with
existing addresses. A context c 2 C is a triple of 1) the program
point, 2) a local environment which is a �nite mapping from vari-
ables to values, and 3) an optional calling context. A value � 2 V
is a primitive value, an address, an AST, or a function. A record
r 2 R consists of two �nite mappings from strings to values. The
left mapping represents internal �elds accessible by internal �eld
accesses x = x[x]. On the other hand, the right one represents ex-
ternal �elds, such as variables in JavaScript environment records or
properties in JavaScript objects, and they are accessible by a exter-
nal �eld access x = x[x]ext. We formulate the concrete semantics
of a program P as a transition system ({, S�) where{✓ S⇥ S is a
transition relation between concrete states and S� is a set of initial
states.

For a meta-level static analysis, we de�ne its abstract semantics
in the abstract interpretation framework [4, 6]. Since our analysis
supports view-based analysis sensitivities [11, 24], the abstract
domain is de�ned as a mapping from views to abstract states, D# =
� ! D#, with a view abstraction � : � ! P(S) which represents
the meaning of each view � 2 �. Then, we de�ne abstract states as
follows:

Abstract States � # 2 D# = H# ⇥ C#

Abstract Heaps h# 2 H# = A# �n��!(R# ⇥ R#
ext

)
Abstract Addresses a# 2 A# = L
Abstract Contexts c# 2 C# = X �n��!V#

An abstract heaph# 2 H# is a �nitemapping from abstract addresses
A
to pairs of abstract internal records R# and abstract external

records R#
ext

. Each abstract address a# 2 A# is de�ned with the
allocation-site abstraction [3] that partitions concrete addresses A
based on their allocation sites L. An abstract context c# 2 C# is a
�nite mapping from variables to abstract values. Shapes of abstract
values V#, abstract internal (or external) records R# (or R#

ext
) are

parametric thus we can freely con�gure them.

4.2 Analysis Sensitivities
In a meta-level static analysis, analysis sensitivities of the target
language (JavaScript) are di�erent with them of the speci�cation
language (IRES). For example, we explain what happens during anal-
ysis of the following JavaScript program with the �ow-sensitivity
for IRES:

let x = 1, y = 2;

x + y; // 3

(a) Evaluation algorithm for identi�er references.

1 syntax def IdentifierReference [0]. Evaluation(

2 this , Identifier

3) {

4 return [? (ResolveBinding (Identifier.StringValue))

5 }

(b) The extracted IRES function.

(c) Parsing result of x + y (bottom) and the initial local environment
(top) of the IRES function.

Figure 7: An example of the di�erence between analysis sen-
sitivities of target and speci�cation language.

Figure 7 describes (a) the Evaluation algorithm of identi�er refer-
ences, (b) its extracted IRES function, and (c) the parsing result of
x + y and the initial local environment of the IRES function. Since
the �ow-sensitivity merges states based on the program points,
contexts for the evaluation of both identi�er references x and y are
merged. Thus, the IRES variable Identifier points to their ASTs
as described in Figure 7. Due to the imprecise merge of contexts,
StringValue of Identifier returns �x� and �y�, and ResolveBinding
with them returns both 1 and 2. Finally, the analysis result of x + y

becomes { 2, 3, 4 }.

Flow Sensitivity. To resolve this problem, we present an AST sen-
sitivity for the speci�cation language to represent �ow-sensitivity
of the target language. It is a variant of object sensitivity [17, 33]
which uses abstract addresses A# of receiver objects as views. How-
ever, unlike the object sensitivity, the AST sensitivity utilizes ASTs
T stored in the parameter this only for syntax-directed functions:

� flow(t 2 T) = {� = (_, c) 2 S | syntax-ctxt(c) = c 0 ^ c 0(this) = t}
where syntax-ctxt(c) denotes the top-most context whose function
is syntax-directed and c 0(this) denotes a lookup of the variable
this in the mapping in the context c 0. We de�ne the �ow sensitivity
for the target language using the AST sensitivity and it successfully
divides contexts for the evaluation of JavaScript identi�ers x and y

in the above example using their ASTs even though their program
points are same.

Callsite Sensitivity. We also formally de�ne the callsite sensitiv-
ity [31, 32] for the target language by extending AST sensitivity
for speci�c normal IRES functions. The original callsite sensitivity
discriminates calling contexts based on their top most callsites. In
ECMAScript, all explicit and even implicit JavaScript function calls

5

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Automatically Deriving JavaScript Static Analyzers from Language Specifications ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

function error(e) { throw e; }

const n = ...; // [0, 99]

n |> x => x + 1 // [1, 100]

|> x => x * 2 // [2, 200]

|> x => x + 1n; // TypeError

|> error (42);

of representative techniques to increase the precision of JavaScript
static analysis for loops. It discriminates contexts using a stack of
loop contexts containing loop iterations. We de�ne it under view-
based analysis sensitivity and implement it in JSAVER to increase
the precision of IRES static analysis. Moreover, we also de�ne and
implement the loop sensitivity for JavaScript using the loop sensitiv-
ity for IRES. Therefore, our tool discriminates contexts for explicit
loops, such as for-in or for-of, and even implicit loops, such as the
length property assignment of arrays.

6 EVALUATION
• AdditiveExpression
• Identi�erReference
• Identi�er
• AssignmentExpression
• LeftHandSideExpression
• ArrowFunction

• RQ1: Coverage) How much does JSAVER cover JavaScript
language features in the latest ECMAScript (ES12, 2021)?

• RQ2: Adaptability) Could JSAVER adapt a new language
features not yet introduced in ES12?

• RQ3: Expressiveness) What kinds of abstract sensitivities
and abstract domains JSAVER can support?

• RQ4: Performance) Could JSAVER analyze JavaScript pro-
grams in a durable time?

TODO

7 RELATEDWORK
TODO

• JavaScript Static Analyzers [9, 10, 14, 27]
• JavaScript Static Analysis Techniques [1, 12, 13, 15, 18–21,
30, 34–36]

• Partial Evaluation? (maybe no - * SE conf.)

7.1 JavaScript Mechanized Speci�cation
A speci�cation is mechanized if and only if it is both formalized
and executable. For JavaScript, researchers have proposed various
mechanized speci�cation in their own approaches. In 2010, Guha
et al. [8] presented �JS, the �rst mechanized speci�cation for a core
calculus of ES3 semantics by desugaring most of syntax into �JS, an
extended standard lambda calculus. Thus, the shape of �JS seman-
tics is quite di�erent with original algorithm steps. In mid 2010s,
researchers tried to de�ne mechanized speci�cation for the ES5
and 5.1 semantics having a similar shape of semantics with original
algorithm steps as much as possible. Bodin et al. [2] de�ned JSCert,
a semantics of a small subset of ES5, using Coq and extracts a refer-
ence interpreter JSRef. Park et al. [22] de�ned an entire semantics
of ES5, KJS, using the K [29], which is a framework for de�ning
language semantics. Fragoso Santos et al. [7] presented JaVerT, a

JavaScript veri�cation toolchain, including a JavaScript semantics
de�ned in their own Intermediate language, JSIL.

However, the fundamental problem of their approaches is that
they are manually de�ned thus they are labor-intensive and error-
prone. Due to such limitation, there is no existing mechanized
speci�cation for full semantics of ES6 or later versions. Therefore,
most of existing JavaScript static analyzers only focus on ES5.1
features or rarely support ES6 features even though already six
more versions from ES7 to ES12 are released since 2015.

Moreover, Park et al. [23] successfully showed that JISET is useful
tomechanically handle recent versions of ECMAScript by extending
JISET to perform N+1-version di�erential testing of both JavaScript
engines and ES11 (2020).

8 CONCLUSION
TODO

REFERENCES
[1] Roberto Amadini, Alexander Jordan, Graeme Gange, François Gauthier, Peter

Schachte, Harald Søndergaard, Peter J Stuckey, and Chenyi Zhang. 2017. Com-
bining String Abstract Domains for JavaScript Analysis: An Evaluation. In Pro-
ceedings of the 23rd International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS). https://doi.org/10.1007/978-3-
662-54577-5_3

[2] Martin Bodin, Arthur Charguéraud, Daniele Filaretti, Philippa Gardner, Sergio
Ma�eis, Daiva Naudziuniene, Alan Schmitt, and Gareth Smith. 2014. A Trusted
Mechanised JavaScript Speci�cation. Proceedings of the 41st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming (POPL) 49, 1 (2014), 87–100.
https://doi.org/10.1145/2535838.2535876

[3] David R. Chase, Mark Wegman, and F. Kenneth Zadeck. 1990. Analysis of
Pointers and Structures. In Proceedings of the ACM SIGPLAN 1990 Conference on
Programming Language Design and Implementation (PLDI) (PLDI ’90). Association
for Computing Machinery, New York, NY, USA, 296–310. https://doi.org/10.
1145/93542.93585

[4] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Uni�ed
Lattice Model for Static Analysis of Programs by Construction or Approximation
of Fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming languages (POPL). https://doi.org/10.1145/512950.
512973

[5] Patrick Cousot and Radhia Cousot. 1977. Static Determination of Dynamic
Properties of Generalized Type Unions. In Proceedings of an ACM Conference on
Language Design for Reliable Software. Association for Computing Machinery,
New York, NY, USA, 77–94. https://doi.org/10.1145/800022.808314

[6] Patrick Cousot and Radhia Cousot. 1992. Abstract Interpretation Frameworks.
Journal of Logic and Computation (JLC) 2, 4 (1992), 511–547. https://doi.org/10.
1093/logcom/2.4.511

[7] José Fragoso Santos, Petar Maksimović, Daiva Naudži = unienė, Thomas Wood,
and Philippa Gardner. 2017. JaVerT: JavaScript Veri�cation Toolchain. Proceedings
of the 44th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
(POPL) 2, POPL (2017), 1–33. https://doi.org/10.1145/3158138

[8] Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. 2010. The essence
of JavaScript. In Proceedings of the 24th European Conference on Object-Oriented
Programming (ECOOP). Springer, 126–150. https://doi.org/10.1007/978-3-642-
14107-2_7

[9] Simon Holm Jensen, Anders Møller, and Peter Thiemann. 2009. Type Analysis for
JavaScript. In Proceedings of the 16th International Symposium on Static Analysis
(SAS). https://doi.org/10.1007/978-3-642-03237-0_17

[10] Vineeth Kashyap, Kyle Dewey, Ethan A. Kuefner, John Wagner, Kevin Gib-
bons, John Sarracino, Ben Wiedermann, and Ben Hardekopf. 2014. JSAI: A
Static Analysis Platform for JavaScript. In Proceedings of the 22nd ACM SIG-
SOFT International Symposium on Foundations of Software Engineering (FSE).
https://doi.org/10.1145/2635868.2635904

[11] Se-Won Kim, Xavier Rival, and Sukyoung Ryu. 2018. A Theoretical Foundation
of Sensitivity in an Abstract Interpretation Framework. ACM Transactions on
Programming Languages and Systems (TOPLAS) 40, 3, Article 13 (2018), 44 pages.
https://doi.org/10.1145/3230624

[12] Yoonseok Ko, Xavier Rival, and Sukyoung Ryu. 2017. Weakly Sensitive Analysis
for Unbounded Iteration over JavaScript Objects. In Proceedings of the 15th Asian
Symposium on Programming Languages and Systems (APLAS). https://doi.org/10.
1007/978-3-319-71237-6_8

7

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

(a) Evaluation algorithm for identi�er references

1 syntax def IdentifierReference [0]. Evaluation(
2 this , Identifier
3) {
4 return [? (ResolveBinding (Identifier.StringValue))]
5 }

(b) Extracted IRES function for identi�er references

(c) Result of x + y via a mechanized speci�cation

Figure 7: Analysis sensitivities of the target language
(JavaScript) and the speci�cation language (IRES)

divides contexts for the evaluation of JavaScript identi�ers x and y

in the above example using their ASTs even though their program
points in IRES are the same.

Callsite Sensitivity. We also formally de�ne the callsite sensitiv-
ity [37, 38] for the target language by extending the AST sensitivity
for speci�c normal IRES functions. The original callsite sensitivity
discriminates calling contexts using their top most callsites. In EC-
MAScript, all explicit and even implicit JavaScript function calls
invoke normal IRES functions Call and Construct. Thus, we de�ne
the callsite sensitivity for the target language by extending the AST
sensitivity with two normal IRES functions:

� cfa(t 2 T) = {� = (_, c) 2 S |
syntax-ctxt � js-call-ctxt(c) = c 0 ^ c 0(this) = t}

where js-call-ctxt(c) denotes the top-most context whose function is
Call or Construct and f �� denotes a function composition. Moreover,
we extend it to the k-callsite sensitivity by recursively taking ASTs
representing callsites of the target language:

�k -cfa(t 2 Tk) = {� = (_, c) 2 S |
t = [t1, · · · , tn] ^ n k^
(ö(syntax-ctxt � js-call-ctxt)n+1(c) _ n = k)^
81 i n.
((syntax-ctxt � js-call-ctxt)i (c) = ci ^ ci (this) = ti)}

Using this callsite sensitivity for the target language, the meta-
level static analyzer could discriminate not only explicit JavaScript
function calls (e.g. f()) but also implicit JavaScript function calls,
including getters/setters, user-de�ned implicit conversions, and
implicit function calls in built-in libraries.

5 IMPLEMENTATION
We developed a prototype implementation called JSAVER, which per-
forms a meta-level static analysis for JavaScript with ECMAScript.
The tool is an extension of JISET4 and it is an open-source project5.
In this section, we describe the challenges in implementing a meta-
level static analyzer and present our solutions for them.

Layered Abstract States. Unlike traditional JavaScript static anal-
yses, a meta-level static analysis for JavaScript should track analysis
results not only for the target language JavaScript but also for the
speci�cation language IRES. Thus, the sizes of abstract states are
much larger than those of the other JavaScript static analyzers. We
implement layered abstract states to maintain only updated analysis
results compared to the initial abstract state. It signi�cantly reduces
the time to perform the join (t), meet (u), and partial order (v)
operations by considering only the updated parts in abstract states.

Closures and Continuations. The speci�cation language IRES for
ECMAScript contains more complex language features than its
simpli�ed version presented in Section 4.1, such as symbols, lists,
and list operations. Among them, the two most complex features
are closures with captured variables and �rst-class continuations be-
cause they introduce new kinds of control �ows. ECMAScript uses
closures to de�ne implicit and explicit JavaScript iterators and uses
continuations for iterators, generators, and asynchronous features
such as async, await, and the Proxy object. Therefore, we de�ne and
implement abstract closures and abstract continuations; an abstract
closure is a pair of a function and a mapping from captured vari-
ables to their abstract values, and an abstract continuation consists
of a program point, a view for analysis sensitivity, parameters, and
an abstract context.

Abstract Counting. Properties of JavaScript objects could be dy-
namically added, modi�ed, or deleted and even accessible by �rst-
class property names. Thus, in JavaScript static analysis, performing
strong updates rather than weak updates for object properties as
many as possible is important for precise analysis results. Since
records of IRES are even more dynamic than JavaScript objects, it is
also important to increase analysis precision. Therefore, we imple-
ment abstract counting [19] to increase chances to perform strong
updates for �elds of records. It checks how many times records in
the same allocation site have been allocated and performs strong
updates only for singleton records with singleton �eld values.

Loop Sensitivity. Similar to function calls, loops are also typical
merging points in static analysis. A loop sensitivity [24] is one of the
representative techniques to increase the precision of JavaScript
static analysis for loops. It discriminates contexts using a stack
of loop contexts containing loop iterations. We de�ne it under
the view-based analysis sensitivity and implement it in JSAVER to
increase the precision of IRES static analysis. Moreover, we also
de�ne and implement the loop sensitivity for JavaScript using the
loop sensitivity for IRES. Therefore, JSAVER discriminates contexts
for explicit loops such as for-in and for-of and even implicit loops
such as the assignment of arguments or the length property of
arrays.

4https://github.com/kaist-plrg/jiset
5The URL of the tool is anonymized due to a double-blind review process.

6

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

(a) Evaluation algorithm for identi�er references

1 syntax def IdentifierReference [0]. Evaluation(
2 this , Identifier
3) {
4 return [? (ResolveBinding (Identifier.StringValue))]
5 }

(b) Extracted IRES function for identi�er references

(c) Result of x + y via a mechanized speci�cation

Figure 7: Analysis sensitivities of the target language
(JavaScript) and the speci�cation language (IRES)

divides contexts for the evaluation of JavaScript identi�ers x and y

in the above example using their ASTs even though their program
points in IRES are the same.

Callsite Sensitivity. We also formally de�ne the callsite sensitiv-
ity [37, 38] for the target language by extending the AST sensitivity
for speci�c normal IRES functions. The original callsite sensitivity
discriminates calling contexts using their top most callsites. In EC-
MAScript, all explicit and even implicit JavaScript function calls
invoke normal IRES functions Call and Construct. Thus, we de�ne
the callsite sensitivity for the target language by extending the AST
sensitivity with two normal IRES functions:

� cfa(t 2 T) = {� = (_, c) 2 S |
syntax-ctxt � js-call-ctxt(c) = c 0 ^ c 0(this) = t}

where js-call-ctxt(c) denotes the top-most context whose function is
Call or Construct and f �� denotes a function composition. Moreover,
we extend it to the k-callsite sensitivity by recursively taking ASTs
representing callsites of the target language:

�k -cfa(t 2 Tk) = {� = (_, c) 2 S |
t = [t1, · · · , tn] ^ n k^
(ö(syntax-ctxt � js-call-ctxt)n+1(c) _ n = k)^
81 i n.
((syntax-ctxt � js-call-ctxt)i (c) = ci ^ ci (this) = ti)}

Using this callsite sensitivity for the target language, the meta-
level static analyzer could discriminate not only explicit JavaScript
function calls (e.g. f()) but also implicit JavaScript function calls,
including getters/setters, user-de�ned implicit conversions, and
implicit function calls in built-in libraries.

5 IMPLEMENTATION
We developed a prototype implementation called JSAVER, which per-
forms a meta-level static analysis for JavaScript with ECMAScript.
The tool is an extension of JISET4 and it is an open-source project5.
In this section, we describe the challenges in implementing a meta-
level static analyzer and present our solutions for them.

Layered Abstract States. Unlike traditional JavaScript static anal-
yses, a meta-level static analysis for JavaScript should track analysis
results not only for the target language JavaScript but also for the
speci�cation language IRES. Thus, the sizes of abstract states are
much larger than those of the other JavaScript static analyzers. We
implement layered abstract states to maintain only updated analysis
results compared to the initial abstract state. It signi�cantly reduces
the time to perform the join (t), meet (u), and partial order (v)
operations by considering only the updated parts in abstract states.

Closures and Continuations. The speci�cation language IRES for
ECMAScript contains more complex language features than its
simpli�ed version presented in Section 4.1, such as symbols, lists,
and list operations. Among them, the two most complex features
are closures with captured variables and �rst-class continuations be-
cause they introduce new kinds of control �ows. ECMAScript uses
closures to de�ne implicit and explicit JavaScript iterators and uses
continuations for iterators, generators, and asynchronous features
such as async, await, and the Proxy object. Therefore, we de�ne and
implement abstract closures and abstract continuations; an abstract
closure is a pair of a function and a mapping from captured vari-
ables to their abstract values, and an abstract continuation consists
of a program point, a view for analysis sensitivity, parameters, and
an abstract context.

Abstract Counting. Properties of JavaScript objects could be dy-
namically added, modi�ed, or deleted and even accessible by �rst-
class property names. Thus, in JavaScript static analysis, performing
strong updates rather than weak updates for object properties as
many as possible is important for precise analysis results. Since
records of IRES are even more dynamic than JavaScript objects, it is
also important to increase analysis precision. Therefore, we imple-
ment abstract counting [19] to increase chances to perform strong
updates for �elds of records. It checks how many times records in
the same allocation site have been allocated and performs strong
updates only for singleton records with singleton �eld values.

Loop Sensitivity. Similar to function calls, loops are also typical
merging points in static analysis. A loop sensitivity [24] is one of the
representative techniques to increase the precision of JavaScript
static analysis for loops. It discriminates contexts using a stack
of loop contexts containing loop iterations. We de�ne it under
the view-based analysis sensitivity and implement it in JSAVER to
increase the precision of IRES static analysis. Moreover, we also
de�ne and implement the loop sensitivity for JavaScript using the
loop sensitivity for IRES. Therefore, JSAVER discriminates contexts
for explicit loops such as for-in and for-of and even implicit loops
such as the assignment of arguments or the length property of
arrays.

4https://github.com/kaist-plrg/jiset
5The URL of the tool is anonymized due to a double-blind review process.

6

parsex ||= y

Filling the gap between the JavaScript language specification and tools using the JISET family / 45

JSAVER - Meta-Level Static Analysis

38

IRES

JavaScript

· · ·<latexit sha1_base64="Kef69hW4e/raBfVz+DaK6/NBFbQ=">AAACHXicbVDJSgNBEK1xjXFL9OhlMAiewowKeozLwYsQITFCJkhPp2Ka9Cx01whxmI/wqge/xpt4Ff/GnnEObg8aHu9VdVU9P5ZCk+N8WDOzc/MLi5Wl6vLK6tp6rb5xpaNEcezySEbq2mcapQixS4IkXscKWeBL7PmT09zv3aHSIgo7NI1xELDbUIwEZ2SknseHEenqTa3hNJ0C9l/ilqQBJdo3dQu8YcSTAEPikmndd52YBilTJLjErOolGmPGJ+wW+4aGLEA9SIt9M3vHKEN7FCnzQrIL9XtHygKtp4FvKgNGY/3by8X/vH5Co6NBKsI4IQz516BRIm2K7Px4eygUcpJTQxhXwuxq8zFTjJOJqOqdoblF4YX591jGY+YjpV4+Jb7nWdpxs7QgQZYKykxm7u+E/pKrvaa739y7PGi0Tsr0KrAF27ALLhxCC86hDV3gMIEHeIQn69l6sV6tt6/SGavs2YQfsN4/AabGomA=</latexit> · · ·<latexit sha1_base64="Kef69hW4e/raBfVz+DaK6/NBFbQ=">AAACHXicbVDJSgNBEK1xjXFL9OhlMAiewowKeozLwYsQITFCJkhPp2Ka9Cx01whxmI/wqge/xpt4Ff/GnnEObg8aHu9VdVU9P5ZCk+N8WDOzc/MLi5Wl6vLK6tp6rb5xpaNEcezySEbq2mcapQixS4IkXscKWeBL7PmT09zv3aHSIgo7NI1xELDbUIwEZ2SknseHEenqTa3hNJ0C9l/ilqQBJdo3dQu8YcSTAEPikmndd52YBilTJLjErOolGmPGJ+wW+4aGLEA9SIt9M3vHKEN7FCnzQrIL9XtHygKtp4FvKgNGY/3by8X/vH5Co6NBKsI4IQz516BRIm2K7Px4eygUcpJTQxhXwuxq8zFTjJOJqOqdoblF4YX591jGY+YjpV4+Jb7nWdpxs7QgQZYKykxm7u+E/pKrvaa739y7PGi0Tsr0KrAF27ALLhxCC86hDV3gMIEHeIQn69l6sV6tt6/SGavs2YQfsN4/AabGomA=</latexit>

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Automatically Deriving JavaScript Static Analyzers from Language Specifications ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

function error(e) { throw e; }

const n = ...; // [0, 99]

n |> x => x + 1 // [1, 100]

|> x => x * 2 // [2, 200]

|> x => x + 1n; // TypeError

|> error (42);

of representative techniques to increase the precision of JavaScript
static analysis for loops. It discriminates contexts using a stack of
loop contexts containing loop iterations. We de�ne it under view-
based analysis sensitivity and implement it in JSAVER to increase
the precision of IRES static analysis. Moreover, we also de�ne and
implement the loop sensitivity for JavaScript using the loop sensitiv-
ity for IRES. Therefore, our tool discriminates contexts for explicit
loops, such as for-in or for-of, and even implicit loops, such as the
length property assignment of arrays.

6 EVALUATION
• AdditiveExpression
• Identi�erReference
• Identi�er
• AssignmentExpression
• LeftHandSideExpression
• ArrowFunction

• RQ1: Coverage) How much does JSAVER cover JavaScript
language features in the latest ECMAScript (ES12, 2021)?

• RQ2: Adaptability) Could JSAVER adapt a new language
features not yet introduced in ES12?

• RQ3: Expressiveness) What kinds of abstract sensitivities
and abstract domains JSAVER can support?

• RQ4: Performance) Could JSAVER analyze JavaScript pro-
grams in a durable time?

TODO

7 RELATEDWORK
TODO

• JavaScript Static Analyzers [9, 10, 14, 27]
• JavaScript Static Analysis Techniques [1, 12, 13, 15, 18–21,
30, 34–36]

• Partial Evaluation? (maybe no - * SE conf.)

7.1 JavaScript Mechanized Speci�cation
A speci�cation is mechanized if and only if it is both formalized
and executable. For JavaScript, researchers have proposed various
mechanized speci�cation in their own approaches. In 2010, Guha
et al. [8] presented �JS, the �rst mechanized speci�cation for a core
calculus of ES3 semantics by desugaring most of syntax into �JS, an
extended standard lambda calculus. Thus, the shape of �JS seman-
tics is quite di�erent with original algorithm steps. In mid 2010s,
researchers tried to de�ne mechanized speci�cation for the ES5
and 5.1 semantics having a similar shape of semantics with original
algorithm steps as much as possible. Bodin et al. [2] de�ned JSCert,
a semantics of a small subset of ES5, using Coq and extracts a refer-
ence interpreter JSRef. Park et al. [22] de�ned an entire semantics
of ES5, KJS, using the K [29], which is a framework for de�ning
language semantics. Fragoso Santos et al. [7] presented JaVerT, a

JavaScript veri�cation toolchain, including a JavaScript semantics
de�ned in their own Intermediate language, JSIL.

However, the fundamental problem of their approaches is that
they are manually de�ned thus they are labor-intensive and error-
prone. Due to such limitation, there is no existing mechanized
speci�cation for full semantics of ES6 or later versions. Therefore,
most of existing JavaScript static analyzers only focus on ES5.1
features or rarely support ES6 features even though already six
more versions from ES7 to ES12 are released since 2015.

Moreover, Park et al. [23] successfully showed that JISET is useful
tomechanically handle recent versions of ECMAScript by extending
JISET to perform N+1-version di�erential testing of both JavaScript
engines and ES11 (2020).

8 CONCLUSION
TODO

REFERENCES
[1] Roberto Amadini, Alexander Jordan, Graeme Gange, François Gauthier, Peter

Schachte, Harald Søndergaard, Peter J Stuckey, and Chenyi Zhang. 2017. Com-
bining String Abstract Domains for JavaScript Analysis: An Evaluation. In Pro-
ceedings of the 23rd International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS). https://doi.org/10.1007/978-3-
662-54577-5_3

[2] Martin Bodin, Arthur Charguéraud, Daniele Filaretti, Philippa Gardner, Sergio
Ma�eis, Daiva Naudziuniene, Alan Schmitt, and Gareth Smith. 2014. A Trusted
Mechanised JavaScript Speci�cation. Proceedings of the 41st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming (POPL) 49, 1 (2014), 87–100.
https://doi.org/10.1145/2535838.2535876

[3] David R. Chase, Mark Wegman, and F. Kenneth Zadeck. 1990. Analysis of
Pointers and Structures. In Proceedings of the ACM SIGPLAN 1990 Conference on
Programming Language Design and Implementation (PLDI) (PLDI ’90). Association
for Computing Machinery, New York, NY, USA, 296–310. https://doi.org/10.
1145/93542.93585

[4] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Uni�ed
Lattice Model for Static Analysis of Programs by Construction or Approximation
of Fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming languages (POPL). https://doi.org/10.1145/512950.
512973

[5] Patrick Cousot and Radhia Cousot. 1977. Static Determination of Dynamic
Properties of Generalized Type Unions. In Proceedings of an ACM Conference on
Language Design for Reliable Software. Association for Computing Machinery,
New York, NY, USA, 77–94. https://doi.org/10.1145/800022.808314

[6] Patrick Cousot and Radhia Cousot. 1992. Abstract Interpretation Frameworks.
Journal of Logic and Computation (JLC) 2, 4 (1992), 511–547. https://doi.org/10.
1093/logcom/2.4.511

[7] José Fragoso Santos, Petar Maksimović, Daiva Naudži = unienė, Thomas Wood,
and Philippa Gardner. 2017. JaVerT: JavaScript Veri�cation Toolchain. Proceedings
of the 44th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
(POPL) 2, POPL (2017), 1–33. https://doi.org/10.1145/3158138

[8] Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. 2010. The essence
of JavaScript. In Proceedings of the 24th European Conference on Object-Oriented
Programming (ECOOP). Springer, 126–150. https://doi.org/10.1007/978-3-642-
14107-2_7

[9] Simon Holm Jensen, Anders Møller, and Peter Thiemann. 2009. Type Analysis for
JavaScript. In Proceedings of the 16th International Symposium on Static Analysis
(SAS). https://doi.org/10.1007/978-3-642-03237-0_17

[10] Vineeth Kashyap, Kyle Dewey, Ethan A. Kuefner, John Wagner, Kevin Gib-
bons, John Sarracino, Ben Wiedermann, and Ben Hardekopf. 2014. JSAI: A
Static Analysis Platform for JavaScript. In Proceedings of the 22nd ACM SIG-
SOFT International Symposium on Foundations of Software Engineering (FSE).
https://doi.org/10.1145/2635868.2635904

[11] Se-Won Kim, Xavier Rival, and Sukyoung Ryu. 2018. A Theoretical Foundation
of Sensitivity in an Abstract Interpretation Framework. ACM Transactions on
Programming Languages and Systems (TOPLAS) 40, 3, Article 13 (2018), 44 pages.
https://doi.org/10.1145/3230624

[12] Yoonseok Ko, Xavier Rival, and Sukyoung Ryu. 2017. Weakly Sensitive Analysis
for Unbounded Iteration over JavaScript Objects. In Proceedings of the 15th Asian
Symposium on Programming Languages and Systems (APLAS). https://doi.org/10.
1007/978-3-319-71237-6_8

7

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

(a) Evaluation algorithm for logical OR assignments.

1 syntax def AssignmentExpression [8]. Evaluation(

2 this , LeftHandSideExpression , AssignmentExpression

3) { /* entry */

4 let lref = (LeftHandSideExpression.Evaluation)

5 let lval = [? (GetValue lref)]

6 let lbool = [! (ToBoolean lval)] /* #1 */

7 if (= lbool true) /* #2 */ return lval else { /* #3 */ }

8 if (&& (IsAnonymousFunctionDefinition AssignmentExpression)

9 (LeftHandSideExpression.IsIdentifierRef)) { /* #4 */

10 let rval = (AssignmentExpression.NamedEvaluation

11 lref.ReferencedName)

12 } else { /* #5 */

13 let rref = (AssignmentExpression.Evaluation)

14 let rval = [? (GetValue rref)]

15 } /* #6 */

16 [? (PutValue lref rval)]

17 return rval

18 } /* exit */

(b) The extracted IRES function.

Figure 1: Evaluation algorithm for the eighth alternative of AssignmentExpression in ES12 and the extracted IRES function.

To alleviate this problem, we propose a novel technique called
meta-level static analysis to automatically derive a JavaScript static
analyzer from any version of ECMAScript. The main idea of the
meta-level static analysis is to indirectly analyze a target language
program by performing static analysis for a language speci�ca-
tion of the target language written in a speci�cation language with
the program as the initial input. Thus, it can signi�cantly reduce
the burden to manually design and implement static analyzers by
automatically deriving them from given language speci�cations.
Moreover, it even guarantees the soundness of derived static analyz-
ers for the target language by constructing sound abstract semantics
for the speci�cation language.

For the expressiveness of a meta-level static analysis, we also
present ways to con�gure analysis sensitivities and abstract do-
mains for a target language. Con�guring them is a typical way
to manage analysis precision and performance. First, we present
the AST sensitivity in a meta-level static analysis to express analy-
sis sensitivities for a target language such as �ow-sensitivity and
k-callsite-sensitivity (Section 4.2). Second, we present a way to
con�gure abstract domains for structures and values in a target
language (Section 4.3).

To actualize our approach for JavaScript, we present JSAVER,
JavaScript Static Analyzers via ECMAScript Representations. First,
we utilize JISET [26] to extract a mechanized speci�cation written
in an intermediate representation, IRES, from a given ECMAScript.
Thus, target and speci�cation languages are JavaScript and IRES,
respectively, for the meta-level static analysis in JSAVER. In addition,
we implement several analysis techniques to improve the perfor-
mance and precision of derived static analyzers (Section 5). We
evaluated JSAVER by deriving a JavaScript static analyzer from the
latest ECMAScript, ES12, and using the o�cial conformance tests,
Test2622.

Our contributions are as follows:
• We propose a novel concept called meta-level static analysis,
which automatically derives a static analyzer for a target

2https://github.com/tc39/test262

let f = Math.floor(Math.random () * 100);

// f: [0, 99]

f ||= x => x;

// f: [1, 99] or { name: �f�, ... }

let x = f.name;

// f: [1, 99] or { name: �f�, ... }, x: undefined or �f�

Figure 2: A running JavaScript program with a logical OR
assignment newly introduced in ES12.

language from its language speci�cation written in a speci�-
cation language.

• We actualize meta-level static analysis for JavaScript as a tool
called JSAVER. It is the �rst tool that automatically derives a
JavaScript static analyzer from any version of ECMAScript.

• We derive a static analyzer from the latest ECMAScript, ES12,
to evaluate JSAVER. The synthesized static analyzer success-
fully analyzes all applicable 18,556 o�cial conformance tests.
Moreover, we demonstrate the adaptability and expressive-
ness of JSAVER with several case studies.

2 BACKGROUND
In this section, we explain the detail of ECMAScript, the o�cial
speci�cation of JavaScript. We then introduce JISET and how it
extracts a mechanized speci�cation from it. Since our work is to
perform meta-level static analysis for JavaScript using extracted
mechanized speci�cations, it is essential to understand how EC-
MAScript describes JavaScript semantics and how JISET extracts a
mechanized speci�cation from it.

For the detailed explanation, we explain a new language feature
introduced in ES12 called logical OR assignments (Figure 1) and
use a JavaScript program (Figure 2) as a running example. It �rst
de�nes a variable f with a random integer from 0 to 99. Then, it
uses a logical OR assignment to update f with an arrow function
whose name is �f� only if f has 0 because 0 represents false but
other integers represent true. Finally, it de�nes a variable x with
f.name and its value is undefined if f has an integer or �f� otherwise.

2

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Automatically Deriving JavaScript Static Analyzers from Language Specifications ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

function error(e) { throw e; }

const n = ...; // [0, 99]

n |> x => x + 1 // [1, 100]

|> x => x * 2 // [2, 200]

|> x => x + 1n; // TypeError

|> error (42);

of representative techniques to increase the precision of JavaScript
static analysis for loops. It discriminates contexts using a stack of
loop contexts containing loop iterations. We de�ne it under view-
based analysis sensitivity and implement it in JSAVER to increase
the precision of IRES static analysis. Moreover, we also de�ne and
implement the loop sensitivity for JavaScript using the loop sensitiv-
ity for IRES. Therefore, our tool discriminates contexts for explicit
loops, such as for-in or for-of, and even implicit loops, such as the
length property assignment of arrays.

6 EVALUATION
• AdditiveExpression
• Identi�erReference
• Identi�er
• AssignmentExpression
• LeftHandSideExpression
• ArrowFunction

• RQ1: Coverage) How much does JSAVER cover JavaScript
language features in the latest ECMAScript (ES12, 2021)?

• RQ2: Adaptability) Could JSAVER adapt a new language
features not yet introduced in ES12?

• RQ3: Expressiveness) What kinds of abstract sensitivities
and abstract domains JSAVER can support?

• RQ4: Performance) Could JSAVER analyze JavaScript pro-
grams in a durable time?

TODO

7 RELATEDWORK
TODO

• JavaScript Static Analyzers [9, 10, 14, 27]
• JavaScript Static Analysis Techniques [1, 12, 13, 15, 18–21,
30, 34–36]

• Partial Evaluation? (maybe no - * SE conf.)

7.1 JavaScript Mechanized Speci�cation
A speci�cation is mechanized if and only if it is both formalized
and executable. For JavaScript, researchers have proposed various
mechanized speci�cation in their own approaches. In 2010, Guha
et al. [8] presented �JS, the �rst mechanized speci�cation for a core
calculus of ES3 semantics by desugaring most of syntax into �JS, an
extended standard lambda calculus. Thus, the shape of �JS seman-
tics is quite di�erent with original algorithm steps. In mid 2010s,
researchers tried to de�ne mechanized speci�cation for the ES5
and 5.1 semantics having a similar shape of semantics with original
algorithm steps as much as possible. Bodin et al. [2] de�ned JSCert,
a semantics of a small subset of ES5, using Coq and extracts a refer-
ence interpreter JSRef. Park et al. [22] de�ned an entire semantics
of ES5, KJS, using the K [29], which is a framework for de�ning
language semantics. Fragoso Santos et al. [7] presented JaVerT, a

JavaScript veri�cation toolchain, including a JavaScript semantics
de�ned in their own Intermediate language, JSIL.

However, the fundamental problem of their approaches is that
they are manually de�ned thus they are labor-intensive and error-
prone. Due to such limitation, there is no existing mechanized
speci�cation for full semantics of ES6 or later versions. Therefore,
most of existing JavaScript static analyzers only focus on ES5.1
features or rarely support ES6 features even though already six
more versions from ES7 to ES12 are released since 2015.

Moreover, Park et al. [23] successfully showed that JISET is useful
tomechanically handle recent versions of ECMAScript by extending
JISET to perform N+1-version di�erential testing of both JavaScript
engines and ES11 (2020).

8 CONCLUSION
TODO

REFERENCES
[1] Roberto Amadini, Alexander Jordan, Graeme Gange, François Gauthier, Peter

Schachte, Harald Søndergaard, Peter J Stuckey, and Chenyi Zhang. 2017. Com-
bining String Abstract Domains for JavaScript Analysis: An Evaluation. In Pro-
ceedings of the 23rd International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS). https://doi.org/10.1007/978-3-
662-54577-5_3

[2] Martin Bodin, Arthur Charguéraud, Daniele Filaretti, Philippa Gardner, Sergio
Ma�eis, Daiva Naudziuniene, Alan Schmitt, and Gareth Smith. 2014. A Trusted
Mechanised JavaScript Speci�cation. Proceedings of the 41st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming (POPL) 49, 1 (2014), 87–100.
https://doi.org/10.1145/2535838.2535876

[3] David R. Chase, Mark Wegman, and F. Kenneth Zadeck. 1990. Analysis of
Pointers and Structures. In Proceedings of the ACM SIGPLAN 1990 Conference on
Programming Language Design and Implementation (PLDI) (PLDI ’90). Association
for Computing Machinery, New York, NY, USA, 296–310. https://doi.org/10.
1145/93542.93585

[4] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Uni�ed
Lattice Model for Static Analysis of Programs by Construction or Approximation
of Fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming languages (POPL). https://doi.org/10.1145/512950.
512973

[5] Patrick Cousot and Radhia Cousot. 1977. Static Determination of Dynamic
Properties of Generalized Type Unions. In Proceedings of an ACM Conference on
Language Design for Reliable Software. Association for Computing Machinery,
New York, NY, USA, 77–94. https://doi.org/10.1145/800022.808314

[6] Patrick Cousot and Radhia Cousot. 1992. Abstract Interpretation Frameworks.
Journal of Logic and Computation (JLC) 2, 4 (1992), 511–547. https://doi.org/10.
1093/logcom/2.4.511

[7] José Fragoso Santos, Petar Maksimović, Daiva Naudži = unienė, Thomas Wood,
and Philippa Gardner. 2017. JaVerT: JavaScript Veri�cation Toolchain. Proceedings
of the 44th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
(POPL) 2, POPL (2017), 1–33. https://doi.org/10.1145/3158138

[8] Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. 2010. The essence
of JavaScript. In Proceedings of the 24th European Conference on Object-Oriented
Programming (ECOOP). Springer, 126–150. https://doi.org/10.1007/978-3-642-
14107-2_7

[9] Simon Holm Jensen, Anders Møller, and Peter Thiemann. 2009. Type Analysis for
JavaScript. In Proceedings of the 16th International Symposium on Static Analysis
(SAS). https://doi.org/10.1007/978-3-642-03237-0_17

[10] Vineeth Kashyap, Kyle Dewey, Ethan A. Kuefner, John Wagner, Kevin Gib-
bons, John Sarracino, Ben Wiedermann, and Ben Hardekopf. 2014. JSAI: A
Static Analysis Platform for JavaScript. In Proceedings of the 22nd ACM SIG-
SOFT International Symposium on Foundations of Software Engineering (FSE).
https://doi.org/10.1145/2635868.2635904

[11] Se-Won Kim, Xavier Rival, and Sukyoung Ryu. 2018. A Theoretical Foundation
of Sensitivity in an Abstract Interpretation Framework. ACM Transactions on
Programming Languages and Systems (TOPLAS) 40, 3, Article 13 (2018), 44 pages.
https://doi.org/10.1145/3230624

[12] Yoonseok Ko, Xavier Rival, and Sukyoung Ryu. 2017. Weakly Sensitive Analysis
for Unbounded Iteration over JavaScript Objects. In Proceedings of the 15th Asian
Symposium on Programming Languages and Systems (APLAS). https://doi.org/10.
1007/978-3-319-71237-6_8

7

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Automatically Deriving JavaScript Static Analyzers from Language Specifications ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

function error(e) { throw e; }

const n = ...; // [0, 99]

n |> x => x + 1 // [1, 100]

|> x => x * 2 // [2, 200]

|> x => x + 1n; // TypeError

|> error (42);

of representative techniques to increase the precision of JavaScript
static analysis for loops. It discriminates contexts using a stack of
loop contexts containing loop iterations. We de�ne it under view-
based analysis sensitivity and implement it in JSAVER to increase
the precision of IRES static analysis. Moreover, we also de�ne and
implement the loop sensitivity for JavaScript using the loop sensitiv-
ity for IRES. Therefore, our tool discriminates contexts for explicit
loops, such as for-in or for-of, and even implicit loops, such as the
length property assignment of arrays.

6 EVALUATION
• AdditiveExpression
• Identi�erReference
• Identi�er
• AssignmentExpression
• LeftHandSideExpression
• ArrowFunction

• RQ1: Coverage) How much does JSAVER cover JavaScript
language features in the latest ECMAScript (ES12, 2021)?

• RQ2: Adaptability) Could JSAVER adapt a new language
features not yet introduced in ES12?

• RQ3: Expressiveness) What kinds of abstract sensitivities
and abstract domains JSAVER can support?

• RQ4: Performance) Could JSAVER analyze JavaScript pro-
grams in a durable time?

TODO

7 RELATEDWORK
TODO

• JavaScript Static Analyzers [9, 10, 14, 27]
• JavaScript Static Analysis Techniques [1, 12, 13, 15, 18–21,
30, 34–36]

• Partial Evaluation? (maybe no - * SE conf.)

7.1 JavaScript Mechanized Speci�cation
A speci�cation is mechanized if and only if it is both formalized
and executable. For JavaScript, researchers have proposed various
mechanized speci�cation in their own approaches. In 2010, Guha
et al. [8] presented �JS, the �rst mechanized speci�cation for a core
calculus of ES3 semantics by desugaring most of syntax into �JS, an
extended standard lambda calculus. Thus, the shape of �JS seman-
tics is quite di�erent with original algorithm steps. In mid 2010s,
researchers tried to de�ne mechanized speci�cation for the ES5
and 5.1 semantics having a similar shape of semantics with original
algorithm steps as much as possible. Bodin et al. [2] de�ned JSCert,
a semantics of a small subset of ES5, using Coq and extracts a refer-
ence interpreter JSRef. Park et al. [22] de�ned an entire semantics
of ES5, KJS, using the K [29], which is a framework for de�ning
language semantics. Fragoso Santos et al. [7] presented JaVerT, a

JavaScript veri�cation toolchain, including a JavaScript semantics
de�ned in their own Intermediate language, JSIL.

However, the fundamental problem of their approaches is that
they are manually de�ned thus they are labor-intensive and error-
prone. Due to such limitation, there is no existing mechanized
speci�cation for full semantics of ES6 or later versions. Therefore,
most of existing JavaScript static analyzers only focus on ES5.1
features or rarely support ES6 features even though already six
more versions from ES7 to ES12 are released since 2015.

Moreover, Park et al. [23] successfully showed that JISET is useful
tomechanically handle recent versions of ECMAScript by extending
JISET to perform N+1-version di�erential testing of both JavaScript
engines and ES11 (2020).

8 CONCLUSION
TODO

REFERENCES
[1] Roberto Amadini, Alexander Jordan, Graeme Gange, François Gauthier, Peter

Schachte, Harald Søndergaard, Peter J Stuckey, and Chenyi Zhang. 2017. Com-
bining String Abstract Domains for JavaScript Analysis: An Evaluation. In Pro-
ceedings of the 23rd International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS). https://doi.org/10.1007/978-3-
662-54577-5_3

[2] Martin Bodin, Arthur Charguéraud, Daniele Filaretti, Philippa Gardner, Sergio
Ma�eis, Daiva Naudziuniene, Alan Schmitt, and Gareth Smith. 2014. A Trusted
Mechanised JavaScript Speci�cation. Proceedings of the 41st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming (POPL) 49, 1 (2014), 87–100.
https://doi.org/10.1145/2535838.2535876

[3] David R. Chase, Mark Wegman, and F. Kenneth Zadeck. 1990. Analysis of
Pointers and Structures. In Proceedings of the ACM SIGPLAN 1990 Conference on
Programming Language Design and Implementation (PLDI) (PLDI ’90). Association
for Computing Machinery, New York, NY, USA, 296–310. https://doi.org/10.
1145/93542.93585

[4] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Uni�ed
Lattice Model for Static Analysis of Programs by Construction or Approximation
of Fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming languages (POPL). https://doi.org/10.1145/512950.
512973

[5] Patrick Cousot and Radhia Cousot. 1977. Static Determination of Dynamic
Properties of Generalized Type Unions. In Proceedings of an ACM Conference on
Language Design for Reliable Software. Association for Computing Machinery,
New York, NY, USA, 77–94. https://doi.org/10.1145/800022.808314

[6] Patrick Cousot and Radhia Cousot. 1992. Abstract Interpretation Frameworks.
Journal of Logic and Computation (JLC) 2, 4 (1992), 511–547. https://doi.org/10.
1093/logcom/2.4.511

[7] José Fragoso Santos, Petar Maksimović, Daiva Naudži = unienė, Thomas Wood,
and Philippa Gardner. 2017. JaVerT: JavaScript Veri�cation Toolchain. Proceedings
of the 44th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
(POPL) 2, POPL (2017), 1–33. https://doi.org/10.1145/3158138

[8] Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. 2010. The essence
of JavaScript. In Proceedings of the 24th European Conference on Object-Oriented
Programming (ECOOP). Springer, 126–150. https://doi.org/10.1007/978-3-642-
14107-2_7

[9] Simon Holm Jensen, Anders Møller, and Peter Thiemann. 2009. Type Analysis for
JavaScript. In Proceedings of the 16th International Symposium on Static Analysis
(SAS). https://doi.org/10.1007/978-3-642-03237-0_17

[10] Vineeth Kashyap, Kyle Dewey, Ethan A. Kuefner, John Wagner, Kevin Gib-
bons, John Sarracino, Ben Wiedermann, and Ben Hardekopf. 2014. JSAI: A
Static Analysis Platform for JavaScript. In Proceedings of the 22nd ACM SIG-
SOFT International Symposium on Foundations of Software Engineering (FSE).
https://doi.org/10.1145/2635868.2635904

[11] Se-Won Kim, Xavier Rival, and Sukyoung Ryu. 2018. A Theoretical Foundation
of Sensitivity in an Abstract Interpretation Framework. ACM Transactions on
Programming Languages and Systems (TOPLAS) 40, 3, Article 13 (2018), 44 pages.
https://doi.org/10.1145/3230624

[12] Yoonseok Ko, Xavier Rival, and Sukyoung Ryu. 2017. Weakly Sensitive Analysis
for Unbounded Iteration over JavaScript Objects. In Proceedings of the 15th Asian
Symposium on Programming Languages and Systems (APLAS). https://doi.org/10.
1007/978-3-319-71237-6_8

7

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Automatically Deriving JavaScript Static Analyzers from Language Specifications ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

function error(e) { throw e; }

const n = ...; // [0, 99]

n |> x => x + 1 // [1, 100]

|> x => x * 2 // [2, 200]

|> x => x + 1n; // TypeError

|> error (42);

of representative techniques to increase the precision of JavaScript
static analysis for loops. It discriminates contexts using a stack of
loop contexts containing loop iterations. We de�ne it under view-
based analysis sensitivity and implement it in JSAVER to increase
the precision of IRES static analysis. Moreover, we also de�ne and
implement the loop sensitivity for JavaScript using the loop sensitiv-
ity for IRES. Therefore, our tool discriminates contexts for explicit
loops, such as for-in or for-of, and even implicit loops, such as the
length property assignment of arrays.

6 EVALUATION
• AdditiveExpression
• Identi�erReference
• Identi�er
• AssignmentExpression
• LeftHandSideExpression
• ArrowFunction

• RQ1: Coverage) How much does JSAVER cover JavaScript
language features in the latest ECMAScript (ES12, 2021)?

• RQ2: Adaptability) Could JSAVER adapt a new language
features not yet introduced in ES12?

• RQ3: Expressiveness) What kinds of abstract sensitivities
and abstract domains JSAVER can support?

• RQ4: Performance) Could JSAVER analyze JavaScript pro-
grams in a durable time?

TODO

7 RELATEDWORK
TODO

• JavaScript Static Analyzers [9, 10, 14, 27]
• JavaScript Static Analysis Techniques [1, 12, 13, 15, 18–21,
30, 34–36]

• Partial Evaluation? (maybe no - * SE conf.)

7.1 JavaScript Mechanized Speci�cation
A speci�cation is mechanized if and only if it is both formalized
and executable. For JavaScript, researchers have proposed various
mechanized speci�cation in their own approaches. In 2010, Guha
et al. [8] presented �JS, the �rst mechanized speci�cation for a core
calculus of ES3 semantics by desugaring most of syntax into �JS, an
extended standard lambda calculus. Thus, the shape of �JS seman-
tics is quite di�erent with original algorithm steps. In mid 2010s,
researchers tried to de�ne mechanized speci�cation for the ES5
and 5.1 semantics having a similar shape of semantics with original
algorithm steps as much as possible. Bodin et al. [2] de�ned JSCert,
a semantics of a small subset of ES5, using Coq and extracts a refer-
ence interpreter JSRef. Park et al. [22] de�ned an entire semantics
of ES5, KJS, using the K [29], which is a framework for de�ning
language semantics. Fragoso Santos et al. [7] presented JaVerT, a

JavaScript veri�cation toolchain, including a JavaScript semantics
de�ned in their own Intermediate language, JSIL.

However, the fundamental problem of their approaches is that
they are manually de�ned thus they are labor-intensive and error-
prone. Due to such limitation, there is no existing mechanized
speci�cation for full semantics of ES6 or later versions. Therefore,
most of existing JavaScript static analyzers only focus on ES5.1
features or rarely support ES6 features even though already six
more versions from ES7 to ES12 are released since 2015.

Moreover, Park et al. [23] successfully showed that JISET is useful
tomechanically handle recent versions of ECMAScript by extending
JISET to perform N+1-version di�erential testing of both JavaScript
engines and ES11 (2020).

8 CONCLUSION
TODO

REFERENCES
[1] Roberto Amadini, Alexander Jordan, Graeme Gange, François Gauthier, Peter

Schachte, Harald Søndergaard, Peter J Stuckey, and Chenyi Zhang. 2017. Com-
bining String Abstract Domains for JavaScript Analysis: An Evaluation. In Pro-
ceedings of the 23rd International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS). https://doi.org/10.1007/978-3-
662-54577-5_3

[2] Martin Bodin, Arthur Charguéraud, Daniele Filaretti, Philippa Gardner, Sergio
Ma�eis, Daiva Naudziuniene, Alan Schmitt, and Gareth Smith. 2014. A Trusted
Mechanised JavaScript Speci�cation. Proceedings of the 41st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming (POPL) 49, 1 (2014), 87–100.
https://doi.org/10.1145/2535838.2535876

[3] David R. Chase, Mark Wegman, and F. Kenneth Zadeck. 1990. Analysis of
Pointers and Structures. In Proceedings of the ACM SIGPLAN 1990 Conference on
Programming Language Design and Implementation (PLDI) (PLDI ’90). Association
for Computing Machinery, New York, NY, USA, 296–310. https://doi.org/10.
1145/93542.93585

[4] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Uni�ed
Lattice Model for Static Analysis of Programs by Construction or Approximation
of Fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming languages (POPL). https://doi.org/10.1145/512950.
512973

[5] Patrick Cousot and Radhia Cousot. 1977. Static Determination of Dynamic
Properties of Generalized Type Unions. In Proceedings of an ACM Conference on
Language Design for Reliable Software. Association for Computing Machinery,
New York, NY, USA, 77–94. https://doi.org/10.1145/800022.808314

[6] Patrick Cousot and Radhia Cousot. 1992. Abstract Interpretation Frameworks.
Journal of Logic and Computation (JLC) 2, 4 (1992), 511–547. https://doi.org/10.
1093/logcom/2.4.511

[7] José Fragoso Santos, Petar Maksimović, Daiva Naudži = unienė, Thomas Wood,
and Philippa Gardner. 2017. JaVerT: JavaScript Veri�cation Toolchain. Proceedings
of the 44th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
(POPL) 2, POPL (2017), 1–33. https://doi.org/10.1145/3158138

[8] Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. 2010. The essence
of JavaScript. In Proceedings of the 24th European Conference on Object-Oriented
Programming (ECOOP). Springer, 126–150. https://doi.org/10.1007/978-3-642-
14107-2_7

[9] Simon Holm Jensen, Anders Møller, and Peter Thiemann. 2009. Type Analysis for
JavaScript. In Proceedings of the 16th International Symposium on Static Analysis
(SAS). https://doi.org/10.1007/978-3-642-03237-0_17

[10] Vineeth Kashyap, Kyle Dewey, Ethan A. Kuefner, John Wagner, Kevin Gib-
bons, John Sarracino, Ben Wiedermann, and Ben Hardekopf. 2014. JSAI: A
Static Analysis Platform for JavaScript. In Proceedings of the 22nd ACM SIG-
SOFT International Symposium on Foundations of Software Engineering (FSE).
https://doi.org/10.1145/2635868.2635904

[11] Se-Won Kim, Xavier Rival, and Sukyoung Ryu. 2018. A Theoretical Foundation
of Sensitivity in an Abstract Interpretation Framework. ACM Transactions on
Programming Languages and Systems (TOPLAS) 40, 3, Article 13 (2018), 44 pages.
https://doi.org/10.1145/3230624

[12] Yoonseok Ko, Xavier Rival, and Sukyoung Ryu. 2017. Weakly Sensitive Analysis
for Unbounded Iteration over JavaScript Objects. In Proceedings of the 15th Asian
Symposium on Programming Languages and Systems (APLAS). https://doi.org/10.
1007/978-3-319-71237-6_8

7

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

(a) Evaluation algorithm for logical OR assignments.

1 syntax def AssignmentExpression [8]. Evaluation(

2 this , LeftHandSideExpression , AssignmentExpression

3) { /* entry */

4 let lref = (LeftHandSideExpression.Evaluation)

5 let lval = [? (GetValue lref)]

6 let lbool = [! (ToBoolean lval)] /* #1 */

7 if (= lbool true) /* #2 */ return lval else { /* #3 */ }

8 if (&& (IsAnonymousFunctionDefinition AssignmentExpression)

9 (LeftHandSideExpression.IsIdentifierRef)) { /* #4 */

10 let rval = (AssignmentExpression.NamedEvaluation

11 lref.ReferencedName)

12 } else { /* #5 */

13 let rref = (AssignmentExpression.Evaluation)

14 let rval = [? (GetValue rref)]

15 } /* #6 */

16 [? (PutValue lref rval)]

17 return rval

18 } /* exit */

(b) The extracted IRES function.

Figure 1: Evaluation algorithm for the eighth alternative of AssignmentExpression in ES12 and the extracted IRES function.

To alleviate this problem, we propose a novel technique called
meta-level static analysis to automatically derive a JavaScript static
analyzer from any version of ECMAScript. The main idea of the
meta-level static analysis is to indirectly analyze a target language
program by performing static analysis for a language speci�ca-
tion of the target language written in a speci�cation language with
the program as the initial input. Thus, it can signi�cantly reduce
the burden to manually design and implement static analyzers by
automatically deriving them from given language speci�cations.
Moreover, it even guarantees the soundness of derived static analyz-
ers for the target language by constructing sound abstract semantics
for the speci�cation language.

For the expressiveness of a meta-level static analysis, we also
present ways to con�gure analysis sensitivities and abstract do-
mains for a target language. Con�guring them is a typical way
to manage analysis precision and performance. First, we present
the AST sensitivity in a meta-level static analysis to express analy-
sis sensitivities for a target language such as �ow-sensitivity and
k-callsite-sensitivity (Section 4.2). Second, we present a way to
con�gure abstract domains for structures and values in a target
language (Section 4.3).

To actualize our approach for JavaScript, we present JSAVER,
JavaScript Static Analyzers via ECMAScript Representations. First,
we utilize JISET [26] to extract a mechanized speci�cation written
in an intermediate representation, IRES, from a given ECMAScript.
Thus, target and speci�cation languages are JavaScript and IRES,
respectively, for the meta-level static analysis in JSAVER. In addition,
we implement several analysis techniques to improve the perfor-
mance and precision of derived static analyzers (Section 5). We
evaluated JSAVER by deriving a JavaScript static analyzer from the
latest ECMAScript, ES12, and using the o�cial conformance tests,
Test2622.

Our contributions are as follows:
• We propose a novel concept called meta-level static analysis,
which automatically derives a static analyzer for a target

2https://github.com/tc39/test262

let f = Math.floor(Math.random () * 100);

// f: [0, 99]

f ||= x => x;

// f: [1, 99] or { name: �f�, ... }

let x = f.name;

// f: [1, 99] or { name: �f�, ... }, x: undefined or �f�

Figure 2: A running JavaScript program with a logical OR
assignment newly introduced in ES12.

language from its language speci�cation written in a speci�-
cation language.

• We actualize meta-level static analysis for JavaScript as a tool
called JSAVER. It is the �rst tool that automatically derives a
JavaScript static analyzer from any version of ECMAScript.

• We derive a static analyzer from the latest ECMAScript, ES12,
to evaluate JSAVER. The synthesized static analyzer success-
fully analyzes all applicable 18,556 o�cial conformance tests.
Moreover, we demonstrate the adaptability and expressive-
ness of JSAVER with several case studies.

2 BACKGROUND
In this section, we explain the detail of ECMAScript, the o�cial
speci�cation of JavaScript. We then introduce JISET and how it
extracts a mechanized speci�cation from it. Since our work is to
perform meta-level static analysis for JavaScript using extracted
mechanized speci�cations, it is essential to understand how EC-
MAScript describes JavaScript semantics and how JISET extracts a
mechanized speci�cation from it.

For the detailed explanation, we explain a new language feature
introduced in ES12 called logical OR assignments (Figure 1) and
use a JavaScript program (Figure 2) as a running example. It �rst
de�nes a variable f with a random integer from 0 to 99. Then, it
uses a logical OR assignment to update f with an arrow function
whose name is �f� only if f has 0 because 0 represents false but
other integers represent true. Finally, it de�nes a variable x with
f.name and its value is undefined if f has an integer or �f� otherwise.

2

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Automatically Deriving JavaScript Static Analyzers from Language Specifications ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

otherwise, a normal function. An instruction i is a primitive value
assignment, an operation between values, a internal �eld access, a
external �eld access, a record allocations, a function call, or a return
instruction.

States � 2 S = H ⇥ C
Heaps h 2 H = A �n��!R
Contexts c 2 C = L ⇥ (X �n��!V) ⇥ C?
Values � 2 V = Vp] A] T] F
Records r 2 R = (Vstr

�n��!V) ⇥ (Vstr
�n��!V)

States S consists of heaps H and contexts C. A heap h 2 H is a
�nite mapping from addresses to records. Each record allocation
instruction x = {} creates a unique address a 2 A di�erent with
existing addresses. A context c 2 C is a triple of 1) the program
point, 2) a local environment which is a �nite mapping from vari-
ables to values, and 3) an optional calling context. A value � 2 V
is a primitive value, an address, an AST, or a function. A record
r 2 R consists of two �nite mappings from strings to values. The
left mapping represents internal �elds accessible by internal �eld
accesses x = x[x]. On the other hand, the right one represents ex-
ternal �elds, such as variables in JavaScript environment records or
properties in JavaScript objects, and they are accessible by a exter-
nal �eld access x = x[x]ext. We formulate the concrete semantics
of a program P as a transition system ({, S�) where{✓ S⇥ S is a
transition relation between concrete states and S� is a set of initial
states.

For a meta-level static analysis, we de�ne its abstract semantics
in the abstract interpretation framework [4, 6]. Since our analysis
supports view-based analysis sensitivities [11, 24], the abstract
domain is de�ned as a mapping from views to abstract states, D# =
� ! D#, with a view abstraction � : � ! P(S) which represents
the meaning of each view � 2 �. Then, we de�ne abstract states as
follows:

Abstract States � # 2 D# = H# ⇥ C#

Abstract Heaps h# 2 H# = A# �n��!(R# ⇥ R#
ext

)
Abstract Addresses a# 2 A# = L
Abstract Contexts c# 2 C# = X �n��!V#

An abstract heaph# 2 H# is a �nitemapping from abstract addresses
A
to pairs of abstract internal records R# and abstract external

records R#
ext

. Each abstract address a# 2 A# is de�ned with the
allocation-site abstraction [3] that partitions concrete addresses A
based on their allocation sites L. An abstract context c# 2 C# is a
�nite mapping from variables to abstract values. Shapes of abstract
values V#, abstract internal (or external) records R# (or R#

ext
) are

parametric thus we can freely con�gure them.

4.2 Analysis Sensitivities
In a meta-level static analysis, analysis sensitivities of the target
language (JavaScript) are di�erent with them of the speci�cation
language (IRES). For example, we explain what happens during anal-
ysis of the following JavaScript program with the �ow-sensitivity
for IRES:

let x = 1, y = 2;

x + y; // 3

(a) Evaluation algorithm for identi�er references.

1 syntax def IdentifierReference [0]. Evaluation(

2 this , Identifier

3) {

4 return [? (ResolveBinding (Identifier.StringValue))

5 }

(b) The extracted IRES function.

(c) Parsing result of x + y (bottom) and the initial local environment
(top) of the IRES function.

Figure 7: An example of the di�erence between analysis sen-
sitivities of target and speci�cation language.

Figure 7 describes (a) the Evaluation algorithm of identi�er refer-
ences, (b) its extracted IRES function, and (c) the parsing result of
x + y and the initial local environment of the IRES function. Since
the �ow-sensitivity merges states based on the program points,
contexts for the evaluation of both identi�er references x and y are
merged. Thus, the IRES variable Identifier points to their ASTs
as described in Figure 7. Due to the imprecise merge of contexts,
StringValue of Identifier returns �x� and �y�, and ResolveBinding
with them returns both 1 and 2. Finally, the analysis result of x + y

becomes { 2, 3, 4 }.

Flow Sensitivity. To resolve this problem, we present an AST sen-
sitivity for the speci�cation language to represent �ow-sensitivity
of the target language. It is a variant of object sensitivity [17, 33]
which uses abstract addresses A# of receiver objects as views. How-
ever, unlike the object sensitivity, the AST sensitivity utilizes ASTs
T stored in the parameter this only for syntax-directed functions:

� flow(t 2 T) = {� = (_, c) 2 S | syntax-ctxt(c) = c 0 ^ c 0(this) = t}
where syntax-ctxt(c) denotes the top-most context whose function
is syntax-directed and c 0(this) denotes a lookup of the variable
this in the mapping in the context c 0. We de�ne the �ow sensitivity
for the target language using the AST sensitivity and it successfully
divides contexts for the evaluation of JavaScript identi�ers x and y

in the above example using their ASTs even though their program
points are same.

Callsite Sensitivity. We also formally de�ne the callsite sensitiv-
ity [31, 32] for the target language by extending AST sensitivity
for speci�c normal IRES functions. The original callsite sensitivity
discriminates calling contexts based on their top most callsites. In
ECMAScript, all explicit and even implicit JavaScript function calls

5

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Automatically Deriving JavaScript Static Analyzers from Language Specifications ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

function error(e) { throw e; }

const n = ...; // [0, 99]

n |> x => x + 1 // [1, 100]

|> x => x * 2 // [2, 200]

|> x => x + 1n; // TypeError

|> error (42);

of representative techniques to increase the precision of JavaScript
static analysis for loops. It discriminates contexts using a stack of
loop contexts containing loop iterations. We de�ne it under view-
based analysis sensitivity and implement it in JSAVER to increase
the precision of IRES static analysis. Moreover, we also de�ne and
implement the loop sensitivity for JavaScript using the loop sensitiv-
ity for IRES. Therefore, our tool discriminates contexts for explicit
loops, such as for-in or for-of, and even implicit loops, such as the
length property assignment of arrays.

6 EVALUATION
• AdditiveExpression
• Identi�erReference
• Identi�er
• AssignmentExpression
• LeftHandSideExpression
• ArrowFunction

• RQ1: Coverage) How much does JSAVER cover JavaScript
language features in the latest ECMAScript (ES12, 2021)?

• RQ2: Adaptability) Could JSAVER adapt a new language
features not yet introduced in ES12?

• RQ3: Expressiveness) What kinds of abstract sensitivities
and abstract domains JSAVER can support?

• RQ4: Performance) Could JSAVER analyze JavaScript pro-
grams in a durable time?

TODO

7 RELATEDWORK
TODO

• JavaScript Static Analyzers [9, 10, 14, 27]
• JavaScript Static Analysis Techniques [1, 12, 13, 15, 18–21,
30, 34–36]

• Partial Evaluation? (maybe no - * SE conf.)

7.1 JavaScript Mechanized Speci�cation
A speci�cation is mechanized if and only if it is both formalized
and executable. For JavaScript, researchers have proposed various
mechanized speci�cation in their own approaches. In 2010, Guha
et al. [8] presented �JS, the �rst mechanized speci�cation for a core
calculus of ES3 semantics by desugaring most of syntax into �JS, an
extended standard lambda calculus. Thus, the shape of �JS seman-
tics is quite di�erent with original algorithm steps. In mid 2010s,
researchers tried to de�ne mechanized speci�cation for the ES5
and 5.1 semantics having a similar shape of semantics with original
algorithm steps as much as possible. Bodin et al. [2] de�ned JSCert,
a semantics of a small subset of ES5, using Coq and extracts a refer-
ence interpreter JSRef. Park et al. [22] de�ned an entire semantics
of ES5, KJS, using the K [29], which is a framework for de�ning
language semantics. Fragoso Santos et al. [7] presented JaVerT, a

JavaScript veri�cation toolchain, including a JavaScript semantics
de�ned in their own Intermediate language, JSIL.

However, the fundamental problem of their approaches is that
they are manually de�ned thus they are labor-intensive and error-
prone. Due to such limitation, there is no existing mechanized
speci�cation for full semantics of ES6 or later versions. Therefore,
most of existing JavaScript static analyzers only focus on ES5.1
features or rarely support ES6 features even though already six
more versions from ES7 to ES12 are released since 2015.

Moreover, Park et al. [23] successfully showed that JISET is useful
tomechanically handle recent versions of ECMAScript by extending
JISET to perform N+1-version di�erential testing of both JavaScript
engines and ES11 (2020).

8 CONCLUSION
TODO

REFERENCES
[1] Roberto Amadini, Alexander Jordan, Graeme Gange, François Gauthier, Peter

Schachte, Harald Søndergaard, Peter J Stuckey, and Chenyi Zhang. 2017. Com-
bining String Abstract Domains for JavaScript Analysis: An Evaluation. In Pro-
ceedings of the 23rd International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS). https://doi.org/10.1007/978-3-
662-54577-5_3

[2] Martin Bodin, Arthur Charguéraud, Daniele Filaretti, Philippa Gardner, Sergio
Ma�eis, Daiva Naudziuniene, Alan Schmitt, and Gareth Smith. 2014. A Trusted
Mechanised JavaScript Speci�cation. Proceedings of the 41st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming (POPL) 49, 1 (2014), 87–100.
https://doi.org/10.1145/2535838.2535876

[3] David R. Chase, Mark Wegman, and F. Kenneth Zadeck. 1990. Analysis of
Pointers and Structures. In Proceedings of the ACM SIGPLAN 1990 Conference on
Programming Language Design and Implementation (PLDI) (PLDI ’90). Association
for Computing Machinery, New York, NY, USA, 296–310. https://doi.org/10.
1145/93542.93585

[4] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Uni�ed
Lattice Model for Static Analysis of Programs by Construction or Approximation
of Fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming languages (POPL). https://doi.org/10.1145/512950.
512973

[5] Patrick Cousot and Radhia Cousot. 1977. Static Determination of Dynamic
Properties of Generalized Type Unions. In Proceedings of an ACM Conference on
Language Design for Reliable Software. Association for Computing Machinery,
New York, NY, USA, 77–94. https://doi.org/10.1145/800022.808314

[6] Patrick Cousot and Radhia Cousot. 1992. Abstract Interpretation Frameworks.
Journal of Logic and Computation (JLC) 2, 4 (1992), 511–547. https://doi.org/10.
1093/logcom/2.4.511

[7] José Fragoso Santos, Petar Maksimović, Daiva Naudži = unienė, Thomas Wood,
and Philippa Gardner. 2017. JaVerT: JavaScript Veri�cation Toolchain. Proceedings
of the 44th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
(POPL) 2, POPL (2017), 1–33. https://doi.org/10.1145/3158138

[8] Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. 2010. The essence
of JavaScript. In Proceedings of the 24th European Conference on Object-Oriented
Programming (ECOOP). Springer, 126–150. https://doi.org/10.1007/978-3-642-
14107-2_7

[9] Simon Holm Jensen, Anders Møller, and Peter Thiemann. 2009. Type Analysis for
JavaScript. In Proceedings of the 16th International Symposium on Static Analysis
(SAS). https://doi.org/10.1007/978-3-642-03237-0_17

[10] Vineeth Kashyap, Kyle Dewey, Ethan A. Kuefner, John Wagner, Kevin Gib-
bons, John Sarracino, Ben Wiedermann, and Ben Hardekopf. 2014. JSAI: A
Static Analysis Platform for JavaScript. In Proceedings of the 22nd ACM SIG-
SOFT International Symposium on Foundations of Software Engineering (FSE).
https://doi.org/10.1145/2635868.2635904

[11] Se-Won Kim, Xavier Rival, and Sukyoung Ryu. 2018. A Theoretical Foundation
of Sensitivity in an Abstract Interpretation Framework. ACM Transactions on
Programming Languages and Systems (TOPLAS) 40, 3, Article 13 (2018), 44 pages.
https://doi.org/10.1145/3230624

[12] Yoonseok Ko, Xavier Rival, and Sukyoung Ryu. 2017. Weakly Sensitive Analysis
for Unbounded Iteration over JavaScript Objects. In Proceedings of the 15th Asian
Symposium on Programming Languages and Systems (APLAS). https://doi.org/10.
1007/978-3-319-71237-6_8

7

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

(a) Evaluation algorithm for identi�er references

1 syntax def IdentifierReference [0]. Evaluation(
2 this , Identifier
3) {
4 return [? (ResolveBinding (Identifier.StringValue))]
5 }

(b) Extracted IRES function for identi�er references

(c) Result of x + y via a mechanized speci�cation

Figure 7: Analysis sensitivities of the target language
(JavaScript) and the speci�cation language (IRES)

divides contexts for the evaluation of JavaScript identi�ers x and y

in the above example using their ASTs even though their program
points in IRES are the same.

Callsite Sensitivity. We also formally de�ne the callsite sensitiv-
ity [37, 38] for the target language by extending the AST sensitivity
for speci�c normal IRES functions. The original callsite sensitivity
discriminates calling contexts using their top most callsites. In EC-
MAScript, all explicit and even implicit JavaScript function calls
invoke normal IRES functions Call and Construct. Thus, we de�ne
the callsite sensitivity for the target language by extending the AST
sensitivity with two normal IRES functions:

� cfa(t 2 T) = {� = (_, c) 2 S |
syntax-ctxt � js-call-ctxt(c) = c 0 ^ c 0(this) = t}

where js-call-ctxt(c) denotes the top-most context whose function is
Call or Construct and f �� denotes a function composition. Moreover,
we extend it to the k-callsite sensitivity by recursively taking ASTs
representing callsites of the target language:

�k -cfa(t 2 Tk) = {� = (_, c) 2 S |
t = [t1, · · · , tn] ^ n k^
(ö(syntax-ctxt � js-call-ctxt)n+1(c) _ n = k)^
81 i n.
((syntax-ctxt � js-call-ctxt)i (c) = ci ^ ci (this) = ti)}

Using this callsite sensitivity for the target language, the meta-
level static analyzer could discriminate not only explicit JavaScript
function calls (e.g. f()) but also implicit JavaScript function calls,
including getters/setters, user-de�ned implicit conversions, and
implicit function calls in built-in libraries.

5 IMPLEMENTATION
We developed a prototype implementation called JSAVER, which per-
forms a meta-level static analysis for JavaScript with ECMAScript.
The tool is an extension of JISET4 and it is an open-source project5.
In this section, we describe the challenges in implementing a meta-
level static analyzer and present our solutions for them.

Layered Abstract States. Unlike traditional JavaScript static anal-
yses, a meta-level static analysis for JavaScript should track analysis
results not only for the target language JavaScript but also for the
speci�cation language IRES. Thus, the sizes of abstract states are
much larger than those of the other JavaScript static analyzers. We
implement layered abstract states to maintain only updated analysis
results compared to the initial abstract state. It signi�cantly reduces
the time to perform the join (t), meet (u), and partial order (v)
operations by considering only the updated parts in abstract states.

Closures and Continuations. The speci�cation language IRES for
ECMAScript contains more complex language features than its
simpli�ed version presented in Section 4.1, such as symbols, lists,
and list operations. Among them, the two most complex features
are closures with captured variables and �rst-class continuations be-
cause they introduce new kinds of control �ows. ECMAScript uses
closures to de�ne implicit and explicit JavaScript iterators and uses
continuations for iterators, generators, and asynchronous features
such as async, await, and the Proxy object. Therefore, we de�ne and
implement abstract closures and abstract continuations; an abstract
closure is a pair of a function and a mapping from captured vari-
ables to their abstract values, and an abstract continuation consists
of a program point, a view for analysis sensitivity, parameters, and
an abstract context.

Abstract Counting. Properties of JavaScript objects could be dy-
namically added, modi�ed, or deleted and even accessible by �rst-
class property names. Thus, in JavaScript static analysis, performing
strong updates rather than weak updates for object properties as
many as possible is important for precise analysis results. Since
records of IRES are even more dynamic than JavaScript objects, it is
also important to increase analysis precision. Therefore, we imple-
ment abstract counting [19] to increase chances to perform strong
updates for �elds of records. It checks how many times records in
the same allocation site have been allocated and performs strong
updates only for singleton records with singleton �eld values.

Loop Sensitivity. Similar to function calls, loops are also typical
merging points in static analysis. A loop sensitivity [24] is one of the
representative techniques to increase the precision of JavaScript
static analysis for loops. It discriminates contexts using a stack
of loop contexts containing loop iterations. We de�ne it under
the view-based analysis sensitivity and implement it in JSAVER to
increase the precision of IRES static analysis. Moreover, we also
de�ne and implement the loop sensitivity for JavaScript using the
loop sensitivity for IRES. Therefore, JSAVER discriminates contexts
for explicit loops such as for-in and for-of and even implicit loops
such as the assignment of arguments or the length property of
arrays.

4https://github.com/kaist-plrg/jiset
5The URL of the tool is anonymized due to a double-blind review process.

6

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

(a) Evaluation algorithm for identi�er references

1 syntax def IdentifierReference [0]. Evaluation(
2 this , Identifier
3) {
4 return [? (ResolveBinding (Identifier.StringValue))]
5 }

(b) Extracted IRES function for identi�er references

(c) Result of x + y via a mechanized speci�cation

Figure 7: Analysis sensitivities of the target language
(JavaScript) and the speci�cation language (IRES)

divides contexts for the evaluation of JavaScript identi�ers x and y

in the above example using their ASTs even though their program
points in IRES are the same.

Callsite Sensitivity. We also formally de�ne the callsite sensitiv-
ity [37, 38] for the target language by extending the AST sensitivity
for speci�c normal IRES functions. The original callsite sensitivity
discriminates calling contexts using their top most callsites. In EC-
MAScript, all explicit and even implicit JavaScript function calls
invoke normal IRES functions Call and Construct. Thus, we de�ne
the callsite sensitivity for the target language by extending the AST
sensitivity with two normal IRES functions:

� cfa(t 2 T) = {� = (_, c) 2 S |
syntax-ctxt � js-call-ctxt(c) = c 0 ^ c 0(this) = t}

where js-call-ctxt(c) denotes the top-most context whose function is
Call or Construct and f �� denotes a function composition. Moreover,
we extend it to the k-callsite sensitivity by recursively taking ASTs
representing callsites of the target language:

�k -cfa(t 2 Tk) = {� = (_, c) 2 S |
t = [t1, · · · , tn] ^ n k^
(ö(syntax-ctxt � js-call-ctxt)n+1(c) _ n = k)^
81 i n.
((syntax-ctxt � js-call-ctxt)i (c) = ci ^ ci (this) = ti)}

Using this callsite sensitivity for the target language, the meta-
level static analyzer could discriminate not only explicit JavaScript
function calls (e.g. f()) but also implicit JavaScript function calls,
including getters/setters, user-de�ned implicit conversions, and
implicit function calls in built-in libraries.

5 IMPLEMENTATION
We developed a prototype implementation called JSAVER, which per-
forms a meta-level static analysis for JavaScript with ECMAScript.
The tool is an extension of JISET4 and it is an open-source project5.
In this section, we describe the challenges in implementing a meta-
level static analyzer and present our solutions for them.

Layered Abstract States. Unlike traditional JavaScript static anal-
yses, a meta-level static analysis for JavaScript should track analysis
results not only for the target language JavaScript but also for the
speci�cation language IRES. Thus, the sizes of abstract states are
much larger than those of the other JavaScript static analyzers. We
implement layered abstract states to maintain only updated analysis
results compared to the initial abstract state. It signi�cantly reduces
the time to perform the join (t), meet (u), and partial order (v)
operations by considering only the updated parts in abstract states.

Closures and Continuations. The speci�cation language IRES for
ECMAScript contains more complex language features than its
simpli�ed version presented in Section 4.1, such as symbols, lists,
and list operations. Among them, the two most complex features
are closures with captured variables and �rst-class continuations be-
cause they introduce new kinds of control �ows. ECMAScript uses
closures to de�ne implicit and explicit JavaScript iterators and uses
continuations for iterators, generators, and asynchronous features
such as async, await, and the Proxy object. Therefore, we de�ne and
implement abstract closures and abstract continuations; an abstract
closure is a pair of a function and a mapping from captured vari-
ables to their abstract values, and an abstract continuation consists
of a program point, a view for analysis sensitivity, parameters, and
an abstract context.

Abstract Counting. Properties of JavaScript objects could be dy-
namically added, modi�ed, or deleted and even accessible by �rst-
class property names. Thus, in JavaScript static analysis, performing
strong updates rather than weak updates for object properties as
many as possible is important for precise analysis results. Since
records of IRES are even more dynamic than JavaScript objects, it is
also important to increase analysis precision. Therefore, we imple-
ment abstract counting [19] to increase chances to perform strong
updates for �elds of records. It checks how many times records in
the same allocation site have been allocated and performs strong
updates only for singleton records with singleton �eld values.

Loop Sensitivity. Similar to function calls, loops are also typical
merging points in static analysis. A loop sensitivity [24] is one of the
representative techniques to increase the precision of JavaScript
static analysis for loops. It discriminates contexts using a stack
of loop contexts containing loop iterations. We de�ne it under
the view-based analysis sensitivity and implement it in JSAVER to
increase the precision of IRES static analysis. Moreover, we also
de�ne and implement the loop sensitivity for JavaScript using the
loop sensitivity for IRES. Therefore, JSAVER discriminates contexts
for explicit loops such as for-in and for-of and even implicit loops
such as the assignment of arguments or the length property of
arrays.

4https://github.com/kaist-plrg/jiset
5The URL of the tool is anonymized due to a double-blind review process.

6

parsex ||= y

Filling the gap between the JavaScript language specification and tools using the JISET family / 45

JSAVER - AST Sensitivity

39

IRES

JavaScript

· · ·<latexit sha1_base64="Kef69hW4e/raBfVz+DaK6/NBFbQ=">AAACHXicbVDJSgNBEK1xjXFL9OhlMAiewowKeozLwYsQITFCJkhPp2Ka9Cx01whxmI/wqge/xpt4Ff/GnnEObg8aHu9VdVU9P5ZCk+N8WDOzc/MLi5Wl6vLK6tp6rb5xpaNEcezySEbq2mcapQixS4IkXscKWeBL7PmT09zv3aHSIgo7NI1xELDbUIwEZ2SknseHEenqTa3hNJ0C9l/ilqQBJdo3dQu8YcSTAEPikmndd52YBilTJLjErOolGmPGJ+wW+4aGLEA9SIt9M3vHKEN7FCnzQrIL9XtHygKtp4FvKgNGY/3by8X/vH5Co6NBKsI4IQz516BRIm2K7Px4eygUcpJTQxhXwuxq8zFTjJOJqOqdoblF4YX591jGY+YjpV4+Jb7nWdpxs7QgQZYKykxm7u+E/pKrvaa739y7PGi0Tsr0KrAF27ALLhxCC86hDV3gMIEHeIQn69l6sV6tt6/SGavs2YQfsN4/AabGomA=</latexit> · · ·<latexit sha1_base64="Kef69hW4e/raBfVz+DaK6/NBFbQ=">AAACHXicbVDJSgNBEK1xjXFL9OhlMAiewowKeozLwYsQITFCJkhPp2Ka9Cx01whxmI/wqge/xpt4Ff/GnnEObg8aHu9VdVU9P5ZCk+N8WDOzc/MLi5Wl6vLK6tp6rb5xpaNEcezySEbq2mcapQixS4IkXscKWeBL7PmT09zv3aHSIgo7NI1xELDbUIwEZ2SknseHEenqTa3hNJ0C9l/ilqQBJdo3dQu8YcSTAEPikmndd52YBilTJLjErOolGmPGJ+wW+4aGLEA9SIt9M3vHKEN7FCnzQrIL9XtHygKtp4FvKgNGY/3by8X/vH5Co6NBKsI4IQz516BRIm2K7Px4eygUcpJTQxhXwuxq8zFTjJOJqOqdoblF4YX591jGY+YjpV4+Jb7nWdpxs7QgQZYKykxm7u+E/pKrvaa739y7PGi0Tsr0KrAF27ALLhxCC86hDV3gMIEHeIQn69l6sV6tt6/SGavs2YQfsN4/AabGomA=</latexit>

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Automatically Deriving JavaScript Static Analyzers from Language Specifications ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

function error(e) { throw e; }

const n = ...; // [0, 99]

n |> x => x + 1 // [1, 100]

|> x => x * 2 // [2, 200]

|> x => x + 1n; // TypeError

|> error (42);

of representative techniques to increase the precision of JavaScript
static analysis for loops. It discriminates contexts using a stack of
loop contexts containing loop iterations. We de�ne it under view-
based analysis sensitivity and implement it in JSAVER to increase
the precision of IRES static analysis. Moreover, we also de�ne and
implement the loop sensitivity for JavaScript using the loop sensitiv-
ity for IRES. Therefore, our tool discriminates contexts for explicit
loops, such as for-in or for-of, and even implicit loops, such as the
length property assignment of arrays.

6 EVALUATION
• AdditiveExpression
• Identi�erReference
• Identi�er
• AssignmentExpression
• LeftHandSideExpression
• ArrowFunction

• RQ1: Coverage) How much does JSAVER cover JavaScript
language features in the latest ECMAScript (ES12, 2021)?

• RQ2: Adaptability) Could JSAVER adapt a new language
features not yet introduced in ES12?

• RQ3: Expressiveness) What kinds of abstract sensitivities
and abstract domains JSAVER can support?

• RQ4: Performance) Could JSAVER analyze JavaScript pro-
grams in a durable time?

TODO

7 RELATEDWORK
TODO

• JavaScript Static Analyzers [9, 10, 14, 27]
• JavaScript Static Analysis Techniques [1, 12, 13, 15, 18–21,
30, 34–36]

• Partial Evaluation? (maybe no - * SE conf.)

7.1 JavaScript Mechanized Speci�cation
A speci�cation is mechanized if and only if it is both formalized
and executable. For JavaScript, researchers have proposed various
mechanized speci�cation in their own approaches. In 2010, Guha
et al. [8] presented �JS, the �rst mechanized speci�cation for a core
calculus of ES3 semantics by desugaring most of syntax into �JS, an
extended standard lambda calculus. Thus, the shape of �JS seman-
tics is quite di�erent with original algorithm steps. In mid 2010s,
researchers tried to de�ne mechanized speci�cation for the ES5
and 5.1 semantics having a similar shape of semantics with original
algorithm steps as much as possible. Bodin et al. [2] de�ned JSCert,
a semantics of a small subset of ES5, using Coq and extracts a refer-
ence interpreter JSRef. Park et al. [22] de�ned an entire semantics
of ES5, KJS, using the K [29], which is a framework for de�ning
language semantics. Fragoso Santos et al. [7] presented JaVerT, a

JavaScript veri�cation toolchain, including a JavaScript semantics
de�ned in their own Intermediate language, JSIL.

However, the fundamental problem of their approaches is that
they are manually de�ned thus they are labor-intensive and error-
prone. Due to such limitation, there is no existing mechanized
speci�cation for full semantics of ES6 or later versions. Therefore,
most of existing JavaScript static analyzers only focus on ES5.1
features or rarely support ES6 features even though already six
more versions from ES7 to ES12 are released since 2015.

Moreover, Park et al. [23] successfully showed that JISET is useful
tomechanically handle recent versions of ECMAScript by extending
JISET to perform N+1-version di�erential testing of both JavaScript
engines and ES11 (2020).

8 CONCLUSION
TODO

REFERENCES
[1] Roberto Amadini, Alexander Jordan, Graeme Gange, François Gauthier, Peter

Schachte, Harald Søndergaard, Peter J Stuckey, and Chenyi Zhang. 2017. Com-
bining String Abstract Domains for JavaScript Analysis: An Evaluation. In Pro-
ceedings of the 23rd International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS). https://doi.org/10.1007/978-3-
662-54577-5_3

[2] Martin Bodin, Arthur Charguéraud, Daniele Filaretti, Philippa Gardner, Sergio
Ma�eis, Daiva Naudziuniene, Alan Schmitt, and Gareth Smith. 2014. A Trusted
Mechanised JavaScript Speci�cation. Proceedings of the 41st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming (POPL) 49, 1 (2014), 87–100.
https://doi.org/10.1145/2535838.2535876

[3] David R. Chase, Mark Wegman, and F. Kenneth Zadeck. 1990. Analysis of
Pointers and Structures. In Proceedings of the ACM SIGPLAN 1990 Conference on
Programming Language Design and Implementation (PLDI) (PLDI ’90). Association
for Computing Machinery, New York, NY, USA, 296–310. https://doi.org/10.
1145/93542.93585

[4] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Uni�ed
Lattice Model for Static Analysis of Programs by Construction or Approximation
of Fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming languages (POPL). https://doi.org/10.1145/512950.
512973

[5] Patrick Cousot and Radhia Cousot. 1977. Static Determination of Dynamic
Properties of Generalized Type Unions. In Proceedings of an ACM Conference on
Language Design for Reliable Software. Association for Computing Machinery,
New York, NY, USA, 77–94. https://doi.org/10.1145/800022.808314

[6] Patrick Cousot and Radhia Cousot. 1992. Abstract Interpretation Frameworks.
Journal of Logic and Computation (JLC) 2, 4 (1992), 511–547. https://doi.org/10.
1093/logcom/2.4.511

[7] José Fragoso Santos, Petar Maksimović, Daiva Naudži = unienė, Thomas Wood,
and Philippa Gardner. 2017. JaVerT: JavaScript Veri�cation Toolchain. Proceedings
of the 44th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
(POPL) 2, POPL (2017), 1–33. https://doi.org/10.1145/3158138

[8] Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. 2010. The essence
of JavaScript. In Proceedings of the 24th European Conference on Object-Oriented
Programming (ECOOP). Springer, 126–150. https://doi.org/10.1007/978-3-642-
14107-2_7

[9] Simon Holm Jensen, Anders Møller, and Peter Thiemann. 2009. Type Analysis for
JavaScript. In Proceedings of the 16th International Symposium on Static Analysis
(SAS). https://doi.org/10.1007/978-3-642-03237-0_17

[10] Vineeth Kashyap, Kyle Dewey, Ethan A. Kuefner, John Wagner, Kevin Gib-
bons, John Sarracino, Ben Wiedermann, and Ben Hardekopf. 2014. JSAI: A
Static Analysis Platform for JavaScript. In Proceedings of the 22nd ACM SIG-
SOFT International Symposium on Foundations of Software Engineering (FSE).
https://doi.org/10.1145/2635868.2635904

[11] Se-Won Kim, Xavier Rival, and Sukyoung Ryu. 2018. A Theoretical Foundation
of Sensitivity in an Abstract Interpretation Framework. ACM Transactions on
Programming Languages and Systems (TOPLAS) 40, 3, Article 13 (2018), 44 pages.
https://doi.org/10.1145/3230624

[12] Yoonseok Ko, Xavier Rival, and Sukyoung Ryu. 2017. Weakly Sensitive Analysis
for Unbounded Iteration over JavaScript Objects. In Proceedings of the 15th Asian
Symposium on Programming Languages and Systems (APLAS). https://doi.org/10.
1007/978-3-319-71237-6_8

7

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

(a) Evaluation algorithm for logical OR assignments.

1 syntax def AssignmentExpression [8]. Evaluation(

2 this , LeftHandSideExpression , AssignmentExpression

3) { /* entry */

4 let lref = (LeftHandSideExpression.Evaluation)

5 let lval = [? (GetValue lref)]

6 let lbool = [! (ToBoolean lval)] /* #1 */

7 if (= lbool true) /* #2 */ return lval else { /* #3 */ }

8 if (&& (IsAnonymousFunctionDefinition AssignmentExpression)

9 (LeftHandSideExpression.IsIdentifierRef)) { /* #4 */

10 let rval = (AssignmentExpression.NamedEvaluation

11 lref.ReferencedName)

12 } else { /* #5 */

13 let rref = (AssignmentExpression.Evaluation)

14 let rval = [? (GetValue rref)]

15 } /* #6 */

16 [? (PutValue lref rval)]

17 return rval

18 } /* exit */

(b) The extracted IRES function.

Figure 1: Evaluation algorithm for the eighth alternative of AssignmentExpression in ES12 and the extracted IRES function.

To alleviate this problem, we propose a novel technique called
meta-level static analysis to automatically derive a JavaScript static
analyzer from any version of ECMAScript. The main idea of the
meta-level static analysis is to indirectly analyze a target language
program by performing static analysis for a language speci�ca-
tion of the target language written in a speci�cation language with
the program as the initial input. Thus, it can signi�cantly reduce
the burden to manually design and implement static analyzers by
automatically deriving them from given language speci�cations.
Moreover, it even guarantees the soundness of derived static analyz-
ers for the target language by constructing sound abstract semantics
for the speci�cation language.

For the expressiveness of a meta-level static analysis, we also
present ways to con�gure analysis sensitivities and abstract do-
mains for a target language. Con�guring them is a typical way
to manage analysis precision and performance. First, we present
the AST sensitivity in a meta-level static analysis to express analy-
sis sensitivities for a target language such as �ow-sensitivity and
k-callsite-sensitivity (Section 4.2). Second, we present a way to
con�gure abstract domains for structures and values in a target
language (Section 4.3).

To actualize our approach for JavaScript, we present JSAVER,
JavaScript Static Analyzers via ECMAScript Representations. First,
we utilize JISET [26] to extract a mechanized speci�cation written
in an intermediate representation, IRES, from a given ECMAScript.
Thus, target and speci�cation languages are JavaScript and IRES,
respectively, for the meta-level static analysis in JSAVER. In addition,
we implement several analysis techniques to improve the perfor-
mance and precision of derived static analyzers (Section 5). We
evaluated JSAVER by deriving a JavaScript static analyzer from the
latest ECMAScript, ES12, and using the o�cial conformance tests,
Test2622.

Our contributions are as follows:
• We propose a novel concept called meta-level static analysis,
which automatically derives a static analyzer for a target

2https://github.com/tc39/test262

let f = Math.floor(Math.random () * 100);

// f: [0, 99]

f ||= x => x;

// f: [1, 99] or { name: �f�, ... }

let x = f.name;

// f: [1, 99] or { name: �f�, ... }, x: undefined or �f�

Figure 2: A running JavaScript program with a logical OR
assignment newly introduced in ES12.

language from its language speci�cation written in a speci�-
cation language.

• We actualize meta-level static analysis for JavaScript as a tool
called JSAVER. It is the �rst tool that automatically derives a
JavaScript static analyzer from any version of ECMAScript.

• We derive a static analyzer from the latest ECMAScript, ES12,
to evaluate JSAVER. The synthesized static analyzer success-
fully analyzes all applicable 18,556 o�cial conformance tests.
Moreover, we demonstrate the adaptability and expressive-
ness of JSAVER with several case studies.

2 BACKGROUND
In this section, we explain the detail of ECMAScript, the o�cial
speci�cation of JavaScript. We then introduce JISET and how it
extracts a mechanized speci�cation from it. Since our work is to
perform meta-level static analysis for JavaScript using extracted
mechanized speci�cations, it is essential to understand how EC-
MAScript describes JavaScript semantics and how JISET extracts a
mechanized speci�cation from it.

For the detailed explanation, we explain a new language feature
introduced in ES12 called logical OR assignments (Figure 1) and
use a JavaScript program (Figure 2) as a running example. It �rst
de�nes a variable f with a random integer from 0 to 99. Then, it
uses a logical OR assignment to update f with an arrow function
whose name is �f� only if f has 0 because 0 represents false but
other integers represent true. Finally, it de�nes a variable x with
f.name and its value is undefined if f has an integer or �f� otherwise.

2

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Automatically Deriving JavaScript Static Analyzers from Language Specifications ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

function error(e) { throw e; }

const n = ...; // [0, 99]

n |> x => x + 1 // [1, 100]

|> x => x * 2 // [2, 200]

|> x => x + 1n; // TypeError

|> error (42);

of representative techniques to increase the precision of JavaScript
static analysis for loops. It discriminates contexts using a stack of
loop contexts containing loop iterations. We de�ne it under view-
based analysis sensitivity and implement it in JSAVER to increase
the precision of IRES static analysis. Moreover, we also de�ne and
implement the loop sensitivity for JavaScript using the loop sensitiv-
ity for IRES. Therefore, our tool discriminates contexts for explicit
loops, such as for-in or for-of, and even implicit loops, such as the
length property assignment of arrays.

6 EVALUATION
• AdditiveExpression
• Identi�erReference
• Identi�er
• AssignmentExpression
• LeftHandSideExpression
• ArrowFunction

• RQ1: Coverage) How much does JSAVER cover JavaScript
language features in the latest ECMAScript (ES12, 2021)?

• RQ2: Adaptability) Could JSAVER adapt a new language
features not yet introduced in ES12?

• RQ3: Expressiveness) What kinds of abstract sensitivities
and abstract domains JSAVER can support?

• RQ4: Performance) Could JSAVER analyze JavaScript pro-
grams in a durable time?

TODO

7 RELATEDWORK
TODO

• JavaScript Static Analyzers [9, 10, 14, 27]
• JavaScript Static Analysis Techniques [1, 12, 13, 15, 18–21,
30, 34–36]

• Partial Evaluation? (maybe no - * SE conf.)

7.1 JavaScript Mechanized Speci�cation
A speci�cation is mechanized if and only if it is both formalized
and executable. For JavaScript, researchers have proposed various
mechanized speci�cation in their own approaches. In 2010, Guha
et al. [8] presented �JS, the �rst mechanized speci�cation for a core
calculus of ES3 semantics by desugaring most of syntax into �JS, an
extended standard lambda calculus. Thus, the shape of �JS seman-
tics is quite di�erent with original algorithm steps. In mid 2010s,
researchers tried to de�ne mechanized speci�cation for the ES5
and 5.1 semantics having a similar shape of semantics with original
algorithm steps as much as possible. Bodin et al. [2] de�ned JSCert,
a semantics of a small subset of ES5, using Coq and extracts a refer-
ence interpreter JSRef. Park et al. [22] de�ned an entire semantics
of ES5, KJS, using the K [29], which is a framework for de�ning
language semantics. Fragoso Santos et al. [7] presented JaVerT, a

JavaScript veri�cation toolchain, including a JavaScript semantics
de�ned in their own Intermediate language, JSIL.

However, the fundamental problem of their approaches is that
they are manually de�ned thus they are labor-intensive and error-
prone. Due to such limitation, there is no existing mechanized
speci�cation for full semantics of ES6 or later versions. Therefore,
most of existing JavaScript static analyzers only focus on ES5.1
features or rarely support ES6 features even though already six
more versions from ES7 to ES12 are released since 2015.

Moreover, Park et al. [23] successfully showed that JISET is useful
tomechanically handle recent versions of ECMAScript by extending
JISET to perform N+1-version di�erential testing of both JavaScript
engines and ES11 (2020).

8 CONCLUSION
TODO

REFERENCES
[1] Roberto Amadini, Alexander Jordan, Graeme Gange, François Gauthier, Peter

Schachte, Harald Søndergaard, Peter J Stuckey, and Chenyi Zhang. 2017. Com-
bining String Abstract Domains for JavaScript Analysis: An Evaluation. In Pro-
ceedings of the 23rd International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS). https://doi.org/10.1007/978-3-
662-54577-5_3

[2] Martin Bodin, Arthur Charguéraud, Daniele Filaretti, Philippa Gardner, Sergio
Ma�eis, Daiva Naudziuniene, Alan Schmitt, and Gareth Smith. 2014. A Trusted
Mechanised JavaScript Speci�cation. Proceedings of the 41st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming (POPL) 49, 1 (2014), 87–100.
https://doi.org/10.1145/2535838.2535876

[3] David R. Chase, Mark Wegman, and F. Kenneth Zadeck. 1990. Analysis of
Pointers and Structures. In Proceedings of the ACM SIGPLAN 1990 Conference on
Programming Language Design and Implementation (PLDI) (PLDI ’90). Association
for Computing Machinery, New York, NY, USA, 296–310. https://doi.org/10.
1145/93542.93585

[4] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Uni�ed
Lattice Model for Static Analysis of Programs by Construction or Approximation
of Fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming languages (POPL). https://doi.org/10.1145/512950.
512973

[5] Patrick Cousot and Radhia Cousot. 1977. Static Determination of Dynamic
Properties of Generalized Type Unions. In Proceedings of an ACM Conference on
Language Design for Reliable Software. Association for Computing Machinery,
New York, NY, USA, 77–94. https://doi.org/10.1145/800022.808314

[6] Patrick Cousot and Radhia Cousot. 1992. Abstract Interpretation Frameworks.
Journal of Logic and Computation (JLC) 2, 4 (1992), 511–547. https://doi.org/10.
1093/logcom/2.4.511

[7] José Fragoso Santos, Petar Maksimović, Daiva Naudži = unienė, Thomas Wood,
and Philippa Gardner. 2017. JaVerT: JavaScript Veri�cation Toolchain. Proceedings
of the 44th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
(POPL) 2, POPL (2017), 1–33. https://doi.org/10.1145/3158138

[8] Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. 2010. The essence
of JavaScript. In Proceedings of the 24th European Conference on Object-Oriented
Programming (ECOOP). Springer, 126–150. https://doi.org/10.1007/978-3-642-
14107-2_7

[9] Simon Holm Jensen, Anders Møller, and Peter Thiemann. 2009. Type Analysis for
JavaScript. In Proceedings of the 16th International Symposium on Static Analysis
(SAS). https://doi.org/10.1007/978-3-642-03237-0_17

[10] Vineeth Kashyap, Kyle Dewey, Ethan A. Kuefner, John Wagner, Kevin Gib-
bons, John Sarracino, Ben Wiedermann, and Ben Hardekopf. 2014. JSAI: A
Static Analysis Platform for JavaScript. In Proceedings of the 22nd ACM SIG-
SOFT International Symposium on Foundations of Software Engineering (FSE).
https://doi.org/10.1145/2635868.2635904

[11] Se-Won Kim, Xavier Rival, and Sukyoung Ryu. 2018. A Theoretical Foundation
of Sensitivity in an Abstract Interpretation Framework. ACM Transactions on
Programming Languages and Systems (TOPLAS) 40, 3, Article 13 (2018), 44 pages.
https://doi.org/10.1145/3230624

[12] Yoonseok Ko, Xavier Rival, and Sukyoung Ryu. 2017. Weakly Sensitive Analysis
for Unbounded Iteration over JavaScript Objects. In Proceedings of the 15th Asian
Symposium on Programming Languages and Systems (APLAS). https://doi.org/10.
1007/978-3-319-71237-6_8

7

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Automatically Deriving JavaScript Static Analyzers from Language Specifications ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

function error(e) { throw e; }

const n = ...; // [0, 99]

n |> x => x + 1 // [1, 100]

|> x => x * 2 // [2, 200]

|> x => x + 1n; // TypeError

|> error (42);

of representative techniques to increase the precision of JavaScript
static analysis for loops. It discriminates contexts using a stack of
loop contexts containing loop iterations. We de�ne it under view-
based analysis sensitivity and implement it in JSAVER to increase
the precision of IRES static analysis. Moreover, we also de�ne and
implement the loop sensitivity for JavaScript using the loop sensitiv-
ity for IRES. Therefore, our tool discriminates contexts for explicit
loops, such as for-in or for-of, and even implicit loops, such as the
length property assignment of arrays.

6 EVALUATION
• AdditiveExpression
• Identi�erReference
• Identi�er
• AssignmentExpression
• LeftHandSideExpression
• ArrowFunction

• RQ1: Coverage) How much does JSAVER cover JavaScript
language features in the latest ECMAScript (ES12, 2021)?

• RQ2: Adaptability) Could JSAVER adapt a new language
features not yet introduced in ES12?

• RQ3: Expressiveness) What kinds of abstract sensitivities
and abstract domains JSAVER can support?

• RQ4: Performance) Could JSAVER analyze JavaScript pro-
grams in a durable time?

TODO

7 RELATEDWORK
TODO

• JavaScript Static Analyzers [9, 10, 14, 27]
• JavaScript Static Analysis Techniques [1, 12, 13, 15, 18–21,
30, 34–36]

• Partial Evaluation? (maybe no - * SE conf.)

7.1 JavaScript Mechanized Speci�cation
A speci�cation is mechanized if and only if it is both formalized
and executable. For JavaScript, researchers have proposed various
mechanized speci�cation in their own approaches. In 2010, Guha
et al. [8] presented �JS, the �rst mechanized speci�cation for a core
calculus of ES3 semantics by desugaring most of syntax into �JS, an
extended standard lambda calculus. Thus, the shape of �JS seman-
tics is quite di�erent with original algorithm steps. In mid 2010s,
researchers tried to de�ne mechanized speci�cation for the ES5
and 5.1 semantics having a similar shape of semantics with original
algorithm steps as much as possible. Bodin et al. [2] de�ned JSCert,
a semantics of a small subset of ES5, using Coq and extracts a refer-
ence interpreter JSRef. Park et al. [22] de�ned an entire semantics
of ES5, KJS, using the K [29], which is a framework for de�ning
language semantics. Fragoso Santos et al. [7] presented JaVerT, a

JavaScript veri�cation toolchain, including a JavaScript semantics
de�ned in their own Intermediate language, JSIL.

However, the fundamental problem of their approaches is that
they are manually de�ned thus they are labor-intensive and error-
prone. Due to such limitation, there is no existing mechanized
speci�cation for full semantics of ES6 or later versions. Therefore,
most of existing JavaScript static analyzers only focus on ES5.1
features or rarely support ES6 features even though already six
more versions from ES7 to ES12 are released since 2015.

Moreover, Park et al. [23] successfully showed that JISET is useful
tomechanically handle recent versions of ECMAScript by extending
JISET to perform N+1-version di�erential testing of both JavaScript
engines and ES11 (2020).

8 CONCLUSION
TODO

REFERENCES
[1] Roberto Amadini, Alexander Jordan, Graeme Gange, François Gauthier, Peter

Schachte, Harald Søndergaard, Peter J Stuckey, and Chenyi Zhang. 2017. Com-
bining String Abstract Domains for JavaScript Analysis: An Evaluation. In Pro-
ceedings of the 23rd International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS). https://doi.org/10.1007/978-3-
662-54577-5_3

[2] Martin Bodin, Arthur Charguéraud, Daniele Filaretti, Philippa Gardner, Sergio
Ma�eis, Daiva Naudziuniene, Alan Schmitt, and Gareth Smith. 2014. A Trusted
Mechanised JavaScript Speci�cation. Proceedings of the 41st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming (POPL) 49, 1 (2014), 87–100.
https://doi.org/10.1145/2535838.2535876

[3] David R. Chase, Mark Wegman, and F. Kenneth Zadeck. 1990. Analysis of
Pointers and Structures. In Proceedings of the ACM SIGPLAN 1990 Conference on
Programming Language Design and Implementation (PLDI) (PLDI ’90). Association
for Computing Machinery, New York, NY, USA, 296–310. https://doi.org/10.
1145/93542.93585

[4] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Uni�ed
Lattice Model for Static Analysis of Programs by Construction or Approximation
of Fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming languages (POPL). https://doi.org/10.1145/512950.
512973

[5] Patrick Cousot and Radhia Cousot. 1977. Static Determination of Dynamic
Properties of Generalized Type Unions. In Proceedings of an ACM Conference on
Language Design for Reliable Software. Association for Computing Machinery,
New York, NY, USA, 77–94. https://doi.org/10.1145/800022.808314

[6] Patrick Cousot and Radhia Cousot. 1992. Abstract Interpretation Frameworks.
Journal of Logic and Computation (JLC) 2, 4 (1992), 511–547. https://doi.org/10.
1093/logcom/2.4.511

[7] José Fragoso Santos, Petar Maksimović, Daiva Naudži = unienė, Thomas Wood,
and Philippa Gardner. 2017. JaVerT: JavaScript Veri�cation Toolchain. Proceedings
of the 44th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
(POPL) 2, POPL (2017), 1–33. https://doi.org/10.1145/3158138

[8] Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. 2010. The essence
of JavaScript. In Proceedings of the 24th European Conference on Object-Oriented
Programming (ECOOP). Springer, 126–150. https://doi.org/10.1007/978-3-642-
14107-2_7

[9] Simon Holm Jensen, Anders Møller, and Peter Thiemann. 2009. Type Analysis for
JavaScript. In Proceedings of the 16th International Symposium on Static Analysis
(SAS). https://doi.org/10.1007/978-3-642-03237-0_17

[10] Vineeth Kashyap, Kyle Dewey, Ethan A. Kuefner, John Wagner, Kevin Gib-
bons, John Sarracino, Ben Wiedermann, and Ben Hardekopf. 2014. JSAI: A
Static Analysis Platform for JavaScript. In Proceedings of the 22nd ACM SIG-
SOFT International Symposium on Foundations of Software Engineering (FSE).
https://doi.org/10.1145/2635868.2635904

[11] Se-Won Kim, Xavier Rival, and Sukyoung Ryu. 2018. A Theoretical Foundation
of Sensitivity in an Abstract Interpretation Framework. ACM Transactions on
Programming Languages and Systems (TOPLAS) 40, 3, Article 13 (2018), 44 pages.
https://doi.org/10.1145/3230624

[12] Yoonseok Ko, Xavier Rival, and Sukyoung Ryu. 2017. Weakly Sensitive Analysis
for Unbounded Iteration over JavaScript Objects. In Proceedings of the 15th Asian
Symposium on Programming Languages and Systems (APLAS). https://doi.org/10.
1007/978-3-319-71237-6_8

7

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Automatically Deriving JavaScript Static Analyzers from Language Specifications ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

function error(e) { throw e; }

const n = ...; // [0, 99]

n |> x => x + 1 // [1, 100]

|> x => x * 2 // [2, 200]

|> x => x + 1n; // TypeError

|> error (42);

of representative techniques to increase the precision of JavaScript
static analysis for loops. It discriminates contexts using a stack of
loop contexts containing loop iterations. We de�ne it under view-
based analysis sensitivity and implement it in JSAVER to increase
the precision of IRES static analysis. Moreover, we also de�ne and
implement the loop sensitivity for JavaScript using the loop sensitiv-
ity for IRES. Therefore, our tool discriminates contexts for explicit
loops, such as for-in or for-of, and even implicit loops, such as the
length property assignment of arrays.

6 EVALUATION
• AdditiveExpression
• Identi�erReference
• Identi�er
• AssignmentExpression
• LeftHandSideExpression
• ArrowFunction

• RQ1: Coverage) How much does JSAVER cover JavaScript
language features in the latest ECMAScript (ES12, 2021)?

• RQ2: Adaptability) Could JSAVER adapt a new language
features not yet introduced in ES12?

• RQ3: Expressiveness) What kinds of abstract sensitivities
and abstract domains JSAVER can support?

• RQ4: Performance) Could JSAVER analyze JavaScript pro-
grams in a durable time?

TODO

7 RELATEDWORK
TODO

• JavaScript Static Analyzers [9, 10, 14, 27]
• JavaScript Static Analysis Techniques [1, 12, 13, 15, 18–21,
30, 34–36]

• Partial Evaluation? (maybe no - * SE conf.)

7.1 JavaScript Mechanized Speci�cation
A speci�cation is mechanized if and only if it is both formalized
and executable. For JavaScript, researchers have proposed various
mechanized speci�cation in their own approaches. In 2010, Guha
et al. [8] presented �JS, the �rst mechanized speci�cation for a core
calculus of ES3 semantics by desugaring most of syntax into �JS, an
extended standard lambda calculus. Thus, the shape of �JS seman-
tics is quite di�erent with original algorithm steps. In mid 2010s,
researchers tried to de�ne mechanized speci�cation for the ES5
and 5.1 semantics having a similar shape of semantics with original
algorithm steps as much as possible. Bodin et al. [2] de�ned JSCert,
a semantics of a small subset of ES5, using Coq and extracts a refer-
ence interpreter JSRef. Park et al. [22] de�ned an entire semantics
of ES5, KJS, using the K [29], which is a framework for de�ning
language semantics. Fragoso Santos et al. [7] presented JaVerT, a

JavaScript veri�cation toolchain, including a JavaScript semantics
de�ned in their own Intermediate language, JSIL.

However, the fundamental problem of their approaches is that
they are manually de�ned thus they are labor-intensive and error-
prone. Due to such limitation, there is no existing mechanized
speci�cation for full semantics of ES6 or later versions. Therefore,
most of existing JavaScript static analyzers only focus on ES5.1
features or rarely support ES6 features even though already six
more versions from ES7 to ES12 are released since 2015.

Moreover, Park et al. [23] successfully showed that JISET is useful
tomechanically handle recent versions of ECMAScript by extending
JISET to perform N+1-version di�erential testing of both JavaScript
engines and ES11 (2020).

8 CONCLUSION
TODO

REFERENCES
[1] Roberto Amadini, Alexander Jordan, Graeme Gange, François Gauthier, Peter

Schachte, Harald Søndergaard, Peter J Stuckey, and Chenyi Zhang. 2017. Com-
bining String Abstract Domains for JavaScript Analysis: An Evaluation. In Pro-
ceedings of the 23rd International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS). https://doi.org/10.1007/978-3-
662-54577-5_3

[2] Martin Bodin, Arthur Charguéraud, Daniele Filaretti, Philippa Gardner, Sergio
Ma�eis, Daiva Naudziuniene, Alan Schmitt, and Gareth Smith. 2014. A Trusted
Mechanised JavaScript Speci�cation. Proceedings of the 41st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming (POPL) 49, 1 (2014), 87–100.
https://doi.org/10.1145/2535838.2535876

[3] David R. Chase, Mark Wegman, and F. Kenneth Zadeck. 1990. Analysis of
Pointers and Structures. In Proceedings of the ACM SIGPLAN 1990 Conference on
Programming Language Design and Implementation (PLDI) (PLDI ’90). Association
for Computing Machinery, New York, NY, USA, 296–310. https://doi.org/10.
1145/93542.93585

[4] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Uni�ed
Lattice Model for Static Analysis of Programs by Construction or Approximation
of Fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming languages (POPL). https://doi.org/10.1145/512950.
512973

[5] Patrick Cousot and Radhia Cousot. 1977. Static Determination of Dynamic
Properties of Generalized Type Unions. In Proceedings of an ACM Conference on
Language Design for Reliable Software. Association for Computing Machinery,
New York, NY, USA, 77–94. https://doi.org/10.1145/800022.808314

[6] Patrick Cousot and Radhia Cousot. 1992. Abstract Interpretation Frameworks.
Journal of Logic and Computation (JLC) 2, 4 (1992), 511–547. https://doi.org/10.
1093/logcom/2.4.511

[7] José Fragoso Santos, Petar Maksimović, Daiva Naudži = unienė, Thomas Wood,
and Philippa Gardner. 2017. JaVerT: JavaScript Veri�cation Toolchain. Proceedings
of the 44th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
(POPL) 2, POPL (2017), 1–33. https://doi.org/10.1145/3158138

[8] Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. 2010. The essence
of JavaScript. In Proceedings of the 24th European Conference on Object-Oriented
Programming (ECOOP). Springer, 126–150. https://doi.org/10.1007/978-3-642-
14107-2_7

[9] Simon Holm Jensen, Anders Møller, and Peter Thiemann. 2009. Type Analysis for
JavaScript. In Proceedings of the 16th International Symposium on Static Analysis
(SAS). https://doi.org/10.1007/978-3-642-03237-0_17

[10] Vineeth Kashyap, Kyle Dewey, Ethan A. Kuefner, John Wagner, Kevin Gib-
bons, John Sarracino, Ben Wiedermann, and Ben Hardekopf. 2014. JSAI: A
Static Analysis Platform for JavaScript. In Proceedings of the 22nd ACM SIG-
SOFT International Symposium on Foundations of Software Engineering (FSE).
https://doi.org/10.1145/2635868.2635904

[11] Se-Won Kim, Xavier Rival, and Sukyoung Ryu. 2018. A Theoretical Foundation
of Sensitivity in an Abstract Interpretation Framework. ACM Transactions on
Programming Languages and Systems (TOPLAS) 40, 3, Article 13 (2018), 44 pages.
https://doi.org/10.1145/3230624

[12] Yoonseok Ko, Xavier Rival, and Sukyoung Ryu. 2017. Weakly Sensitive Analysis
for Unbounded Iteration over JavaScript Objects. In Proceedings of the 15th Asian
Symposium on Programming Languages and Systems (APLAS). https://doi.org/10.
1007/978-3-319-71237-6_8

7

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

(a) Evaluation algorithm for logical OR assignments.

1 syntax def AssignmentExpression [8]. Evaluation(

2 this , LeftHandSideExpression , AssignmentExpression

3) { /* entry */

4 let lref = (LeftHandSideExpression.Evaluation)

5 let lval = [? (GetValue lref)]

6 let lbool = [! (ToBoolean lval)] /* #1 */

7 if (= lbool true) /* #2 */ return lval else { /* #3 */ }

8 if (&& (IsAnonymousFunctionDefinition AssignmentExpression)

9 (LeftHandSideExpression.IsIdentifierRef)) { /* #4 */

10 let rval = (AssignmentExpression.NamedEvaluation

11 lref.ReferencedName)

12 } else { /* #5 */

13 let rref = (AssignmentExpression.Evaluation)

14 let rval = [? (GetValue rref)]

15 } /* #6 */

16 [? (PutValue lref rval)]

17 return rval

18 } /* exit */

(b) The extracted IRES function.

Figure 1: Evaluation algorithm for the eighth alternative of AssignmentExpression in ES12 and the extracted IRES function.

To alleviate this problem, we propose a novel technique called
meta-level static analysis to automatically derive a JavaScript static
analyzer from any version of ECMAScript. The main idea of the
meta-level static analysis is to indirectly analyze a target language
program by performing static analysis for a language speci�ca-
tion of the target language written in a speci�cation language with
the program as the initial input. Thus, it can signi�cantly reduce
the burden to manually design and implement static analyzers by
automatically deriving them from given language speci�cations.
Moreover, it even guarantees the soundness of derived static analyz-
ers for the target language by constructing sound abstract semantics
for the speci�cation language.

For the expressiveness of a meta-level static analysis, we also
present ways to con�gure analysis sensitivities and abstract do-
mains for a target language. Con�guring them is a typical way
to manage analysis precision and performance. First, we present
the AST sensitivity in a meta-level static analysis to express analy-
sis sensitivities for a target language such as �ow-sensitivity and
k-callsite-sensitivity (Section 4.2). Second, we present a way to
con�gure abstract domains for structures and values in a target
language (Section 4.3).

To actualize our approach for JavaScript, we present JSAVER,
JavaScript Static Analyzers via ECMAScript Representations. First,
we utilize JISET [26] to extract a mechanized speci�cation written
in an intermediate representation, IRES, from a given ECMAScript.
Thus, target and speci�cation languages are JavaScript and IRES,
respectively, for the meta-level static analysis in JSAVER. In addition,
we implement several analysis techniques to improve the perfor-
mance and precision of derived static analyzers (Section 5). We
evaluated JSAVER by deriving a JavaScript static analyzer from the
latest ECMAScript, ES12, and using the o�cial conformance tests,
Test2622.

Our contributions are as follows:
• We propose a novel concept called meta-level static analysis,
which automatically derives a static analyzer for a target

2https://github.com/tc39/test262

let f = Math.floor(Math.random () * 100);

// f: [0, 99]

f ||= x => x;

// f: [1, 99] or { name: �f�, ... }

let x = f.name;

// f: [1, 99] or { name: �f�, ... }, x: undefined or �f�

Figure 2: A running JavaScript program with a logical OR
assignment newly introduced in ES12.

language from its language speci�cation written in a speci�-
cation language.

• We actualize meta-level static analysis for JavaScript as a tool
called JSAVER. It is the �rst tool that automatically derives a
JavaScript static analyzer from any version of ECMAScript.

• We derive a static analyzer from the latest ECMAScript, ES12,
to evaluate JSAVER. The synthesized static analyzer success-
fully analyzes all applicable 18,556 o�cial conformance tests.
Moreover, we demonstrate the adaptability and expressive-
ness of JSAVER with several case studies.

2 BACKGROUND
In this section, we explain the detail of ECMAScript, the o�cial
speci�cation of JavaScript. We then introduce JISET and how it
extracts a mechanized speci�cation from it. Since our work is to
perform meta-level static analysis for JavaScript using extracted
mechanized speci�cations, it is essential to understand how EC-
MAScript describes JavaScript semantics and how JISET extracts a
mechanized speci�cation from it.

For the detailed explanation, we explain a new language feature
introduced in ES12 called logical OR assignments (Figure 1) and
use a JavaScript program (Figure 2) as a running example. It �rst
de�nes a variable f with a random integer from 0 to 99. Then, it
uses a logical OR assignment to update f with an arrow function
whose name is �f� only if f has 0 because 0 represents false but
other integers represent true. Finally, it de�nes a variable x with
f.name and its value is undefined if f has an integer or �f� otherwise.

2

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Automatically Deriving JavaScript Static Analyzers from Language Specifications ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

otherwise, a normal function. An instruction i is a primitive value
assignment, an operation between values, a internal �eld access, a
external �eld access, a record allocations, a function call, or a return
instruction.

States � 2 S = H ⇥ C
Heaps h 2 H = A �n��!R
Contexts c 2 C = L ⇥ (X �n��!V) ⇥ C?
Values � 2 V = Vp] A] T] F
Records r 2 R = (Vstr

�n��!V) ⇥ (Vstr
�n��!V)

States S consists of heaps H and contexts C. A heap h 2 H is a
�nite mapping from addresses to records. Each record allocation
instruction x = {} creates a unique address a 2 A di�erent with
existing addresses. A context c 2 C is a triple of 1) the program
point, 2) a local environment which is a �nite mapping from vari-
ables to values, and 3) an optional calling context. A value � 2 V
is a primitive value, an address, an AST, or a function. A record
r 2 R consists of two �nite mappings from strings to values. The
left mapping represents internal �elds accessible by internal �eld
accesses x = x[x]. On the other hand, the right one represents ex-
ternal �elds, such as variables in JavaScript environment records or
properties in JavaScript objects, and they are accessible by a exter-
nal �eld access x = x[x]ext. We formulate the concrete semantics
of a program P as a transition system ({, S�) where{✓ S⇥ S is a
transition relation between concrete states and S� is a set of initial
states.

For a meta-level static analysis, we de�ne its abstract semantics
in the abstract interpretation framework [4, 6]. Since our analysis
supports view-based analysis sensitivities [11, 24], the abstract
domain is de�ned as a mapping from views to abstract states, D# =
� ! D#, with a view abstraction � : � ! P(S) which represents
the meaning of each view � 2 �. Then, we de�ne abstract states as
follows:

Abstract States � # 2 D# = H# ⇥ C#

Abstract Heaps h# 2 H# = A# �n��!(R# ⇥ R#
ext

)
Abstract Addresses a# 2 A# = L
Abstract Contexts c# 2 C# = X �n��!V#

An abstract heaph# 2 H# is a �nitemapping from abstract addresses
A
to pairs of abstract internal records R# and abstract external

records R#
ext

. Each abstract address a# 2 A# is de�ned with the
allocation-site abstraction [3] that partitions concrete addresses A
based on their allocation sites L. An abstract context c# 2 C# is a
�nite mapping from variables to abstract values. Shapes of abstract
values V#, abstract internal (or external) records R# (or R#

ext
) are

parametric thus we can freely con�gure them.

4.2 Analysis Sensitivities
In a meta-level static analysis, analysis sensitivities of the target
language (JavaScript) are di�erent with them of the speci�cation
language (IRES). For example, we explain what happens during anal-
ysis of the following JavaScript program with the �ow-sensitivity
for IRES:

let x = 1, y = 2;

x + y; // 3

(a) Evaluation algorithm for identi�er references.

1 syntax def IdentifierReference [0]. Evaluation(

2 this , Identifier

3) {

4 return [? (ResolveBinding (Identifier.StringValue))

5 }

(b) The extracted IRES function.

(c) Parsing result of x + y (bottom) and the initial local environment
(top) of the IRES function.

Figure 7: An example of the di�erence between analysis sen-
sitivities of target and speci�cation language.

Figure 7 describes (a) the Evaluation algorithm of identi�er refer-
ences, (b) its extracted IRES function, and (c) the parsing result of
x + y and the initial local environment of the IRES function. Since
the �ow-sensitivity merges states based on the program points,
contexts for the evaluation of both identi�er references x and y are
merged. Thus, the IRES variable Identifier points to their ASTs
as described in Figure 7. Due to the imprecise merge of contexts,
StringValue of Identifier returns �x� and �y�, and ResolveBinding
with them returns both 1 and 2. Finally, the analysis result of x + y

becomes { 2, 3, 4 }.

Flow Sensitivity. To resolve this problem, we present an AST sen-
sitivity for the speci�cation language to represent �ow-sensitivity
of the target language. It is a variant of object sensitivity [17, 33]
which uses abstract addresses A# of receiver objects as views. How-
ever, unlike the object sensitivity, the AST sensitivity utilizes ASTs
T stored in the parameter this only for syntax-directed functions:

� flow(t 2 T) = {� = (_, c) 2 S | syntax-ctxt(c) = c 0 ^ c 0(this) = t}
where syntax-ctxt(c) denotes the top-most context whose function
is syntax-directed and c 0(this) denotes a lookup of the variable
this in the mapping in the context c 0. We de�ne the �ow sensitivity
for the target language using the AST sensitivity and it successfully
divides contexts for the evaluation of JavaScript identi�ers x and y

in the above example using their ASTs even though their program
points are same.

Callsite Sensitivity. We also formally de�ne the callsite sensitiv-
ity [31, 32] for the target language by extending AST sensitivity
for speci�c normal IRES functions. The original callsite sensitivity
discriminates calling contexts based on their top most callsites. In
ECMAScript, all explicit and even implicit JavaScript function calls

5

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Automatically Deriving JavaScript Static Analyzers from Language Specifications ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

function error(e) { throw e; }

const n = ...; // [0, 99]

n |> x => x + 1 // [1, 100]

|> x => x * 2 // [2, 200]

|> x => x + 1n; // TypeError

|> error (42);

of representative techniques to increase the precision of JavaScript
static analysis for loops. It discriminates contexts using a stack of
loop contexts containing loop iterations. We de�ne it under view-
based analysis sensitivity and implement it in JSAVER to increase
the precision of IRES static analysis. Moreover, we also de�ne and
implement the loop sensitivity for JavaScript using the loop sensitiv-
ity for IRES. Therefore, our tool discriminates contexts for explicit
loops, such as for-in or for-of, and even implicit loops, such as the
length property assignment of arrays.

6 EVALUATION
• AdditiveExpression
• Identi�erReference
• Identi�er
• AssignmentExpression
• LeftHandSideExpression
• ArrowFunction

• RQ1: Coverage) How much does JSAVER cover JavaScript
language features in the latest ECMAScript (ES12, 2021)?

• RQ2: Adaptability) Could JSAVER adapt a new language
features not yet introduced in ES12?

• RQ3: Expressiveness) What kinds of abstract sensitivities
and abstract domains JSAVER can support?

• RQ4: Performance) Could JSAVER analyze JavaScript pro-
grams in a durable time?

TODO

7 RELATEDWORK
TODO

• JavaScript Static Analyzers [9, 10, 14, 27]
• JavaScript Static Analysis Techniques [1, 12, 13, 15, 18–21,
30, 34–36]

• Partial Evaluation? (maybe no - * SE conf.)

7.1 JavaScript Mechanized Speci�cation
A speci�cation is mechanized if and only if it is both formalized
and executable. For JavaScript, researchers have proposed various
mechanized speci�cation in their own approaches. In 2010, Guha
et al. [8] presented �JS, the �rst mechanized speci�cation for a core
calculus of ES3 semantics by desugaring most of syntax into �JS, an
extended standard lambda calculus. Thus, the shape of �JS seman-
tics is quite di�erent with original algorithm steps. In mid 2010s,
researchers tried to de�ne mechanized speci�cation for the ES5
and 5.1 semantics having a similar shape of semantics with original
algorithm steps as much as possible. Bodin et al. [2] de�ned JSCert,
a semantics of a small subset of ES5, using Coq and extracts a refer-
ence interpreter JSRef. Park et al. [22] de�ned an entire semantics
of ES5, KJS, using the K [29], which is a framework for de�ning
language semantics. Fragoso Santos et al. [7] presented JaVerT, a

JavaScript veri�cation toolchain, including a JavaScript semantics
de�ned in their own Intermediate language, JSIL.

However, the fundamental problem of their approaches is that
they are manually de�ned thus they are labor-intensive and error-
prone. Due to such limitation, there is no existing mechanized
speci�cation for full semantics of ES6 or later versions. Therefore,
most of existing JavaScript static analyzers only focus on ES5.1
features or rarely support ES6 features even though already six
more versions from ES7 to ES12 are released since 2015.

Moreover, Park et al. [23] successfully showed that JISET is useful
tomechanically handle recent versions of ECMAScript by extending
JISET to perform N+1-version di�erential testing of both JavaScript
engines and ES11 (2020).

8 CONCLUSION
TODO

REFERENCES
[1] Roberto Amadini, Alexander Jordan, Graeme Gange, François Gauthier, Peter

Schachte, Harald Søndergaard, Peter J Stuckey, and Chenyi Zhang. 2017. Com-
bining String Abstract Domains for JavaScript Analysis: An Evaluation. In Pro-
ceedings of the 23rd International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS). https://doi.org/10.1007/978-3-
662-54577-5_3

[2] Martin Bodin, Arthur Charguéraud, Daniele Filaretti, Philippa Gardner, Sergio
Ma�eis, Daiva Naudziuniene, Alan Schmitt, and Gareth Smith. 2014. A Trusted
Mechanised JavaScript Speci�cation. Proceedings of the 41st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming (POPL) 49, 1 (2014), 87–100.
https://doi.org/10.1145/2535838.2535876

[3] David R. Chase, Mark Wegman, and F. Kenneth Zadeck. 1990. Analysis of
Pointers and Structures. In Proceedings of the ACM SIGPLAN 1990 Conference on
Programming Language Design and Implementation (PLDI) (PLDI ’90). Association
for Computing Machinery, New York, NY, USA, 296–310. https://doi.org/10.
1145/93542.93585

[4] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Uni�ed
Lattice Model for Static Analysis of Programs by Construction or Approximation
of Fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming languages (POPL). https://doi.org/10.1145/512950.
512973

[5] Patrick Cousot and Radhia Cousot. 1977. Static Determination of Dynamic
Properties of Generalized Type Unions. In Proceedings of an ACM Conference on
Language Design for Reliable Software. Association for Computing Machinery,
New York, NY, USA, 77–94. https://doi.org/10.1145/800022.808314

[6] Patrick Cousot and Radhia Cousot. 1992. Abstract Interpretation Frameworks.
Journal of Logic and Computation (JLC) 2, 4 (1992), 511–547. https://doi.org/10.
1093/logcom/2.4.511

[7] José Fragoso Santos, Petar Maksimović, Daiva Naudži = unienė, Thomas Wood,
and Philippa Gardner. 2017. JaVerT: JavaScript Veri�cation Toolchain. Proceedings
of the 44th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
(POPL) 2, POPL (2017), 1–33. https://doi.org/10.1145/3158138

[8] Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. 2010. The essence
of JavaScript. In Proceedings of the 24th European Conference on Object-Oriented
Programming (ECOOP). Springer, 126–150. https://doi.org/10.1007/978-3-642-
14107-2_7

[9] Simon Holm Jensen, Anders Møller, and Peter Thiemann. 2009. Type Analysis for
JavaScript. In Proceedings of the 16th International Symposium on Static Analysis
(SAS). https://doi.org/10.1007/978-3-642-03237-0_17

[10] Vineeth Kashyap, Kyle Dewey, Ethan A. Kuefner, John Wagner, Kevin Gib-
bons, John Sarracino, Ben Wiedermann, and Ben Hardekopf. 2014. JSAI: A
Static Analysis Platform for JavaScript. In Proceedings of the 22nd ACM SIG-
SOFT International Symposium on Foundations of Software Engineering (FSE).
https://doi.org/10.1145/2635868.2635904

[11] Se-Won Kim, Xavier Rival, and Sukyoung Ryu. 2018. A Theoretical Foundation
of Sensitivity in an Abstract Interpretation Framework. ACM Transactions on
Programming Languages and Systems (TOPLAS) 40, 3, Article 13 (2018), 44 pages.
https://doi.org/10.1145/3230624

[12] Yoonseok Ko, Xavier Rival, and Sukyoung Ryu. 2017. Weakly Sensitive Analysis
for Unbounded Iteration over JavaScript Objects. In Proceedings of the 15th Asian
Symposium on Programming Languages and Systems (APLAS). https://doi.org/10.
1007/978-3-319-71237-6_8

7

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

(a) Evaluation algorithm for identi�er references

1 syntax def IdentifierReference [0]. Evaluation(
2 this , Identifier
3) {
4 return [? (ResolveBinding (Identifier.StringValue))]
5 }

(b) Extracted IRES function for identi�er references

(c) Result of x + y via a mechanized speci�cation

Figure 7: Analysis sensitivities of the target language
(JavaScript) and the speci�cation language (IRES)

divides contexts for the evaluation of JavaScript identi�ers x and y

in the above example using their ASTs even though their program
points in IRES are the same.

Callsite Sensitivity. We also formally de�ne the callsite sensitiv-
ity [37, 38] for the target language by extending the AST sensitivity
for speci�c normal IRES functions. The original callsite sensitivity
discriminates calling contexts using their top most callsites. In EC-
MAScript, all explicit and even implicit JavaScript function calls
invoke normal IRES functions Call and Construct. Thus, we de�ne
the callsite sensitivity for the target language by extending the AST
sensitivity with two normal IRES functions:

� cfa(t 2 T) = {� = (_, c) 2 S |
syntax-ctxt � js-call-ctxt(c) = c 0 ^ c 0(this) = t}

where js-call-ctxt(c) denotes the top-most context whose function is
Call or Construct and f �� denotes a function composition. Moreover,
we extend it to the k-callsite sensitivity by recursively taking ASTs
representing callsites of the target language:

�k -cfa(t 2 Tk) = {� = (_, c) 2 S |
t = [t1, · · · , tn] ^ n k^
(ö(syntax-ctxt � js-call-ctxt)n+1(c) _ n = k)^
81 i n.
((syntax-ctxt � js-call-ctxt)i (c) = ci ^ ci (this) = ti)}

Using this callsite sensitivity for the target language, the meta-
level static analyzer could discriminate not only explicit JavaScript
function calls (e.g. f()) but also implicit JavaScript function calls,
including getters/setters, user-de�ned implicit conversions, and
implicit function calls in built-in libraries.

5 IMPLEMENTATION
We developed a prototype implementation called JSAVER, which per-
forms a meta-level static analysis for JavaScript with ECMAScript.
The tool is an extension of JISET4 and it is an open-source project5.
In this section, we describe the challenges in implementing a meta-
level static analyzer and present our solutions for them.

Layered Abstract States. Unlike traditional JavaScript static anal-
yses, a meta-level static analysis for JavaScript should track analysis
results not only for the target language JavaScript but also for the
speci�cation language IRES. Thus, the sizes of abstract states are
much larger than those of the other JavaScript static analyzers. We
implement layered abstract states to maintain only updated analysis
results compared to the initial abstract state. It signi�cantly reduces
the time to perform the join (t), meet (u), and partial order (v)
operations by considering only the updated parts in abstract states.

Closures and Continuations. The speci�cation language IRES for
ECMAScript contains more complex language features than its
simpli�ed version presented in Section 4.1, such as symbols, lists,
and list operations. Among them, the two most complex features
are closures with captured variables and �rst-class continuations be-
cause they introduce new kinds of control �ows. ECMAScript uses
closures to de�ne implicit and explicit JavaScript iterators and uses
continuations for iterators, generators, and asynchronous features
such as async, await, and the Proxy object. Therefore, we de�ne and
implement abstract closures and abstract continuations; an abstract
closure is a pair of a function and a mapping from captured vari-
ables to their abstract values, and an abstract continuation consists
of a program point, a view for analysis sensitivity, parameters, and
an abstract context.

Abstract Counting. Properties of JavaScript objects could be dy-
namically added, modi�ed, or deleted and even accessible by �rst-
class property names. Thus, in JavaScript static analysis, performing
strong updates rather than weak updates for object properties as
many as possible is important for precise analysis results. Since
records of IRES are even more dynamic than JavaScript objects, it is
also important to increase analysis precision. Therefore, we imple-
ment abstract counting [19] to increase chances to perform strong
updates for �elds of records. It checks how many times records in
the same allocation site have been allocated and performs strong
updates only for singleton records with singleton �eld values.

Loop Sensitivity. Similar to function calls, loops are also typical
merging points in static analysis. A loop sensitivity [24] is one of the
representative techniques to increase the precision of JavaScript
static analysis for loops. It discriminates contexts using a stack
of loop contexts containing loop iterations. We de�ne it under
the view-based analysis sensitivity and implement it in JSAVER to
increase the precision of IRES static analysis. Moreover, we also
de�ne and implement the loop sensitivity for JavaScript using the
loop sensitivity for IRES. Therefore, JSAVER discriminates contexts
for explicit loops such as for-in and for-of and even implicit loops
such as the assignment of arguments or the length property of
arrays.

4https://github.com/kaist-plrg/jiset
5The URL of the tool is anonymized due to a double-blind review process.

6

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

(a) Evaluation algorithm for identi�er references

1 syntax def IdentifierReference [0]. Evaluation(
2 this , Identifier
3) {
4 return [? (ResolveBinding (Identifier.StringValue))]
5 }

(b) Extracted IRES function for identi�er references

(c) Result of x + y via a mechanized speci�cation

Figure 7: Analysis sensitivities of the target language
(JavaScript) and the speci�cation language (IRES)

divides contexts for the evaluation of JavaScript identi�ers x and y

in the above example using their ASTs even though their program
points in IRES are the same.

Callsite Sensitivity. We also formally de�ne the callsite sensitiv-
ity [37, 38] for the target language by extending the AST sensitivity
for speci�c normal IRES functions. The original callsite sensitivity
discriminates calling contexts using their top most callsites. In EC-
MAScript, all explicit and even implicit JavaScript function calls
invoke normal IRES functions Call and Construct. Thus, we de�ne
the callsite sensitivity for the target language by extending the AST
sensitivity with two normal IRES functions:

� cfa(t 2 T) = {� = (_, c) 2 S |
syntax-ctxt � js-call-ctxt(c) = c 0 ^ c 0(this) = t}

where js-call-ctxt(c) denotes the top-most context whose function is
Call or Construct and f �� denotes a function composition. Moreover,
we extend it to the k-callsite sensitivity by recursively taking ASTs
representing callsites of the target language:

�k -cfa(t 2 Tk) = {� = (_, c) 2 S |
t = [t1, · · · , tn] ^ n k^
(ö(syntax-ctxt � js-call-ctxt)n+1(c) _ n = k)^
81 i n.
((syntax-ctxt � js-call-ctxt)i (c) = ci ^ ci (this) = ti)}

Using this callsite sensitivity for the target language, the meta-
level static analyzer could discriminate not only explicit JavaScript
function calls (e.g. f()) but also implicit JavaScript function calls,
including getters/setters, user-de�ned implicit conversions, and
implicit function calls in built-in libraries.

5 IMPLEMENTATION
We developed a prototype implementation called JSAVER, which per-
forms a meta-level static analysis for JavaScript with ECMAScript.
The tool is an extension of JISET4 and it is an open-source project5.
In this section, we describe the challenges in implementing a meta-
level static analyzer and present our solutions for them.

Layered Abstract States. Unlike traditional JavaScript static anal-
yses, a meta-level static analysis for JavaScript should track analysis
results not only for the target language JavaScript but also for the
speci�cation language IRES. Thus, the sizes of abstract states are
much larger than those of the other JavaScript static analyzers. We
implement layered abstract states to maintain only updated analysis
results compared to the initial abstract state. It signi�cantly reduces
the time to perform the join (t), meet (u), and partial order (v)
operations by considering only the updated parts in abstract states.

Closures and Continuations. The speci�cation language IRES for
ECMAScript contains more complex language features than its
simpli�ed version presented in Section 4.1, such as symbols, lists,
and list operations. Among them, the two most complex features
are closures with captured variables and �rst-class continuations be-
cause they introduce new kinds of control �ows. ECMAScript uses
closures to de�ne implicit and explicit JavaScript iterators and uses
continuations for iterators, generators, and asynchronous features
such as async, await, and the Proxy object. Therefore, we de�ne and
implement abstract closures and abstract continuations; an abstract
closure is a pair of a function and a mapping from captured vari-
ables to their abstract values, and an abstract continuation consists
of a program point, a view for analysis sensitivity, parameters, and
an abstract context.

Abstract Counting. Properties of JavaScript objects could be dy-
namically added, modi�ed, or deleted and even accessible by �rst-
class property names. Thus, in JavaScript static analysis, performing
strong updates rather than weak updates for object properties as
many as possible is important for precise analysis results. Since
records of IRES are even more dynamic than JavaScript objects, it is
also important to increase analysis precision. Therefore, we imple-
ment abstract counting [19] to increase chances to perform strong
updates for �elds of records. It checks how many times records in
the same allocation site have been allocated and performs strong
updates only for singleton records with singleton �eld values.

Loop Sensitivity. Similar to function calls, loops are also typical
merging points in static analysis. A loop sensitivity [24] is one of the
representative techniques to increase the precision of JavaScript
static analysis for loops. It discriminates contexts using a stack
of loop contexts containing loop iterations. We de�ne it under
the view-based analysis sensitivity and implement it in JSAVER to
increase the precision of IRES static analysis. Moreover, we also
de�ne and implement the loop sensitivity for JavaScript using the
loop sensitivity for IRES. Therefore, JSAVER discriminates contexts
for explicit loops such as for-in and for-of and even implicit loops
such as the assignment of arguments or the length property of
arrays.

4https://github.com/kaist-plrg/jiset
5The URL of the tool is anonymized due to a double-blind review process.

6

parsex ||= y
581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

(a) Evaluation algorithm for identi�er references

1 syntax def IdentifierReference [0]
2 .Evaluation(
3 this , Identifier
4) {
5 return [?
6 (ResolveBinding
7 (Identifier.StringValue))]
8 }

(b) Extracted IRES function for identi�er references

(c) Result of x + y via a mechanized speci�cation

Figure 7: Analysis sensitivities of the target language
(JavaScript) and the speci�cation language (IRES)

divides contexts for the evaluation of JavaScript identi�ers x and y

in the above example using their ASTs even though their program
points in IRES are the same.

Callsite Sensitivity. We also formally de�ne the callsite sensitiv-
ity [37, 38] for the target language by extending the AST sensitivity
for speci�c normal IRES functions. The original callsite sensitivity
discriminates calling contexts using their top most callsites. In EC-
MAScript, all explicit and even implicit JavaScript function calls
invoke normal IRES functions Call and Construct. Thus, we de�ne
the callsite sensitivity for the target language by extending the AST
sensitivity with two normal IRES functions:

� cfa(t 2 T) = {� = (_, c) 2 S |
syntax-ctxt � js-call-ctxt(c) = c 0 ^ c 0(this) = t}

where js-call-ctxt(c) denotes the top-most context whose function is
Call or Construct and f �� denotes a function composition. Moreover,
we extend it to the k-callsite sensitivity by recursively taking ASTs
representing callsites of the target language:

�k -cfa(t 2 Tk) = {� = (_, c) 2 S |
t = [t1, · · · , tn] ^ n k^
(ö(syntax-ctxt � js-call-ctxt)n+1(c) _ n = k)^
81 i n.
((syntax-ctxt � js-call-ctxt)i (c) = ci ^ ci (this) = ti)}

Using this callsite sensitivity for the target language, the meta-
level static analyzer could discriminate not only explicit JavaScript
function calls (e.g. f()) but also implicit JavaScript function calls,

including getters/setters, user-de�ned implicit conversions, and
implicit function calls in built-in libraries.

5 IMPLEMENTATION
We developed a prototype implementation called JSAVER, which per-
forms a meta-level static analysis for JavaScript with ECMAScript.
The tool is an extension of JISET4 and it is an open-source project5.
In this section, we describe the challenges in implementing a meta-
level static analyzer and present our solutions for them.

Layered Abstract States. Unlike traditional JavaScript static anal-
yses, a meta-level static analysis for JavaScript should track analysis
results not only for the target language JavaScript but also for the
speci�cation language IRES. Thus, the sizes of abstract states are
much larger than those of the other JavaScript static analyzers. We
implement layered abstract states to maintain only updated analysis
results compared to the initial abstract state. It signi�cantly reduces
the time to perform the join (t), meet (u), and partial order (v)
operations by considering only the updated parts in abstract states.

Closures and Continuations. The speci�cation language IRES for
ECMAScript contains more complex language features than its
simpli�ed version presented in Section 4.1, such as symbols, lists,
and list operations. Among them, the two most complex features
are closures with captured variables and �rst-class continuations be-
cause they introduce new kinds of control �ows. ECMAScript uses
closures to de�ne implicit and explicit JavaScript iterators and uses
continuations for iterators, generators, and asynchronous features
such as async, await, and the Proxy object. Therefore, we de�ne and
implement abstract closures and abstract continuations; an abstract
closure is a pair of a function and a mapping from captured vari-
ables to their abstract values, and an abstract continuation consists
of a program point, a view for analysis sensitivity, parameters, and
an abstract context.

Abstract Counting. Properties of JavaScript objects could be dy-
namically added, modi�ed, or deleted and even accessible by �rst-
class property names. Thus, in JavaScript static analysis, performing
strong updates rather than weak updates for object properties as
many as possible is important for precise analysis results. Since
records of IRES are even more dynamic than JavaScript objects, it is
also important to increase analysis precision. Therefore, we imple-
ment abstract counting [19] to increase chances to perform strong
updates for �elds of records. It checks how many times records in
the same allocation site have been allocated and performs strong
updates only for singleton records with singleton �eld values.

Loop Sensitivity. Similar to function calls, loops are also typical
merging points in static analysis. A loop sensitivity [24] is one of the
representative techniques to increase the precision of JavaScript
static analysis for loops. It discriminates contexts using a stack
of loop contexts containing loop iterations. We de�ne it under
the view-based analysis sensitivity and implement it in JSAVER to
increase the precision of IRES static analysis. Moreover, we also
de�ne and implement the loop sensitivity for JavaScript using the
loop sensitivity for IRES. Therefore, JSAVER discriminates contexts

4https://github.com/kaist-plrg/jiset
5The URL of the tool is anonymized due to a double-blind review process.

6

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

(a) Evaluation algorithm for identi�er references

1 syntax def IdentifierReference [0]
2 .Evaluation(
3 this , Identifier
4) {
5 return [?
6 (ResolveBinding
7 (Identifier.StringValue))]
8 }

(b) Extracted IRES function for identi�er references

(c) Result of x + y via a mechanized speci�cation

Figure 7: Analysis sensitivities of the target language
(JavaScript) and the speci�cation language (IRES)

divides contexts for the evaluation of JavaScript identi�ers x and y

in the above example using their ASTs even though their program
points in IRES are the same.

Callsite Sensitivity. We also formally de�ne the callsite sensitiv-
ity [37, 38] for the target language by extending the AST sensitivity
for speci�c normal IRES functions. The original callsite sensitivity
discriminates calling contexts using their top most callsites. In EC-
MAScript, all explicit and even implicit JavaScript function calls
invoke normal IRES functions Call and Construct. Thus, we de�ne
the callsite sensitivity for the target language by extending the AST
sensitivity with two normal IRES functions:

� cfa(t 2 T) = {� = (_, c) 2 S |
syntax-ctxt � js-call-ctxt(c) = c 0 ^ c 0(this) = t}

where js-call-ctxt(c) denotes the top-most context whose function is
Call or Construct and f �� denotes a function composition. Moreover,
we extend it to the k-callsite sensitivity by recursively taking ASTs
representing callsites of the target language:

�k -cfa(t 2 Tk) = {� = (_, c) 2 S |
t = [t1, · · · , tn] ^ n k^
(ö(syntax-ctxt � js-call-ctxt)n+1(c) _ n = k)^
81 i n.
((syntax-ctxt � js-call-ctxt)i (c) = ci ^ ci (this) = ti)}

Using this callsite sensitivity for the target language, the meta-
level static analyzer could discriminate not only explicit JavaScript
function calls (e.g. f()) but also implicit JavaScript function calls,

including getters/setters, user-de�ned implicit conversions, and
implicit function calls in built-in libraries.

5 IMPLEMENTATION
We developed a prototype implementation called JSAVER, which per-
forms a meta-level static analysis for JavaScript with ECMAScript.
The tool is an extension of JISET4 and it is an open-source project5.
In this section, we describe the challenges in implementing a meta-
level static analyzer and present our solutions for them.

Layered Abstract States. Unlike traditional JavaScript static anal-
yses, a meta-level static analysis for JavaScript should track analysis
results not only for the target language JavaScript but also for the
speci�cation language IRES. Thus, the sizes of abstract states are
much larger than those of the other JavaScript static analyzers. We
implement layered abstract states to maintain only updated analysis
results compared to the initial abstract state. It signi�cantly reduces
the time to perform the join (t), meet (u), and partial order (v)
operations by considering only the updated parts in abstract states.

Closures and Continuations. The speci�cation language IRES for
ECMAScript contains more complex language features than its
simpli�ed version presented in Section 4.1, such as symbols, lists,
and list operations. Among them, the two most complex features
are closures with captured variables and �rst-class continuations be-
cause they introduce new kinds of control �ows. ECMAScript uses
closures to de�ne implicit and explicit JavaScript iterators and uses
continuations for iterators, generators, and asynchronous features
such as async, await, and the Proxy object. Therefore, we de�ne and
implement abstract closures and abstract continuations; an abstract
closure is a pair of a function and a mapping from captured vari-
ables to their abstract values, and an abstract continuation consists
of a program point, a view for analysis sensitivity, parameters, and
an abstract context.

Abstract Counting. Properties of JavaScript objects could be dy-
namically added, modi�ed, or deleted and even accessible by �rst-
class property names. Thus, in JavaScript static analysis, performing
strong updates rather than weak updates for object properties as
many as possible is important for precise analysis results. Since
records of IRES are even more dynamic than JavaScript objects, it is
also important to increase analysis precision. Therefore, we imple-
ment abstract counting [19] to increase chances to perform strong
updates for �elds of records. It checks how many times records in
the same allocation site have been allocated and performs strong
updates only for singleton records with singleton �eld values.

Loop Sensitivity. Similar to function calls, loops are also typical
merging points in static analysis. A loop sensitivity [24] is one of the
representative techniques to increase the precision of JavaScript
static analysis for loops. It discriminates contexts using a stack
of loop contexts containing loop iterations. We de�ne it under
the view-based analysis sensitivity and implement it in JSAVER to
increase the precision of IRES static analysis. Moreover, we also
de�ne and implement the loop sensitivity for JavaScript using the
loop sensitivity for IRES. Therefore, JSAVER discriminates contexts

4https://github.com/kaist-plrg/jiset
5The URL of the tool is anonymized due to a double-blind review process.

6

Filling the gap between the JavaScript language specification and tools using the JISET family / 45

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

(a) Evaluation algorithm for identi�er references

1 syntax def IdentifierReference [0]
2 .Evaluation(
3 this , Identifier
4) {
5 return [?
6 (ResolveBinding
7 (Identifier.StringValue))]
8 }

(b) Extracted IRES function for identi�er references

(c) Result of x + y via a mechanized speci�cation

Figure 7: Analysis sensitivities of the target language
(JavaScript) and the speci�cation language (IRES)

divides contexts for the evaluation of JavaScript identi�ers x and y

in the above example using their ASTs even though their program
points in IRES are the same.

Callsite Sensitivity. We also formally de�ne the callsite sensitiv-
ity [37, 38] for the target language by extending the AST sensitivity
for speci�c normal IRES functions. The original callsite sensitivity
discriminates calling contexts using their top most callsites. In EC-
MAScript, all explicit and even implicit JavaScript function calls
invoke normal IRES functions Call and Construct. Thus, we de�ne
the callsite sensitivity for the target language by extending the AST
sensitivity with two normal IRES functions:

� cfa(t 2 T) = {� = (_, c) 2 S |
syntax-ctxt � js-call-ctxt(c) = c 0 ^ c 0(this) = t}

where js-call-ctxt(c) denotes the top-most context whose function is
Call or Construct and f �� denotes a function composition. Moreover,
we extend it to the k-callsite sensitivity by recursively taking ASTs
representing callsites of the target language:

�k -cfa(t 2 Tk) = {� = (_, c) 2 S |
t = [t1, · · · , tn] ^ n k^
(ö(syntax-ctxt � js-call-ctxt)n+1(c) _ n = k)^
81 i n.
((syntax-ctxt � js-call-ctxt)i (c) = ci ^ ci (this) = ti)}

Using this callsite sensitivity for the target language, the meta-
level static analyzer could discriminate not only explicit JavaScript
function calls (e.g. f()) but also implicit JavaScript function calls,

including getters/setters, user-de�ned implicit conversions, and
implicit function calls in built-in libraries.

5 IMPLEMENTATION
We developed a prototype implementation called JSAVER, which per-
forms a meta-level static analysis for JavaScript with ECMAScript.
The tool is an extension of JISET4 and it is an open-source project5.
In this section, we describe the challenges in implementing a meta-
level static analyzer and present our solutions for them.

Layered Abstract States. Unlike traditional JavaScript static anal-
yses, a meta-level static analysis for JavaScript should track analysis
results not only for the target language JavaScript but also for the
speci�cation language IRES. Thus, the sizes of abstract states are
much larger than those of the other JavaScript static analyzers. We
implement layered abstract states to maintain only updated analysis
results compared to the initial abstract state. It signi�cantly reduces
the time to perform the join (t), meet (u), and partial order (v)
operations by considering only the updated parts in abstract states.

Closures and Continuations. The speci�cation language IRES for
ECMAScript contains more complex language features than its
simpli�ed version presented in Section 4.1, such as symbols, lists,
and list operations. Among them, the two most complex features
are closures with captured variables and �rst-class continuations be-
cause they introduce new kinds of control �ows. ECMAScript uses
closures to de�ne implicit and explicit JavaScript iterators and uses
continuations for iterators, generators, and asynchronous features
such as async, await, and the Proxy object. Therefore, we de�ne and
implement abstract closures and abstract continuations; an abstract
closure is a pair of a function and a mapping from captured vari-
ables to their abstract values, and an abstract continuation consists
of a program point, a view for analysis sensitivity, parameters, and
an abstract context.

Abstract Counting. Properties of JavaScript objects could be dy-
namically added, modi�ed, or deleted and even accessible by �rst-
class property names. Thus, in JavaScript static analysis, performing
strong updates rather than weak updates for object properties as
many as possible is important for precise analysis results. Since
records of IRES are even more dynamic than JavaScript objects, it is
also important to increase analysis precision. Therefore, we imple-
ment abstract counting [19] to increase chances to perform strong
updates for �elds of records. It checks how many times records in
the same allocation site have been allocated and performs strong
updates only for singleton records with singleton �eld values.

Loop Sensitivity. Similar to function calls, loops are also typical
merging points in static analysis. A loop sensitivity [24] is one of the
representative techniques to increase the precision of JavaScript
static analysis for loops. It discriminates contexts using a stack
of loop contexts containing loop iterations. We de�ne it under
the view-based analysis sensitivity and implement it in JSAVER to
increase the precision of IRES static analysis. Moreover, we also
de�ne and implement the loop sensitivity for JavaScript using the
loop sensitivity for IRES. Therefore, JSAVER discriminates contexts

4https://github.com/kaist-plrg/jiset
5The URL of the tool is anonymized due to a double-blind review process.

6

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

(a) Evaluation algorithm for identi�er references

1 syntax def IdentifierReference [0]
2 .Evaluation(
3 this , Identifier
4) {
5 return [?
6 (ResolveBinding
7 (Identifier.StringValue))]
8 }

(b) Extracted IRES function for identi�er references

(c) Result of x + y via a mechanized speci�cation

Figure 7: Analysis sensitivities of the target language
(JavaScript) and the speci�cation language (IRES)

divides contexts for the evaluation of JavaScript identi�ers x and y

in the above example using their ASTs even though their program
points in IRES are the same.

Callsite Sensitivity. We also formally de�ne the callsite sensitiv-
ity [37, 38] for the target language by extending the AST sensitivity
for speci�c normal IRES functions. The original callsite sensitivity
discriminates calling contexts using their top most callsites. In EC-
MAScript, all explicit and even implicit JavaScript function calls
invoke normal IRES functions Call and Construct. Thus, we de�ne
the callsite sensitivity for the target language by extending the AST
sensitivity with two normal IRES functions:

� cfa(t 2 T) = {� = (_, c) 2 S |
syntax-ctxt � js-call-ctxt(c) = c 0 ^ c 0(this) = t}

where js-call-ctxt(c) denotes the top-most context whose function is
Call or Construct and f �� denotes a function composition. Moreover,
we extend it to the k-callsite sensitivity by recursively taking ASTs
representing callsites of the target language:

�k -cfa(t 2 Tk) = {� = (_, c) 2 S |
t = [t1, · · · , tn] ^ n k^
(ö(syntax-ctxt � js-call-ctxt)n+1(c) _ n = k)^
81 i n.
((syntax-ctxt � js-call-ctxt)i (c) = ci ^ ci (this) = ti)}

Using this callsite sensitivity for the target language, the meta-
level static analyzer could discriminate not only explicit JavaScript
function calls (e.g. f()) but also implicit JavaScript function calls,

including getters/setters, user-de�ned implicit conversions, and
implicit function calls in built-in libraries.

5 IMPLEMENTATION
We developed a prototype implementation called JSAVER, which per-
forms a meta-level static analysis for JavaScript with ECMAScript.
The tool is an extension of JISET4 and it is an open-source project5.
In this section, we describe the challenges in implementing a meta-
level static analyzer and present our solutions for them.

Layered Abstract States. Unlike traditional JavaScript static anal-
yses, a meta-level static analysis for JavaScript should track analysis
results not only for the target language JavaScript but also for the
speci�cation language IRES. Thus, the sizes of abstract states are
much larger than those of the other JavaScript static analyzers. We
implement layered abstract states to maintain only updated analysis
results compared to the initial abstract state. It signi�cantly reduces
the time to perform the join (t), meet (u), and partial order (v)
operations by considering only the updated parts in abstract states.

Closures and Continuations. The speci�cation language IRES for
ECMAScript contains more complex language features than its
simpli�ed version presented in Section 4.1, such as symbols, lists,
and list operations. Among them, the two most complex features
are closures with captured variables and �rst-class continuations be-
cause they introduce new kinds of control �ows. ECMAScript uses
closures to de�ne implicit and explicit JavaScript iterators and uses
continuations for iterators, generators, and asynchronous features
such as async, await, and the Proxy object. Therefore, we de�ne and
implement abstract closures and abstract continuations; an abstract
closure is a pair of a function and a mapping from captured vari-
ables to their abstract values, and an abstract continuation consists
of a program point, a view for analysis sensitivity, parameters, and
an abstract context.

Abstract Counting. Properties of JavaScript objects could be dy-
namically added, modi�ed, or deleted and even accessible by �rst-
class property names. Thus, in JavaScript static analysis, performing
strong updates rather than weak updates for object properties as
many as possible is important for precise analysis results. Since
records of IRES are even more dynamic than JavaScript objects, it is
also important to increase analysis precision. Therefore, we imple-
ment abstract counting [19] to increase chances to perform strong
updates for �elds of records. It checks how many times records in
the same allocation site have been allocated and performs strong
updates only for singleton records with singleton �eld values.

Loop Sensitivity. Similar to function calls, loops are also typical
merging points in static analysis. A loop sensitivity [24] is one of the
representative techniques to increase the precision of JavaScript
static analysis for loops. It discriminates contexts using a stack
of loop contexts containing loop iterations. We de�ne it under
the view-based analysis sensitivity and implement it in JSAVER to
increase the precision of IRES static analysis. Moreover, we also
de�ne and implement the loop sensitivity for JavaScript using the
loop sensitivity for IRES. Therefore, JSAVER discriminates contexts

4https://github.com/kaist-plrg/jiset
5The URL of the tool is anonymized due to a double-blind review process.

6

JSAVER - AST Sensitivity

40

IRES

JavaScript

· · ·<latexit sha1_base64="Kef69hW4e/raBfVz+DaK6/NBFbQ=">AAACHXicbVDJSgNBEK1xjXFL9OhlMAiewowKeozLwYsQITFCJkhPp2Ka9Cx01whxmI/wqge/xpt4Ff/GnnEObg8aHu9VdVU9P5ZCk+N8WDOzc/MLi5Wl6vLK6tp6rb5xpaNEcezySEbq2mcapQixS4IkXscKWeBL7PmT09zv3aHSIgo7NI1xELDbUIwEZ2SknseHEenqTa3hNJ0C9l/ilqQBJdo3dQu8YcSTAEPikmndd52YBilTJLjErOolGmPGJ+wW+4aGLEA9SIt9M3vHKEN7FCnzQrIL9XtHygKtp4FvKgNGY/3by8X/vH5Co6NBKsI4IQz516BRIm2K7Px4eygUcpJTQxhXwuxq8zFTjJOJqOqdoblF4YX591jGY+YjpV4+Jb7nWdpxs7QgQZYKykxm7u+E/pKrvaa739y7PGi0Tsr0KrAF27ALLhxCC86hDV3gMIEHeIQn69l6sV6tt6/SGavs2YQfsN4/AabGomA=</latexit> · · ·<latexit sha1_base64="Kef69hW4e/raBfVz+DaK6/NBFbQ=">AAACHXicbVDJSgNBEK1xjXFL9OhlMAiewowKeozLwYsQITFCJkhPp2Ka9Cx01whxmI/wqge/xpt4Ff/GnnEObg8aHu9VdVU9P5ZCk+N8WDOzc/MLi5Wl6vLK6tp6rb5xpaNEcezySEbq2mcapQixS4IkXscKWeBL7PmT09zv3aHSIgo7NI1xELDbUIwEZ2SknseHEenqTa3hNJ0C9l/ilqQBJdo3dQu8YcSTAEPikmndd52YBilTJLjErOolGmPGJ+wW+4aGLEA9SIt9M3vHKEN7FCnzQrIL9XtHygKtp4FvKgNGY/3by8X/vH5Co6NBKsI4IQz516BRIm2K7Px4eygUcpJTQxhXwuxq8zFTjJOJqOqdoblF4YX591jGY+YjpV4+Jb7nWdpxs7QgQZYKykxm7u+E/pKrvaa739y7PGi0Tsr0KrAF27ALLhxCC86hDV3gMIEHeIQn69l6sV6tt6/SGavs2YQfsN4/AabGomA=</latexit>

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Automatically Deriving JavaScript Static Analyzers from Language Specifications ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

function error(e) { throw e; }

const n = ...; // [0, 99]

n |> x => x + 1 // [1, 100]

|> x => x * 2 // [2, 200]

|> x => x + 1n; // TypeError

|> error (42);

of representative techniques to increase the precision of JavaScript
static analysis for loops. It discriminates contexts using a stack of
loop contexts containing loop iterations. We de�ne it under view-
based analysis sensitivity and implement it in JSAVER to increase
the precision of IRES static analysis. Moreover, we also de�ne and
implement the loop sensitivity for JavaScript using the loop sensitiv-
ity for IRES. Therefore, our tool discriminates contexts for explicit
loops, such as for-in or for-of, and even implicit loops, such as the
length property assignment of arrays.

6 EVALUATION
• AdditiveExpression
• Identi�erReference
• Identi�er
• AssignmentExpression
• LeftHandSideExpression
• ArrowFunction

• RQ1: Coverage) How much does JSAVER cover JavaScript
language features in the latest ECMAScript (ES12, 2021)?

• RQ2: Adaptability) Could JSAVER adapt a new language
features not yet introduced in ES12?

• RQ3: Expressiveness) What kinds of abstract sensitivities
and abstract domains JSAVER can support?

• RQ4: Performance) Could JSAVER analyze JavaScript pro-
grams in a durable time?

TODO

7 RELATEDWORK
TODO

• JavaScript Static Analyzers [9, 10, 14, 27]
• JavaScript Static Analysis Techniques [1, 12, 13, 15, 18–21,
30, 34–36]

• Partial Evaluation? (maybe no - * SE conf.)

7.1 JavaScript Mechanized Speci�cation
A speci�cation is mechanized if and only if it is both formalized
and executable. For JavaScript, researchers have proposed various
mechanized speci�cation in their own approaches. In 2010, Guha
et al. [8] presented �JS, the �rst mechanized speci�cation for a core
calculus of ES3 semantics by desugaring most of syntax into �JS, an
extended standard lambda calculus. Thus, the shape of �JS seman-
tics is quite di�erent with original algorithm steps. In mid 2010s,
researchers tried to de�ne mechanized speci�cation for the ES5
and 5.1 semantics having a similar shape of semantics with original
algorithm steps as much as possible. Bodin et al. [2] de�ned JSCert,
a semantics of a small subset of ES5, using Coq and extracts a refer-
ence interpreter JSRef. Park et al. [22] de�ned an entire semantics
of ES5, KJS, using the K [29], which is a framework for de�ning
language semantics. Fragoso Santos et al. [7] presented JaVerT, a

JavaScript veri�cation toolchain, including a JavaScript semantics
de�ned in their own Intermediate language, JSIL.

However, the fundamental problem of their approaches is that
they are manually de�ned thus they are labor-intensive and error-
prone. Due to such limitation, there is no existing mechanized
speci�cation for full semantics of ES6 or later versions. Therefore,
most of existing JavaScript static analyzers only focus on ES5.1
features or rarely support ES6 features even though already six
more versions from ES7 to ES12 are released since 2015.

Moreover, Park et al. [23] successfully showed that JISET is useful
tomechanically handle recent versions of ECMAScript by extending
JISET to perform N+1-version di�erential testing of both JavaScript
engines and ES11 (2020).

8 CONCLUSION
TODO

REFERENCES
[1] Roberto Amadini, Alexander Jordan, Graeme Gange, François Gauthier, Peter

Schachte, Harald Søndergaard, Peter J Stuckey, and Chenyi Zhang. 2017. Com-
bining String Abstract Domains for JavaScript Analysis: An Evaluation. In Pro-
ceedings of the 23rd International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS). https://doi.org/10.1007/978-3-
662-54577-5_3

[2] Martin Bodin, Arthur Charguéraud, Daniele Filaretti, Philippa Gardner, Sergio
Ma�eis, Daiva Naudziuniene, Alan Schmitt, and Gareth Smith. 2014. A Trusted
Mechanised JavaScript Speci�cation. Proceedings of the 41st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming (POPL) 49, 1 (2014), 87–100.
https://doi.org/10.1145/2535838.2535876

[3] David R. Chase, Mark Wegman, and F. Kenneth Zadeck. 1990. Analysis of
Pointers and Structures. In Proceedings of the ACM SIGPLAN 1990 Conference on
Programming Language Design and Implementation (PLDI) (PLDI ’90). Association
for Computing Machinery, New York, NY, USA, 296–310. https://doi.org/10.
1145/93542.93585

[4] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Uni�ed
Lattice Model for Static Analysis of Programs by Construction or Approximation
of Fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming languages (POPL). https://doi.org/10.1145/512950.
512973

[5] Patrick Cousot and Radhia Cousot. 1977. Static Determination of Dynamic
Properties of Generalized Type Unions. In Proceedings of an ACM Conference on
Language Design for Reliable Software. Association for Computing Machinery,
New York, NY, USA, 77–94. https://doi.org/10.1145/800022.808314

[6] Patrick Cousot and Radhia Cousot. 1992. Abstract Interpretation Frameworks.
Journal of Logic and Computation (JLC) 2, 4 (1992), 511–547. https://doi.org/10.
1093/logcom/2.4.511

[7] José Fragoso Santos, Petar Maksimović, Daiva Naudži = unienė, Thomas Wood,
and Philippa Gardner. 2017. JaVerT: JavaScript Veri�cation Toolchain. Proceedings
of the 44th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
(POPL) 2, POPL (2017), 1–33. https://doi.org/10.1145/3158138

[8] Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. 2010. The essence
of JavaScript. In Proceedings of the 24th European Conference on Object-Oriented
Programming (ECOOP). Springer, 126–150. https://doi.org/10.1007/978-3-642-
14107-2_7

[9] Simon Holm Jensen, Anders Møller, and Peter Thiemann. 2009. Type Analysis for
JavaScript. In Proceedings of the 16th International Symposium on Static Analysis
(SAS). https://doi.org/10.1007/978-3-642-03237-0_17

[10] Vineeth Kashyap, Kyle Dewey, Ethan A. Kuefner, John Wagner, Kevin Gib-
bons, John Sarracino, Ben Wiedermann, and Ben Hardekopf. 2014. JSAI: A
Static Analysis Platform for JavaScript. In Proceedings of the 22nd ACM SIG-
SOFT International Symposium on Foundations of Software Engineering (FSE).
https://doi.org/10.1145/2635868.2635904

[11] Se-Won Kim, Xavier Rival, and Sukyoung Ryu. 2018. A Theoretical Foundation
of Sensitivity in an Abstract Interpretation Framework. ACM Transactions on
Programming Languages and Systems (TOPLAS) 40, 3, Article 13 (2018), 44 pages.
https://doi.org/10.1145/3230624

[12] Yoonseok Ko, Xavier Rival, and Sukyoung Ryu. 2017. Weakly Sensitive Analysis
for Unbounded Iteration over JavaScript Objects. In Proceedings of the 15th Asian
Symposium on Programming Languages and Systems (APLAS). https://doi.org/10.
1007/978-3-319-71237-6_8

7

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

(a) Evaluation algorithm for logical OR assignments.

1 syntax def AssignmentExpression [8]. Evaluation(

2 this , LeftHandSideExpression , AssignmentExpression

3) { /* entry */

4 let lref = (LeftHandSideExpression.Evaluation)

5 let lval = [? (GetValue lref)]

6 let lbool = [! (ToBoolean lval)] /* #1 */

7 if (= lbool true) /* #2 */ return lval else { /* #3 */ }

8 if (&& (IsAnonymousFunctionDefinition AssignmentExpression)

9 (LeftHandSideExpression.IsIdentifierRef)) { /* #4 */

10 let rval = (AssignmentExpression.NamedEvaluation

11 lref.ReferencedName)

12 } else { /* #5 */

13 let rref = (AssignmentExpression.Evaluation)

14 let rval = [? (GetValue rref)]

15 } /* #6 */

16 [? (PutValue lref rval)]

17 return rval

18 } /* exit */

(b) The extracted IRES function.

Figure 1: Evaluation algorithm for the eighth alternative of AssignmentExpression in ES12 and the extracted IRES function.

To alleviate this problem, we propose a novel technique called
meta-level static analysis to automatically derive a JavaScript static
analyzer from any version of ECMAScript. The main idea of the
meta-level static analysis is to indirectly analyze a target language
program by performing static analysis for a language speci�ca-
tion of the target language written in a speci�cation language with
the program as the initial input. Thus, it can signi�cantly reduce
the burden to manually design and implement static analyzers by
automatically deriving them from given language speci�cations.
Moreover, it even guarantees the soundness of derived static analyz-
ers for the target language by constructing sound abstract semantics
for the speci�cation language.

For the expressiveness of a meta-level static analysis, we also
present ways to con�gure analysis sensitivities and abstract do-
mains for a target language. Con�guring them is a typical way
to manage analysis precision and performance. First, we present
the AST sensitivity in a meta-level static analysis to express analy-
sis sensitivities for a target language such as �ow-sensitivity and
k-callsite-sensitivity (Section 4.2). Second, we present a way to
con�gure abstract domains for structures and values in a target
language (Section 4.3).

To actualize our approach for JavaScript, we present JSAVER,
JavaScript Static Analyzers via ECMAScript Representations. First,
we utilize JISET [26] to extract a mechanized speci�cation written
in an intermediate representation, IRES, from a given ECMAScript.
Thus, target and speci�cation languages are JavaScript and IRES,
respectively, for the meta-level static analysis in JSAVER. In addition,
we implement several analysis techniques to improve the perfor-
mance and precision of derived static analyzers (Section 5). We
evaluated JSAVER by deriving a JavaScript static analyzer from the
latest ECMAScript, ES12, and using the o�cial conformance tests,
Test2622.

Our contributions are as follows:
• We propose a novel concept called meta-level static analysis,
which automatically derives a static analyzer for a target

2https://github.com/tc39/test262

let f = Math.floor(Math.random () * 100);

// f: [0, 99]

f ||= x => x;

// f: [1, 99] or { name: �f�, ... }

let x = f.name;

// f: [1, 99] or { name: �f�, ... }, x: undefined or �f�

Figure 2: A running JavaScript program with a logical OR
assignment newly introduced in ES12.

language from its language speci�cation written in a speci�-
cation language.

• We actualize meta-level static analysis for JavaScript as a tool
called JSAVER. It is the �rst tool that automatically derives a
JavaScript static analyzer from any version of ECMAScript.

• We derive a static analyzer from the latest ECMAScript, ES12,
to evaluate JSAVER. The synthesized static analyzer success-
fully analyzes all applicable 18,556 o�cial conformance tests.
Moreover, we demonstrate the adaptability and expressive-
ness of JSAVER with several case studies.

2 BACKGROUND
In this section, we explain the detail of ECMAScript, the o�cial
speci�cation of JavaScript. We then introduce JISET and how it
extracts a mechanized speci�cation from it. Since our work is to
perform meta-level static analysis for JavaScript using extracted
mechanized speci�cations, it is essential to understand how EC-
MAScript describes JavaScript semantics and how JISET extracts a
mechanized speci�cation from it.

For the detailed explanation, we explain a new language feature
introduced in ES12 called logical OR assignments (Figure 1) and
use a JavaScript program (Figure 2) as a running example. It �rst
de�nes a variable f with a random integer from 0 to 99. Then, it
uses a logical OR assignment to update f with an arrow function
whose name is �f� only if f has 0 because 0 represents false but
other integers represent true. Finally, it de�nes a variable x with
f.name and its value is undefined if f has an integer or �f� otherwise.

2

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Automatically Deriving JavaScript Static Analyzers from Language Specifications ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

function error(e) { throw e; }

const n = ...; // [0, 99]

n |> x => x + 1 // [1, 100]

|> x => x * 2 // [2, 200]

|> x => x + 1n; // TypeError

|> error (42);

of representative techniques to increase the precision of JavaScript
static analysis for loops. It discriminates contexts using a stack of
loop contexts containing loop iterations. We de�ne it under view-
based analysis sensitivity and implement it in JSAVER to increase
the precision of IRES static analysis. Moreover, we also de�ne and
implement the loop sensitivity for JavaScript using the loop sensitiv-
ity for IRES. Therefore, our tool discriminates contexts for explicit
loops, such as for-in or for-of, and even implicit loops, such as the
length property assignment of arrays.

6 EVALUATION
• AdditiveExpression
• Identi�erReference
• Identi�er
• AssignmentExpression
• LeftHandSideExpression
• ArrowFunction

• RQ1: Coverage) How much does JSAVER cover JavaScript
language features in the latest ECMAScript (ES12, 2021)?

• RQ2: Adaptability) Could JSAVER adapt a new language
features not yet introduced in ES12?

• RQ3: Expressiveness) What kinds of abstract sensitivities
and abstract domains JSAVER can support?

• RQ4: Performance) Could JSAVER analyze JavaScript pro-
grams in a durable time?

TODO

7 RELATEDWORK
TODO

• JavaScript Static Analyzers [9, 10, 14, 27]
• JavaScript Static Analysis Techniques [1, 12, 13, 15, 18–21,
30, 34–36]

• Partial Evaluation? (maybe no - * SE conf.)

7.1 JavaScript Mechanized Speci�cation
A speci�cation is mechanized if and only if it is both formalized
and executable. For JavaScript, researchers have proposed various
mechanized speci�cation in their own approaches. In 2010, Guha
et al. [8] presented �JS, the �rst mechanized speci�cation for a core
calculus of ES3 semantics by desugaring most of syntax into �JS, an
extended standard lambda calculus. Thus, the shape of �JS seman-
tics is quite di�erent with original algorithm steps. In mid 2010s,
researchers tried to de�ne mechanized speci�cation for the ES5
and 5.1 semantics having a similar shape of semantics with original
algorithm steps as much as possible. Bodin et al. [2] de�ned JSCert,
a semantics of a small subset of ES5, using Coq and extracts a refer-
ence interpreter JSRef. Park et al. [22] de�ned an entire semantics
of ES5, KJS, using the K [29], which is a framework for de�ning
language semantics. Fragoso Santos et al. [7] presented JaVerT, a

JavaScript veri�cation toolchain, including a JavaScript semantics
de�ned in their own Intermediate language, JSIL.

However, the fundamental problem of their approaches is that
they are manually de�ned thus they are labor-intensive and error-
prone. Due to such limitation, there is no existing mechanized
speci�cation for full semantics of ES6 or later versions. Therefore,
most of existing JavaScript static analyzers only focus on ES5.1
features or rarely support ES6 features even though already six
more versions from ES7 to ES12 are released since 2015.

Moreover, Park et al. [23] successfully showed that JISET is useful
tomechanically handle recent versions of ECMAScript by extending
JISET to perform N+1-version di�erential testing of both JavaScript
engines and ES11 (2020).

8 CONCLUSION
TODO

REFERENCES
[1] Roberto Amadini, Alexander Jordan, Graeme Gange, François Gauthier, Peter

Schachte, Harald Søndergaard, Peter J Stuckey, and Chenyi Zhang. 2017. Com-
bining String Abstract Domains for JavaScript Analysis: An Evaluation. In Pro-
ceedings of the 23rd International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS). https://doi.org/10.1007/978-3-
662-54577-5_3

[2] Martin Bodin, Arthur Charguéraud, Daniele Filaretti, Philippa Gardner, Sergio
Ma�eis, Daiva Naudziuniene, Alan Schmitt, and Gareth Smith. 2014. A Trusted
Mechanised JavaScript Speci�cation. Proceedings of the 41st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming (POPL) 49, 1 (2014), 87–100.
https://doi.org/10.1145/2535838.2535876

[3] David R. Chase, Mark Wegman, and F. Kenneth Zadeck. 1990. Analysis of
Pointers and Structures. In Proceedings of the ACM SIGPLAN 1990 Conference on
Programming Language Design and Implementation (PLDI) (PLDI ’90). Association
for Computing Machinery, New York, NY, USA, 296–310. https://doi.org/10.
1145/93542.93585

[4] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Uni�ed
Lattice Model for Static Analysis of Programs by Construction or Approximation
of Fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming languages (POPL). https://doi.org/10.1145/512950.
512973

[5] Patrick Cousot and Radhia Cousot. 1977. Static Determination of Dynamic
Properties of Generalized Type Unions. In Proceedings of an ACM Conference on
Language Design for Reliable Software. Association for Computing Machinery,
New York, NY, USA, 77–94. https://doi.org/10.1145/800022.808314

[6] Patrick Cousot and Radhia Cousot. 1992. Abstract Interpretation Frameworks.
Journal of Logic and Computation (JLC) 2, 4 (1992), 511–547. https://doi.org/10.
1093/logcom/2.4.511

[7] José Fragoso Santos, Petar Maksimović, Daiva Naudži = unienė, Thomas Wood,
and Philippa Gardner. 2017. JaVerT: JavaScript Veri�cation Toolchain. Proceedings
of the 44th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
(POPL) 2, POPL (2017), 1–33. https://doi.org/10.1145/3158138

[8] Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. 2010. The essence
of JavaScript. In Proceedings of the 24th European Conference on Object-Oriented
Programming (ECOOP). Springer, 126–150. https://doi.org/10.1007/978-3-642-
14107-2_7

[9] Simon Holm Jensen, Anders Møller, and Peter Thiemann. 2009. Type Analysis for
JavaScript. In Proceedings of the 16th International Symposium on Static Analysis
(SAS). https://doi.org/10.1007/978-3-642-03237-0_17

[10] Vineeth Kashyap, Kyle Dewey, Ethan A. Kuefner, John Wagner, Kevin Gib-
bons, John Sarracino, Ben Wiedermann, and Ben Hardekopf. 2014. JSAI: A
Static Analysis Platform for JavaScript. In Proceedings of the 22nd ACM SIG-
SOFT International Symposium on Foundations of Software Engineering (FSE).
https://doi.org/10.1145/2635868.2635904

[11] Se-Won Kim, Xavier Rival, and Sukyoung Ryu. 2018. A Theoretical Foundation
of Sensitivity in an Abstract Interpretation Framework. ACM Transactions on
Programming Languages and Systems (TOPLAS) 40, 3, Article 13 (2018), 44 pages.
https://doi.org/10.1145/3230624

[12] Yoonseok Ko, Xavier Rival, and Sukyoung Ryu. 2017. Weakly Sensitive Analysis
for Unbounded Iteration over JavaScript Objects. In Proceedings of the 15th Asian
Symposium on Programming Languages and Systems (APLAS). https://doi.org/10.
1007/978-3-319-71237-6_8

7

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Automatically Deriving JavaScript Static Analyzers from Language Specifications ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

function error(e) { throw e; }

const n = ...; // [0, 99]

n |> x => x + 1 // [1, 100]

|> x => x * 2 // [2, 200]

|> x => x + 1n; // TypeError

|> error (42);

of representative techniques to increase the precision of JavaScript
static analysis for loops. It discriminates contexts using a stack of
loop contexts containing loop iterations. We de�ne it under view-
based analysis sensitivity and implement it in JSAVER to increase
the precision of IRES static analysis. Moreover, we also de�ne and
implement the loop sensitivity for JavaScript using the loop sensitiv-
ity for IRES. Therefore, our tool discriminates contexts for explicit
loops, such as for-in or for-of, and even implicit loops, such as the
length property assignment of arrays.

6 EVALUATION
• AdditiveExpression
• Identi�erReference
• Identi�er
• AssignmentExpression
• LeftHandSideExpression
• ArrowFunction

• RQ1: Coverage) How much does JSAVER cover JavaScript
language features in the latest ECMAScript (ES12, 2021)?

• RQ2: Adaptability) Could JSAVER adapt a new language
features not yet introduced in ES12?

• RQ3: Expressiveness) What kinds of abstract sensitivities
and abstract domains JSAVER can support?

• RQ4: Performance) Could JSAVER analyze JavaScript pro-
grams in a durable time?

TODO

7 RELATEDWORK
TODO

• JavaScript Static Analyzers [9, 10, 14, 27]
• JavaScript Static Analysis Techniques [1, 12, 13, 15, 18–21,
30, 34–36]

• Partial Evaluation? (maybe no - * SE conf.)

7.1 JavaScript Mechanized Speci�cation
A speci�cation is mechanized if and only if it is both formalized
and executable. For JavaScript, researchers have proposed various
mechanized speci�cation in their own approaches. In 2010, Guha
et al. [8] presented �JS, the �rst mechanized speci�cation for a core
calculus of ES3 semantics by desugaring most of syntax into �JS, an
extended standard lambda calculus. Thus, the shape of �JS seman-
tics is quite di�erent with original algorithm steps. In mid 2010s,
researchers tried to de�ne mechanized speci�cation for the ES5
and 5.1 semantics having a similar shape of semantics with original
algorithm steps as much as possible. Bodin et al. [2] de�ned JSCert,
a semantics of a small subset of ES5, using Coq and extracts a refer-
ence interpreter JSRef. Park et al. [22] de�ned an entire semantics
of ES5, KJS, using the K [29], which is a framework for de�ning
language semantics. Fragoso Santos et al. [7] presented JaVerT, a

JavaScript veri�cation toolchain, including a JavaScript semantics
de�ned in their own Intermediate language, JSIL.

However, the fundamental problem of their approaches is that
they are manually de�ned thus they are labor-intensive and error-
prone. Due to such limitation, there is no existing mechanized
speci�cation for full semantics of ES6 or later versions. Therefore,
most of existing JavaScript static analyzers only focus on ES5.1
features or rarely support ES6 features even though already six
more versions from ES7 to ES12 are released since 2015.

Moreover, Park et al. [23] successfully showed that JISET is useful
tomechanically handle recent versions of ECMAScript by extending
JISET to perform N+1-version di�erential testing of both JavaScript
engines and ES11 (2020).

8 CONCLUSION
TODO

REFERENCES
[1] Roberto Amadini, Alexander Jordan, Graeme Gange, François Gauthier, Peter

Schachte, Harald Søndergaard, Peter J Stuckey, and Chenyi Zhang. 2017. Com-
bining String Abstract Domains for JavaScript Analysis: An Evaluation. In Pro-
ceedings of the 23rd International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS). https://doi.org/10.1007/978-3-
662-54577-5_3

[2] Martin Bodin, Arthur Charguéraud, Daniele Filaretti, Philippa Gardner, Sergio
Ma�eis, Daiva Naudziuniene, Alan Schmitt, and Gareth Smith. 2014. A Trusted
Mechanised JavaScript Speci�cation. Proceedings of the 41st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming (POPL) 49, 1 (2014), 87–100.
https://doi.org/10.1145/2535838.2535876

[3] David R. Chase, Mark Wegman, and F. Kenneth Zadeck. 1990. Analysis of
Pointers and Structures. In Proceedings of the ACM SIGPLAN 1990 Conference on
Programming Language Design and Implementation (PLDI) (PLDI ’90). Association
for Computing Machinery, New York, NY, USA, 296–310. https://doi.org/10.
1145/93542.93585

[4] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Uni�ed
Lattice Model for Static Analysis of Programs by Construction or Approximation
of Fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming languages (POPL). https://doi.org/10.1145/512950.
512973

[5] Patrick Cousot and Radhia Cousot. 1977. Static Determination of Dynamic
Properties of Generalized Type Unions. In Proceedings of an ACM Conference on
Language Design for Reliable Software. Association for Computing Machinery,
New York, NY, USA, 77–94. https://doi.org/10.1145/800022.808314

[6] Patrick Cousot and Radhia Cousot. 1992. Abstract Interpretation Frameworks.
Journal of Logic and Computation (JLC) 2, 4 (1992), 511–547. https://doi.org/10.
1093/logcom/2.4.511

[7] José Fragoso Santos, Petar Maksimović, Daiva Naudži = unienė, Thomas Wood,
and Philippa Gardner. 2017. JaVerT: JavaScript Veri�cation Toolchain. Proceedings
of the 44th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
(POPL) 2, POPL (2017), 1–33. https://doi.org/10.1145/3158138

[8] Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. 2010. The essence
of JavaScript. In Proceedings of the 24th European Conference on Object-Oriented
Programming (ECOOP). Springer, 126–150. https://doi.org/10.1007/978-3-642-
14107-2_7

[9] Simon Holm Jensen, Anders Møller, and Peter Thiemann. 2009. Type Analysis for
JavaScript. In Proceedings of the 16th International Symposium on Static Analysis
(SAS). https://doi.org/10.1007/978-3-642-03237-0_17

[10] Vineeth Kashyap, Kyle Dewey, Ethan A. Kuefner, John Wagner, Kevin Gib-
bons, John Sarracino, Ben Wiedermann, and Ben Hardekopf. 2014. JSAI: A
Static Analysis Platform for JavaScript. In Proceedings of the 22nd ACM SIG-
SOFT International Symposium on Foundations of Software Engineering (FSE).
https://doi.org/10.1145/2635868.2635904

[11] Se-Won Kim, Xavier Rival, and Sukyoung Ryu. 2018. A Theoretical Foundation
of Sensitivity in an Abstract Interpretation Framework. ACM Transactions on
Programming Languages and Systems (TOPLAS) 40, 3, Article 13 (2018), 44 pages.
https://doi.org/10.1145/3230624

[12] Yoonseok Ko, Xavier Rival, and Sukyoung Ryu. 2017. Weakly Sensitive Analysis
for Unbounded Iteration over JavaScript Objects. In Proceedings of the 15th Asian
Symposium on Programming Languages and Systems (APLAS). https://doi.org/10.
1007/978-3-319-71237-6_8

7

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Automatically Deriving JavaScript Static Analyzers from Language Specifications ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

function error(e) { throw e; }

const n = ...; // [0, 99]

n |> x => x + 1 // [1, 100]

|> x => x * 2 // [2, 200]

|> x => x + 1n; // TypeError

|> error (42);

of representative techniques to increase the precision of JavaScript
static analysis for loops. It discriminates contexts using a stack of
loop contexts containing loop iterations. We de�ne it under view-
based analysis sensitivity and implement it in JSAVER to increase
the precision of IRES static analysis. Moreover, we also de�ne and
implement the loop sensitivity for JavaScript using the loop sensitiv-
ity for IRES. Therefore, our tool discriminates contexts for explicit
loops, such as for-in or for-of, and even implicit loops, such as the
length property assignment of arrays.

6 EVALUATION
• AdditiveExpression
• Identi�erReference
• Identi�er
• AssignmentExpression
• LeftHandSideExpression
• ArrowFunction

• RQ1: Coverage) How much does JSAVER cover JavaScript
language features in the latest ECMAScript (ES12, 2021)?

• RQ2: Adaptability) Could JSAVER adapt a new language
features not yet introduced in ES12?

• RQ3: Expressiveness) What kinds of abstract sensitivities
and abstract domains JSAVER can support?

• RQ4: Performance) Could JSAVER analyze JavaScript pro-
grams in a durable time?

TODO

7 RELATEDWORK
TODO

• JavaScript Static Analyzers [9, 10, 14, 27]
• JavaScript Static Analysis Techniques [1, 12, 13, 15, 18–21,
30, 34–36]

• Partial Evaluation? (maybe no - * SE conf.)

7.1 JavaScript Mechanized Speci�cation
A speci�cation is mechanized if and only if it is both formalized
and executable. For JavaScript, researchers have proposed various
mechanized speci�cation in their own approaches. In 2010, Guha
et al. [8] presented �JS, the �rst mechanized speci�cation for a core
calculus of ES3 semantics by desugaring most of syntax into �JS, an
extended standard lambda calculus. Thus, the shape of �JS seman-
tics is quite di�erent with original algorithm steps. In mid 2010s,
researchers tried to de�ne mechanized speci�cation for the ES5
and 5.1 semantics having a similar shape of semantics with original
algorithm steps as much as possible. Bodin et al. [2] de�ned JSCert,
a semantics of a small subset of ES5, using Coq and extracts a refer-
ence interpreter JSRef. Park et al. [22] de�ned an entire semantics
of ES5, KJS, using the K [29], which is a framework for de�ning
language semantics. Fragoso Santos et al. [7] presented JaVerT, a

JavaScript veri�cation toolchain, including a JavaScript semantics
de�ned in their own Intermediate language, JSIL.

However, the fundamental problem of their approaches is that
they are manually de�ned thus they are labor-intensive and error-
prone. Due to such limitation, there is no existing mechanized
speci�cation for full semantics of ES6 or later versions. Therefore,
most of existing JavaScript static analyzers only focus on ES5.1
features or rarely support ES6 features even though already six
more versions from ES7 to ES12 are released since 2015.

Moreover, Park et al. [23] successfully showed that JISET is useful
tomechanically handle recent versions of ECMAScript by extending
JISET to perform N+1-version di�erential testing of both JavaScript
engines and ES11 (2020).

8 CONCLUSION
TODO

REFERENCES
[1] Roberto Amadini, Alexander Jordan, Graeme Gange, François Gauthier, Peter

Schachte, Harald Søndergaard, Peter J Stuckey, and Chenyi Zhang. 2017. Com-
bining String Abstract Domains for JavaScript Analysis: An Evaluation. In Pro-
ceedings of the 23rd International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS). https://doi.org/10.1007/978-3-
662-54577-5_3

[2] Martin Bodin, Arthur Charguéraud, Daniele Filaretti, Philippa Gardner, Sergio
Ma�eis, Daiva Naudziuniene, Alan Schmitt, and Gareth Smith. 2014. A Trusted
Mechanised JavaScript Speci�cation. Proceedings of the 41st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming (POPL) 49, 1 (2014), 87–100.
https://doi.org/10.1145/2535838.2535876

[3] David R. Chase, Mark Wegman, and F. Kenneth Zadeck. 1990. Analysis of
Pointers and Structures. In Proceedings of the ACM SIGPLAN 1990 Conference on
Programming Language Design and Implementation (PLDI) (PLDI ’90). Association
for Computing Machinery, New York, NY, USA, 296–310. https://doi.org/10.
1145/93542.93585

[4] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Uni�ed
Lattice Model for Static Analysis of Programs by Construction or Approximation
of Fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming languages (POPL). https://doi.org/10.1145/512950.
512973

[5] Patrick Cousot and Radhia Cousot. 1977. Static Determination of Dynamic
Properties of Generalized Type Unions. In Proceedings of an ACM Conference on
Language Design for Reliable Software. Association for Computing Machinery,
New York, NY, USA, 77–94. https://doi.org/10.1145/800022.808314

[6] Patrick Cousot and Radhia Cousot. 1992. Abstract Interpretation Frameworks.
Journal of Logic and Computation (JLC) 2, 4 (1992), 511–547. https://doi.org/10.
1093/logcom/2.4.511

[7] José Fragoso Santos, Petar Maksimović, Daiva Naudži = unienė, Thomas Wood,
and Philippa Gardner. 2017. JaVerT: JavaScript Veri�cation Toolchain. Proceedings
of the 44th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
(POPL) 2, POPL (2017), 1–33. https://doi.org/10.1145/3158138

[8] Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. 2010. The essence
of JavaScript. In Proceedings of the 24th European Conference on Object-Oriented
Programming (ECOOP). Springer, 126–150. https://doi.org/10.1007/978-3-642-
14107-2_7

[9] Simon Holm Jensen, Anders Møller, and Peter Thiemann. 2009. Type Analysis for
JavaScript. In Proceedings of the 16th International Symposium on Static Analysis
(SAS). https://doi.org/10.1007/978-3-642-03237-0_17

[10] Vineeth Kashyap, Kyle Dewey, Ethan A. Kuefner, John Wagner, Kevin Gib-
bons, John Sarracino, Ben Wiedermann, and Ben Hardekopf. 2014. JSAI: A
Static Analysis Platform for JavaScript. In Proceedings of the 22nd ACM SIG-
SOFT International Symposium on Foundations of Software Engineering (FSE).
https://doi.org/10.1145/2635868.2635904

[11] Se-Won Kim, Xavier Rival, and Sukyoung Ryu. 2018. A Theoretical Foundation
of Sensitivity in an Abstract Interpretation Framework. ACM Transactions on
Programming Languages and Systems (TOPLAS) 40, 3, Article 13 (2018), 44 pages.
https://doi.org/10.1145/3230624

[12] Yoonseok Ko, Xavier Rival, and Sukyoung Ryu. 2017. Weakly Sensitive Analysis
for Unbounded Iteration over JavaScript Objects. In Proceedings of the 15th Asian
Symposium on Programming Languages and Systems (APLAS). https://doi.org/10.
1007/978-3-319-71237-6_8

7

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

(a) Evaluation algorithm for logical OR assignments.

1 syntax def AssignmentExpression [8]. Evaluation(

2 this , LeftHandSideExpression , AssignmentExpression

3) { /* entry */

4 let lref = (LeftHandSideExpression.Evaluation)

5 let lval = [? (GetValue lref)]

6 let lbool = [! (ToBoolean lval)] /* #1 */

7 if (= lbool true) /* #2 */ return lval else { /* #3 */ }

8 if (&& (IsAnonymousFunctionDefinition AssignmentExpression)

9 (LeftHandSideExpression.IsIdentifierRef)) { /* #4 */

10 let rval = (AssignmentExpression.NamedEvaluation

11 lref.ReferencedName)

12 } else { /* #5 */

13 let rref = (AssignmentExpression.Evaluation)

14 let rval = [? (GetValue rref)]

15 } /* #6 */

16 [? (PutValue lref rval)]

17 return rval

18 } /* exit */

(b) The extracted IRES function.

Figure 1: Evaluation algorithm for the eighth alternative of AssignmentExpression in ES12 and the extracted IRES function.

To alleviate this problem, we propose a novel technique called
meta-level static analysis to automatically derive a JavaScript static
analyzer from any version of ECMAScript. The main idea of the
meta-level static analysis is to indirectly analyze a target language
program by performing static analysis for a language speci�ca-
tion of the target language written in a speci�cation language with
the program as the initial input. Thus, it can signi�cantly reduce
the burden to manually design and implement static analyzers by
automatically deriving them from given language speci�cations.
Moreover, it even guarantees the soundness of derived static analyz-
ers for the target language by constructing sound abstract semantics
for the speci�cation language.

For the expressiveness of a meta-level static analysis, we also
present ways to con�gure analysis sensitivities and abstract do-
mains for a target language. Con�guring them is a typical way
to manage analysis precision and performance. First, we present
the AST sensitivity in a meta-level static analysis to express analy-
sis sensitivities for a target language such as �ow-sensitivity and
k-callsite-sensitivity (Section 4.2). Second, we present a way to
con�gure abstract domains for structures and values in a target
language (Section 4.3).

To actualize our approach for JavaScript, we present JSAVER,
JavaScript Static Analyzers via ECMAScript Representations. First,
we utilize JISET [26] to extract a mechanized speci�cation written
in an intermediate representation, IRES, from a given ECMAScript.
Thus, target and speci�cation languages are JavaScript and IRES,
respectively, for the meta-level static analysis in JSAVER. In addition,
we implement several analysis techniques to improve the perfor-
mance and precision of derived static analyzers (Section 5). We
evaluated JSAVER by deriving a JavaScript static analyzer from the
latest ECMAScript, ES12, and using the o�cial conformance tests,
Test2622.

Our contributions are as follows:
• We propose a novel concept called meta-level static analysis,
which automatically derives a static analyzer for a target

2https://github.com/tc39/test262

let f = Math.floor(Math.random () * 100);

// f: [0, 99]

f ||= x => x;

// f: [1, 99] or { name: �f�, ... }

let x = f.name;

// f: [1, 99] or { name: �f�, ... }, x: undefined or �f�

Figure 2: A running JavaScript program with a logical OR
assignment newly introduced in ES12.

language from its language speci�cation written in a speci�-
cation language.

• We actualize meta-level static analysis for JavaScript as a tool
called JSAVER. It is the �rst tool that automatically derives a
JavaScript static analyzer from any version of ECMAScript.

• We derive a static analyzer from the latest ECMAScript, ES12,
to evaluate JSAVER. The synthesized static analyzer success-
fully analyzes all applicable 18,556 o�cial conformance tests.
Moreover, we demonstrate the adaptability and expressive-
ness of JSAVER with several case studies.

2 BACKGROUND
In this section, we explain the detail of ECMAScript, the o�cial
speci�cation of JavaScript. We then introduce JISET and how it
extracts a mechanized speci�cation from it. Since our work is to
perform meta-level static analysis for JavaScript using extracted
mechanized speci�cations, it is essential to understand how EC-
MAScript describes JavaScript semantics and how JISET extracts a
mechanized speci�cation from it.

For the detailed explanation, we explain a new language feature
introduced in ES12 called logical OR assignments (Figure 1) and
use a JavaScript program (Figure 2) as a running example. It �rst
de�nes a variable f with a random integer from 0 to 99. Then, it
uses a logical OR assignment to update f with an arrow function
whose name is �f� only if f has 0 because 0 represents false but
other integers represent true. Finally, it de�nes a variable x with
f.name and its value is undefined if f has an integer or �f� otherwise.

2

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Automatically Deriving JavaScript Static Analyzers from Language Specifications ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

otherwise, a normal function. An instruction i is a primitive value
assignment, an operation between values, a internal �eld access, a
external �eld access, a record allocations, a function call, or a return
instruction.

States � 2 S = H ⇥ C
Heaps h 2 H = A �n��!R
Contexts c 2 C = L ⇥ (X �n��!V) ⇥ C?
Values � 2 V = Vp] A] T] F
Records r 2 R = (Vstr

�n��!V) ⇥ (Vstr
�n��!V)

States S consists of heaps H and contexts C. A heap h 2 H is a
�nite mapping from addresses to records. Each record allocation
instruction x = {} creates a unique address a 2 A di�erent with
existing addresses. A context c 2 C is a triple of 1) the program
point, 2) a local environment which is a �nite mapping from vari-
ables to values, and 3) an optional calling context. A value � 2 V
is a primitive value, an address, an AST, or a function. A record
r 2 R consists of two �nite mappings from strings to values. The
left mapping represents internal �elds accessible by internal �eld
accesses x = x[x]. On the other hand, the right one represents ex-
ternal �elds, such as variables in JavaScript environment records or
properties in JavaScript objects, and they are accessible by a exter-
nal �eld access x = x[x]ext. We formulate the concrete semantics
of a program P as a transition system ({, S�) where{✓ S⇥ S is a
transition relation between concrete states and S� is a set of initial
states.

For a meta-level static analysis, we de�ne its abstract semantics
in the abstract interpretation framework [4, 6]. Since our analysis
supports view-based analysis sensitivities [11, 24], the abstract
domain is de�ned as a mapping from views to abstract states, D# =
� ! D#, with a view abstraction � : � ! P(S) which represents
the meaning of each view � 2 �. Then, we de�ne abstract states as
follows:

Abstract States � # 2 D# = H# ⇥ C#

Abstract Heaps h# 2 H# = A# �n��!(R# ⇥ R#
ext

)
Abstract Addresses a# 2 A# = L
Abstract Contexts c# 2 C# = X �n��!V#

An abstract heaph# 2 H# is a �nitemapping from abstract addresses
A
to pairs of abstract internal records R# and abstract external

records R#
ext

. Each abstract address a# 2 A# is de�ned with the
allocation-site abstraction [3] that partitions concrete addresses A
based on their allocation sites L. An abstract context c# 2 C# is a
�nite mapping from variables to abstract values. Shapes of abstract
values V#, abstract internal (or external) records R# (or R#

ext
) are

parametric thus we can freely con�gure them.

4.2 Analysis Sensitivities
In a meta-level static analysis, analysis sensitivities of the target
language (JavaScript) are di�erent with them of the speci�cation
language (IRES). For example, we explain what happens during anal-
ysis of the following JavaScript program with the �ow-sensitivity
for IRES:

let x = 1, y = 2;

x + y; // 3

(a) Evaluation algorithm for identi�er references.

1 syntax def IdentifierReference [0]. Evaluation(

2 this , Identifier

3) {

4 return [? (ResolveBinding (Identifier.StringValue))

5 }

(b) The extracted IRES function.

(c) Parsing result of x + y (bottom) and the initial local environment
(top) of the IRES function.

Figure 7: An example of the di�erence between analysis sen-
sitivities of target and speci�cation language.

Figure 7 describes (a) the Evaluation algorithm of identi�er refer-
ences, (b) its extracted IRES function, and (c) the parsing result of
x + y and the initial local environment of the IRES function. Since
the �ow-sensitivity merges states based on the program points,
contexts for the evaluation of both identi�er references x and y are
merged. Thus, the IRES variable Identifier points to their ASTs
as described in Figure 7. Due to the imprecise merge of contexts,
StringValue of Identifier returns �x� and �y�, and ResolveBinding
with them returns both 1 and 2. Finally, the analysis result of x + y

becomes { 2, 3, 4 }.

Flow Sensitivity. To resolve this problem, we present an AST sen-
sitivity for the speci�cation language to represent �ow-sensitivity
of the target language. It is a variant of object sensitivity [17, 33]
which uses abstract addresses A# of receiver objects as views. How-
ever, unlike the object sensitivity, the AST sensitivity utilizes ASTs
T stored in the parameter this only for syntax-directed functions:

� flow(t 2 T) = {� = (_, c) 2 S | syntax-ctxt(c) = c 0 ^ c 0(this) = t}
where syntax-ctxt(c) denotes the top-most context whose function
is syntax-directed and c 0(this) denotes a lookup of the variable
this in the mapping in the context c 0. We de�ne the �ow sensitivity
for the target language using the AST sensitivity and it successfully
divides contexts for the evaluation of JavaScript identi�ers x and y

in the above example using their ASTs even though their program
points are same.

Callsite Sensitivity. We also formally de�ne the callsite sensitiv-
ity [31, 32] for the target language by extending AST sensitivity
for speci�c normal IRES functions. The original callsite sensitivity
discriminates calling contexts based on their top most callsites. In
ECMAScript, all explicit and even implicit JavaScript function calls

5

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Automatically Deriving JavaScript Static Analyzers from Language Specifications ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

function error(e) { throw e; }

const n = ...; // [0, 99]

n |> x => x + 1 // [1, 100]

|> x => x * 2 // [2, 200]

|> x => x + 1n; // TypeError

|> error (42);

of representative techniques to increase the precision of JavaScript
static analysis for loops. It discriminates contexts using a stack of
loop contexts containing loop iterations. We de�ne it under view-
based analysis sensitivity and implement it in JSAVER to increase
the precision of IRES static analysis. Moreover, we also de�ne and
implement the loop sensitivity for JavaScript using the loop sensitiv-
ity for IRES. Therefore, our tool discriminates contexts for explicit
loops, such as for-in or for-of, and even implicit loops, such as the
length property assignment of arrays.

6 EVALUATION
• AdditiveExpression
• Identi�erReference
• Identi�er
• AssignmentExpression
• LeftHandSideExpression
• ArrowFunction

• RQ1: Coverage) How much does JSAVER cover JavaScript
language features in the latest ECMAScript (ES12, 2021)?

• RQ2: Adaptability) Could JSAVER adapt a new language
features not yet introduced in ES12?

• RQ3: Expressiveness) What kinds of abstract sensitivities
and abstract domains JSAVER can support?

• RQ4: Performance) Could JSAVER analyze JavaScript pro-
grams in a durable time?

TODO

7 RELATEDWORK
TODO

• JavaScript Static Analyzers [9, 10, 14, 27]
• JavaScript Static Analysis Techniques [1, 12, 13, 15, 18–21,
30, 34–36]

• Partial Evaluation? (maybe no - * SE conf.)

7.1 JavaScript Mechanized Speci�cation
A speci�cation is mechanized if and only if it is both formalized
and executable. For JavaScript, researchers have proposed various
mechanized speci�cation in their own approaches. In 2010, Guha
et al. [8] presented �JS, the �rst mechanized speci�cation for a core
calculus of ES3 semantics by desugaring most of syntax into �JS, an
extended standard lambda calculus. Thus, the shape of �JS seman-
tics is quite di�erent with original algorithm steps. In mid 2010s,
researchers tried to de�ne mechanized speci�cation for the ES5
and 5.1 semantics having a similar shape of semantics with original
algorithm steps as much as possible. Bodin et al. [2] de�ned JSCert,
a semantics of a small subset of ES5, using Coq and extracts a refer-
ence interpreter JSRef. Park et al. [22] de�ned an entire semantics
of ES5, KJS, using the K [29], which is a framework for de�ning
language semantics. Fragoso Santos et al. [7] presented JaVerT, a

JavaScript veri�cation toolchain, including a JavaScript semantics
de�ned in their own Intermediate language, JSIL.

However, the fundamental problem of their approaches is that
they are manually de�ned thus they are labor-intensive and error-
prone. Due to such limitation, there is no existing mechanized
speci�cation for full semantics of ES6 or later versions. Therefore,
most of existing JavaScript static analyzers only focus on ES5.1
features or rarely support ES6 features even though already six
more versions from ES7 to ES12 are released since 2015.

Moreover, Park et al. [23] successfully showed that JISET is useful
tomechanically handle recent versions of ECMAScript by extending
JISET to perform N+1-version di�erential testing of both JavaScript
engines and ES11 (2020).

8 CONCLUSION
TODO

REFERENCES
[1] Roberto Amadini, Alexander Jordan, Graeme Gange, François Gauthier, Peter

Schachte, Harald Søndergaard, Peter J Stuckey, and Chenyi Zhang. 2017. Com-
bining String Abstract Domains for JavaScript Analysis: An Evaluation. In Pro-
ceedings of the 23rd International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS). https://doi.org/10.1007/978-3-
662-54577-5_3

[2] Martin Bodin, Arthur Charguéraud, Daniele Filaretti, Philippa Gardner, Sergio
Ma�eis, Daiva Naudziuniene, Alan Schmitt, and Gareth Smith. 2014. A Trusted
Mechanised JavaScript Speci�cation. Proceedings of the 41st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming (POPL) 49, 1 (2014), 87–100.
https://doi.org/10.1145/2535838.2535876

[3] David R. Chase, Mark Wegman, and F. Kenneth Zadeck. 1990. Analysis of
Pointers and Structures. In Proceedings of the ACM SIGPLAN 1990 Conference on
Programming Language Design and Implementation (PLDI) (PLDI ’90). Association
for Computing Machinery, New York, NY, USA, 296–310. https://doi.org/10.
1145/93542.93585

[4] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Uni�ed
Lattice Model for Static Analysis of Programs by Construction or Approximation
of Fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming languages (POPL). https://doi.org/10.1145/512950.
512973

[5] Patrick Cousot and Radhia Cousot. 1977. Static Determination of Dynamic
Properties of Generalized Type Unions. In Proceedings of an ACM Conference on
Language Design for Reliable Software. Association for Computing Machinery,
New York, NY, USA, 77–94. https://doi.org/10.1145/800022.808314

[6] Patrick Cousot and Radhia Cousot. 1992. Abstract Interpretation Frameworks.
Journal of Logic and Computation (JLC) 2, 4 (1992), 511–547. https://doi.org/10.
1093/logcom/2.4.511

[7] José Fragoso Santos, Petar Maksimović, Daiva Naudži = unienė, Thomas Wood,
and Philippa Gardner. 2017. JaVerT: JavaScript Veri�cation Toolchain. Proceedings
of the 44th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
(POPL) 2, POPL (2017), 1–33. https://doi.org/10.1145/3158138

[8] Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. 2010. The essence
of JavaScript. In Proceedings of the 24th European Conference on Object-Oriented
Programming (ECOOP). Springer, 126–150. https://doi.org/10.1007/978-3-642-
14107-2_7

[9] Simon Holm Jensen, Anders Møller, and Peter Thiemann. 2009. Type Analysis for
JavaScript. In Proceedings of the 16th International Symposium on Static Analysis
(SAS). https://doi.org/10.1007/978-3-642-03237-0_17

[10] Vineeth Kashyap, Kyle Dewey, Ethan A. Kuefner, John Wagner, Kevin Gib-
bons, John Sarracino, Ben Wiedermann, and Ben Hardekopf. 2014. JSAI: A
Static Analysis Platform for JavaScript. In Proceedings of the 22nd ACM SIG-
SOFT International Symposium on Foundations of Software Engineering (FSE).
https://doi.org/10.1145/2635868.2635904

[11] Se-Won Kim, Xavier Rival, and Sukyoung Ryu. 2018. A Theoretical Foundation
of Sensitivity in an Abstract Interpretation Framework. ACM Transactions on
Programming Languages and Systems (TOPLAS) 40, 3, Article 13 (2018), 44 pages.
https://doi.org/10.1145/3230624

[12] Yoonseok Ko, Xavier Rival, and Sukyoung Ryu. 2017. Weakly Sensitive Analysis
for Unbounded Iteration over JavaScript Objects. In Proceedings of the 15th Asian
Symposium on Programming Languages and Systems (APLAS). https://doi.org/10.
1007/978-3-319-71237-6_8

7

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

(a) Evaluation algorithm for identi�er references

1 syntax def IdentifierReference [0]. Evaluation(
2 this , Identifier
3) {
4 return [? (ResolveBinding (Identifier.StringValue))]
5 }

(b) Extracted IRES function for identi�er references

(c) Result of x + y via a mechanized speci�cation

Figure 7: Analysis sensitivities of the target language
(JavaScript) and the speci�cation language (IRES)

divides contexts for the evaluation of JavaScript identi�ers x and y

in the above example using their ASTs even though their program
points in IRES are the same.

Callsite Sensitivity. We also formally de�ne the callsite sensitiv-
ity [37, 38] for the target language by extending the AST sensitivity
for speci�c normal IRES functions. The original callsite sensitivity
discriminates calling contexts using their top most callsites. In EC-
MAScript, all explicit and even implicit JavaScript function calls
invoke normal IRES functions Call and Construct. Thus, we de�ne
the callsite sensitivity for the target language by extending the AST
sensitivity with two normal IRES functions:

� cfa(t 2 T) = {� = (_, c) 2 S |
syntax-ctxt � js-call-ctxt(c) = c 0 ^ c 0(this) = t}

where js-call-ctxt(c) denotes the top-most context whose function is
Call or Construct and f �� denotes a function composition. Moreover,
we extend it to the k-callsite sensitivity by recursively taking ASTs
representing callsites of the target language:

�k -cfa(t 2 Tk) = {� = (_, c) 2 S |
t = [t1, · · · , tn] ^ n k^
(ö(syntax-ctxt � js-call-ctxt)n+1(c) _ n = k)^
81 i n.
((syntax-ctxt � js-call-ctxt)i (c) = ci ^ ci (this) = ti)}

Using this callsite sensitivity for the target language, the meta-
level static analyzer could discriminate not only explicit JavaScript
function calls (e.g. f()) but also implicit JavaScript function calls,
including getters/setters, user-de�ned implicit conversions, and
implicit function calls in built-in libraries.

5 IMPLEMENTATION
We developed a prototype implementation called JSAVER, which per-
forms a meta-level static analysis for JavaScript with ECMAScript.
The tool is an extension of JISET4 and it is an open-source project5.
In this section, we describe the challenges in implementing a meta-
level static analyzer and present our solutions for them.

Layered Abstract States. Unlike traditional JavaScript static anal-
yses, a meta-level static analysis for JavaScript should track analysis
results not only for the target language JavaScript but also for the
speci�cation language IRES. Thus, the sizes of abstract states are
much larger than those of the other JavaScript static analyzers. We
implement layered abstract states to maintain only updated analysis
results compared to the initial abstract state. It signi�cantly reduces
the time to perform the join (t), meet (u), and partial order (v)
operations by considering only the updated parts in abstract states.

Closures and Continuations. The speci�cation language IRES for
ECMAScript contains more complex language features than its
simpli�ed version presented in Section 4.1, such as symbols, lists,
and list operations. Among them, the two most complex features
are closures with captured variables and �rst-class continuations be-
cause they introduce new kinds of control �ows. ECMAScript uses
closures to de�ne implicit and explicit JavaScript iterators and uses
continuations for iterators, generators, and asynchronous features
such as async, await, and the Proxy object. Therefore, we de�ne and
implement abstract closures and abstract continuations; an abstract
closure is a pair of a function and a mapping from captured vari-
ables to their abstract values, and an abstract continuation consists
of a program point, a view for analysis sensitivity, parameters, and
an abstract context.

Abstract Counting. Properties of JavaScript objects could be dy-
namically added, modi�ed, or deleted and even accessible by �rst-
class property names. Thus, in JavaScript static analysis, performing
strong updates rather than weak updates for object properties as
many as possible is important for precise analysis results. Since
records of IRES are even more dynamic than JavaScript objects, it is
also important to increase analysis precision. Therefore, we imple-
ment abstract counting [19] to increase chances to perform strong
updates for �elds of records. It checks how many times records in
the same allocation site have been allocated and performs strong
updates only for singleton records with singleton �eld values.

Loop Sensitivity. Similar to function calls, loops are also typical
merging points in static analysis. A loop sensitivity [24] is one of the
representative techniques to increase the precision of JavaScript
static analysis for loops. It discriminates contexts using a stack
of loop contexts containing loop iterations. We de�ne it under
the view-based analysis sensitivity and implement it in JSAVER to
increase the precision of IRES static analysis. Moreover, we also
de�ne and implement the loop sensitivity for JavaScript using the
loop sensitivity for IRES. Therefore, JSAVER discriminates contexts
for explicit loops such as for-in and for-of and even implicit loops
such as the assignment of arguments or the length property of
arrays.

4https://github.com/kaist-plrg/jiset
5The URL of the tool is anonymized due to a double-blind review process.

6

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

(a) Evaluation algorithm for identi�er references

1 syntax def IdentifierReference [0]. Evaluation(
2 this , Identifier
3) {
4 return [? (ResolveBinding (Identifier.StringValue))]
5 }

(b) Extracted IRES function for identi�er references

(c) Result of x + y via a mechanized speci�cation

Figure 7: Analysis sensitivities of the target language
(JavaScript) and the speci�cation language (IRES)

divides contexts for the evaluation of JavaScript identi�ers x and y

in the above example using their ASTs even though their program
points in IRES are the same.

Callsite Sensitivity. We also formally de�ne the callsite sensitiv-
ity [37, 38] for the target language by extending the AST sensitivity
for speci�c normal IRES functions. The original callsite sensitivity
discriminates calling contexts using their top most callsites. In EC-
MAScript, all explicit and even implicit JavaScript function calls
invoke normal IRES functions Call and Construct. Thus, we de�ne
the callsite sensitivity for the target language by extending the AST
sensitivity with two normal IRES functions:

� cfa(t 2 T) = {� = (_, c) 2 S |
syntax-ctxt � js-call-ctxt(c) = c 0 ^ c 0(this) = t}

where js-call-ctxt(c) denotes the top-most context whose function is
Call or Construct and f �� denotes a function composition. Moreover,
we extend it to the k-callsite sensitivity by recursively taking ASTs
representing callsites of the target language:

�k -cfa(t 2 Tk) = {� = (_, c) 2 S |
t = [t1, · · · , tn] ^ n k^
(ö(syntax-ctxt � js-call-ctxt)n+1(c) _ n = k)^
81 i n.
((syntax-ctxt � js-call-ctxt)i (c) = ci ^ ci (this) = ti)}

Using this callsite sensitivity for the target language, the meta-
level static analyzer could discriminate not only explicit JavaScript
function calls (e.g. f()) but also implicit JavaScript function calls,
including getters/setters, user-de�ned implicit conversions, and
implicit function calls in built-in libraries.

5 IMPLEMENTATION
We developed a prototype implementation called JSAVER, which per-
forms a meta-level static analysis for JavaScript with ECMAScript.
The tool is an extension of JISET4 and it is an open-source project5.
In this section, we describe the challenges in implementing a meta-
level static analyzer and present our solutions for them.

Layered Abstract States. Unlike traditional JavaScript static anal-
yses, a meta-level static analysis for JavaScript should track analysis
results not only for the target language JavaScript but also for the
speci�cation language IRES. Thus, the sizes of abstract states are
much larger than those of the other JavaScript static analyzers. We
implement layered abstract states to maintain only updated analysis
results compared to the initial abstract state. It signi�cantly reduces
the time to perform the join (t), meet (u), and partial order (v)
operations by considering only the updated parts in abstract states.

Closures and Continuations. The speci�cation language IRES for
ECMAScript contains more complex language features than its
simpli�ed version presented in Section 4.1, such as symbols, lists,
and list operations. Among them, the two most complex features
are closures with captured variables and �rst-class continuations be-
cause they introduce new kinds of control �ows. ECMAScript uses
closures to de�ne implicit and explicit JavaScript iterators and uses
continuations for iterators, generators, and asynchronous features
such as async, await, and the Proxy object. Therefore, we de�ne and
implement abstract closures and abstract continuations; an abstract
closure is a pair of a function and a mapping from captured vari-
ables to their abstract values, and an abstract continuation consists
of a program point, a view for analysis sensitivity, parameters, and
an abstract context.

Abstract Counting. Properties of JavaScript objects could be dy-
namically added, modi�ed, or deleted and even accessible by �rst-
class property names. Thus, in JavaScript static analysis, performing
strong updates rather than weak updates for object properties as
many as possible is important for precise analysis results. Since
records of IRES are even more dynamic than JavaScript objects, it is
also important to increase analysis precision. Therefore, we imple-
ment abstract counting [19] to increase chances to perform strong
updates for �elds of records. It checks how many times records in
the same allocation site have been allocated and performs strong
updates only for singleton records with singleton �eld values.

Loop Sensitivity. Similar to function calls, loops are also typical
merging points in static analysis. A loop sensitivity [24] is one of the
representative techniques to increase the precision of JavaScript
static analysis for loops. It discriminates contexts using a stack
of loop contexts containing loop iterations. We de�ne it under
the view-based analysis sensitivity and implement it in JSAVER to
increase the precision of IRES static analysis. Moreover, we also
de�ne and implement the loop sensitivity for JavaScript using the
loop sensitivity for IRES. Therefore, JSAVER discriminates contexts
for explicit loops such as for-in and for-of and even implicit loops
such as the assignment of arguments or the length property of
arrays.

4https://github.com/kaist-plrg/jiset
5The URL of the tool is anonymized due to a double-blind review process.

6

parsex ||= y
581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

(a) Evaluation algorithm for identi�er references

1 syntax def IdentifierReference [0]
2 .Evaluation(
3 this , Identifier
4) {
5 return [?
6 (ResolveBinding
7 (Identifier.StringValue))]
8 }

(b) Extracted IRES function for identi�er references

(c) Result of x + y via a mechanized speci�cation

Figure 7: Analysis sensitivities of the target language
(JavaScript) and the speci�cation language (IRES)

divides contexts for the evaluation of JavaScript identi�ers x and y

in the above example using their ASTs even though their program
points in IRES are the same.

Callsite Sensitivity. We also formally de�ne the callsite sensitiv-
ity [37, 38] for the target language by extending the AST sensitivity
for speci�c normal IRES functions. The original callsite sensitivity
discriminates calling contexts using their top most callsites. In EC-
MAScript, all explicit and even implicit JavaScript function calls
invoke normal IRES functions Call and Construct. Thus, we de�ne
the callsite sensitivity for the target language by extending the AST
sensitivity with two normal IRES functions:

� cfa(t 2 T) = {� = (_, c) 2 S |
syntax-ctxt � js-call-ctxt(c) = c 0 ^ c 0(this) = t}

where js-call-ctxt(c) denotes the top-most context whose function is
Call or Construct and f �� denotes a function composition. Moreover,
we extend it to the k-callsite sensitivity by recursively taking ASTs
representing callsites of the target language:

�k -cfa(t 2 Tk) = {� = (_, c) 2 S |
t = [t1, · · · , tn] ^ n k^
(ö(syntax-ctxt � js-call-ctxt)n+1(c) _ n = k)^
81 i n.
((syntax-ctxt � js-call-ctxt)i (c) = ci ^ ci (this) = ti)}

Using this callsite sensitivity for the target language, the meta-
level static analyzer could discriminate not only explicit JavaScript
function calls (e.g. f()) but also implicit JavaScript function calls,

including getters/setters, user-de�ned implicit conversions, and
implicit function calls in built-in libraries.

5 IMPLEMENTATION
We developed a prototype implementation called JSAVER, which per-
forms a meta-level static analysis for JavaScript with ECMAScript.
The tool is an extension of JISET4 and it is an open-source project5.
In this section, we describe the challenges in implementing a meta-
level static analyzer and present our solutions for them.

Layered Abstract States. Unlike traditional JavaScript static anal-
yses, a meta-level static analysis for JavaScript should track analysis
results not only for the target language JavaScript but also for the
speci�cation language IRES. Thus, the sizes of abstract states are
much larger than those of the other JavaScript static analyzers. We
implement layered abstract states to maintain only updated analysis
results compared to the initial abstract state. It signi�cantly reduces
the time to perform the join (t), meet (u), and partial order (v)
operations by considering only the updated parts in abstract states.

Closures and Continuations. The speci�cation language IRES for
ECMAScript contains more complex language features than its
simpli�ed version presented in Section 4.1, such as symbols, lists,
and list operations. Among them, the two most complex features
are closures with captured variables and �rst-class continuations be-
cause they introduce new kinds of control �ows. ECMAScript uses
closures to de�ne implicit and explicit JavaScript iterators and uses
continuations for iterators, generators, and asynchronous features
such as async, await, and the Proxy object. Therefore, we de�ne and
implement abstract closures and abstract continuations; an abstract
closure is a pair of a function and a mapping from captured vari-
ables to their abstract values, and an abstract continuation consists
of a program point, a view for analysis sensitivity, parameters, and
an abstract context.

Abstract Counting. Properties of JavaScript objects could be dy-
namically added, modi�ed, or deleted and even accessible by �rst-
class property names. Thus, in JavaScript static analysis, performing
strong updates rather than weak updates for object properties as
many as possible is important for precise analysis results. Since
records of IRES are even more dynamic than JavaScript objects, it is
also important to increase analysis precision. Therefore, we imple-
ment abstract counting [19] to increase chances to perform strong
updates for �elds of records. It checks how many times records in
the same allocation site have been allocated and performs strong
updates only for singleton records with singleton �eld values.

Loop Sensitivity. Similar to function calls, loops are also typical
merging points in static analysis. A loop sensitivity [24] is one of the
representative techniques to increase the precision of JavaScript
static analysis for loops. It discriminates contexts using a stack
of loop contexts containing loop iterations. We de�ne it under
the view-based analysis sensitivity and implement it in JSAVER to
increase the precision of IRES static analysis. Moreover, we also
de�ne and implement the loop sensitivity for JavaScript using the
loop sensitivity for IRES. Therefore, JSAVER discriminates contexts

4https://github.com/kaist-plrg/jiset
5The URL of the tool is anonymized due to a double-blind review process.

6

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

(a) Evaluation algorithm for identi�er references

1 syntax def IdentifierReference [0]
2 .Evaluation(
3 this , Identifier
4) {
5 return [?
6 (ResolveBinding
7 (Identifier.StringValue))]
8 }

(b) Extracted IRES function for identi�er references

(c) Result of x + y via a mechanized speci�cation

Figure 7: Analysis sensitivities of the target language
(JavaScript) and the speci�cation language (IRES)

divides contexts for the evaluation of JavaScript identi�ers x and y

in the above example using their ASTs even though their program
points in IRES are the same.

Callsite Sensitivity. We also formally de�ne the callsite sensitiv-
ity [37, 38] for the target language by extending the AST sensitivity
for speci�c normal IRES functions. The original callsite sensitivity
discriminates calling contexts using their top most callsites. In EC-
MAScript, all explicit and even implicit JavaScript function calls
invoke normal IRES functions Call and Construct. Thus, we de�ne
the callsite sensitivity for the target language by extending the AST
sensitivity with two normal IRES functions:

� cfa(t 2 T) = {� = (_, c) 2 S |
syntax-ctxt � js-call-ctxt(c) = c 0 ^ c 0(this) = t}

where js-call-ctxt(c) denotes the top-most context whose function is
Call or Construct and f �� denotes a function composition. Moreover,
we extend it to the k-callsite sensitivity by recursively taking ASTs
representing callsites of the target language:

�k -cfa(t 2 Tk) = {� = (_, c) 2 S |
t = [t1, · · · , tn] ^ n k^
(ö(syntax-ctxt � js-call-ctxt)n+1(c) _ n = k)^
81 i n.
((syntax-ctxt � js-call-ctxt)i (c) = ci ^ ci (this) = ti)}

Using this callsite sensitivity for the target language, the meta-
level static analyzer could discriminate not only explicit JavaScript
function calls (e.g. f()) but also implicit JavaScript function calls,

including getters/setters, user-de�ned implicit conversions, and
implicit function calls in built-in libraries.

5 IMPLEMENTATION
We developed a prototype implementation called JSAVER, which per-
forms a meta-level static analysis for JavaScript with ECMAScript.
The tool is an extension of JISET4 and it is an open-source project5.
In this section, we describe the challenges in implementing a meta-
level static analyzer and present our solutions for them.

Layered Abstract States. Unlike traditional JavaScript static anal-
yses, a meta-level static analysis for JavaScript should track analysis
results not only for the target language JavaScript but also for the
speci�cation language IRES. Thus, the sizes of abstract states are
much larger than those of the other JavaScript static analyzers. We
implement layered abstract states to maintain only updated analysis
results compared to the initial abstract state. It signi�cantly reduces
the time to perform the join (t), meet (u), and partial order (v)
operations by considering only the updated parts in abstract states.

Closures and Continuations. The speci�cation language IRES for
ECMAScript contains more complex language features than its
simpli�ed version presented in Section 4.1, such as symbols, lists,
and list operations. Among them, the two most complex features
are closures with captured variables and �rst-class continuations be-
cause they introduce new kinds of control �ows. ECMAScript uses
closures to de�ne implicit and explicit JavaScript iterators and uses
continuations for iterators, generators, and asynchronous features
such as async, await, and the Proxy object. Therefore, we de�ne and
implement abstract closures and abstract continuations; an abstract
closure is a pair of a function and a mapping from captured vari-
ables to their abstract values, and an abstract continuation consists
of a program point, a view for analysis sensitivity, parameters, and
an abstract context.

Abstract Counting. Properties of JavaScript objects could be dy-
namically added, modi�ed, or deleted and even accessible by �rst-
class property names. Thus, in JavaScript static analysis, performing
strong updates rather than weak updates for object properties as
many as possible is important for precise analysis results. Since
records of IRES are even more dynamic than JavaScript objects, it is
also important to increase analysis precision. Therefore, we imple-
ment abstract counting [19] to increase chances to perform strong
updates for �elds of records. It checks how many times records in
the same allocation site have been allocated and performs strong
updates only for singleton records with singleton �eld values.

Loop Sensitivity. Similar to function calls, loops are also typical
merging points in static analysis. A loop sensitivity [24] is one of the
representative techniques to increase the precision of JavaScript
static analysis for loops. It discriminates contexts using a stack
of loop contexts containing loop iterations. We de�ne it under
the view-based analysis sensitivity and implement it in JSAVER to
increase the precision of IRES static analysis. Moreover, we also
de�ne and implement the loop sensitivity for JavaScript using the
loop sensitivity for IRES. Therefore, JSAVER discriminates contexts

4https://github.com/kaist-plrg/jiset
5The URL of the tool is anonymized due to a double-blind review process.

6

Filling the gap between the JavaScript language specification and tools using the JISET family / 45

JSAVER - AST Sensitivity

41

IRESJavaScript

flow-sensitivity

k-callsite sensitivity

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Automatically Deriving JavaScript Static Analyzers from Language Specifications ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

between concrete states and S� is a set of initial states:
States � 2 S = H ⇥ C
Heaps h 2 H = A �n��!R
Contexts c 2 C = L ⇥ (X �n��!V) ⇥ C?
Values � 2 V = Vp] A] T] F
Records r 2 R = (Vstr

�n��!V) ⇥ (Vstr
�n��!V)

States S consists of heaps H and contexts C. A heap h 2 H is a
�nite mapping from addresses to records. Each record allocation
instruction x = {} creates a unique address a 2 A di�erent from
existing addresses. A context c 2 C is a triple of 1) a program point,
2) a local environment, which is a �nite mapping from variables
to values, and 3) an optional calling context. A value � 2 V is a
primitive value, an address, an AST t 2 T, or a function f 2 F. A
record r 2 R consists of two �nite mappings from strings to values.
The �rst mapping represents internal �elds accessible by internal
�eld accesses x = x[x], and the second one represents external
�elds, such as variables in JavaScript environment records or prop-
erties in JavaScript objects, accessible by external �eld accesses
x = x[x]ext.

For a meta-level static analysis, we de�ne its abstract semantics
in the abstract interpretation framework [5, 7]. Since our analysis
supports view-based analysis sensitivities [15, 29], the abstract
domain is de�ned as a mapping from views to abstract states, D# =
� ! S#, with a view abstraction � : � ! P(S) which represents
the meaning of each view � 2 �. Then, we de�ne abstract states S#
as pairs of abstract heaps H# and abstract contexts C# as follows:

Abstract States � # 2 S# = H# ⇥ C#

Abstract Heaps h# 2 H# = A# �n��!(R# ⇥ R#ext)
Abstract Addresses a# 2 A# = L
Abstract Contexts c# 2 C# = X �n��!V#

An abstract heaph# 2 H# is a �nitemapping from abstract addresses
A
to pairs of abstract internal records R# and abstract external

records R#ext. Each abstract address a# 2 A# is de�ned with the
allocation-site abstraction [4], which partitions concrete addresses
A based on their allocation sites L. An abstract context c# 2 C# is
a �nite mapping from variables to abstract values. Because shapes
of abstract values V# and abstract internal (or external) records R#
(or R#ext) are parametric, we can freely con�gure them.

4.2 Abstract Domains
Since con�guration of abstract domains in static analyzers allows
�ne-tuning the quality of analysis results, we provide a way to
con�gure abstract domains for JavaScript values and data structures.

Values. Since a JavaScript value is also an IRES value � 2 V, we
can con�gure V# for JavaScript values. For example, recall that
Figure 5 shows the �ow-sensitive analysis results of the code in
Figure 2 using the interval domain. Assume that we use the �at
domain whose elements are concrete integer values, the bottom
value?int for nothing, and the top value>int for JavaScript integers.
Then, it is su�cient to use the �at domain for integers in the IRES
abstract valuesV#. In this setting, the IRES local variable lval points
to >int at point #1. At the exit point, the IRES function returns >int
and the function object whose name property is a string �f�.

Data Structures. In JavaScript, data structures such as environ-
ment records and objects have external �elds directly accessible
using speci�c syntax. For example, an environment record has vari-
ables as external �elds, accessible by identi�er references. Similarly,
an object has properties as external �elds, and one can access them
by property read expressions. However, they also have internal
�elds, which are not directly accessible by syntax, and one should
update them only indirectly. For example, an environment record
has speci�c algorithms as internal methods such as [[HasBinding]]

and [[SetMutableBinding]]. Similarly, an object has such internal
methods, including [[Get]] and [[Set]], and it also has internal
�elds such as [[Prototype]]. Such internal �elds are pre-de�ned
and the number of possible internal �elds is �nite. However, be-
cause one can dynamically create external �elds using the with

statement for environment records and property assignment ex-
pressions for objects, the number of external �elds could be in�nite.
Since internal and external �elds are quite di�erent in this regard,
we provide a way to con�gure them di�erently. In the formaliza-
tion of the meta-level static analysis (Section 4.1), we de�ne an
abstract heap h 2 H as a �nite mapping from abstract addresses
A
to pairs of abstract internal records R# for internal �elds and

abstract external records R#ext for external �elds. For example, one
way to design them with di�erent abstract domains is to de�ne
R
: Vstr ! V# as a mapping from internal �elds to abstract values

and R#ext : Vstr# ⇥V# as a single pair of merged external �elds and
merged values.

4.3 Analysis Sensitivities
In a meta-level static analysis, analysis sensitivities of the target
language (JavaScript) are di�erent from those of the speci�cation
language (IRES). For example, let us explain the analysis of the
following JavaScript code with the �ow-sensitivity for IRES:

let x = 1, y = 2;
x + y; // 3

Figure 7 shows (a) the Evaluation algorithm of identi�er references,
(b) its extracted IRES function, and (c) the parsing result of x + y and
the initial local environment of the IRES function. Since the �ow-
sensitivity merges states on the same program points, contexts for
the evaluation of both identi�er references x and y are merged. Thus,
the IRES variable Identifier points to their ASTs as illustrated at
the bottom of Figure 7(c). Due to the imprecise merge of contexts,
StringValue of Identifier returns �x� and �y�, and ResolveBinding
with them returns both 1 and 2. Finally, the analysis result of x + y

becomes { 2, 3, 4 }.

Flow Sensitivity. To resolve this problem, we present an AST sen-
sitivity for the speci�cation language to represent �ow-sensitivity
of the target language. It is a variant of object sensitivity [20, 39],
which uses abstract addresses A# of receiver objects as views. How-
ever, unlike the object sensitivity, the AST sensitivity utilizes ASTs
T stored in the parameter this only for syntax-directed functions:

� flow(t 2 T) = {� = (_, c) 2 S | syntax-ctxt(c) = c 0 ^ c 0(this) = t}
where syntax-ctxt(c) denotes the top-most context whose function
is syntax-directed and c 0(this) denotes a lookup of the variable
this in the mapping in the context c 0. We de�ne the �ow sensitivity
for the target language using the AST sensitivity and it successfully

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

(a) Evaluation algorithm for identi�er references

1 syntax def IdentifierReference [0]. Evaluation(
2 this , Identifier
3) {
4 return [? (ResolveBinding (Identifier.StringValue))]
5 }

(b) Extracted IRES function for identi�er references

(c) Result of x + y via a mechanized speci�cation

Figure 7: Analysis sensitivities of the target language
(JavaScript) and the speci�cation language (IRES)

divides contexts for the evaluation of JavaScript identi�ers x and y

in the above example using their ASTs even though their program
points in IRES are the same.

Callsite Sensitivity. We also formally de�ne the callsite sensitiv-
ity [37, 38] for the target language by extending the AST sensitivity
for speci�c normal IRES functions. The original callsite sensitivity
discriminates calling contexts using their top most callsites. In EC-
MAScript, all explicit and even implicit JavaScript function calls
invoke normal IRES functions Call and Construct. Thus, we de�ne
the callsite sensitivity for the target language by extending the AST
sensitivity with two normal IRES functions:

� cfa(t 2 T) = {� = (_, c) 2 S |
syntax-ctxt � js-call-ctxt(c) = c 0 ^ c 0(this) = t}

where js-call-ctxt(c) denotes the top-most context whose function is
Call or Construct and f �� denotes a function composition. Moreover,
we extend it to the k-callsite sensitivity by recursively taking ASTs
representing callsites of the target language:

�k -cfa(t 2 Tk) = {� = (_, c) 2 S |
t = [t1, · · · , tn] ^ n k^
(ö(syntax-ctxt � js-call-ctxt)n+1(c) _ n = k)^
81 i n.
((syntax-ctxt � js-call-ctxt)i (c) = ci ^ ci (this) = ti)}

Using this callsite sensitivity for the target language, the meta-
level static analyzer could discriminate not only explicit JavaScript
function calls (e.g. f()) but also implicit JavaScript function calls,
including getters/setters, user-de�ned implicit conversions, and
implicit function calls in built-in libraries.

5 IMPLEMENTATION
We developed a prototype implementation called JSAVER, which per-
forms a meta-level static analysis for JavaScript with ECMAScript.
The tool is an extension of JISET4 and it is an open-source project5.
In this section, we describe the challenges in implementing a meta-
level static analyzer and present our solutions for them.

Layered Abstract States. Unlike traditional JavaScript static anal-
yses, a meta-level static analysis for JavaScript should track analysis
results not only for the target language JavaScript but also for the
speci�cation language IRES. Thus, the sizes of abstract states are
much larger than those of the other JavaScript static analyzers. We
implement layered abstract states to maintain only updated analysis
results compared to the initial abstract state. It signi�cantly reduces
the time to perform the join (t), meet (u), and partial order (v)
operations by considering only the updated parts in abstract states.

Closures and Continuations. The speci�cation language IRES for
ECMAScript contains more complex language features than its
simpli�ed version presented in Section 4.1, such as symbols, lists,
and list operations. Among them, the two most complex features
are closures with captured variables and �rst-class continuations be-
cause they introduce new kinds of control �ows. ECMAScript uses
closures to de�ne implicit and explicit JavaScript iterators and uses
continuations for iterators, generators, and asynchronous features
such as async, await, and the Proxy object. Therefore, we de�ne and
implement abstract closures and abstract continuations; an abstract
closure is a pair of a function and a mapping from captured vari-
ables to their abstract values, and an abstract continuation consists
of a program point, a view for analysis sensitivity, parameters, and
an abstract context.

Abstract Counting. Properties of JavaScript objects could be dy-
namically added, modi�ed, or deleted and even accessible by �rst-
class property names. Thus, in JavaScript static analysis, performing
strong updates rather than weak updates for object properties as
many as possible is important for precise analysis results. Since
records of IRES are even more dynamic than JavaScript objects, it is
also important to increase analysis precision. Therefore, we imple-
ment abstract counting [19] to increase chances to perform strong
updates for �elds of records. It checks how many times records in
the same allocation site have been allocated and performs strong
updates only for singleton records with singleton �eld values.

Loop Sensitivity. Similar to function calls, loops are also typical
merging points in static analysis. A loop sensitivity [24] is one of the
representative techniques to increase the precision of JavaScript
static analysis for loops. It discriminates contexts using a stack
of loop contexts containing loop iterations. We de�ne it under
the view-based analysis sensitivity and implement it in JSAVER to
increase the precision of IRES static analysis. Moreover, we also
de�ne and implement the loop sensitivity for JavaScript using the
loop sensitivity for IRES. Therefore, JSAVER discriminates contexts
for explicit loops such as for-in and for-of and even implicit loops
such as the assignment of arguments or the length property of
arrays.

4https://github.com/kaist-plrg/jiset
5The URL of the tool is anonymized due to a double-blind review process.

6

Filling the gap between the JavaScript language specification and tools using the JISET family / 45

JSAVER [In Submission]

42

JavaScript Static Analyzer via ECMAScript Representation

Abstract

Transfer Func.

Initial

Abstract State

Analysis

Result

DCS �¿�. 1•Xî ⌅\¯ò� ∏¥ Ö8| ⌅\ ê§lΩ∏ �� Ñ�.
⌅∞YÄ . 2022D. 46+iv Ω. ¿ƒP⇠: X��. (�8 |8)
Jihyeok Park. JavaScript Static Analysis for Evolving Language Specifica-
tions. School of Computing . 2022. 46+iv pages. Advisor: Sukyoung Ryu.
(Text in English)

�]

ê§lΩ∏X Ÿ�x 1»¸ ı°\ X¯`@ ê§lΩ∏ ⌅\¯®‰X âŸD �UXå ttX0 ¥

5å Ã‡‰. lê‰@ t| t∞X‡ê ‰ë\ ê§lΩ∏ �� Ñ�0‰D ⌧⌧tT¿Ã, t‰@
®P ⇠Ÿ<\ $ƒ� ⇠»0– xŸ—}�t‡ $X– Ë}X‰. ⇣\, 2014D –Ä0 ê§lΩ∏X
∏¥ Ö8� ‰D 1‡⇠0 ‹ëXt⌧ t 8⌧î T Ï�tL‰. ¯ Y⌅ |8–⌧î ê§lΩ∏ ∏¥
Ö8\Ä0êŸ<\ê§lΩ∏��Ñ�0| ƒt¥î»\¥)›D⌧H\‰. tî 1)0ƒTÖ8
îú, 2) 0ƒT Ö8 ®1 Ä¨, ¯¨‡ 3) �� Ñ�0 ƒX 8 �¿ Ëƒ\ l1⌧‰. ¯ |8–⌧î
0ƒT Ö8 îú 0 D ⌧HX‡, t| t©t �• \‡ ê§lΩ∏ Ö8\Ä0 0ƒT Ö8| îú
\‰. ⇣\, ê§lΩ∏ ‘ƒD t©\ N+1-Ñ⌅ (Ñ L§⇧¸ 0ƒT Ö8X ¿Ö Ñ�D ⌧HX‡,
t| µt Ö8 ✏ ‘ƒX ∞hD Äú\‰. \Ö�<\, T¿ �� Ñ� 0 D ⌧HX‡, îú\ 0ƒT
Ö8\Ä0 êŸ<\ ê§lΩ∏ �� Ñ�0| ƒ\‰. ¯ Y⌅ |8–⌧ ⌧‹\)›@ ⌅\¯ò�
∏¥| ⌅\ Ö8, L§∏, ¯¨‡ ƒl‰X ıƒT| ⌅\ lX 0¿D »(` É<\ 0�\‰.

u Ï ± – ê§lΩ∏, 0ƒT Ö8 îú, Ö8 ¿Ö Ñ�, N+1-Ñ⌅ (Ñ L§⇧, T¿ �� Ñ�

Abstract
The highly dynamic nature and complex semantics of JavaScript make it difficult to correctly understand
the behaviors of JavaScript programs. To automatically reason about them, researchers have developed
various JavaScript static analyzers that conform to ECMAScript, the standard specification of JavaScript.
However, all the existing JavaScript static analyzers are manually designed; thus, the current approach
is labor-intensive and error-prone. Moreover, since late 2014, this problem becomes more critical because
the JavaScript language itself rapidly evolves with a yearly release cadence and open development process.

In this thesis, we introduce a novel approach to automatically derive JavaScript static analyzers
from any version of ECMAScript. Our approach consists of three steps: 1) mechanized specification
extraction, 2) mechanized specification validity check, and 3) derivation of static analyzers. First, we
present a tool JISET that automatically extracts a mechanized specification from ECMAScript. We show
that it successfully extracts a mechanized specification from the latest ECMAScript. Then, we present
two different tools to detect bugs in JavaScript specifications and engines; JEST performs N+1-version
differential testing with JavaScript engines and JSTAR performs a type analysis for the mechanized
specification. Finally, we present JSAVER that automatically derives JavaScript static analyzers from
mechanized specifications using a meta-level static analysis. For evaluation, we derive a JavaScript
static analyzer from the latest ECMAScript and show that it successfully analyzes all applicable official
conformance tests in a sound way. We believe that the thesis would be the first step towards the
co-evolution of specifications, tests, and tools for programming languages.

Keywords JavaScript, mechanized specification extraction, N+1-version differential testing, specifica-
tion type analysis, meta-level static analysis.

Analysis

initializer

Abstract

Syntax Tree

IRES

Functions

JavaScript

Parser

JavaScript

Programs

Mechanized

Specification

Filling the gap between the JavaScript language specification and tools using the JISET family / 45

JSAVER [In Submission]

42

JavaScript Static Analyzer via ECMAScript Representation

Abstract

Transfer Func.

Initial

Abstract State

Analysis

Result

DCS �¿�. 1•Xî ⌅\¯ò� ∏¥ Ö8| ⌅\ ê§lΩ∏ �� Ñ�.
⌅∞YÄ . 2022D. 46+iv Ω. ¿ƒP⇠: X��. (�8 |8)
Jihyeok Park. JavaScript Static Analysis for Evolving Language Specifica-
tions. School of Computing . 2022. 46+iv pages. Advisor: Sukyoung Ryu.
(Text in English)

�]

ê§lΩ∏X Ÿ�x 1»¸ ı°\ X¯`@ ê§lΩ∏ ⌅\¯®‰X âŸD �UXå ttX0 ¥

5å Ã‡‰. lê‰@ t| t∞X‡ê ‰ë\ ê§lΩ∏ �� Ñ�0‰D ⌧⌧tT¿Ã, t‰@
®P ⇠Ÿ<\ $ƒ� ⇠»0– xŸ—}�t‡ $X– Ë}X‰. ⇣\, 2014D –Ä0 ê§lΩ∏X
∏¥ Ö8� ‰D 1‡⇠0 ‹ëXt⌧ t 8⌧î T Ï�tL‰. ¯ Y⌅ |8–⌧î ê§lΩ∏ ∏¥
Ö8\Ä0êŸ<\ê§lΩ∏��Ñ�0| ƒt¥î»\¥)›D⌧H\‰. tî 1)0ƒTÖ8
îú, 2) 0ƒT Ö8 ®1 Ä¨, ¯¨‡ 3) �� Ñ�0 ƒX 8 �¿ Ëƒ\ l1⌧‰. ¯ |8–⌧î
0ƒT Ö8 îú 0 D ⌧HX‡, t| t©t �• \‡ ê§lΩ∏ Ö8\Ä0 0ƒT Ö8| îú
\‰. ⇣\, ê§lΩ∏ ‘ƒD t©\ N+1-Ñ⌅ (Ñ L§⇧¸ 0ƒT Ö8X ¿Ö Ñ�D ⌧HX‡,
t| µt Ö8 ✏ ‘ƒX ∞hD Äú\‰. \Ö�<\, T¿ �� Ñ� 0 D ⌧HX‡, îú\ 0ƒT
Ö8\Ä0 êŸ<\ ê§lΩ∏ �� Ñ�0| ƒ\‰. ¯ Y⌅ |8–⌧ ⌧‹\)›@ ⌅\¯ò�
∏¥| ⌅\ Ö8, L§∏, ¯¨‡ ƒl‰X ıƒT| ⌅\ lX 0¿D »(` É<\ 0�\‰.

u Ï ± – ê§lΩ∏, 0ƒT Ö8 îú, Ö8 ¿Ö Ñ�, N+1-Ñ⌅ (Ñ L§⇧, T¿ �� Ñ�

Abstract
The highly dynamic nature and complex semantics of JavaScript make it difficult to correctly understand
the behaviors of JavaScript programs. To automatically reason about them, researchers have developed
various JavaScript static analyzers that conform to ECMAScript, the standard specification of JavaScript.
However, all the existing JavaScript static analyzers are manually designed; thus, the current approach
is labor-intensive and error-prone. Moreover, since late 2014, this problem becomes more critical because
the JavaScript language itself rapidly evolves with a yearly release cadence and open development process.

In this thesis, we introduce a novel approach to automatically derive JavaScript static analyzers
from any version of ECMAScript. Our approach consists of three steps: 1) mechanized specification
extraction, 2) mechanized specification validity check, and 3) derivation of static analyzers. First, we
present a tool JISET that automatically extracts a mechanized specification from ECMAScript. We show
that it successfully extracts a mechanized specification from the latest ECMAScript. Then, we present
two different tools to detect bugs in JavaScript specifications and engines; JEST performs N+1-version
differential testing with JavaScript engines and JSTAR performs a type analysis for the mechanized
specification. Finally, we present JSAVER that automatically derives JavaScript static analyzers from
mechanized specifications using a meta-level static analysis. For evaluation, we derive a JavaScript
static analyzer from the latest ECMAScript and show that it successfully analyzes all applicable official
conformance tests in a sound way. We believe that the thesis would be the first step towards the
co-evolution of specifications, tests, and tools for programming languages.

Keywords JavaScript, mechanized specification extraction, N+1-version differential testing, specifica-
tion type analysis, meta-level static analysis.

Analysis

initializer

Abstract

Syntax Tree

IRES

Functions

JavaScript

Parser

JavaScript

Programs

Mechanized

Specification

Initial

Abstract State

Analysis

initializer

Abstract

Syntax Tree

JavaScript

Parser

JavaScript

Programs

Filling the gap between the JavaScript language specification and tools using the JISET family / 45

JSAVER - Static Analyzer Derivation

43

Mechanized

Spec. for ES12

JavaScript

Programs

DCS �¿�. 1•Xî ⌅\¯ò� ∏¥ Ö8| ⌅\ ê§lΩ∏ �� Ñ�.
⌅∞YÄ . 2022D. 46+iv Ω. ¿ƒP⇠: X��. (�8 |8)
Jihyeok Park. JavaScript Static Analysis for Evolving Language Specifica-
tions. School of Computing . 2022. 46+iv pages. Advisor: Sukyoung Ryu.
(Text in English)

�]

ê§lΩ∏X Ÿ�x 1»¸ ı°\ X¯`@ ê§lΩ∏ ⌅\¯®‰X âŸD �UXå ttX0 ¥

5å Ã‡‰. lê‰@ t| t∞X‡ê ‰ë\ ê§lΩ∏ �� Ñ�0‰D ⌧⌧tT¿Ã, t‰@
®P ⇠Ÿ<\ $ƒ� ⇠»0– xŸ—}�t‡ $X– Ë}X‰. ⇣\, 2014D –Ä0 ê§lΩ∏X
∏¥ Ö8� ‰D 1‡⇠0 ‹ëXt⌧ t 8⌧î T Ï�tL‰. ¯ Y⌅ |8–⌧î ê§lΩ∏ ∏¥
Ö8\Ä0êŸ<\ê§lΩ∏��Ñ�0| ƒt¥î»\¥)›D⌧H\‰. tî 1)0ƒTÖ8
îú, 2) 0ƒT Ö8 ®1 Ä¨, ¯¨‡ 3) �� Ñ�0 ƒX 8 �¿ Ëƒ\ l1⌧‰. ¯ |8–⌧î
0ƒT Ö8 îú 0 D ⌧HX‡, t| t©t �• \‡ ê§lΩ∏ Ö8\Ä0 0ƒT Ö8| îú
\‰. ⇣\, ê§lΩ∏ ‘ƒD t©\ N+1-Ñ⌅ (Ñ L§⇧¸ 0ƒT Ö8X ¿Ö Ñ�D ⌧HX‡,
t| µt Ö8 ✏ ‘ƒX ∞hD Äú\‰. \Ö�<\, T¿ �� Ñ� 0 D ⌧HX‡, îú\ 0ƒT
Ö8\Ä0 êŸ<\ ê§lΩ∏ �� Ñ�0| ƒ\‰. ¯ Y⌅ |8–⌧ ⌧‹\)›@ ⌅\¯ò�
∏¥| ⌅\ Ö8, L§∏, ¯¨‡ ƒl‰X ıƒT| ⌅\ lX 0¿D »(` É<\ 0�\‰.

u Ï ± – ê§lΩ∏, 0ƒT Ö8 îú, Ö8 ¿Ö Ñ�, N+1-Ñ⌅ (Ñ L§⇧, T¿ �� Ñ�

Abstract
The highly dynamic nature and complex semantics of JavaScript make it difficult to correctly understand
the behaviors of JavaScript programs. To automatically reason about them, researchers have developed
various JavaScript static analyzers that conform to ECMAScript, the standard specification of JavaScript.
However, all the existing JavaScript static analyzers are manually designed; thus, the current approach
is labor-intensive and error-prone. Moreover, since late 2014, this problem becomes more critical because
the JavaScript language itself rapidly evolves with a yearly release cadence and open development process.

In this thesis, we introduce a novel approach to automatically derive JavaScript static analyzers
from any version of ECMAScript. Our approach consists of three steps: 1) mechanized specification
extraction, 2) mechanized specification validity check, and 3) derivation of static analyzers. First, we
present a tool JISET that automatically extracts a mechanized specification from ECMAScript. We show
that it successfully extracts a mechanized specification from the latest ECMAScript. Then, we present
two different tools to detect bugs in JavaScript specifications and engines; JEST performs N+1-version
differential testing with JavaScript engines and JSTAR performs a type analysis for the mechanized
specification. Finally, we present JSAVER that automatically derives JavaScript static analyzers from
mechanized specifications using a meta-level static analysis. For evaluation, we derive a JavaScript
static analyzer from the latest ECMAScript and show that it successfully analyzes all applicable official
conformance tests in a sound way. We believe that the thesis would be the first step towards the
co-evolution of specifications, tests, and tools for programming languages.

Keywords JavaScript, mechanized specification extraction, N+1-version differential testing, specifica-
tion type analysis, meta-level static analysis.

Analysis

Result

Filling the gap between the JavaScript language specification and tools using the JISET family / 45

JSAVER - Static Analyzer Derivation

43

Mechanized

Spec. for ES12

JavaScript

Programs

DCS �¿�. 1•Xî ⌅\¯ò� ∏¥ Ö8| ⌅\ ê§lΩ∏ �� Ñ�.
⌅∞YÄ . 2022D. 46+iv Ω. ¿ƒP⇠: X��. (�8 |8)
Jihyeok Park. JavaScript Static Analysis for Evolving Language Specifica-
tions. School of Computing . 2022. 46+iv pages. Advisor: Sukyoung Ryu.
(Text in English)

�]

ê§lΩ∏X Ÿ�x 1»¸ ı°\ X¯`@ ê§lΩ∏ ⌅\¯®‰X âŸD �UXå ttX0 ¥

5å Ã‡‰. lê‰@ t| t∞X‡ê ‰ë\ ê§lΩ∏ �� Ñ�0‰D ⌧⌧tT¿Ã, t‰@
®P ⇠Ÿ<\ $ƒ� ⇠»0– xŸ—}�t‡ $X– Ë}X‰. ⇣\, 2014D –Ä0 ê§lΩ∏X
∏¥ Ö8� ‰D 1‡⇠0 ‹ëXt⌧ t 8⌧î T Ï�tL‰. ¯ Y⌅ |8–⌧î ê§lΩ∏ ∏¥
Ö8\Ä0êŸ<\ê§lΩ∏��Ñ�0| ƒt¥î»\¥)›D⌧H\‰. tî 1)0ƒTÖ8
îú, 2) 0ƒT Ö8 ®1 Ä¨, ¯¨‡ 3) �� Ñ�0 ƒX 8 �¿ Ëƒ\ l1⌧‰. ¯ |8–⌧î
0ƒT Ö8 îú 0 D ⌧HX‡, t| t©t �• \‡ ê§lΩ∏ Ö8\Ä0 0ƒT Ö8| îú
\‰. ⇣\, ê§lΩ∏ ‘ƒD t©\ N+1-Ñ⌅ (Ñ L§⇧¸ 0ƒT Ö8X ¿Ö Ñ�D ⌧HX‡,
t| µt Ö8 ✏ ‘ƒX ∞hD Äú\‰. \Ö�<\, T¿ �� Ñ� 0 D ⌧HX‡, îú\ 0ƒT
Ö8\Ä0 êŸ<\ ê§lΩ∏ �� Ñ�0| ƒ\‰. ¯ Y⌅ |8–⌧ ⌧‹\)›@ ⌅\¯ò�
∏¥| ⌅\ Ö8, L§∏, ¯¨‡ ƒl‰X ıƒT| ⌅\ lX 0¿D »(` É<\ 0�\‰.

u Ï ± – ê§lΩ∏, 0ƒT Ö8 îú, Ö8 ¿Ö Ñ�, N+1-Ñ⌅ (Ñ L§⇧, T¿ �� Ñ�

Abstract
The highly dynamic nature and complex semantics of JavaScript make it difficult to correctly understand
the behaviors of JavaScript programs. To automatically reason about them, researchers have developed
various JavaScript static analyzers that conform to ECMAScript, the standard specification of JavaScript.
However, all the existing JavaScript static analyzers are manually designed; thus, the current approach
is labor-intensive and error-prone. Moreover, since late 2014, this problem becomes more critical because
the JavaScript language itself rapidly evolves with a yearly release cadence and open development process.

In this thesis, we introduce a novel approach to automatically derive JavaScript static analyzers
from any version of ECMAScript. Our approach consists of three steps: 1) mechanized specification
extraction, 2) mechanized specification validity check, and 3) derivation of static analyzers. First, we
present a tool JISET that automatically extracts a mechanized specification from ECMAScript. We show
that it successfully extracts a mechanized specification from the latest ECMAScript. Then, we present
two different tools to detect bugs in JavaScript specifications and engines; JEST performs N+1-version
differential testing with JavaScript engines and JSTAR performs a type analysis for the mechanized
specification. Finally, we present JSAVER that automatically derives JavaScript static analyzers from
mechanized specifications using a meta-level static analysis. For evaluation, we derive a JavaScript
static analyzer from the latest ECMAScript and show that it successfully analyzes all applicable official
conformance tests in a sound way. We believe that the thesis would be the first step towards the
co-evolution of specifications, tests, and tools for programming languages.

Keywords JavaScript, mechanized specification extraction, N+1-version differential testing, specifica-
tion type analysis, meta-level static analysis.

Analysis

Result

Static Analyzer for ES12

DCS �¿�. 1•Xî ⌅\¯ò� ∏¥ Ö8| ⌅\ ê§lΩ∏ �� Ñ�.
⌅∞YÄ . 2022D. 46+iv Ω. ¿ƒP⇠: X��. (�8 |8)
Jihyeok Park. JavaScript Static Analysis for Evolving Language Specifica-
tions. School of Computing . 2022. 46+iv pages. Advisor: Sukyoung Ryu.
(Text in English)

�]

ê§lΩ∏X Ÿ�x 1»¸ ı°\ X¯`@ ê§lΩ∏ ⌅\¯®‰X âŸD �UXå ttX0 ¥

5å Ã‡‰. lê‰@ t| t∞X‡ê ‰ë\ ê§lΩ∏ �� Ñ�0‰D ⌧⌧tT¿Ã, t‰@
®P ⇠Ÿ<\ $ƒ� ⇠»0– xŸ—}�t‡ $X– Ë}X‰. ⇣\, 2014D –Ä0 ê§lΩ∏X
∏¥ Ö8� ‰D 1‡⇠0 ‹ëXt⌧ t 8⌧î T Ï�tL‰. ¯ Y⌅ |8–⌧î ê§lΩ∏ ∏¥
Ö8\Ä0êŸ<\ê§lΩ∏��Ñ�0| ƒt¥î»\¥)›D⌧H\‰. tî 1)0ƒTÖ8
îú, 2) 0ƒT Ö8 ®1 Ä¨, ¯¨‡ 3) �� Ñ�0 ƒX 8 �¿ Ëƒ\ l1⌧‰. ¯ |8–⌧î
0ƒT Ö8 îú 0 D ⌧HX‡, t| t©t �• \‡ ê§lΩ∏ Ö8\Ä0 0ƒT Ö8| îú
\‰. ⇣\, ê§lΩ∏ ‘ƒD t©\ N+1-Ñ⌅ (Ñ L§⇧¸ 0ƒT Ö8X ¿Ö Ñ�D ⌧HX‡,
t| µt Ö8 ✏ ‘ƒX ∞hD Äú\‰. \Ö�<\, T¿ �� Ñ� 0 D ⌧HX‡, îú\ 0ƒT
Ö8\Ä0 êŸ<\ ê§lΩ∏ �� Ñ�0| ƒ\‰. ¯ Y⌅ |8–⌧ ⌧‹\)›@ ⌅\¯ò�
∏¥| ⌅\ Ö8, L§∏, ¯¨‡ ƒl‰X ıƒT| ⌅\ lX 0¿D »(` É<\ 0�\‰.

u Ï ± – ê§lΩ∏, 0ƒT Ö8 îú, Ö8 ¿Ö Ñ�, N+1-Ñ⌅ (Ñ L§⇧, T¿ �� Ñ�

Abstract
The highly dynamic nature and complex semantics of JavaScript make it difficult to correctly understand
the behaviors of JavaScript programs. To automatically reason about them, researchers have developed
various JavaScript static analyzers that conform to ECMAScript, the standard specification of JavaScript.
However, all the existing JavaScript static analyzers are manually designed; thus, the current approach
is labor-intensive and error-prone. Moreover, since late 2014, this problem becomes more critical because
the JavaScript language itself rapidly evolves with a yearly release cadence and open development process.

In this thesis, we introduce a novel approach to automatically derive JavaScript static analyzers
from any version of ECMAScript. Our approach consists of three steps: 1) mechanized specification
extraction, 2) mechanized specification validity check, and 3) derivation of static analyzers. First, we
present a tool JISET that automatically extracts a mechanized specification from ECMAScript. We show
that it successfully extracts a mechanized specification from the latest ECMAScript. Then, we present
two different tools to detect bugs in JavaScript specifications and engines; JEST performs N+1-version
differential testing with JavaScript engines and JSTAR performs a type analysis for the mechanized
specification. Finally, we present JSAVER that automatically derives JavaScript static analyzers from
mechanized specifications using a meta-level static analysis. For evaluation, we derive a JavaScript
static analyzer from the latest ECMAScript and show that it successfully analyzes all applicable official
conformance tests in a sound way. We believe that the thesis would be the first step towards the
co-evolution of specifications, tests, and tools for programming languages.

Keywords JavaScript, mechanized specification extraction, N+1-version differential testing, specifica-
tion type analysis, meta-level static analysis.

Mechanized

Spec. for ES12

JavaScript

Programs

Analysis

Result

derive

/ 45Filling the gap between the JavaScript language specification and tools using the JISET family 44

JSAVER - Evaluation
• JSAES12 - Derived Analyzer for ES12

• Soundness / Precision / Performance

- 18,556 applicable tests in Test262

- 3,903 tests analyzable by all the three
analyzers

/ 45Filling the gap between the JavaScript language specification and tools using the JISET family 44

JSAVER - Evaluation
• JSAES12 - Derived Analyzer for ES12

• Soundness / Precision / Performance

- 18,556 applicable tests in Test262

- 3,903 tests analyzable by all the three
analyzers

ESEC/FSE 2022, 14 - 18 November, 2022, Singapore Anon.

(a) The analysis precision (b) The analysis performance

Figure 9: The analysis precision and performance for 3,878
tests soundly analyzable by all of �ve analyzers

1 let x = /* �a� or �b� */;
2 let y = �c${x}d�; // �cad� or �cbd�
3 let z = �${x}e${x}�; // �aea� or �beb�

Figure 10: A JavaScript program using template literals

Test262 test programs, JSAES12 analyzed them with a high analysis
precision of 99.0% in 590 ms on average. Then, we compared its anal-
ysis precision with that of TAJS and SAFE. For a fair comparison,
we measured the analysis precision for 3,878 test programs soundly
analyzable by all of �ve analyzers: TAJS, TAJS with Babel, SAFE,
SAFE with Babel, and JSAES12. Figure 9(a) depicts the average and
distribution of the analysis precision in violin plots [19]. TAJS and
SAFE analyzed 3,878 test programs with 85.1% and 89.9% precision
on average, respectively. While Babel increased the number of test
programs soundly analyzed by existing analyzers, it decreased the
average analysis precision of TAJS to 84.9% and had no e�ect on
SAFE. It is due to that Babel transpiles simple ES6+ features into
a more complex combination of ES5 features even though TAJS
directly supports a small part of the ES6 features like arrow func-
tions or Symbol. However, JSAES12 has the highest analysis precision
of 99.5% on average.

On the other hand, the analysis speed of JSAES12 is slower than
that of TAJS and SAFE, and Figure 9(b) depicts them in violin
plots on a logarithmic scale. TAJS and SAFE took 139 ms and 181
ms, respectively, to analyze 3,878 test programs on average. Babel
increases their average analysis time to 169 ms and 199 ms, respec-
tively, because it transpiles all ES6+ features in test programs to
verbose ES5.1 features. However, JSAES12 took 357 ms on average to
analyze them because JSAVER derives precise abstract semantics for
all language features. On the contrary, TAJS and SAFE developers
often imprecisely or even unsoundly model the abstract semantics
of speci�c language features to increase the analysis speed. For ex-
ample, TAJS does not discriminate positive/negative in�nity values
or positive/negative zeros to reduce the number of possible cases
in abstract values. Similarly, SAFE ignores the semantics of getters
and setters to analyze object property reads quickly.

6.3 Con�gurability
We demonstrate the con�gurability of JSAVER with several case

studies for abstract domains and analysis sensitivities. We discuss
how di�erent abstract domains or analysis sensitivities a�ect anal-
ysis results of JSAES12 with examples.

Table 2: De�nitions of three string abstract domains

Domain De�nition

SS:
SS: = {>} [{(✓ ⌃⇤ | |(| : }
W (() = (
(· (0 = {B · B0 | B 2 (^ B0 2 (0 }

CI
CI = {?} [{ [!,*] | !,* ✓ ⌃ ^ ! ✓ * }
W ([!,*]) = {F 2 ⌃⇤ | ! ✓ chars(F) ✓ * }
[!,*] · [!0,* 0] = [! [!0,* [* 0]

PS
PS = {?} [(⌃⇤ ⇥ ⌃⇤)
W (h?, B i) = {? · F | F 2 ⌃⇤ } \ {F · B | F 2 ⌃⇤ }
h?, B i · h?0, B0 i = h?, B0 i

6.3.1 Abstract Domains. As explained in Section 4.3, we can con�g-
ure abstract domains for JavaScript values by con�guring those for
IRES values. In JavaScript static analysis, researchers have presented
diverse string domains to precisely analyze object property names.
Among them, we implemented three representative string abstract
domains [4]: the String Set (SS:) domain, the Character Inclusion
(CI) domain, and the Pre�x-Su�x (PS) domain. Table 2 summarizes
formal de�nitions of their elements, concretization functions, and
concatenation operations. In the table, ⌃ denotes a set of charac-
ters, and the set of strings is Vstr = ⌃⇤. We analyzed a JavaScript
program in Figure 10 using JSAES12 with di�erent string abstract
domains. The program uses a new language feature introduced
in ES6 called a template literal, which is a literal delimited with
backticks (�), allowing embedded expressions called substitutions.
For example, the template literal �c${x}d� on line 2 concatenates
a string �c�, the value in the variable x, and a string �d�. Since x

points to �a� or �b� on line 1, the variable y points to �cad� or �cbd�.
Similarly, z points to �aea� or �beb� by concatenating x, �e�, and x.

First, the String Set (SS:) domain represents a set of strings whose
size is bounded by : as an abstract string. Therefore, JSAES12 with
SS5 produced the following analysis results:

x 7! {�a�, �b�}
y 7! {�c�} · {�a�, �b�} · {�d�} = {�cad�, �cbd�}
z 7! {�a�, �b�} · {�e�} · {�a�, �b�} = {�aea�, �aeb�, �bea�, �beb�}

It produced precise analysis results for x and y. However, the result
for z has spurious values �aeb� and �bea� because it does not keep
the information that the left and right strings of �e� are the same.

The Character Inclusion (CI) domain tracks the lower and upper
bounds of characters occurring in strings. The analysis with this
domain produced the following analysis results:

x 7! [ú, {a, b}]
y 7! [{c}, {c}] · [ú, {a, b}] · [{d}, {d}] = [{c, d}, {a, b, c, d}]
z 7! [ú, {a, b}] · [{e}, {e}] · [ú, {a, b}] = [{e}, {a, b, e}]

This domain ignores structures of strings, but it is a cheap abstract
domain to check only the inclusion of characters in strings. For
example, it can say that the string in y always includes c and d, and
the string in z always includes e.

The last domain, Pre�x-Su�x (PS) keeps pre�xes and su�xes of
strings. JSAES12 produced the following analysis results with PS:

x 7! h��, ��i
y 7! h�c�, �c�i · h��, ��i · h�d�, �d�i = h�c�, �d�i
z 7! h��, ��i · h�e�, �e�i · h��, ��i = h��, ��i

This domain is also cheap but focuses on pre�xes and su�xes. Thus,
the analysis results cannot say anything about the strings in x or z,
but it describes that the string in y starts with �c� and ends with �d�.

ESEC/FSE 2022, 14 - 18 November, 2022, Singapore Anon.

(a) The analysis precision (b) The analysis performance

Figure 9: The analysis precision and performance for 3,878
tests soundly analyzable by all of �ve analyzers

1 let x = /* �a� or �b� */;
2 let y = �c${x}d�; // �cad� or �cbd�
3 let z = �${x}e${x}�; // �aea� or �beb�

Figure 10: A JavaScript program using template literals

Test262 test programs, JSAES12 analyzed them with a high analysis
precision of 99.0% in 590 ms on average. Then, we compared its anal-
ysis precision with that of TAJS and SAFE. For a fair comparison,
we measured the analysis precision for 3,878 test programs soundly
analyzable by all of �ve analyzers: TAJS, TAJS with Babel, SAFE,
SAFE with Babel, and JSAES12. Figure 9(a) depicts the average and
distribution of the analysis precision in violin plots [19]. TAJS and
SAFE analyzed 3,878 test programs with 85.1% and 89.9% precision
on average, respectively. While Babel increased the number of test
programs soundly analyzed by existing analyzers, it decreased the
average analysis precision of TAJS to 84.9% and had no e�ect on
SAFE. It is due to that Babel transpiles simple ES6+ features into
a more complex combination of ES5 features even though TAJS
directly supports a small part of the ES6 features like arrow func-
tions or Symbol. However, JSAES12 has the highest analysis precision
of 99.5% on average.

On the other hand, the analysis speed of JSAES12 is slower than
that of TAJS and SAFE, and Figure 9(b) depicts them in violin
plots on a logarithmic scale. TAJS and SAFE took 139 ms and 181
ms, respectively, to analyze 3,878 test programs on average. Babel
increases their average analysis time to 169 ms and 199 ms, respec-
tively, because it transpiles all ES6+ features in test programs to
verbose ES5.1 features. However, JSAES12 took 357 ms on average to
analyze them because JSAVER derives precise abstract semantics for
all language features. On the contrary, TAJS and SAFE developers
often imprecisely or even unsoundly model the abstract semantics
of speci�c language features to increase the analysis speed. For ex-
ample, TAJS does not discriminate positive/negative in�nity values
or positive/negative zeros to reduce the number of possible cases
in abstract values. Similarly, SAFE ignores the semantics of getters
and setters to analyze object property reads quickly.

6.3 Con�gurability
We demonstrate the con�gurability of JSAVER with several case

studies for abstract domains and analysis sensitivities. We discuss
how di�erent abstract domains or analysis sensitivities a�ect anal-
ysis results of JSAES12 with examples.

Table 2: De�nitions of three string abstract domains

Domain De�nition

SS:
SS: = {>} [{(✓ ⌃⇤ | |(| : }
W (() = (
(· (0 = {B · B0 | B 2 (^ B0 2 (0 }

CI
CI = {?} [{ [!,*] | !,* ✓ ⌃ ^ ! ✓ * }
W ([!,*]) = {F 2 ⌃⇤ | ! ✓ chars(F) ✓ * }
[!,*] · [!0,* 0] = [! [!0,* [* 0]

PS
PS = {?} [(⌃⇤ ⇥ ⌃⇤)
W (h?, B i) = {? · F | F 2 ⌃⇤ } \ {F · B | F 2 ⌃⇤ }
h?, B i · h?0, B0 i = h?, B0 i

6.3.1 Abstract Domains. As explained in Section 4.3, we can con�g-
ure abstract domains for JavaScript values by con�guring those for
IRES values. In JavaScript static analysis, researchers have presented
diverse string domains to precisely analyze object property names.
Among them, we implemented three representative string abstract
domains [4]: the String Set (SS:) domain, the Character Inclusion
(CI) domain, and the Pre�x-Su�x (PS) domain. Table 2 summarizes
formal de�nitions of their elements, concretization functions, and
concatenation operations. In the table, ⌃ denotes a set of charac-
ters, and the set of strings is Vstr = ⌃⇤. We analyzed a JavaScript
program in Figure 10 using JSAES12 with di�erent string abstract
domains. The program uses a new language feature introduced
in ES6 called a template literal, which is a literal delimited with
backticks (�), allowing embedded expressions called substitutions.
For example, the template literal �c${x}d� on line 2 concatenates
a string �c�, the value in the variable x, and a string �d�. Since x

points to �a� or �b� on line 1, the variable y points to �cad� or �cbd�.
Similarly, z points to �aea� or �beb� by concatenating x, �e�, and x.

First, the String Set (SS:) domain represents a set of strings whose
size is bounded by : as an abstract string. Therefore, JSAES12 with
SS5 produced the following analysis results:

x 7! {�a�, �b�}
y 7! {�c�} · {�a�, �b�} · {�d�} = {�cad�, �cbd�}
z 7! {�a�, �b�} · {�e�} · {�a�, �b�} = {�aea�, �aeb�, �bea�, �beb�}

It produced precise analysis results for x and y. However, the result
for z has spurious values �aeb� and �bea� because it does not keep
the information that the left and right strings of �e� are the same.

The Character Inclusion (CI) domain tracks the lower and upper
bounds of characters occurring in strings. The analysis with this
domain produced the following analysis results:

x 7! [ú, {a, b}]
y 7! [{c}, {c}] · [ú, {a, b}] · [{d}, {d}] = [{c, d}, {a, b, c, d}]
z 7! [ú, {a, b}] · [{e}, {e}] · [ú, {a, b}] = [{e}, {a, b, e}]

This domain ignores structures of strings, but it is a cheap abstract
domain to check only the inclusion of characters in strings. For
example, it can say that the string in y always includes c and d, and
the string in z always includes e.

The last domain, Pre�x-Su�x (PS) keeps pre�xes and su�xes of
strings. JSAES12 produced the following analysis results with PS:

x 7! h��, ��i
y 7! h�c�, �c�i · h��, ��i · h�d�, �d�i = h�c�, �d�i
z 7! h��, ��i · h�e�, �e�i · h��, ��i = h��, ��i

This domain is also cheap but focuses on pre�xes and su�xes. Thus,
the analysis results cannot say anything about the strings in x or z,
but it describes that the string in y starts with �c� and ends with �d�.

ESEC/FSE 2022, 14 - 18 November, 2022, Singapore Anon.

(a) The analysis precision (b) The analysis performance

Figure 9: The analysis precision and performance for 3,878
tests soundly analyzable by all of �ve analyzers

1 let x = /* �a� or �b� */;
2 let y = �c${x}d�; // �cad� or �cbd�
3 let z = �${x}e${x}�; // �aea� or �beb�

Figure 10: A JavaScript program using template literals

Test262 test programs, JSAES12 analyzed them with a high analysis
precision of 99.0% in 590 ms on average. Then, we compared its anal-
ysis precision with that of TAJS and SAFE. For a fair comparison,
we measured the analysis precision for 3,878 test programs soundly
analyzable by all of �ve analyzers: TAJS, TAJS with Babel, SAFE,
SAFE with Babel, and JSAES12. Figure 9(a) depicts the average and
distribution of the analysis precision in violin plots [19]. TAJS and
SAFE analyzed 3,878 test programs with 85.1% and 89.9% precision
on average, respectively. While Babel increased the number of test
programs soundly analyzed by existing analyzers, it decreased the
average analysis precision of TAJS to 84.9% and had no e�ect on
SAFE. It is due to that Babel transpiles simple ES6+ features into
a more complex combination of ES5 features even though TAJS
directly supports a small part of the ES6 features like arrow func-
tions or Symbol. However, JSAES12 has the highest analysis precision
of 99.5% on average.

On the other hand, the analysis speed of JSAES12 is slower than
that of TAJS and SAFE, and Figure 9(b) depicts them in violin
plots on a logarithmic scale. TAJS and SAFE took 139 ms and 181
ms, respectively, to analyze 3,878 test programs on average. Babel
increases their average analysis time to 169 ms and 199 ms, respec-
tively, because it transpiles all ES6+ features in test programs to
verbose ES5.1 features. However, JSAES12 took 357 ms on average to
analyze them because JSAVER derives precise abstract semantics for
all language features. On the contrary, TAJS and SAFE developers
often imprecisely or even unsoundly model the abstract semantics
of speci�c language features to increase the analysis speed. For ex-
ample, TAJS does not discriminate positive/negative in�nity values
or positive/negative zeros to reduce the number of possible cases
in abstract values. Similarly, SAFE ignores the semantics of getters
and setters to analyze object property reads quickly.

6.3 Con�gurability
We demonstrate the con�gurability of JSAVER with several case

studies for abstract domains and analysis sensitivities. We discuss
how di�erent abstract domains or analysis sensitivities a�ect anal-
ysis results of JSAES12 with examples.

Table 2: De�nitions of three string abstract domains

Domain De�nition

SS:
SS: = {>} [{(✓ ⌃⇤ | |(| : }
W (() = (
(· (0 = {B · B0 | B 2 (^ B0 2 (0 }

CI
CI = {?} [{ [!,*] | !,* ✓ ⌃ ^ ! ✓ * }
W ([!,*]) = {F 2 ⌃⇤ | ! ✓ chars(F) ✓ * }
[!,*] · [!0,* 0] = [! [!0,* [* 0]

PS
PS = {?} [(⌃⇤ ⇥ ⌃⇤)
W (h?, B i) = {? · F | F 2 ⌃⇤ } \ {F · B | F 2 ⌃⇤ }
h?, B i · h?0, B0 i = h?, B0 i

6.3.1 Abstract Domains. As explained in Section 4.3, we can con�g-
ure abstract domains for JavaScript values by con�guring those for
IRES values. In JavaScript static analysis, researchers have presented
diverse string domains to precisely analyze object property names.
Among them, we implemented three representative string abstract
domains [4]: the String Set (SS:) domain, the Character Inclusion
(CI) domain, and the Pre�x-Su�x (PS) domain. Table 2 summarizes
formal de�nitions of their elements, concretization functions, and
concatenation operations. In the table, ⌃ denotes a set of charac-
ters, and the set of strings is Vstr = ⌃⇤. We analyzed a JavaScript
program in Figure 10 using JSAES12 with di�erent string abstract
domains. The program uses a new language feature introduced
in ES6 called a template literal, which is a literal delimited with
backticks (�), allowing embedded expressions called substitutions.
For example, the template literal �c${x}d� on line 2 concatenates
a string �c�, the value in the variable x, and a string �d�. Since x

points to �a� or �b� on line 1, the variable y points to �cad� or �cbd�.
Similarly, z points to �aea� or �beb� by concatenating x, �e�, and x.

First, the String Set (SS:) domain represents a set of strings whose
size is bounded by : as an abstract string. Therefore, JSAES12 with
SS5 produced the following analysis results:

x 7! {�a�, �b�}
y 7! {�c�} · {�a�, �b�} · {�d�} = {�cad�, �cbd�}
z 7! {�a�, �b�} · {�e�} · {�a�, �b�} = {�aea�, �aeb�, �bea�, �beb�}

It produced precise analysis results for x and y. However, the result
for z has spurious values �aeb� and �bea� because it does not keep
the information that the left and right strings of �e� are the same.

The Character Inclusion (CI) domain tracks the lower and upper
bounds of characters occurring in strings. The analysis with this
domain produced the following analysis results:

x 7! [ú, {a, b}]
y 7! [{c}, {c}] · [ú, {a, b}] · [{d}, {d}] = [{c, d}, {a, b, c, d}]
z 7! [ú, {a, b}] · [{e}, {e}] · [ú, {a, b}] = [{e}, {a, b, e}]

This domain ignores structures of strings, but it is a cheap abstract
domain to check only the inclusion of characters in strings. For
example, it can say that the string in y always includes c and d, and
the string in z always includes e.

The last domain, Pre�x-Su�x (PS) keeps pre�xes and su�xes of
strings. JSAES12 produced the following analysis results with PS:

x 7! h��, ��i
y 7! h�c�, �c�i · h��, ��i · h�d�, �d�i = h�c�, �d�i
z 7! h��, ��i · h�e�, �e�i · h��, ��i = h��, ��i

This domain is also cheap but focuses on pre�xes and su�xes. Thus,
the analysis results cannot say anything about the strings in x or z,
but it describes that the string in y starts with �c� and ends with �d�.

ESEC/FSE 2022, 14 - 18 November, 2022, Singapore Anon.

(a) The analysis precision (b) The analysis performance

Figure 9: The analysis precision and performance for 3,878
tests soundly analyzable by all of �ve analyzers

1 let x = /* �a� or �b� */;
2 let y = �c${x}d�; // �cad� or �cbd�
3 let z = �${x}e${x}�; // �aea� or �beb�

Figure 10: A JavaScript program using template literals

Test262 test programs, JSAES12 analyzed them with a high analysis
precision of 99.0% in 590 ms on average. Then, we compared its anal-
ysis precision with that of TAJS and SAFE. For a fair comparison,
we measured the analysis precision for 3,878 test programs soundly
analyzable by all of �ve analyzers: TAJS, TAJS with Babel, SAFE,
SAFE with Babel, and JSAES12. Figure 9(a) depicts the average and
distribution of the analysis precision in violin plots [19]. TAJS and
SAFE analyzed 3,878 test programs with 85.1% and 89.9% precision
on average, respectively. While Babel increased the number of test
programs soundly analyzed by existing analyzers, it decreased the
average analysis precision of TAJS to 84.9% and had no e�ect on
SAFE. It is due to that Babel transpiles simple ES6+ features into
a more complex combination of ES5 features even though TAJS
directly supports a small part of the ES6 features like arrow func-
tions or Symbol. However, JSAES12 has the highest analysis precision
of 99.5% on average.

On the other hand, the analysis speed of JSAES12 is slower than
that of TAJS and SAFE, and Figure 9(b) depicts them in violin
plots on a logarithmic scale. TAJS and SAFE took 139 ms and 181
ms, respectively, to analyze 3,878 test programs on average. Babel
increases their average analysis time to 169 ms and 199 ms, respec-
tively, because it transpiles all ES6+ features in test programs to
verbose ES5.1 features. However, JSAES12 took 357 ms on average to
analyze them because JSAVER derives precise abstract semantics for
all language features. On the contrary, TAJS and SAFE developers
often imprecisely or even unsoundly model the abstract semantics
of speci�c language features to increase the analysis speed. For ex-
ample, TAJS does not discriminate positive/negative in�nity values
or positive/negative zeros to reduce the number of possible cases
in abstract values. Similarly, SAFE ignores the semantics of getters
and setters to analyze object property reads quickly.

6.3 Con�gurability
We demonstrate the con�gurability of JSAVER with several case

studies for abstract domains and analysis sensitivities. We discuss
how di�erent abstract domains or analysis sensitivities a�ect anal-
ysis results of JSAES12 with examples.

Table 2: De�nitions of three string abstract domains

Domain De�nition

SS:
SS: = {>} [{(✓ ⌃⇤ | |(| : }
W (() = (
(· (0 = {B · B0 | B 2 (^ B0 2 (0 }

CI
CI = {?} [{ [!,*] | !,* ✓ ⌃ ^ ! ✓ * }
W ([!,*]) = {F 2 ⌃⇤ | ! ✓ chars(F) ✓ * }
[!,*] · [!0,* 0] = [! [!0,* [* 0]

PS
PS = {?} [(⌃⇤ ⇥ ⌃⇤)
W (h?, B i) = {? · F | F 2 ⌃⇤ } \ {F · B | F 2 ⌃⇤ }
h?, B i · h?0, B0 i = h?, B0 i

6.3.1 Abstract Domains. As explained in Section 4.3, we can con�g-
ure abstract domains for JavaScript values by con�guring those for
IRES values. In JavaScript static analysis, researchers have presented
diverse string domains to precisely analyze object property names.
Among them, we implemented three representative string abstract
domains [4]: the String Set (SS:) domain, the Character Inclusion
(CI) domain, and the Pre�x-Su�x (PS) domain. Table 2 summarizes
formal de�nitions of their elements, concretization functions, and
concatenation operations. In the table, ⌃ denotes a set of charac-
ters, and the set of strings is Vstr = ⌃⇤. We analyzed a JavaScript
program in Figure 10 using JSAES12 with di�erent string abstract
domains. The program uses a new language feature introduced
in ES6 called a template literal, which is a literal delimited with
backticks (�), allowing embedded expressions called substitutions.
For example, the template literal �c${x}d� on line 2 concatenates
a string �c�, the value in the variable x, and a string �d�. Since x

points to �a� or �b� on line 1, the variable y points to �cad� or �cbd�.
Similarly, z points to �aea� or �beb� by concatenating x, �e�, and x.

First, the String Set (SS:) domain represents a set of strings whose
size is bounded by : as an abstract string. Therefore, JSAES12 with
SS5 produced the following analysis results:

x 7! {�a�, �b�}
y 7! {�c�} · {�a�, �b�} · {�d�} = {�cad�, �cbd�}
z 7! {�a�, �b�} · {�e�} · {�a�, �b�} = {�aea�, �aeb�, �bea�, �beb�}

It produced precise analysis results for x and y. However, the result
for z has spurious values �aeb� and �bea� because it does not keep
the information that the left and right strings of �e� are the same.

The Character Inclusion (CI) domain tracks the lower and upper
bounds of characters occurring in strings. The analysis with this
domain produced the following analysis results:

x 7! [ú, {a, b}]
y 7! [{c}, {c}] · [ú, {a, b}] · [{d}, {d}] = [{c, d}, {a, b, c, d}]
z 7! [ú, {a, b}] · [{e}, {e}] · [ú, {a, b}] = [{e}, {a, b, e}]

This domain ignores structures of strings, but it is a cheap abstract
domain to check only the inclusion of characters in strings. For
example, it can say that the string in y always includes c and d, and
the string in z always includes e.

The last domain, Pre�x-Su�x (PS) keeps pre�xes and su�xes of
strings. JSAES12 produced the following analysis results with PS:

x 7! h��, ��i
y 7! h�c�, �c�i · h��, ��i · h�d�, �d�i = h�c�, �d�i
z 7! h��, ��i · h�e�, �e�i · h��, ��i = h��, ��i

This domain is also cheap but focuses on pre�xes and su�xes. Thus,
the analysis results cannot say anything about the strings in x or z,
but it describes that the string in y starts with �c� and ends with �d�.

ESEC/FSE 2022, 14 - 18 November, 2022, Singapore Anon.

(a) The analysis precision (b) The analysis performance

Figure 9: The analysis precision and performance for 3,878
tests soundly analyzable by all of �ve analyzers

1 let x = /* �a� or �b� */;
2 let y = �c${x}d�; // �cad� or �cbd�
3 let z = �${x}e${x}�; // �aea� or �beb�

Figure 10: A JavaScript program using template literals

Test262 test programs, JSAES12 analyzed them with a high analysis
precision of 99.0% in 590 ms on average. Then, we compared its anal-
ysis precision with that of TAJS and SAFE. For a fair comparison,
we measured the analysis precision for 3,878 test programs soundly
analyzable by all of �ve analyzers: TAJS, TAJS with Babel, SAFE,
SAFE with Babel, and JSAES12. Figure 9(a) depicts the average and
distribution of the analysis precision in violin plots [19]. TAJS and
SAFE analyzed 3,878 test programs with 85.1% and 89.9% precision
on average, respectively. While Babel increased the number of test
programs soundly analyzed by existing analyzers, it decreased the
average analysis precision of TAJS to 84.9% and had no e�ect on
SAFE. It is due to that Babel transpiles simple ES6+ features into
a more complex combination of ES5 features even though TAJS
directly supports a small part of the ES6 features like arrow func-
tions or Symbol. However, JSAES12 has the highest analysis precision
of 99.5% on average.

On the other hand, the analysis speed of JSAES12 is slower than
that of TAJS and SAFE, and Figure 9(b) depicts them in violin
plots on a logarithmic scale. TAJS and SAFE took 139 ms and 181
ms, respectively, to analyze 3,878 test programs on average. Babel
increases their average analysis time to 169 ms and 199 ms, respec-
tively, because it transpiles all ES6+ features in test programs to
verbose ES5.1 features. However, JSAES12 took 357 ms on average to
analyze them because JSAVER derives precise abstract semantics for
all language features. On the contrary, TAJS and SAFE developers
often imprecisely or even unsoundly model the abstract semantics
of speci�c language features to increase the analysis speed. For ex-
ample, TAJS does not discriminate positive/negative in�nity values
or positive/negative zeros to reduce the number of possible cases
in abstract values. Similarly, SAFE ignores the semantics of getters
and setters to analyze object property reads quickly.

6.3 Con�gurability
We demonstrate the con�gurability of JSAVER with several case

studies for abstract domains and analysis sensitivities. We discuss
how di�erent abstract domains or analysis sensitivities a�ect anal-
ysis results of JSAES12 with examples.

Table 2: De�nitions of three string abstract domains

Domain De�nition

SS:
SS: = {>} [{(✓ ⌃⇤ | |(| : }
W (() = (
(· (0 = {B · B0 | B 2 (^ B0 2 (0 }

CI
CI = {?} [{ [!,*] | !,* ✓ ⌃ ^ ! ✓ * }
W ([!,*]) = {F 2 ⌃⇤ | ! ✓ chars(F) ✓ * }
[!,*] · [!0,* 0] = [! [!0,* [* 0]

PS
PS = {?} [(⌃⇤ ⇥ ⌃⇤)
W (h?, B i) = {? · F | F 2 ⌃⇤ } \ {F · B | F 2 ⌃⇤ }
h?, B i · h?0, B0 i = h?, B0 i

6.3.1 Abstract Domains. As explained in Section 4.3, we can con�g-
ure abstract domains for JavaScript values by con�guring those for
IRES values. In JavaScript static analysis, researchers have presented
diverse string domains to precisely analyze object property names.
Among them, we implemented three representative string abstract
domains [4]: the String Set (SS:) domain, the Character Inclusion
(CI) domain, and the Pre�x-Su�x (PS) domain. Table 2 summarizes
formal de�nitions of their elements, concretization functions, and
concatenation operations. In the table, ⌃ denotes a set of charac-
ters, and the set of strings is Vstr = ⌃⇤. We analyzed a JavaScript
program in Figure 10 using JSAES12 with di�erent string abstract
domains. The program uses a new language feature introduced
in ES6 called a template literal, which is a literal delimited with
backticks (�), allowing embedded expressions called substitutions.
For example, the template literal �c${x}d� on line 2 concatenates
a string �c�, the value in the variable x, and a string �d�. Since x

points to �a� or �b� on line 1, the variable y points to �cad� or �cbd�.
Similarly, z points to �aea� or �beb� by concatenating x, �e�, and x.

First, the String Set (SS:) domain represents a set of strings whose
size is bounded by : as an abstract string. Therefore, JSAES12 with
SS5 produced the following analysis results:

x 7! {�a�, �b�}
y 7! {�c�} · {�a�, �b�} · {�d�} = {�cad�, �cbd�}
z 7! {�a�, �b�} · {�e�} · {�a�, �b�} = {�aea�, �aeb�, �bea�, �beb�}

It produced precise analysis results for x and y. However, the result
for z has spurious values �aeb� and �bea� because it does not keep
the information that the left and right strings of �e� are the same.

The Character Inclusion (CI) domain tracks the lower and upper
bounds of characters occurring in strings. The analysis with this
domain produced the following analysis results:

x 7! [ú, {a, b}]
y 7! [{c}, {c}] · [ú, {a, b}] · [{d}, {d}] = [{c, d}, {a, b, c, d}]
z 7! [ú, {a, b}] · [{e}, {e}] · [ú, {a, b}] = [{e}, {a, b, e}]

This domain ignores structures of strings, but it is a cheap abstract
domain to check only the inclusion of characters in strings. For
example, it can say that the string in y always includes c and d, and
the string in z always includes e.

The last domain, Pre�x-Su�x (PS) keeps pre�xes and su�xes of
strings. JSAES12 produced the following analysis results with PS:

x 7! h��, ��i
y 7! h�c�, �c�i · h��, ��i · h�d�, �d�i = h�c�, �d�i
z 7! h��, ��i · h�e�, �e�i · h��, ��i = h��, ��i

This domain is also cheap but focuses on pre�xes and su�xes. Thus,
the analysis results cannot say anything about the strings in x or z,
but it describes that the string in y starts with �c� and ends with �d�.

ESEC/FSE 2022, 14 - 18 November, 2022, Singapore Anon.

(a) The analysis precision (b) The analysis performance

Figure 9: The analysis precision and performance for 3,878
tests soundly analyzable by all of �ve analyzers

1 let x = /* �a� or �b� */;
2 let y = �c${x}d�; // �cad� or �cbd�
3 let z = �${x}e${x}�; // �aea� or �beb�

Figure 10: A JavaScript program using template literals

Test262 test programs, JSAES12 analyzed them with a high analysis
precision of 99.0% in 590 ms on average. Then, we compared its anal-
ysis precision with that of TAJS and SAFE. For a fair comparison,
we measured the analysis precision for 3,878 test programs soundly
analyzable by all of �ve analyzers: TAJS, TAJS with Babel, SAFE,
SAFE with Babel, and JSAES12. Figure 9(a) depicts the average and
distribution of the analysis precision in violin plots [19]. TAJS and
SAFE analyzed 3,878 test programs with 85.1% and 89.9% precision
on average, respectively. While Babel increased the number of test
programs soundly analyzed by existing analyzers, it decreased the
average analysis precision of TAJS to 84.9% and had no e�ect on
SAFE. It is due to that Babel transpiles simple ES6+ features into
a more complex combination of ES5 features even though TAJS
directly supports a small part of the ES6 features like arrow func-
tions or Symbol. However, JSAES12 has the highest analysis precision
of 99.5% on average.

On the other hand, the analysis speed of JSAES12 is slower than
that of TAJS and SAFE, and Figure 9(b) depicts them in violin
plots on a logarithmic scale. TAJS and SAFE took 139 ms and 181
ms, respectively, to analyze 3,878 test programs on average. Babel
increases their average analysis time to 169 ms and 199 ms, respec-
tively, because it transpiles all ES6+ features in test programs to
verbose ES5.1 features. However, JSAES12 took 357 ms on average to
analyze them because JSAVER derives precise abstract semantics for
all language features. On the contrary, TAJS and SAFE developers
often imprecisely or even unsoundly model the abstract semantics
of speci�c language features to increase the analysis speed. For ex-
ample, TAJS does not discriminate positive/negative in�nity values
or positive/negative zeros to reduce the number of possible cases
in abstract values. Similarly, SAFE ignores the semantics of getters
and setters to analyze object property reads quickly.

6.3 Con�gurability
We demonstrate the con�gurability of JSAVER with several case

studies for abstract domains and analysis sensitivities. We discuss
how di�erent abstract domains or analysis sensitivities a�ect anal-
ysis results of JSAES12 with examples.

Table 2: De�nitions of three string abstract domains

Domain De�nition

SS:
SS: = {>} [{(✓ ⌃⇤ | |(| : }
W (() = (
(· (0 = {B · B0 | B 2 (^ B0 2 (0 }

CI
CI = {?} [{ [!,*] | !,* ✓ ⌃ ^ ! ✓ * }
W ([!,*]) = {F 2 ⌃⇤ | ! ✓ chars(F) ✓ * }
[!,*] · [!0,* 0] = [! [!0,* [* 0]

PS
PS = {?} [(⌃⇤ ⇥ ⌃⇤)
W (h?, B i) = {? · F | F 2 ⌃⇤ } \ {F · B | F 2 ⌃⇤ }
h?, B i · h?0, B0 i = h?, B0 i

6.3.1 Abstract Domains. As explained in Section 4.3, we can con�g-
ure abstract domains for JavaScript values by con�guring those for
IRES values. In JavaScript static analysis, researchers have presented
diverse string domains to precisely analyze object property names.
Among them, we implemented three representative string abstract
domains [4]: the String Set (SS:) domain, the Character Inclusion
(CI) domain, and the Pre�x-Su�x (PS) domain. Table 2 summarizes
formal de�nitions of their elements, concretization functions, and
concatenation operations. In the table, ⌃ denotes a set of charac-
ters, and the set of strings is Vstr = ⌃⇤. We analyzed a JavaScript
program in Figure 10 using JSAES12 with di�erent string abstract
domains. The program uses a new language feature introduced
in ES6 called a template literal, which is a literal delimited with
backticks (�), allowing embedded expressions called substitutions.
For example, the template literal �c${x}d� on line 2 concatenates
a string �c�, the value in the variable x, and a string �d�. Since x

points to �a� or �b� on line 1, the variable y points to �cad� or �cbd�.
Similarly, z points to �aea� or �beb� by concatenating x, �e�, and x.

First, the String Set (SS:) domain represents a set of strings whose
size is bounded by : as an abstract string. Therefore, JSAES12 with
SS5 produced the following analysis results:

x 7! {�a�, �b�}
y 7! {�c�} · {�a�, �b�} · {�d�} = {�cad�, �cbd�}
z 7! {�a�, �b�} · {�e�} · {�a�, �b�} = {�aea�, �aeb�, �bea�, �beb�}

It produced precise analysis results for x and y. However, the result
for z has spurious values �aeb� and �bea� because it does not keep
the information that the left and right strings of �e� are the same.

The Character Inclusion (CI) domain tracks the lower and upper
bounds of characters occurring in strings. The analysis with this
domain produced the following analysis results:

x 7! [ú, {a, b}]
y 7! [{c}, {c}] · [ú, {a, b}] · [{d}, {d}] = [{c, d}, {a, b, c, d}]
z 7! [ú, {a, b}] · [{e}, {e}] · [ú, {a, b}] = [{e}, {a, b, e}]

This domain ignores structures of strings, but it is a cheap abstract
domain to check only the inclusion of characters in strings. For
example, it can say that the string in y always includes c and d, and
the string in z always includes e.

The last domain, Pre�x-Su�x (PS) keeps pre�xes and su�xes of
strings. JSAES12 produced the following analysis results with PS:

x 7! h��, ��i
y 7! h�c�, �c�i · h��, ��i · h�d�, �d�i = h�c�, �d�i
z 7! h��, ��i · h�e�, �e�i · h��, ��i = h��, ��i

This domain is also cheap but focuses on pre�xes and su�xes. Thus,
the analysis results cannot say anything about the strings in x or z,
but it describes that the string in y starts with �c� and ends with �d�.

Analysis

Result

JavaScript

Programs

Derived Static

Analyzer

DCS �¿�. 1•Xî ⌅\¯ò� ∏¥ Ö8| ⌅\ ê§lΩ∏ �� Ñ�.
⌅∞YÄ . 2022D. 46+iv Ω. ¿ƒP⇠: X��. (�8 |8)
Jihyeok Park. JavaScript Static Analysis for Evolving Language Specifica-
tions. School of Computing . 2022. 46+iv pages. Advisor: Sukyoung Ryu.
(Text in English)

�]

ê§lΩ∏X Ÿ�x 1»¸ ı°\ X¯`@ ê§lΩ∏ ⌅\¯®‰X âŸD �UXå ttX0 ¥

5å Ã‡‰. lê‰@ t| t∞X‡ê ‰ë\ ê§lΩ∏ �� Ñ�0‰D ⌧⌧tT¿Ã, t‰@
®P ⇠Ÿ<\ $ƒ� ⇠»0– xŸ—}�t‡ $X– Ë}X‰. ⇣\, 2014D –Ä0 ê§lΩ∏X
∏¥ Ö8� ‰D 1‡⇠0 ‹ëXt⌧ t 8⌧î T Ï�tL‰. ¯ Y⌅ |8–⌧î ê§lΩ∏ ∏¥
Ö8\Ä0êŸ<\ê§lΩ∏��Ñ�0| ƒt¥î»\¥)›D⌧H\‰. tî 1)0ƒTÖ8
îú, 2) 0ƒT Ö8 ®1 Ä¨, ¯¨‡ 3) �� Ñ�0 ƒX 8 �¿ Ëƒ\ l1⌧‰. ¯ |8–⌧î
0ƒT Ö8 îú 0 D ⌧HX‡, t| t©t �• \‡ ê§lΩ∏ Ö8\Ä0 0ƒT Ö8| îú
\‰. ⇣\, ê§lΩ∏ ‘ƒD t©\ N+1-Ñ⌅ (Ñ L§⇧¸ 0ƒT Ö8X ¿Ö Ñ�D ⌧HX‡,
t| µt Ö8 ✏ ‘ƒX ∞hD Äú\‰. \Ö�<\, T¿ �� Ñ� 0 D ⌧HX‡, îú\ 0ƒT
Ö8\Ä0 êŸ<\ ê§lΩ∏ �� Ñ�0| ƒ\‰. ¯ Y⌅ |8–⌧ ⌧‹\)›@ ⌅\¯ò�
∏¥| ⌅\ Ö8, L§∏, ¯¨‡ ƒl‰X ıƒT| ⌅\ lX 0¿D »(` É<\ 0�\‰.

u Ï ± – ê§lΩ∏, 0ƒT Ö8 îú, Ö8 ¿Ö Ñ�, N+1-Ñ⌅ (Ñ L§⇧, T¿ �� Ñ�

Abstract
The highly dynamic nature and complex semantics of JavaScript make it difficult to correctly understand
the behaviors of JavaScript programs. To automatically reason about them, researchers have developed
various JavaScript static analyzers that conform to ECMAScript, the standard specification of JavaScript.
However, all the existing JavaScript static analyzers are manually designed; thus, the current approach
is labor-intensive and error-prone. Moreover, since late 2014, this problem becomes more critical because
the JavaScript language itself rapidly evolves with a yearly release cadence and open development process.

In this thesis, we introduce a novel approach to automatically derive JavaScript static analyzers
from any version of ECMAScript. Our approach consists of three steps: 1) mechanized specification
extraction, 2) mechanized specification validity check, and 3) derivation of static analyzers. First, we
present a tool JISET that automatically extracts a mechanized specification from ECMAScript. We show
that it successfully extracts a mechanized specification from the latest ECMAScript. Then, we present
two different tools to detect bugs in JavaScript specifications and engines; JEST performs N+1-version
differential testing with JavaScript engines and JSTAR performs a type analysis for the mechanized
specification. Finally, we present JSAVER that automatically derives JavaScript static analyzers from
mechanized specifications using a meta-level static analysis. For evaluation, we derive a JavaScript
static analyzer from the latest ECMAScript and show that it successfully analyzes all applicable official
conformance tests in a sound way. We believe that the thesis would be the first step towards the
co-evolution of specifications, tests, and tools for programming languages.

Keywords JavaScript, mechanized specification extraction, N+1-version differential testing, specifica-
tion type analysis, meta-level static analysis.

3. Derivation of
Static Analyzers

DCS �¿�. 1•Xî ⌅\¯ò� ∏¥ Ö8| ⌅\ ê§lΩ∏ �� Ñ�.
⌅∞YÄ . 2022D. 46+iv Ω. ¿ƒP⇠: X��. (�8 |8)
Jihyeok Park. JavaScript Static Analysis for Evolving Language Specifica-
tions. School of Computing . 2022. 46+iv pages. Advisor: Sukyoung Ryu.
(Text in English)

�]

ê§lΩ∏X Ÿ�x 1»¸ ı°\ X¯`@ ê§lΩ∏ ⌅\¯®‰X âŸD �UXå ttX0 ¥

5å Ã‡‰. lê‰@ t| t∞X‡ê ‰ë\ ê§lΩ∏ �� Ñ�0‰D ⌧⌧tT¿Ã, t‰@
®P ⇠Ÿ<\ $ƒ� ⇠»0– xŸ—}�t‡ $X– Ë}X‰. ⇣\, 2014D –Ä0 ê§lΩ∏X
∏¥ Ö8� ‰D 1‡⇠0 ‹ëXt⌧ t 8⌧î T Ï�tL‰. ¯ Y⌅ |8–⌧î ê§lΩ∏ ∏¥
Ö8\Ä0êŸ<\ê§lΩ∏��Ñ�0| ƒt¥î»\¥)›D⌧H\‰. tî 1)0ƒTÖ8
îú, 2) 0ƒT Ö8 ®1 Ä¨, ¯¨‡ 3) �� Ñ�0 ƒX 8 �¿ Ëƒ\ l1⌧‰. ¯ |8–⌧î
0ƒT Ö8 îú 0 D ⌧HX‡, t| t©t �• \‡ ê§lΩ∏ Ö8\Ä0 0ƒT Ö8| îú
\‰. ⇣\, ê§lΩ∏ ‘ƒD t©\ N+1-Ñ⌅ (Ñ L§⇧¸ 0ƒT Ö8X ¿Ö Ñ�D ⌧HX‡,
t| µt Ö8 ✏ ‘ƒX ∞hD Äú\‰. \Ö�<\, T¿ �� Ñ� 0 D ⌧HX‡, îú\ 0ƒT
Ö8\Ä0 êŸ<\ ê§lΩ∏ �� Ñ�0| ƒ\‰. ¯ Y⌅ |8–⌧ ⌧‹\)›@ ⌅\¯ò�
∏¥| ⌅\ Ö8, L§∏, ¯¨‡ ƒl‰X ıƒT| ⌅\ lX 0¿D »(` É<\ 0�\‰.

u Ï ± – ê§lΩ∏, 0ƒT Ö8 îú, Ö8 ¿Ö Ñ�, N+1-Ñ⌅ (Ñ L§⇧, T¿ �� Ñ�

Abstract
The highly dynamic nature and complex semantics of JavaScript make it difficult to correctly understand
the behaviors of JavaScript programs. To automatically reason about them, researchers have developed
various JavaScript static analyzers that conform to ECMAScript, the standard specification of JavaScript.
However, all the existing JavaScript static analyzers are manually designed; thus, the current approach
is labor-intensive and error-prone. Moreover, since late 2014, this problem becomes more critical because
the JavaScript language itself rapidly evolves with a yearly release cadence and open development process.

In this thesis, we introduce a novel approach to automatically derive JavaScript static analyzers
from any version of ECMAScript. Our approach consists of three steps: 1) mechanized specification
extraction, 2) mechanized specification validity check, and 3) derivation of static analyzers. First, we
present a tool JISET that automatically extracts a mechanized specification from ECMAScript. We show
that it successfully extracts a mechanized specification from the latest ECMAScript. Then, we present
two different tools to detect bugs in JavaScript specifications and engines; JEST performs N+1-version
differential testing with JavaScript engines and JSTAR performs a type analysis for the mechanized
specification. Finally, we present JSAVER that automatically derives JavaScript static analyzers from
mechanized specifications using a meta-level static analysis. For evaluation, we derive a JavaScript
static analyzer from the latest ECMAScript and show that it successfully analyzes all applicable official
conformance tests in a sound way. We believe that the thesis would be the first step towards the
co-evolution of specifications, tests, and tools for programming languages.

Keywords JavaScript, mechanized specification extraction, N+1-version differential testing, specifica-
tion type analysis, meta-level static analysis.

DCS �¿�. 1•Xî ⌅\¯ò� ∏¥ Ö8| ⌅\ ê§lΩ∏ �� Ñ�.
⌅∞YÄ . 2022D. 46+iv Ω. ¿ƒP⇠: X��. (�8 |8)
Jihyeok Park. JavaScript Static Analysis for Evolving Language Specifica-
tions. School of Computing . 2022. 46+iv pages. Advisor: Sukyoung Ryu.
(Text in English)

�]

ê§lΩ∏X Ÿ�x 1»¸ ı°\ X¯`@ ê§lΩ∏ ⌅\¯®‰X âŸD �UXå ttX0 ¥

5å Ã‡‰. lê‰@ t| t∞X‡ê ‰ë\ ê§lΩ∏ �� Ñ�0‰D ⌧⌧tT¿Ã, t‰@
®P ⇠Ÿ<\ $ƒ� ⇠»0– xŸ—}�t‡ $X– Ë}X‰. ⇣\, 2014D –Ä0 ê§lΩ∏X
∏¥ Ö8� ‰D 1‡⇠0 ‹ëXt⌧ t 8⌧î T Ï�tL‰. ¯ Y⌅ |8–⌧î ê§lΩ∏ ∏¥
Ö8\Ä0êŸ<\ê§lΩ∏��Ñ�0| ƒt¥î»\¥)›D⌧H\‰. tî 1)0ƒTÖ8
îú, 2) 0ƒT Ö8 ®1 Ä¨, ¯¨‡ 3) �� Ñ�0 ƒX 8 �¿ Ëƒ\ l1⌧‰. ¯ |8–⌧î
0ƒT Ö8 îú 0 D ⌧HX‡, t| t©t �• \‡ ê§lΩ∏ Ö8\Ä0 0ƒT Ö8| îú
\‰. ⇣\, ê§lΩ∏ ‘ƒD t©\ N+1-Ñ⌅ (Ñ L§⇧¸ 0ƒT Ö8X ¿Ö Ñ�D ⌧HX‡,
t| µt Ö8 ✏ ‘ƒX ∞hD Äú\‰. \Ö�<\, T¿ �� Ñ� 0 D ⌧HX‡, îú\ 0ƒT
Ö8\Ä0 êŸ<\ ê§lΩ∏ �� Ñ�0| ƒ\‰. ¯ Y⌅ |8–⌧ ⌧‹\)›@ ⌅\¯ò�
∏¥| ⌅\ Ö8, L§∏, ¯¨‡ ƒl‰X ıƒT| ⌅\ lX 0¿D »(` É<\ 0�\‰.

u Ï ± – ê§lΩ∏, 0ƒT Ö8 îú, Ö8 ¿Ö Ñ�, N+1-Ñ⌅ (Ñ L§⇧, T¿ �� Ñ�

Abstract
The highly dynamic nature and complex semantics of JavaScript make it difficult to correctly understand
the behaviors of JavaScript programs. To automatically reason about them, researchers have developed
various JavaScript static analyzers that conform to ECMAScript, the standard specification of JavaScript.
However, all the existing JavaScript static analyzers are manually designed; thus, the current approach
is labor-intensive and error-prone. Moreover, since late 2014, this problem becomes more critical because
the JavaScript language itself rapidly evolves with a yearly release cadence and open development process.

In this thesis, we introduce a novel approach to automatically derive JavaScript static analyzers
from any version of ECMAScript. Our approach consists of three steps: 1) mechanized specification
extraction, 2) mechanized specification validity check, and 3) derivation of static analyzers. First, we
present a tool JISET that automatically extracts a mechanized specification from ECMAScript. We show
that it successfully extracts a mechanized specification from the latest ECMAScript. Then, we present
two different tools to detect bugs in JavaScript specifications and engines; JEST performs N+1-version
differential testing with JavaScript engines and JSTAR performs a type analysis for the mechanized
specification. Finally, we present JSAVER that automatically derives JavaScript static analyzers from
mechanized specifications using a meta-level static analysis. For evaluation, we derive a JavaScript
static analyzer from the latest ECMAScript and show that it successfully analyzes all applicable official
conformance tests in a sound way. We believe that the thesis would be the first step towards the
co-evolution of specifications, tests, and tools for programming languages.

Keywords JavaScript, mechanized specification extraction, N+1-version differential testing, specifica-
tion type analysis, meta-level static analysis.

2. Specification
Validity Check

[ICSE'21] [ASE'21]
Distinguished Paper

Mechanized

SpecificationECMA-262

DCS �¿�. 1•Xî ⌅\¯ò� ∏¥ Ö8| ⌅\ ê§lΩ∏ �� Ñ�.
⌅∞YÄ . 2022D. 46+iv Ω. ¿ƒP⇠: X��. (�8 |8)
Jihyeok Park. JavaScript Static Analysis for Evolving Language Specifica-
tions. School of Computing . 2022. 46+iv pages. Advisor: Sukyoung Ryu.
(Text in English)

�]

ê§lΩ∏X Ÿ�x 1»¸ ı°\ X¯`@ ê§lΩ∏ ⌅\¯®‰X âŸD �UXå ttX0 ¥

5å Ã‡‰. lê‰@ t| t∞X‡ê ‰ë\ ê§lΩ∏ �� Ñ�0‰D ⌧⌧tT¿Ã, t‰@
®P ⇠Ÿ<\ $ƒ� ⇠»0– xŸ—}�t‡ $X– Ë}X‰. ⇣\, 2014D –Ä0 ê§lΩ∏X
∏¥ Ö8� ‰D 1‡⇠0 ‹ëXt⌧ t 8⌧î T Ï�tL‰. ¯ Y⌅ |8–⌧î ê§lΩ∏ ∏¥
Ö8\Ä0êŸ<\ê§lΩ∏��Ñ�0| ƒt¥î»\¥)›D⌧H\‰. tî 1)0ƒTÖ8
îú, 2) 0ƒT Ö8 ®1 Ä¨, ¯¨‡ 3) �� Ñ�0 ƒX 8 �¿ Ëƒ\ l1⌧‰. ¯ |8–⌧î
0ƒT Ö8 îú 0 D ⌧HX‡, t| t©t �• \‡ ê§lΩ∏ Ö8\Ä0 0ƒT Ö8| îú
\‰. ⇣\, ê§lΩ∏ ‘ƒD t©\ N+1-Ñ⌅ (Ñ L§⇧¸ 0ƒT Ö8X ¿Ö Ñ�D ⌧HX‡,
t| µt Ö8 ✏ ‘ƒX ∞hD Äú\‰. \Ö�<\, T¿ �� Ñ� 0 D ⌧HX‡, îú\ 0ƒT
Ö8\Ä0 êŸ<\ ê§lΩ∏ �� Ñ�0| ƒ\‰. ¯ Y⌅ |8–⌧ ⌧‹\)›@ ⌅\¯ò�
∏¥| ⌅\ Ö8, L§∏, ¯¨‡ ƒl‰X ıƒT| ⌅\ lX 0¿D »(` É<\ 0�\‰.

u Ï ± – ê§lΩ∏, 0ƒT Ö8 îú, Ö8 ¿Ö Ñ�, N+1-Ñ⌅ (Ñ L§⇧, T¿ �� Ñ�

Abstract
The highly dynamic nature and complex semantics of JavaScript make it difficult to correctly understand
the behaviors of JavaScript programs. To automatically reason about them, researchers have developed
various JavaScript static analyzers that conform to ECMAScript, the standard specification of JavaScript.
However, all the existing JavaScript static analyzers are manually designed; thus, the current approach
is labor-intensive and error-prone. Moreover, since late 2014, this problem becomes more critical because
the JavaScript language itself rapidly evolves with a yearly release cadence and open development process.

In this thesis, we introduce a novel approach to automatically derive JavaScript static analyzers
from any version of ECMAScript. Our approach consists of three steps: 1) mechanized specification
extraction, 2) mechanized specification validity check, and 3) derivation of static analyzers. First, we
present a tool JISET that automatically extracts a mechanized specification from ECMAScript. We show
that it successfully extracts a mechanized specification from the latest ECMAScript. Then, we present
two different tools to detect bugs in JavaScript specifications and engines; JEST performs N+1-version
differential testing with JavaScript engines and JSTAR performs a type analysis for the mechanized
specification. Finally, we present JSAVER that automatically derives JavaScript static analyzers from
mechanized specifications using a meta-level static analysis. For evaluation, we derive a JavaScript
static analyzer from the latest ECMAScript and show that it successfully analyzes all applicable official
conformance tests in a sound way. We believe that the thesis would be the first step towards the
co-evolution of specifications, tests, and tools for programming languages.

Keywords JavaScript, mechanized specification extraction, N+1-version differential testing, specifica-
tion type analysis, meta-level static analysis.

1. Mechanized Spec.
Extraction

[ASE'20]

Conformance Test

Synthesis

Type Analysis for

Specification

In Submission

Backup Slides

A ::= B; / B + B;
B ::= x / xy

<latexit sha1_base64="Gy2vXkNCxBEZUx9WCbJKa44pHvA=">AAACjnicbVHvaxQxEM2uP1q3Va/60S/BQxCEc7eKlZZie/qhX4QKvbZwOY5sbu4uNJtdktnSNWz/T8E/xuzeWrV1IPDmzbyZ5CUtlLQYxz+C8N79Bw/X1h9FG5uPnzztbT07tXlpBIxErnJznnILSmoYoUQF54UBnqUKztKLz0397BKMlbk+waqAScYXWs6l4Oipae+SpbCQ2nFjeFU7VUeHdHd3nw4pQ7hCRLdX0+u31w2xd8O9qX02/NPBWDRsZb+pq5XoJq2aFgZ61i2a9vrxIG6D3gVJB/qki+PpVkDYLBdlBhqF4taOk7jAiR+HUiioI1ZaKLi44AsYe6h5BnbiWoNq+sozMzrPjT8aacv+rXA8s7bKUt+ZcVza27WG/F9tXOL848RJXZQIWqwWzUtFMaeN23QmDQhUlQdcGOnvSsWSGy7Q/0nEvoB/i4Gvfu6hKpY8BXSs2VJ8F7U7SWrXgqx2EhvPktsO3QWn24Pk3WD72/v+wbBzb528IC/Ja5KQHXJAjsgxGRFBfgZhsBFshr3wQ7gfflq1hkGneU7+ifDoF235xz4=</latexit>

input : xy;
<latexit sha1_base64="U8uPUGiyhrVLaBAFUFKM0a7rj8k=">AAACInicbVDLSsNAFL3xbX3r0k2wCK5KooKCG18LN4JCq0JTZDK9tYOTZJi5EeuQ33CrC7/GnbgS/BgnbRe+DgwczrmvObGSwlAQfHgjo2PjE5NT05WZ2bn5hcWl5QuT5Zpjg2cy01cxMyhFig0SJPFKaWRJLPEyvj0q/cs71EZkaZ16ClsJu0lFR3BGTooiwnsisve9veJ6sRrUgj78vyQckioMcXa95EHUznieYEpcMmOaYaCoZZkmwSUWlSg3qBi/ZTfYdDRlCZqW7R9d+OtOafudTLuXkt9Xv3dYlhjTS2JXmTDqmt9eKf7nNXPq7LasSFVOmPLBok4ufcr8MgG/LTRykj1HGNfC3erzLtOMk8upEh2j+4vGUzf3QKoui5FsVG5RD7yw9bCwfZIUVlCZWfg7ob/kYrMWbtU2z7er+4fD9KZgFdZgA0LYgX04gTNoAAcFj/AEz96L9+q9ee+D0hFv2LMCP+B9fgH7waU8</latexit>

xy;
<latexit sha1_base64="U8uPUGiyhrVLaBAFUFKM0a7rj8k=">AAACInicbVDLSsNAFL3xbX3r0k2wCK5KooKCG18LN4JCq0JTZDK9tYOTZJi5EeuQ33CrC7/GnbgS/BgnbRe+DgwczrmvObGSwlAQfHgjo2PjE5NT05WZ2bn5hcWl5QuT5Zpjg2cy01cxMyhFig0SJPFKaWRJLPEyvj0q/cs71EZkaZ16ClsJu0lFR3BGTooiwnsisve9veJ6sRrUgj78vyQckioMcXa95EHUznieYEpcMmOaYaCoZZkmwSUWlSg3qBi/ZTfYdDRlCZqW7R9d+OtOafudTLuXkt9Xv3dYlhjTS2JXmTDqmt9eKf7nNXPq7LasSFVOmPLBok4ufcr8MgG/LTRykj1HGNfC3erzLtOMk8upEh2j+4vGUzf3QKoui5FsVG5RD7yw9bCwfZIUVlCZWfg7ob/kYrMWbtU2z7er+4fD9KZgFdZgA0LYgX04gTNoAAcFj/AEz96L9+q9ee+D0hFv2LMCP+B9fgH7waU8</latexit>

xy;
<latexit sha1_base64="U8uPUGiyhrVLaBAFUFKM0a7rj8k=">AAACInicbVDLSsNAFL3xbX3r0k2wCK5KooKCG18LN4JCq0JTZDK9tYOTZJi5EeuQ33CrC7/GnbgS/BgnbRe+DgwczrmvObGSwlAQfHgjo2PjE5NT05WZ2bn5hcWl5QuT5Zpjg2cy01cxMyhFig0SJPFKaWRJLPEyvj0q/cs71EZkaZ16ClsJu0lFR3BGTooiwnsisve9veJ6sRrUgj78vyQckioMcXa95EHUznieYEpcMmOaYaCoZZkmwSUWlSg3qBi/ZTfYdDRlCZqW7R9d+OtOafudTLuXkt9Xv3dYlhjTS2JXmTDqmt9eKf7nNXPq7LasSFVOmPLBok4ufcr8MgG/LTRykj1HGNfC3erzLtOMk8upEh2j+4vGUzf3QKoui5FsVG5RD7yw9bCwfZIUVlCZWfg7ob/kYrMWbtU2z7er+4fD9KZgFdZgA0LYgX04gTNoAAcFj/AEz96L9+q9ee+D0hFv2LMCP+B9fgH7waU8</latexit>

A[x⇤]
<latexit sha1_base64="2XEm+hvI9qbbuqQzobeLekhqdGY=">AAACJ3icbVC7SgNBFL3r2/iKWtosBkEswq4KWhq1sBEUjArZNcxObsyQ2QczdyVx2C+x1cKvsRMt/RMnMYWvAwOHc+5rTpRJocnz3p2x8YnJqemZ2dLc/MLiUnl55VKnueJY56lM1XXENEqRYJ0ESbzOFLI4kngVdY8G/tUdKi3S5IL6GYYxu01EW3BGVmqWl2qNgLBHRKZX3GyFzXLFq3pDuH+JPyIVGOGsuexA0Ep5HmNCXDKtG76XUWiYIsElFqUg15gx3mW32LA0YTHq0AwvL9wNq7TcdqrsS8gdqt87DIu17seRrYwZdfRvbyD+5zVyau+HRiRZTpjwr0XtXLqUuoMY3JZQyEn2LWFcCXuryztMMU42rFJwjPYvCk/t3JrMOixCMsFgS3bPC3PhF2ZI4sIIKmxm/u+E/pLL7aq/U90+360cHI7Sm4E1WIdN8GEPDuAEzqAOHHJ4gEd4cp6dF+fVefsqHXNGPavwA87HJ1KFplg=</latexit>

x[x⇤]
<latexit sha1_base64="4BzEio6TyrEpyfdWmkGjiL7hjH4=">AAACMHicbZDJSgNBEIZr3I1b1IvgZTAI4iHMqKBHt4MXQcGokBlDT6diGnsWumvE2IxP41UPPo2exKtPYScGXAsaPv7auv4ok0KT5704A4NDwyOjY+Olicmp6Zny7NypTnPFscZTmarziGmUIsEaCZJ4nilkcSTxLLra6+bPrlFpkSYn1MkwjNllIlqCM7JSo7wQEN4Qkbkp6l94sRo2yhWv6vXC/Qt+HyrQj6PGrANBM+V5jAlxybSu+15GoWGKBJdYlIJcY8b4FbvEusWExahD0zuhcJet0nRbqbIvIbenfu8wLNa6E0e2MmbU1r9zXfG/XD2n1lZoRJLlhAn/XNTKpUup2/XDbQqFnGTHAuNK2L+6vM0U42RdKwX7aG9ReGjn7siszSIkE3S3ZLe8MCd+YXoQF0ZQYT3zfzv0F07Xqv56de14o7K923dvDBZhCVbAh03YhgM4ghpwuIN7eIBH58l5dl6dt8/SAaffMw8/wnn/AByXquo=</latexit>

: non-terminal

: terminal

: match

: mismatch

A[�]
<latexit sha1_base64="9QZZ2k2Y2ZVg9yXnAbVqOgjBmJ4=">AAACHnicbVDLSgNBEOyNrxhfiR69LAbBU9hVQY+JevAiREg0kF1kdtIxQ2YfzPQKcdmf8KoHv8abeNW/cTbm4KtgoKjqnu6uIJFCk+N8WKW5+YXFpfJyZWV1bX2jWtu80nGqOHZ5LGPVC5hGKSLskiCJvUQhCwOJ18H4tPCv71BpEUcdmiToh+w2EkPBGRmp1+p7XCju31TrTsOZwv5L3Bmpwwztm5oF3iDmaYgRccm07rtOQn7GFAkuMa94qcaE8TG7xb6hEQtR+9l04dzeNcrAHsbKvIjsqfq9I2Oh1pMwMJUho5H+7RXif14/peGxn4koSQkj/jVomEqbYru43h4IhZzkxBDGlTC72nzEFONkMqp4Z2huUXhh/m3JZMQCpMwrpiT3PM86bp5NSZhngnKTmfs7ob/kar/hHjT2Lw/rzZNZemXYhh3YAxeOoAnn0IYucJDwAI/wZD1bL9ar9fZVWrJmPVvwA9b7J5DRot0=</latexit>

�<latexit sha1_base64="UuY8YOI9pFTy0StnhT4M1r6s4A4=">AAACG3icbVDLSgNBEOz1bXxFPXpZDIKnsBsFPcbHwYsQIYlCdpHZSScZMvtgpleIy36DVz34Nd7Eqwf/xkmyBzUWDBRV3dPdFSRSaHKcL2tufmFxaXlltbS2vrG5Vd7eaes4VRxbPJaxuguYRikibJEgiXeJQhYGEm+D4cXYv31ApUUcNWmUoB+yfiR6gjMyUsvjQvH7csWpOhPYs8QtSAUKNO63LfC6MU9DjIhLpnXHdRLyM6ZIcIl5yUs1JowPWR87hkYsRO1nk21z+8AoXbsXK/Misifqz46MhVqPwsBUhowG+q83Fv/zOin1Tv1MRElKGPHpoF4qbYrt8el2VyjkJEeGMK6E2dXmA6YYJxNQybtEc4vCa/PvmUwGLEDKvPGU5JHnWdPNswkJ80xQbjJz/yY0S9q1qntUrd0cV+rnRXorsAf7cAgunEAdrqABLeAg4Ame4cV6td6sd+tjWjpnFT278AvW5zd0W6HG</latexit>

: end of input

Lookahead
Tokens

A ::= B; / B + B;
B ::= x / xy

<latexit sha1_base64="Gy2vXkNCxBEZUx9WCbJKa44pHvA=">AAACjnicbVHvaxQxEM2uP1q3Va/60S/BQxCEc7eKlZZie/qhX4QKvbZwOY5sbu4uNJtdktnSNWz/T8E/xuzeWrV1IPDmzbyZ5CUtlLQYxz+C8N79Bw/X1h9FG5uPnzztbT07tXlpBIxErnJznnILSmoYoUQF54UBnqUKztKLz0397BKMlbk+waqAScYXWs6l4Oipae+SpbCQ2nFjeFU7VUeHdHd3nw4pQ7hCRLdX0+u31w2xd8O9qX02/NPBWDRsZb+pq5XoJq2aFgZ61i2a9vrxIG6D3gVJB/qki+PpVkDYLBdlBhqF4taOk7jAiR+HUiioI1ZaKLi44AsYe6h5BnbiWoNq+sozMzrPjT8aacv+rXA8s7bKUt+ZcVza27WG/F9tXOL848RJXZQIWqwWzUtFMaeN23QmDQhUlQdcGOnvSsWSGy7Q/0nEvoB/i4Gvfu6hKpY8BXSs2VJ8F7U7SWrXgqx2EhvPktsO3QWn24Pk3WD72/v+wbBzb528IC/Ja5KQHXJAjsgxGRFBfgZhsBFshr3wQ7gfflq1hkGneU7+ifDoF235xz4=</latexit>

input : xy;
<latexit sha1_base64="U8uPUGiyhrVLaBAFUFKM0a7rj8k=">AAACInicbVDLSsNAFL3xbX3r0k2wCK5KooKCG18LN4JCq0JTZDK9tYOTZJi5EeuQ33CrC7/GnbgS/BgnbRe+DgwczrmvObGSwlAQfHgjo2PjE5NT05WZ2bn5hcWl5QuT5Zpjg2cy01cxMyhFig0SJPFKaWRJLPEyvj0q/cs71EZkaZ16ClsJu0lFR3BGTooiwnsisve9veJ6sRrUgj78vyQckioMcXa95EHUznieYEpcMmOaYaCoZZkmwSUWlSg3qBi/ZTfYdDRlCZqW7R9d+OtOafudTLuXkt9Xv3dYlhjTS2JXmTDqmt9eKf7nNXPq7LasSFVOmPLBok4ufcr8MgG/LTRykj1HGNfC3erzLtOMk8upEh2j+4vGUzf3QKoui5FsVG5RD7yw9bCwfZIUVlCZWfg7ob/kYrMWbtU2z7er+4fD9KZgFdZgA0LYgX04gTNoAAcFj/AEz96L9+q9ee+D0hFv2LMCP+B9fgH7waU8</latexit>

xy;
<latexit sha1_base64="U8uPUGiyhrVLaBAFUFKM0a7rj8k=">AAACInicbVDLSsNAFL3xbX3r0k2wCK5KooKCG18LN4JCq0JTZDK9tYOTZJi5EeuQ33CrC7/GnbgS/BgnbRe+DgwczrmvObGSwlAQfHgjo2PjE5NT05WZ2bn5hcWl5QuT5Zpjg2cy01cxMyhFig0SJPFKaWRJLPEyvj0q/cs71EZkaZ16ClsJu0lFR3BGTooiwnsisve9veJ6sRrUgj78vyQckioMcXa95EHUznieYEpcMmOaYaCoZZkmwSUWlSg3qBi/ZTfYdDRlCZqW7R9d+OtOafudTLuXkt9Xv3dYlhjTS2JXmTDqmt9eKf7nNXPq7LasSFVOmPLBok4ufcr8MgG/LTRykj1HGNfC3erzLtOMk8upEh2j+4vGUzf3QKoui5FsVG5RD7yw9bCwfZIUVlCZWfg7ob/kYrMWbtU2z7er+4fD9KZgFdZgA0LYgX04gTNoAAcFj/AEz96L9+q9ee+D0hFv2LMCP+B9fgH7waU8</latexit>

xy;
<latexit sha1_base64="U8uPUGiyhrVLaBAFUFKM0a7rj8k=">AAACInicbVDLSsNAFL3xbX3r0k2wCK5KooKCG18LN4JCq0JTZDK9tYOTZJi5EeuQ33CrC7/GnbgS/BgnbRe+DgwczrmvObGSwlAQfHgjo2PjE5NT05WZ2bn5hcWl5QuT5Zpjg2cy01cxMyhFig0SJPFKaWRJLPEyvj0q/cs71EZkaZ16ClsJu0lFR3BGTooiwnsisve9veJ6sRrUgj78vyQckioMcXa95EHUznieYEpcMmOaYaCoZZkmwSUWlSg3qBi/ZTfYdDRlCZqW7R9d+OtOafudTLuXkt9Xv3dYlhjTS2JXmTDqmt9eKf7nNXPq7LasSFVOmPLBok4ufcr8MgG/LTRykj1HGNfC3erzLtOMk8upEh2j+4vGUzf3QKoui5FsVG5RD7yw9bCwfZIUVlCZWfg7ob/kYrMWbtU2z7er+4fD9KZgFdZgA0LYgX04gTNoAAcFj/AEz96L9+q9ee+D0hFv2LMCP+B9fgH7waU8</latexit>

A[x⇤]
<latexit sha1_base64="2XEm+hvI9qbbuqQzobeLekhqdGY=">AAACJ3icbVC7SgNBFL3r2/iKWtosBkEswq4KWhq1sBEUjArZNcxObsyQ2QczdyVx2C+x1cKvsRMt/RMnMYWvAwOHc+5rTpRJocnz3p2x8YnJqemZ2dLc/MLiUnl55VKnueJY56lM1XXENEqRYJ0ESbzOFLI4kngVdY8G/tUdKi3S5IL6GYYxu01EW3BGVmqWl2qNgLBHRKZX3GyFzXLFq3pDuH+JPyIVGOGsuexA0Ep5HmNCXDKtG76XUWiYIsElFqUg15gx3mW32LA0YTHq0AwvL9wNq7TcdqrsS8gdqt87DIu17seRrYwZdfRvbyD+5zVyau+HRiRZTpjwr0XtXLqUuoMY3JZQyEn2LWFcCXuryztMMU42rFJwjPYvCk/t3JrMOixCMsFgS3bPC3PhF2ZI4sIIKmxm/u+E/pLL7aq/U90+360cHI7Sm4E1WIdN8GEPDuAEzqAOHHJ4gEd4cp6dF+fVefsqHXNGPavwA87HJ1KFplg=</latexit>

x[x⇤]
<latexit sha1_base64="4BzEio6TyrEpyfdWmkGjiL7hjH4=">AAACMHicbZDJSgNBEIZr3I1b1IvgZTAI4iHMqKBHt4MXQcGokBlDT6diGnsWumvE2IxP41UPPo2exKtPYScGXAsaPv7auv4ok0KT5704A4NDwyOjY+Olicmp6Zny7NypTnPFscZTmarziGmUIsEaCZJ4nilkcSTxLLra6+bPrlFpkSYn1MkwjNllIlqCM7JSo7wQEN4Qkbkp6l94sRo2yhWv6vXC/Qt+HyrQj6PGrANBM+V5jAlxybSu+15GoWGKBJdYlIJcY8b4FbvEusWExahD0zuhcJet0nRbqbIvIbenfu8wLNa6E0e2MmbU1r9zXfG/XD2n1lZoRJLlhAn/XNTKpUup2/XDbQqFnGTHAuNK2L+6vM0U42RdKwX7aG9ReGjn7siszSIkE3S3ZLe8MCd+YXoQF0ZQYT3zfzv0F07Xqv56de14o7K923dvDBZhCVbAh03YhgM4ghpwuIN7eIBH58l5dl6dt8/SAaffMw8/wnn/AByXquo=</latexit>

: non-terminal

: terminal

: match

: mismatch

A[�]
<latexit sha1_base64="9QZZ2k2Y2ZVg9yXnAbVqOgjBmJ4=">AAACHnicbVDLSgNBEOyNrxhfiR69LAbBU9hVQY+JevAiREg0kF1kdtIxQ2YfzPQKcdmf8KoHv8abeNW/cTbm4KtgoKjqnu6uIJFCk+N8WKW5+YXFpfJyZWV1bX2jWtu80nGqOHZ5LGPVC5hGKSLskiCJvUQhCwOJ18H4tPCv71BpEUcdmiToh+w2EkPBGRmp1+p7XCju31TrTsOZwv5L3Bmpwwztm5oF3iDmaYgRccm07rtOQn7GFAkuMa94qcaE8TG7xb6hEQtR+9l04dzeNcrAHsbKvIjsqfq9I2Oh1pMwMJUho5H+7RXif14/peGxn4koSQkj/jVomEqbYru43h4IhZzkxBDGlTC72nzEFONkMqp4Z2huUXhh/m3JZMQCpMwrpiT3PM86bp5NSZhngnKTmfs7ob/kar/hHjT2Lw/rzZNZemXYhh3YAxeOoAnn0IYucJDwAI/wZD1bL9ar9fZVWrJmPVvwA9b7J5DRot0=</latexit>

�<latexit sha1_base64="UuY8YOI9pFTy0StnhT4M1r6s4A4=">AAACG3icbVDLSgNBEOz1bXxFPXpZDIKnsBsFPcbHwYsQIYlCdpHZSScZMvtgpleIy36DVz34Nd7Eqwf/xkmyBzUWDBRV3dPdFSRSaHKcL2tufmFxaXlltbS2vrG5Vd7eaes4VRxbPJaxuguYRikibJEgiXeJQhYGEm+D4cXYv31ApUUcNWmUoB+yfiR6gjMyUsvjQvH7csWpOhPYs8QtSAUKNO63LfC6MU9DjIhLpnXHdRLyM6ZIcIl5yUs1JowPWR87hkYsRO1nk21z+8AoXbsXK/Misifqz46MhVqPwsBUhowG+q83Fv/zOin1Tv1MRElKGPHpoF4qbYrt8el2VyjkJEeGMK6E2dXmA6YYJxNQybtEc4vCa/PvmUwGLEDKvPGU5JHnWdPNswkJ80xQbjJz/yY0S9q1qntUrd0cV+rnRXorsAf7cAgunEAdrqABLeAg4Ame4cV6td6sd+tjWjpnFT278AvW5zd0W6HG</latexit>

: end of input

Lookahead
Tokens

B[;]
<latexit sha1_base64="hKdDe42nbU+uw/dMTIadkAvk238=">AAACI3icbVDJSgNBFHzjbtwSPXoZDIKnMKOCgpe4HLwICiYKmUF6Oi+msWex+40Ym/kOr3rwa7yJFw/+i53l4FbQUFS9rSvKpNDkeR/O2PjE5NT0zGxpbn5hcalcWW7qNFccGzyVqbqMmEYpEmyQIImXmUIWRxIvopvDvn9xh0qLNDmnXoZhzK4T0RGckZXCg1ZAeE9EZq8Ir8pVr+YN4P4l/ohUYYTTq4oDQTvleYwJccm0bvleRqFhigSXWJSCXGPG+A27xpalCYtRh2ZwdeGuW6XtdlJlX0LuQP3eYVisdS+ObGXMqKt/e33xP6+VU2c3NCLJcsKEDxd1culS6vYjcNtCISfZs4RxJeytLu8yxTjZoErBEdq/KDyxc/dl1mURkgn6W7IHXphzvzADEhdGUGEz838n9Jc0N2v+Vm3zbLtaPxilNwOrsAYb4MMO1OEYTqEBHG7hEZ7g2XlxXp03531YOuaMelbgB5zPLzIfpU8=</latexit>

;[�]
<latexit sha1_base64="OsMyu26amX8OQtGAV1Jx/DUrsc8=">AAACKXicbVDJSgNBFHzjbtwSPXoZDIKnMKOCghe3gxchQqJCZgg9nRfT2LPQ/UaNzXyKVz34Nd7Uqz9iJ+bgVtBQVL2tK8qk0OR5b87Y+MTk1PTMbGlufmFxqVxZPtdprjg2eSpTdRkxjVIk2CRBEi8zhSyOJF5E10cD/+IGlRZp0qB+hmHMrhLRFZyRldrlSkB4R0Rmr2gFXCgetstVr+YN4f4l/ohUYYR6u+JA0El5HmNCXDKtW76XUWiYIsElFqUg15gxfs2usGVpwmLUoRneXrjrVum43VTZl5A7VL93GBZr3Y8jWxkz6unf3kD8z2vl1N0NjUiynDDhX4u6uXQpdQdBuB2hkJPsW8K4EvZWl/eYYpxsXKXgGO1fFJ7auQcy67EIyQSDLdk9L0zDL8yQxIURVNjM/N8J/SXnmzV/q7Z5tl3dPxylNwOrsAYb4MMO7MMJ1KEJHG7hAR7hyXl2XpxX5/2rdMwZ9azADzgfn0/bp2M=</latexit>

A ::= B; / B + B;
B ::= x / xy

<latexit sha1_base64="Gy2vXkNCxBEZUx9WCbJKa44pHvA=">AAACjnicbVHvaxQxEM2uP1q3Va/60S/BQxCEc7eKlZZie/qhX4QKvbZwOY5sbu4uNJtdktnSNWz/T8E/xuzeWrV1IPDmzbyZ5CUtlLQYxz+C8N79Bw/X1h9FG5uPnzztbT07tXlpBIxErnJznnILSmoYoUQF54UBnqUKztKLz0397BKMlbk+waqAScYXWs6l4Oipae+SpbCQ2nFjeFU7VUeHdHd3nw4pQ7hCRLdX0+u31w2xd8O9qX02/NPBWDRsZb+pq5XoJq2aFgZ61i2a9vrxIG6D3gVJB/qki+PpVkDYLBdlBhqF4taOk7jAiR+HUiioI1ZaKLi44AsYe6h5BnbiWoNq+sozMzrPjT8aacv+rXA8s7bKUt+ZcVza27WG/F9tXOL848RJXZQIWqwWzUtFMaeN23QmDQhUlQdcGOnvSsWSGy7Q/0nEvoB/i4Gvfu6hKpY8BXSs2VJ8F7U7SWrXgqx2EhvPktsO3QWn24Pk3WD72/v+wbBzb528IC/Ja5KQHXJAjsgxGRFBfgZhsBFshr3wQ7gfflq1hkGneU7+ifDoF235xz4=</latexit>

input : xy;
<latexit sha1_base64="U8uPUGiyhrVLaBAFUFKM0a7rj8k=">AAACInicbVDLSsNAFL3xbX3r0k2wCK5KooKCG18LN4JCq0JTZDK9tYOTZJi5EeuQ33CrC7/GnbgS/BgnbRe+DgwczrmvObGSwlAQfHgjo2PjE5NT05WZ2bn5hcWl5QuT5Zpjg2cy01cxMyhFig0SJPFKaWRJLPEyvj0q/cs71EZkaZ16ClsJu0lFR3BGTooiwnsisve9veJ6sRrUgj78vyQckioMcXa95EHUznieYEpcMmOaYaCoZZkmwSUWlSg3qBi/ZTfYdDRlCZqW7R9d+OtOafudTLuXkt9Xv3dYlhjTS2JXmTDqmt9eKf7nNXPq7LasSFVOmPLBok4ufcr8MgG/LTRykj1HGNfC3erzLtOMk8upEh2j+4vGUzf3QKoui5FsVG5RD7yw9bCwfZIUVlCZWfg7ob/kYrMWbtU2z7er+4fD9KZgFdZgA0LYgX04gTNoAAcFj/AEz96L9+q9ee+D0hFv2LMCP+B9fgH7waU8</latexit>

xy;
<latexit sha1_base64="U8uPUGiyhrVLaBAFUFKM0a7rj8k=">AAACInicbVDLSsNAFL3xbX3r0k2wCK5KooKCG18LN4JCq0JTZDK9tYOTZJi5EeuQ33CrC7/GnbgS/BgnbRe+DgwczrmvObGSwlAQfHgjo2PjE5NT05WZ2bn5hcWl5QuT5Zpjg2cy01cxMyhFig0SJPFKaWRJLPEyvj0q/cs71EZkaZ16ClsJu0lFR3BGTooiwnsisve9veJ6sRrUgj78vyQckioMcXa95EHUznieYEpcMmOaYaCoZZkmwSUWlSg3qBi/ZTfYdDRlCZqW7R9d+OtOafudTLuXkt9Xv3dYlhjTS2JXmTDqmt9eKf7nNXPq7LasSFVOmPLBok4ufcr8MgG/LTRykj1HGNfC3erzLtOMk8upEh2j+4vGUzf3QKoui5FsVG5RD7yw9bCwfZIUVlCZWfg7ob/kYrMWbtU2z7er+4fD9KZgFdZgA0LYgX04gTNoAAcFj/AEz96L9+q9ee+D0hFv2LMCP+B9fgH7waU8</latexit>

xy;
<latexit sha1_base64="U8uPUGiyhrVLaBAFUFKM0a7rj8k=">AAACInicbVDLSsNAFL3xbX3r0k2wCK5KooKCG18LN4JCq0JTZDK9tYOTZJi5EeuQ33CrC7/GnbgS/BgnbRe+DgwczrmvObGSwlAQfHgjo2PjE5NT05WZ2bn5hcWl5QuT5Zpjg2cy01cxMyhFig0SJPFKaWRJLPEyvj0q/cs71EZkaZ16ClsJu0lFR3BGTooiwnsisve9veJ6sRrUgj78vyQckioMcXa95EHUznieYEpcMmOaYaCoZZkmwSUWlSg3qBi/ZTfYdDRlCZqW7R9d+OtOafudTLuXkt9Xv3dYlhjTS2JXmTDqmt9eKf7nNXPq7LasSFVOmPLBok4ufcr8MgG/LTRykj1HGNfC3erzLtOMk8upEh2j+4vGUzf3QKoui5FsVG5RD7yw9bCwfZIUVlCZWfg7ob/kYrMWbtU2z7er+4fD9KZgFdZgA0LYgX04gTNoAAcFj/AEz96L9+q9ee+D0hFv2LMCP+B9fgH7waU8</latexit>

A[x⇤]
<latexit sha1_base64="2XEm+hvI9qbbuqQzobeLekhqdGY=">AAACJ3icbVC7SgNBFL3r2/iKWtosBkEswq4KWhq1sBEUjArZNcxObsyQ2QczdyVx2C+x1cKvsRMt/RMnMYWvAwOHc+5rTpRJocnz3p2x8YnJqemZ2dLc/MLiUnl55VKnueJY56lM1XXENEqRYJ0ESbzOFLI4kngVdY8G/tUdKi3S5IL6GYYxu01EW3BGVmqWl2qNgLBHRKZX3GyFzXLFq3pDuH+JPyIVGOGsuexA0Ep5HmNCXDKtG76XUWiYIsElFqUg15gx3mW32LA0YTHq0AwvL9wNq7TcdqrsS8gdqt87DIu17seRrYwZdfRvbyD+5zVyau+HRiRZTpjwr0XtXLqUuoMY3JZQyEn2LWFcCXuryztMMU42rFJwjPYvCk/t3JrMOixCMsFgS3bPC3PhF2ZI4sIIKmxm/u+E/pLL7aq/U90+360cHI7Sm4E1WIdN8GEPDuAEzqAOHHJ4gEd4cp6dF+fVefsqHXNGPavwA87HJ1KFplg=</latexit>

x[x⇤]
<latexit sha1_base64="4BzEio6TyrEpyfdWmkGjiL7hjH4=">AAACMHicbZDJSgNBEIZr3I1b1IvgZTAI4iHMqKBHt4MXQcGokBlDT6diGnsWumvE2IxP41UPPo2exKtPYScGXAsaPv7auv4ok0KT5704A4NDwyOjY+Olicmp6Zny7NypTnPFscZTmarziGmUIsEaCZJ4nilkcSTxLLra6+bPrlFpkSYn1MkwjNllIlqCM7JSo7wQEN4Qkbkp6l94sRo2yhWv6vXC/Qt+HyrQj6PGrANBM+V5jAlxybSu+15GoWGKBJdYlIJcY8b4FbvEusWExahD0zuhcJet0nRbqbIvIbenfu8wLNa6E0e2MmbU1r9zXfG/XD2n1lZoRJLlhAn/XNTKpUup2/XDbQqFnGTHAuNK2L+6vM0U42RdKwX7aG9ReGjn7siszSIkE3S3ZLe8MCd+YXoQF0ZQYT3zfzv0F07Xqv56de14o7K923dvDBZhCVbAh03YhgM4ghpwuIN7eIBH58l5dl6dt8/SAaffMw8/wnn/AByXquo=</latexit>

: non-terminal

: terminal

: match

: mismatch

A[�]
<latexit sha1_base64="9QZZ2k2Y2ZVg9yXnAbVqOgjBmJ4=">AAACHnicbVDLSgNBEOyNrxhfiR69LAbBU9hVQY+JevAiREg0kF1kdtIxQ2YfzPQKcdmf8KoHv8abeNW/cTbm4KtgoKjqnu6uIJFCk+N8WKW5+YXFpfJyZWV1bX2jWtu80nGqOHZ5LGPVC5hGKSLskiCJvUQhCwOJ18H4tPCv71BpEUcdmiToh+w2EkPBGRmp1+p7XCju31TrTsOZwv5L3Bmpwwztm5oF3iDmaYgRccm07rtOQn7GFAkuMa94qcaE8TG7xb6hEQtR+9l04dzeNcrAHsbKvIjsqfq9I2Oh1pMwMJUho5H+7RXif14/peGxn4koSQkj/jVomEqbYru43h4IhZzkxBDGlTC72nzEFONkMqp4Z2huUXhh/m3JZMQCpMwrpiT3PM86bp5NSZhngnKTmfs7ob/kar/hHjT2Lw/rzZNZemXYhh3YAxeOoAnn0IYucJDwAI/wZD1bL9ar9fZVWrJmPVvwA9b7J5DRot0=</latexit>

�<latexit sha1_base64="UuY8YOI9pFTy0StnhT4M1r6s4A4=">AAACG3icbVDLSgNBEOz1bXxFPXpZDIKnsBsFPcbHwYsQIYlCdpHZSScZMvtgpleIy36DVz34Nd7Eqwf/xkmyBzUWDBRV3dPdFSRSaHKcL2tufmFxaXlltbS2vrG5Vd7eaes4VRxbPJaxuguYRikibJEgiXeJQhYGEm+D4cXYv31ApUUcNWmUoB+yfiR6gjMyUsvjQvH7csWpOhPYs8QtSAUKNO63LfC6MU9DjIhLpnXHdRLyM6ZIcIl5yUs1JowPWR87hkYsRO1nk21z+8AoXbsXK/Misifqz46MhVqPwsBUhowG+q83Fv/zOin1Tv1MRElKGPHpoF4qbYrt8el2VyjkJEeGMK6E2dXmA6YYJxNQybtEc4vCa/PvmUwGLEDKvPGU5JHnWdPNswkJ80xQbjJz/yY0S9q1qntUrd0cV+rnRXorsAf7cAgunEAdrqABLeAg4Ame4cV6td6sd+tjWjpnFT278AvW5zd0W6HG</latexit>

: end of input

Lookahead
Tokens

x[;]
<latexit sha1_base64="suQCUMMnfB4Z6nafurGCrkGEbCM=">AAACLnicbZDJSgNBEIZr3I1bVPDiZTAInsKMCgpe3A5eBAWjQmYIPZ2KadKz0F0jxnZexqsefBrBg3j1MezECG4FDR9/bV1/lEmhyfNenKHhkdGx8YnJ0tT0zOxceX7hXKe54ljjqUzVZcQ0SpFgjQRJvMwUsjiSeBF1Dnr5i2tUWqTJGXUzDGN2lYiW4Iys1CgvBYQ3RGRuivoX7hRho1zxql4/3L/gD6ACgzhpzDsQNFOex5gQl0zruu9lFBqmSHCJRSnINWaMd9gV1i0mLEYdmv4BhbtqlabbSpV9Cbl99XuHYbHW3TiylTGjtv6d64n/5eo5tbZDI5IsJ0z456JWLl1K3Z4bblMo5CS7FhhXwv7V5W2mGCfrWSk4RHuLwmM7d09mbRYhmaC3JbvlhTnzC9OHuDCCCuuZ/9uhv3C+XvU3quunm5Xd/YF7E7AMK7AGPmzBLhzBCdSAwx3cwwM8Ok/Os/PqvH2WDjmDnkX4Ec77B28GqhE=</latexit>

B[;]
<latexit sha1_base64="hKdDe42nbU+uw/dMTIadkAvk238=">AAACI3icbVDJSgNBFHzjbtwSPXoZDIKnMKOCgpe4HLwICiYKmUF6Oi+msWex+40Ym/kOr3rwa7yJFw/+i53l4FbQUFS9rSvKpNDkeR/O2PjE5NT0zGxpbn5hcalcWW7qNFccGzyVqbqMmEYpEmyQIImXmUIWRxIvopvDvn9xh0qLNDmnXoZhzK4T0RGckZXCg1ZAeE9EZq8Ir8pVr+YN4P4l/ohUYYTTq4oDQTvleYwJccm0bvleRqFhigSXWJSCXGPG+A27xpalCYtRh2ZwdeGuW6XtdlJlX0LuQP3eYVisdS+ObGXMqKt/e33xP6+VU2c3NCLJcsKEDxd1culS6vYjcNtCISfZs4RxJeytLu8yxTjZoErBEdq/KDyxc/dl1mURkgn6W7IHXphzvzADEhdGUGEz838n9Jc0N2v+Vm3zbLtaPxilNwOrsAYb4MMO1OEYTqEBHG7hEZ7g2XlxXp03531YOuaMelbgB5zPLzIfpU8=</latexit>

;[�]
<latexit sha1_base64="OsMyu26amX8OQtGAV1Jx/DUrsc8=">AAACKXicbVDJSgNBFHzjbtwSPXoZDIKnMKOCghe3gxchQqJCZgg9nRfT2LPQ/UaNzXyKVz34Nd7Uqz9iJ+bgVtBQVL2tK8qk0OR5b87Y+MTk1PTMbGlufmFxqVxZPtdprjg2eSpTdRkxjVIk2CRBEi8zhSyOJF5E10cD/+IGlRZp0qB+hmHMrhLRFZyRldrlSkB4R0Rmr2gFXCgetstVr+YN4f4l/ohUYYR6u+JA0El5HmNCXDKtW76XUWiYIsElFqUg15gxfs2usGVpwmLUoRneXrjrVum43VTZl5A7VL93GBZr3Y8jWxkz6unf3kD8z2vl1N0NjUiynDDhX4u6uXQpdQdBuB2hkJPsW8K4EvZWl/eYYpxsXKXgGO1fFJ7auQcy67EIyQSDLdk9L0zDL8yQxIURVNjM/N8J/SXnmzV/q7Z5tl3dPxylNwOrsAYb4MMO7MMJ1KEJHG7hAR7hyXl2XpxX5/2rdMwZ9azADzgfn0/bp2M=</latexit>

A ::= B; / B + B;
B ::= x / xy

<latexit sha1_base64="Gy2vXkNCxBEZUx9WCbJKa44pHvA=">AAACjnicbVHvaxQxEM2uP1q3Va/60S/BQxCEc7eKlZZie/qhX4QKvbZwOY5sbu4uNJtdktnSNWz/T8E/xuzeWrV1IPDmzbyZ5CUtlLQYxz+C8N79Bw/X1h9FG5uPnzztbT07tXlpBIxErnJznnILSmoYoUQF54UBnqUKztKLz0397BKMlbk+waqAScYXWs6l4Oipae+SpbCQ2nFjeFU7VUeHdHd3nw4pQ7hCRLdX0+u31w2xd8O9qX02/NPBWDRsZb+pq5XoJq2aFgZ61i2a9vrxIG6D3gVJB/qki+PpVkDYLBdlBhqF4taOk7jAiR+HUiioI1ZaKLi44AsYe6h5BnbiWoNq+sozMzrPjT8aacv+rXA8s7bKUt+ZcVza27WG/F9tXOL848RJXZQIWqwWzUtFMaeN23QmDQhUlQdcGOnvSsWSGy7Q/0nEvoB/i4Gvfu6hKpY8BXSs2VJ8F7U7SWrXgqx2EhvPktsO3QWn24Pk3WD72/v+wbBzb528IC/Ja5KQHXJAjsgxGRFBfgZhsBFshr3wQ7gfflq1hkGneU7+ifDoF235xz4=</latexit>

input : xy;
<latexit sha1_base64="U8uPUGiyhrVLaBAFUFKM0a7rj8k=">AAACInicbVDLSsNAFL3xbX3r0k2wCK5KooKCG18LN4JCq0JTZDK9tYOTZJi5EeuQ33CrC7/GnbgS/BgnbRe+DgwczrmvObGSwlAQfHgjo2PjE5NT05WZ2bn5hcWl5QuT5Zpjg2cy01cxMyhFig0SJPFKaWRJLPEyvj0q/cs71EZkaZ16ClsJu0lFR3BGTooiwnsisve9veJ6sRrUgj78vyQckioMcXa95EHUznieYEpcMmOaYaCoZZkmwSUWlSg3qBi/ZTfYdDRlCZqW7R9d+OtOafudTLuXkt9Xv3dYlhjTS2JXmTDqmt9eKf7nNXPq7LasSFVOmPLBok4ufcr8MgG/LTRykj1HGNfC3erzLtOMk8upEh2j+4vGUzf3QKoui5FsVG5RD7yw9bCwfZIUVlCZWfg7ob/kYrMWbtU2z7er+4fD9KZgFdZgA0LYgX04gTNoAAcFj/AEz96L9+q9ee+D0hFv2LMCP+B9fgH7waU8</latexit>

xy;
<latexit sha1_base64="U8uPUGiyhrVLaBAFUFKM0a7rj8k=">AAACInicbVDLSsNAFL3xbX3r0k2wCK5KooKCG18LN4JCq0JTZDK9tYOTZJi5EeuQ33CrC7/GnbgS/BgnbRe+DgwczrmvObGSwlAQfHgjo2PjE5NT05WZ2bn5hcWl5QuT5Zpjg2cy01cxMyhFig0SJPFKaWRJLPEyvj0q/cs71EZkaZ16ClsJu0lFR3BGTooiwnsisve9veJ6sRrUgj78vyQckioMcXa95EHUznieYEpcMmOaYaCoZZkmwSUWlSg3qBi/ZTfYdDRlCZqW7R9d+OtOafudTLuXkt9Xv3dYlhjTS2JXmTDqmt9eKf7nNXPq7LasSFVOmPLBok4ufcr8MgG/LTRykj1HGNfC3erzLtOMk8upEh2j+4vGUzf3QKoui5FsVG5RD7yw9bCwfZIUVlCZWfg7ob/kYrMWbtU2z7er+4fD9KZgFdZgA0LYgX04gTNoAAcFj/AEz96L9+q9ee+D0hFv2LMCP+B9fgH7waU8</latexit>

xy;
<latexit sha1_base64="U8uPUGiyhrVLaBAFUFKM0a7rj8k=">AAACInicbVDLSsNAFL3xbX3r0k2wCK5KooKCG18LN4JCq0JTZDK9tYOTZJi5EeuQ33CrC7/GnbgS/BgnbRe+DgwczrmvObGSwlAQfHgjo2PjE5NT05WZ2bn5hcWl5QuT5Zpjg2cy01cxMyhFig0SJPFKaWRJLPEyvj0q/cs71EZkaZ16ClsJu0lFR3BGTooiwnsisve9veJ6sRrUgj78vyQckioMcXa95EHUznieYEpcMmOaYaCoZZkmwSUWlSg3qBi/ZTfYdDRlCZqW7R9d+OtOafudTLuXkt9Xv3dYlhjTS2JXmTDqmt9eKf7nNXPq7LasSFVOmPLBok4ufcr8MgG/LTRykj1HGNfC3erzLtOMk8upEh2j+4vGUzf3QKoui5FsVG5RD7yw9bCwfZIUVlCZWfg7ob/kYrMWbtU2z7er+4fD9KZgFdZgA0LYgX04gTNoAAcFj/AEz96L9+q9ee+D0hFv2LMCP+B9fgH7waU8</latexit>

A[x⇤]
<latexit sha1_base64="2XEm+hvI9qbbuqQzobeLekhqdGY=">AAACJ3icbVC7SgNBFL3r2/iKWtosBkEswq4KWhq1sBEUjArZNcxObsyQ2QczdyVx2C+x1cKvsRMt/RMnMYWvAwOHc+5rTpRJocnz3p2x8YnJqemZ2dLc/MLiUnl55VKnueJY56lM1XXENEqRYJ0ESbzOFLI4kngVdY8G/tUdKi3S5IL6GYYxu01EW3BGVmqWl2qNgLBHRKZX3GyFzXLFq3pDuH+JPyIVGOGsuexA0Ep5HmNCXDKtG76XUWiYIsElFqUg15gx3mW32LA0YTHq0AwvL9wNq7TcdqrsS8gdqt87DIu17seRrYwZdfRvbyD+5zVyau+HRiRZTpjwr0XtXLqUuoMY3JZQyEn2LWFcCXuryztMMU42rFJwjPYvCk/t3JrMOixCMsFgS3bPC3PhF2ZI4sIIKmxm/u+E/pLL7aq/U90+360cHI7Sm4E1WIdN8GEPDuAEzqAOHHJ4gEd4cp6dF+fVefsqHXNGPavwA87HJ1KFplg=</latexit>

x[x⇤]
<latexit sha1_base64="4BzEio6TyrEpyfdWmkGjiL7hjH4=">AAACMHicbZDJSgNBEIZr3I1b1IvgZTAI4iHMqKBHt4MXQcGokBlDT6diGnsWumvE2IxP41UPPo2exKtPYScGXAsaPv7auv4ok0KT5704A4NDwyOjY+Olicmp6Zny7NypTnPFscZTmarziGmUIsEaCZJ4nilkcSTxLLra6+bPrlFpkSYn1MkwjNllIlqCM7JSo7wQEN4Qkbkp6l94sRo2yhWv6vXC/Qt+HyrQj6PGrANBM+V5jAlxybSu+15GoWGKBJdYlIJcY8b4FbvEusWExahD0zuhcJet0nRbqbIvIbenfu8wLNa6E0e2MmbU1r9zXfG/XD2n1lZoRJLlhAn/XNTKpUup2/XDbQqFnGTHAuNK2L+6vM0U42RdKwX7aG9ReGjn7siszSIkE3S3ZLe8MCd+YXoQF0ZQYT3zfzv0F07Xqv56de14o7K923dvDBZhCVbAh03YhgM4ghpwuIN7eIBH58l5dl6dt8/SAaffMw8/wnn/AByXquo=</latexit>

: non-terminal

: terminal

: match

: mismatch

A[�]
<latexit sha1_base64="9QZZ2k2Y2ZVg9yXnAbVqOgjBmJ4=">AAACHnicbVDLSgNBEOyNrxhfiR69LAbBU9hVQY+JevAiREg0kF1kdtIxQ2YfzPQKcdmf8KoHv8abeNW/cTbm4KtgoKjqnu6uIJFCk+N8WKW5+YXFpfJyZWV1bX2jWtu80nGqOHZ5LGPVC5hGKSLskiCJvUQhCwOJ18H4tPCv71BpEUcdmiToh+w2EkPBGRmp1+p7XCju31TrTsOZwv5L3Bmpwwztm5oF3iDmaYgRccm07rtOQn7GFAkuMa94qcaE8TG7xb6hEQtR+9l04dzeNcrAHsbKvIjsqfq9I2Oh1pMwMJUho5H+7RXif14/peGxn4koSQkj/jVomEqbYru43h4IhZzkxBDGlTC72nzEFONkMqp4Z2huUXhh/m3JZMQCpMwrpiT3PM86bp5NSZhngnKTmfs7ob/kar/hHjT2Lw/rzZNZemXYhh3YAxeOoAnn0IYucJDwAI/wZD1bL9ar9fZVWrJmPVvwA9b7J5DRot0=</latexit>

�<latexit sha1_base64="UuY8YOI9pFTy0StnhT4M1r6s4A4=">AAACG3icbVDLSgNBEOz1bXxFPXpZDIKnsBsFPcbHwYsQIYlCdpHZSScZMvtgpleIy36DVz34Nd7Eqwf/xkmyBzUWDBRV3dPdFSRSaHKcL2tufmFxaXlltbS2vrG5Vd7eaes4VRxbPJaxuguYRikibJEgiXeJQhYGEm+D4cXYv31ApUUcNWmUoB+yfiR6gjMyUsvjQvH7csWpOhPYs8QtSAUKNO63LfC6MU9DjIhLpnXHdRLyM6ZIcIl5yUs1JowPWR87hkYsRO1nk21z+8AoXbsXK/Misifqz46MhVqPwsBUhowG+q83Fv/zOin1Tv1MRElKGPHpoF4qbYrt8el2VyjkJEeGMK6E2dXmA6YYJxNQybtEc4vCa/PvmUwGLEDKvPGU5JHnWdPNswkJ80xQbjJz/yY0S9q1qntUrd0cV+rnRXorsAf7cAgunEAdrqABLeAg4Ame4cV6td6sd+tjWjpnFT278AvW5zd0W6HG</latexit>

: end of input

Lookahead
Tokens

x[;]
<latexit sha1_base64="suQCUMMnfB4Z6nafurGCrkGEbCM=">AAACLnicbZDJSgNBEIZr3I1bVPDiZTAInsKMCgpe3A5eBAWjQmYIPZ2KadKz0F0jxnZexqsefBrBg3j1MezECG4FDR9/bV1/lEmhyfNenKHhkdGx8YnJ0tT0zOxceX7hXKe54ljjqUzVZcQ0SpFgjQRJvMwUsjiSeBF1Dnr5i2tUWqTJGXUzDGN2lYiW4Iys1CgvBYQ3RGRuivoX7hRho1zxql4/3L/gD6ACgzhpzDsQNFOex5gQl0zruu9lFBqmSHCJRSnINWaMd9gV1i0mLEYdmv4BhbtqlabbSpV9Cbl99XuHYbHW3TiylTGjtv6d64n/5eo5tbZDI5IsJ0z456JWLl1K3Z4bblMo5CS7FhhXwv7V5W2mGCfrWSk4RHuLwmM7d09mbRYhmaC3JbvlhTnzC9OHuDCCCuuZ/9uhv3C+XvU3quunm5Xd/YF7E7AMK7AGPmzBLhzBCdSAwx3cwwM8Ok/Os/PqvH2WDjmDnkX4Ec77B28GqhE=</latexit>

B[;]
<latexit sha1_base64="hKdDe42nbU+uw/dMTIadkAvk238=">AAACI3icbVDJSgNBFHzjbtwSPXoZDIKnMKOCgpe4HLwICiYKmUF6Oi+msWex+40Ym/kOr3rwa7yJFw/+i53l4FbQUFS9rSvKpNDkeR/O2PjE5NT0zGxpbn5hcalcWW7qNFccGzyVqbqMmEYpEmyQIImXmUIWRxIvopvDvn9xh0qLNDmnXoZhzK4T0RGckZXCg1ZAeE9EZq8Ir8pVr+YN4P4l/ohUYYTTq4oDQTvleYwJccm0bvleRqFhigSXWJSCXGPG+A27xpalCYtRh2ZwdeGuW6XtdlJlX0LuQP3eYVisdS+ObGXMqKt/e33xP6+VU2c3NCLJcsKEDxd1culS6vYjcNtCISfZs4RxJeytLu8yxTjZoErBEdq/KDyxc/dl1mURkgn6W7IHXphzvzADEhdGUGEz838n9Jc0N2v+Vm3zbLtaPxilNwOrsAYb4MMO1OEYTqEBHG7hEZ7g2XlxXp03531YOuaMelbgB5zPLzIfpU8=</latexit>

;[�]
<latexit sha1_base64="OsMyu26amX8OQtGAV1Jx/DUrsc8=">AAACKXicbVDJSgNBFHzjbtwSPXoZDIKnMKOCghe3gxchQqJCZgg9nRfT2LPQ/UaNzXyKVz34Nd7Uqz9iJ+bgVtBQVL2tK8qk0OR5b87Y+MTk1PTMbGlufmFxqVxZPtdprjg2eSpTdRkxjVIk2CRBEi8zhSyOJF5E10cD/+IGlRZp0qB+hmHMrhLRFZyRldrlSkB4R0Rmr2gFXCgetstVr+YN4f4l/ohUYYR6u+JA0El5HmNCXDKtW76XUWiYIsElFqUg15gxfs2usGVpwmLUoRneXrjrVum43VTZl5A7VL93GBZr3Y8jWxkz6unf3kD8z2vl1N0NjUiynDDhX4u6uXQpdQdBuB2hkJPsW8K4EvZWl/eYYpxsXKXgGO1fFJ7auQcy67EIyQSDLdk9L0zDL8yQxIURVNjM/N8J/SXnmzV/q7Z5tl3dPxylNwOrsAYb4MMO7MMJ1KEJHG7hAR7hyXl2XpxX5/2rdMwZ9azADzgfn0/bp2M=</latexit>

A ::= B; / B + B;
B ::= x / xy

<latexit sha1_base64="Gy2vXkNCxBEZUx9WCbJKa44pHvA=">AAACjnicbVHvaxQxEM2uP1q3Va/60S/BQxCEc7eKlZZie/qhX4QKvbZwOY5sbu4uNJtdktnSNWz/T8E/xuzeWrV1IPDmzbyZ5CUtlLQYxz+C8N79Bw/X1h9FG5uPnzztbT07tXlpBIxErnJznnILSmoYoUQF54UBnqUKztKLz0397BKMlbk+waqAScYXWs6l4Oipae+SpbCQ2nFjeFU7VUeHdHd3nw4pQ7hCRLdX0+u31w2xd8O9qX02/NPBWDRsZb+pq5XoJq2aFgZ61i2a9vrxIG6D3gVJB/qki+PpVkDYLBdlBhqF4taOk7jAiR+HUiioI1ZaKLi44AsYe6h5BnbiWoNq+sozMzrPjT8aacv+rXA8s7bKUt+ZcVza27WG/F9tXOL848RJXZQIWqwWzUtFMaeN23QmDQhUlQdcGOnvSsWSGy7Q/0nEvoB/i4Gvfu6hKpY8BXSs2VJ8F7U7SWrXgqx2EhvPktsO3QWn24Pk3WD72/v+wbBzb528IC/Ja5KQHXJAjsgxGRFBfgZhsBFshr3wQ7gfflq1hkGneU7+ifDoF235xz4=</latexit>

input : xy;
<latexit sha1_base64="U8uPUGiyhrVLaBAFUFKM0a7rj8k=">AAACInicbVDLSsNAFL3xbX3r0k2wCK5KooKCG18LN4JCq0JTZDK9tYOTZJi5EeuQ33CrC7/GnbgS/BgnbRe+DgwczrmvObGSwlAQfHgjo2PjE5NT05WZ2bn5hcWl5QuT5Zpjg2cy01cxMyhFig0SJPFKaWRJLPEyvj0q/cs71EZkaZ16ClsJu0lFR3BGTooiwnsisve9veJ6sRrUgj78vyQckioMcXa95EHUznieYEpcMmOaYaCoZZkmwSUWlSg3qBi/ZTfYdDRlCZqW7R9d+OtOafudTLuXkt9Xv3dYlhjTS2JXmTDqmt9eKf7nNXPq7LasSFVOmPLBok4ufcr8MgG/LTRykj1HGNfC3erzLtOMk8upEh2j+4vGUzf3QKoui5FsVG5RD7yw9bCwfZIUVlCZWfg7ob/kYrMWbtU2z7er+4fD9KZgFdZgA0LYgX04gTNoAAcFj/AEz96L9+q9ee+D0hFv2LMCP+B9fgH7waU8</latexit>

xy;
<latexit sha1_base64="U8uPUGiyhrVLaBAFUFKM0a7rj8k=">AAACInicbVDLSsNAFL3xbX3r0k2wCK5KooKCG18LN4JCq0JTZDK9tYOTZJi5EeuQ33CrC7/GnbgS/BgnbRe+DgwczrmvObGSwlAQfHgjo2PjE5NT05WZ2bn5hcWl5QuT5Zpjg2cy01cxMyhFig0SJPFKaWRJLPEyvj0q/cs71EZkaZ16ClsJu0lFR3BGTooiwnsisve9veJ6sRrUgj78vyQckioMcXa95EHUznieYEpcMmOaYaCoZZkmwSUWlSg3qBi/ZTfYdDRlCZqW7R9d+OtOafudTLuXkt9Xv3dYlhjTS2JXmTDqmt9eKf7nNXPq7LasSFVOmPLBok4ufcr8MgG/LTRykj1HGNfC3erzLtOMk8upEh2j+4vGUzf3QKoui5FsVG5RD7yw9bCwfZIUVlCZWfg7ob/kYrMWbtU2z7er+4fD9KZgFdZgA0LYgX04gTNoAAcFj/AEz96L9+q9ee+D0hFv2LMCP+B9fgH7waU8</latexit>

xy;
<latexit sha1_base64="U8uPUGiyhrVLaBAFUFKM0a7rj8k=">AAACInicbVDLSsNAFL3xbX3r0k2wCK5KooKCG18LN4JCq0JTZDK9tYOTZJi5EeuQ33CrC7/GnbgS/BgnbRe+DgwczrmvObGSwlAQfHgjo2PjE5NT05WZ2bn5hcWl5QuT5Zpjg2cy01cxMyhFig0SJPFKaWRJLPEyvj0q/cs71EZkaZ16ClsJu0lFR3BGTooiwnsisve9veJ6sRrUgj78vyQckioMcXa95EHUznieYEpcMmOaYaCoZZkmwSUWlSg3qBi/ZTfYdDRlCZqW7R9d+OtOafudTLuXkt9Xv3dYlhjTS2JXmTDqmt9eKf7nNXPq7LasSFVOmPLBok4ufcr8MgG/LTRykj1HGNfC3erzLtOMk8upEh2j+4vGUzf3QKoui5FsVG5RD7yw9bCwfZIUVlCZWfg7ob/kYrMWbtU2z7er+4fD9KZgFdZgA0LYgX04gTNoAAcFj/AEz96L9+q9ee+D0hFv2LMCP+B9fgH7waU8</latexit>

A[x⇤]
<latexit sha1_base64="2XEm+hvI9qbbuqQzobeLekhqdGY=">AAACJ3icbVC7SgNBFL3r2/iKWtosBkEswq4KWhq1sBEUjArZNcxObsyQ2QczdyVx2C+x1cKvsRMt/RMnMYWvAwOHc+5rTpRJocnz3p2x8YnJqemZ2dLc/MLiUnl55VKnueJY56lM1XXENEqRYJ0ESbzOFLI4kngVdY8G/tUdKi3S5IL6GYYxu01EW3BGVmqWl2qNgLBHRKZX3GyFzXLFq3pDuH+JPyIVGOGsuexA0Ep5HmNCXDKtG76XUWiYIsElFqUg15gx3mW32LA0YTHq0AwvL9wNq7TcdqrsS8gdqt87DIu17seRrYwZdfRvbyD+5zVyau+HRiRZTpjwr0XtXLqUuoMY3JZQyEn2LWFcCXuryztMMU42rFJwjPYvCk/t3JrMOixCMsFgS3bPC3PhF2ZI4sIIKmxm/u+E/pLL7aq/U90+360cHI7Sm4E1WIdN8GEPDuAEzqAOHHJ4gEd4cp6dF+fVefsqHXNGPavwA87HJ1KFplg=</latexit>

x[x⇤]
<latexit sha1_base64="4BzEio6TyrEpyfdWmkGjiL7hjH4=">AAACMHicbZDJSgNBEIZr3I1b1IvgZTAI4iHMqKBHt4MXQcGokBlDT6diGnsWumvE2IxP41UPPo2exKtPYScGXAsaPv7auv4ok0KT5704A4NDwyOjY+Olicmp6Zny7NypTnPFscZTmarziGmUIsEaCZJ4nilkcSTxLLra6+bPrlFpkSYn1MkwjNllIlqCM7JSo7wQEN4Qkbkp6l94sRo2yhWv6vXC/Qt+HyrQj6PGrANBM+V5jAlxybSu+15GoWGKBJdYlIJcY8b4FbvEusWExahD0zuhcJet0nRbqbIvIbenfu8wLNa6E0e2MmbU1r9zXfG/XD2n1lZoRJLlhAn/XNTKpUup2/XDbQqFnGTHAuNK2L+6vM0U42RdKwX7aG9ReGjn7siszSIkE3S3ZLe8MCd+YXoQF0ZQYT3zfzv0F07Xqv56de14o7K923dvDBZhCVbAh03YhgM4ghpwuIN7eIBH58l5dl6dt8/SAaffMw8/wnn/AByXquo=</latexit>

: non-terminal

: terminal

: match

: mismatch

A[�]
<latexit sha1_base64="9QZZ2k2Y2ZVg9yXnAbVqOgjBmJ4=">AAACHnicbVDLSgNBEOyNrxhfiR69LAbBU9hVQY+JevAiREg0kF1kdtIxQ2YfzPQKcdmf8KoHv8abeNW/cTbm4KtgoKjqnu6uIJFCk+N8WKW5+YXFpfJyZWV1bX2jWtu80nGqOHZ5LGPVC5hGKSLskiCJvUQhCwOJ18H4tPCv71BpEUcdmiToh+w2EkPBGRmp1+p7XCju31TrTsOZwv5L3Bmpwwztm5oF3iDmaYgRccm07rtOQn7GFAkuMa94qcaE8TG7xb6hEQtR+9l04dzeNcrAHsbKvIjsqfq9I2Oh1pMwMJUho5H+7RXif14/peGxn4koSQkj/jVomEqbYru43h4IhZzkxBDGlTC72nzEFONkMqp4Z2huUXhh/m3JZMQCpMwrpiT3PM86bp5NSZhngnKTmfs7ob/kar/hHjT2Lw/rzZNZemXYhh3YAxeOoAnn0IYucJDwAI/wZD1bL9ar9fZVWrJmPVvwA9b7J5DRot0=</latexit>

�<latexit sha1_base64="UuY8YOI9pFTy0StnhT4M1r6s4A4=">AAACG3icbVDLSgNBEOz1bXxFPXpZDIKnsBsFPcbHwYsQIYlCdpHZSScZMvtgpleIy36DVz34Nd7Eqwf/xkmyBzUWDBRV3dPdFSRSaHKcL2tufmFxaXlltbS2vrG5Vd7eaes4VRxbPJaxuguYRikibJEgiXeJQhYGEm+D4cXYv31ApUUcNWmUoB+yfiR6gjMyUsvjQvH7csWpOhPYs8QtSAUKNO63LfC6MU9DjIhLpnXHdRLyM6ZIcIl5yUs1JowPWR87hkYsRO1nk21z+8AoXbsXK/Misifqz46MhVqPwsBUhowG+q83Fv/zOin1Tv1MRElKGPHpoF4qbYrt8el2VyjkJEeGMK6E2dXmA6YYJxNQybtEc4vCa/PvmUwGLEDKvPGU5JHnWdPNswkJ80xQbjJz/yY0S9q1qntUrd0cV+rnRXorsAf7cAgunEAdrqABLeAg4Ame4cV6td6sd+tjWjpnFT278AvW5zd0W6HG</latexit>

: end of input

Lookahead
Tokens

x[;]
<latexit sha1_base64="suQCUMMnfB4Z6nafurGCrkGEbCM=">AAACLnicbZDJSgNBEIZr3I1bVPDiZTAInsKMCgpe3A5eBAWjQmYIPZ2KadKz0F0jxnZexqsefBrBg3j1MezECG4FDR9/bV1/lEmhyfNenKHhkdGx8YnJ0tT0zOxceX7hXKe54ljjqUzVZcQ0SpFgjQRJvMwUsjiSeBF1Dnr5i2tUWqTJGXUzDGN2lYiW4Iys1CgvBYQ3RGRuivoX7hRho1zxql4/3L/gD6ACgzhpzDsQNFOex5gQl0zruu9lFBqmSHCJRSnINWaMd9gV1i0mLEYdmv4BhbtqlabbSpV9Cbl99XuHYbHW3TiylTGjtv6d64n/5eo5tbZDI5IsJ0z456JWLl1K3Z4bblMo5CS7FhhXwv7V5W2mGCfrWSk4RHuLwmM7d09mbRYhmaC3JbvlhTnzC9OHuDCCCuuZ/9uhv3C+XvU3quunm5Xd/YF7E7AMK7AGPmzBLhzBCdSAwx3cwwM8Ok/Os/PqvH2WDjmDnkX4Ec77B28GqhE=</latexit>

B[;]
<latexit sha1_base64="hKdDe42nbU+uw/dMTIadkAvk238=">AAACI3icbVDJSgNBFHzjbtwSPXoZDIKnMKOCgpe4HLwICiYKmUF6Oi+msWex+40Ym/kOr3rwa7yJFw/+i53l4FbQUFS9rSvKpNDkeR/O2PjE5NT0zGxpbn5hcalcWW7qNFccGzyVqbqMmEYpEmyQIImXmUIWRxIvopvDvn9xh0qLNDmnXoZhzK4T0RGckZXCg1ZAeE9EZq8Ir8pVr+YN4P4l/ohUYYTTq4oDQTvleYwJccm0bvleRqFhigSXWJSCXGPG+A27xpalCYtRh2ZwdeGuW6XtdlJlX0LuQP3eYVisdS+ObGXMqKt/e33xP6+VU2c3NCLJcsKEDxd1culS6vYjcNtCISfZs4RxJeytLu8yxTjZoErBEdq/KDyxc/dl1mURkgn6W7IHXphzvzADEhdGUGEz838n9Jc0N2v+Vm3zbLtaPxilNwOrsAYb4MMO1OEYTqEBHG7hEZ7g2XlxXp03531YOuaMelbgB5zPLzIfpU8=</latexit>

;[�]
<latexit sha1_base64="OsMyu26amX8OQtGAV1Jx/DUrsc8=">AAACKXicbVDJSgNBFHzjbtwSPXoZDIKnMKOCghe3gxchQqJCZgg9nRfT2LPQ/UaNzXyKVz34Nd7Uqz9iJ+bgVtBQVL2tK8qk0OR5b87Y+MTk1PTMbGlufmFxqVxZPtdprjg2eSpTdRkxjVIk2CRBEi8zhSyOJF5E10cD/+IGlRZp0qB+hmHMrhLRFZyRldrlSkB4R0Rmr2gFXCgetstVr+YN4f4l/ohUYYR6u+JA0El5HmNCXDKtW76XUWiYIsElFqUg15gxfs2usGVpwmLUoRneXrjrVum43VTZl5A7VL93GBZr3Y8jWxkz6unf3kD8z2vl1N0NjUiynDDhX4u6uXQpdQdBuB2hkJPsW8K4EvZWl/eYYpxsXKXgGO1fFJ7auQcy67EIyQSDLdk9L0zDL8yQxIURVNjM/N8J/SXnmzV/q7Z5tl3dPxylNwOrsAYb4MMO7MMJ1KEJHG7hAR7hyXl2XpxX5/2rdMwZ9azADzgfn0/bp2M=</latexit>

A ::= B; / B + B;
B ::= x / xy

<latexit sha1_base64="Gy2vXkNCxBEZUx9WCbJKa44pHvA=">AAACjnicbVHvaxQxEM2uP1q3Va/60S/BQxCEc7eKlZZie/qhX4QKvbZwOY5sbu4uNJtdktnSNWz/T8E/xuzeWrV1IPDmzbyZ5CUtlLQYxz+C8N79Bw/X1h9FG5uPnzztbT07tXlpBIxErnJznnILSmoYoUQF54UBnqUKztKLz0397BKMlbk+waqAScYXWs6l4Oipae+SpbCQ2nFjeFU7VUeHdHd3nw4pQ7hCRLdX0+u31w2xd8O9qX02/NPBWDRsZb+pq5XoJq2aFgZ61i2a9vrxIG6D3gVJB/qki+PpVkDYLBdlBhqF4taOk7jAiR+HUiioI1ZaKLi44AsYe6h5BnbiWoNq+sozMzrPjT8aacv+rXA8s7bKUt+ZcVza27WG/F9tXOL848RJXZQIWqwWzUtFMaeN23QmDQhUlQdcGOnvSsWSGy7Q/0nEvoB/i4Gvfu6hKpY8BXSs2VJ8F7U7SWrXgqx2EhvPktsO3QWn24Pk3WD72/v+wbBzb528IC/Ja5KQHXJAjsgxGRFBfgZhsBFshr3wQ7gfflq1hkGneU7+ifDoF235xz4=</latexit>

input : xy;
<latexit sha1_base64="U8uPUGiyhrVLaBAFUFKM0a7rj8k=">AAACInicbVDLSsNAFL3xbX3r0k2wCK5KooKCG18LN4JCq0JTZDK9tYOTZJi5EeuQ33CrC7/GnbgS/BgnbRe+DgwczrmvObGSwlAQfHgjo2PjE5NT05WZ2bn5hcWl5QuT5Zpjg2cy01cxMyhFig0SJPFKaWRJLPEyvj0q/cs71EZkaZ16ClsJu0lFR3BGTooiwnsisve9veJ6sRrUgj78vyQckioMcXa95EHUznieYEpcMmOaYaCoZZkmwSUWlSg3qBi/ZTfYdDRlCZqW7R9d+OtOafudTLuXkt9Xv3dYlhjTS2JXmTDqmt9eKf7nNXPq7LasSFVOmPLBok4ufcr8MgG/LTRykj1HGNfC3erzLtOMk8upEh2j+4vGUzf3QKoui5FsVG5RD7yw9bCwfZIUVlCZWfg7ob/kYrMWbtU2z7er+4fD9KZgFdZgA0LYgX04gTNoAAcFj/AEz96L9+q9ee+D0hFv2LMCP+B9fgH7waU8</latexit>

xy;
<latexit sha1_base64="U8uPUGiyhrVLaBAFUFKM0a7rj8k=">AAACInicbVDLSsNAFL3xbX3r0k2wCK5KooKCG18LN4JCq0JTZDK9tYOTZJi5EeuQ33CrC7/GnbgS/BgnbRe+DgwczrmvObGSwlAQfHgjo2PjE5NT05WZ2bn5hcWl5QuT5Zpjg2cy01cxMyhFig0SJPFKaWRJLPEyvj0q/cs71EZkaZ16ClsJu0lFR3BGTooiwnsisve9veJ6sRrUgj78vyQckioMcXa95EHUznieYEpcMmOaYaCoZZkmwSUWlSg3qBi/ZTfYdDRlCZqW7R9d+OtOafudTLuXkt9Xv3dYlhjTS2JXmTDqmt9eKf7nNXPq7LasSFVOmPLBok4ufcr8MgG/LTRykj1HGNfC3erzLtOMk8upEh2j+4vGUzf3QKoui5FsVG5RD7yw9bCwfZIUVlCZWfg7ob/kYrMWbtU2z7er+4fD9KZgFdZgA0LYgX04gTNoAAcFj/AEz96L9+q9ee+D0hFv2LMCP+B9fgH7waU8</latexit>

xy;
<latexit sha1_base64="U8uPUGiyhrVLaBAFUFKM0a7rj8k=">AAACInicbVDLSsNAFL3xbX3r0k2wCK5KooKCG18LN4JCq0JTZDK9tYOTZJi5EeuQ33CrC7/GnbgS/BgnbRe+DgwczrmvObGSwlAQfHgjo2PjE5NT05WZ2bn5hcWl5QuT5Zpjg2cy01cxMyhFig0SJPFKaWRJLPEyvj0q/cs71EZkaZ16ClsJu0lFR3BGTooiwnsisve9veJ6sRrUgj78vyQckioMcXa95EHUznieYEpcMmOaYaCoZZkmwSUWlSg3qBi/ZTfYdDRlCZqW7R9d+OtOafudTLuXkt9Xv3dYlhjTS2JXmTDqmt9eKf7nNXPq7LasSFVOmPLBok4ufcr8MgG/LTRykj1HGNfC3erzLtOMk8upEh2j+4vGUzf3QKoui5FsVG5RD7yw9bCwfZIUVlCZWfg7ob/kYrMWbtU2z7er+4fD9KZgFdZgA0LYgX04gTNoAAcFj/AEz96L9+q9ee+D0hFv2LMCP+B9fgH7waU8</latexit>

A[x⇤]
<latexit sha1_base64="2XEm+hvI9qbbuqQzobeLekhqdGY=">AAACJ3icbVC7SgNBFL3r2/iKWtosBkEswq4KWhq1sBEUjArZNcxObsyQ2QczdyVx2C+x1cKvsRMt/RMnMYWvAwOHc+5rTpRJocnz3p2x8YnJqemZ2dLc/MLiUnl55VKnueJY56lM1XXENEqRYJ0ESbzOFLI4kngVdY8G/tUdKi3S5IL6GYYxu01EW3BGVmqWl2qNgLBHRKZX3GyFzXLFq3pDuH+JPyIVGOGsuexA0Ep5HmNCXDKtG76XUWiYIsElFqUg15gx3mW32LA0YTHq0AwvL9wNq7TcdqrsS8gdqt87DIu17seRrYwZdfRvbyD+5zVyau+HRiRZTpjwr0XtXLqUuoMY3JZQyEn2LWFcCXuryztMMU42rFJwjPYvCk/t3JrMOixCMsFgS3bPC3PhF2ZI4sIIKmxm/u+E/pLL7aq/U90+360cHI7Sm4E1WIdN8GEPDuAEzqAOHHJ4gEd4cp6dF+fVefsqHXNGPavwA87HJ1KFplg=</latexit>

x[x⇤]
<latexit sha1_base64="4BzEio6TyrEpyfdWmkGjiL7hjH4=">AAACMHicbZDJSgNBEIZr3I1b1IvgZTAI4iHMqKBHt4MXQcGokBlDT6diGnsWumvE2IxP41UPPo2exKtPYScGXAsaPv7auv4ok0KT5704A4NDwyOjY+Olicmp6Zny7NypTnPFscZTmarziGmUIsEaCZJ4nilkcSTxLLra6+bPrlFpkSYn1MkwjNllIlqCM7JSo7wQEN4Qkbkp6l94sRo2yhWv6vXC/Qt+HyrQj6PGrANBM+V5jAlxybSu+15GoWGKBJdYlIJcY8b4FbvEusWExahD0zuhcJet0nRbqbIvIbenfu8wLNa6E0e2MmbU1r9zXfG/XD2n1lZoRJLlhAn/XNTKpUup2/XDbQqFnGTHAuNK2L+6vM0U42RdKwX7aG9ReGjn7siszSIkE3S3ZLe8MCd+YXoQF0ZQYT3zfzv0F07Xqv56de14o7K923dvDBZhCVbAh03YhgM4ghpwuIN7eIBH58l5dl6dt8/SAaffMw8/wnn/AByXquo=</latexit>

: non-terminal

: terminal

: match

: mismatch

A[�]
<latexit sha1_base64="9QZZ2k2Y2ZVg9yXnAbVqOgjBmJ4=">AAACHnicbVDLSgNBEOyNrxhfiR69LAbBU9hVQY+JevAiREg0kF1kdtIxQ2YfzPQKcdmf8KoHv8abeNW/cTbm4KtgoKjqnu6uIJFCk+N8WKW5+YXFpfJyZWV1bX2jWtu80nGqOHZ5LGPVC5hGKSLskiCJvUQhCwOJ18H4tPCv71BpEUcdmiToh+w2EkPBGRmp1+p7XCju31TrTsOZwv5L3Bmpwwztm5oF3iDmaYgRccm07rtOQn7GFAkuMa94qcaE8TG7xb6hEQtR+9l04dzeNcrAHsbKvIjsqfq9I2Oh1pMwMJUho5H+7RXif14/peGxn4koSQkj/jVomEqbYru43h4IhZzkxBDGlTC72nzEFONkMqp4Z2huUXhh/m3JZMQCpMwrpiT3PM86bp5NSZhngnKTmfs7ob/kar/hHjT2Lw/rzZNZemXYhh3YAxeOoAnn0IYucJDwAI/wZD1bL9ar9fZVWrJmPVvwA9b7J5DRot0=</latexit>

�<latexit sha1_base64="UuY8YOI9pFTy0StnhT4M1r6s4A4=">AAACG3icbVDLSgNBEOz1bXxFPXpZDIKnsBsFPcbHwYsQIYlCdpHZSScZMvtgpleIy36DVz34Nd7Eqwf/xkmyBzUWDBRV3dPdFSRSaHKcL2tufmFxaXlltbS2vrG5Vd7eaes4VRxbPJaxuguYRikibJEgiXeJQhYGEm+D4cXYv31ApUUcNWmUoB+yfiR6gjMyUsvjQvH7csWpOhPYs8QtSAUKNO63LfC6MU9DjIhLpnXHdRLyM6ZIcIl5yUs1JowPWR87hkYsRO1nk21z+8AoXbsXK/Misifqz46MhVqPwsBUhowG+q83Fv/zOin1Tv1MRElKGPHpoF4qbYrt8el2VyjkJEeGMK6E2dXmA6YYJxNQybtEc4vCa/PvmUwGLEDKvPGU5JHnWdPNswkJ80xQbjJz/yY0S9q1qntUrd0cV+rnRXorsAf7cAgunEAdrqABLeAg4Ame4cV6td6sd+tjWjpnFT278AvW5zd0W6HG</latexit>

: end of input

Lookahead
Tokens

x[;]
<latexit sha1_base64="suQCUMMnfB4Z6nafurGCrkGEbCM=">AAACLnicbZDJSgNBEIZr3I1bVPDiZTAInsKMCgpe3A5eBAWjQmYIPZ2KadKz0F0jxnZexqsefBrBg3j1MezECG4FDR9/bV1/lEmhyfNenKHhkdGx8YnJ0tT0zOxceX7hXKe54ljjqUzVZcQ0SpFgjQRJvMwUsjiSeBF1Dnr5i2tUWqTJGXUzDGN2lYiW4Iys1CgvBYQ3RGRuivoX7hRho1zxql4/3L/gD6ACgzhpzDsQNFOex5gQl0zruu9lFBqmSHCJRSnINWaMd9gV1i0mLEYdmv4BhbtqlabbSpV9Cbl99XuHYbHW3TiylTGjtv6d64n/5eo5tbZDI5IsJ0z456JWLl1K3Z4bblMo5CS7FhhXwv7V5W2mGCfrWSk4RHuLwmM7d09mbRYhmaC3JbvlhTnzC9OHuDCCCuuZ/9uhv3C+XvU3quunm5Xd/YF7E7AMK7AGPmzBLhzBCdSAwx3cwwM8Ok/Os/PqvH2WDjmDnkX4Ec77B28GqhE=</latexit>

B[;]
<latexit sha1_base64="hKdDe42nbU+uw/dMTIadkAvk238=">AAACI3icbVDJSgNBFHzjbtwSPXoZDIKnMKOCgpe4HLwICiYKmUF6Oi+msWex+40Ym/kOr3rwa7yJFw/+i53l4FbQUFS9rSvKpNDkeR/O2PjE5NT0zGxpbn5hcalcWW7qNFccGzyVqbqMmEYpEmyQIImXmUIWRxIvopvDvn9xh0qLNDmnXoZhzK4T0RGckZXCg1ZAeE9EZq8Ir8pVr+YN4P4l/ohUYYTTq4oDQTvleYwJccm0bvleRqFhigSXWJSCXGPG+A27xpalCYtRh2ZwdeGuW6XtdlJlX0LuQP3eYVisdS+ObGXMqKt/e33xP6+VU2c3NCLJcsKEDxd1culS6vYjcNtCISfZs4RxJeytLu8yxTjZoErBEdq/KDyxc/dl1mURkgn6W7IHXphzvzADEhdGUGEz838n9Jc0N2v+Vm3zbLtaPxilNwOrsAYb4MMO1OEYTqEBHG7hEZ7g2XlxXp03531YOuaMelbgB5zPLzIfpU8=</latexit>

;[�]
<latexit sha1_base64="OsMyu26amX8OQtGAV1Jx/DUrsc8=">AAACKXicbVDJSgNBFHzjbtwSPXoZDIKnMKOCghe3gxchQqJCZgg9nRfT2LPQ/UaNzXyKVz34Nd7Uqz9iJ+bgVtBQVL2tK8qk0OR5b87Y+MTk1PTMbGlufmFxqVxZPtdprjg2eSpTdRkxjVIk2CRBEi8zhSyOJF5E10cD/+IGlRZp0qB+hmHMrhLRFZyRldrlSkB4R0Rmr2gFXCgetstVr+YN4f4l/ohUYYR6u+JA0El5HmNCXDKtW76XUWiYIsElFqUg15gxfs2usGVpwmLUoRneXrjrVum43VTZl5A7VL93GBZr3Y8jWxkz6unf3kD8z2vl1N0NjUiynDDhX4u6uXQpdQdBuB2hkJPsW8K4EvZWl/eYYpxsXKXgGO1fFJ7auQcy67EIyQSDLdk9L0zDL8yQxIURVNjM/N8J/SXnmzV/q7Z5tl3dPxylNwOrsAYb4MMO7MMJ1KEJHG7hAR7hyXl2XpxX5/2rdMwZ9azADzgfn0/bp2M=</latexit>

A ::= B; / B + B;
B ::= x / xy

<latexit sha1_base64="Gy2vXkNCxBEZUx9WCbJKa44pHvA=">AAACjnicbVHvaxQxEM2uP1q3Va/60S/BQxCEc7eKlZZie/qhX4QKvbZwOY5sbu4uNJtdktnSNWz/T8E/xuzeWrV1IPDmzbyZ5CUtlLQYxz+C8N79Bw/X1h9FG5uPnzztbT07tXlpBIxErnJznnILSmoYoUQF54UBnqUKztKLz0397BKMlbk+waqAScYXWs6l4Oipae+SpbCQ2nFjeFU7VUeHdHd3nw4pQ7hCRLdX0+u31w2xd8O9qX02/NPBWDRsZb+pq5XoJq2aFgZ61i2a9vrxIG6D3gVJB/qki+PpVkDYLBdlBhqF4taOk7jAiR+HUiioI1ZaKLi44AsYe6h5BnbiWoNq+sozMzrPjT8aacv+rXA8s7bKUt+ZcVza27WG/F9tXOL848RJXZQIWqwWzUtFMaeN23QmDQhUlQdcGOnvSsWSGy7Q/0nEvoB/i4Gvfu6hKpY8BXSs2VJ8F7U7SWrXgqx2EhvPktsO3QWn24Pk3WD72/v+wbBzb528IC/Ja5KQHXJAjsgxGRFBfgZhsBFshr3wQ7gfflq1hkGneU7+ifDoF235xz4=</latexit>

input : xy;
<latexit sha1_base64="U8uPUGiyhrVLaBAFUFKM0a7rj8k=">AAACInicbVDLSsNAFL3xbX3r0k2wCK5KooKCG18LN4JCq0JTZDK9tYOTZJi5EeuQ33CrC7/GnbgS/BgnbRe+DgwczrmvObGSwlAQfHgjo2PjE5NT05WZ2bn5hcWl5QuT5Zpjg2cy01cxMyhFig0SJPFKaWRJLPEyvj0q/cs71EZkaZ16ClsJu0lFR3BGTooiwnsisve9veJ6sRrUgj78vyQckioMcXa95EHUznieYEpcMmOaYaCoZZkmwSUWlSg3qBi/ZTfYdDRlCZqW7R9d+OtOafudTLuXkt9Xv3dYlhjTS2JXmTDqmt9eKf7nNXPq7LasSFVOmPLBok4ufcr8MgG/LTRykj1HGNfC3erzLtOMk8upEh2j+4vGUzf3QKoui5FsVG5RD7yw9bCwfZIUVlCZWfg7ob/kYrMWbtU2z7er+4fD9KZgFdZgA0LYgX04gTNoAAcFj/AEz96L9+q9ee+D0hFv2LMCP+B9fgH7waU8</latexit>

xy;
<latexit sha1_base64="U8uPUGiyhrVLaBAFUFKM0a7rj8k=">AAACInicbVDLSsNAFL3xbX3r0k2wCK5KooKCG18LN4JCq0JTZDK9tYOTZJi5EeuQ33CrC7/GnbgS/BgnbRe+DgwczrmvObGSwlAQfHgjo2PjE5NT05WZ2bn5hcWl5QuT5Zpjg2cy01cxMyhFig0SJPFKaWRJLPEyvj0q/cs71EZkaZ16ClsJu0lFR3BGTooiwnsisve9veJ6sRrUgj78vyQckioMcXa95EHUznieYEpcMmOaYaCoZZkmwSUWlSg3qBi/ZTfYdDRlCZqW7R9d+OtOafudTLuXkt9Xv3dYlhjTS2JXmTDqmt9eKf7nNXPq7LasSFVOmPLBok4ufcr8MgG/LTRykj1HGNfC3erzLtOMk8upEh2j+4vGUzf3QKoui5FsVG5RD7yw9bCwfZIUVlCZWfg7ob/kYrMWbtU2z7er+4fD9KZgFdZgA0LYgX04gTNoAAcFj/AEz96L9+q9ee+D0hFv2LMCP+B9fgH7waU8</latexit>

xy;
<latexit sha1_base64="U8uPUGiyhrVLaBAFUFKM0a7rj8k=">AAACInicbVDLSsNAFL3xbX3r0k2wCK5KooKCG18LN4JCq0JTZDK9tYOTZJi5EeuQ33CrC7/GnbgS/BgnbRe+DgwczrmvObGSwlAQfHgjo2PjE5NT05WZ2bn5hcWl5QuT5Zpjg2cy01cxMyhFig0SJPFKaWRJLPEyvj0q/cs71EZkaZ16ClsJu0lFR3BGTooiwnsisve9veJ6sRrUgj78vyQckioMcXa95EHUznieYEpcMmOaYaCoZZkmwSUWlSg3qBi/ZTfYdDRlCZqW7R9d+OtOafudTLuXkt9Xv3dYlhjTS2JXmTDqmt9eKf7nNXPq7LasSFVOmPLBok4ufcr8MgG/LTRykj1HGNfC3erzLtOMk8upEh2j+4vGUzf3QKoui5FsVG5RD7yw9bCwfZIUVlCZWfg7ob/kYrMWbtU2z7er+4fD9KZgFdZgA0LYgX04gTNoAAcFj/AEz96L9+q9ee+D0hFv2LMCP+B9fgH7waU8</latexit>

A[x⇤]
<latexit sha1_base64="2XEm+hvI9qbbuqQzobeLekhqdGY=">AAACJ3icbVC7SgNBFL3r2/iKWtosBkEswq4KWhq1sBEUjArZNcxObsyQ2QczdyVx2C+x1cKvsRMt/RMnMYWvAwOHc+5rTpRJocnz3p2x8YnJqemZ2dLc/MLiUnl55VKnueJY56lM1XXENEqRYJ0ESbzOFLI4kngVdY8G/tUdKi3S5IL6GYYxu01EW3BGVmqWl2qNgLBHRKZX3GyFzXLFq3pDuH+JPyIVGOGsuexA0Ep5HmNCXDKtG76XUWiYIsElFqUg15gx3mW32LA0YTHq0AwvL9wNq7TcdqrsS8gdqt87DIu17seRrYwZdfRvbyD+5zVyau+HRiRZTpjwr0XtXLqUuoMY3JZQyEn2LWFcCXuryztMMU42rFJwjPYvCk/t3JrMOixCMsFgS3bPC3PhF2ZI4sIIKmxm/u+E/pLL7aq/U90+360cHI7Sm4E1WIdN8GEPDuAEzqAOHHJ4gEd4cp6dF+fVefsqHXNGPavwA87HJ1KFplg=</latexit>

x[x⇤]
<latexit sha1_base64="4BzEio6TyrEpyfdWmkGjiL7hjH4=">AAACMHicbZDJSgNBEIZr3I1b1IvgZTAI4iHMqKBHt4MXQcGokBlDT6diGnsWumvE2IxP41UPPo2exKtPYScGXAsaPv7auv4ok0KT5704A4NDwyOjY+Olicmp6Zny7NypTnPFscZTmarziGmUIsEaCZJ4nilkcSTxLLra6+bPrlFpkSYn1MkwjNllIlqCM7JSo7wQEN4Qkbkp6l94sRo2yhWv6vXC/Qt+HyrQj6PGrANBM+V5jAlxybSu+15GoWGKBJdYlIJcY8b4FbvEusWExahD0zuhcJet0nRbqbIvIbenfu8wLNa6E0e2MmbU1r9zXfG/XD2n1lZoRJLlhAn/XNTKpUup2/XDbQqFnGTHAuNK2L+6vM0U42RdKwX7aG9ReGjn7siszSIkE3S3ZLe8MCd+YXoQF0ZQYT3zfzv0F07Xqv56de14o7K923dvDBZhCVbAh03YhgM4ghpwuIN7eIBH58l5dl6dt8/SAaffMw8/wnn/AByXquo=</latexit>

: non-terminal

: terminal

: match

: mismatch

A[�]
<latexit sha1_base64="9QZZ2k2Y2ZVg9yXnAbVqOgjBmJ4=">AAACHnicbVDLSgNBEOyNrxhfiR69LAbBU9hVQY+JevAiREg0kF1kdtIxQ2YfzPQKcdmf8KoHv8abeNW/cTbm4KtgoKjqnu6uIJFCk+N8WKW5+YXFpfJyZWV1bX2jWtu80nGqOHZ5LGPVC5hGKSLskiCJvUQhCwOJ18H4tPCv71BpEUcdmiToh+w2EkPBGRmp1+p7XCju31TrTsOZwv5L3Bmpwwztm5oF3iDmaYgRccm07rtOQn7GFAkuMa94qcaE8TG7xb6hEQtR+9l04dzeNcrAHsbKvIjsqfq9I2Oh1pMwMJUho5H+7RXif14/peGxn4koSQkj/jVomEqbYru43h4IhZzkxBDGlTC72nzEFONkMqp4Z2huUXhh/m3JZMQCpMwrpiT3PM86bp5NSZhngnKTmfs7ob/kar/hHjT2Lw/rzZNZemXYhh3YAxeOoAnn0IYucJDwAI/wZD1bL9ar9fZVWrJmPVvwA9b7J5DRot0=</latexit>

�<latexit sha1_base64="UuY8YOI9pFTy0StnhT4M1r6s4A4=">AAACG3icbVDLSgNBEOz1bXxFPXpZDIKnsBsFPcbHwYsQIYlCdpHZSScZMvtgpleIy36DVz34Nd7Eqwf/xkmyBzUWDBRV3dPdFSRSaHKcL2tufmFxaXlltbS2vrG5Vd7eaes4VRxbPJaxuguYRikibJEgiXeJQhYGEm+D4cXYv31ApUUcNWmUoB+yfiR6gjMyUsvjQvH7csWpOhPYs8QtSAUKNO63LfC6MU9DjIhLpnXHdRLyM6ZIcIl5yUs1JowPWR87hkYsRO1nk21z+8AoXbsXK/Misifqz46MhVqPwsBUhowG+q83Fv/zOin1Tv1MRElKGPHpoF4qbYrt8el2VyjkJEeGMK6E2dXmA6YYJxNQybtEc4vCa/PvmUwGLEDKvPGU5JHnWdPNswkJ80xQbjJz/yY0S9q1qntUrd0cV+rnRXorsAf7cAgunEAdrqABLeAg4Ame4cV6td6sd+tjWjpnFT278AvW5zd0W6HG</latexit>

: end of input

Lookahead
Tokens

x[;]
<latexit sha1_base64="suQCUMMnfB4Z6nafurGCrkGEbCM=">AAACLnicbZDJSgNBEIZr3I1bVPDiZTAInsKMCgpe3A5eBAWjQmYIPZ2KadKz0F0jxnZexqsefBrBg3j1MezECG4FDR9/bV1/lEmhyfNenKHhkdGx8YnJ0tT0zOxceX7hXKe54ljjqUzVZcQ0SpFgjQRJvMwUsjiSeBF1Dnr5i2tUWqTJGXUzDGN2lYiW4Iys1CgvBYQ3RGRuivoX7hRho1zxql4/3L/gD6ACgzhpzDsQNFOex5gQl0zruu9lFBqmSHCJRSnINWaMd9gV1i0mLEYdmv4BhbtqlabbSpV9Cbl99XuHYbHW3TiylTGjtv6d64n/5eo5tbZDI5IsJ0z456JWLl1K3Z4bblMo5CS7FhhXwv7V5W2mGCfrWSk4RHuLwmM7d09mbRYhmaC3JbvlhTnzC9OHuDCCCuuZ/9uhv3C+XvU3quunm5Xd/YF7E7AMK7AGPmzBLhzBCdSAwx3cwwM8Ok/Os/PqvH2WDjmDnkX4Ec77B28GqhE=</latexit>

B[;]
<latexit sha1_base64="hKdDe42nbU+uw/dMTIadkAvk238=">AAACI3icbVDJSgNBFHzjbtwSPXoZDIKnMKOCgpe4HLwICiYKmUF6Oi+msWex+40Ym/kOr3rwa7yJFw/+i53l4FbQUFS9rSvKpNDkeR/O2PjE5NT0zGxpbn5hcalcWW7qNFccGzyVqbqMmEYpEmyQIImXmUIWRxIvopvDvn9xh0qLNDmnXoZhzK4T0RGckZXCg1ZAeE9EZq8Ir8pVr+YN4P4l/ohUYYTTq4oDQTvleYwJccm0bvleRqFhigSXWJSCXGPG+A27xpalCYtRh2ZwdeGuW6XtdlJlX0LuQP3eYVisdS+ObGXMqKt/e33xP6+VU2c3NCLJcsKEDxd1culS6vYjcNtCISfZs4RxJeytLu8yxTjZoErBEdq/KDyxc/dl1mURkgn6W7IHXphzvzADEhdGUGEz838n9Jc0N2v+Vm3zbLtaPxilNwOrsAYb4MMO1OEYTqEBHG7hEZ7g2XlxXp03531YOuaMelbgB5zPLzIfpU8=</latexit>

;[�]
<latexit sha1_base64="OsMyu26amX8OQtGAV1Jx/DUrsc8=">AAACKXicbVDJSgNBFHzjbtwSPXoZDIKnMKOCghe3gxchQqJCZgg9nRfT2LPQ/UaNzXyKVz34Nd7Uqz9iJ+bgVtBQVL2tK8qk0OR5b87Y+MTk1PTMbGlufmFxqVxZPtdprjg2eSpTdRkxjVIk2CRBEi8zhSyOJF5E10cD/+IGlRZp0qB+hmHMrhLRFZyRldrlSkB4R0Rmr2gFXCgetstVr+YN4f4l/ohUYYR6u+JA0El5HmNCXDKtW76XUWiYIsElFqUg15gxfs2usGVpwmLUoRneXrjrVum43VTZl5A7VL93GBZr3Y8jWxkz6unf3kD8z2vl1N0NjUiynDDhX4u6uXQpdQdBuB2hkJPsW8K4EvZWl/eYYpxsXKXgGO1fFJ7auQcy67EIyQSDLdk9L0zDL8yQxIURVNjM/N8J/SXnmzV/q7Z5tl3dPxylNwOrsAYb4MMO7MMJ1KEJHG7hAR7hyXl2XpxX5/2rdMwZ9azADzgfn0/bp2M=</latexit>

A ::= B; / B + B;
B ::= x / xy

<latexit sha1_base64="Gy2vXkNCxBEZUx9WCbJKa44pHvA=">AAACjnicbVHvaxQxEM2uP1q3Va/60S/BQxCEc7eKlZZie/qhX4QKvbZwOY5sbu4uNJtdktnSNWz/T8E/xuzeWrV1IPDmzbyZ5CUtlLQYxz+C8N79Bw/X1h9FG5uPnzztbT07tXlpBIxErnJznnILSmoYoUQF54UBnqUKztKLz0397BKMlbk+waqAScYXWs6l4Oipae+SpbCQ2nFjeFU7VUeHdHd3nw4pQ7hCRLdX0+u31w2xd8O9qX02/NPBWDRsZb+pq5XoJq2aFgZ61i2a9vrxIG6D3gVJB/qki+PpVkDYLBdlBhqF4taOk7jAiR+HUiioI1ZaKLi44AsYe6h5BnbiWoNq+sozMzrPjT8aacv+rXA8s7bKUt+ZcVza27WG/F9tXOL848RJXZQIWqwWzUtFMaeN23QmDQhUlQdcGOnvSsWSGy7Q/0nEvoB/i4Gvfu6hKpY8BXSs2VJ8F7U7SWrXgqx2EhvPktsO3QWn24Pk3WD72/v+wbBzb528IC/Ja5KQHXJAjsgxGRFBfgZhsBFshr3wQ7gfflq1hkGneU7+ifDoF235xz4=</latexit>

input : xy;
<latexit sha1_base64="U8uPUGiyhrVLaBAFUFKM0a7rj8k=">AAACInicbVDLSsNAFL3xbX3r0k2wCK5KooKCG18LN4JCq0JTZDK9tYOTZJi5EeuQ33CrC7/GnbgS/BgnbRe+DgwczrmvObGSwlAQfHgjo2PjE5NT05WZ2bn5hcWl5QuT5Zpjg2cy01cxMyhFig0SJPFKaWRJLPEyvj0q/cs71EZkaZ16ClsJu0lFR3BGTooiwnsisve9veJ6sRrUgj78vyQckioMcXa95EHUznieYEpcMmOaYaCoZZkmwSUWlSg3qBi/ZTfYdDRlCZqW7R9d+OtOafudTLuXkt9Xv3dYlhjTS2JXmTDqmt9eKf7nNXPq7LasSFVOmPLBok4ufcr8MgG/LTRykj1HGNfC3erzLtOMk8upEh2j+4vGUzf3QKoui5FsVG5RD7yw9bCwfZIUVlCZWfg7ob/kYrMWbtU2z7er+4fD9KZgFdZgA0LYgX04gTNoAAcFj/AEz96L9+q9ee+D0hFv2LMCP+B9fgH7waU8</latexit>

xy;
<latexit sha1_base64="U8uPUGiyhrVLaBAFUFKM0a7rj8k=">AAACInicbVDLSsNAFL3xbX3r0k2wCK5KooKCG18LN4JCq0JTZDK9tYOTZJi5EeuQ33CrC7/GnbgS/BgnbRe+DgwczrmvObGSwlAQfHgjo2PjE5NT05WZ2bn5hcWl5QuT5Zpjg2cy01cxMyhFig0SJPFKaWRJLPEyvj0q/cs71EZkaZ16ClsJu0lFR3BGTooiwnsisve9veJ6sRrUgj78vyQckioMcXa95EHUznieYEpcMmOaYaCoZZkmwSUWlSg3qBi/ZTfYdDRlCZqW7R9d+OtOafudTLuXkt9Xv3dYlhjTS2JXmTDqmt9eKf7nNXPq7LasSFVOmPLBok4ufcr8MgG/LTRykj1HGNfC3erzLtOMk8upEh2j+4vGUzf3QKoui5FsVG5RD7yw9bCwfZIUVlCZWfg7ob/kYrMWbtU2z7er+4fD9KZgFdZgA0LYgX04gTNoAAcFj/AEz96L9+q9ee+D0hFv2LMCP+B9fgH7waU8</latexit>

xy;
<latexit sha1_base64="U8uPUGiyhrVLaBAFUFKM0a7rj8k=">AAACInicbVDLSsNAFL3xbX3r0k2wCK5KooKCG18LN4JCq0JTZDK9tYOTZJi5EeuQ33CrC7/GnbgS/BgnbRe+DgwczrmvObGSwlAQfHgjo2PjE5NT05WZ2bn5hcWl5QuT5Zpjg2cy01cxMyhFig0SJPFKaWRJLPEyvj0q/cs71EZkaZ16ClsJu0lFR3BGTooiwnsisve9veJ6sRrUgj78vyQckioMcXa95EHUznieYEpcMmOaYaCoZZkmwSUWlSg3qBi/ZTfYdDRlCZqW7R9d+OtOafudTLuXkt9Xv3dYlhjTS2JXmTDqmt9eKf7nNXPq7LasSFVOmPLBok4ufcr8MgG/LTRykj1HGNfC3erzLtOMk8upEh2j+4vGUzf3QKoui5FsVG5RD7yw9bCwfZIUVlCZWfg7ob/kYrMWbtU2z7er+4fD9KZgFdZgA0LYgX04gTNoAAcFj/AEz96L9+q9ee+D0hFv2LMCP+B9fgH7waU8</latexit>

A[x⇤]
<latexit sha1_base64="2XEm+hvI9qbbuqQzobeLekhqdGY=">AAACJ3icbVC7SgNBFL3r2/iKWtosBkEswq4KWhq1sBEUjArZNcxObsyQ2QczdyVx2C+x1cKvsRMt/RMnMYWvAwOHc+5rTpRJocnz3p2x8YnJqemZ2dLc/MLiUnl55VKnueJY56lM1XXENEqRYJ0ESbzOFLI4kngVdY8G/tUdKi3S5IL6GYYxu01EW3BGVmqWl2qNgLBHRKZX3GyFzXLFq3pDuH+JPyIVGOGsuexA0Ep5HmNCXDKtG76XUWiYIsElFqUg15gx3mW32LA0YTHq0AwvL9wNq7TcdqrsS8gdqt87DIu17seRrYwZdfRvbyD+5zVyau+HRiRZTpjwr0XtXLqUuoMY3JZQyEn2LWFcCXuryztMMU42rFJwjPYvCk/t3JrMOixCMsFgS3bPC3PhF2ZI4sIIKmxm/u+E/pLL7aq/U90+360cHI7Sm4E1WIdN8GEPDuAEzqAOHHJ4gEd4cp6dF+fVefsqHXNGPavwA87HJ1KFplg=</latexit>

x[x⇤]
<latexit sha1_base64="4BzEio6TyrEpyfdWmkGjiL7hjH4=">AAACMHicbZDJSgNBEIZr3I1b1IvgZTAI4iHMqKBHt4MXQcGokBlDT6diGnsWumvE2IxP41UPPo2exKtPYScGXAsaPv7auv4ok0KT5704A4NDwyOjY+Olicmp6Zny7NypTnPFscZTmarziGmUIsEaCZJ4nilkcSTxLLra6+bPrlFpkSYn1MkwjNllIlqCM7JSo7wQEN4Qkbkp6l94sRo2yhWv6vXC/Qt+HyrQj6PGrANBM+V5jAlxybSu+15GoWGKBJdYlIJcY8b4FbvEusWExahD0zuhcJet0nRbqbIvIbenfu8wLNa6E0e2MmbU1r9zXfG/XD2n1lZoRJLlhAn/XNTKpUup2/XDbQqFnGTHAuNK2L+6vM0U42RdKwX7aG9ReGjn7siszSIkE3S3ZLe8MCd+YXoQF0ZQYT3zfzv0F07Xqv56de14o7K923dvDBZhCVbAh03YhgM4ghpwuIN7eIBH58l5dl6dt8/SAaffMw8/wnn/AByXquo=</latexit>

: non-terminal

: terminal

: match

: mismatch

A[�]
<latexit sha1_base64="9QZZ2k2Y2ZVg9yXnAbVqOgjBmJ4=">AAACHnicbVDLSgNBEOyNrxhfiR69LAbBU9hVQY+JevAiREg0kF1kdtIxQ2YfzPQKcdmf8KoHv8abeNW/cTbm4KtgoKjqnu6uIJFCk+N8WKW5+YXFpfJyZWV1bX2jWtu80nGqOHZ5LGPVC5hGKSLskiCJvUQhCwOJ18H4tPCv71BpEUcdmiToh+w2EkPBGRmp1+p7XCju31TrTsOZwv5L3Bmpwwztm5oF3iDmaYgRccm07rtOQn7GFAkuMa94qcaE8TG7xb6hEQtR+9l04dzeNcrAHsbKvIjsqfq9I2Oh1pMwMJUho5H+7RXif14/peGxn4koSQkj/jVomEqbYru43h4IhZzkxBDGlTC72nzEFONkMqp4Z2huUXhh/m3JZMQCpMwrpiT3PM86bp5NSZhngnKTmfs7ob/kar/hHjT2Lw/rzZNZemXYhh3YAxeOoAnn0IYucJDwAI/wZD1bL9ar9fZVWrJmPVvwA9b7J5DRot0=</latexit>

�<latexit sha1_base64="UuY8YOI9pFTy0StnhT4M1r6s4A4=">AAACG3icbVDLSgNBEOz1bXxFPXpZDIKnsBsFPcbHwYsQIYlCdpHZSScZMvtgpleIy36DVz34Nd7Eqwf/xkmyBzUWDBRV3dPdFSRSaHKcL2tufmFxaXlltbS2vrG5Vd7eaes4VRxbPJaxuguYRikibJEgiXeJQhYGEm+D4cXYv31ApUUcNWmUoB+yfiR6gjMyUsvjQvH7csWpOhPYs8QtSAUKNO63LfC6MU9DjIhLpnXHdRLyM6ZIcIl5yUs1JowPWR87hkYsRO1nk21z+8AoXbsXK/Misifqz46MhVqPwsBUhowG+q83Fv/zOin1Tv1MRElKGPHpoF4qbYrt8el2VyjkJEeGMK6E2dXmA6YYJxNQybtEc4vCa/PvmUwGLEDKvPGU5JHnWdPNswkJ80xQbjJz/yY0S9q1qntUrd0cV+rnRXorsAf7cAgunEAdrqABLeAg4Ame4cV6td6sd+tjWjpnFT278AvW5zd0W6HG</latexit>

: end of input

Lookahead
Tokens

x[;]
<latexit sha1_base64="suQCUMMnfB4Z6nafurGCrkGEbCM=">AAACLnicbZDJSgNBEIZr3I1bVPDiZTAInsKMCgpe3A5eBAWjQmYIPZ2KadKz0F0jxnZexqsefBrBg3j1MezECG4FDR9/bV1/lEmhyfNenKHhkdGx8YnJ0tT0zOxceX7hXKe54ljjqUzVZcQ0SpFgjQRJvMwUsjiSeBF1Dnr5i2tUWqTJGXUzDGN2lYiW4Iys1CgvBYQ3RGRuivoX7hRho1zxql4/3L/gD6ACgzhpzDsQNFOex5gQl0zruu9lFBqmSHCJRSnINWaMd9gV1i0mLEYdmv4BhbtqlabbSpV9Cbl99XuHYbHW3TiylTGjtv6d64n/5eo5tbZDI5IsJ0z456JWLl1K3Z4bblMo5CS7FhhXwv7V5W2mGCfrWSk4RHuLwmM7d09mbRYhmaC3JbvlhTnzC9OHuDCCCuuZ/9uhv3C+XvU3quunm5Xd/YF7E7AMK7AGPmzBLhzBCdSAwx3cwwM8Ok/Os/PqvH2WDjmDnkX4Ec77B28GqhE=</latexit>

B[;]
<latexit sha1_base64="hKdDe42nbU+uw/dMTIadkAvk238=">AAACI3icbVDJSgNBFHzjbtwSPXoZDIKnMKOCgpe4HLwICiYKmUF6Oi+msWex+40Ym/kOr3rwa7yJFw/+i53l4FbQUFS9rSvKpNDkeR/O2PjE5NT0zGxpbn5hcalcWW7qNFccGzyVqbqMmEYpEmyQIImXmUIWRxIvopvDvn9xh0qLNDmnXoZhzK4T0RGckZXCg1ZAeE9EZq8Ir8pVr+YN4P4l/ohUYYTTq4oDQTvleYwJccm0bvleRqFhigSXWJSCXGPG+A27xpalCYtRh2ZwdeGuW6XtdlJlX0LuQP3eYVisdS+ObGXMqKt/e33xP6+VU2c3NCLJcsKEDxd1culS6vYjcNtCISfZs4RxJeytLu8yxTjZoErBEdq/KDyxc/dl1mURkgn6W7IHXphzvzADEhdGUGEz838n9Jc0N2v+Vm3zbLtaPxilNwOrsAYb4MMO1OEYTqEBHG7hEZ7g2XlxXp03531YOuaMelbgB5zPLzIfpU8=</latexit>

;[�]
<latexit sha1_base64="OsMyu26amX8OQtGAV1Jx/DUrsc8=">AAACKXicbVDJSgNBFHzjbtwSPXoZDIKnMKOCghe3gxchQqJCZgg9nRfT2LPQ/UaNzXyKVz34Nd7Uqz9iJ+bgVtBQVL2tK8qk0OR5b87Y+MTk1PTMbGlufmFxqVxZPtdprjg2eSpTdRkxjVIk2CRBEi8zhSyOJF5E10cD/+IGlRZp0qB+hmHMrhLRFZyRldrlSkB4R0Rmr2gFXCgetstVr+YN4f4l/ohUYYR6u+JA0El5HmNCXDKtW76XUWiYIsElFqUg15gxfs2usGVpwmLUoRneXrjrVum43VTZl5A7VL93GBZr3Y8jWxkz6unf3kD8z2vl1N0NjUiynDDhX4u6uXQpdQdBuB2hkJPsW8K4EvZWl/eYYpxsXKXgGO1fFJ7auQcy67EIyQSDLdk9L0zDL8yQxIURVNjM/N8J/SXnmzV/q7Z5tl3dPxylNwOrsAYb4MMO7MMJ1KEJHG7hAR7hyXl2XpxX5/2rdMwZ9azADzgfn0/bp2M=</latexit>

A ::= B; / B + B;
B ::= x / xy

<latexit sha1_base64="Gy2vXkNCxBEZUx9WCbJKa44pHvA=">AAACjnicbVHvaxQxEM2uP1q3Va/60S/BQxCEc7eKlZZie/qhX4QKvbZwOY5sbu4uNJtdktnSNWz/T8E/xuzeWrV1IPDmzbyZ5CUtlLQYxz+C8N79Bw/X1h9FG5uPnzztbT07tXlpBIxErnJznnILSmoYoUQF54UBnqUKztKLz0397BKMlbk+waqAScYXWs6l4Oipae+SpbCQ2nFjeFU7VUeHdHd3nw4pQ7hCRLdX0+u31w2xd8O9qX02/NPBWDRsZb+pq5XoJq2aFgZ61i2a9vrxIG6D3gVJB/qki+PpVkDYLBdlBhqF4taOk7jAiR+HUiioI1ZaKLi44AsYe6h5BnbiWoNq+sozMzrPjT8aacv+rXA8s7bKUt+ZcVza27WG/F9tXOL848RJXZQIWqwWzUtFMaeN23QmDQhUlQdcGOnvSsWSGy7Q/0nEvoB/i4Gvfu6hKpY8BXSs2VJ8F7U7SWrXgqx2EhvPktsO3QWn24Pk3WD72/v+wbBzb528IC/Ja5KQHXJAjsgxGRFBfgZhsBFshr3wQ7gfflq1hkGneU7+ifDoF235xz4=</latexit>

input : xy;
<latexit sha1_base64="U8uPUGiyhrVLaBAFUFKM0a7rj8k=">AAACInicbVDLSsNAFL3xbX3r0k2wCK5KooKCG18LN4JCq0JTZDK9tYOTZJi5EeuQ33CrC7/GnbgS/BgnbRe+DgwczrmvObGSwlAQfHgjo2PjE5NT05WZ2bn5hcWl5QuT5Zpjg2cy01cxMyhFig0SJPFKaWRJLPEyvj0q/cs71EZkaZ16ClsJu0lFR3BGTooiwnsisve9veJ6sRrUgj78vyQckioMcXa95EHUznieYEpcMmOaYaCoZZkmwSUWlSg3qBi/ZTfYdDRlCZqW7R9d+OtOafudTLuXkt9Xv3dYlhjTS2JXmTDqmt9eKf7nNXPq7LasSFVOmPLBok4ufcr8MgG/LTRykj1HGNfC3erzLtOMk8upEh2j+4vGUzf3QKoui5FsVG5RD7yw9bCwfZIUVlCZWfg7ob/kYrMWbtU2z7er+4fD9KZgFdZgA0LYgX04gTNoAAcFj/AEz96L9+q9ee+D0hFv2LMCP+B9fgH7waU8</latexit>

xy;
<latexit sha1_base64="U8uPUGiyhrVLaBAFUFKM0a7rj8k=">AAACInicbVDLSsNAFL3xbX3r0k2wCK5KooKCG18LN4JCq0JTZDK9tYOTZJi5EeuQ33CrC7/GnbgS/BgnbRe+DgwczrmvObGSwlAQfHgjo2PjE5NT05WZ2bn5hcWl5QuT5Zpjg2cy01cxMyhFig0SJPFKaWRJLPEyvj0q/cs71EZkaZ16ClsJu0lFR3BGTooiwnsisve9veJ6sRrUgj78vyQckioMcXa95EHUznieYEpcMmOaYaCoZZkmwSUWlSg3qBi/ZTfYdDRlCZqW7R9d+OtOafudTLuXkt9Xv3dYlhjTS2JXmTDqmt9eKf7nNXPq7LasSFVOmPLBok4ufcr8MgG/LTRykj1HGNfC3erzLtOMk8upEh2j+4vGUzf3QKoui5FsVG5RD7yw9bCwfZIUVlCZWfg7ob/kYrMWbtU2z7er+4fD9KZgFdZgA0LYgX04gTNoAAcFj/AEz96L9+q9ee+D0hFv2LMCP+B9fgH7waU8</latexit>

xy;
<latexit sha1_base64="U8uPUGiyhrVLaBAFUFKM0a7rj8k=">AAACInicbVDLSsNAFL3xbX3r0k2wCK5KooKCG18LN4JCq0JTZDK9tYOTZJi5EeuQ33CrC7/GnbgS/BgnbRe+DgwczrmvObGSwlAQfHgjo2PjE5NT05WZ2bn5hcWl5QuT5Zpjg2cy01cxMyhFig0SJPFKaWRJLPEyvj0q/cs71EZkaZ16ClsJu0lFR3BGTooiwnsisve9veJ6sRrUgj78vyQckioMcXa95EHUznieYEpcMmOaYaCoZZkmwSUWlSg3qBi/ZTfYdDRlCZqW7R9d+OtOafudTLuXkt9Xv3dYlhjTS2JXmTDqmt9eKf7nNXPq7LasSFVOmPLBok4ufcr8MgG/LTRykj1HGNfC3erzLtOMk8upEh2j+4vGUzf3QKoui5FsVG5RD7yw9bCwfZIUVlCZWfg7ob/kYrMWbtU2z7er+4fD9KZgFdZgA0LYgX04gTNoAAcFj/AEz96L9+q9ee+D0hFv2LMCP+B9fgH7waU8</latexit>

A[x⇤]
<latexit sha1_base64="2XEm+hvI9qbbuqQzobeLekhqdGY=">AAACJ3icbVC7SgNBFL3r2/iKWtosBkEswq4KWhq1sBEUjArZNcxObsyQ2QczdyVx2C+x1cKvsRMt/RMnMYWvAwOHc+5rTpRJocnz3p2x8YnJqemZ2dLc/MLiUnl55VKnueJY56lM1XXENEqRYJ0ESbzOFLI4kngVdY8G/tUdKi3S5IL6GYYxu01EW3BGVmqWl2qNgLBHRKZX3GyFzXLFq3pDuH+JPyIVGOGsuexA0Ep5HmNCXDKtG76XUWiYIsElFqUg15gx3mW32LA0YTHq0AwvL9wNq7TcdqrsS8gdqt87DIu17seRrYwZdfRvbyD+5zVyau+HRiRZTpjwr0XtXLqUuoMY3JZQyEn2LWFcCXuryztMMU42rFJwjPYvCk/t3JrMOixCMsFgS3bPC3PhF2ZI4sIIKmxm/u+E/pLL7aq/U90+360cHI7Sm4E1WIdN8GEPDuAEzqAOHHJ4gEd4cp6dF+fVefsqHXNGPavwA87HJ1KFplg=</latexit>

x[x⇤]
<latexit sha1_base64="4BzEio6TyrEpyfdWmkGjiL7hjH4=">AAACMHicbZDJSgNBEIZr3I1b1IvgZTAI4iHMqKBHt4MXQcGokBlDT6diGnsWumvE2IxP41UPPo2exKtPYScGXAsaPv7auv4ok0KT5704A4NDwyOjY+Olicmp6Zny7NypTnPFscZTmarziGmUIsEaCZJ4nilkcSTxLLra6+bPrlFpkSYn1MkwjNllIlqCM7JSo7wQEN4Qkbkp6l94sRo2yhWv6vXC/Qt+HyrQj6PGrANBM+V5jAlxybSu+15GoWGKBJdYlIJcY8b4FbvEusWExahD0zuhcJet0nRbqbIvIbenfu8wLNa6E0e2MmbU1r9zXfG/XD2n1lZoRJLlhAn/XNTKpUup2/XDbQqFnGTHAuNK2L+6vM0U42RdKwX7aG9ReGjn7siszSIkE3S3ZLe8MCd+YXoQF0ZQYT3zfzv0F07Xqv56de14o7K923dvDBZhCVbAh03YhgM4ghpwuIN7eIBH58l5dl6dt8/SAaffMw8/wnn/AByXquo=</latexit>

: non-terminal

: terminal

: match

: mismatch

A[�]
<latexit sha1_base64="9QZZ2k2Y2ZVg9yXnAbVqOgjBmJ4=">AAACHnicbVDLSgNBEOyNrxhfiR69LAbBU9hVQY+JevAiREg0kF1kdtIxQ2YfzPQKcdmf8KoHv8abeNW/cTbm4KtgoKjqnu6uIJFCk+N8WKW5+YXFpfJyZWV1bX2jWtu80nGqOHZ5LGPVC5hGKSLskiCJvUQhCwOJ18H4tPCv71BpEUcdmiToh+w2EkPBGRmp1+p7XCju31TrTsOZwv5L3Bmpwwztm5oF3iDmaYgRccm07rtOQn7GFAkuMa94qcaE8TG7xb6hEQtR+9l04dzeNcrAHsbKvIjsqfq9I2Oh1pMwMJUho5H+7RXif14/peGxn4koSQkj/jVomEqbYru43h4IhZzkxBDGlTC72nzEFONkMqp4Z2huUXhh/m3JZMQCpMwrpiT3PM86bp5NSZhngnKTmfs7ob/kar/hHjT2Lw/rzZNZemXYhh3YAxeOoAnn0IYucJDwAI/wZD1bL9ar9fZVWrJmPVvwA9b7J5DRot0=</latexit>

�<latexit sha1_base64="UuY8YOI9pFTy0StnhT4M1r6s4A4=">AAACG3icbVDLSgNBEOz1bXxFPXpZDIKnsBsFPcbHwYsQIYlCdpHZSScZMvtgpleIy36DVz34Nd7Eqwf/xkmyBzUWDBRV3dPdFSRSaHKcL2tufmFxaXlltbS2vrG5Vd7eaes4VRxbPJaxuguYRikibJEgiXeJQhYGEm+D4cXYv31ApUUcNWmUoB+yfiR6gjMyUsvjQvH7csWpOhPYs8QtSAUKNO63LfC6MU9DjIhLpnXHdRLyM6ZIcIl5yUs1JowPWR87hkYsRO1nk21z+8AoXbsXK/Misifqz46MhVqPwsBUhowG+q83Fv/zOin1Tv1MRElKGPHpoF4qbYrt8el2VyjkJEeGMK6E2dXmA6YYJxNQybtEc4vCa/PvmUwGLEDKvPGU5JHnWdPNswkJ80xQbjJz/yY0S9q1qntUrd0cV+rnRXorsAf7cAgunEAdrqABLeAg4Ame4cV6td6sd+tjWjpnFT278AvW5zd0W6HG</latexit>

: end of input

Lookahead
Tokens

x[;]
<latexit sha1_base64="suQCUMMnfB4Z6nafurGCrkGEbCM=">AAACLnicbZDJSgNBEIZr3I1bVPDiZTAInsKMCgpe3A5eBAWjQmYIPZ2KadKz0F0jxnZexqsefBrBg3j1MezECG4FDR9/bV1/lEmhyfNenKHhkdGx8YnJ0tT0zOxceX7hXKe54ljjqUzVZcQ0SpFgjQRJvMwUsjiSeBF1Dnr5i2tUWqTJGXUzDGN2lYiW4Iys1CgvBYQ3RGRuivoX7hRho1zxql4/3L/gD6ACgzhpzDsQNFOex5gQl0zruu9lFBqmSHCJRSnINWaMd9gV1i0mLEYdmv4BhbtqlabbSpV9Cbl99XuHYbHW3TiylTGjtv6d64n/5eo5tbZDI5IsJ0z456JWLl1K3Z4bblMo5CS7FhhXwv7V5W2mGCfrWSk4RHuLwmM7d09mbRYhmaC3JbvlhTnzC9OHuDCCCuuZ/9uhv3C+XvU3quunm5Xd/YF7E7AMK7AGPmzBLhzBCdSAwx3cwwM8Ok/Os/PqvH2WDjmDnkX4Ec77B28GqhE=</latexit>

B[;]
<latexit sha1_base64="hKdDe42nbU+uw/dMTIadkAvk238=">AAACI3icbVDJSgNBFHzjbtwSPXoZDIKnMKOCgpe4HLwICiYKmUF6Oi+msWex+40Ym/kOr3rwa7yJFw/+i53l4FbQUFS9rSvKpNDkeR/O2PjE5NT0zGxpbn5hcalcWW7qNFccGzyVqbqMmEYpEmyQIImXmUIWRxIvopvDvn9xh0qLNDmnXoZhzK4T0RGckZXCg1ZAeE9EZq8Ir8pVr+YN4P4l/ohUYYTTq4oDQTvleYwJccm0bvleRqFhigSXWJSCXGPG+A27xpalCYtRh2ZwdeGuW6XtdlJlX0LuQP3eYVisdS+ObGXMqKt/e33xP6+VU2c3NCLJcsKEDxd1culS6vYjcNtCISfZs4RxJeytLu8yxTjZoErBEdq/KDyxc/dl1mURkgn6W7IHXphzvzADEhdGUGEz838n9Jc0N2v+Vm3zbLtaPxilNwOrsAYb4MMO1OEYTqEBHG7hEZ7g2XlxXp03531YOuaMelbgB5zPLzIfpU8=</latexit>

;[�]
<latexit sha1_base64="OsMyu26amX8OQtGAV1Jx/DUrsc8=">AAACKXicbVDJSgNBFHzjbtwSPXoZDIKnMKOCghe3gxchQqJCZgg9nRfT2LPQ/UaNzXyKVz34Nd7Uqz9iJ+bgVtBQVL2tK8qk0OR5b87Y+MTk1PTMbGlufmFxqVxZPtdprjg2eSpTdRkxjVIk2CRBEi8zhSyOJF5E10cD/+IGlRZp0qB+hmHMrhLRFZyRldrlSkB4R0Rmr2gFXCgetstVr+YN4f4l/ohUYYR6u+JA0El5HmNCXDKtW76XUWiYIsElFqUg15gxfs2usGVpwmLUoRneXrjrVum43VTZl5A7VL93GBZr3Y8jWxkz6unf3kD8z2vl1N0NjUiynDDhX4u6uXQpdQdBuB2hkJPsW8K4EvZWl/eYYpxsXKXgGO1fFJ7auQcy67EIyQSDLdk9L0zDL8yQxIURVNjM/N8J/SXnmzV/q7Z5tl3dPxylNwOrsAYb4MMO7MMJ1KEJHG7hAR7hyXl2XpxX5/2rdMwZ9azADzgfn0/bp2M=</latexit>

x[y]
<latexit sha1_base64="WBQYTj9J4uL7ataU2pGwN37Z1hM=">AAACLnicbZDJSgNBEIZr3I1bVPDiZTAInsKMCnp0O3gRIiQqZIbQ06mYxp6F7hoxtvMyXvXg0wgexKuPYSdGcCto+Phr6/qjTApNnvfijIyOjU9MTk2XZmbn5hfKi0tnOs0VxwZPZaouIqZRigQbJEjiRaaQxZHE8+jqsJ8/v0alRZrUqZdhGLPLRHQEZ2SlVnklILwhInNTNL+wV4StcsWreoNw/4I/hAoMo9ZadCBopzyPMSEumdZN38soNEyR4BKLUpBrzBi/YpfYtJiwGHVoBgcU7rpV2m4nVfYl5A7U7x2GxVr34shWxoy6+neuL/6Xa+bU2Q2NSLKcMOGfizq5dCl1+264baGQk+xZYFwJ+1eXd5linKxnpeAI7S0KT+zcfZl1WYRkgv6W7JYXpu4XZgBxYQQV1jP/t0N/4Wyz6m9VN0+3K3sHQ/emYBXWYAN82IE9OIYaNIDDHdzDAzw6T86z8+q8fZaOOMOeZfgRzvsH2NyqTw==</latexit>

y[;]
<latexit sha1_base64="HKf4leJorqwL0x73V62Csl/osUg=">AAACLnicbZDJSgNBEIZr3I1bVPDiZTAInsKMCgpe3A5eBAWjQmYIPZ2KadKz0F0jxnZexqsefBrBg3j1MezECG4FDR9/bV1/lEmhyfNenKHhkdGx8YnJ0tT0zOxceX7hXKe54ljjqUzVZcQ0SpFgjQRJvMwUsjiSeBF1Dnr5i2tUWqTJGXUzDGN2lYiW4Iys1CgvBYQ3RGS6Rf0Ld4qwUa54Va8f7l/wB1CBQZw05h0IminPY0yIS6Z13fcyCg1TJLjEohTkGjPGO+wK6xYTFqMOTf+Awl21StNtpcq+hNy++r3DsFjrbhzZyphRW//O9cT/cvWcWtuhEUmWEyb8c1Erly6lbs8NtykUcpJdC4wrYf/q8jZTjJP1rBQcor1F4bGduyezNouQTNDbkt3ywpz5helDXBhBhfXM/+3QXzhfr/ob1fXTzcru/sC9CViGFVgDH7ZgF47gBGrA4Q7u4QEenSfn2Xl13j5Lh5xBzyL8COf9A3DGqhI=</latexit>

A ::= B; / B + B;
B ::= x / xy

<latexit sha1_base64="Gy2vXkNCxBEZUx9WCbJKa44pHvA=">AAACjnicbVHvaxQxEM2uP1q3Va/60S/BQxCEc7eKlZZie/qhX4QKvbZwOY5sbu4uNJtdktnSNWz/T8E/xuzeWrV1IPDmzbyZ5CUtlLQYxz+C8N79Bw/X1h9FG5uPnzztbT07tXlpBIxErnJznnILSmoYoUQF54UBnqUKztKLz0397BKMlbk+waqAScYXWs6l4Oipae+SpbCQ2nFjeFU7VUeHdHd3nw4pQ7hCRLdX0+u31w2xd8O9qX02/NPBWDRsZb+pq5XoJq2aFgZ61i2a9vrxIG6D3gVJB/qki+PpVkDYLBdlBhqF4taOk7jAiR+HUiioI1ZaKLi44AsYe6h5BnbiWoNq+sozMzrPjT8aacv+rXA8s7bKUt+ZcVza27WG/F9tXOL848RJXZQIWqwWzUtFMaeN23QmDQhUlQdcGOnvSsWSGy7Q/0nEvoB/i4Gvfu6hKpY8BXSs2VJ8F7U7SWrXgqx2EhvPktsO3QWn24Pk3WD72/v+wbBzb528IC/Ja5KQHXJAjsgxGRFBfgZhsBFshr3wQ7gfflq1hkGneU7+ifDoF235xz4=</latexit>

input : xy;
<latexit sha1_base64="U8uPUGiyhrVLaBAFUFKM0a7rj8k=">AAACInicbVDLSsNAFL3xbX3r0k2wCK5KooKCG18LN4JCq0JTZDK9tYOTZJi5EeuQ33CrC7/GnbgS/BgnbRe+DgwczrmvObGSwlAQfHgjo2PjE5NT05WZ2bn5hcWl5QuT5Zpjg2cy01cxMyhFig0SJPFKaWRJLPEyvj0q/cs71EZkaZ16ClsJu0lFR3BGTooiwnsisve9veJ6sRrUgj78vyQckioMcXa95EHUznieYEpcMmOaYaCoZZkmwSUWlSg3qBi/ZTfYdDRlCZqW7R9d+OtOafudTLuXkt9Xv3dYlhjTS2JXmTDqmt9eKf7nNXPq7LasSFVOmPLBok4ufcr8MgG/LTRykj1HGNfC3erzLtOMk8upEh2j+4vGUzf3QKoui5FsVG5RD7yw9bCwfZIUVlCZWfg7ob/kYrMWbtU2z7er+4fD9KZgFdZgA0LYgX04gTNoAAcFj/AEz96L9+q9ee+D0hFv2LMCP+B9fgH7waU8</latexit>

xy;
<latexit sha1_base64="U8uPUGiyhrVLaBAFUFKM0a7rj8k=">AAACInicbVDLSsNAFL3xbX3r0k2wCK5KooKCG18LN4JCq0JTZDK9tYOTZJi5EeuQ33CrC7/GnbgS/BgnbRe+DgwczrmvObGSwlAQfHgjo2PjE5NT05WZ2bn5hcWl5QuT5Zpjg2cy01cxMyhFig0SJPFKaWRJLPEyvj0q/cs71EZkaZ16ClsJu0lFR3BGTooiwnsisve9veJ6sRrUgj78vyQckioMcXa95EHUznieYEpcMmOaYaCoZZkmwSUWlSg3qBi/ZTfYdDRlCZqW7R9d+OtOafudTLuXkt9Xv3dYlhjTS2JXmTDqmt9eKf7nNXPq7LasSFVOmPLBok4ufcr8MgG/LTRykj1HGNfC3erzLtOMk8upEh2j+4vGUzf3QKoui5FsVG5RD7yw9bCwfZIUVlCZWfg7ob/kYrMWbtU2z7er+4fD9KZgFdZgA0LYgX04gTNoAAcFj/AEz96L9+q9ee+D0hFv2LMCP+B9fgH7waU8</latexit>

xy;
<latexit sha1_base64="U8uPUGiyhrVLaBAFUFKM0a7rj8k=">AAACInicbVDLSsNAFL3xbX3r0k2wCK5KooKCG18LN4JCq0JTZDK9tYOTZJi5EeuQ33CrC7/GnbgS/BgnbRe+DgwczrmvObGSwlAQfHgjo2PjE5NT05WZ2bn5hcWl5QuT5Zpjg2cy01cxMyhFig0SJPFKaWRJLPEyvj0q/cs71EZkaZ16ClsJu0lFR3BGTooiwnsisve9veJ6sRrUgj78vyQckioMcXa95EHUznieYEpcMmOaYaCoZZkmwSUWlSg3qBi/ZTfYdDRlCZqW7R9d+OtOafudTLuXkt9Xv3dYlhjTS2JXmTDqmt9eKf7nNXPq7LasSFVOmPLBok4ufcr8MgG/LTRykj1HGNfC3erzLtOMk8upEh2j+4vGUzf3QKoui5FsVG5RD7yw9bCwfZIUVlCZWfg7ob/kYrMWbtU2z7er+4fD9KZgFdZgA0LYgX04gTNoAAcFj/AEz96L9+q9ee+D0hFv2LMCP+B9fgH7waU8</latexit>

A[x⇤]
<latexit sha1_base64="2XEm+hvI9qbbuqQzobeLekhqdGY=">AAACJ3icbVC7SgNBFL3r2/iKWtosBkEswq4KWhq1sBEUjArZNcxObsyQ2QczdyVx2C+x1cKvsRMt/RMnMYWvAwOHc+5rTpRJocnz3p2x8YnJqemZ2dLc/MLiUnl55VKnueJY56lM1XXENEqRYJ0ESbzOFLI4kngVdY8G/tUdKi3S5IL6GYYxu01EW3BGVmqWl2qNgLBHRKZX3GyFzXLFq3pDuH+JPyIVGOGsuexA0Ep5HmNCXDKtG76XUWiYIsElFqUg15gx3mW32LA0YTHq0AwvL9wNq7TcdqrsS8gdqt87DIu17seRrYwZdfRvbyD+5zVyau+HRiRZTpjwr0XtXLqUuoMY3JZQyEn2LWFcCXuryztMMU42rFJwjPYvCk/t3JrMOixCMsFgS3bPC3PhF2ZI4sIIKmxm/u+E/pLL7aq/U90+360cHI7Sm4E1WIdN8GEPDuAEzqAOHHJ4gEd4cp6dF+fVefsqHXNGPavwA87HJ1KFplg=</latexit>

x[x⇤]
<latexit sha1_base64="4BzEio6TyrEpyfdWmkGjiL7hjH4=">AAACMHicbZDJSgNBEIZr3I1b1IvgZTAI4iHMqKBHt4MXQcGokBlDT6diGnsWumvE2IxP41UPPo2exKtPYScGXAsaPv7auv4ok0KT5704A4NDwyOjY+Olicmp6Zny7NypTnPFscZTmarziGmUIsEaCZJ4nilkcSTxLLra6+bPrlFpkSYn1MkwjNllIlqCM7JSo7wQEN4Qkbkp6l94sRo2yhWv6vXC/Qt+HyrQj6PGrANBM+V5jAlxybSu+15GoWGKBJdYlIJcY8b4FbvEusWExahD0zuhcJet0nRbqbIvIbenfu8wLNa6E0e2MmbU1r9zXfG/XD2n1lZoRJLlhAn/XNTKpUup2/XDbQqFnGTHAuNK2L+6vM0U42RdKwX7aG9ReGjn7siszSIkE3S3ZLe8MCd+YXoQF0ZQYT3zfzv0F07Xqv56de14o7K923dvDBZhCVbAh03YhgM4ghpwuIN7eIBH58l5dl6dt8/SAaffMw8/wnn/AByXquo=</latexit>

: non-terminal

: terminal

: match

: mismatch

A[�]
<latexit sha1_base64="9QZZ2k2Y2ZVg9yXnAbVqOgjBmJ4=">AAACHnicbVDLSgNBEOyNrxhfiR69LAbBU9hVQY+JevAiREg0kF1kdtIxQ2YfzPQKcdmf8KoHv8abeNW/cTbm4KtgoKjqnu6uIJFCk+N8WKW5+YXFpfJyZWV1bX2jWtu80nGqOHZ5LGPVC5hGKSLskiCJvUQhCwOJ18H4tPCv71BpEUcdmiToh+w2EkPBGRmp1+p7XCju31TrTsOZwv5L3Bmpwwztm5oF3iDmaYgRccm07rtOQn7GFAkuMa94qcaE8TG7xb6hEQtR+9l04dzeNcrAHsbKvIjsqfq9I2Oh1pMwMJUho5H+7RXif14/peGxn4koSQkj/jVomEqbYru43h4IhZzkxBDGlTC72nzEFONkMqp4Z2huUXhh/m3JZMQCpMwrpiT3PM86bp5NSZhngnKTmfs7ob/kar/hHjT2Lw/rzZNZemXYhh3YAxeOoAnn0IYucJDwAI/wZD1bL9ar9fZVWrJmPVvwA9b7J5DRot0=</latexit>

�<latexit sha1_base64="UuY8YOI9pFTy0StnhT4M1r6s4A4=">AAACG3icbVDLSgNBEOz1bXxFPXpZDIKnsBsFPcbHwYsQIYlCdpHZSScZMvtgpleIy36DVz34Nd7Eqwf/xkmyBzUWDBRV3dPdFSRSaHKcL2tufmFxaXlltbS2vrG5Vd7eaes4VRxbPJaxuguYRikibJEgiXeJQhYGEm+D4cXYv31ApUUcNWmUoB+yfiR6gjMyUsvjQvH7csWpOhPYs8QtSAUKNO63LfC6MU9DjIhLpnXHdRLyM6ZIcIl5yUs1JowPWR87hkYsRO1nk21z+8AoXbsXK/Misifqz46MhVqPwsBUhowG+q83Fv/zOin1Tv1MRElKGPHpoF4qbYrt8el2VyjkJEeGMK6E2dXmA6YYJxNQybtEc4vCa/PvmUwGLEDKvPGU5JHnWdPNswkJ80xQbjJz/yY0S9q1qntUrd0cV+rnRXorsAf7cAgunEAdrqABLeAg4Ame4cV6td6sd+tjWjpnFT278AvW5zd0W6HG</latexit>

: end of input

Lookahead
Tokens

x[;]
<latexit sha1_base64="suQCUMMnfB4Z6nafurGCrkGEbCM=">AAACLnicbZDJSgNBEIZr3I1bVPDiZTAInsKMCgpe3A5eBAWjQmYIPZ2KadKz0F0jxnZexqsefBrBg3j1MezECG4FDR9/bV1/lEmhyfNenKHhkdGx8YnJ0tT0zOxceX7hXKe54ljjqUzVZcQ0SpFgjQRJvMwUsjiSeBF1Dnr5i2tUWqTJGXUzDGN2lYiW4Iys1CgvBYQ3RGRuivoX7hRho1zxql4/3L/gD6ACgzhpzDsQNFOex5gQl0zruu9lFBqmSHCJRSnINWaMd9gV1i0mLEYdmv4BhbtqlabbSpV9Cbl99XuHYbHW3TiylTGjtv6d64n/5eo5tbZDI5IsJ0z456JWLl1K3Z4bblMo5CS7FhhXwv7V5W2mGCfrWSk4RHuLwmM7d09mbRYhmaC3JbvlhTnzC9OHuDCCCuuZ/9uhv3C+XvU3quunm5Xd/YF7E7AMK7AGPmzBLhzBCdSAwx3cwwM8Ok/Os/PqvH2WDjmDnkX4Ec77B28GqhE=</latexit>

B[;]
<latexit sha1_base64="hKdDe42nbU+uw/dMTIadkAvk238=">AAACI3icbVDJSgNBFHzjbtwSPXoZDIKnMKOCgpe4HLwICiYKmUF6Oi+msWex+40Ym/kOr3rwa7yJFw/+i53l4FbQUFS9rSvKpNDkeR/O2PjE5NT0zGxpbn5hcalcWW7qNFccGzyVqbqMmEYpEmyQIImXmUIWRxIvopvDvn9xh0qLNDmnXoZhzK4T0RGckZXCg1ZAeE9EZq8Ir8pVr+YN4P4l/ohUYYTTq4oDQTvleYwJccm0bvleRqFhigSXWJSCXGPG+A27xpalCYtRh2ZwdeGuW6XtdlJlX0LuQP3eYVisdS+ObGXMqKt/e33xP6+VU2c3NCLJcsKEDxd1culS6vYjcNtCISfZs4RxJeytLu8yxTjZoErBEdq/KDyxc/dl1mURkgn6W7IHXphzvzADEhdGUGEz838n9Jc0N2v+Vm3zbLtaPxilNwOrsAYb4MMO1OEYTqEBHG7hEZ7g2XlxXp03531YOuaMelbgB5zPLzIfpU8=</latexit>

;[�]
<latexit sha1_base64="OsMyu26amX8OQtGAV1Jx/DUrsc8=">AAACKXicbVDJSgNBFHzjbtwSPXoZDIKnMKOCghe3gxchQqJCZgg9nRfT2LPQ/UaNzXyKVz34Nd7Uqz9iJ+bgVtBQVL2tK8qk0OR5b87Y+MTk1PTMbGlufmFxqVxZPtdprjg2eSpTdRkxjVIk2CRBEi8zhSyOJF5E10cD/+IGlRZp0qB+hmHMrhLRFZyRldrlSkB4R0Rmr2gFXCgetstVr+YN4f4l/ohUYYR6u+JA0El5HmNCXDKtW76XUWiYIsElFqUg15gxfs2usGVpwmLUoRneXrjrVum43VTZl5A7VL93GBZr3Y8jWxkz6unf3kD8z2vl1N0NjUiynDDhX4u6uXQpdQdBuB2hkJPsW8K4EvZWl/eYYpxsXKXgGO1fFJ7auQcy67EIyQSDLdk9L0zDL8yQxIURVNjM/N8J/SXnmzV/q7Z5tl3dPxylNwOrsAYb4MMO7MMJ1KEJHG7hAR7hyXl2XpxX5/2rdMwZ9azADzgfn0/bp2M=</latexit>

x[y]
<latexit sha1_base64="WBQYTj9J4uL7ataU2pGwN37Z1hM=">AAACLnicbZDJSgNBEIZr3I1bVPDiZTAInsKMCnp0O3gRIiQqZIbQ06mYxp6F7hoxtvMyXvXg0wgexKuPYSdGcCto+Phr6/qjTApNnvfijIyOjU9MTk2XZmbn5hfKi0tnOs0VxwZPZaouIqZRigQbJEjiRaaQxZHE8+jqsJ8/v0alRZrUqZdhGLPLRHQEZ2SlVnklILwhInNTNL+wV4StcsWreoNw/4I/hAoMo9ZadCBopzyPMSEumdZN38soNEyR4BKLUpBrzBi/YpfYtJiwGHVoBgcU7rpV2m4nVfYl5A7U7x2GxVr34shWxoy6+neuL/6Xa+bU2Q2NSLKcMOGfizq5dCl1+264baGQk+xZYFwJ+1eXd5linKxnpeAI7S0KT+zcfZl1WYRkgv6W7JYXpu4XZgBxYQQV1jP/t0N/4Wyz6m9VN0+3K3sHQ/emYBXWYAN82IE9OIYaNIDDHdzDAzw6T86z8+q8fZaOOMOeZfgRzvsH2NyqTw==</latexit>

y[;]
<latexit sha1_base64="HKf4leJorqwL0x73V62Csl/osUg=">AAACLnicbZDJSgNBEIZr3I1bVPDiZTAInsKMCgpe3A5eBAWjQmYIPZ2KadKz0F0jxnZexqsefBrBg3j1MezECG4FDR9/bV1/lEmhyfNenKHhkdGx8YnJ0tT0zOxceX7hXKe54ljjqUzVZcQ0SpFgjQRJvMwUsjiSeBF1Dnr5i2tUWqTJGXUzDGN2lYiW4Iys1CgvBYQ3RGS6Rf0Ld4qwUa54Va8f7l/wB1CBQZw05h0IminPY0yIS6Z13fcyCg1TJLjEohTkGjPGO+wK6xYTFqMOTf+Awl21StNtpcq+hNy++r3DsFjrbhzZyphRW//O9cT/cvWcWtuhEUmWEyb8c1Erly6lbs8NtykUcpJdC4wrYf/q8jZTjJP1rBQcor1F4bGduyezNouQTNDbkt3ywpz5helDXBhBhfXM/+3QXzhfr/ob1fXTzcru/sC9CViGFVgDH7ZgF47gBGrA4Q7u4QEenSfn2Xl13j5Lh5xBzyL8COf9A3DGqhI=</latexit>

A ::= B; / B + B;
B ::= x / xy

<latexit sha1_base64="Gy2vXkNCxBEZUx9WCbJKa44pHvA=">AAACjnicbVHvaxQxEM2uP1q3Va/60S/BQxCEc7eKlZZie/qhX4QKvbZwOY5sbu4uNJtdktnSNWz/T8E/xuzeWrV1IPDmzbyZ5CUtlLQYxz+C8N79Bw/X1h9FG5uPnzztbT07tXlpBIxErnJznnILSmoYoUQF54UBnqUKztKLz0397BKMlbk+waqAScYXWs6l4Oipae+SpbCQ2nFjeFU7VUeHdHd3nw4pQ7hCRLdX0+u31w2xd8O9qX02/NPBWDRsZb+pq5XoJq2aFgZ61i2a9vrxIG6D3gVJB/qki+PpVkDYLBdlBhqF4taOk7jAiR+HUiioI1ZaKLi44AsYe6h5BnbiWoNq+sozMzrPjT8aacv+rXA8s7bKUt+ZcVza27WG/F9tXOL848RJXZQIWqwWzUtFMaeN23QmDQhUlQdcGOnvSsWSGy7Q/0nEvoB/i4Gvfu6hKpY8BXSs2VJ8F7U7SWrXgqx2EhvPktsO3QWn24Pk3WD72/v+wbBzb528IC/Ja5KQHXJAjsgxGRFBfgZhsBFshr3wQ7gfflq1hkGneU7+ifDoF235xz4=</latexit>

input : xy;
<latexit sha1_base64="U8uPUGiyhrVLaBAFUFKM0a7rj8k=">AAACInicbVDLSsNAFL3xbX3r0k2wCK5KooKCG18LN4JCq0JTZDK9tYOTZJi5EeuQ33CrC7/GnbgS/BgnbRe+DgwczrmvObGSwlAQfHgjo2PjE5NT05WZ2bn5hcWl5QuT5Zpjg2cy01cxMyhFig0SJPFKaWRJLPEyvj0q/cs71EZkaZ16ClsJu0lFR3BGTooiwnsisve9veJ6sRrUgj78vyQckioMcXa95EHUznieYEpcMmOaYaCoZZkmwSUWlSg3qBi/ZTfYdDRlCZqW7R9d+OtOafudTLuXkt9Xv3dYlhjTS2JXmTDqmt9eKf7nNXPq7LasSFVOmPLBok4ufcr8MgG/LTRykj1HGNfC3erzLtOMk8upEh2j+4vGUzf3QKoui5FsVG5RD7yw9bCwfZIUVlCZWfg7ob/kYrMWbtU2z7er+4fD9KZgFdZgA0LYgX04gTNoAAcFj/AEz96L9+q9ee+D0hFv2LMCP+B9fgH7waU8</latexit>

xy;
<latexit sha1_base64="U8uPUGiyhrVLaBAFUFKM0a7rj8k=">AAACInicbVDLSsNAFL3xbX3r0k2wCK5KooKCG18LN4JCq0JTZDK9tYOTZJi5EeuQ33CrC7/GnbgS/BgnbRe+DgwczrmvObGSwlAQfHgjo2PjE5NT05WZ2bn5hcWl5QuT5Zpjg2cy01cxMyhFig0SJPFKaWRJLPEyvj0q/cs71EZkaZ16ClsJu0lFR3BGTooiwnsisve9veJ6sRrUgj78vyQckioMcXa95EHUznieYEpcMmOaYaCoZZkmwSUWlSg3qBi/ZTfYdDRlCZqW7R9d+OtOafudTLuXkt9Xv3dYlhjTS2JXmTDqmt9eKf7nNXPq7LasSFVOmPLBok4ufcr8MgG/LTRykj1HGNfC3erzLtOMk8upEh2j+4vGUzf3QKoui5FsVG5RD7yw9bCwfZIUVlCZWfg7ob/kYrMWbtU2z7er+4fD9KZgFdZgA0LYgX04gTNoAAcFj/AEz96L9+q9ee+D0hFv2LMCP+B9fgH7waU8</latexit>

xy;
<latexit sha1_base64="U8uPUGiyhrVLaBAFUFKM0a7rj8k=">AAACInicbVDLSsNAFL3xbX3r0k2wCK5KooKCG18LN4JCq0JTZDK9tYOTZJi5EeuQ33CrC7/GnbgS/BgnbRe+DgwczrmvObGSwlAQfHgjo2PjE5NT05WZ2bn5hcWl5QuT5Zpjg2cy01cxMyhFig0SJPFKaWRJLPEyvj0q/cs71EZkaZ16ClsJu0lFR3BGTooiwnsisve9veJ6sRrUgj78vyQckioMcXa95EHUznieYEpcMmOaYaCoZZkmwSUWlSg3qBi/ZTfYdDRlCZqW7R9d+OtOafudTLuXkt9Xv3dYlhjTS2JXmTDqmt9eKf7nNXPq7LasSFVOmPLBok4ufcr8MgG/LTRykj1HGNfC3erzLtOMk8upEh2j+4vGUzf3QKoui5FsVG5RD7yw9bCwfZIUVlCZWfg7ob/kYrMWbtU2z7er+4fD9KZgFdZgA0LYgX04gTNoAAcFj/AEz96L9+q9ee+D0hFv2LMCP+B9fgH7waU8</latexit>

A[x⇤]
<latexit sha1_base64="2XEm+hvI9qbbuqQzobeLekhqdGY=">AAACJ3icbVC7SgNBFL3r2/iKWtosBkEswq4KWhq1sBEUjArZNcxObsyQ2QczdyVx2C+x1cKvsRMt/RMnMYWvAwOHc+5rTpRJocnz3p2x8YnJqemZ2dLc/MLiUnl55VKnueJY56lM1XXENEqRYJ0ESbzOFLI4kngVdY8G/tUdKi3S5IL6GYYxu01EW3BGVmqWl2qNgLBHRKZX3GyFzXLFq3pDuH+JPyIVGOGsuexA0Ep5HmNCXDKtG76XUWiYIsElFqUg15gx3mW32LA0YTHq0AwvL9wNq7TcdqrsS8gdqt87DIu17seRrYwZdfRvbyD+5zVyau+HRiRZTpjwr0XtXLqUuoMY3JZQyEn2LWFcCXuryztMMU42rFJwjPYvCk/t3JrMOixCMsFgS3bPC3PhF2ZI4sIIKmxm/u+E/pLL7aq/U90+360cHI7Sm4E1WIdN8GEPDuAEzqAOHHJ4gEd4cp6dF+fVefsqHXNGPavwA87HJ1KFplg=</latexit>

x[x⇤]
<latexit sha1_base64="4BzEio6TyrEpyfdWmkGjiL7hjH4=">AAACMHicbZDJSgNBEIZr3I1b1IvgZTAI4iHMqKBHt4MXQcGokBlDT6diGnsWumvE2IxP41UPPo2exKtPYScGXAsaPv7auv4ok0KT5704A4NDwyOjY+Olicmp6Zny7NypTnPFscZTmarziGmUIsEaCZJ4nilkcSTxLLra6+bPrlFpkSYn1MkwjNllIlqCM7JSo7wQEN4Qkbkp6l94sRo2yhWv6vXC/Qt+HyrQj6PGrANBM+V5jAlxybSu+15GoWGKBJdYlIJcY8b4FbvEusWExahD0zuhcJet0nRbqbIvIbenfu8wLNa6E0e2MmbU1r9zXfG/XD2n1lZoRJLlhAn/XNTKpUup2/XDbQqFnGTHAuNK2L+6vM0U42RdKwX7aG9ReGjn7siszSIkE3S3ZLe8MCd+YXoQF0ZQYT3zfzv0F07Xqv56de14o7K923dvDBZhCVbAh03YhgM4ghpwuIN7eIBH58l5dl6dt8/SAaffMw8/wnn/AByXquo=</latexit>

: non-terminal

: terminal

: match

: mismatch

A[�]
<latexit sha1_base64="9QZZ2k2Y2ZVg9yXnAbVqOgjBmJ4=">AAACHnicbVDLSgNBEOyNrxhfiR69LAbBU9hVQY+JevAiREg0kF1kdtIxQ2YfzPQKcdmf8KoHv8abeNW/cTbm4KtgoKjqnu6uIJFCk+N8WKW5+YXFpfJyZWV1bX2jWtu80nGqOHZ5LGPVC5hGKSLskiCJvUQhCwOJ18H4tPCv71BpEUcdmiToh+w2EkPBGRmp1+p7XCju31TrTsOZwv5L3Bmpwwztm5oF3iDmaYgRccm07rtOQn7GFAkuMa94qcaE8TG7xb6hEQtR+9l04dzeNcrAHsbKvIjsqfq9I2Oh1pMwMJUho5H+7RXif14/peGxn4koSQkj/jVomEqbYru43h4IhZzkxBDGlTC72nzEFONkMqp4Z2huUXhh/m3JZMQCpMwrpiT3PM86bp5NSZhngnKTmfs7ob/kar/hHjT2Lw/rzZNZemXYhh3YAxeOoAnn0IYucJDwAI/wZD1bL9ar9fZVWrJmPVvwA9b7J5DRot0=</latexit>

�<latexit sha1_base64="UuY8YOI9pFTy0StnhT4M1r6s4A4=">AAACG3icbVDLSgNBEOz1bXxFPXpZDIKnsBsFPcbHwYsQIYlCdpHZSScZMvtgpleIy36DVz34Nd7Eqwf/xkmyBzUWDBRV3dPdFSRSaHKcL2tufmFxaXlltbS2vrG5Vd7eaes4VRxbPJaxuguYRikibJEgiXeJQhYGEm+D4cXYv31ApUUcNWmUoB+yfiR6gjMyUsvjQvH7csWpOhPYs8QtSAUKNO63LfC6MU9DjIhLpnXHdRLyM6ZIcIl5yUs1JowPWR87hkYsRO1nk21z+8AoXbsXK/Misifqz46MhVqPwsBUhowG+q83Fv/zOin1Tv1MRElKGPHpoF4qbYrt8el2VyjkJEeGMK6E2dXmA6YYJxNQybtEc4vCa/PvmUwGLEDKvPGU5JHnWdPNswkJ80xQbjJz/yY0S9q1qntUrd0cV+rnRXorsAf7cAgunEAdrqABLeAg4Ame4cV6td6sd+tjWjpnFT278AvW5zd0W6HG</latexit>

: end of input

Lookahead
Tokens

x[;]
<latexit sha1_base64="suQCUMMnfB4Z6nafurGCrkGEbCM=">AAACLnicbZDJSgNBEIZr3I1bVPDiZTAInsKMCgpe3A5eBAWjQmYIPZ2KadKz0F0jxnZexqsefBrBg3j1MezECG4FDR9/bV1/lEmhyfNenKHhkdGx8YnJ0tT0zOxceX7hXKe54ljjqUzVZcQ0SpFgjQRJvMwUsjiSeBF1Dnr5i2tUWqTJGXUzDGN2lYiW4Iys1CgvBYQ3RGRuivoX7hRho1zxql4/3L/gD6ACgzhpzDsQNFOex5gQl0zruu9lFBqmSHCJRSnINWaMd9gV1i0mLEYdmv4BhbtqlabbSpV9Cbl99XuHYbHW3TiylTGjtv6d64n/5eo5tbZDI5IsJ0z456JWLl1K3Z4bblMo5CS7FhhXwv7V5W2mGCfrWSk4RHuLwmM7d09mbRYhmaC3JbvlhTnzC9OHuDCCCuuZ/9uhv3C+XvU3quunm5Xd/YF7E7AMK7AGPmzBLhzBCdSAwx3cwwM8Ok/Os/PqvH2WDjmDnkX4Ec77B28GqhE=</latexit>

B[;]
<latexit sha1_base64="hKdDe42nbU+uw/dMTIadkAvk238=">AAACI3icbVDJSgNBFHzjbtwSPXoZDIKnMKOCgpe4HLwICiYKmUF6Oi+msWex+40Ym/kOr3rwa7yJFw/+i53l4FbQUFS9rSvKpNDkeR/O2PjE5NT0zGxpbn5hcalcWW7qNFccGzyVqbqMmEYpEmyQIImXmUIWRxIvopvDvn9xh0qLNDmnXoZhzK4T0RGckZXCg1ZAeE9EZq8Ir8pVr+YN4P4l/ohUYYTTq4oDQTvleYwJccm0bvleRqFhigSXWJSCXGPG+A27xpalCYtRh2ZwdeGuW6XtdlJlX0LuQP3eYVisdS+ObGXMqKt/e33xP6+VU2c3NCLJcsKEDxd1culS6vYjcNtCISfZs4RxJeytLu8yxTjZoErBEdq/KDyxc/dl1mURkgn6W7IHXphzvzADEhdGUGEz838n9Jc0N2v+Vm3zbLtaPxilNwOrsAYb4MMO1OEYTqEBHG7hEZ7g2XlxXp03531YOuaMelbgB5zPLzIfpU8=</latexit>

;[�]
<latexit sha1_base64="OsMyu26amX8OQtGAV1Jx/DUrsc8=">AAACKXicbVDJSgNBFHzjbtwSPXoZDIKnMKOCghe3gxchQqJCZgg9nRfT2LPQ/UaNzXyKVz34Nd7Uqz9iJ+bgVtBQVL2tK8qk0OR5b87Y+MTk1PTMbGlufmFxqVxZPtdprjg2eSpTdRkxjVIk2CRBEi8zhSyOJF5E10cD/+IGlRZp0qB+hmHMrhLRFZyRldrlSkB4R0Rmr2gFXCgetstVr+YN4f4l/ohUYYR6u+JA0El5HmNCXDKtW76XUWiYIsElFqUg15gxfs2usGVpwmLUoRneXrjrVum43VTZl5A7VL93GBZr3Y8jWxkz6unf3kD8z2vl1N0NjUiynDDhX4u6uXQpdQdBuB2hkJPsW8K4EvZWl/eYYpxsXKXgGO1fFJ7auQcy67EIyQSDLdk9L0zDL8yQxIURVNjM/N8J/SXnmzV/q7Z5tl3dPxylNwOrsAYb4MMO7MMJ1KEJHG7hAR7hyXl2XpxX5/2rdMwZ9azADzgfn0/bp2M=</latexit>

x[y]
<latexit sha1_base64="WBQYTj9J4uL7ataU2pGwN37Z1hM=">AAACLnicbZDJSgNBEIZr3I1bVPDiZTAInsKMCnp0O3gRIiQqZIbQ06mYxp6F7hoxtvMyXvXg0wgexKuPYSdGcCto+Phr6/qjTApNnvfijIyOjU9MTk2XZmbn5hfKi0tnOs0VxwZPZaouIqZRigQbJEjiRaaQxZHE8+jqsJ8/v0alRZrUqZdhGLPLRHQEZ2SlVnklILwhInNTNL+wV4StcsWreoNw/4I/hAoMo9ZadCBopzyPMSEumdZN38soNEyR4BKLUpBrzBi/YpfYtJiwGHVoBgcU7rpV2m4nVfYl5A7U7x2GxVr34shWxoy6+neuL/6Xa+bU2Q2NSLKcMOGfizq5dCl1+264baGQk+xZYFwJ+1eXd5linKxnpeAI7S0KT+zcfZl1WYRkgv6W7JYXpu4XZgBxYQQV1jP/t0N/4Wyz6m9VN0+3K3sHQ/emYBXWYAN82IE9OIYaNIDDHdzDAzw6T86z8+q8fZaOOMOeZfgRzvsH2NyqTw==</latexit>

y[;]
<latexit sha1_base64="HKf4leJorqwL0x73V62Csl/osUg=">AAACLnicbZDJSgNBEIZr3I1bVPDiZTAInsKMCgpe3A5eBAWjQmYIPZ2KadKz0F0jxnZexqsefBrBg3j1MezECG4FDR9/bV1/lEmhyfNenKHhkdGx8YnJ0tT0zOxceX7hXKe54ljjqUzVZcQ0SpFgjQRJvMwUsjiSeBF1Dnr5i2tUWqTJGXUzDGN2lYiW4Iys1CgvBYQ3RGS6Rf0Ld4qwUa54Va8f7l/wB1CBQZw05h0IminPY0yIS6Z13fcyCg1TJLjEohTkGjPGO+wK6xYTFqMOTf+Awl21StNtpcq+hNy++r3DsFjrbhzZyphRW//O9cT/cvWcWtuhEUmWEyb8c1Erly6lbs8NtykUcpJdC4wrYf/q8jZTjJP1rBQcor1F4bGduyezNouQTNDbkt3ywpz5helDXBhBhfXM/+3QXzhfr/ob1fXTzcru/sC9CViGFVgDH7ZgF47gBGrA4Q7u4QEenSfn2Xl13j5Lh5xBzyL8COf9A3DGqhI=</latexit>

A ::= B; / B + B;
B ::= x / xy

<latexit sha1_base64="Gy2vXkNCxBEZUx9WCbJKa44pHvA=">AAACjnicbVHvaxQxEM2uP1q3Va/60S/BQxCEc7eKlZZie/qhX4QKvbZwOY5sbu4uNJtdktnSNWz/T8E/xuzeWrV1IPDmzbyZ5CUtlLQYxz+C8N79Bw/X1h9FG5uPnzztbT07tXlpBIxErnJznnILSmoYoUQF54UBnqUKztKLz0397BKMlbk+waqAScYXWs6l4Oipae+SpbCQ2nFjeFU7VUeHdHd3nw4pQ7hCRLdX0+u31w2xd8O9qX02/NPBWDRsZb+pq5XoJq2aFgZ61i2a9vrxIG6D3gVJB/qki+PpVkDYLBdlBhqF4taOk7jAiR+HUiioI1ZaKLi44AsYe6h5BnbiWoNq+sozMzrPjT8aacv+rXA8s7bKUt+ZcVza27WG/F9tXOL848RJXZQIWqwWzUtFMaeN23QmDQhUlQdcGOnvSsWSGy7Q/0nEvoB/i4Gvfu6hKpY8BXSs2VJ8F7U7SWrXgqx2EhvPktsO3QWn24Pk3WD72/v+wbBzb528IC/Ja5KQHXJAjsgxGRFBfgZhsBFshr3wQ7gfflq1hkGneU7+ifDoF235xz4=</latexit>

input : xy;
<latexit sha1_base64="U8uPUGiyhrVLaBAFUFKM0a7rj8k=">AAACInicbVDLSsNAFL3xbX3r0k2wCK5KooKCG18LN4JCq0JTZDK9tYOTZJi5EeuQ33CrC7/GnbgS/BgnbRe+DgwczrmvObGSwlAQfHgjo2PjE5NT05WZ2bn5hcWl5QuT5Zpjg2cy01cxMyhFig0SJPFKaWRJLPEyvj0q/cs71EZkaZ16ClsJu0lFR3BGTooiwnsisve9veJ6sRrUgj78vyQckioMcXa95EHUznieYEpcMmOaYaCoZZkmwSUWlSg3qBi/ZTfYdDRlCZqW7R9d+OtOafudTLuXkt9Xv3dYlhjTS2JXmTDqmt9eKf7nNXPq7LasSFVOmPLBok4ufcr8MgG/LTRykj1HGNfC3erzLtOMk8upEh2j+4vGUzf3QKoui5FsVG5RD7yw9bCwfZIUVlCZWfg7ob/kYrMWbtU2z7er+4fD9KZgFdZgA0LYgX04gTNoAAcFj/AEz96L9+q9ee+D0hFv2LMCP+B9fgH7waU8</latexit>

xy;
<latexit sha1_base64="U8uPUGiyhrVLaBAFUFKM0a7rj8k=">AAACInicbVDLSsNAFL3xbX3r0k2wCK5KooKCG18LN4JCq0JTZDK9tYOTZJi5EeuQ33CrC7/GnbgS/BgnbRe+DgwczrmvObGSwlAQfHgjo2PjE5NT05WZ2bn5hcWl5QuT5Zpjg2cy01cxMyhFig0SJPFKaWRJLPEyvj0q/cs71EZkaZ16ClsJu0lFR3BGTooiwnsisve9veJ6sRrUgj78vyQckioMcXa95EHUznieYEpcMmOaYaCoZZkmwSUWlSg3qBi/ZTfYdDRlCZqW7R9d+OtOafudTLuXkt9Xv3dYlhjTS2JXmTDqmt9eKf7nNXPq7LasSFVOmPLBok4ufcr8MgG/LTRykj1HGNfC3erzLtOMk8upEh2j+4vGUzf3QKoui5FsVG5RD7yw9bCwfZIUVlCZWfg7ob/kYrMWbtU2z7er+4fD9KZgFdZgA0LYgX04gTNoAAcFj/AEz96L9+q9ee+D0hFv2LMCP+B9fgH7waU8</latexit>

xy;
<latexit sha1_base64="U8uPUGiyhrVLaBAFUFKM0a7rj8k=">AAACInicbVDLSsNAFL3xbX3r0k2wCK5KooKCG18LN4JCq0JTZDK9tYOTZJi5EeuQ33CrC7/GnbgS/BgnbRe+DgwczrmvObGSwlAQfHgjo2PjE5NT05WZ2bn5hcWl5QuT5Zpjg2cy01cxMyhFig0SJPFKaWRJLPEyvj0q/cs71EZkaZ16ClsJu0lFR3BGTooiwnsisve9veJ6sRrUgj78vyQckioMcXa95EHUznieYEpcMmOaYaCoZZkmwSUWlSg3qBi/ZTfYdDRlCZqW7R9d+OtOafudTLuXkt9Xv3dYlhjTS2JXmTDqmt9eKf7nNXPq7LasSFVOmPLBok4ufcr8MgG/LTRykj1HGNfC3erzLtOMk8upEh2j+4vGUzf3QKoui5FsVG5RD7yw9bCwfZIUVlCZWfg7ob/kYrMWbtU2z7er+4fD9KZgFdZgA0LYgX04gTNoAAcFj/AEz96L9+q9ee+D0hFv2LMCP+B9fgH7waU8</latexit>

A[x⇤]
<latexit sha1_base64="2XEm+hvI9qbbuqQzobeLekhqdGY=">AAACJ3icbVC7SgNBFL3r2/iKWtosBkEswq4KWhq1sBEUjArZNcxObsyQ2QczdyVx2C+x1cKvsRMt/RMnMYWvAwOHc+5rTpRJocnz3p2x8YnJqemZ2dLc/MLiUnl55VKnueJY56lM1XXENEqRYJ0ESbzOFLI4kngVdY8G/tUdKi3S5IL6GYYxu01EW3BGVmqWl2qNgLBHRKZX3GyFzXLFq3pDuH+JPyIVGOGsuexA0Ep5HmNCXDKtG76XUWiYIsElFqUg15gx3mW32LA0YTHq0AwvL9wNq7TcdqrsS8gdqt87DIu17seRrYwZdfRvbyD+5zVyau+HRiRZTpjwr0XtXLqUuoMY3JZQyEn2LWFcCXuryztMMU42rFJwjPYvCk/t3JrMOixCMsFgS3bPC3PhF2ZI4sIIKmxm/u+E/pLL7aq/U90+360cHI7Sm4E1WIdN8GEPDuAEzqAOHHJ4gEd4cp6dF+fVefsqHXNGPavwA87HJ1KFplg=</latexit>

x[x⇤]
<latexit sha1_base64="4BzEio6TyrEpyfdWmkGjiL7hjH4=">AAACMHicbZDJSgNBEIZr3I1b1IvgZTAI4iHMqKBHt4MXQcGokBlDT6diGnsWumvE2IxP41UPPo2exKtPYScGXAsaPv7auv4ok0KT5704A4NDwyOjY+Olicmp6Zny7NypTnPFscZTmarziGmUIsEaCZJ4nilkcSTxLLra6+bPrlFpkSYn1MkwjNllIlqCM7JSo7wQEN4Qkbkp6l94sRo2yhWv6vXC/Qt+HyrQj6PGrANBM+V5jAlxybSu+15GoWGKBJdYlIJcY8b4FbvEusWExahD0zuhcJet0nRbqbIvIbenfu8wLNa6E0e2MmbU1r9zXfG/XD2n1lZoRJLlhAn/XNTKpUup2/XDbQqFnGTHAuNK2L+6vM0U42RdKwX7aG9ReGjn7siszSIkE3S3ZLe8MCd+YXoQF0ZQYT3zfzv0F07Xqv56de14o7K923dvDBZhCVbAh03YhgM4ghpwuIN7eIBH58l5dl6dt8/SAaffMw8/wnn/AByXquo=</latexit>

: non-terminal

: terminal

: match

: mismatch

A[�]
<latexit sha1_base64="9QZZ2k2Y2ZVg9yXnAbVqOgjBmJ4=">AAACHnicbVDLSgNBEOyNrxhfiR69LAbBU9hVQY+JevAiREg0kF1kdtIxQ2YfzPQKcdmf8KoHv8abeNW/cTbm4KtgoKjqnu6uIJFCk+N8WKW5+YXFpfJyZWV1bX2jWtu80nGqOHZ5LGPVC5hGKSLskiCJvUQhCwOJ18H4tPCv71BpEUcdmiToh+w2EkPBGRmp1+p7XCju31TrTsOZwv5L3Bmpwwztm5oF3iDmaYgRccm07rtOQn7GFAkuMa94qcaE8TG7xb6hEQtR+9l04dzeNcrAHsbKvIjsqfq9I2Oh1pMwMJUho5H+7RXif14/peGxn4koSQkj/jVomEqbYru43h4IhZzkxBDGlTC72nzEFONkMqp4Z2huUXhh/m3JZMQCpMwrpiT3PM86bp5NSZhngnKTmfs7ob/kar/hHjT2Lw/rzZNZemXYhh3YAxeOoAnn0IYucJDwAI/wZD1bL9ar9fZVWrJmPVvwA9b7J5DRot0=</latexit>

�<latexit sha1_base64="UuY8YOI9pFTy0StnhT4M1r6s4A4=">AAACG3icbVDLSgNBEOz1bXxFPXpZDIKnsBsFPcbHwYsQIYlCdpHZSScZMvtgpleIy36DVz34Nd7Eqwf/xkmyBzUWDBRV3dPdFSRSaHKcL2tufmFxaXlltbS2vrG5Vd7eaes4VRxbPJaxuguYRikibJEgiXeJQhYGEm+D4cXYv31ApUUcNWmUoB+yfiR6gjMyUsvjQvH7csWpOhPYs8QtSAUKNO63LfC6MU9DjIhLpnXHdRLyM6ZIcIl5yUs1JowPWR87hkYsRO1nk21z+8AoXbsXK/Misifqz46MhVqPwsBUhowG+q83Fv/zOin1Tv1MRElKGPHpoF4qbYrt8el2VyjkJEeGMK6E2dXmA6YYJxNQybtEc4vCa/PvmUwGLEDKvPGU5JHnWdPNswkJ80xQbjJz/yY0S9q1qntUrd0cV+rnRXorsAf7cAgunEAdrqABLeAg4Ame4cV6td6sd+tjWjpnFT278AvW5zd0W6HG</latexit>

: end of input

Lookahead
Tokens

x[;]
<latexit sha1_base64="suQCUMMnfB4Z6nafurGCrkGEbCM=">AAACLnicbZDJSgNBEIZr3I1bVPDiZTAInsKMCgpe3A5eBAWjQmYIPZ2KadKz0F0jxnZexqsefBrBg3j1MezECG4FDR9/bV1/lEmhyfNenKHhkdGx8YnJ0tT0zOxceX7hXKe54ljjqUzVZcQ0SpFgjQRJvMwUsjiSeBF1Dnr5i2tUWqTJGXUzDGN2lYiW4Iys1CgvBYQ3RGRuivoX7hRho1zxql4/3L/gD6ACgzhpzDsQNFOex5gQl0zruu9lFBqmSHCJRSnINWaMd9gV1i0mLEYdmv4BhbtqlabbSpV9Cbl99XuHYbHW3TiylTGjtv6d64n/5eo5tbZDI5IsJ0z456JWLl1K3Z4bblMo5CS7FhhXwv7V5W2mGCfrWSk4RHuLwmM7d09mbRYhmaC3JbvlhTnzC9OHuDCCCuuZ/9uhv3C+XvU3quunm5Xd/YF7E7AMK7AGPmzBLhzBCdSAwx3cwwM8Ok/Os/PqvH2WDjmDnkX4Ec77B28GqhE=</latexit>

B[;]
<latexit sha1_base64="hKdDe42nbU+uw/dMTIadkAvk238=">AAACI3icbVDJSgNBFHzjbtwSPXoZDIKnMKOCgpe4HLwICiYKmUF6Oi+msWex+40Ym/kOr3rwa7yJFw/+i53l4FbQUFS9rSvKpNDkeR/O2PjE5NT0zGxpbn5hcalcWW7qNFccGzyVqbqMmEYpEmyQIImXmUIWRxIvopvDvn9xh0qLNDmnXoZhzK4T0RGckZXCg1ZAeE9EZq8Ir8pVr+YN4P4l/ohUYYTTq4oDQTvleYwJccm0bvleRqFhigSXWJSCXGPG+A27xpalCYtRh2ZwdeGuW6XtdlJlX0LuQP3eYVisdS+ObGXMqKt/e33xP6+VU2c3NCLJcsKEDxd1culS6vYjcNtCISfZs4RxJeytLu8yxTjZoErBEdq/KDyxc/dl1mURkgn6W7IHXphzvzADEhdGUGEz838n9Jc0N2v+Vm3zbLtaPxilNwOrsAYb4MMO1OEYTqEBHG7hEZ7g2XlxXp03531YOuaMelbgB5zPLzIfpU8=</latexit>

;[�]
<latexit sha1_base64="OsMyu26amX8OQtGAV1Jx/DUrsc8=">AAACKXicbVDJSgNBFHzjbtwSPXoZDIKnMKOCghe3gxchQqJCZgg9nRfT2LPQ/UaNzXyKVz34Nd7Uqz9iJ+bgVtBQVL2tK8qk0OR5b87Y+MTk1PTMbGlufmFxqVxZPtdprjg2eSpTdRkxjVIk2CRBEi8zhSyOJF5E10cD/+IGlRZp0qB+hmHMrhLRFZyRldrlSkB4R0Rmr2gFXCgetstVr+YN4f4l/ohUYYR6u+JA0El5HmNCXDKtW76XUWiYIsElFqUg15gxfs2usGVpwmLUoRneXrjrVum43VTZl5A7VL93GBZr3Y8jWxkz6unf3kD8z2vl1N0NjUiynDDhX4u6uXQpdQdBuB2hkJPsW8K4EvZWl/eYYpxsXKXgGO1fFJ7auQcy67EIyQSDLdk9L0zDL8yQxIURVNjM/N8J/SXnmzV/q7Z5tl3dPxylNwOrsAYb4MMO7MMJ1KEJHG7hAR7hyXl2XpxX5/2rdMwZ9azADzgfn0/bp2M=</latexit>

x[y]
<latexit sha1_base64="WBQYTj9J4uL7ataU2pGwN37Z1hM=">AAACLnicbZDJSgNBEIZr3I1bVPDiZTAInsKMCnp0O3gRIiQqZIbQ06mYxp6F7hoxtvMyXvXg0wgexKuPYSdGcCto+Phr6/qjTApNnvfijIyOjU9MTk2XZmbn5hfKi0tnOs0VxwZPZaouIqZRigQbJEjiRaaQxZHE8+jqsJ8/v0alRZrUqZdhGLPLRHQEZ2SlVnklILwhInNTNL+wV4StcsWreoNw/4I/hAoMo9ZadCBopzyPMSEumdZN38soNEyR4BKLUpBrzBi/YpfYtJiwGHVoBgcU7rpV2m4nVfYl5A7U7x2GxVr34shWxoy6+neuL/6Xa+bU2Q2NSLKcMOGfizq5dCl1+264baGQk+xZYFwJ+1eXd5linKxnpeAI7S0KT+zcfZl1WYRkgv6W7JYXpu4XZgBxYQQV1jP/t0N/4Wyz6m9VN0+3K3sHQ/emYBXWYAN82IE9OIYaNIDDHdzDAzw6T86z8+q8fZaOOMOeZfgRzvsH2NyqTw==</latexit>

y[;]
<latexit sha1_base64="HKf4leJorqwL0x73V62Csl/osUg=">AAACLnicbZDJSgNBEIZr3I1bVPDiZTAInsKMCgpe3A5eBAWjQmYIPZ2KadKz0F0jxnZexqsefBrBg3j1MezECG4FDR9/bV1/lEmhyfNenKHhkdGx8YnJ0tT0zOxceX7hXKe54ljjqUzVZcQ0SpFgjQRJvMwUsjiSeBF1Dnr5i2tUWqTJGXUzDGN2lYiW4Iys1CgvBYQ3RGS6Rf0Ld4qwUa54Va8f7l/wB1CBQZw05h0IminPY0yIS6Z13fcyCg1TJLjEohTkGjPGO+wK6xYTFqMOTf+Awl21StNtpcq+hNy++r3DsFjrbhzZyphRW//O9cT/cvWcWtuhEUmWEyb8c1Erly6lbs8NtykUcpJdC4wrYf/q8jZTjJP1rBQcor1F4bGduyezNouQTNDbkt3ywpz5helDXBhBhfXM/+3QXzhfr/ob1fXTzcru/sC9CViGFVgDH7ZgF47gBGrA4Q7u4QEenSfn2Xl13j5Lh5xBzyL8COf9A3DGqhI=</latexit>

A ::= B; / B + B;
B ::= x / xy

<latexit sha1_base64="Gy2vXkNCxBEZUx9WCbJKa44pHvA=">AAACjnicbVHvaxQxEM2uP1q3Va/60S/BQxCEc7eKlZZie/qhX4QKvbZwOY5sbu4uNJtdktnSNWz/T8E/xuzeWrV1IPDmzbyZ5CUtlLQYxz+C8N79Bw/X1h9FG5uPnzztbT07tXlpBIxErnJznnILSmoYoUQF54UBnqUKztKLz0397BKMlbk+waqAScYXWs6l4Oipae+SpbCQ2nFjeFU7VUeHdHd3nw4pQ7hCRLdX0+u31w2xd8O9qX02/NPBWDRsZb+pq5XoJq2aFgZ61i2a9vrxIG6D3gVJB/qki+PpVkDYLBdlBhqF4taOk7jAiR+HUiioI1ZaKLi44AsYe6h5BnbiWoNq+sozMzrPjT8aacv+rXA8s7bKUt+ZcVza27WG/F9tXOL848RJXZQIWqwWzUtFMaeN23QmDQhUlQdcGOnvSsWSGy7Q/0nEvoB/i4Gvfu6hKpY8BXSs2VJ8F7U7SWrXgqx2EhvPktsO3QWn24Pk3WD72/v+wbBzb528IC/Ja5KQHXJAjsgxGRFBfgZhsBFshr3wQ7gfflq1hkGneU7+ifDoF235xz4=</latexit>

input : xy;
<latexit sha1_base64="U8uPUGiyhrVLaBAFUFKM0a7rj8k=">AAACInicbVDLSsNAFL3xbX3r0k2wCK5KooKCG18LN4JCq0JTZDK9tYOTZJi5EeuQ33CrC7/GnbgS/BgnbRe+DgwczrmvObGSwlAQfHgjo2PjE5NT05WZ2bn5hcWl5QuT5Zpjg2cy01cxMyhFig0SJPFKaWRJLPEyvj0q/cs71EZkaZ16ClsJu0lFR3BGTooiwnsisve9veJ6sRrUgj78vyQckioMcXa95EHUznieYEpcMmOaYaCoZZkmwSUWlSg3qBi/ZTfYdDRlCZqW7R9d+OtOafudTLuXkt9Xv3dYlhjTS2JXmTDqmt9eKf7nNXPq7LasSFVOmPLBok4ufcr8MgG/LTRykj1HGNfC3erzLtOMk8upEh2j+4vGUzf3QKoui5FsVG5RD7yw9bCwfZIUVlCZWfg7ob/kYrMWbtU2z7er+4fD9KZgFdZgA0LYgX04gTNoAAcFj/AEz96L9+q9ee+D0hFv2LMCP+B9fgH7waU8</latexit>

xy;
<latexit sha1_base64="U8uPUGiyhrVLaBAFUFKM0a7rj8k=">AAACInicbVDLSsNAFL3xbX3r0k2wCK5KooKCG18LN4JCq0JTZDK9tYOTZJi5EeuQ33CrC7/GnbgS/BgnbRe+DgwczrmvObGSwlAQfHgjo2PjE5NT05WZ2bn5hcWl5QuT5Zpjg2cy01cxMyhFig0SJPFKaWRJLPEyvj0q/cs71EZkaZ16ClsJu0lFR3BGTooiwnsisve9veJ6sRrUgj78vyQckioMcXa95EHUznieYEpcMmOaYaCoZZkmwSUWlSg3qBi/ZTfYdDRlCZqW7R9d+OtOafudTLuXkt9Xv3dYlhjTS2JXmTDqmt9eKf7nNXPq7LasSFVOmPLBok4ufcr8MgG/LTRykj1HGNfC3erzLtOMk8upEh2j+4vGUzf3QKoui5FsVG5RD7yw9bCwfZIUVlCZWfg7ob/kYrMWbtU2z7er+4fD9KZgFdZgA0LYgX04gTNoAAcFj/AEz96L9+q9ee+D0hFv2LMCP+B9fgH7waU8</latexit>

xy;
<latexit sha1_base64="U8uPUGiyhrVLaBAFUFKM0a7rj8k=">AAACInicbVDLSsNAFL3xbX3r0k2wCK5KooKCG18LN4JCq0JTZDK9tYOTZJi5EeuQ33CrC7/GnbgS/BgnbRe+DgwczrmvObGSwlAQfHgjo2PjE5NT05WZ2bn5hcWl5QuT5Zpjg2cy01cxMyhFig0SJPFKaWRJLPEyvj0q/cs71EZkaZ16ClsJu0lFR3BGTooiwnsisve9veJ6sRrUgj78vyQckioMcXa95EHUznieYEpcMmOaYaCoZZkmwSUWlSg3qBi/ZTfYdDRlCZqW7R9d+OtOafudTLuXkt9Xv3dYlhjTS2JXmTDqmt9eKf7nNXPq7LasSFVOmPLBok4ufcr8MgG/LTRykj1HGNfC3erzLtOMk8upEh2j+4vGUzf3QKoui5FsVG5RD7yw9bCwfZIUVlCZWfg7ob/kYrMWbtU2z7er+4fD9KZgFdZgA0LYgX04gTNoAAcFj/AEz96L9+q9ee+D0hFv2LMCP+B9fgH7waU8</latexit>

A[x⇤]
<latexit sha1_base64="2XEm+hvI9qbbuqQzobeLekhqdGY=">AAACJ3icbVC7SgNBFL3r2/iKWtosBkEswq4KWhq1sBEUjArZNcxObsyQ2QczdyVx2C+x1cKvsRMt/RMnMYWvAwOHc+5rTpRJocnz3p2x8YnJqemZ2dLc/MLiUnl55VKnueJY56lM1XXENEqRYJ0ESbzOFLI4kngVdY8G/tUdKi3S5IL6GYYxu01EW3BGVmqWl2qNgLBHRKZX3GyFzXLFq3pDuH+JPyIVGOGsuexA0Ep5HmNCXDKtG76XUWiYIsElFqUg15gx3mW32LA0YTHq0AwvL9wNq7TcdqrsS8gdqt87DIu17seRrYwZdfRvbyD+5zVyau+HRiRZTpjwr0XtXLqUuoMY3JZQyEn2LWFcCXuryztMMU42rFJwjPYvCk/t3JrMOixCMsFgS3bPC3PhF2ZI4sIIKmxm/u+E/pLL7aq/U90+360cHI7Sm4E1WIdN8GEPDuAEzqAOHHJ4gEd4cp6dF+fVefsqHXNGPavwA87HJ1KFplg=</latexit>

x[x⇤]
<latexit sha1_base64="4BzEio6TyrEpyfdWmkGjiL7hjH4=">AAACMHicbZDJSgNBEIZr3I1b1IvgZTAI4iHMqKBHt4MXQcGokBlDT6diGnsWumvE2IxP41UPPo2exKtPYScGXAsaPv7auv4ok0KT5704A4NDwyOjY+Olicmp6Zny7NypTnPFscZTmarziGmUIsEaCZJ4nilkcSTxLLra6+bPrlFpkSYn1MkwjNllIlqCM7JSo7wQEN4Qkbkp6l94sRo2yhWv6vXC/Qt+HyrQj6PGrANBM+V5jAlxybSu+15GoWGKBJdYlIJcY8b4FbvEusWExahD0zuhcJet0nRbqbIvIbenfu8wLNa6E0e2MmbU1r9zXfG/XD2n1lZoRJLlhAn/XNTKpUup2/XDbQqFnGTHAuNK2L+6vM0U42RdKwX7aG9ReGjn7siszSIkE3S3ZLe8MCd+YXoQF0ZQYT3zfzv0F07Xqv56de14o7K923dvDBZhCVbAh03YhgM4ghpwuIN7eIBH58l5dl6dt8/SAaffMw8/wnn/AByXquo=</latexit>

: non-terminal

: terminal

: match

: mismatch

A[�]
<latexit sha1_base64="9QZZ2k2Y2ZVg9yXnAbVqOgjBmJ4=">AAACHnicbVDLSgNBEOyNrxhfiR69LAbBU9hVQY+JevAiREg0kF1kdtIxQ2YfzPQKcdmf8KoHv8abeNW/cTbm4KtgoKjqnu6uIJFCk+N8WKW5+YXFpfJyZWV1bX2jWtu80nGqOHZ5LGPVC5hGKSLskiCJvUQhCwOJ18H4tPCv71BpEUcdmiToh+w2EkPBGRmp1+p7XCju31TrTsOZwv5L3Bmpwwztm5oF3iDmaYgRccm07rtOQn7GFAkuMa94qcaE8TG7xb6hEQtR+9l04dzeNcrAHsbKvIjsqfq9I2Oh1pMwMJUho5H+7RXif14/peGxn4koSQkj/jVomEqbYru43h4IhZzkxBDGlTC72nzEFONkMqp4Z2huUXhh/m3JZMQCpMwrpiT3PM86bp5NSZhngnKTmfs7ob/kar/hHjT2Lw/rzZNZemXYhh3YAxeOoAnn0IYucJDwAI/wZD1bL9ar9fZVWrJmPVvwA9b7J5DRot0=</latexit>

�<latexit sha1_base64="UuY8YOI9pFTy0StnhT4M1r6s4A4=">AAACG3icbVDLSgNBEOz1bXxFPXpZDIKnsBsFPcbHwYsQIYlCdpHZSScZMvtgpleIy36DVz34Nd7Eqwf/xkmyBzUWDBRV3dPdFSRSaHKcL2tufmFxaXlltbS2vrG5Vd7eaes4VRxbPJaxuguYRikibJEgiXeJQhYGEm+D4cXYv31ApUUcNWmUoB+yfiR6gjMyUsvjQvH7csWpOhPYs8QtSAUKNO63LfC6MU9DjIhLpnXHdRLyM6ZIcIl5yUs1JowPWR87hkYsRO1nk21z+8AoXbsXK/Misifqz46MhVqPwsBUhowG+q83Fv/zOin1Tv1MRElKGPHpoF4qbYrt8el2VyjkJEeGMK6E2dXmA6YYJxNQybtEc4vCa/PvmUwGLEDKvPGU5JHnWdPNswkJ80xQbjJz/yY0S9q1qntUrd0cV+rnRXorsAf7cAgunEAdrqABLeAg4Ame4cV6td6sd+tjWjpnFT278AvW5zd0W6HG</latexit>

: end of input

Lookahead
Tokens

x[;]
<latexit sha1_base64="suQCUMMnfB4Z6nafurGCrkGEbCM=">AAACLnicbZDJSgNBEIZr3I1bVPDiZTAInsKMCgpe3A5eBAWjQmYIPZ2KadKz0F0jxnZexqsefBrBg3j1MezECG4FDR9/bV1/lEmhyfNenKHhkdGx8YnJ0tT0zOxceX7hXKe54ljjqUzVZcQ0SpFgjQRJvMwUsjiSeBF1Dnr5i2tUWqTJGXUzDGN2lYiW4Iys1CgvBYQ3RGRuivoX7hRho1zxql4/3L/gD6ACgzhpzDsQNFOex5gQl0zruu9lFBqmSHCJRSnINWaMd9gV1i0mLEYdmv4BhbtqlabbSpV9Cbl99XuHYbHW3TiylTGjtv6d64n/5eo5tbZDI5IsJ0z456JWLl1K3Z4bblMo5CS7FhhXwv7V5W2mGCfrWSk4RHuLwmM7d09mbRYhmaC3JbvlhTnzC9OHuDCCCuuZ/9uhv3C+XvU3quunm5Xd/YF7E7AMK7AGPmzBLhzBCdSAwx3cwwM8Ok/Os/PqvH2WDjmDnkX4Ec77B28GqhE=</latexit>

B[;]
<latexit sha1_base64="hKdDe42nbU+uw/dMTIadkAvk238=">AAACI3icbVDJSgNBFHzjbtwSPXoZDIKnMKOCgpe4HLwICiYKmUF6Oi+msWex+40Ym/kOr3rwa7yJFw/+i53l4FbQUFS9rSvKpNDkeR/O2PjE5NT0zGxpbn5hcalcWW7qNFccGzyVqbqMmEYpEmyQIImXmUIWRxIvopvDvn9xh0qLNDmnXoZhzK4T0RGckZXCg1ZAeE9EZq8Ir8pVr+YN4P4l/ohUYYTTq4oDQTvleYwJccm0bvleRqFhigSXWJSCXGPG+A27xpalCYtRh2ZwdeGuW6XtdlJlX0LuQP3eYVisdS+ObGXMqKt/e33xP6+VU2c3NCLJcsKEDxd1culS6vYjcNtCISfZs4RxJeytLu8yxTjZoErBEdq/KDyxc/dl1mURkgn6W7IHXphzvzADEhdGUGEz838n9Jc0N2v+Vm3zbLtaPxilNwOrsAYb4MMO1OEYTqEBHG7hEZ7g2XlxXp03531YOuaMelbgB5zPLzIfpU8=</latexit>

;[�]
<latexit sha1_base64="OsMyu26amX8OQtGAV1Jx/DUrsc8=">AAACKXicbVDJSgNBFHzjbtwSPXoZDIKnMKOCghe3gxchQqJCZgg9nRfT2LPQ/UaNzXyKVz34Nd7Uqz9iJ+bgVtBQVL2tK8qk0OR5b87Y+MTk1PTMbGlufmFxqVxZPtdprjg2eSpTdRkxjVIk2CRBEi8zhSyOJF5E10cD/+IGlRZp0qB+hmHMrhLRFZyRldrlSkB4R0Rmr2gFXCgetstVr+YN4f4l/ohUYYR6u+JA0El5HmNCXDKtW76XUWiYIsElFqUg15gxfs2usGVpwmLUoRneXrjrVum43VTZl5A7VL93GBZr3Y8jWxkz6unf3kD8z2vl1N0NjUiynDDhX4u6uXQpdQdBuB2hkJPsW8K4EvZWl/eYYpxsXKXgGO1fFJ7auQcy67EIyQSDLdk9L0zDL8yQxIURVNjM/N8J/SXnmzV/q7Z5tl3dPxylNwOrsAYb4MMO7MMJ1KEJHG7hAR7hyXl2XpxX5/2rdMwZ9azADzgfn0/bp2M=</latexit>

x[y]
<latexit sha1_base64="WBQYTj9J4uL7ataU2pGwN37Z1hM=">AAACLnicbZDJSgNBEIZr3I1bVPDiZTAInsKMCnp0O3gRIiQqZIbQ06mYxp6F7hoxtvMyXvXg0wgexKuPYSdGcCto+Phr6/qjTApNnvfijIyOjU9MTk2XZmbn5hfKi0tnOs0VxwZPZaouIqZRigQbJEjiRaaQxZHE8+jqsJ8/v0alRZrUqZdhGLPLRHQEZ2SlVnklILwhInNTNL+wV4StcsWreoNw/4I/hAoMo9ZadCBopzyPMSEumdZN38soNEyR4BKLUpBrzBi/YpfYtJiwGHVoBgcU7rpV2m4nVfYl5A7U7x2GxVr34shWxoy6+neuL/6Xa+bU2Q2NSLKcMOGfizq5dCl1+264baGQk+xZYFwJ+1eXd5linKxnpeAI7S0KT+zcfZl1WYRkgv6W7JYXpu4XZgBxYQQV1jP/t0N/4Wyz6m9VN0+3K3sHQ/emYBXWYAN82IE9OIYaNIDDHdzDAzw6T86z8+q8fZaOOMOeZfgRzvsH2NyqTw==</latexit>

y[;]
<latexit sha1_base64="HKf4leJorqwL0x73V62Csl/osUg=">AAACLnicbZDJSgNBEIZr3I1bVPDiZTAInsKMCgpe3A5eBAWjQmYIPZ2KadKz0F0jxnZexqsefBrBg3j1MezECG4FDR9/bV1/lEmhyfNenKHhkdGx8YnJ0tT0zOxceX7hXKe54ljjqUzVZcQ0SpFgjQRJvMwUsjiSeBF1Dnr5i2tUWqTJGXUzDGN2lYiW4Iys1CgvBYQ3RGS6Rf0Ld4qwUa54Va8f7l/wB1CBQZw05h0IminPY0yIS6Z13fcyCg1TJLjEohTkGjPGO+wK6xYTFqMOTf+Awl21StNtpcq+hNy++r3DsFjrbhzZyphRW//O9cT/cvWcWtuhEUmWEyb8c1Erly6lbs8NtykUcpJdC4wrYf/q8jZTjJP1rBQcor1F4bGduyezNouQTNDbkt3ywpz5helDXBhBhfXM/+3QXzhfr/ob1fXTzcru/sC9CViGFVgDH7ZgF47gBGrA4Q7u4QEenSfn2Xl13j5Lh5xBzyL8COf9A3DGqhI=</latexit>

A ::= B; / B + B;
B ::= x / xy

<latexit sha1_base64="Gy2vXkNCxBEZUx9WCbJKa44pHvA=">AAACjnicbVHvaxQxEM2uP1q3Va/60S/BQxCEc7eKlZZie/qhX4QKvbZwOY5sbu4uNJtdktnSNWz/T8E/xuzeWrV1IPDmzbyZ5CUtlLQYxz+C8N79Bw/X1h9FG5uPnzztbT07tXlpBIxErnJznnILSmoYoUQF54UBnqUKztKLz0397BKMlbk+waqAScYXWs6l4Oipae+SpbCQ2nFjeFU7VUeHdHd3nw4pQ7hCRLdX0+u31w2xd8O9qX02/NPBWDRsZb+pq5XoJq2aFgZ61i2a9vrxIG6D3gVJB/qki+PpVkDYLBdlBhqF4taOk7jAiR+HUiioI1ZaKLi44AsYe6h5BnbiWoNq+sozMzrPjT8aacv+rXA8s7bKUt+ZcVza27WG/F9tXOL848RJXZQIWqwWzUtFMaeN23QmDQhUlQdcGOnvSsWSGy7Q/0nEvoB/i4Gvfu6hKpY8BXSs2VJ8F7U7SWrXgqx2EhvPktsO3QWn24Pk3WD72/v+wbBzb528IC/Ja5KQHXJAjsgxGRFBfgZhsBFshr3wQ7gfflq1hkGneU7+ifDoF235xz4=</latexit>

input : xy;
<latexit sha1_base64="U8uPUGiyhrVLaBAFUFKM0a7rj8k=">AAACInicbVDLSsNAFL3xbX3r0k2wCK5KooKCG18LN4JCq0JTZDK9tYOTZJi5EeuQ33CrC7/GnbgS/BgnbRe+DgwczrmvObGSwlAQfHgjo2PjE5NT05WZ2bn5hcWl5QuT5Zpjg2cy01cxMyhFig0SJPFKaWRJLPEyvj0q/cs71EZkaZ16ClsJu0lFR3BGTooiwnsisve9veJ6sRrUgj78vyQckioMcXa95EHUznieYEpcMmOaYaCoZZkmwSUWlSg3qBi/ZTfYdDRlCZqW7R9d+OtOafudTLuXkt9Xv3dYlhjTS2JXmTDqmt9eKf7nNXPq7LasSFVOmPLBok4ufcr8MgG/LTRykj1HGNfC3erzLtOMk8upEh2j+4vGUzf3QKoui5FsVG5RD7yw9bCwfZIUVlCZWfg7ob/kYrMWbtU2z7er+4fD9KZgFdZgA0LYgX04gTNoAAcFj/AEz96L9+q9ee+D0hFv2LMCP+B9fgH7waU8</latexit>

xy;
<latexit sha1_base64="U8uPUGiyhrVLaBAFUFKM0a7rj8k=">AAACInicbVDLSsNAFL3xbX3r0k2wCK5KooKCG18LN4JCq0JTZDK9tYOTZJi5EeuQ33CrC7/GnbgS/BgnbRe+DgwczrmvObGSwlAQfHgjo2PjE5NT05WZ2bn5hcWl5QuT5Zpjg2cy01cxMyhFig0SJPFKaWRJLPEyvj0q/cs71EZkaZ16ClsJu0lFR3BGTooiwnsisve9veJ6sRrUgj78vyQckioMcXa95EHUznieYEpcMmOaYaCoZZkmwSUWlSg3qBi/ZTfYdDRlCZqW7R9d+OtOafudTLuXkt9Xv3dYlhjTS2JXmTDqmt9eKf7nNXPq7LasSFVOmPLBok4ufcr8MgG/LTRykj1HGNfC3erzLtOMk8upEh2j+4vGUzf3QKoui5FsVG5RD7yw9bCwfZIUVlCZWfg7ob/kYrMWbtU2z7er+4fD9KZgFdZgA0LYgX04gTNoAAcFj/AEz96L9+q9ee+D0hFv2LMCP+B9fgH7waU8</latexit>

xy;
<latexit sha1_base64="U8uPUGiyhrVLaBAFUFKM0a7rj8k=">AAACInicbVDLSsNAFL3xbX3r0k2wCK5KooKCG18LN4JCq0JTZDK9tYOTZJi5EeuQ33CrC7/GnbgS/BgnbRe+DgwczrmvObGSwlAQfHgjo2PjE5NT05WZ2bn5hcWl5QuT5Zpjg2cy01cxMyhFig0SJPFKaWRJLPEyvj0q/cs71EZkaZ16ClsJu0lFR3BGTooiwnsisve9veJ6sRrUgj78vyQckioMcXa95EHUznieYEpcMmOaYaCoZZkmwSUWlSg3qBi/ZTfYdDRlCZqW7R9d+OtOafudTLuXkt9Xv3dYlhjTS2JXmTDqmt9eKf7nNXPq7LasSFVOmPLBok4ufcr8MgG/LTRykj1HGNfC3erzLtOMk8upEh2j+4vGUzf3QKoui5FsVG5RD7yw9bCwfZIUVlCZWfg7ob/kYrMWbtU2z7er+4fD9KZgFdZgA0LYgX04gTNoAAcFj/AEz96L9+q9ee+D0hFv2LMCP+B9fgH7waU8</latexit>

A[x⇤]
<latexit sha1_base64="2XEm+hvI9qbbuqQzobeLekhqdGY=">AAACJ3icbVC7SgNBFL3r2/iKWtosBkEswq4KWhq1sBEUjArZNcxObsyQ2QczdyVx2C+x1cKvsRMt/RMnMYWvAwOHc+5rTpRJocnz3p2x8YnJqemZ2dLc/MLiUnl55VKnueJY56lM1XXENEqRYJ0ESbzOFLI4kngVdY8G/tUdKi3S5IL6GYYxu01EW3BGVmqWl2qNgLBHRKZX3GyFzXLFq3pDuH+JPyIVGOGsuexA0Ep5HmNCXDKtG76XUWiYIsElFqUg15gx3mW32LA0YTHq0AwvL9wNq7TcdqrsS8gdqt87DIu17seRrYwZdfRvbyD+5zVyau+HRiRZTpjwr0XtXLqUuoMY3JZQyEn2LWFcCXuryztMMU42rFJwjPYvCk/t3JrMOixCMsFgS3bPC3PhF2ZI4sIIKmxm/u+E/pLL7aq/U90+360cHI7Sm4E1WIdN8GEPDuAEzqAOHHJ4gEd4cp6dF+fVefsqHXNGPavwA87HJ1KFplg=</latexit>

x[x⇤]
<latexit sha1_base64="4BzEio6TyrEpyfdWmkGjiL7hjH4=">AAACMHicbZDJSgNBEIZr3I1b1IvgZTAI4iHMqKBHt4MXQcGokBlDT6diGnsWumvE2IxP41UPPo2exKtPYScGXAsaPv7auv4ok0KT5704A4NDwyOjY+Olicmp6Zny7NypTnPFscZTmarziGmUIsEaCZJ4nilkcSTxLLra6+bPrlFpkSYn1MkwjNllIlqCM7JSo7wQEN4Qkbkp6l94sRo2yhWv6vXC/Qt+HyrQj6PGrANBM+V5jAlxybSu+15GoWGKBJdYlIJcY8b4FbvEusWExahD0zuhcJet0nRbqbIvIbenfu8wLNa6E0e2MmbU1r9zXfG/XD2n1lZoRJLlhAn/XNTKpUup2/XDbQqFnGTHAuNK2L+6vM0U42RdKwX7aG9ReGjn7siszSIkE3S3ZLe8MCd+YXoQF0ZQYT3zfzv0F07Xqv56de14o7K923dvDBZhCVbAh03YhgM4ghpwuIN7eIBH58l5dl6dt8/SAaffMw8/wnn/AByXquo=</latexit>

: non-terminal

: terminal

: match

: mismatch

A[�]
<latexit sha1_base64="9QZZ2k2Y2ZVg9yXnAbVqOgjBmJ4=">AAACHnicbVDLSgNBEOyNrxhfiR69LAbBU9hVQY+JevAiREg0kF1kdtIxQ2YfzPQKcdmf8KoHv8abeNW/cTbm4KtgoKjqnu6uIJFCk+N8WKW5+YXFpfJyZWV1bX2jWtu80nGqOHZ5LGPVC5hGKSLskiCJvUQhCwOJ18H4tPCv71BpEUcdmiToh+w2EkPBGRmp1+p7XCju31TrTsOZwv5L3Bmpwwztm5oF3iDmaYgRccm07rtOQn7GFAkuMa94qcaE8TG7xb6hEQtR+9l04dzeNcrAHsbKvIjsqfq9I2Oh1pMwMJUho5H+7RXif14/peGxn4koSQkj/jVomEqbYru43h4IhZzkxBDGlTC72nzEFONkMqp4Z2huUXhh/m3JZMQCpMwrpiT3PM86bp5NSZhngnKTmfs7ob/kar/hHjT2Lw/rzZNZemXYhh3YAxeOoAnn0IYucJDwAI/wZD1bL9ar9fZVWrJmPVvwA9b7J5DRot0=</latexit>

�<latexit sha1_base64="UuY8YOI9pFTy0StnhT4M1r6s4A4=">AAACG3icbVDLSgNBEOz1bXxFPXpZDIKnsBsFPcbHwYsQIYlCdpHZSScZMvtgpleIy36DVz34Nd7Eqwf/xkmyBzUWDBRV3dPdFSRSaHKcL2tufmFxaXlltbS2vrG5Vd7eaes4VRxbPJaxuguYRikibJEgiXeJQhYGEm+D4cXYv31ApUUcNWmUoB+yfiR6gjMyUsvjQvH7csWpOhPYs8QtSAUKNO63LfC6MU9DjIhLpnXHdRLyM6ZIcIl5yUs1JowPWR87hkYsRO1nk21z+8AoXbsXK/Misifqz46MhVqPwsBUhowG+q83Fv/zOin1Tv1MRElKGPHpoF4qbYrt8el2VyjkJEeGMK6E2dXmA6YYJxNQybtEc4vCa/PvmUwGLEDKvPGU5JHnWdPNswkJ80xQbjJz/yY0S9q1qntUrd0cV+rnRXorsAf7cAgunEAdrqABLeAg4Ame4cV6td6sd+tjWjpnFT278AvW5zd0W6HG</latexit>

: end of input

Lookahead
Tokens

x[;]
<latexit sha1_base64="suQCUMMnfB4Z6nafurGCrkGEbCM=">AAACLnicbZDJSgNBEIZr3I1bVPDiZTAInsKMCgpe3A5eBAWjQmYIPZ2KadKz0F0jxnZexqsefBrBg3j1MezECG4FDR9/bV1/lEmhyfNenKHhkdGx8YnJ0tT0zOxceX7hXKe54ljjqUzVZcQ0SpFgjQRJvMwUsjiSeBF1Dnr5i2tUWqTJGXUzDGN2lYiW4Iys1CgvBYQ3RGRuivoX7hRho1zxql4/3L/gD6ACgzhpzDsQNFOex5gQl0zruu9lFBqmSHCJRSnINWaMd9gV1i0mLEYdmv4BhbtqlabbSpV9Cbl99XuHYbHW3TiylTGjtv6d64n/5eo5tbZDI5IsJ0z456JWLl1K3Z4bblMo5CS7FhhXwv7V5W2mGCfrWSk4RHuLwmM7d09mbRYhmaC3JbvlhTnzC9OHuDCCCuuZ/9uhv3C+XvU3quunm5Xd/YF7E7AMK7AGPmzBLhzBCdSAwx3cwwM8Ok/Os/PqvH2WDjmDnkX4Ec77B28GqhE=</latexit>

B[;]
<latexit sha1_base64="hKdDe42nbU+uw/dMTIadkAvk238=">AAACI3icbVDJSgNBFHzjbtwSPXoZDIKnMKOCgpe4HLwICiYKmUF6Oi+msWex+40Ym/kOr3rwa7yJFw/+i53l4FbQUFS9rSvKpNDkeR/O2PjE5NT0zGxpbn5hcalcWW7qNFccGzyVqbqMmEYpEmyQIImXmUIWRxIvopvDvn9xh0qLNDmnXoZhzK4T0RGckZXCg1ZAeE9EZq8Ir8pVr+YN4P4l/ohUYYTTq4oDQTvleYwJccm0bvleRqFhigSXWJSCXGPG+A27xpalCYtRh2ZwdeGuW6XtdlJlX0LuQP3eYVisdS+ObGXMqKt/e33xP6+VU2c3NCLJcsKEDxd1culS6vYjcNtCISfZs4RxJeytLu8yxTjZoErBEdq/KDyxc/dl1mURkgn6W7IHXphzvzADEhdGUGEz838n9Jc0N2v+Vm3zbLtaPxilNwOrsAYb4MMO1OEYTqEBHG7hEZ7g2XlxXp03531YOuaMelbgB5zPLzIfpU8=</latexit>

;[�]
<latexit sha1_base64="OsMyu26amX8OQtGAV1Jx/DUrsc8=">AAACKXicbVDJSgNBFHzjbtwSPXoZDIKnMKOCghe3gxchQqJCZgg9nRfT2LPQ/UaNzXyKVz34Nd7Uqz9iJ+bgVtBQVL2tK8qk0OR5b87Y+MTk1PTMbGlufmFxqVxZPtdprjg2eSpTdRkxjVIk2CRBEi8zhSyOJF5E10cD/+IGlRZp0qB+hmHMrhLRFZyRldrlSkB4R0Rmr2gFXCgetstVr+YN4f4l/ohUYYR6u+JA0El5HmNCXDKtW76XUWiYIsElFqUg15gxfs2usGVpwmLUoRneXrjrVum43VTZl5A7VL93GBZr3Y8jWxkz6unf3kD8z2vl1N0NjUiynDDhX4u6uXQpdQdBuB2hkJPsW8K4EvZWl/eYYpxsXKXgGO1fFJ7auQcy67EIyQSDLdk9L0zDL8yQxIURVNjM/N8J/SXnmzV/q7Z5tl3dPxylNwOrsAYb4MMO7MMJ1KEJHG7hAR7hyXl2XpxX5/2rdMwZ9azADzgfn0/bp2M=</latexit>

x[y]
<latexit sha1_base64="WBQYTj9J4uL7ataU2pGwN37Z1hM=">AAACLnicbZDJSgNBEIZr3I1bVPDiZTAInsKMCnp0O3gRIiQqZIbQ06mYxp6F7hoxtvMyXvXg0wgexKuPYSdGcCto+Phr6/qjTApNnvfijIyOjU9MTk2XZmbn5hfKi0tnOs0VxwZPZaouIqZRigQbJEjiRaaQxZHE8+jqsJ8/v0alRZrUqZdhGLPLRHQEZ2SlVnklILwhInNTNL+wV4StcsWreoNw/4I/hAoMo9ZadCBopzyPMSEumdZN38soNEyR4BKLUpBrzBi/YpfYtJiwGHVoBgcU7rpV2m4nVfYl5A7U7x2GxVr34shWxoy6+neuL/6Xa+bU2Q2NSLKcMOGfizq5dCl1+264baGQk+xZYFwJ+1eXd5linKxnpeAI7S0KT+zcfZl1WYRkgv6W7JYXpu4XZgBxYQQV1jP/t0N/4Wyz6m9VN0+3K3sHQ/emYBXWYAN82IE9OIYaNIDDHdzDAzw6T86z8+q8fZaOOMOeZfgRzvsH2NyqTw==</latexit>

y[;]
<latexit sha1_base64="HKf4leJorqwL0x73V62Csl/osUg=">AAACLnicbZDJSgNBEIZr3I1bVPDiZTAInsKMCgpe3A5eBAWjQmYIPZ2KadKz0F0jxnZexqsefBrBg3j1MezECG4FDR9/bV1/lEmhyfNenKHhkdGx8YnJ0tT0zOxceX7hXKe54ljjqUzVZcQ0SpFgjQRJvMwUsjiSeBF1Dnr5i2tUWqTJGXUzDGN2lYiW4Iys1CgvBYQ3RGS6Rf0Ld4qwUa54Va8f7l/wB1CBQZw05h0IminPY0yIS6Z13fcyCg1TJLjEohTkGjPGO+wK6xYTFqMOTf+Awl21StNtpcq+hNy++r3DsFjrbhzZyphRW//O9cT/cvWcWtuhEUmWEyb8c1Erly6lbs8NtykUcpJdC4wrYf/q8jZTjJP1rBQcor1F4bGduyezNouQTNDbkt3ywpz5helDXBhBhfXM/+3QXzhfr/ob1fXTzcru/sC9CViGFVgDH7ZgF47gBGrA4Q7u4QEenSfn2Xl13j5Lh5xBzyL8COf9A3DGqhI=</latexit>

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

Conference’17, July 2017, Washington, DC, USA Anon.

451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530

3 PARSER GENERATOR
In this section, we explain how to automatically generate JavaScript
parsers from a given ECMAScript speci�cation.

3.1 BNFES: Grammar for ECMAScript
The ECMAScript speci�cation describes the JavaScript syntax using
an extension of the BNF notation. We formally de�ne the notation
and dub it BNFES. It consists of a number of productions with the
following form:

A(p1, · · · ,pk) ::= (c1))?�1 | · · · | (cn))?�n
The left-hand side of ::= represents a parametric non-terminal A
with multiple boolean parameters p1, · · · ,pk . If a non-terminal
takes no parameter, parentheses are omitted for brevity. A produc-
tion has multiple alternatives separated by | with optional condi-
tions. A condition c is either a boolean parameter p or its negation
!p. An alternative � is a sequence of symbols, where a symbol s is
one of the following:
• � : the empty sequence, which passes without any conditions
• a: a terminal, which is any token
• A(a1, · · · ,ak): a non-terminal, which takes multiple arguments
where each argument ai is either a boolean value #t or #f, or a
parameter pi

• s?: option, which is the same with s | �
• +s (�s) : positive (negative) lookahead, which checks whether
s succeeds (fails) and never consumes any input

• srs 0: exclusion, which �rst checks whether s succeeds and then
checks whether the parsing result does not correspond to s 0

• h¬LTi: no line-terminator, which is a special symbol that re-
stricts the white spaces between two di�erent symbols

For example, consider the following production:

A(p) ::= p) a | !p) b | c
Then, A(#t) means a | c and A(#f) means b | c.

3.2 Lookahead Parsers
To support BNFES correctly, we propose a recursive descent parser
generator that handles both backtracking and lookahead tokens.

Approach. Our goal is to automatically generate a JavaScript
parser from a given ECMAScript grammarwritten in BNFES. Among
various parser generators, we chose Scala parser combinators de-
�ned in Parsing Expression Grammar (PEG) [13]. PEG is a top-down
(LL-style) recursive descent parser with backtracking. It visits each
alternative of a production in order and backtracks to its previous
production when parsing fails. We chose Scala parser combinators
because of the following reasons:
• Context-sensitive tokens: ECMAScript tokens are context-
sensitive because of JavaScript regular expressions and template
strings. For example, /x/g could be a single regular expression
token or four tokens that represent division by variables x

and g depending on enclosing contexts. Thus, lexers should be
evaluated during parsing not before parsing. Since Scala parser
combinators also treat lexers as parsers, we can use appropriate
lexers depending on parsing contexts.

• BNFES symbols: PEG can represent BNFES symbols intuitively
as we explain in Section 3.3.

�rst� (s1 · · · sn) = �rsts (s1) :+ �rsts (s2 · · · sn)

where x :+ � =
⇢
x [� if � 2 x
x otherwise

�rsts (�) = {�}
�rsts (a) = {a}
�rsts (A(a1, · · · , ak)) = �rst� (�1) [· · · [�rst� (�n)

where A(a1, · · · , ak) = �1 | · · · | �n
�rsts (s?) = �rsts (s) [{�}
�rsts (+s) = �rsts (s)
�rsts (�s) = {�}
�rsts (srs0) = �rsts (s)
�rsts (h¬LTi) = {�}

Figure 5: Over-approximated �rst tokens of BNFES symbols

• Multiple starting non-terminals: Since ECMAScript 6, both
scripts and modules serve as starting points of parsers. Scala
parser combinators allow to use any non-terminals as parsers.

• Parsing at run-time: JavaScript supports the eval function
that parses a given JavaScript string value to code and evaluates
it. Moreover, syntax-directed abstract algorithms use special
phrases like “the N that is covered by P ,” which means that a
generalized parser parses the syntax tree P because �nding a
speci�c parser to correctly parse it requires its evaluation con-
text. When a JavaScript interpreter encounters such a phrase, it
decides a speci�c parser to N and parses the given syntax tree
P with the non-terminal N again at run time.

Problem: Prioritized Choices.While PEG provides all the fea-
tures we discussed so far, it has one fundamental problem: priori-
tized choices. In PEG, the pipe | operator denotes a prioritized choice;
even when multiple alternatives are applicable, PEG always picks
the �rst success alternative. However, some non-terminals of the
ECMAScript grammar accept multiple alternatives for given input
strings. For example, consider the following simpli�ed grammar of
the JavaScript expressions:

A ::= T; | A + T;

T ::= a | a(b)
The non-terminal T should accept both alternatives for a(b);, but
PEG-based parsers fail to parse it because the �rst alternative a suc-
ceeds �rst and the second alternative a(b) is not reachable. A simple
solution is to change the order of alternatives likeT ::= a(b) | a, but
ensuring correct order is not trivial because it requires calculation
of their inclusion relationship. Moreover, simple reordering does
not work for some productions:

A ::= B b

B ::= a | a b

The non-terminal A should successfully parse two strings ab and
abb, but it accepts only ab, and it accepts only abb if B ::= a b | a.
Hence, we should re-structure the above rules to accept both strings
in traditional PEG grammars.

Solution: Lookahead Tokens. To alleviate the problem, we
propose lookahead parsers, which are recursive descent parsers
extended with backtracking and lookahead tokens. They keep track
of the next possible tokens by statically calculating �rst tokens
of each symbol using the algorithm in Figure 5. For example, the

4

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

JISET: JavaScript IR-based Semantics Extraction Toolchain Conference’17, July 2017, Washington, DC, USA

589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668

(s1 · · · sn)[L] = s1[�rsts (s2 · · · sn) :+ L] (s1 · · · sn)[L]
� [L] = +gets (L)
a[L] = a + gets (L)
A(a1, · · · , ak)[L] = �1[L] | · · · | �n [L]

where A(a1, · · · , ak) = �1 | · · · | �n
s?[L] = s[L] | � [L]
(±s)[L] = ±(s[L])
(srs0)[L] = s[L]rs0
h¬LTi = h¬LTi + gets (L)

Figure 6: Formal semantics of lookahead parsers

following steps explain how to utilize lookahead tokens during
parsing with the input a(b);:

Each node s⇤[L] denotes a sequence of symbols s⇤ with a set of
lookahead tokens L. The parsing process follows a pre-order tra-
versal. It starts from the starting non-terminal A with the special
lookahead �, which denotes the end of inputs. Then, it visits the
�rst alternativeT; with the same lookahead. Each symbol is visited
with its corresponding lookahead, which is the �rst tokens of the
right next symbol. For example, for the symbol T , the next symbol
is ; and its �rst token is itself. Thus, the parser visits T with the
lookahead ;. The most important point here is the �rst alternative a
of the non-terminalT . The parser visits it with the lookahead ; but
the next token of the input string a(b); is (rather than ;. Hence,
it fails to parse the input string even though the current token is
the same with the terminal a. Therefore, the parser can visit the
next alternative a(b) and successfully parses the input a(b);.

We formally de�ne the semantics of lookahead parsers in Fig-
ure 6. The helper function gets (L) generates a parser by combining
all tokens in the lookahead L using prioritized choices. In this case,
the order does not change the semantics of lookahead parsers be-
cause gets (L) just checks the existence of a given token.

3.3 Implementation
We implemented lookahead parsers by extending Scala parser com-
binators with two functions corresponding to Figure 5 and Figure 6.

AST Generation.We �rst automatically generate ASTs as Scala
case classes from a given BNFES grammar. Because lexical gram-
mars do not a�ect the ECMAScript semantics, we represent them
as string values. For parser grammars, we automatically synthe-
size a Scala �le that has classes of syntax trees. For each produc-
tion A(p1, · · · ,pk) ::= (c1))?�1 | · · · | (cn))?�n , the AST
generator de�nes the A trait and multiple subclasses Ai of A for
0 i n � 1 that represents its alternatives. Each class Ai has
non-terminals in its corresponding alternative as its �elds. For in-
stance, the Arra�Literal production in Figure 3 gets automatically
translated to the following Scala classes:

trait ArrayLiteral extends AST
case class ArrayLiteral0(x1: Option[Elision])
case class ArrayLiteral1(x1: ElementList)
case class ArrayLiteral2(x1: ElementList, x3: Option[Elision])

Parser Generation. The next step is to automatically extract
parsers from the given BNFES grammar. The conversion fromBNFES
symbols into Scala code is as follows:

�) MATCH

a) "a"

A(a1, · · · , an)) A(a1, .. , an)

s?) opt(s)

±s) ±s
srs0) s\s’

h¬LTi) NoLineTerminator

where MATCH denotes the empty sequence of lookahead parsers.
Each string literal gets implicitly converted to a lookahead parser
via Scala implicit conversion. The opt(s) function is the same with
s | MATCH. We also de�ne the \ operator between parsers to sup-
port exclusive parsers. Finally, we provide the NoLineTerminator

parser, which uses the white space parsers to check the existence of
line terminators. Our approach can support such a parser because
we also automatically generate lexers not only parsers of the EC-
MAScript syntax. Then, the automatically synthesized parser from
the production ArrayLiteral in Figure 3(a) is the one in Figure 3(b).

We support the automatic semicolon insertion algorithm, which
is the most distinctive parsing feature in ECMAScript. We extended
our parser implementation to keep track of the right-most position
that fails to be parsed in a given input. In ECMAScript, the token
at that position is de�ned as an o�ending token and the automatic
semicolon insertion algorithm is de�ned with such tokens. The
algorithm is simple whenwe already have the positions of o�ending
tokens. Thus, we just manually supported them by following the
rules in ECMAScript 2020. In addition, the rules rarely change; since
ECMAScript 5.1 written in 2011, only one sub-rule was added.

Discussion. While implementing lookahead parsers in Scala,
we resolved two issues.

First, one of the critical weak points of recursive descent parsing
with backtracking is its performance. To support backtracking, it
requires exponential time relative to the input size. Luckily, Ford et
al [12] proposed Packrat parsing that provides linear time complex-
ity using memoization. By treating each parser as a function from
the current input position to a parsing result, it just memoizes each
parser using input positions, which dramatically reduces redundant
parsing trials. In a similar way, we treat each lookahead parser as a
function from a pair of lookahead tokens and input positions to a
parsing result.

The second issue is that recursive descent parsers do not support
left recursion in grammars. If a grammar has a left recursion, its
parser falls into an in�nite loop. To resolve this problem, Warth
et al [24] proposed a mechanism to support not only direct left
recursion but also indirect one in Packrat parsing. While we can
adopt the mechanism, we found that the ECMAScript 2020 syntax
does not use indirect left recursion. Thus, we decided to just remove
direct left recursion by de�ning sub productions.

5

Algorithm for 
first tokens of BNFES

Algorithm for
lookahead parsing

“Can I ask, are you using some automated tooling to find these,

or just checking manually?”

- Kevin Gibbons, An Editor of ECMA-262
?

“Can I ask, are you using some automated tooling to find these,

or just checking manually?”

- Kevin Gibbons, An Editor of ECMA-262
?

“Would you and your collaborators be able to (virtually) attend

a TC39 meeting to present your work to the committee? We can

reserve a session for you as invited experts."

- Michael Ficarra, An Editor of ECMA-262

!

“Yeah, first of all, I want to, I can hardly express how amazing this work is,

this is really impressive. I sat through the presentation with my mouth open

the whole time. So thank you very much.”

“First, this is truly amazing work. My mind is blown. I tried to get screenshots,

just to remember the slides and then was just taking screenshots of every slide.

So I stopped.”

“I think this was an excellent presentation. In terms of committee feedback,

what you’re hearing here, this is the committee in ecstatic mode. This is, this is

the maximum that I’ve heard in terms of positive feedback for a presentation.

So, so thank you very much.”

