
자바스크립트 엔진
보안과 퍼징 (Fuzzing)
고려대학교 스마트팩토리 융합보안대학원 세미나

박지혁

고려대학교 정보대학 컴퓨터학과
프로그래밍 언어 연구실

2023.11.02

고려대학교 스마트팩토리 융합보안대학원 세미나 / 342

일생생활에 녹아든 웹 브라우저 (+JS 엔진)

대략 50억

고려대학교 스마트팩토리 융합보안대학원 세미나 / 343

JS 엔진은 이 외에도 널리 사용되는 추세

클라이언트-사이드 프로그래밍

서버-사이드 프로그래밍

모바일/데스크톱 어플리케이션

그 외 (PDF, 사물 인터넷, 마이크로컨트롤러, etc.)

고려대학교 스마트팩토리 융합보안대학원 세미나 / 344

JS 엔진의 결함 및 보안 취약점은 치명적

고려대학교 스마트팩토리 융합보안대학원 세미나 / 344

JS 엔진의 결함 및 보안 취약점은 치명적

Password Bank
Account

Private
Data

고려대학교 스마트팩토리 융합보안대학원 세미나 / 345

JS 엔진 결함 검출의 어려움 - 거대 코드 크기

2.3M

716K

3.5M

255K

고려대학교 스마트팩토리 융합보안대학원 세미나 / 346

JS 엔진 결함 검출의 어려움 - 복잡한 구조

Just-In-Time
(JIT) 컴파일

최적화 코드
이해 필요

언어 문법
이해 필요

언어 의미
이해 필요

고려대학교 스마트팩토리 융합보안대학원 세미나 / 347

예시 - CVE-2019-13764 (Google Chrome)

https://nvd.nist.gov/vuln/detail/cve-2019-13764

function trigger() {
 var x = -Infinity;
 var k = 0;
 arr[0] = 2.3023e-320;
 for (var i = 0; i < 1; i += x) {
 if (i == -Infinity) x = +Infinity;
 if (++k > 10) break;
 }
 i = Math.max(i, 0x100000800);
 i = Math.min(0x100000801, i);
 i -= 0x1000007fa;
 i >>= 1;
 i += 10;

 var array = new Array(i);
 array[0] = 1.1;
 var array2 = [1.1, 1.2, 1.3, 1.4];
}

Common Vulnerabilities and Exposures (CVE) 2019-13764 — Proof of Concept (PoC) 코드

https://googleprojectzero.blogspot.com/2021/01/in-wild-series-chrome-infinity-bug.html

https://nvd.nist.gov/vuln/detail/cve-2019-13764
https://googleprojectzero.blogspot.com/2021/01/in-wild-series-chrome-infinity-bug.html

고려대학교 스마트팩토리 융합보안대학원 세미나 / 347

예시 - CVE-2019-13764 (Google Chrome)

https://nvd.nist.gov/vuln/detail/cve-2019-13764

function trigger() {
 var x = -Infinity;
 var k = 0;
 arr[0] = 2.3023e-320;
 for (var i = 0; i < 1; i += x) {
 if (i == -Infinity) x = +Infinity;
 if (++k > 10) break;
 }
 i = Math.max(i, 0x100000800);
 i = Math.min(0x100000801, i);
 i -= 0x1000007fa;
 i >>= 1;
 i += 10;

 var array = new Array(i);
 array[0] = 1.1;
 var array2 = [1.1, 1.2, 1.3, 1.4];
}

엔진 실제 값: -1011 / 엔진의 추측: 13 (int32_t)

Common Vulnerabilities and Exposures (CVE) 2019-13764 — Proof of Concept (PoC) 코드

https://googleprojectzero.blogspot.com/2021/01/in-wild-series-chrome-infinity-bug.html

https://nvd.nist.gov/vuln/detail/cve-2019-13764
https://googleprojectzero.blogspot.com/2021/01/in-wild-series-chrome-infinity-bug.html

고려대학교 스마트팩토리 융합보안대학원 세미나 / 347

예시 - CVE-2019-13764 (Google Chrome)

https://nvd.nist.gov/vuln/detail/cve-2019-13764

function trigger() {
 var x = -Infinity;
 var k = 0;
 arr[0] = 2.3023e-320;
 for (var i = 0; i < 1; i += x) {
 if (i == -Infinity) x = +Infinity;
 if (++k > 10) break;
 }
 i = Math.max(i, 0x100000800);
 i = Math.min(0x100000801, i);
 i -= 0x1000007fa;
 i >>= 1;
 i += 10;

 var array = new Array(i);
 array[0] = 1.1;
 var array2 = [1.1, 1.2, 1.3, 1.4];
}

엔진 실제 값: -1011 / 엔진의 추측: 13 (int32_t)

Common Vulnerabilities and Exposures (CVE) 2019-13764 — Proof of Concept (PoC) 코드

-1011 크기의 Array가 생성

https://googleprojectzero.blogspot.com/2021/01/in-wild-series-chrome-infinity-bug.html

https://nvd.nist.gov/vuln/detail/cve-2019-13764
https://googleprojectzero.blogspot.com/2021/01/in-wild-series-chrome-infinity-bug.html

고려대학교 스마트팩토리 융합보안대학원 세미나 / 347

예시 - CVE-2019-13764 (Google Chrome)

https://nvd.nist.gov/vuln/detail/cve-2019-13764

function trigger() {
 var x = -Infinity;
 var k = 0;
 arr[0] = 2.3023e-320;
 for (var i = 0; i < 1; i += x) {
 if (i == -Infinity) x = +Infinity;
 if (++k > 10) break;
 }
 i = Math.max(i, 0x100000800);
 i = Math.min(0x100000801, i);
 i -= 0x1000007fa;
 i >>= 1;
 i += 10;

 var array = new Array(i);
 array[0] = 1.1;
 var array2 = [1.1, 1.2, 1.3, 1.4];
}

엔진 실제 값: -1011 / 엔진의 추측: 13 (int32_t)

Common Vulnerabilities and Exposures (CVE) 2019-13764 — Proof of Concept (PoC) 코드

-1011 크기의 Array가 생성

Out-of-Bound로 접근 가능

https://googleprojectzero.blogspot.com/2021/01/in-wild-series-chrome-infinity-bug.html

https://nvd.nist.gov/vuln/detail/cve-2019-13764
https://googleprojectzero.blogspot.com/2021/01/in-wild-series-chrome-infinity-bug.html

고려대학교 스마트팩토리 융합보안대학원 세미나 / 347

예시 - CVE-2019-13764 (Google Chrome)

https://nvd.nist.gov/vuln/detail/cve-2019-13764

function trigger() {
 var x = -Infinity;
 var k = 0;
 arr[0] = 2.3023e-320;
 for (var i = 0; i < 1; i += x) {
 if (i == -Infinity) x = +Infinity;
 if (++k > 10) break;
 }
 i = Math.max(i, 0x100000800);
 i = Math.min(0x100000801, i);
 i -= 0x1000007fa;
 i >>= 1;
 i += 10;

 var array = new Array(i);
 array[0] = 1.1;
 var array2 = [1.1, 1.2, 1.3, 1.4];
}

엔진 실제 값: -1011 / 엔진의 추측: 13 (int32_t)

Common Vulnerabilities and Exposures (CVE) 2019-13764 — Proof of Concept (PoC) 코드

-1011 크기의 Array가 생성

Out-of-Bound로 접근 가능

HTML 페이지를 통한 메모리 변경
(코드 삽입) 공격 가능

https://googleprojectzero.blogspot.com/2021/01/in-wild-series-chrome-infinity-bug.html

https://nvd.nist.gov/vuln/detail/cve-2019-13764
https://googleprojectzero.blogspot.com/2021/01/in-wild-series-chrome-infinity-bug.html

고려대학교 스마트팩토리 융합보안대학원 세미나 / 34

• 정적 분석 (Static Analysis)

- 프로그램 실행 전에 코드를 분석하여 결함을 검출

• 동적 분석 (Dynamic Analysis)

- 프로그램 실행 도중에 코드를 분석하여 결함을 검출

• 기호 실행 (Symbolic Execution)

- 미지수의 값을 기호로 치환하여 프로그램을 분석하는 방법

• 퍼징 (Fuzzing / Fuzz Testing)

- 예상치 못한 입력의 생성으로 프로그램의 올바름을 자동으로 검사하는 방법

8

소프트웨어 분석 기술 기반 자동 결함 검출

퍼징 (Fuzzing)

고려대학교 스마트팩토리 융합보안대학원 세미나 / 34

• 취약점을 찾는 가장 널리 사용되는 방법 중 하나

• 위스콘신 대학의 Barton Miller가 1990년대에 처음으로 개발

• 프로그램이 예상하지 못할만한 입력(Fuzz Input)들을 자동으로 생성하여 검사

10

퍼징 (Fuzzing)

프로그램Fuzz
Input 정상 실행

결함
Fuzzer

고려대학교 스마트팩토리 융합보안대학원 세미나 / 34

• Black-box Fuzzing

- 프로그램의 최종 출력 결과만 보고 판단하여 입력 생성

• White-box Fuzzing

- 프로그램의 소스 코드를 직접 분석하면서 입력을 생성

• Gray-box Fuzzing

- 프로그램의 간접적인 정보만을 활용하여 입력을 생성

11

퍼징의 분류

고려대학교 스마트팩토리 융합보안대학원 세미나 / 34

• Generation-based Fuzzing

- 입력 생성 모델을 통해 입력을 생성하는 방식

• Mutation-based Fuzzing

- 존재하는 입력들을 수정하면서 새로운 입력을 생성하는 방식

12

입력 생성 방식의 차이

고려대학교 스마트팩토리 융합보안대학원 세미나 / 34

• 메모리 및 타입 결함

- 메모리 결함: Buffer Overflow / Crash / Use-After-Free / …

- 타입 결함: Bad Casting / …

• 논리 결함

- 오라클(다른 구현체 / 최적화 전후 / 기계화 문서 등)과의 비교를 통해 검사

- 예상하지 않은 결과가 나왔을 시에 논리적 결함이 발생하였다고 판단

13

결함의 판단

고려대학교 스마트팩토리 융합보안대학원 세미나 / 34

• 어떻게 입력(JS 프로그램)을 생성할 것인가

• 어떻게 실행 결과에 결함이 있다는 것을 판단할 것인가

14

JS 엔진 퍼징의 핵심

JS 엔진JS
프로그램 정상 실행

결함JS 엔진
Fuzzer

JS 엔진JS
프로그램 정상 실행

결함JS 엔진
Fuzzer

JS 엔진 퍼징 연구 동향

고려대학교 스마트팩토리 융합보안대학원 세미나 / 34

• 연구의 동기

- JS는 매우 동적인 언어로 문법이 맞다고 하여도 오류가 많이 발생

• 핵심 아이디어

- 기존 코드들을 부품 별로 쪼개서 모아두고 결합 가능한 부품끼리 재조합

- Black-box Fuzzing / Generation-based Fuzzing

16

[NDSS’19] CodeAlchemist

1 eval(’break’); // SyntaxError

2 var r = new Array(4294967296); // RangeError

3 u; // ReferenceError

4 var t = 10; t(); // TypeError

5 decodeURIComponent(’%’); // URIError

Fig. 2: Sample statements for runtime errors. Each line throws
a specific runtime error when it is individually evaluated.

Syntax errors trigger when a JS engine interprets syntac-
tically invalid code. Since JS is a dynamic language, code
that looks syntactically correct can still raise a syntax error
at runtime. For example, Line 1 in Figure 2 presents a case
where a break statement is evaluated on the fly with the
eval function. Note that the statement itself is syntactically
correct, but a syntax error is raised when it is evaluated because
it is not within a loop in the current context.

Range errors happen when we try to use a value that is not
in the allowed range. For example, Line 2 shows a syntactically
valid JS statement, which will throw a range error because the
Array constructor only accepts a number less than 232 � 1,
and 4294967296 = 232.

Reference errors occur when accessing an undefined vari-
able. The variable u in Line 3 is used without any prior
definition. According to our study, this is the most common
error that we can detect while fuzzing JS engines.

Type errors arise when the actual type of a value is different
from the expected type. For example, Line 4 declares an integer
variable t, but then, we consider the variable as a function,
and make a function call. As a result, we will encounter a type
error after executing the line.

Finally, URI errors appear during the execution of global
URI functions when they were used in a way that is incom-
patible with their definition. Line 5 raises a URI Error because
the given parameter string is not a valid URI.

In addition to the native errors, there can be runtime errors
defined by programmers, which we refer to as a custom error
in this paper. One can define custom errors by instantiating the
Error object, and can raise them with a throw statement.
Our focus in this paper is on reducing the number of native
runtime errors, but not custom errors as they are a part of the
JS semantics anyways.

III. MOTIVATION

Our research is inspired by a preliminary study that we
performed with jsfunfuzz [27], one of the state-of-the-art JS
engine fuzzers. We chose jsfunfuzz because it is historically
the most successful JS engine fuzzer that is open-sourced.
LangFuzz [17], for instance, is not publicly accessible.

We ran jsfunfuzz on the four major JS engines, i.e.,
ChakraCore, V8, JavaScriptCore, SpiderMonkey, and observed
interesting phenomena: (1) we encountered a runtime error for
every JS file that jsfunfuzz generated; and (2) each of the file
returned a runtime error after evaluating only few statements.
Particularly, we were able to catch a runtime error in 99.5%
of the cases with only three or less top-level 1 statements.

1Each top-level statement generated from jsfunfuzz included 2.5 statements
on average.

Kind
of Occurrences

� � � �

Syntax Error 18,200 17,429 17,998 17,135
Range Error 310 285 328 308
Reference Error 78,294 79,116 78,401 78,935
Type Error 3,196 3,169 3,273 3,507
URI Error 0 0 0 0
Custom Error 0 1 0 115

Total Count 100,000 100,000 100,000 100,000

(a) Classification of runtime errors encountered while fuzzing the
four major JS engines with jsfunfuzz for 100,000 iterations. The
four engines are ChakraCore �, V8 �, JavaScriptCore �, and
SpiderMonkey �.

(b) The frequency of JS files (out of 100,000 generated files) over
the number of valid top-level statement(s).

Fig. 3: Our preliminary study on jsfunfuzz.

We counted how many runtime errors that we can catch
while evaluating 100,000 dynamically generated JS code snip-
pets on each of the engines. Note that jsfunfuzz generates a
stream of a potentially infinite number of JS statements until it
finds a crash while suppressing any runtime error by wrapping
JS code blocks with try-catch statements as appeared in
the comments in Figure 1. For the purpose of this study, we
ran jsfunfuzz on each JS engine for 20 fuzzing iterations.
This means that we used jsfunfuzz to generate a sequence
of 20 JS code blocks, which have 2.5 statements on average,
wrapped with a try-catch statement, and stored the entire
sequence to a file. We collected 100,000 of such JS files for
each engine, and then removed try-catch statements from
the files, so that we can immediately detect a runtime error
while evaluating them. As a consequence, all the generated JS
files produced a runtime error when evaluated.

Figure 3a summarizes the result. We found on average
78.7% and 17.7% of the JS files raised a reference error and
a syntax error, respectively. In theory, grammar-based fuzzers
such as jsfunfuzz should not produce any syntax error unless
they produce some dynamically changing code, e.g., eval.
However, we observed that most of the JS files were throwing
a syntax error without dynamically modifying code. For ex-
ample, we observed that jsfunfuzz can produce JS statements
with a mismatching bracket. This is because jsfunfuzz has a
manually written grammar, which may contain incorrect or
incomplete production rules. And this result highlights the
difficulty of writing grammars for fuzzing, which motivates
one of our design goal: our fuzzer should automatically
generate JS test cases while minimizing runtime errors without
manually written grammar.

3

[NDSS’19] H. Han, et al. “CodeAlchemist: Semantics-Aware Code Generation to Find
Vulnerabilities in JavaScript Engines”

https://cseweb.ucsd.edu/~dstefan/cse227-spring20/papers/han:codealchemist.pdf
https://cseweb.ucsd.edu/~dstefan/cse227-spring20/papers/han:codealchemist.pdf

고려대학교 스마트팩토리 융합보안대학원 세미나 / 3417

[NDSS’19] CodeAlchemist

We further analyzed the result to check how many valid
top-level statements—we counted a block statement as one
regardless of how many nested statements it has—jsfunfuzz
was able to evaluate for each JS file until it hits a runtime error.
As we discussed, all the JS files from jsfunfuzz threw a runtime
error when evaluated, but the first few statements in each JS
file were indeed valid. Figure 3b presents the histogram of the
number of valid top-level statements evaluated for each JS file
with jsfunfuzz. Notably, more than 75% of the JS files threw
a runtime error at the very first top-level statement, i.e., there
was no semantically valid JS statement. And 99.5% of the JS
files triggered a runtime error after evaluating three or less JS
top-level statements. That is, only a few top-level statements
produced by jsfunfuzz were valid at runtime, which is indeed
the key observation that motivated our research.

The aforementioned observations point out a primary chal-
lenge in JS engine fuzzing: automatically generating seman-
tically valid JS code snippets during a fuzzing campaign. In
this paper, we address the challenge by introducing a novel
fuzzing technique, called semantics-aware assembly.

IV. OVERVIEW

In this section, we start by introducing semantics-aware
assembly, a novel test case generation algorithm for JS engine
fuzzing. We then outline the overall architecture of CodeAl-
chemist, which implements semantics-aware assembly. Finally,
we describe how CodeAlchemist generates valid JS test cases
by stepping through each step it performs on a running
example.

A. Semantics-aware Assembly

The primary challenge of CodeAlchemist is to generate
test cases, i.e., JS code snippets that are both syntactically
and semantically valid. To address the challenge, we propose
semantics-aware assembly, a novel test case generation al-
gorithm for JS engine fuzzing. The key intuition behind our
approach is to fragmentize JS seeds into a set of combinable
building blocks that we call code bricks. A code brick repre-
sents a valid JS Abstract Syntax Tree (AST). Therefore, a code
brick itself can be evaluated by a JS engine. For example, a JS
statement can become a code brick, and a block of statements
(BlockStatement) can also become a code brick.

Each code brick can be annotated with an assembly con-
straint, which is a set of rules to follow when interconnecting
the code brick with other code bricks. Specifically, an assem-
bly constraint encodes two conditions: a precondition and a
postcondition. A precondition is a set of variable symbols as
well as their types that are required to be defined to execute
the code brick without a runtime error.

A postcondition describes what kinds of variables are
available, i.e., defined, at the end of the code brick after
evaluating it. Given a code brick B, which does not have
any preceding code brick in front, any code brick B0 6= B
can be a valid candidate that can be placed next to B if the
postcondition of B satisfies the precondition of B0. Starting
from a small code brick, semantics-aware assembly repeatedly
extends it by merging it with additional code bricks. Note, by
definition, a code brick can always become a valid JS code
snippet.

1 var f = function (){ return 42; };

2 var n = f();

(a) A sample JS seed with two statements. We assume that we create
one code brick for each statement, respectively.

var f = function(){ return 42; }

s0s0: func

B1B1

var n = f();

s2s2: funcs1s1: num

s0s0: func
B2B2

(b) Two code bricks obtained from the seed. The teeth and holes on
each code brick represent the assembly constraints.

Fig. 4: Code bricks with assembly constraints.

Suppose that CodeAlchemist splits the sample seed in
Figure 4a into two initial code bricks that contain only the
first and the second statement, respectively. Figure 4b shows
the resulting code bricks. The first code brick B1 has no
precondition, but it has a postcondition with a function symbol
s0, which indicates any code brick calling a function can
follow. The second code brick B2 requires a definition of
a function symbol s0 in its precondition. It also has its
postcondition that defines two symbols s1 and s2 as a number
and a function, respectively.

We can use B1 at the beginning, but not B2 because of its
assembly constraint: the precondition of B2 requires a function
symbol to be defined, but there is no preceding code brick in
front of it. However, we can append both B1 and B2 to B1, as
the postcondition of B1 can satisfy the precondition of B1 and
B2. When two code bricks merge, unmatched symbols from
the postcondition of the front brick propagate to the resulting
code brick. For example, when we merge two B1 code bricks,
the final code brick will have a postcondition with two function
symbols.

There are several design challenges to overcome in order
to make semantics-aware assembly practical. We discuss the
challenges in detail and show how we address them in §V.
First, we need to decide how to break JS code into code
bricks (§V-A). Second, we want to maintain a pool of code
bricks while minimizing its size and preserving its semantics
(§V-B). Third, we should rename symbols in code bricks
when we assemble them so as to avoid potential reference
errors (§V-C). Fourth, we need to figure out data dependencies
between variables in each code brick in order to compute
assembly constraints (§V-D). Fifth, the precision of assembly
constraints largely depends on the quality of our type analysis.
Thus, we should design an effective way to infer types of
variables (§V-E). Lastly, we need to devise an effective way to
combine code bricks with assembly constraints to build highly-
structured code snippets (§V-F).

4

고려대학교 스마트팩토리 융합보안대학원 세미나 / 3417

[NDSS’19] CodeAlchemist

We further analyzed the result to check how many valid
top-level statements—we counted a block statement as one
regardless of how many nested statements it has—jsfunfuzz
was able to evaluate for each JS file until it hits a runtime error.
As we discussed, all the JS files from jsfunfuzz threw a runtime
error when evaluated, but the first few statements in each JS
file were indeed valid. Figure 3b presents the histogram of the
number of valid top-level statements evaluated for each JS file
with jsfunfuzz. Notably, more than 75% of the JS files threw
a runtime error at the very first top-level statement, i.e., there
was no semantically valid JS statement. And 99.5% of the JS
files triggered a runtime error after evaluating three or less JS
top-level statements. That is, only a few top-level statements
produced by jsfunfuzz were valid at runtime, which is indeed
the key observation that motivated our research.

The aforementioned observations point out a primary chal-
lenge in JS engine fuzzing: automatically generating seman-
tically valid JS code snippets during a fuzzing campaign. In
this paper, we address the challenge by introducing a novel
fuzzing technique, called semantics-aware assembly.

IV. OVERVIEW

In this section, we start by introducing semantics-aware
assembly, a novel test case generation algorithm for JS engine
fuzzing. We then outline the overall architecture of CodeAl-
chemist, which implements semantics-aware assembly. Finally,
we describe how CodeAlchemist generates valid JS test cases
by stepping through each step it performs on a running
example.

A. Semantics-aware Assembly

The primary challenge of CodeAlchemist is to generate
test cases, i.e., JS code snippets that are both syntactically
and semantically valid. To address the challenge, we propose
semantics-aware assembly, a novel test case generation al-
gorithm for JS engine fuzzing. The key intuition behind our
approach is to fragmentize JS seeds into a set of combinable
building blocks that we call code bricks. A code brick repre-
sents a valid JS Abstract Syntax Tree (AST). Therefore, a code
brick itself can be evaluated by a JS engine. For example, a JS
statement can become a code brick, and a block of statements
(BlockStatement) can also become a code brick.

Each code brick can be annotated with an assembly con-
straint, which is a set of rules to follow when interconnecting
the code brick with other code bricks. Specifically, an assem-
bly constraint encodes two conditions: a precondition and a
postcondition. A precondition is a set of variable symbols as
well as their types that are required to be defined to execute
the code brick without a runtime error.

A postcondition describes what kinds of variables are
available, i.e., defined, at the end of the code brick after
evaluating it. Given a code brick B, which does not have
any preceding code brick in front, any code brick B0 6= B
can be a valid candidate that can be placed next to B if the
postcondition of B satisfies the precondition of B0. Starting
from a small code brick, semantics-aware assembly repeatedly
extends it by merging it with additional code bricks. Note, by
definition, a code brick can always become a valid JS code
snippet.

1 var f = function (){ return 42; };

2 var n = f();

(a) A sample JS seed with two statements. We assume that we create
one code brick for each statement, respectively.

var f = function(){ return 42; }

s0s0: func

B1B1

var n = f();

s2s2: funcs1s1: num

s0s0: func
B2B2

(b) Two code bricks obtained from the seed. The teeth and holes on
each code brick represent the assembly constraints.

Fig. 4: Code bricks with assembly constraints.

Suppose that CodeAlchemist splits the sample seed in
Figure 4a into two initial code bricks that contain only the
first and the second statement, respectively. Figure 4b shows
the resulting code bricks. The first code brick B1 has no
precondition, but it has a postcondition with a function symbol
s0, which indicates any code brick calling a function can
follow. The second code brick B2 requires a definition of
a function symbol s0 in its precondition. It also has its
postcondition that defines two symbols s1 and s2 as a number
and a function, respectively.

We can use B1 at the beginning, but not B2 because of its
assembly constraint: the precondition of B2 requires a function
symbol to be defined, but there is no preceding code brick in
front of it. However, we can append both B1 and B2 to B1, as
the postcondition of B1 can satisfy the precondition of B1 and
B2. When two code bricks merge, unmatched symbols from
the postcondition of the front brick propagate to the resulting
code brick. For example, when we merge two B1 code bricks,
the final code brick will have a postcondition with two function
symbols.

There are several design challenges to overcome in order
to make semantics-aware assembly practical. We discuss the
challenges in detail and show how we address them in §V.
First, we need to decide how to break JS code into code
bricks (§V-A). Second, we want to maintain a pool of code
bricks while minimizing its size and preserving its semantics
(§V-B). Third, we should rename symbols in code bricks
when we assemble them so as to avoid potential reference
errors (§V-C). Fourth, we need to figure out data dependencies
between variables in each code brick in order to compute
assembly constraints (§V-D). Fifth, the precision of assembly
constraints largely depends on the quality of our type analysis.
Thus, we should design an effective way to infer types of
variables (§V-E). Lastly, we need to devise an effective way to
combine code bricks with assembly constraints to build highly-
structured code snippets (§V-F).

4

We further analyzed the result to check how many valid
top-level statements—we counted a block statement as one
regardless of how many nested statements it has—jsfunfuzz
was able to evaluate for each JS file until it hits a runtime error.
As we discussed, all the JS files from jsfunfuzz threw a runtime
error when evaluated, but the first few statements in each JS
file were indeed valid. Figure 3b presents the histogram of the
number of valid top-level statements evaluated for each JS file
with jsfunfuzz. Notably, more than 75% of the JS files threw
a runtime error at the very first top-level statement, i.e., there
was no semantically valid JS statement. And 99.5% of the JS
files triggered a runtime error after evaluating three or less JS
top-level statements. That is, only a few top-level statements
produced by jsfunfuzz were valid at runtime, which is indeed
the key observation that motivated our research.

The aforementioned observations point out a primary chal-
lenge in JS engine fuzzing: automatically generating seman-
tically valid JS code snippets during a fuzzing campaign. In
this paper, we address the challenge by introducing a novel
fuzzing technique, called semantics-aware assembly.

IV. OVERVIEW

In this section, we start by introducing semantics-aware
assembly, a novel test case generation algorithm for JS engine
fuzzing. We then outline the overall architecture of CodeAl-
chemist, which implements semantics-aware assembly. Finally,
we describe how CodeAlchemist generates valid JS test cases
by stepping through each step it performs on a running
example.

A. Semantics-aware Assembly

The primary challenge of CodeAlchemist is to generate
test cases, i.e., JS code snippets that are both syntactically
and semantically valid. To address the challenge, we propose
semantics-aware assembly, a novel test case generation al-
gorithm for JS engine fuzzing. The key intuition behind our
approach is to fragmentize JS seeds into a set of combinable
building blocks that we call code bricks. A code brick repre-
sents a valid JS Abstract Syntax Tree (AST). Therefore, a code
brick itself can be evaluated by a JS engine. For example, a JS
statement can become a code brick, and a block of statements
(BlockStatement) can also become a code brick.

Each code brick can be annotated with an assembly con-
straint, which is a set of rules to follow when interconnecting
the code brick with other code bricks. Specifically, an assem-
bly constraint encodes two conditions: a precondition and a
postcondition. A precondition is a set of variable symbols as
well as their types that are required to be defined to execute
the code brick without a runtime error.

A postcondition describes what kinds of variables are
available, i.e., defined, at the end of the code brick after
evaluating it. Given a code brick B, which does not have
any preceding code brick in front, any code brick B0 6= B
can be a valid candidate that can be placed next to B if the
postcondition of B satisfies the precondition of B0. Starting
from a small code brick, semantics-aware assembly repeatedly
extends it by merging it with additional code bricks. Note, by
definition, a code brick can always become a valid JS code
snippet.

1 var f = function (){ return 42; };

2 var n = f();

(a) A sample JS seed with two statements. We assume that we create
one code brick for each statement, respectively.

var f = function(){ return 42; }

s0s0: func

B1B1

var n = f();

s2s2: funcs1s1: num

s0s0: func
B2B2

(b) Two code bricks obtained from the seed. The teeth and holes on
each code brick represent the assembly constraints.

Fig. 4: Code bricks with assembly constraints.

Suppose that CodeAlchemist splits the sample seed in
Figure 4a into two initial code bricks that contain only the
first and the second statement, respectively. Figure 4b shows
the resulting code bricks. The first code brick B1 has no
precondition, but it has a postcondition with a function symbol
s0, which indicates any code brick calling a function can
follow. The second code brick B2 requires a definition of
a function symbol s0 in its precondition. It also has its
postcondition that defines two symbols s1 and s2 as a number
and a function, respectively.

We can use B1 at the beginning, but not B2 because of its
assembly constraint: the precondition of B2 requires a function
symbol to be defined, but there is no preceding code brick in
front of it. However, we can append both B1 and B2 to B1, as
the postcondition of B1 can satisfy the precondition of B1 and
B2. When two code bricks merge, unmatched symbols from
the postcondition of the front brick propagate to the resulting
code brick. For example, when we merge two B1 code bricks,
the final code brick will have a postcondition with two function
symbols.

There are several design challenges to overcome in order
to make semantics-aware assembly practical. We discuss the
challenges in detail and show how we address them in §V.
First, we need to decide how to break JS code into code
bricks (§V-A). Second, we want to maintain a pool of code
bricks while minimizing its size and preserving its semantics
(§V-B). Third, we should rename symbols in code bricks
when we assemble them so as to avoid potential reference
errors (§V-C). Fourth, we need to figure out data dependencies
between variables in each code brick in order to compute
assembly constraints (§V-D). Fifth, the precision of assembly
constraints largely depends on the quality of our type analysis.
Thus, we should design an effective way to infer types of
variables (§V-E). Lastly, we need to devise an effective way to
combine code bricks with assembly constraints to build highly-
structured code snippets (§V-F).

4

부품 모음

고려대학교 스마트팩토리 융합보안대학원 세미나 / 3417

[NDSS’19] CodeAlchemist

We further analyzed the result to check how many valid
top-level statements—we counted a block statement as one
regardless of how many nested statements it has—jsfunfuzz
was able to evaluate for each JS file until it hits a runtime error.
As we discussed, all the JS files from jsfunfuzz threw a runtime
error when evaluated, but the first few statements in each JS
file were indeed valid. Figure 3b presents the histogram of the
number of valid top-level statements evaluated for each JS file
with jsfunfuzz. Notably, more than 75% of the JS files threw
a runtime error at the very first top-level statement, i.e., there
was no semantically valid JS statement. And 99.5% of the JS
files triggered a runtime error after evaluating three or less JS
top-level statements. That is, only a few top-level statements
produced by jsfunfuzz were valid at runtime, which is indeed
the key observation that motivated our research.

The aforementioned observations point out a primary chal-
lenge in JS engine fuzzing: automatically generating seman-
tically valid JS code snippets during a fuzzing campaign. In
this paper, we address the challenge by introducing a novel
fuzzing technique, called semantics-aware assembly.

IV. OVERVIEW

In this section, we start by introducing semantics-aware
assembly, a novel test case generation algorithm for JS engine
fuzzing. We then outline the overall architecture of CodeAl-
chemist, which implements semantics-aware assembly. Finally,
we describe how CodeAlchemist generates valid JS test cases
by stepping through each step it performs on a running
example.

A. Semantics-aware Assembly

The primary challenge of CodeAlchemist is to generate
test cases, i.e., JS code snippets that are both syntactically
and semantically valid. To address the challenge, we propose
semantics-aware assembly, a novel test case generation al-
gorithm for JS engine fuzzing. The key intuition behind our
approach is to fragmentize JS seeds into a set of combinable
building blocks that we call code bricks. A code brick repre-
sents a valid JS Abstract Syntax Tree (AST). Therefore, a code
brick itself can be evaluated by a JS engine. For example, a JS
statement can become a code brick, and a block of statements
(BlockStatement) can also become a code brick.

Each code brick can be annotated with an assembly con-
straint, which is a set of rules to follow when interconnecting
the code brick with other code bricks. Specifically, an assem-
bly constraint encodes two conditions: a precondition and a
postcondition. A precondition is a set of variable symbols as
well as their types that are required to be defined to execute
the code brick without a runtime error.

A postcondition describes what kinds of variables are
available, i.e., defined, at the end of the code brick after
evaluating it. Given a code brick B, which does not have
any preceding code brick in front, any code brick B0 6= B
can be a valid candidate that can be placed next to B if the
postcondition of B satisfies the precondition of B0. Starting
from a small code brick, semantics-aware assembly repeatedly
extends it by merging it with additional code bricks. Note, by
definition, a code brick can always become a valid JS code
snippet.

1 var f = function (){ return 42; };

2 var n = f();

(a) A sample JS seed with two statements. We assume that we create
one code brick for each statement, respectively.

var f = function(){ return 42; }

s0s0: func

B1B1

var n = f();

s2s2: funcs1s1: num

s0s0: func
B2B2

(b) Two code bricks obtained from the seed. The teeth and holes on
each code brick represent the assembly constraints.

Fig. 4: Code bricks with assembly constraints.

Suppose that CodeAlchemist splits the sample seed in
Figure 4a into two initial code bricks that contain only the
first and the second statement, respectively. Figure 4b shows
the resulting code bricks. The first code brick B1 has no
precondition, but it has a postcondition with a function symbol
s0, which indicates any code brick calling a function can
follow. The second code brick B2 requires a definition of
a function symbol s0 in its precondition. It also has its
postcondition that defines two symbols s1 and s2 as a number
and a function, respectively.

We can use B1 at the beginning, but not B2 because of its
assembly constraint: the precondition of B2 requires a function
symbol to be defined, but there is no preceding code brick in
front of it. However, we can append both B1 and B2 to B1, as
the postcondition of B1 can satisfy the precondition of B1 and
B2. When two code bricks merge, unmatched symbols from
the postcondition of the front brick propagate to the resulting
code brick. For example, when we merge two B1 code bricks,
the final code brick will have a postcondition with two function
symbols.

There are several design challenges to overcome in order
to make semantics-aware assembly practical. We discuss the
challenges in detail and show how we address them in §V.
First, we need to decide how to break JS code into code
bricks (§V-A). Second, we want to maintain a pool of code
bricks while minimizing its size and preserving its semantics
(§V-B). Third, we should rename symbols in code bricks
when we assemble them so as to avoid potential reference
errors (§V-C). Fourth, we need to figure out data dependencies
between variables in each code brick in order to compute
assembly constraints (§V-D). Fifth, the precision of assembly
constraints largely depends on the quality of our type analysis.
Thus, we should design an effective way to infer types of
variables (§V-E). Lastly, we need to devise an effective way to
combine code bricks with assembly constraints to build highly-
structured code snippets (§V-F).

4

We further analyzed the result to check how many valid
top-level statements—we counted a block statement as one
regardless of how many nested statements it has—jsfunfuzz
was able to evaluate for each JS file until it hits a runtime error.
As we discussed, all the JS files from jsfunfuzz threw a runtime
error when evaluated, but the first few statements in each JS
file were indeed valid. Figure 3b presents the histogram of the
number of valid top-level statements evaluated for each JS file
with jsfunfuzz. Notably, more than 75% of the JS files threw
a runtime error at the very first top-level statement, i.e., there
was no semantically valid JS statement. And 99.5% of the JS
files triggered a runtime error after evaluating three or less JS
top-level statements. That is, only a few top-level statements
produced by jsfunfuzz were valid at runtime, which is indeed
the key observation that motivated our research.

The aforementioned observations point out a primary chal-
lenge in JS engine fuzzing: automatically generating seman-
tically valid JS code snippets during a fuzzing campaign. In
this paper, we address the challenge by introducing a novel
fuzzing technique, called semantics-aware assembly.

IV. OVERVIEW

In this section, we start by introducing semantics-aware
assembly, a novel test case generation algorithm for JS engine
fuzzing. We then outline the overall architecture of CodeAl-
chemist, which implements semantics-aware assembly. Finally,
we describe how CodeAlchemist generates valid JS test cases
by stepping through each step it performs on a running
example.

A. Semantics-aware Assembly

The primary challenge of CodeAlchemist is to generate
test cases, i.e., JS code snippets that are both syntactically
and semantically valid. To address the challenge, we propose
semantics-aware assembly, a novel test case generation al-
gorithm for JS engine fuzzing. The key intuition behind our
approach is to fragmentize JS seeds into a set of combinable
building blocks that we call code bricks. A code brick repre-
sents a valid JS Abstract Syntax Tree (AST). Therefore, a code
brick itself can be evaluated by a JS engine. For example, a JS
statement can become a code brick, and a block of statements
(BlockStatement) can also become a code brick.

Each code brick can be annotated with an assembly con-
straint, which is a set of rules to follow when interconnecting
the code brick with other code bricks. Specifically, an assem-
bly constraint encodes two conditions: a precondition and a
postcondition. A precondition is a set of variable symbols as
well as their types that are required to be defined to execute
the code brick without a runtime error.

A postcondition describes what kinds of variables are
available, i.e., defined, at the end of the code brick after
evaluating it. Given a code brick B, which does not have
any preceding code brick in front, any code brick B0 6= B
can be a valid candidate that can be placed next to B if the
postcondition of B satisfies the precondition of B0. Starting
from a small code brick, semantics-aware assembly repeatedly
extends it by merging it with additional code bricks. Note, by
definition, a code brick can always become a valid JS code
snippet.

1 var f = function (){ return 42; };

2 var n = f();

(a) A sample JS seed with two statements. We assume that we create
one code brick for each statement, respectively.

var f = function(){ return 42; }

s0s0: func

B1B1

var n = f();

s2s2: funcs1s1: num

s0s0: func
B2B2

(b) Two code bricks obtained from the seed. The teeth and holes on
each code brick represent the assembly constraints.

Fig. 4: Code bricks with assembly constraints.

Suppose that CodeAlchemist splits the sample seed in
Figure 4a into two initial code bricks that contain only the
first and the second statement, respectively. Figure 4b shows
the resulting code bricks. The first code brick B1 has no
precondition, but it has a postcondition with a function symbol
s0, which indicates any code brick calling a function can
follow. The second code brick B2 requires a definition of
a function symbol s0 in its precondition. It also has its
postcondition that defines two symbols s1 and s2 as a number
and a function, respectively.

We can use B1 at the beginning, but not B2 because of its
assembly constraint: the precondition of B2 requires a function
symbol to be defined, but there is no preceding code brick in
front of it. However, we can append both B1 and B2 to B1, as
the postcondition of B1 can satisfy the precondition of B1 and
B2. When two code bricks merge, unmatched symbols from
the postcondition of the front brick propagate to the resulting
code brick. For example, when we merge two B1 code bricks,
the final code brick will have a postcondition with two function
symbols.

There are several design challenges to overcome in order
to make semantics-aware assembly practical. We discuss the
challenges in detail and show how we address them in §V.
First, we need to decide how to break JS code into code
bricks (§V-A). Second, we want to maintain a pool of code
bricks while minimizing its size and preserving its semantics
(§V-B). Third, we should rename symbols in code bricks
when we assemble them so as to avoid potential reference
errors (§V-C). Fourth, we need to figure out data dependencies
between variables in each code brick in order to compute
assembly constraints (§V-D). Fifth, the precision of assembly
constraints largely depends on the quality of our type analysis.
Thus, we should design an effective way to infer types of
variables (§V-E). Lastly, we need to devise an effective way to
combine code bricks with assembly constraints to build highly-
structured code snippets (§V-F).

4

부품 모음

데이터 흐름 분석

고려대학교 스마트팩토리 융합보안대학원 세미나 / 3417

[NDSS’19] CodeAlchemist

We further analyzed the result to check how many valid
top-level statements—we counted a block statement as one
regardless of how many nested statements it has—jsfunfuzz
was able to evaluate for each JS file until it hits a runtime error.
As we discussed, all the JS files from jsfunfuzz threw a runtime
error when evaluated, but the first few statements in each JS
file were indeed valid. Figure 3b presents the histogram of the
number of valid top-level statements evaluated for each JS file
with jsfunfuzz. Notably, more than 75% of the JS files threw
a runtime error at the very first top-level statement, i.e., there
was no semantically valid JS statement. And 99.5% of the JS
files triggered a runtime error after evaluating three or less JS
top-level statements. That is, only a few top-level statements
produced by jsfunfuzz were valid at runtime, which is indeed
the key observation that motivated our research.

The aforementioned observations point out a primary chal-
lenge in JS engine fuzzing: automatically generating seman-
tically valid JS code snippets during a fuzzing campaign. In
this paper, we address the challenge by introducing a novel
fuzzing technique, called semantics-aware assembly.

IV. OVERVIEW

In this section, we start by introducing semantics-aware
assembly, a novel test case generation algorithm for JS engine
fuzzing. We then outline the overall architecture of CodeAl-
chemist, which implements semantics-aware assembly. Finally,
we describe how CodeAlchemist generates valid JS test cases
by stepping through each step it performs on a running
example.

A. Semantics-aware Assembly

The primary challenge of CodeAlchemist is to generate
test cases, i.e., JS code snippets that are both syntactically
and semantically valid. To address the challenge, we propose
semantics-aware assembly, a novel test case generation al-
gorithm for JS engine fuzzing. The key intuition behind our
approach is to fragmentize JS seeds into a set of combinable
building blocks that we call code bricks. A code brick repre-
sents a valid JS Abstract Syntax Tree (AST). Therefore, a code
brick itself can be evaluated by a JS engine. For example, a JS
statement can become a code brick, and a block of statements
(BlockStatement) can also become a code brick.

Each code brick can be annotated with an assembly con-
straint, which is a set of rules to follow when interconnecting
the code brick with other code bricks. Specifically, an assem-
bly constraint encodes two conditions: a precondition and a
postcondition. A precondition is a set of variable symbols as
well as their types that are required to be defined to execute
the code brick without a runtime error.

A postcondition describes what kinds of variables are
available, i.e., defined, at the end of the code brick after
evaluating it. Given a code brick B, which does not have
any preceding code brick in front, any code brick B0 6= B
can be a valid candidate that can be placed next to B if the
postcondition of B satisfies the precondition of B0. Starting
from a small code brick, semantics-aware assembly repeatedly
extends it by merging it with additional code bricks. Note, by
definition, a code brick can always become a valid JS code
snippet.

1 var f = function (){ return 42; };

2 var n = f();

(a) A sample JS seed with two statements. We assume that we create
one code brick for each statement, respectively.

var f = function(){ return 42; }

s0s0: func

B1B1

var n = f();

s2s2: funcs1s1: num

s0s0: func
B2B2

(b) Two code bricks obtained from the seed. The teeth and holes on
each code brick represent the assembly constraints.

Fig. 4: Code bricks with assembly constraints.

Suppose that CodeAlchemist splits the sample seed in
Figure 4a into two initial code bricks that contain only the
first and the second statement, respectively. Figure 4b shows
the resulting code bricks. The first code brick B1 has no
precondition, but it has a postcondition with a function symbol
s0, which indicates any code brick calling a function can
follow. The second code brick B2 requires a definition of
a function symbol s0 in its precondition. It also has its
postcondition that defines two symbols s1 and s2 as a number
and a function, respectively.

We can use B1 at the beginning, but not B2 because of its
assembly constraint: the precondition of B2 requires a function
symbol to be defined, but there is no preceding code brick in
front of it. However, we can append both B1 and B2 to B1, as
the postcondition of B1 can satisfy the precondition of B1 and
B2. When two code bricks merge, unmatched symbols from
the postcondition of the front brick propagate to the resulting
code brick. For example, when we merge two B1 code bricks,
the final code brick will have a postcondition with two function
symbols.

There are several design challenges to overcome in order
to make semantics-aware assembly practical. We discuss the
challenges in detail and show how we address them in §V.
First, we need to decide how to break JS code into code
bricks (§V-A). Second, we want to maintain a pool of code
bricks while minimizing its size and preserving its semantics
(§V-B). Third, we should rename symbols in code bricks
when we assemble them so as to avoid potential reference
errors (§V-C). Fourth, we need to figure out data dependencies
between variables in each code brick in order to compute
assembly constraints (§V-D). Fifth, the precision of assembly
constraints largely depends on the quality of our type analysis.
Thus, we should design an effective way to infer types of
variables (§V-E). Lastly, we need to devise an effective way to
combine code bricks with assembly constraints to build highly-
structured code snippets (§V-F).

4

We further analyzed the result to check how many valid
top-level statements—we counted a block statement as one
regardless of how many nested statements it has—jsfunfuzz
was able to evaluate for each JS file until it hits a runtime error.
As we discussed, all the JS files from jsfunfuzz threw a runtime
error when evaluated, but the first few statements in each JS
file were indeed valid. Figure 3b presents the histogram of the
number of valid top-level statements evaluated for each JS file
with jsfunfuzz. Notably, more than 75% of the JS files threw
a runtime error at the very first top-level statement, i.e., there
was no semantically valid JS statement. And 99.5% of the JS
files triggered a runtime error after evaluating three or less JS
top-level statements. That is, only a few top-level statements
produced by jsfunfuzz were valid at runtime, which is indeed
the key observation that motivated our research.

The aforementioned observations point out a primary chal-
lenge in JS engine fuzzing: automatically generating seman-
tically valid JS code snippets during a fuzzing campaign. In
this paper, we address the challenge by introducing a novel
fuzzing technique, called semantics-aware assembly.

IV. OVERVIEW

In this section, we start by introducing semantics-aware
assembly, a novel test case generation algorithm for JS engine
fuzzing. We then outline the overall architecture of CodeAl-
chemist, which implements semantics-aware assembly. Finally,
we describe how CodeAlchemist generates valid JS test cases
by stepping through each step it performs on a running
example.

A. Semantics-aware Assembly

The primary challenge of CodeAlchemist is to generate
test cases, i.e., JS code snippets that are both syntactically
and semantically valid. To address the challenge, we propose
semantics-aware assembly, a novel test case generation al-
gorithm for JS engine fuzzing. The key intuition behind our
approach is to fragmentize JS seeds into a set of combinable
building blocks that we call code bricks. A code brick repre-
sents a valid JS Abstract Syntax Tree (AST). Therefore, a code
brick itself can be evaluated by a JS engine. For example, a JS
statement can become a code brick, and a block of statements
(BlockStatement) can also become a code brick.

Each code brick can be annotated with an assembly con-
straint, which is a set of rules to follow when interconnecting
the code brick with other code bricks. Specifically, an assem-
bly constraint encodes two conditions: a precondition and a
postcondition. A precondition is a set of variable symbols as
well as their types that are required to be defined to execute
the code brick without a runtime error.

A postcondition describes what kinds of variables are
available, i.e., defined, at the end of the code brick after
evaluating it. Given a code brick B, which does not have
any preceding code brick in front, any code brick B0 6= B
can be a valid candidate that can be placed next to B if the
postcondition of B satisfies the precondition of B0. Starting
from a small code brick, semantics-aware assembly repeatedly
extends it by merging it with additional code bricks. Note, by
definition, a code brick can always become a valid JS code
snippet.

1 var f = function (){ return 42; };

2 var n = f();

(a) A sample JS seed with two statements. We assume that we create
one code brick for each statement, respectively.

var f = function(){ return 42; }

s0s0: func

B1B1

var n = f();

s2s2: funcs1s1: num

s0s0: func
B2B2

(b) Two code bricks obtained from the seed. The teeth and holes on
each code brick represent the assembly constraints.

Fig. 4: Code bricks with assembly constraints.

Suppose that CodeAlchemist splits the sample seed in
Figure 4a into two initial code bricks that contain only the
first and the second statement, respectively. Figure 4b shows
the resulting code bricks. The first code brick B1 has no
precondition, but it has a postcondition with a function symbol
s0, which indicates any code brick calling a function can
follow. The second code brick B2 requires a definition of
a function symbol s0 in its precondition. It also has its
postcondition that defines two symbols s1 and s2 as a number
and a function, respectively.

We can use B1 at the beginning, but not B2 because of its
assembly constraint: the precondition of B2 requires a function
symbol to be defined, but there is no preceding code brick in
front of it. However, we can append both B1 and B2 to B1, as
the postcondition of B1 can satisfy the precondition of B1 and
B2. When two code bricks merge, unmatched symbols from
the postcondition of the front brick propagate to the resulting
code brick. For example, when we merge two B1 code bricks,
the final code brick will have a postcondition with two function
symbols.

There are several design challenges to overcome in order
to make semantics-aware assembly practical. We discuss the
challenges in detail and show how we address them in §V.
First, we need to decide how to break JS code into code
bricks (§V-A). Second, we want to maintain a pool of code
bricks while minimizing its size and preserving its semantics
(§V-B). Third, we should rename symbols in code bricks
when we assemble them so as to avoid potential reference
errors (§V-C). Fourth, we need to figure out data dependencies
between variables in each code brick in order to compute
assembly constraints (§V-D). Fifth, the precision of assembly
constraints largely depends on the quality of our type analysis.
Thus, we should design an effective way to infer types of
variables (§V-E). Lastly, we need to devise an effective way to
combine code bricks with assembly constraints to build highly-
structured code snippets (§V-F).

4

부품 모음

동적 타입 분석
데이터 흐름 분석

고려대학교 스마트팩토리 융합보안대학원 세미나 / 3418

[NDSS’19] CodeAlchemist

Fig. 5: CodeAlchemist Architecture.

B. CodeAlchemist Architecture

Figure 5 depicts the architecture of CodeAlchemist. At
a high level, it takes in as input a JS engine under test,
a set of JS seed files, and a set of user-configurable pa-
rameters, and it outputs a set of bugs found in the engine.
CodeAlchemist consists of three major components: SEED
PARSER, CONSTRAINT ANALYZER, and ENGINE FUZZER.
The SEED PARSER module breaks given JS seeds into a set of
code bricks. The CONSTRAINT ANALYZER module then infers
assembly constraints for each code brick, and annotates them
with the computed assembly constraints, which ultimately
constitute a code brick pool. Finally, the ENGINE FUZZER
module assembles the code bricks from the pool based on their
assembly constraints to generate test cases and to execute the
generated test cases against the target JS engine.

1) SEED PARSER: This module first parses each JS seed
down to an AST based on the ECMAScript language spec-
ification [9]. The Parse function returns an AST from a
given seed as long as it is syntactically correct. To filter out
semantically unique code bricks, the Split function breaks
the ASTs into code bricks and normalizes the symbols in
them. All the broken code bricks should represent a valid AST,
although they are not tagged with assembly constraints yet.

2) CONSTRAINT ANALYZER: This module figures out an
assembly constraint for each of the fragmentized code bricks.
First, the Analyze function recognizes which symbols are
used and defined in each code brick using a classic data-flow
analysis [1]. The Instrument function then traces types of
the variables by dynamically instrumenting code bricks. As a
result, CONSTRAINT ANALYZER returns a set of code bricks,
each of which is tagged with an assembly constraint. We call
such a set as a code brick pool, which is later used to generate
test cases, i.e., JS code snippets, for fuzzing.

3) ENGINE FUZZER: Now that we have code bricks to play
with, the ENGINE FUZZER module uses them to fuzz the target
JS engine. Specifically, the Generate function iteratively
assembles code bricks based on their assembly constraints
in order to generate test cases. It also takes a set of user-
configurable parameters which adjusts the way of combining
the code bricks (see §V-F). Finally, the Execute function
executes the target JS engine with the generated test cases. If
the engine crashes, it stores the corresponding test case (a JS
file) on a file system.

1 var n = 42; // Var1

2 var arr = new Array(0x100); // Var2

3 for (let i = 0; i < n; i++) // For3-0, For3-1

4 { // Block4

5 arr[i] = n; // Expr5

6 arr[n] = i; // Expr6

7 }

(a) An example JS code snippet used as a seed.

1 var s0 = new Array(0x100); // Var2

2 var s1 = 42; // Var1

3 for (let s2 = 0; s2 < s1; s2++) { // For3-1

4 for (let s3 = 0; s3 < s2; s3++) { // For3-0

5 s0[s3] = s2;

6 s0[s2] = s3;

7 }

8 }

(b) A generated code snippet from the seed.

Fig. 6: A running example.

C. Running Example

We now discuss the detailed procedure of CodeAlchemist
step by step. Suppose CodeAlchemist takes in the code snippet
shown in Figure 6a as a seed. At a high level, CodeAlchemist
will repeatedly produce test cases based on the semantic
structure that it learned from the seed. Figure 6b presents one
of such test cases.

First, CodeAlchemist parses the given seed to obtain an
AST. It then breaks the AST into a set of code bricks. In the
current implementation of CodeAlchemist, we fragmentize an
AST in the granularity of JS statements. Figure 6a presents in
the comments what kind of code bricks are generated for each
statement. Specifically, the seed is broken into seven distinct
code bricks: two code bricks for the variable declaration
statements (Var1, Var2); a code brick for the whole for-
loop statement and another with an empty body (For3-0,
For3-1); a code brick for the body of the loop itself
(Block4); and two code bricks for the expression statements
(Expr5, Expr6). Note that the body of For3-1 is empty
and it can be used to generate diverse for-loops, whereas
For3-0 represents the whole for-loop statement. For exam-
ple, we can construct nested for-loops with For3-1, but not
with For3-0.

Next, CodeAlchemist normalizes all the identifiers in the
code bricks, and deduplicates them to minimize the number
of code bricks to consider when assembling them. We exclude
built-in symbols such as Array from normalization to pre-
serve the semantics of code bricks. In our case, Expr5 and
Expr6 are the same code brick as they appear in the form of
s0[s1] = s2, where s0, s1, and s2 are placeholders for
three distinct variables. Thus, we will have a total of six code
bricks in our pool after this step.

Now that we have obtained a set of unique code bricks,
CodeAlchemist annotates each of them with an assembly
constraint. To compute assembly constraints, we first figure
out which variables are used and defined in each code brick
with a static data-flow analysis. Note that we will not use
normalized symbols in this example to ease the explanation.

5

Fig. 5: CodeAlchemist Architecture.

B. CodeAlchemist Architecture

Figure 5 depicts the architecture of CodeAlchemist. At
a high level, it takes in as input a JS engine under test,
a set of JS seed files, and a set of user-configurable pa-
rameters, and it outputs a set of bugs found in the engine.
CodeAlchemist consists of three major components: SEED
PARSER, CONSTRAINT ANALYZER, and ENGINE FUZZER.
The SEED PARSER module breaks given JS seeds into a set of
code bricks. The CONSTRAINT ANALYZER module then infers
assembly constraints for each code brick, and annotates them
with the computed assembly constraints, which ultimately
constitute a code brick pool. Finally, the ENGINE FUZZER
module assembles the code bricks from the pool based on their
assembly constraints to generate test cases and to execute the
generated test cases against the target JS engine.

1) SEED PARSER: This module first parses each JS seed
down to an AST based on the ECMAScript language spec-
ification [9]. The Parse function returns an AST from a
given seed as long as it is syntactically correct. To filter out
semantically unique code bricks, the Split function breaks
the ASTs into code bricks and normalizes the symbols in
them. All the broken code bricks should represent a valid AST,
although they are not tagged with assembly constraints yet.

2) CONSTRAINT ANALYZER: This module figures out an
assembly constraint for each of the fragmentized code bricks.
First, the Analyze function recognizes which symbols are
used and defined in each code brick using a classic data-flow
analysis [1]. The Instrument function then traces types of
the variables by dynamically instrumenting code bricks. As a
result, CONSTRAINT ANALYZER returns a set of code bricks,
each of which is tagged with an assembly constraint. We call
such a set as a code brick pool, which is later used to generate
test cases, i.e., JS code snippets, for fuzzing.

3) ENGINE FUZZER: Now that we have code bricks to play
with, the ENGINE FUZZER module uses them to fuzz the target
JS engine. Specifically, the Generate function iteratively
assembles code bricks based on their assembly constraints
in order to generate test cases. It also takes a set of user-
configurable parameters which adjusts the way of combining
the code bricks (see §V-F). Finally, the Execute function
executes the target JS engine with the generated test cases. If
the engine crashes, it stores the corresponding test case (a JS
file) on a file system.

1 var n = 42; // Var1

2 var arr = new Array(0x100); // Var2

3 for (let i = 0; i < n; i++) // For3-0, For3-1

4 { // Block4

5 arr[i] = n; // Expr5

6 arr[n] = i; // Expr6

7 }

(a) An example JS code snippet used as a seed.

1 var s0 = new Array(0x100); // Var2

2 var s1 = 42; // Var1

3 for (let s2 = 0; s2 < s1; s2++) { // For3-1

4 for (let s3 = 0; s3 < s2; s3++) { // For3-0

5 s0[s3] = s2;

6 s0[s2] = s3;

7 }

8 }

(b) A generated code snippet from the seed.

Fig. 6: A running example.

C. Running Example

We now discuss the detailed procedure of CodeAlchemist
step by step. Suppose CodeAlchemist takes in the code snippet
shown in Figure 6a as a seed. At a high level, CodeAlchemist
will repeatedly produce test cases based on the semantic
structure that it learned from the seed. Figure 6b presents one
of such test cases.

First, CodeAlchemist parses the given seed to obtain an
AST. It then breaks the AST into a set of code bricks. In the
current implementation of CodeAlchemist, we fragmentize an
AST in the granularity of JS statements. Figure 6a presents in
the comments what kind of code bricks are generated for each
statement. Specifically, the seed is broken into seven distinct
code bricks: two code bricks for the variable declaration
statements (Var1, Var2); a code brick for the whole for-
loop statement and another with an empty body (For3-0,
For3-1); a code brick for the body of the loop itself
(Block4); and two code bricks for the expression statements
(Expr5, Expr6). Note that the body of For3-1 is empty
and it can be used to generate diverse for-loops, whereas
For3-0 represents the whole for-loop statement. For exam-
ple, we can construct nested for-loops with For3-1, but not
with For3-0.

Next, CodeAlchemist normalizes all the identifiers in the
code bricks, and deduplicates them to minimize the number
of code bricks to consider when assembling them. We exclude
built-in symbols such as Array from normalization to pre-
serve the semantics of code bricks. In our case, Expr5 and
Expr6 are the same code brick as they appear in the form of
s0[s1] = s2, where s0, s1, and s2 are placeholders for
three distinct variables. Thus, we will have a total of six code
bricks in our pool after this step.

Now that we have obtained a set of unique code bricks,
CodeAlchemist annotates each of them with an assembly
constraint. To compute assembly constraints, we first figure
out which variables are used and defined in each code brick
with a static data-flow analysis. Note that we will not use
normalized symbols in this example to ease the explanation.

5

부품 모음

고려대학교 스마트팩토리 융합보안대학원 세미나 / 34

• 연구의 동기

- 현존하는 JS 엔진의 CVE에 비슷한 양상(Aspect)을 파악

- 타입(Type)과 구조(Structure)가 일치하는 비슷한 CVE를 다수 발견

• 핵심 아이디어

- 타입(Type)과 구조(Structure)의 양상(Aspect)을 유지하는 수정을 제안

- Black-box Fuzzing / Mutation-based Fuzzing

19

[SP’20] DIE

[SP’20] S. Park, et al. “Fuzzing javascript engines with aspect-preserving mutation”

https://doi.org/10.1109/SP40000.2020.00067

고려대학교 스마트팩토리 융합보안대학원 세미나 / 3420

[SP’20] DIE

Motivating example

14

• Special conditions are necessary to discover new bug from old ones
• Newly introduced code

고려대학교 스마트팩토리 융합보안대학원 세미나 / 3421

[SP’20] DIE - CVE-2019-0990Case study: CVE-2019-0990

43

• corpus: CVE-2018-0777

Generation
w/ type information

Mutation
(type preserving)

Mutation
(structure preserving)

고려대학교 스마트팩토리 융합보안대학원 세미나 / 34

• [Usenix’20] Montage

- JS 코드 AST를 Long short-term memory (LSTM)에 적합하도록 파편화

- 이를 기반으로 LSTM 모델을 학습하여 양질의 JS 프로그램을 생성

• [PLDI’21] Comfort

- JS 언어 공식 문서인 ECMA-262에서 정보를 간단하게 추출 및 활용

- 이를 기반으로 Transformer를 학습하여 양질의 JS 프로그램을 생성

22

언어 모델 기반 JS 엔진 퍼징

[Usenix’20] Lee et al. “Montage: A Neural Network Language Model-Guided JavaScript
Engine Fuzzer”

[PLDI’21] G. Ye, et al. “Automated conformance testing for JavaScript engines via deep
compiler fuzzing”

https://www.usenix.org/system/files/sec20summer_lee-suyoung_prepub_0.pdf
https://www.usenix.org/system/files/sec20summer_lee-suyoung_prepub_0.pdf
https://dl.acm.org/doi/10.1145/3453483.3454054
https://dl.acm.org/doi/10.1145/3453483.3454054

고려대학교 스마트팩토리 융합보안대학원 세미나 / 34

• 메모리 및 타입 결함 검출

- 메모리 및 타입 결함은 실행을 통해 바로 검출이 가능

• 다른 JS 엔진과 차분 테스팅 (Differential Testing)

- 다른 JS 엔진이라도 같은 JS 코드에 대해서는 동일하게 동작해야 함

• JIT 컴파일 기반 최적화 유무에 따른 차분 테스팅 (Differential Testing)

- JIT 컴파일 기반 최적화와는 무관하게 동일 코드는 동일하게 동작해야 함

23

JS 엔진 결함 검출 방식

[PLDI’21] G. Ye, et al. “Automated conformance testing for JavaScript engines via deep
compiler fuzzing”

[CCS’22] L. Bernhard, et al. “Jit-Picking: Differential Fuzzing of JavaScript Engines”

https://dl.acm.org/doi/10.1145/3453483.3454054
https://dl.acm.org/doi/10.1145/3453483.3454054
https://dl.acm.org/doi/pdf/10.1145/3548606.3560624

기계화 명세 기반
JS 엔진 퍼징 기법

고려대학교 스마트팩토리 융합보안대학원 세미나 / 3425

기계화 명세 기반 JS 엔진 퍼징 기법

ECMA-262
(JS 명세) JISET

JEST

기계화 명세

일치성 검사
프로그램

JS 실행 엔진

일
치
성

ACM SIGSOFT
Distinguished Paper

[ICSE'21] J. Park, et al. "JEST: N+1-version Differential Testing of Both JavaScript Engines”

[PLDI'23] J. Park, et al. “Feature-Sensitive Coverage for Conformance Testing of
Programming Language Implementations”

https://doi.org/10.1145/3453483.3454054
https://dl.acm.org/doi/10.1145/3591240
https://dl.acm.org/doi/10.1145/3591240

고려대학교 스마트팩토리 융합보안대학원 세미나 / 3426

ECMA-262 (JS 명세)

The Evaluation algorithm for the third alternative of ArrayLiteral in ES13

고려대학교 스마트팩토리 융합보안대학원 세미나 / 3427

JS 명세와 실행 엔진 간의 일치성

일치

Reference number
ECMA-123:2009

© Ecma International 2009

ECMA-262
11th Edition / June 2020

ECMAScript® 2020
Language Specification

JS 실행 엔진

ECMA-262
(JS 명세)

QuickJS

?

고려대학교 스마트팩토리 융합보안대학원 세미나 / 3428

아이디어: N+1-버전 차분 테스팅

합성

Reference number
ECMA-123:2009

© Ecma International 2009

ECMA-262
11th Edition / June 2020

ECMAScript® 2020
Language Specification

JS 실행 엔진

일치성 검사
프로그램 QuickJS

검사

검사

검사

검사

ECMA-262
(JS 명세)

고려대학교 스마트팩토리 융합보안대학원 세미나 / 3428

아이디어: N+1-버전 차분 테스팅

합성

Reference number
ECMA-123:2009

© Ecma International 2009

ECMA-262
11th Edition / June 2020

ECMAScript® 2020
Language Specification

JS 실행 엔진

일치성 검사
프로그램 QuickJS

검사

검사

검사

검사

ECMA-262
(JS 명세)

고려대학교 스마트팩토리 융합보안대학원 세미나 / 3428

아이디어: N+1-버전 차분 테스팅

합성

Reference number
ECMA-123:2009

© Ecma International 2009

ECMA-262
11th Edition / June 2020

ECMAScript® 2020
Language Specification

JS 실행 엔진

일치성 검사
프로그램 QuickJS

검사

JS 실행 엔진의 결함

검사

검사

검사

ECMA-262
(JS 명세)

고려대학교 스마트팩토리 융합보안대학원 세미나 / 3429

아이디어: N+1-버전 차분 테스팅

일치성 검사
프로그램 QuickJS

검사

검사

검사

검사

JS 실행 엔진

Reference number
ECMA-123:2009

© Ecma International 2009

ECMA-262
11th Edition / June 2020

ECMAScript® 2020
Language Specification

ECMA-262
(JS 명세)

합성

고려대학교 스마트팩토리 융합보안대학원 세미나 / 3429

아이디어: N+1-버전 차분 테스팅

일치성 검사
프로그램 QuickJS

검사

검사

검사

검사

JS 실행 엔진

Reference number
ECMA-123:2009

© Ecma International 2009

ECMA-262
11th Edition / June 2020

ECMAScript® 2020
Language Specification

ECMA-262
(JS 명세)

합성

고려대학교 스마트팩토리 융합보안대학원 세미나 / 3429

아이디어: N+1-버전 차분 테스팅

일치성 검사
프로그램 QuickJS

검사

검사

검사

검사

JS 실행 엔진

Reference number
ECMA-123:2009

© Ecma International 2009

ECMA-262
11th Edition / June 2020

ECMAScript® 2020
Language Specification

ECMA-262
(JS 명세)

합성

고려대학교 스마트팩토리 융합보안대학원 세미나 / 3429

아이디어: N+1-버전 차분 테스팅

일치성 검사
프로그램 QuickJS

검사

ECMA-262 내의 명세 결함 존재

JS 실행 엔진의 결함

검사

검사

검사

JS 실행 엔진

Reference number
ECMA-123:2009

© Ecma International 2009

ECMA-262
11th Edition / June 2020

ECMAScript® 2020
Language Specification

ECMA-262
(JS 명세)

합성

고려대학교 스마트팩토리 융합보안대학원 세미나 / 3429

아이디어: N+1-버전 차분 테스팅

일치성 검사
프로그램 QuickJS

검사

ECMA-262 내의 명세 결함 존재

JS 실행 엔진의 결함

검사

검사

검사

JS 실행 엔진

Reference number
ECMA-123:2009

© Ecma International 2009

ECMA-262
11th Edition / June 2020

ECMAScript® 2020
Language Specification

ECMA-262
(JS 명세)

ECMA-262 내의 명세 결함 존재

JS 실행 엔진의 결함

합성

고려대학교 스마트팩토리 융합보안대학원 세미나 / 3430

JEST - JS Engines and Specification Tester

초기
프로그램 집합기계화 명세

JEST

프로그램 집합

프로그램
변환기

상태 검사문
주입기

일치성 검사
프로그램

구문론 기반
프로그램 합성

명세의 커버리지
기반 퍼징

최종 상태 기반
상태 검사문 주입

선택된
프로그램

변환된
프로그램

고려대학교 스마트팩토리 융합보안대학원 세미나 / 3431

JEST - 명세의 커버리지 기반 퍼징

0 + { valueOf() { return 1; }

고려대학교 스마트팩토리 융합보안대학원 세미나 / 3431

JEST - 명세의 커버리지 기반 퍼징

0 + { valueOf() { return 1; }

0 + { valueOf() { throw 42; }

고려대학교 스마트팩토리 융합보안대학원 세미나 / 3431

JEST - 명세의 커버리지 기반 퍼징

0 + { valueOf() { return 1; }

0 + { valueOf() { throw 42; }

[PLDI'23] J. Park, et al. “Feature-Sensitive Coverage for Conformance Testing of Programming
Language Implementations”

• JEST-fs - Feature-Sensitive Coverage 개념을 제안

https://dl.acm.org/doi/10.1145/3591240
https://dl.acm.org/doi/10.1145/3591240

고려대학교 스마트팩토리 융합보안대학원 세미나 / 3432

JEST - 최종 상태 기반 상태 검사문 주입

 function f() {}

고려대학교 스마트팩토리 융합보안대학원 세미나 / 3432

JEST - 최종 상태 기반 상태 검사문 주입

+ $assert.sameValue(Object.getPrototypeOf(f),
+ Function.prototype);
+ $assert.sameValue(Object.isExtensible(x), true);
+ $assert.callable(f);
+ $assert.constructable(f);

 function f() {}

고려대학교 스마트팩토리 융합보안대학원 세미나 / 3433

JEST - 실험 결과

JEST: N+1-version Differential Testing of
Both JavaScript Engines and Specification

Jihyeok Park
School of Computing

KAIST

Daejeon, South Korea
jhpark0223@kaist.ac.kr

Seungmin An
School of Computing

KAIST

Daejeon, South Korea
h2oche@kaist.ac.kr

Dongjun Youn
School of Computing

KAIST

Daejeon, South Korea
f52985@kaist.ac.kr

Gyeongwon Kim
School of Computing

KAIST

Daejeon, South Korea
gyeongwon.kim@kaist.ac.kr

Sukyoung Ryu
School of Computing

KAIST

Daejeon, South Korea
sryu.cs@kaist.ac.kr

GraalVM
Abstract—Modern programming follows the continuous inte-

gration (CI) and continuous deployment (CD) approach rather
than the traditional waterfall model. Even the development of
modern programming languages uses the CI/CD approach to
swiftly provide new language features and to adapt to new devel-
opment environments. Unlike in the conventional approach, in the
modern CI/CD approach, a language specification is no more the
oracle of the language semantics because both the specification
and its implementations (interpreters or compilers) can co-evolve.
In this setting, both the specification and implementations may
have bugs, and guaranteeing their correctness is non-trivial.

In this paper, we propose a novel N+1-version differential
testing to resolve the problem. Unlike the traditional differential
testing, our approach consists of three steps: 1) to automatically
synthesize programs guided by the syntax and semantics from a
given language specification, 2) to generate conformance tests by
injecting assertions to the synthesized programs to check their
final program states, 3) to detect bugs in the specification and
implementations via executing the conformance tests on multiple
implementations, and 4) to localize bugs on the specification
using statistical information. We actualize our approach for the
JavaScript programming language via JEST, which performs
N+1-version differential testing for modern JavaScript engines
and ECMAScript, the language specification describing the
syntax and semantics of JavaScript in a natural language. We
evaluated JEST with four JavaScript engines that support all
modern JavaScript language features and the latest version of
ECMAScript (ES11, 2020). JEST automatically synthesized 1,700
programs that covered 97.78% of syntax and 87.70% of semantics
from ES11. Using the assertion-injected JavaScript programs,
it detected 44 engine bugs in four different engines and 27
specification bugs in ES11.

Index Terms—JavaScript, conformance test generation, mech-
anized specification, differential testing

I. INTRODUCTION

In Peter O’Hearn’s keynote speech in ICSE 2020, he quoted
the following from Mark Zuckerberg’s Letter to Investors [1]:

The Hacker Way is an approach to building that in-
volves continuous improvement and iteration. Hack-
ers believe that somethings can always be better, and
that nothing is ever complete.

Indeed, modern programming follows the continuous integra-
tion (CI) and continuous deployment (CD) approach [2] rather
than the traditional waterfall model. Instead of a sequential
model that divides software development into several phases,

each of which takes time, CI/CD amounts to a cycle of quick
software development, deployment, and back to development
with feedback. Even the development of programming lan-
guages uses the CI/CD approach.

Consider JavaScript, one of the most widely used pro-
gramming languages for client-side and server-side program-
ming [3] and embedded systems [4]–[6]. Various JavaScript
engines provide diverse extensions to adapt to fast-changing
user demands. At the same time, ECMAScript, the offi-
cial specification that describes the syntax and semantics of
JavaScript, is annually updated since ECMAScript 6 (ES6,
2015) [7] to support new features in response to user demands.
Such updates in both the specification and implementations in
tandem make it difficult for them to be in sync.

Another example is Solidity [8], the standard smart contract
programming language for the Ethereum blockchain. The
Solidity language specification is continuously updated, and
the Solidity compiler is also frequently released. According to
Hwang and Ryu [9], the average number of days between
consecutive releases from Solidity 0.1.2 to 0.5.7 is 27. In
most cases, the Solidity compiler reflects updates in the
specification, but even the specification is revised according to
the semantics implemented in the compiler. As in JavaScript,
bidirectional effects in the specification and the implementa-
tion make it hard to guarantee their correspondence.

In this approach, both the specification and the implemen-
tation may contain bugs, and guaranteeing their correctness
is a challenging task. The conventional approach to build
a programming language is uni-directional from a language
specification to its implementation. The specification is be-
lieved to be correct and the conformance of an implementation
to the specification is checked by dynamic testing. Unlike in
the conventional approach, in the modern CI/CD approach,
the specification may not be the oracle, because both the
specification and the implementation can co-evolve.

In this paper, we propose a novel N+1-version differential

testing, which enables testing of co-evolving specifications
and their implementations. The differential testing [10] is a
testing technique, which executes N implementations of a
specification concurrently for each input, and detects a prob-
lem when the outputs are in disagreement. In addition to N
implementations, our approach tests the specification as well

실행 엔진 결함 44개

명세 결함 27개

고려대학교 스마트팩토리 융합보안대학원 세미나 / 34

• Feature-Sensitive Coverage라는 개념을 도입하여 더 많은 결함을 검출

34

JEST-fs - 실험 결과Feature-Sensitive Coverage for Conformance Testing 126:15

Table 1. Detected conformance bugs in JavaScript engines and transpilers

Kind Name Version Release
Detected Unique Bugs

New # Con!rmed # Reported

Engine

V8 v10.8.121 2022.10.06 0 0 4
JSC v615.1.10 2022.10.26 15 15 24
GraalJS v22.2.0 2022.07.26 9 9 10
SpiderMonkey v107.0b4 2022.10.24 1 3 4

Total 25 27 42

Transpiler

Babel v7.19.1 2022.09.15 30 30 35
SWC v1.3.10 2022.10.21 27 27 41
Terser v5.15.1 2022.10.05 1 1 18
Obfuscator v4.0.0 2022.02.15 0 0 7

Total 58 58 101

Total 83 85 143

5 EVALUATION

This section evaluates feature-sensitive coverage criteria with the following research questions:

• RQ1 (Conformance Bug Detection): How many conformance bugs in JavaScript imple-
mentations are detected by synthesized conformance tests? (Section 5.1)

• RQ2 (E"ectiveness of !-FS Coverage Criteria): Are higher !-FS coverage criteria more
e!ective than lower !-FS coverage criteria in detecting conformance bugs? (Section 5.2)

• RQ3 (E"ectiveness of !-FCPS Coverage Criteria): Are !-FCPS coverage criteria more
e!ective than !-FS coverage criteria in detecting conformance bugs? (Section 5.3)

• RQ4 (Comparisonwith Test262):Can conformance tests synthesized by JESTfs complement
Test262, the o"cial JavaScript conformance suite maintained manually? (Section 5.4)

We apply JESTfs to the latest language speci#cation (ES13, 2022) [ECMA International 2022a],
which synthesized 237,981 conformance tests in 50 hours with #ve graph coverage criteria: 1) 0-FS,
2) 1-FS, 3) 2-FS, 4) 1-FCPS, and 5) 2-FCPS node-or-branch coverage. We performed our experiments
with #ve Ubuntu machines with a 4.0GHz Intel(R) Core(TM) i7-6700k and 32GB of RAM (Samsung
DDR4 2133MHz 8GB*4).
Using the synthesized JavaScript conformance tests, we check the conformance of eight main-

stream implementations listed in Table 1. We select them as evaluation targets because they support
all the language features in ES13. V8, JSC, and SpiderMonkey are JavaScript engines used in web
browsers, Google Chrome, Apple Safari, and Mozilla Firefox, respectively, and GraalJS is a JavaScript
engine by Oracle. Babel and SWC are transpilers that desugar new language features into old ones,
usually ES5.1 features, for legacy host environments. Terser is a code compressor that reduces
code size, and Obfuscator obfuscates code to make it hard to understand and reverse-engineering.
For the transpiler conformance check, we use V8 as the default engine to execute transpiled code
with assertions. If a test fails on V8, we use another engine that passes the test; if a test fails on all
engines, we do not use the test.

5.1 Conformance Bug Detection

Table 1 summarizes the conformance bugs detected by JESTfs in all the evaluation targets. We
manually inspected the failed conformance test cases, found 143 distinct conformance bugs, and
reported them to the corresponding developers. As a result, 85 out of 143 bugs were o"cially
con#rmed, and 83 were newly discovered bugs. The other 47 reported bugs are still under review,
or developers have not yet responded. Among 143 detected bugs, 42 are engine bugs, and 101 are
transpiler bugs. We present two real-world bug examples.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 126. Publication date: June 2023.

Feature-Sensitive Coverage for Conformance Testing 126:15

Table 1. Detected conformance bugs in JavaScript engines and transpilers

Kind Name Version Release
Detected Unique Bugs

New # Con!rmed # Reported

Engine

V8 v10.8.121 2022.10.06 0 0 4
JSC v615.1.10 2022.10.26 15 15 24
GraalJS v22.2.0 2022.07.26 9 9 10
SpiderMonkey v107.0b4 2022.10.24 1 3 4

Total 25 27 42

Transpiler

Babel v7.19.1 2022.09.15 30 30 35
SWC v1.3.10 2022.10.21 27 27 41
Terser v5.15.1 2022.10.05 1 1 18
Obfuscator v4.0.0 2022.02.15 0 0 7

Total 58 58 101

Total 83 85 143

5 EVALUATION

This section evaluates feature-sensitive coverage criteria with the following research questions:

• RQ1 (Conformance Bug Detection): How many conformance bugs in JavaScript imple-
mentations are detected by synthesized conformance tests? (Section 5.1)

• RQ2 (E"ectiveness of !-FS Coverage Criteria): Are higher !-FS coverage criteria more
e!ective than lower !-FS coverage criteria in detecting conformance bugs? (Section 5.2)

• RQ3 (E"ectiveness of !-FCPS Coverage Criteria): Are !-FCPS coverage criteria more
e!ective than !-FS coverage criteria in detecting conformance bugs? (Section 5.3)

• RQ4 (Comparisonwith Test262):Can conformance tests synthesized by JESTfs complement
Test262, the o"cial JavaScript conformance suite maintained manually? (Section 5.4)

We apply JESTfs to the latest language speci#cation (ES13, 2022) [ECMA International 2022a],
which synthesized 237,981 conformance tests in 50 hours with #ve graph coverage criteria: 1) 0-FS,
2) 1-FS, 3) 2-FS, 4) 1-FCPS, and 5) 2-FCPS node-or-branch coverage. We performed our experiments
with #ve Ubuntu machines with a 4.0GHz Intel(R) Core(TM) i7-6700k and 32GB of RAM (Samsung
DDR4 2133MHz 8GB*4).
Using the synthesized JavaScript conformance tests, we check the conformance of eight main-

stream implementations listed in Table 1. We select them as evaluation targets because they support
all the language features in ES13. V8, JSC, and SpiderMonkey are JavaScript engines used in web
browsers, Google Chrome, Apple Safari, and Mozilla Firefox, respectively, and GraalJS is a JavaScript
engine by Oracle. Babel and SWC are transpilers that desugar new language features into old ones,
usually ES5.1 features, for legacy host environments. Terser is a code compressor that reduces
code size, and Obfuscator obfuscates code to make it hard to understand and reverse-engineering.
For the transpiler conformance check, we use V8 as the default engine to execute transpiled code
with assertions. If a test fails on V8, we use another engine that passes the test; if a test fails on all
engines, we do not use the test.

5.1 Conformance Bug Detection

Table 1 summarizes the conformance bugs detected by JESTfs in all the evaluation targets. We
manually inspected the failed conformance test cases, found 143 distinct conformance bugs, and
reported them to the corresponding developers. As a result, 85 out of 143 bugs were o"cially
con#rmed, and 83 were newly discovered bugs. The other 47 reported bugs are still under review,
or developers have not yet responded. Among 143 detected bugs, 42 are engine bugs, and 101 are
transpiler bugs. We present two real-world bug examples.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 126. Publication date: June 2023.

[PLDI'23] J. Park, et al. “Feature-Sensitive Coverage for Conformance Testing of Programming
Language Implementations”

https://dl.acm.org/doi/10.1145/3591240
https://dl.acm.org/doi/10.1145/3591240

ECMA-262
(JS 명세) JISET

JEST

기계화 명세

기계화 명세 추출

일치성 검사
프로그램 합성

일치성 검사
프로그램

JS 실행 엔진

일
치
성

ECMA-262
(JS 명세) JISET

JEST

JSTAR

기계화 명세

기계화 명세 추출

일치성 검사
프로그램 합성

명세 타입 분석

명세 타입 결함

일치성 검사
프로그램

JS 실행 엔진

일
치
성

타입 안정성

ECMA-262
(JS 명세) JISET JSAVER

JEST

JSTAR

기계화 명세

기계화 명세 추출 분석기 자동유도

일치성 검사
프로그램 합성

명세 타입 분석

명세 타입 결함

일치성 검사
프로그램

정적 분석기

JS 실행 엔진

일
치
성

타입 안정성

ECMA-262
(JS 명세) JISET JSAVER

JEST

JSTAR

기계화 명세

기계화 명세 추출 분석기 자동유도

일치성 검사
프로그램 합성

명세 타입 분석

명세 타입 결함

일치성 검사
프로그램

정적 분석기

JS 실행 엔진

일
치
성

타입 안정성

명세
 타
입

자동
 수
정

명세를 위한
고급 타입

분석기 부품
유도하기

명세 합성

