
Analysis

Result

JavaScript

Programs

Derived Static

Analyzer

DCS �¿�. 1•Xî ⌅\¯ò� ∏¥ Ö8| ⌅\ ê§lΩ∏ �� Ñ�.
⌅∞YÄ . 2022D. 46+iv Ω. ¿ƒP⇠: X��. (�8 |8)
Jihyeok Park. JavaScript Static Analysis for Evolving Language Specifica-
tions. School of Computing . 2022. 46+iv pages. Advisor: Sukyoung Ryu.
(Text in English)

�]

ê§lΩ∏X Ÿ�x 1»¸ ı°\ X¯`@ ê§lΩ∏ ⌅\¯®‰X âŸD �UXå ttX0 ¥

5å Ã‡‰. lê‰@ t| t∞X‡ê ‰ë\ ê§lΩ∏ �� Ñ�0‰D ⌧⌧tT¿Ã, t‰@
®P ⇠Ÿ<\ $ƒ� ⇠»0– xŸ—}�t‡ $X– Ë}X‰. ⇣\, 2014D –Ä0 ê§lΩ∏X
∏¥ Ö8� ‰D 1‡⇠0 ‹ëXt⌧ t 8⌧î T Ï�tL‰. ¯ Y⌅ |8–⌧î ê§lΩ∏ ∏¥
Ö8\Ä0êŸ<\ê§lΩ∏��Ñ�0| ƒt¥î»\¥)›D⌧H\‰. tî 1)0ƒTÖ8
îú, 2) 0ƒT Ö8 ®1 Ä¨, ¯¨‡ 3) �� Ñ�0 ƒX 8 �¿ Ëƒ\ l1⌧‰. ¯ |8–⌧î
0ƒT Ö8 îú 0 D ⌧HX‡, t| t©t �• \‡ ê§lΩ∏ Ö8\Ä0 0ƒT Ö8| îú
\‰. ⇣\, ê§lΩ∏ ‘ƒD t©\ N+1-Ñ⌅ (Ñ L§⇧¸ 0ƒT Ö8X ¿Ö Ñ�D ⌧HX‡,
t| µt Ö8 ✏ ‘ƒX ∞hD Äú\‰. \Ö�<\, T¿ �� Ñ� 0 D ⌧HX‡, îú\ 0ƒT
Ö8\Ä0 êŸ<\ ê§lΩ∏ �� Ñ�0| ƒ\‰. ¯ Y⌅ |8–⌧ ⌧‹\)›@ ⌅\¯ò�
∏¥| ⌅\ Ö8, L§∏, ¯¨‡ ƒl‰X ıƒT| ⌅\ lX 0¿D »(` É<\ 0�\‰.

u Ï ± – ê§lΩ∏, 0ƒT Ö8 îú, Ö8 ¿Ö Ñ�, N+1-Ñ⌅ (Ñ L§⇧, T¿ �� Ñ�

Abstract
The highly dynamic nature and complex semantics of JavaScript make it difficult to correctly understand
the behaviors of JavaScript programs. To automatically reason about them, researchers have developed
various JavaScript static analyzers that conform to ECMAScript, the standard specification of JavaScript.
However, all the existing JavaScript static analyzers are manually designed; thus, the current approach
is labor-intensive and error-prone. Moreover, since late 2014, this problem becomes more critical because
the JavaScript language itself rapidly evolves with a yearly release cadence and open development process.

In this thesis, we introduce a novel approach to automatically derive JavaScript static analyzers
from any version of ECMAScript. Our approach consists of three steps: 1) mechanized specification
extraction, 2) mechanized specification validity check, and 3) derivation of static analyzers. First, we
present a tool JISET that automatically extracts a mechanized specification from ECMAScript. We show
that it successfully extracts a mechanized specification from the latest ECMAScript. Then, we present
two different tools to detect bugs in JavaScript specifications and engines; JEST performs N+1-version
differential testing with JavaScript engines and JSTAR performs a type analysis for the mechanized
specification. Finally, we present JSAVER that automatically derives JavaScript static analyzers from
mechanized specifications using a meta-level static analysis. For evaluation, we derive a JavaScript
static analyzer from the latest ECMAScript and show that it successfully analyzes all applicable official
conformance tests in a sound way. We believe that the thesis would be the first step towards the
co-evolution of specifications, tests, and tools for programming languages.

Keywords JavaScript, mechanized specification extraction, N+1-version differential testing, specifica-
tion type analysis, meta-level static analysis.

3. Derivation of
Static Analyzers

DCS �¿�. 1•Xî ⌅\¯ò� ∏¥ Ö8| ⌅\ ê§lΩ∏ �� Ñ�.
⌅∞YÄ . 2022D. 46+iv Ω. ¿ƒP⇠: X��. (�8 |8)
Jihyeok Park. JavaScript Static Analysis for Evolving Language Specifica-
tions. School of Computing . 2022. 46+iv pages. Advisor: Sukyoung Ryu.
(Text in English)

�]

ê§lΩ∏X Ÿ�x 1»¸ ı°\ X¯`@ ê§lΩ∏ ⌅\¯®‰X âŸD �UXå ttX0 ¥

5å Ã‡‰. lê‰@ t| t∞X‡ê ‰ë\ ê§lΩ∏ �� Ñ�0‰D ⌧⌧tT¿Ã, t‰@
®P ⇠Ÿ<\ $ƒ� ⇠»0– xŸ—}�t‡ $X– Ë}X‰. ⇣\, 2014D –Ä0 ê§lΩ∏X
∏¥ Ö8� ‰D 1‡⇠0 ‹ëXt⌧ t 8⌧î T Ï�tL‰. ¯ Y⌅ |8–⌧î ê§lΩ∏ ∏¥
Ö8\Ä0êŸ<\ê§lΩ∏��Ñ�0| ƒt¥î»\¥)›D⌧H\‰. tî 1)0ƒTÖ8
îú, 2) 0ƒT Ö8 ®1 Ä¨, ¯¨‡ 3) �� Ñ�0 ƒX 8 �¿ Ëƒ\ l1⌧‰. ¯ |8–⌧î
0ƒT Ö8 îú 0 D ⌧HX‡, t| t©t �• \‡ ê§lΩ∏ Ö8\Ä0 0ƒT Ö8| îú
\‰. ⇣\, ê§lΩ∏ ‘ƒD t©\ N+1-Ñ⌅ (Ñ L§⇧¸ 0ƒT Ö8X ¿Ö Ñ�D ⌧HX‡,
t| µt Ö8 ✏ ‘ƒX ∞hD Äú\‰. \Ö�<\, T¿ �� Ñ� 0 D ⌧HX‡, îú\ 0ƒT
Ö8\Ä0 êŸ<\ ê§lΩ∏ �� Ñ�0| ƒ\‰. ¯ Y⌅ |8–⌧ ⌧‹\)›@ ⌅\¯ò�
∏¥| ⌅\ Ö8, L§∏, ¯¨‡ ƒl‰X ıƒT| ⌅\ lX 0¿D »(` É<\ 0�\‰.

u ! ! ! ê§lΩ∏, 0ƒT Ö8 îú, Ö8 ¿Ö Ñ�, N+1-Ñ⌅ (Ñ L§⇧, T¿ �� Ñ�

Abstract

The highly dynamic nature and complex semantics of JavaScript make it di! cult to correctly understand
the behaviors of JavaScript programs. To automatically reason about them, researchers have developed
various JavaScript static analyzers that conform to ECMAScript, the standard specification of JavaScript.
However, all the existing JavaScript static analyzers are manually designed; thus, the current approach
is labor-intensive and error-prone. Moreover, since late 2014, this problem becomes more critical because
the JavaScript language itself rapidly evolves with a yearly release cadence and open development process.

In this thesis, we introduce a novel approach to automatically derive JavaScript static analyzers
from any version of ECMAScript. Our approach consists of three steps: 1) mechanized specification
extraction, 2) mechanized specification validity check, and 3) derivation of static analyzers. First, we
present a tool JISET that automatically extracts a mechanized specification from ECMAScript. We show
that it successfully extracts a mechanized specification from the latest ECMAScript. Then, we present
two di" erent tools to detect bugs in JavaScript specifications and engines; JEST performs N+1-version
di" erential testing with JavaScript engines and JSTAR performs a type analysis for the mechanized
specification. Finally, we present JSAVER that automatically derives JavaScript static analyzers from
mechanized specifications using a meta-level static analysis. For evaluation, we derive a JavaScript
static analyzer from the latest ECMAScript and show that it successfully analyzes all applicable o! cial
conformance tests in a sound way. We believe that the thesis would be the first step towards the
co-evolution of specifications, tests, and tools for programming languages.

Keywords JavaScript, mechanized specification extraction, N+1-version di" erential testing, specifica-
tion type analysis, meta-level static analysis.

DCS ! ! ! . ! ! ! ! " ! ! ! " !" ! " ! " # # # ! ! " ! !" ! # .
! $ " . 2022! . 46+ iv ! . ! ! " " : # # ! . (! ! " !)
Jihyeok Park. JavaScript Static Analysis for Evolving Language SpeciÞca-
tions. School of Computing . 2022.46+ iv pages. Advisor: Sukyoung Ryu.
(Text in English)

! !

! ! ! ! ! ! " ! ! # ! ! ! " $! " ! ! % ! ! ! ! ! ! " " ! ! ! " # ! & " ! $ " ' %$! !

" " " ! . " " ! ! % ' # %# $ $! ! # ! ! ! ! ! ! ! "! ! " ! ! & %# %! " " , ' ! %

! # " ! (" # &' $ $! % ! ! # & ! ' $ " $ % ! & $! . ! ! , 2014" %" ! ! ! ! ! ! ! "

'! " $ ' & " (# $! $) $ # % ' " # " " %) %$! . $ & * # " %%" ! ! ! ! ! ! '!

" $ " " ! ! ! (" ! ! ! ! ! ! "! ! " ! # + # %! " ! " # %& & # (! ! . ' " 1) ! & " " $

"# , 2) ! & " " $ + # ! * " , ! ' $ 3) "! ! " ! + # " $ ' " # & " " ! %! . $ # " %%"

! & " " $ "# ! ' & # ($ $, ' # ' $ % ' , $ # ! ! ! ! ! ! " $ " " ! ! & " " $ # "#

! ! . ! ! , ! ! ! ! ! !) $ & ' $! N +1-& % ! ! " ! ! ! ! & " " $ " " - ! " & # ($ $,

' # # % " $ ') $ " # ' & * # ! ! . $ &! (" , $ " "! ! " ! ' & # ($ $, "# ! ! & "

" $ " " ! ! ! (" ! ! ! ! ! ! "! ! " ! # + # ! ! . $ & * # " %% # $! %& % " " ! " (

'! # * ! " $, " ! ! , ! ' $ # " ! " + $ " # * ! " " " ! " & ($ (, (" ! $! ! .

! ! ! ! ! ! ! ! ! ! , ! & " " $ "# , " $ " - ! " , N +1-& % ! ! " ! ! , $ " "! ! "

Abstract

The highly dynamic nature and complex semantics of JavaScript make it di! cult to correctly understand

the behaviors of JavaScript programs. To automatically reason about them, researchers have developed

various JavaScript static analyzers that conform to ECMAScript, the standard speciÞcation of JavaScript.

However, all the existing JavaScript static analyzers are manually designed; thus, the current approach

is labor-intensive and error-prone. Moreover, since late 2014, this problem becomes more critical because

the JavaScript language itself rapidly evolves with a yearly release cadence and open development process.

In this thesis, we introduce a novel approach to automatically derive JavaScript static analyzers

from any version of ECMAScript. Our approach consists of three steps: 1) mechanized speciÞcation

extraction, 2) mechanized speciÞcation validity check, and 3) derivation of static analyzers. First, we

present a tool JISET that automatically extracts a mechanized speciÞcation from ECMAScript. We show

that it successfully extracts a mechanized speciÞcation from the latest ECMAScript. Then, we present

two di" erent tools to detect bugs in JavaScript speciÞcations and engines;JEST performs N +1-version

di" erential testing with JavaScript engines and JSTAR performs a type analysis for the mechanized

speciÞcation. Finally, we presentJSAVER that automatically derives JavaScript static analyzers from

mechanized speciÞcations using a meta-level static analysis. For evaluation, we derive a JavaScript

static analyzer from the latest ECMAScript and show that it successfully analyzes all applicable o! cial

conformance tests in a sound way. We believe that the thesis would be the Þrst step towards the

co-evolution of speciÞcations, tests, and tools for programming languages.

Keywords JavaScript, mechanized speciÞcation extraction,N +1-version di" erential testing, speciÞca-

tion type analysis, meta-level static analysis.

2. Specification
Validity Check

[ICSE'21] [ASE'21]
Distinguished Paper

Mechanized

SpecificationECMA-262

DCS ! ! ! . ! ! ! ! " ! ! ! " !" ! " ! " # # # ! ! " ! !" ! # .
! $ " . 2022! . 46+ iv ! . ! ! " " : # # ! . (! ! " !)
Jihyeok Park. JavaScript Static Analysis for Evolving Language SpeciÞca-
tions. School of Computing . 2022.46+ iv pages. Advisor: Sukyoung Ryu.
(Text in English)

! !

! ! ! ! ! ! " ! ! # ! ! ! " $! " ! ! % ! ! ! ! ! ! " " ! ! ! " # ! & " ! $ " ' %$! !

" " " ! . " " ! ! % ' # %# $ $! ! # ! ! ! ! ! ! ! "! ! " ! ! & %# %! " " , ' ! %

! # " ! (" # &' $ $! % ! ! # & ! ' $ " $ % ! & $! . ! ! , 2014" %" ! ! ! ! ! ! ! "

'! " $ ' & " (# $! $) $ # % ' " # " " %) %$! . $ & * # " %%" ! ! ! ! ! ! '!

" $ " " ! ! ! (" ! ! ! ! ! ! "! ! " ! # + # %! " ! " # %& & # (! ! . ' " 1) ! & " " $

"# , 2) ! & " " $ + # ! * " , ! ' $ 3) "! ! " ! + # " $ ' " # & " " ! %! . $ # " %%"

! & " " $ "# ! ' & # ($ $, ' # ' $ % ' , $ # ! ! ! ! ! ! " $ " " ! ! & " " $ # "#

! ! . ! ! , ! ! ! ! ! !) $ & ' $! N +1-& % ! ! " ! ! ! ! & " " $ " " - ! " & # ($ $,

' # # % " $ ') $ " # ' & * # ! ! . $ &! (" , $ " "! ! " ! ' & # ($ $, "# ! ! & "

" $ " " ! ! ! (" ! ! ! ! ! ! "! ! " ! # + # ! ! . $ & * # " %% # $! %& % " " ! " (

'! # * ! " $, " ! ! , ! ' $ # " ! " + $ " # * ! " " " ! " & ($ (, (" ! $! ! .

! ! ! ! ! ! ! ! ! ! , ! & " " $ "# , " $ " - ! " , N +1-& % ! ! " ! ! , $ " "! ! "

Abstract

The highly dynamic nature and complex semantics of JavaScript make it di! cult to correctly understand

the behaviors of JavaScript programs. To automatically reason about them, researchers have developed

various JavaScript static analyzers that conform to ECMAScript, the standard speciÞcation of JavaScript.

However, all the existing JavaScript static analyzers are manually designed; thus, the current approach

is labor-intensive and error-prone. Moreover, since late 2014, this problem becomes more critical because

the JavaScript language itself rapidly evolves with a yearly release cadence and open development process.

In this thesis, we introduce a novel approach to automatically derive JavaScript static analyzers

from any version of ECMAScript. Our approach consists of three steps: 1) mechanized speciÞcation

extraction, 2) mechanized speciÞcation validity check, and 3) derivation of static analyzers. First, we

present a tool JISET that automatically extracts a mechanized speciÞcation from ECMAScript. We show

that it successfully extracts a mechanized speciÞcation from the latest ECMAScript. Then, we present

two di" erent tools to detect bugs in JavaScript speciÞcations and engines;JEST performs N +1-version

di" erential testing with JavaScript engines and JSTAR performs a type analysis for the mechanized

speciÞcation. Finally, we presentJSAVER that automatically derives JavaScript static analyzers from

mechanized speciÞcations using a meta-level static analysis. For evaluation, we derive a JavaScript

static analyzer from the latest ECMAScript and show that it successfully analyzes all applicable o! cial

conformance tests in a sound way. We believe that the thesis would be the Þrst step towards the

co-evolution of speciÞcations, tests, and tools for programming languages.

Keywords JavaScript, mechanized speciÞcation extraction,N +1-version di" erential testing, speciÞca-

tion type analysis, meta-level static analysis.

1. Mechanized Spec.
Extraction

[ASE'20]

Conformance Test

Synthesis

Type Analysis for

Specification

In Submission

Analysis

Result

JavaScript

Programs

Derived Static

Analyzer

DCS �¿�. 1•Xî ⌅\¯ò� ∏¥ Ö8| ⌅\ ê§lΩ∏ �� Ñ�.
⌅∞YÄ . 2022D. 46+iv Ω. ¿ƒP⇠: X��. (�8 |8)
Jihyeok Park. JavaScript Static Analysis for Evolving Language Specifica-
tions. School of Computing . 2022. 46+iv pages. Advisor: Sukyoung Ryu.
(Text in English)

�]

ê§lΩ∏X Ÿ�x 1»¸ ı°\ X¯`@ ê§lΩ∏ ⌅\¯®‰X âŸD �UXå ttX0 ¥

5å Ã‡‰. lê‰@ t| t∞X‡ê ‰ë\ ê§lΩ∏ �� Ñ�0‰D ⌧⌧tT¿Ã, t‰@
®P ⇠Ÿ<\ $ƒ� ⇠»0– xŸ—}�t‡ $X– Ë}X‰. ⇣\, 2014D –Ä0 ê§lΩ∏X
∏¥ Ö8� ‰D 1‡⇠0 ‹ëXt⌧ t 8⌧î T Ï�tL‰. ¯ Y⌅ |8–⌧î ê§lΩ∏ ∏¥
Ö8\Ä0êŸ<\ê§lΩ∏��Ñ�0| ƒt¥î»\¥)›D⌧H\‰. tî 1)0ƒTÖ8
îú, 2) 0ƒT Ö8 ®1 Ä¨, ¯¨‡ 3) �� Ñ�0 ƒX 8 �¿ Ëƒ\ l1⌧‰. ¯ |8–⌧î
0ƒT Ö8 îú 0 D ⌧HX‡, t| t©t �• \‡ ê§lΩ∏ Ö8\Ä0 0ƒT Ö8| îú
\‰. ⇣\, ê§lΩ∏ ‘ƒD t©\ N+1-Ñ⌅ (Ñ L§⇧¸ 0ƒT Ö8X ¿Ö Ñ�D ⌧HX‡,
t| µt Ö8 ✏ ‘ƒX ∞hD Äú\‰. \Ö�<\, T¿ �� Ñ� 0 D ⌧HX‡, îú\ 0ƒT
Ö8\Ä0 êŸ<\ ê§lΩ∏ �� Ñ�0| ƒ\‰. ¯ Y⌅ |8–⌧ ⌧‹\)›@ ⌅\¯ò�
∏¥| ⌅\ Ö8, L§∏, ¯¨‡ ƒl‰X ıƒT| ⌅\ lX 0¿D »(` É<\ 0�\‰.

u Ï ± – ê§lΩ∏, 0ƒT Ö8 îú, Ö8 ¿Ö Ñ�, N+1-Ñ⌅ (Ñ L§⇧, T¿ �� Ñ�

Abstract
The highly dynamic nature and complex semantics of JavaScript make it difficult to correctly understand
the behaviors of JavaScript programs. To automatically reason about them, researchers have developed
various JavaScript static analyzers that conform to ECMAScript, the standard specification of JavaScript.
However, all the existing JavaScript static analyzers are manually designed; thus, the current approach
is labor-intensive and error-prone. Moreover, since late 2014, this problem becomes more critical because
the JavaScript language itself rapidly evolves with a yearly release cadence and open development process.

In this thesis, we introduce a novel approach to automatically derive JavaScript static analyzers
from any version of ECMAScript. Our approach consists of three steps: 1) mechanized specification
extraction, 2) mechanized specification validity check, and 3) derivation of static analyzers. First, we
present a tool JISET that automatically extracts a mechanized specification from ECMAScript. We show
that it successfully extracts a mechanized specification from the latest ECMAScript. Then, we present
two different tools to detect bugs in JavaScript specifications and engines; JEST performs N+1-version
differential testing with JavaScript engines and JSTAR performs a type analysis for the mechanized
specification. Finally, we present JSAVER that automatically derives JavaScript static analyzers from
mechanized specifications using a meta-level static analysis. For evaluation, we derive a JavaScript
static analyzer from the latest ECMAScript and show that it successfully analyzes all applicable official
conformance tests in a sound way. We believe that the thesis would be the first step towards the
co-evolution of specifications, tests, and tools for programming languages.

Keywords JavaScript, mechanized specification extraction, N+1-version differential testing, specifica-
tion type analysis, meta-level static analysis.

3. Derivation of
Static Analyzers

DCS �¿�. 1•Xî ⌅\¯ò� ∏¥ Ö8| ⌅\ ê§lΩ∏ �� Ñ�.
⌅∞YÄ . 2022D. 46+iv Ω. ¿ƒP⇠: X��. (�8 |8)
Jihyeok Park. JavaScript Static Analysis for Evolving Language Specifica-
tions. School of Computing . 2022. 46+iv pages. Advisor: Sukyoung Ryu.
(Text in English)

�]

ê§lΩ∏X Ÿ�x 1»¸ ı°\ X¯`@ ê§lΩ∏ ⌅\¯®‰X âŸD �UXå ttX0 ¥

5å Ã‡‰. lê‰@ t| t∞X‡ê ‰ë\ ê§lΩ∏ �� Ñ�0‰D ⌧⌧tT¿Ã, t‰@
®P ⇠Ÿ<\ $ƒ� ⇠»0– xŸ—}�t‡ $X– Ë}X‰. ⇣\, 2014D –Ä0 ê§lΩ∏X
∏¥ Ö8� ‰D 1‡⇠0 ‹ëXt⌧ t 8⌧î T Ï�tL‰. ¯ Y⌅ |8–⌧î ê§lΩ∏ ∏¥
Ö8\Ä0êŸ<\ê§lΩ∏��Ñ�0| ƒt¥î»\¥)›D⌧H\‰. tî 1)0ƒTÖ8
îú, 2) 0ƒT Ö8 ®1 Ä¨, ¯¨‡ 3) �� Ñ�0 ƒX 8 �¿ Ëƒ\ l1⌧‰. ¯ |8–⌧î
0ƒT Ö8 îú 0 D ⌧HX‡, t| t©t �• \‡ ê§lΩ∏ Ö8\Ä0 0ƒT Ö8| îú
\‰. ⇣\, ê§lΩ∏ ‘ƒD t©\ N+1-Ñ⌅ (Ñ L§⇧¸ 0ƒT Ö8X ¿Ö Ñ�D ⌧HX‡,
t| µt Ö8 ✏ ‘ƒX ∞hD Äú\‰. \Ö�<\, T¿ �� Ñ� 0 D ⌧HX‡, îú\ 0ƒT
Ö8\Ä0 êŸ<\ ê§lΩ∏ �� Ñ�0| ƒ\‰. ¯ Y⌅ |8–⌧ ⌧‹\)›@ ⌅\¯ò�
∏¥| ⌅\ Ö8, L§∏, ¯¨‡ ƒl‰X ıƒT| ⌅\ lX 0¿D »(` É<\ 0�\‰.

u ! ! ! ê§lΩ∏, 0ƒT Ö8 îú, Ö8 ¿Ö Ñ�, N+1-Ñ⌅ (Ñ L§⇧, T¿ �� Ñ�

Abstract

The highly dynamic nature and complex semantics of JavaScript make it di! cult to correctly understand
the behaviors of JavaScript programs. To automatically reason about them, researchers have developed
various JavaScript static analyzers that conform to ECMAScript, the standard specification of JavaScript.
However, all the existing JavaScript static analyzers are manually designed; thus, the current approach
is labor-intensive and error-prone. Moreover, since late 2014, this problem becomes more critical because
the JavaScript language itself rapidly evolves with a yearly release cadence and open development process.

In this thesis, we introduce a novel approach to automatically derive JavaScript static analyzers
from any version of ECMAScript. Our approach consists of three steps: 1) mechanized specification
extraction, 2) mechanized specification validity check, and 3) derivation of static analyzers. First, we
present a tool JISET that automatically extracts a mechanized specification from ECMAScript. We show
that it successfully extracts a mechanized specification from the latest ECMAScript. Then, we present
two di" erent tools to detect bugs in JavaScript specifications and engines; JEST performs N+1-version
di" erential testing with JavaScript engines and JSTAR performs a type analysis for the mechanized
specification. Finally, we present JSAVER that automatically derives JavaScript static analyzers from
mechanized specifications using a meta-level static analysis. For evaluation, we derive a JavaScript
static analyzer from the latest ECMAScript and show that it successfully analyzes all applicable o! cial
conformance tests in a sound way. We believe that the thesis would be the first step towards the
co-evolution of specifications, tests, and tools for programming languages.

Keywords JavaScript, mechanized specification extraction, N+1-version di" erential testing, specifica-
tion type analysis, meta-level static analysis.

DCS ! ! ! . ! ! ! ! " ! ! ! " !" ! " ! " # # # ! ! " ! !" ! # .
! $ " . 2022! . 46+ iv ! . ! ! " " : # # ! . (! ! " !)
Jihyeok Park. JavaScript Static Analysis for Evolving Language SpeciÞca-
tions. School of Computing . 2022.46+ iv pages. Advisor: Sukyoung Ryu.
(Text in English)

! !

! ! ! ! ! ! " ! ! # ! ! ! " $! " ! ! % ! ! ! ! ! ! " " ! ! ! " # ! & " ! $ " ' %$! !

" " " ! . " " ! ! % ' # %# $ $! ! # ! ! ! ! ! ! ! "! ! " ! ! & %# %! " " , ' ! %

! # " ! (" # &' $ $! % ! ! # & ! ' $ " $ % ! & $! . ! ! , 2014" %" ! ! ! ! ! ! ! "

'! " $ ' & " (# $! $) $ # % ' " # " " %) %$! . $ & * # " %%" ! ! ! ! ! ! '!

" $ " " ! ! ! (" ! ! ! ! ! ! "! ! " ! # + # %! " ! " # %& & # (! ! . ' " 1) ! & " " $

"# , 2) ! & " " $ + # ! * " , ! ' $ 3) "! ! " ! + # " $ ' " # & " " ! %! . $ # " %%"

! & " " $ "# ! ' & # ($ $, ' # ' $ % ' , $ # ! ! ! ! ! ! " $ " " ! ! & " " $ # "#

! ! . ! ! , ! ! ! ! ! !) $ & ' $! N +1-& % ! ! " ! ! ! ! & " " $ " " - ! " & # ($ $,

' # # % " $ ') $ " # ' & * # ! ! . $ &! (" , $ " "! ! " ! ' & # ($ $, "# ! ! & "

" $ " " ! ! ! (" ! ! ! ! ! ! "! ! " ! # + # ! ! . $ & * # " %% # $! %& % " " ! " (

'! # * ! " $, " ! ! , ! ' $ # " ! " + $ " # * ! " " " ! " & ($ (, (" ! $! ! .

! ! ! ! ! ! ! ! ! ! , ! & " " $ "# , " $ " - ! " , N +1-& % ! ! " ! ! , $ " "! ! "

Abstract

The highly dynamic nature and complex semantics of JavaScript make it di! cult to correctly understand

the behaviors of JavaScript programs. To automatically reason about them, researchers have developed

various JavaScript static analyzers that conform to ECMAScript, the standard speciÞcation of JavaScript.

However, all the existing JavaScript static analyzers are manually designed; thus, the current approach

is labor-intensive and error-prone. Moreover, since late 2014, this problem becomes more critical because

the JavaScript language itself rapidly evolves with a yearly release cadence and open development process.

In this thesis, we introduce a novel approach to automatically derive JavaScript static analyzers

from any version of ECMAScript. Our approach consists of three steps: 1) mechanized speciÞcation

extraction, 2) mechanized speciÞcation validity check, and 3) derivation of static analyzers. First, we

present a tool JISET that automatically extracts a mechanized speciÞcation from ECMAScript. We show

that it successfully extracts a mechanized speciÞcation from the latest ECMAScript. Then, we present

two di" erent tools to detect bugs in JavaScript speciÞcations and engines;JEST performs N +1-version

di" erential testing with JavaScript engines and JSTAR performs a type analysis for the mechanized

speciÞcation. Finally, we presentJSAVER that automatically derives JavaScript static analyzers from

mechanized speciÞcations using a meta-level static analysis. For evaluation, we derive a JavaScript

static analyzer from the latest ECMAScript and show that it successfully analyzes all applicable o! cial

conformance tests in a sound way. We believe that the thesis would be the Þrst step towards the

co-evolution of speciÞcations, tests, and tools for programming languages.

Keywords JavaScript, mechanized speciÞcation extraction,N +1-version di" erential testing, speciÞca-

tion type analysis, meta-level static analysis.

2. Specification
Validity Check

[ICSE'21] [ASE'21]
Distinguished Paper

Mechanized

SpecificationECMA-262

DCS ! ! ! . ! ! ! ! " ! ! ! " !" ! " ! " # # # ! ! " ! !" ! # .
! $ " . 2022! . 46+ iv ! . ! ! " " : # # ! . (! ! " !)
Jihyeok Park. JavaScript Static Analysis for Evolving Language SpeciÞca-
tions. School of Computing . 2022.46+ iv pages. Advisor: Sukyoung Ryu.
(Text in English)

! !

! ! ! ! ! ! " ! ! # ! ! ! " $! " ! ! % ! ! ! ! ! ! " " ! ! ! " # ! & " ! $ " ' %$! !

" " " ! . " " ! ! % ' # %# $ $! ! # ! ! ! ! ! ! ! "! ! " ! ! & %# %! " " , ' ! %

! # " ! (" # &' $ $! % ! ! # & ! ' $ " $ % ! & $! . ! ! , 2014" %" ! ! ! ! ! ! ! "

'! " $ ' & " (# $! $) $ # % ' " # " " %) %$! . $ & * # " %%" ! ! ! ! ! ! '!

" $ " " ! ! ! (" ! ! ! ! ! ! "! ! " ! # + # %! " ! " # %& & # (! ! . ' " 1) ! & " " $

"# , 2) ! & " " $ + # ! * " , ! ' $ 3) "! ! " ! + # " $ ' " # & " " ! %! . $ # " %%"

! & " " $ "# ! ' & # ($ $, ' # ' $ % ' , $ # ! ! ! ! ! ! " $ " " ! ! & " " $ # "#

! ! . ! ! , ! ! ! ! ! !) $ & ' $! N +1-& % ! ! " ! ! ! ! & " " $ " " - ! " & # ($ $,

' # # % " $ ') $ " # ' & * # ! ! . $ &! (" , $ " "! ! " ! ' & # ($ $, "# ! ! & "

" $ " " ! ! ! (" ! ! ! ! ! ! "! ! " ! # + # ! ! . $ & * # " %% # $! %& % " " ! " (

'! # * ! " $, " ! ! , ! ' $ # " ! " + $ " # * ! " " " ! " & ($ (, (" ! $! ! .

! ! ! ! ! ! ! ! ! ! , ! & " " $ "# , " $ " - ! " , N +1-& % ! ! " ! ! , $ " "! ! "

Abstract

The highly dynamic nature and complex semantics of JavaScript make it di! cult to correctly understand

the behaviors of JavaScript programs. To automatically reason about them, researchers have developed

various JavaScript static analyzers that conform to ECMAScript, the standard speciÞcation of JavaScript.

However, all the existing JavaScript static analyzers are manually designed; thus, the current approach

is labor-intensive and error-prone. Moreover, since late 2014, this problem becomes more critical because

the JavaScript language itself rapidly evolves with a yearly release cadence and open development process.

In this thesis, we introduce a novel approach to automatically derive JavaScript static analyzers

from any version of ECMAScript. Our approach consists of three steps: 1) mechanized speciÞcation

extraction, 2) mechanized speciÞcation validity check, and 3) derivation of static analyzers. First, we

present a tool JISET that automatically extracts a mechanized speciÞcation from ECMAScript. We show

that it successfully extracts a mechanized speciÞcation from the latest ECMAScript. Then, we present

two di" erent tools to detect bugs in JavaScript speciÞcations and engines;JEST performs N +1-version

di" erential testing with JavaScript engines and JSTAR performs a type analysis for the mechanized

speciÞcation. Finally, we presentJSAVER that automatically derives JavaScript static analyzers from

mechanized speciÞcations using a meta-level static analysis. For evaluation, we derive a JavaScript

static analyzer from the latest ECMAScript and show that it successfully analyzes all applicable o! cial

conformance tests in a sound way. We believe that the thesis would be the Þrst step towards the

co-evolution of speciÞcations, tests, and tools for programming languages.

Keywords JavaScript, mechanized speciÞcation extraction,N +1-version di" erential testing, speciÞca-

tion type analysis, meta-level static analysis.

1. Mechanized Spec.
Extraction

[ASE'20]

Conformance Test

Synthesis

Type Analysis for

Specification

In Submission

Analysis

Result

JavaScript

Programs

Derived Static

Analyzer

DCS �¿�. 1•Xî ⌅\¯ò� ∏¥ Ö8| ⌅\ ê§lΩ∏ �� Ñ�.
⌅∞YÄ . 2022D. 46+iv Ω. ¿ƒP⇠: X��. (�8 |8)
Jihyeok Park. JavaScript Static Analysis for Evolving Language Specifica-
tions. School of Computing . 2022. 46+iv pages. Advisor: Sukyoung Ryu.
(Text in English)

�]

ê§lΩ∏X Ÿ�x 1»¸ ı°\ X¯`@ ê§lΩ∏ ⌅\¯®‰X âŸD �UXå ttX0 ¥

5å Ã‡‰. lê‰@ t| t∞X‡ê ‰ë\ ê§lΩ∏ �� Ñ�0‰D ⌧⌧tT¿Ã, t‰@
®P ⇠Ÿ<\ $ƒ� ⇠»0– xŸ—}�t‡ $X– Ë}X‰. ⇣\, 2014D –Ä0 ê§lΩ∏X
∏¥ Ö8� ‰D 1‡⇠0 ‹ëXt⌧ t 8⌧î T Ï�tL‰. ¯ Y⌅ |8–⌧î ê§lΩ∏ ∏¥
Ö8\Ä0êŸ<\ê§lΩ∏��Ñ�0| ƒt¥î»\¥)›D⌧H\‰. tî 1)0ƒTÖ8
îú, 2) 0ƒT Ö8 ®1 Ä¨, ¯¨‡ 3) �� Ñ�0 ƒX 8 �¿ Ëƒ\ l1⌧‰. ¯ |8–⌧î
0ƒT Ö8 îú 0 D ⌧HX‡, t| t©t �• \‡ ê§lΩ∏ Ö8\Ä0 0ƒT Ö8| îú
\‰. ⇣\, ê§lΩ∏ ‘ƒD t©\ N+1-Ñ⌅ (Ñ L§⇧¸ 0ƒT Ö8X ¿Ö Ñ�D ⌧HX‡,
t| µt Ö8 ✏ ‘ƒX ∞hD Äú\‰. \Ö�<\, T¿ �� Ñ� 0 D ⌧HX‡, îú\ 0ƒT
Ö8\Ä0 êŸ<\ ê§lΩ∏ �� Ñ�0| ƒ\‰. ¯ Y⌅ |8–⌧ ⌧‹\)›@ ⌅\¯ò�
∏¥| ⌅\ Ö8, L§∏, ¯¨‡ ƒl‰X ıƒT| ⌅\ lX 0¿D »(` É<\ 0�\‰.

u Ï ± – ê§lΩ∏, 0ƒT Ö8 îú, Ö8 ¿Ö Ñ�, N+1-Ñ⌅ (Ñ L§⇧, T¿ �� Ñ�

Abstract
The highly dynamic nature and complex semantics of JavaScript make it difficult to correctly understand
the behaviors of JavaScript programs. To automatically reason about them, researchers have developed
various JavaScript static analyzers that conform to ECMAScript, the standard specification of JavaScript.
However, all the existing JavaScript static analyzers are manually designed; thus, the current approach
is labor-intensive and error-prone. Moreover, since late 2014, this problem becomes more critical because
the JavaScript language itself rapidly evolves with a yearly release cadence and open development process.

In this thesis, we introduce a novel approach to automatically derive JavaScript static analyzers
from any version of ECMAScript. Our approach consists of three steps: 1) mechanized specification
extraction, 2) mechanized specification validity check, and 3) derivation of static analyzers. First, we
present a tool JISET that automatically extracts a mechanized specification from ECMAScript. We show
that it successfully extracts a mechanized specification from the latest ECMAScript. Then, we present
two different tools to detect bugs in JavaScript specifications and engines; JEST performs N+1-version
differential testing with JavaScript engines and JSTAR performs a type analysis for the mechanized
specification. Finally, we present JSAVER that automatically derives JavaScript static analyzers from
mechanized specifications using a meta-level static analysis. For evaluation, we derive a JavaScript
static analyzer from the latest ECMAScript and show that it successfully analyzes all applicable official
conformance tests in a sound way. We believe that the thesis would be the first step towards the
co-evolution of specifications, tests, and tools for programming languages.

Keywords JavaScript, mechanized specification extraction, N+1-version differential testing, specifica-
tion type analysis, meta-level static analysis.

3. Derivation of
Static Analyzers

DCS �¿�. 1•Xî ⌅\¯ò� ∏¥ Ö8| ⌅\ ê§lΩ∏ �� Ñ�.
⌅∞YÄ . 2022D. 46+iv Ω. ¿ƒP⇠: X��. (�8 |8)
Jihyeok Park. JavaScript Static Analysis for Evolving Language Specifica-
tions. School of Computing . 2022. 46+iv pages. Advisor: Sukyoung Ryu.
(Text in English)

�]

ê§lΩ∏X Ÿ�x 1»¸ ı°\ X¯`@ ê§lΩ∏ ⌅\¯®‰X âŸD �UXå ttX0 ¥

5å Ã‡‰. lê‰@ t| t∞X‡ê ‰ë\ ê§lΩ∏ �� Ñ�0‰D ⌧⌧tT¿Ã, t‰@
®P ⇠Ÿ<\ $ƒ� ⇠»0– xŸ—}�t‡ $X– Ë}X‰. ⇣\, 2014D –Ä0 ê§lΩ∏X
∏¥ Ö8� ‰D 1‡⇠0 ‹ëXt⌧ t 8⌧î T Ï�tL‰. ¯ Y⌅ |8–⌧î ê§lΩ∏ ∏¥
Ö8\Ä0êŸ<\ê§lΩ∏��Ñ�0| ƒt¥î»\¥)›D⌧H\‰. tî 1)0ƒTÖ8
îú, 2) 0ƒT Ö8 ®1 Ä¨, ¯¨‡ 3) �� Ñ�0 ƒX 8 �¿ Ëƒ\ l1⌧‰. ¯ |8–⌧î
0ƒT Ö8 îú 0 D ⌧HX‡, t| t©t �• \‡ ê§lΩ∏ Ö8\Ä0 0ƒT Ö8| îú
\‰. ⇣\, ê§lΩ∏ ‘ƒD t©\ N+1-Ñ⌅ (Ñ L§⇧¸ 0ƒT Ö8X ¿Ö Ñ�D ⌧HX‡,
t| µt Ö8 ✏ ‘ƒX ∞hD Äú\‰. \Ö�<\, T¿ �� Ñ� 0 D ⌧HX‡, îú\ 0ƒT
Ö8\Ä0 êŸ<\ ê§lΩ∏ �� Ñ�0| ƒ\‰. ¯ Y⌅ |8–⌧ ⌧‹\)›@ ⌅\¯ò�
∏¥| ⌅\ Ö8, L§∏, ¯¨‡ ƒl‰X ıƒT| ⌅\ lX 0¿D »(` É<\ 0�\‰.

u ! ! ! ê§lΩ∏, 0ƒT Ö8 îú, Ö8 ¿Ö Ñ�, N+1-Ñ⌅ (Ñ L§⇧, T¿ �� Ñ�

Abstract

The highly dynamic nature and complex semantics of JavaScript make it di! cult to correctly understand
the behaviors of JavaScript programs. To automatically reason about them, researchers have developed
various JavaScript static analyzers that conform to ECMAScript, the standard specification of JavaScript.
However, all the existing JavaScript static analyzers are manually designed; thus, the current approach
is labor-intensive and error-prone. Moreover, since late 2014, this problem becomes more critical because
the JavaScript language itself rapidly evolves with a yearly release cadence and open development process.

In this thesis, we introduce a novel approach to automatically derive JavaScript static analyzers
from any version of ECMAScript. Our approach consists of three steps: 1) mechanized specification
extraction, 2) mechanized specification validity check, and 3) derivation of static analyzers. First, we
present a tool JISET that automatically extracts a mechanized specification from ECMAScript. We show
that it successfully extracts a mechanized specification from the latest ECMAScript. Then, we present
two di" erent tools to detect bugs in JavaScript specifications and engines; JEST performs N+1-version
di" erential testing with JavaScript engines and JSTAR performs a type analysis for the mechanized
specification. Finally, we present JSAVER that automatically derives JavaScript static analyzers from
mechanized specifications using a meta-level static analysis. For evaluation, we derive a JavaScript
static analyzer from the latest ECMAScript and show that it successfully analyzes all applicable o! cial
conformance tests in a sound way. We believe that the thesis would be the first step towards the
co-evolution of specifications, tests, and tools for programming languages.

Keywords JavaScript, mechanized specification extraction, N+1-version di" erential testing, specifica-
tion type analysis, meta-level static analysis.

DCS ! ! ! . ! ! ! ! " ! ! ! " !" ! " ! " # # # ! ! " ! !" ! # .
! $ " . 2022! . 46+ iv ! . ! ! " " : # # ! . (! ! " !)
Jihyeok Park. JavaScript Static Analysis for Evolving Language SpeciÞca-
tions. School of Computing . 2022.46+ iv pages. Advisor: Sukyoung Ryu.
(Text in English)

! !

! ! ! ! ! ! " ! ! # ! ! ! " $! " ! ! % ! ! ! ! ! ! " " ! ! ! " # ! & " ! $ " ' %$! !

" " " ! . " " ! ! % ' # %# $ $! ! # ! ! ! ! ! ! ! "! ! " ! ! & %# %! " " , ' ! %

! # " ! (" # &' $ $! % ! ! # & ! ' $ " $ % ! & $! . ! ! , 2014" %" ! ! ! ! ! ! ! "

'! " $ ' & " (# $! $) $ # % ' " # " " %) %$! . $ & * # " %%" ! ! ! ! ! ! '!

" $ " " ! ! ! (" ! ! ! ! ! ! "! ! " ! # + # %! " ! " # %& & # (! ! . ' " 1) ! & " " $

"# , 2) ! & " " $ + # ! * " , ! ' $ 3) "! ! " ! + # " $ ' " # & " " ! %! . $ # " %%"

! & " " $ "# ! ' & # ($ $, ' # ' $ % ' , $ # ! ! ! ! ! ! " $ " " ! ! & " " $ # "#

! ! . ! ! , ! ! ! ! ! !) $ & ' $! N +1-& % ! ! " ! ! ! ! & " " $ " " - ! " & # ($ $,

' # # % " $ ') $ " # ' & * # ! ! . $ &! (" , $ " "! ! " ! ' & # ($ $, "# ! ! & "

" $ " " ! ! ! (" ! ! ! ! ! ! "! ! " ! # + # ! ! . $ & * # " %% # $! %& % " " ! " (

'! # * ! " $, " ! ! , ! ' $ # " ! " + $ " # * ! " " " ! " & ($ (, (" ! $! ! .

! ! ! ! ! ! ! ! ! ! , ! & " " $ "# , " $ " - ! " , N +1-& % ! ! " ! ! , $ " "! ! "

Abstract

The highly dynamic nature and complex semantics of JavaScript make it di! cult to correctly understand

the behaviors of JavaScript programs. To automatically reason about them, researchers have developed

various JavaScript static analyzers that conform to ECMAScript, the standard speciÞcation of JavaScript.

However, all the existing JavaScript static analyzers are manually designed; thus, the current approach

is labor-intensive and error-prone. Moreover, since late 2014, this problem becomes more critical because

the JavaScript language itself rapidly evolves with a yearly release cadence and open development process.

In this thesis, we introduce a novel approach to automatically derive JavaScript static analyzers

from any version of ECMAScript. Our approach consists of three steps: 1) mechanized speciÞcation

extraction, 2) mechanized speciÞcation validity check, and 3) derivation of static analyzers. First, we

present a tool JISET that automatically extracts a mechanized speciÞcation from ECMAScript. We show

that it successfully extracts a mechanized speciÞcation from the latest ECMAScript. Then, we present

two di" erent tools to detect bugs in JavaScript speciÞcations and engines;JEST performs N +1-version

di" erential testing with JavaScript engines and JSTAR performs a type analysis for the mechanized

speciÞcation. Finally, we presentJSAVER that automatically derives JavaScript static analyzers from

mechanized speciÞcations using a meta-level static analysis. For evaluation, we derive a JavaScript

static analyzer from the latest ECMAScript and show that it successfully analyzes all applicable o! cial

conformance tests in a sound way. We believe that the thesis would be the Þrst step towards the

co-evolution of speciÞcations, tests, and tools for programming languages.

Keywords JavaScript, mechanized speciÞcation extraction,N +1-version di" erential testing, speciÞca-

tion type analysis, meta-level static analysis.

2. Specification
Validity Check

[ICSE'21] [ASE'21]
Distinguished Paper

Mechanized

SpecificationECMA-262

DCS ! ! ! . ! ! ! ! " ! ! ! " !" ! " ! " # # # ! ! " ! !" ! # .
! $ " . 2022! . 46+ iv ! . ! ! " " : # # ! . (! ! " !)
Jihyeok Park. JavaScript Static Analysis for Evolving Language SpeciÞca-
tions. School of Computing . 2022.46+ iv pages. Advisor: Sukyoung Ryu.
(Text in English)

! !

! ! ! ! ! ! " ! ! # ! ! ! " $! " ! ! % ! ! ! ! ! ! " " ! ! ! " # ! & " ! $ " ' %$! !

" " " ! . " " ! ! % ' # %# $ $! ! # ! ! ! ! ! ! ! "! ! " ! ! & %# %! " " , ' ! %

! # " ! (" # &' $ $! % ! ! # & ! ' $ " $ % ! & $! . ! ! , 2014" %" ! ! ! ! ! ! ! "

'! " $ ' & " (# $! $) $ # % ' " # " " %) %$! . $ & * # " %%" ! ! ! ! ! ! '!

" $ " " ! ! ! (" ! ! ! ! ! ! "! ! " ! # + # %! " ! " # %& & # (! ! . ' " 1) ! & " " $

"# , 2) ! & " " $ + # ! * " , ! ' $ 3) "! ! " ! + # " $ ' " # & " " ! %! . $ # " %%"

! & " " $ "# ! ' & # ($ $, ' # ' $ % ' , $ # ! ! ! ! ! ! " $ " " ! ! & " " $ # "#

! ! . ! ! , ! ! ! ! ! !) $ & ' $! N +1-& % ! ! " ! ! ! ! & " " $ " " - ! " & # ($ $,

' # # % " $ ') $ " # ' & * # ! ! . $ &! (" , $ " "! ! " ! ' & # ($ $, "# ! ! & "

" $ " " ! ! ! (" ! ! ! ! ! ! "! ! " ! # + # ! ! . $ & * # " %% # $! %& % " " ! " (

'! # * ! " $, " ! ! , ! ' $ # " ! " + $ " # * ! " " " ! " & ($ (, (" ! $! ! .

! ! ! ! ! ! ! ! ! ! , ! & " " $ "# , " $ " - ! " , N +1-& % ! ! " ! ! , $ " "! ! "

Abstract

The highly dynamic nature and complex semantics of JavaScript make it di! cult to correctly understand

the behaviors of JavaScript programs. To automatically reason about them, researchers have developed

various JavaScript static analyzers that conform to ECMAScript, the standard speciÞcation of JavaScript.

However, all the existing JavaScript static analyzers are manually designed; thus, the current approach

is labor-intensive and error-prone. Moreover, since late 2014, this problem becomes more critical because

the JavaScript language itself rapidly evolves with a yearly release cadence and open development process.

In this thesis, we introduce a novel approach to automatically derive JavaScript static analyzers

from any version of ECMAScript. Our approach consists of three steps: 1) mechanized speciÞcation

extraction, 2) mechanized speciÞcation validity check, and 3) derivation of static analyzers. First, we

present a tool JISET that automatically extracts a mechanized speciÞcation from ECMAScript. We show

that it successfully extracts a mechanized speciÞcation from the latest ECMAScript. Then, we present

two di" erent tools to detect bugs in JavaScript speciÞcations and engines;JEST performs N +1-version

di" erential testing with JavaScript engines and JSTAR performs a type analysis for the mechanized

speciÞcation. Finally, we presentJSAVER that automatically derives JavaScript static analyzers from

mechanized speciÞcations using a meta-level static analysis. For evaluation, we derive a JavaScript

static analyzer from the latest ECMAScript and show that it successfully analyzes all applicable o! cial

conformance tests in a sound way. We believe that the thesis would be the Þrst step towards the

co-evolution of speciÞcations, tests, and tools for programming languages.

Keywords JavaScript, mechanized speciÞcation extraction,N +1-version di" erential testing, speciÞca-

tion type analysis, meta-level static analysis.

1. Mechanized Spec.
Extraction

[ASE'20]

Conformance Test

Synthesis

Type Analysis for

Specification

In Submission

ESMeta
(ECMAScript SpeciÞcation Metalanguage)

JISET ESMeta

Extraction Time 10~15 sec. 5 sec.

Metalangauge Low-Level High-Level

Direction Spec. -> Mech. Spec. Spec. <-> Mec. Spec.

Features - Double Debugger

(ECMAScript SpeciÞcation Metalanguage)

ESMeta

