
Feature-Sensitive Coverage for 
Conformance Testing of 

Programming Language Implementations

Jihyeok Park 1, Dongjun Youn 2, Kanguk Lee 2, and Sukyoung Ryu 2

June 21, 2023

1 2

Feature-Sensitive Coverage for 
Conformance Testing of 

Programming Language Implementations

Jihyeok Park 1, Dongjun Youn 2, Kanguk Lee 2, and Sukyoung Ryu 2

June 21, 2023

Background

1 2

Feature-Sensitive Coverage for 
Conformance Testing of 

Programming Language Implementations

Jihyeok Park 1, Dongjun Youn 2, Kanguk Lee 2, and Sukyoung Ryu 2

June 21, 2023

Background

Our Idea

1 2

/ 152

Conformance Testing of PL Implementations

Specification 
of L1

Implementations 
of L1

Programming Language L1

/ 152

Conformance Testing of PL Implementations

Specification 
of L1

Semantics

<latexit sha1_base64="ghb+OFBLALPI2sbnK0GfkUBN404=">AAACAnicbVDLSgNBEJyNrxhfUY9eBoPgKeyKLwJCTC4eI5iHJEuYncwmQ2Z2l5leIS65+Qde9Qe8iVd/xLsf4iTZg4kWNBRV3XR3eZHgGmz7y8osLa+srmXXcxubW9s7+d29hg5jRVmdhiJULY9oJnjA6sBBsFakGJGeYE1vWJ34zQemNA+DOxhFzJWkH3CfUwJGur/GpdIVruBqN1+wi/YU+C9xUlJAKWrd/HenF9JYsgCoIFq3HTsCNyEKOBVsnOvEmkWEDkmftQ0NiGTaTaYHj/GRUXrYD5WpAPBU/T2REKn1SHqmUxIY6EVvIv7ntWPwL92EB1EMLKCzRX4sMIR48j3uccUoiJEhhCpubsV0QBShYDKa2wJ8+DjOmVicxRD+ksZJ0Tkvnt2eFsqVNKAsOkCH6Bg56AKV0Q2qoTqiSKJn9IJerSfrzXq3PmatGSud2UdzsD5/APakllo=</latexit>

A ::= BC
Syntax

<latexit sha1_base64="ll1byoblXJdOV+R3gA/CO2Ey7eo=">AAACKHicbVDLSsNAFJ3UV62vqAsXbgaL4MaSiK9l0Y3LCvYBTSiTybQdOnkwcyPEkK9xJ/ov7qRbP8OV0zYL23pg4Mw598E9Xiy4AssaG6WV1bX1jfJmZWt7Z3fP3D9oqSiRlDVpJCLZ8YhigoesCRwE68SSkcATrO2N7id++5lJxaPwCdKYuQEZhLzPKQEt9cwjRwhPEjpigM+xI2Xx6ZlVq2ZNgZeJXZAqKtDomT+OH9EkYCFQQZTq2lYMbkYkcCpYXnESxWI9mgxYV9OQBEy52fSAHJ9qxcf9SOoXAp6qfzsyEiiVBp6uDAgM1aI3Ef/1FAREptJf2A/9WzfjYZwAC+lsfT8RGCI8yQj7XDIKItWEUMn1BZgOiQ4GdJJz84GPXvKKDstejGaZtC5q9nXt6vGyWr8rYiujY3SCzpCNblAdPaAGaiKKcvSK3tGH8WZ8Gl/GeFZaMoqeQzQH4/sXqQ+nSg==</latexit>

J�K

Implementations 
of L1

Programming Language L1

/ 152

Conformance Testing of PL Implementations

Specification 
of L1

Semantics

<latexit sha1_base64="ghb+OFBLALPI2sbnK0GfkUBN404=">AAACAnicbVDLSgNBEJyNrxhfUY9eBoPgKeyKLwJCTC4eI5iHJEuYncwmQ2Z2l5leIS65+Qde9Qe8iVd/xLsf4iTZg4kWNBRV3XR3eZHgGmz7y8osLa+srmXXcxubW9s7+d29hg5jRVmdhiJULY9oJnjA6sBBsFakGJGeYE1vWJ34zQemNA+DOxhFzJWkH3CfUwJGur/GpdIVruBqN1+wi/YU+C9xUlJAKWrd/HenF9JYsgCoIFq3HTsCNyEKOBVsnOvEmkWEDkmftQ0NiGTaTaYHj/GRUXrYD5WpAPBU/T2REKn1SHqmUxIY6EVvIv7ntWPwL92EB1EMLKCzRX4sMIR48j3uccUoiJEhhCpubsV0QBShYDKa2wJ8+DjOmVicxRD+ksZJ0Tkvnt2eFsqVNKAsOkCH6Bg56AKV0Q2qoTqiSKJn9IJerSfrzXq3PmatGSud2UdzsD5/APakllo=</latexit>

A ::= BC
Syntax

<latexit sha1_base64="ll1byoblXJdOV+R3gA/CO2Ey7eo=">AAACKHicbVDLSsNAFJ3UV62vqAsXbgaL4MaSiK9l0Y3LCvYBTSiTybQdOnkwcyPEkK9xJ/ov7qRbP8OV0zYL23pg4Mw598E9Xiy4AssaG6WV1bX1jfJmZWt7Z3fP3D9oqSiRlDVpJCLZ8YhigoesCRwE68SSkcATrO2N7id++5lJxaPwCdKYuQEZhLzPKQEt9cwjRwhPEjpigM+xI2Xx6ZlVq2ZNgZeJXZAqKtDomT+OH9EkYCFQQZTq2lYMbkYkcCpYXnESxWI9mgxYV9OQBEy52fSAHJ9qxcf9SOoXAp6qfzsyEiiVBp6uDAgM1aI3Ef/1FAREptJf2A/9WzfjYZwAC+lsfT8RGCI8yQj7XDIKItWEUMn1BZgOiQ4GdJJz84GPXvKKDstejGaZtC5q9nXt6vGyWr8rYiujY3SCzpCNblAdPaAGaiKKcvSK3tGH8WZ8Gl/GeFZaMoqeQzQH4/sXqQ+nSg==</latexit>

J�K

Implementations 
of L1

Compiler

Interpreter

Static Analyzer

Symbolic Executor

…

Programming Language L1

/ 152

Conformance Testing of PL Implementations

Conformance

Specification 
of L1

Semantics

<latexit sha1_base64="ghb+OFBLALPI2sbnK0GfkUBN404=">AAACAnicbVDLSgNBEJyNrxhfUY9eBoPgKeyKLwJCTC4eI5iHJEuYncwmQ2Z2l5leIS65+Qde9Qe8iVd/xLsf4iTZg4kWNBRV3XR3eZHgGmz7y8osLa+srmXXcxubW9s7+d29hg5jRVmdhiJULY9oJnjA6sBBsFakGJGeYE1vWJ34zQemNA+DOxhFzJWkH3CfUwJGur/GpdIVruBqN1+wi/YU+C9xUlJAKWrd/HenF9JYsgCoIFq3HTsCNyEKOBVsnOvEmkWEDkmftQ0NiGTaTaYHj/GRUXrYD5WpAPBU/T2REKn1SHqmUxIY6EVvIv7ntWPwL92EB1EMLKCzRX4sMIR48j3uccUoiJEhhCpubsV0QBShYDKa2wJ8+DjOmVicxRD+ksZJ0Tkvnt2eFsqVNKAsOkCH6Bg56AKV0Q2qoTqiSKJn9IJerSfrzXq3PmatGSud2UdzsD5/APakllo=</latexit>

A ::= BC
Syntax

<latexit sha1_base64="ll1byoblXJdOV+R3gA/CO2Ey7eo=">AAACKHicbVDLSsNAFJ3UV62vqAsXbgaL4MaSiK9l0Y3LCvYBTSiTybQdOnkwcyPEkK9xJ/ov7qRbP8OV0zYL23pg4Mw598E9Xiy4AssaG6WV1bX1jfJmZWt7Z3fP3D9oqSiRlDVpJCLZ8YhigoesCRwE68SSkcATrO2N7id++5lJxaPwCdKYuQEZhLzPKQEt9cwjRwhPEjpigM+xI2Xx6ZlVq2ZNgZeJXZAqKtDomT+OH9EkYCFQQZTq2lYMbkYkcCpYXnESxWI9mgxYV9OQBEy52fSAHJ9qxcf9SOoXAp6qfzsyEiiVBp6uDAgM1aI3Ef/1FAREptJf2A/9WzfjYZwAC+lsfT8RGCI8yQj7XDIKItWEUMn1BZgOiQ4GdJJz84GPXvKKDstejGaZtC5q9nXt6vGyWr8rYiujY3SCzpCNblAdPaAGaiKKcvSK3tGH8WZ8Gl/GeFZaMoqeQzQH4/sXqQ+nSg==</latexit>

J�K

Implementations 
of L1

Compiler

Interpreter

Static Analyzer

Symbolic Executor

…

Programming Language L1

/ 152

Conformance Testing of PL Implementations

Conformance

Specification 
of L1

Semantics

<latexit sha1_base64="ghb+OFBLALPI2sbnK0GfkUBN404=">AAACAnicbVDLSgNBEJyNrxhfUY9eBoPgKeyKLwJCTC4eI5iHJEuYncwmQ2Z2l5leIS65+Qde9Qe8iVd/xLsf4iTZg4kWNBRV3XR3eZHgGmz7y8osLa+srmXXcxubW9s7+d29hg5jRVmdhiJULY9oJnjA6sBBsFakGJGeYE1vWJ34zQemNA+DOxhFzJWkH3CfUwJGur/GpdIVruBqN1+wi/YU+C9xUlJAKWrd/HenF9JYsgCoIFq3HTsCNyEKOBVsnOvEmkWEDkmftQ0NiGTaTaYHj/GRUXrYD5WpAPBU/T2REKn1SHqmUxIY6EVvIv7ntWPwL92EB1EMLKCzRX4sMIR48j3uccUoiJEhhCpubsV0QBShYDKa2wJ8+DjOmVicxRD+ksZJ0Tkvnt2eFsqVNKAsOkCH6Bg56AKV0Q2qoTqiSKJn9IJerSfrzXq3PmatGSud2UdzsD5/APakllo=</latexit>

A ::= BC
Syntax

<latexit sha1_base64="ll1byoblXJdOV+R3gA/CO2Ey7eo=">AAACKHicbVDLSsNAFJ3UV62vqAsXbgaL4MaSiK9l0Y3LCvYBTSiTybQdOnkwcyPEkK9xJ/ov7qRbP8OV0zYL23pg4Mw598E9Xiy4AssaG6WV1bX1jfJmZWt7Z3fP3D9oqSiRlDVpJCLZ8YhigoesCRwE68SSkcATrO2N7id++5lJxaPwCdKYuQEZhLzPKQEt9cwjRwhPEjpigM+xI2Xx6ZlVq2ZNgZeJXZAqKtDomT+OH9EkYCFQQZTq2lYMbkYkcCpYXnESxWI9mgxYV9OQBEy52fSAHJ9qxcf9SOoXAp6qfzsyEiiVBp6uDAgM1aI3Ef/1FAREptJf2A/9WzfjYZwAC+lsfT8RGCI8yQj7XDIKItWEUMn1BZgOiQ4GdJJz84GPXvKKDstejGaZtC5q9nXt6vGyWr8rYiujY3SCzpCNblAdPaAGaiKKcvSK3tGH8WZ8Gl/GeFZaMoqeQzQH4/sXqQ+nSg==</latexit>

J�K

Implementations 
of L1

Compiler

Interpreter

Static Analyzer

Symbolic Executor

…
Conformance Tests

for L1

L1 Program Assertion

Programming Language L1

/ 152

Conformance Testing of PL Implementations

Conformance

Specification 
of L1

Semantics

<latexit sha1_base64="ghb+OFBLALPI2sbnK0GfkUBN404=">AAACAnicbVDLSgNBEJyNrxhfUY9eBoPgKeyKLwJCTC4eI5iHJEuYncwmQ2Z2l5leIS65+Qde9Qe8iVd/xLsf4iTZg4kWNBRV3XR3eZHgGmz7y8osLa+srmXXcxubW9s7+d29hg5jRVmdhiJULY9oJnjA6sBBsFakGJGeYE1vWJ34zQemNA+DOxhFzJWkH3CfUwJGur/GpdIVruBqN1+wi/YU+C9xUlJAKWrd/HenF9JYsgCoIFq3HTsCNyEKOBVsnOvEmkWEDkmftQ0NiGTaTaYHj/GRUXrYD5WpAPBU/T2REKn1SHqmUxIY6EVvIv7ntWPwL92EB1EMLKCzRX4sMIR48j3uccUoiJEhhCpubsV0QBShYDKa2wJ8+DjOmVicxRD+ksZJ0Tkvnt2eFsqVNKAsOkCH6Bg56AKV0Q2qoTqiSKJn9IJerSfrzXq3PmatGSud2UdzsD5/APakllo=</latexit>

A ::= BC
Syntax

<latexit sha1_base64="ll1byoblXJdOV+R3gA/CO2Ey7eo=">AAACKHicbVDLSsNAFJ3UV62vqAsXbgaL4MaSiK9l0Y3LCvYBTSiTybQdOnkwcyPEkK9xJ/ov7qRbP8OV0zYL23pg4Mw598E9Xiy4AssaG6WV1bX1jfJmZWt7Z3fP3D9oqSiRlDVpJCLZ8YhigoesCRwE68SSkcATrO2N7id++5lJxaPwCdKYuQEZhLzPKQEt9cwjRwhPEjpigM+xI2Xx6ZlVq2ZNgZeJXZAqKtDomT+OH9EkYCFQQZTq2lYMbkYkcCpYXnESxWI9mgxYV9OQBEy52fSAHJ9qxcf9SOoXAp6qfzsyEiiVBp6uDAgM1aI3Ef/1FAREptJf2A/9WzfjYZwAC+lsfT8RGCI8yQj7XDIKItWEUMn1BZgOiQ4GdJJz84GPXvKKDstejGaZtC5q9nXt6vGyWr8rYiujY3SCzpCNblAdPaAGaiKKcvSK3tGH8WZ8Gl/GeFZaMoqeQzQH4/sXqQ+nSg==</latexit>

J�K

Implementations 
of L1

Compiler

Interpreter

Static Analyzer

Symbolic Executor

…
Conformance Tests

for L1

L1 Program Assertion

Programming Language L1

Quality?

/ 153

Graph Coverage for Language Specification

Control-flow Graph
(CFG)

L1 Program Assertion
Conformance Tests

for L1

Specification 
of L1

Graph Coverage

Measure

Extract

Quality of
Conformance Tests

Mechanized
Specification

Build

/ 153

Graph Coverage for Language Specification

Control-flow Graph
(CFG)

L1 Program Assertion
Conformance Tests

for L1

Specification 
of L1

Graph Coverage

Measure

Extract

Quality of
Conformance Tests

Coverage Criteria

Node Coverage

Branch Coverage

Prime Path Coverage

Def-Use Coverage

…

Mechanized
Specification

Build

/ 153

Graph Coverage for Language Specification

Control-flow Graph
(CFG)

L1 Program Assertion
Conformance Tests

for L1

Specification 
of L1

Graph Coverage

Measure

Extract

Quality of
Conformance Tests

Coverage Criteria

Node Coverage

Branch Coverage

Prime Path Coverage

Def-Use Coverage

…

Test Requirements (TRs)

Mechanized
Specification

Build

/ 153

Graph Coverage for Language Specification

Control-flow Graph
(CFG)

L1 Program Assertion
Conformance Tests

for L1

Specification 
of L1

Graph Coverage

Measure

Extract

Quality of
Conformance Tests

Coverage Criteria

Node Coverage

Branch Coverage

Prime Path Coverage

Def-Use Coverage

…

Test Requirements (TRs)

Are they sufficient?Problem :

Mechanized
Specification

Build

/ 15

• JavaScript is a dynamically-typed language with complex semantics

• It is not easy to understand even simple addition/subtraction operations.

4

Motivating Example — JavaScript

Program
JS

Assertion

Conformance Test for JS

/ 15

• JavaScript is a dynamically-typed language with complex semantics

• It is not easy to understand even simple addition/subtraction operations.

4

Motivating Example — JavaScript

1 + 2
JS

3

Program
JS

Assertion

Conformance Test for JS

/ 15

• JavaScript is a dynamically-typed language with complex semantics

• It is not easy to understand even simple addition/subtraction operations.

4

Motivating Example — JavaScript

1 + 2
JS

3

{} + 3
JS

3

Program
JS

Assertion

Conformance Test for JS

/ 15

• JavaScript is a dynamically-typed language with complex semantics

• It is not easy to understand even simple addition/subtraction operations.

4

Motivating Example — JavaScript

1 + 2
JS

3

{} + 3
JS

3

1 + "2"
JS

"12"

"0,12"[0,1] + 2
JS

Program
JS

Assertion

Conformance Test for JS

/ 15

• JavaScript is a dynamically-typed language with complex semantics

• It is not easy to understand even simple addition/subtraction operations.

4

Motivating Example — JavaScript

1 + 2
JS

3

{} + 3
JS

3

1 + "2"
JS

"12"

"0,12"[0,1] + 2
JS

1 + 2n
JS

TypeError

1 + Symbol()
JS

TypeError

Program
JS

Assertion

Conformance Test for JS

/ 15

• JavaScript is a dynamically-typed language with complex semantics

• It is not easy to understand even simple addition/subtraction operations.

4

Motivating Example — JavaScript

1 + 2
JS

3

{} + 3
JS

3

1 + "2"
JS

"12"

"0,12"[0,1] + 2
JS

1 + 2n
JS

TypeError

1 + Symbol()
JS

TypeError

Program
JS

Assertion

Conformance Test for JS

/ 155

Motivating Example 1
1 + 2n

Program P1

JS
TypeError

/ 15
Abstract Algorithms in ECMA-262 (ES13, 2022), JavaScript Language Specification

Evaluation of AddExpr : AddExpr + MulExpr

1. Return ? EvalStrOrNumBinExpr (AddExpr, +, MulExpr).

ADD
feat

5

Motivating Example 1
1 + 2n

Program P1

JS
TypeError

/ 15
Abstract Algorithms in ECMA-262 (ES13, 2022), JavaScript Language Specification

Evaluation of AddExpr : AddExpr + MulExpr

1. Return ? EvalStrOrNumBinExpr (AddExpr, +, MulExpr).

ADD
feat

EvalStrOrNumBinExpr (lval, opText, rval)
…
5. Return ? ApplyStrOrNumBinOp (lval, opText, rval).

5

Motivating Example 1
1 + 2n

Program P1

JS
TypeError

/ 15
Abstract Algorithms in ECMA-262 (ES13, 2022), JavaScript Language Specification

Evaluation of AddExpr : AddExpr + MulExpr

1. Return ? EvalStrOrNumBinExpr (AddExpr, +, MulExpr).

ADD
feat

EvalStrOrNumBinExpr (lval, opText, rval)
…
5. Return ? ApplyStrOrNumBinOp (lval, opText, rval).

ApplyStrOrNumBinOp (lval, opText, rval)
…
5. If Type(lnum) is different from Type(rnum), 

throw a TypeError exception.
…

5

Motivating Example 1
1 + 2n

Program P1

JS
TypeError

/ 15
Abstract Algorithms in ECMA-262 (ES13, 2022), JavaScript Language Specification

Evaluation of AddExpr : AddExpr + MulExpr

1. Return ? EvalStrOrNumBinExpr (AddExpr, +, MulExpr).

ADD
feat

EvalStrOrNumBinExpr (lval, opText, rval)
…
5. Return ? ApplyStrOrNumBinOp (lval, opText, rval).

ApplyStrOrNumBinOp (lval, opText, rval)
…
5. If Type(lnum) is different from Type(rnum), 

throw a TypeError exception.
…

5

Motivating Example 1

1

1 + 2n
Program P1

JS
TypeError

/ 15
Abstract Algorithms in ECMA-262 (ES13, 2022), JavaScript Language Specification

Evaluation of AddExpr : AddExpr + MulExpr

1. Return ? EvalStrOrNumBinExpr (AddExpr, +, MulExpr).

ADD
feat

EvalStrOrNumBinExpr (lval, opText, rval)
…
5. Return ? ApplyStrOrNumBinOp (lval, opText, rval).

ApplyStrOrNumBinOp (lval, opText, rval)
…
5. If Type(lnum) is different from Type(rnum), 

throw a TypeError exception.
…

5

Motivating Example 1

1

1 + 2n
Program P1

JS
TypeErrorNode Coverage

TR = Node

/ 15
Abstract Algorithms in ECMA-262 (ES13, 2022), JavaScript Language Specification

Evaluation of AddExpr : AddExpr + MulExpr

1. Return ? EvalStrOrNumBinExpr (AddExpr, +, MulExpr).

ADD
feat

EvalStrOrNumBinExpr (lval, opText, rval)
…
5. Return ? ApplyStrOrNumBinOp (lval, opText, rval).

ApplyStrOrNumBinOp (lval, opText, rval)
…
5. If Type(lnum) is different from Type(rnum), 

throw a TypeError exception.
…

5

Motivating Example 1

1

1
cover

1 + 2n
Program P1

JS
TypeErrorNode Coverage

TR = Node

/ 15
Abstract Algorithms in ECMA-262 (ES13, 2022), JavaScript Language Specification

Evaluation of AddExpr : AddExpr + MulExpr

1. Return ? EvalStrOrNumBinExpr (AddExpr, +, MulExpr).

ADD
feat

EvalStrOrNumBinExpr (lval, opText, rval)
…
5. Return ? ApplyStrOrNumBinOp (lval, opText, rval).

ApplyStrOrNumBinOp (lval, opText, rval)
…
5. If Type(lnum) is different from Type(rnum), 

throw a TypeError exception.
…

5

Motivating Example 1

1

1
cover

1 + 2n
Program P1

JS
TypeError

1 - 2n
Program P2

JS
TypeError

Node Coverage

TR = Node

/ 15
Abstract Algorithms in ECMA-262 (ES13, 2022), JavaScript Language Specification

Evaluation of AddExpr : AddExpr + MulExpr

1. Return ? EvalStrOrNumBinExpr (AddExpr, +, MulExpr).

ADD
feat

EvalStrOrNumBinExpr (lval, opText, rval)
…
5. Return ? ApplyStrOrNumBinOp (lval, opText, rval).

ApplyStrOrNumBinOp (lval, opText, rval)
…
5. If Type(lnum) is different from Type(rnum), 

throw a TypeError exception.
…

5

Motivating Example 1

1

Evaluation of AddExpr : AddExpr - MulExpr

1. Return ? EvalStrOrNumBinExpr (AddExpr, -, MulExpr).

SUB
feat

1
cover

1 + 2n
Program P1

JS
TypeError

1 - 2n
Program P2

JS
TypeError

Node Coverage

TR = Node

/ 15
Abstract Algorithms in ECMA-262 (ES13, 2022), JavaScript Language Specification

Evaluation of AddExpr : AddExpr + MulExpr

1. Return ? EvalStrOrNumBinExpr (AddExpr, +, MulExpr).

ADD
feat

EvalStrOrNumBinExpr (lval, opText, rval)
…
5. Return ? ApplyStrOrNumBinOp (lval, opText, rval).

ApplyStrOrNumBinOp (lval, opText, rval)
…
5. If Type(lnum) is different from Type(rnum), 

throw a TypeError exception.
…

5

Motivating Example 1

1

Evaluation of AddExpr : AddExpr - MulExpr

1. Return ? EvalStrOrNumBinExpr (AddExpr, -, MulExpr).

SUB
feat

1
cover

1
cover

1 + 2n
Program P1

JS
TypeError

1 - 2n
Program P2

JS
TypeError

Node Coverage

TR = Node

/ 15
Abstract Algorithms in ECMA-262 (ES13, 2022), JavaScript Language Specification

Evaluation of AddExpr : AddExpr + MulExpr

1. Return ? EvalStrOrNumBinExpr (AddExpr, +, MulExpr).

ADD
feat

EvalStrOrNumBinExpr (lval, opText, rval)
…
5. Return ? ApplyStrOrNumBinOp (lval, opText, rval).

ApplyStrOrNumBinOp (lval, opText, rval)
…
5. If Type(lnum) is different from Type(rnum), 

throw a TypeError exception.
…

5

Motivating Example 1

1

Evaluation of AddExpr : AddExpr - MulExpr

1. Return ? EvalStrOrNumBinExpr (AddExpr, -, MulExpr).

SUB
feat

Same TRs

1
cover

1
cover

1 + 2n
Program P1

JS
TypeError

1 - 2n
Program P2

JS
TypeError

Node Coverage

TR = Node

/ 15
Abstract Algorithms in ECMA-262 (ES13, 2022), JavaScript Language Specification

Evaluation of AddExpr : AddExpr + MulExpr

1. Return ? EvalStrOrNumBinExpr (AddExpr, +, MulExpr).

ADD
feat

EvalStrOrNumBinExpr (lval, opText, rval)
…
5. Return ? ApplyStrOrNumBinOp (lval, opText, rval).

ApplyStrOrNumBinOp (lval, opText, rval)
…
5. If Type(lnum) is different from Type(rnum), 

throw a TypeError exception.
…

5

Motivating Example 1

1

Evaluation of AddExpr : AddExpr - MulExpr

1. Return ? EvalStrOrNumBinExpr (AddExpr, -, MulExpr).

SUB
feat

Same TRs

1
cover

1
cover

Cannot
Distinguish
P1 and P2

1 + 2n
Program P1

JS
TypeError

1 - 2n
Program P2

JS
TypeError

Node Coverage

TR = Node

/ 15

• Feature-Sensitive (FS) coverage criterion divides 

the given TRs with the innermost enclosing language features

6

Feature-Sensitive (FS) Coverage

FS Coverage

TR = (Feature, given TR)

1 + 2n
Program P1

JS
TypeError

1 - 2n
Program P2

JS
TypeError

/ 15

• Feature-Sensitive (FS) coverage criterion divides 

the given TRs with the innermost enclosing language features

6

Feature-Sensitive (FS) Coverage

FS Coverage

TR = (Feature, given TR)

Evaluation of AddExpr : AddExpr + MulExpr

1. Return ? EvalStrOrNumBinExpr (AddExpr, +, MulExpr).

Evaluation of AddExpr : AddExpr - MulExpr

1. Return ? EvalStrOrNumBinExpr (AddExpr, -, MulExpr).

ADD
feat

SUB
feat

1 + 2n
Program P1

JS
TypeError

1 - 2n
Program P2

JS
TypeError

/ 15

• Feature-Sensitive (FS) coverage criterion divides 

the given TRs with the innermost enclosing language features

6

Feature-Sensitive (FS) Coverage

FS Coverage

TR = (Feature, given TR)

Evaluation of AddExpr : AddExpr + MulExpr

1. Return ? EvalStrOrNumBinExpr (AddExpr, +, MulExpr).

Evaluation of AddExpr : AddExpr - MulExpr

1. Return ? EvalStrOrNumBinExpr (AddExpr, -, MulExpr).

ADD
feat

SUB
feat

FS Node Coverage

TR = (Feature, Node)

1 + 2n
Program P1

JS
TypeError

1 - 2n
Program P2

JS
TypeError

/ 15

• Feature-Sensitive (FS) coverage criterion divides 

the given TRs with the innermost enclosing language features

6

Feature-Sensitive (FS) Coverage

FS Coverage

TR = (Feature, given TR)

Evaluation of AddExpr : AddExpr + MulExpr

1. Return ? EvalStrOrNumBinExpr (AddExpr, +, MulExpr).

Evaluation of AddExpr : AddExpr - MulExpr

1. Return ? EvalStrOrNumBinExpr (AddExpr, -, MulExpr).

ADD
feat

SUB
feat

(ADD,)1
coverFS Node Coverage

TR = (Feature, Node)

1 + 2n
Program P1

JS
TypeError

1 - 2n
Program P2

JS
TypeError

/ 15

• Feature-Sensitive (FS) coverage criterion divides 

the given TRs with the innermost enclosing language features

6

Feature-Sensitive (FS) Coverage

FS Coverage

TR = (Feature, given TR)

Evaluation of AddExpr : AddExpr + MulExpr

1. Return ? EvalStrOrNumBinExpr (AddExpr, +, MulExpr).

Evaluation of AddExpr : AddExpr - MulExpr

1. Return ? EvalStrOrNumBinExpr (AddExpr, -, MulExpr).

ADD
feat

SUB
feat

(ADD,)1
coverFS Node Coverage

TR = (Feature, Node)

1 + 2n
Program P1

JS
TypeError

1 - 2n
Program P2

JS
TypeError (SUB,)1

cover

/ 15

• Feature-Sensitive (FS) coverage criterion divides 

the given TRs with the innermost enclosing language features

6

Feature-Sensitive (FS) Coverage

FS Coverage

TR = (Feature, given TR)

Evaluation of AddExpr : AddExpr + MulExpr

1. Return ? EvalStrOrNumBinExpr (AddExpr, +, MulExpr).

Evaluation of AddExpr : AddExpr - MulExpr

1. Return ? EvalStrOrNumBinExpr (AddExpr, -, MulExpr).

ADD
feat

SUB
feat

Different TRs

(ADD,)1
coverFS Node Coverage

TR = (Feature, Node)

1 + 2n
Program P1

JS
TypeError

1 - 2n
Program P2

JS
TypeError (SUB,)1

cover

/ 15

• Feature-Sensitive (FS) coverage criterion divides 

the given TRs with the innermost enclosing language features

6

Feature-Sensitive (FS) Coverage

FS Coverage

TR = (Feature, given TR)

Evaluation of AddExpr : AddExpr + MulExpr

1. Return ? EvalStrOrNumBinExpr (AddExpr, +, MulExpr).

Evaluation of AddExpr : AddExpr - MulExpr

1. Return ? EvalStrOrNumBinExpr (AddExpr, -, MulExpr).

ADD
feat

SUB
feat

Different TRs

(ADD,)1
coverFS Node Coverage

TR = (Feature, Node)

Can
Distinguish
P1 and P21 + 2n

Program P1

JS
TypeError

1 - 2n
Program P2

JS
TypeError (SUB,)1

cover

/ 15

• 𝑘-Feature-Sensitive (𝑘-FS) coverage criterion divides the given 
TRs with at most 𝑘-innermost enclosing language features

7

𝑘-Feature-Sensitive (𝑘-FS) Coverage

𝑘-FS Coverage

TR = (Feature≤𝑘, given TR)

42 - (1 + 2n)
Program P3

JS
TypeError

Evaluation of AddExpr : AddExpr + MulExpr

1. Return ? EvalStrOrNumBinExpr (AddExpr, +, MulExpr).

Evaluation of AddExpr : AddExpr - MulExpr

1. Return ? EvalStrOrNumBinExpr (AddExpr, -, MulExpr).

ADD
feat

SUB
feat

/ 15

• 𝑘-Feature-Sensitive (𝑘-FS) coverage criterion divides the given 
TRs with at most 𝑘-innermost enclosing language features

7

𝑘-Feature-Sensitive (𝑘-FS) Coverage

𝑘-FS Coverage

TR = (Feature≤𝑘, given TR)

2-FS Node Coverage

TR = (Feature≤2, Node)
42 - (1 + 2n)

Program P3

JS
TypeError

Evaluation of AddExpr : AddExpr + MulExpr

1. Return ? EvalStrOrNumBinExpr (AddExpr, +, MulExpr).

Evaluation of AddExpr : AddExpr - MulExpr

1. Return ? EvalStrOrNumBinExpr (AddExpr, -, MulExpr).

ADD
feat

SUB
feat

/ 15

• 𝑘-Feature-Sensitive (𝑘-FS) coverage criterion divides the given 
TRs with at most 𝑘-innermost enclosing language features

7

𝑘-Feature-Sensitive (𝑘-FS) Coverage

𝑘-FS Coverage

TR = (Feature≤𝑘, given TR)

([SUB, ADD],)1
cover

2-FS Node Coverage

TR = (Feature≤2, Node)
42 - (1 + 2n)

Program P3

JS
TypeError

Evaluation of AddExpr : AddExpr + MulExpr

1. Return ? EvalStrOrNumBinExpr (AddExpr, +, MulExpr).

Evaluation of AddExpr : AddExpr - MulExpr

1. Return ? EvalStrOrNumBinExpr (AddExpr, -, MulExpr).

ADD
feat

SUB
feat

/ 158

Motivating Example 2
Symbol() + 1

Program P4

JS
TypeError

/ 15Abstract Algorithms in ECMA-262 (ES13, 2022), JavaScript Language Specification

Evaluation of AddExpr : AddExpr + MulExpr

ADD
feat

8

Motivating Example 2
Symbol() + 1

Program P4

JS
TypeError

/ 15Abstract Algorithms in ECMA-262 (ES13, 2022), JavaScript Language Specification

Evaluation of AddExpr : AddExpr + MulExpr

ADD
feat

EvalStrOrNumBinExpr (lval, opText, rval)

8

Motivating Example 2
Symbol() + 1

Program P4

JS
TypeError

/ 15Abstract Algorithms in ECMA-262 (ES13, 2022), JavaScript Language Specification

Evaluation of AddExpr : AddExpr + MulExpr

ADD
feat

EvalStrOrNumBinExpr (lval, opText, rval)

ApplyStrOrNumBinOp (lval, opText, rval)
…
3. Let lnum be ? ToNumeric (lval).

4. Let rnum be ? ToNumeric (rval).
…

8

Motivating Example 2
Symbol() + 1

Program P4

JS
TypeError

/ 15Abstract Algorithms in ECMA-262 (ES13, 2022), JavaScript Language Specification

Evaluation of AddExpr : AddExpr + MulExpr

ADD
feat

EvalStrOrNumBinExpr (lval, opText, rval)

ApplyStrOrNumBinOp (lval, opText, rval)
…
3. Let lnum be ? ToNumeric (lval).

4. Let rnum be ? ToNumeric (rval).
…

8

Motivating Example 2
Symbol() + 1

Program P4

JS
TypeError

ToNumeric (value)
…
3. Return ? ToNumber (primValue).

/ 15Abstract Algorithms in ECMA-262 (ES13, 2022), JavaScript Language Specification

Evaluation of AddExpr : AddExpr + MulExpr

ADD
feat

EvalStrOrNumBinExpr (lval, opText, rval)

ApplyStrOrNumBinOp (lval, opText, rval)
…
3. Let lnum be ? ToNumeric (lval).

4. Let rnum be ? ToNumeric (rval).
…

8

Motivating Example 2
Symbol() + 1

Program P4

JS
TypeError

ToNumeric (value)
…
3. Return ? ToNumber (primValue).

ToNumber (argument)
…
6. If Type (argument) is Symbol, 

throw a TypeError exception.
…

/ 15Abstract Algorithms in ECMA-262 (ES13, 2022), JavaScript Language Specification

Evaluation of AddExpr : AddExpr + MulExpr

ADD
feat

EvalStrOrNumBinExpr (lval, opText, rval)

ApplyStrOrNumBinOp (lval, opText, rval)
…
3. Let lnum be ? ToNumeric (lval).

4. Let rnum be ? ToNumeric (rval).
…

8

Motivating Example 2
Symbol() + 1

Program P4

JS
TypeError

ToNumeric (value)
…
3. Return ? ToNumber (primValue).

ToNumber (argument)
…
6. If Type (argument) is Symbol, 

throw a TypeError exception.
… 2

/ 15Abstract Algorithms in ECMA-262 (ES13, 2022), JavaScript Language Specification

Evaluation of AddExpr : AddExpr + MulExpr

ADD
feat

EvalStrOrNumBinExpr (lval, opText, rval)

ApplyStrOrNumBinOp (lval, opText, rval)
…
3. Let lnum be ? ToNumeric (lval).

4. Let rnum be ? ToNumeric (rval).
…

8

Motivating Example 2
Symbol() + 1

Program P4

JS
TypeError1-FS Node Coverage

TR = (Feature, Node)

ToNumeric (value)
…
3. Return ? ToNumber (primValue).

ToNumber (argument)
…
6. If Type (argument) is Symbol, 

throw a TypeError exception.
… 2

/ 15Abstract Algorithms in ECMA-262 (ES13, 2022), JavaScript Language Specification

Evaluation of AddExpr : AddExpr + MulExpr

ADD
feat

EvalStrOrNumBinExpr (lval, opText, rval)

ApplyStrOrNumBinOp (lval, opText, rval)
…
3. Let lnum be ? ToNumeric (lval).

4. Let rnum be ? ToNumeric (rval).
…

8

Motivating Example 2
Symbol() + 1

Program P4

JS
TypeError1-FS Node Coverage

TR = (Feature, Node)

(ADD,)2
cover

ToNumeric (value)
…
3. Return ? ToNumber (primValue).

ToNumber (argument)
…
6. If Type (argument) is Symbol, 

throw a TypeError exception.
… 2

/ 15Abstract Algorithms in ECMA-262 (ES13, 2022), JavaScript Language Specification

Evaluation of AddExpr : AddExpr + MulExpr

ADD
feat

EvalStrOrNumBinExpr (lval, opText, rval)

ApplyStrOrNumBinOp (lval, opText, rval)
…
3. Let lnum be ? ToNumeric (lval).

4. Let rnum be ? ToNumeric (rval).
…

8

Motivating Example 2
Symbol() + 1

Program P4

JS
TypeError

1 + Symbol()
Program P5

JS
TypeError

1-FS Node Coverage

TR = (Feature, Node)

(ADD,)2
cover

ToNumeric (value)
…
3. Return ? ToNumber (primValue).

ToNumber (argument)
…
6. If Type (argument) is Symbol, 

throw a TypeError exception.
… 2

/ 15Abstract Algorithms in ECMA-262 (ES13, 2022), JavaScript Language Specification

Evaluation of AddExpr : AddExpr + MulExpr

ADD
feat

EvalStrOrNumBinExpr (lval, opText, rval)

ApplyStrOrNumBinOp (lval, opText, rval)
…
3. Let lnum be ? ToNumeric (lval).

4. Let rnum be ? ToNumeric (rval).
…

8

Motivating Example 2
Symbol() + 1

Program P4

JS
TypeError

1 + Symbol()
Program P5

JS
TypeError

1-FS Node Coverage

TR = (Feature, Node)

(ADD,)2
cover

ToNumeric (value)
…
3. Return ? ToNumber (primValue).

ToNumber (argument)
…
6. If Type (argument) is Symbol, 

throw a TypeError exception.
… 2

/ 15Abstract Algorithms in ECMA-262 (ES13, 2022), JavaScript Language Specification

Evaluation of AddExpr : AddExpr + MulExpr

ADD
feat

EvalStrOrNumBinExpr (lval, opText, rval)

ApplyStrOrNumBinOp (lval, opText, rval)
…
3. Let lnum be ? ToNumeric (lval).

4. Let rnum be ? ToNumeric (rval).
…

8

Motivating Example 2
Symbol() + 1

Program P4

JS
TypeError

1 + Symbol()
Program P5

JS
TypeError

1-FS Node Coverage

TR = (Feature, Node)

(ADD,)2
cover

(ADD,)2
cover

ToNumeric (value)
…
3. Return ? ToNumber (primValue).

ToNumber (argument)
…
6. If Type (argument) is Symbol, 

throw a TypeError exception.
… 2

/ 15Abstract Algorithms in ECMA-262 (ES13, 2022), JavaScript Language Specification

Evaluation of AddExpr : AddExpr + MulExpr

ADD
feat

EvalStrOrNumBinExpr (lval, opText, rval)

ApplyStrOrNumBinOp (lval, opText, rval)
…
3. Let lnum be ? ToNumeric (lval).

4. Let rnum be ? ToNumeric (rval).
…

8

Motivating Example 2

Same TRs

Symbol() + 1
Program P4

JS
TypeError

1 + Symbol()
Program P5

JS
TypeError

1-FS Node Coverage

TR = (Feature, Node)

(ADD,)2
cover

(ADD,)2
cover

ToNumeric (value)
…
3. Return ? ToNumber (primValue).

ToNumber (argument)
…
6. If Type (argument) is Symbol, 

throw a TypeError exception.
… 2

/ 15Abstract Algorithms in ECMA-262 (ES13, 2022), JavaScript Language Specification

Evaluation of AddExpr : AddExpr + MulExpr

ADD
feat

EvalStrOrNumBinExpr (lval, opText, rval)

ApplyStrOrNumBinOp (lval, opText, rval)
…
3. Let lnum be ? ToNumeric (lval).

4. Let rnum be ? ToNumeric (rval).
…

8

Motivating Example 2

Same TRs

Cannot
Distinguish
P4 and P5Symbol() + 1

Program P4

JS
TypeError

1 + Symbol()
Program P5

JS
TypeError

1-FS Node Coverage

TR = (Feature, Node)

(ADD,)2
cover

(ADD,)2
cover

ToNumeric (value)
…
3. Return ? ToNumber (primValue).

ToNumber (argument)
…
6. If Type (argument) is Symbol, 

throw a TypeError exception.
… 2

/ 15Abstract Algorithms in ECMA-262 (ES13, 2022), JavaScript Language Specification

Evaluation of AddExpr : AddExpr + MulExpr

ADD
feat

EvalStrOrNumBinExpr (lval, opText, rval)

ApplyStrOrNumBinOp (lval, opText, rval)
…
3. Let lnum be ? ToNumeric (lval).

4. Let rnum be ? ToNumeric (rval).
…

8

Motivating Example 2

Same TRs

Cannot
Distinguish
P4 and P5Symbol() + 1

Program P4

JS
TypeError

1 + Symbol()
Program P5

JS
TypeError

1-FS Node Coverage

TR = (Feature, Node)

(ADD,)2
cover

(ADD,)2
cover

ToNumeric (value)
…
3. Return ? ToNumber (primValue).

ToNumber (argument)
…
6. If Type (argument) is Symbol, 

throw a TypeError exception.
… 2

3

4

call

call

5

6

call

call

7 call

/ 15

• 𝑘-Feature-Call-Path-Sensitive (𝑘-FCPS) coverage 
criterion divides the 𝑘-FS TRs with the call-paths  
from the innermost enclosing language feature

9

𝑘-Feature-Call-Path-Sensitive (𝑘-FCPS) Coverage

𝑘-FCPS Coverage

TR = (Feature≤𝑘, Call-Path, given TR)

Symbol() + 1
Program P4

JS
TypeError

1 + Symbol()
Program P5

JS
TypeError

/ 15

• 𝑘-Feature-Call-Path-Sensitive (𝑘-FCPS) coverage 
criterion divides the 𝑘-FS TRs with the call-paths  
from the innermost enclosing language feature

9

𝑘-Feature-Call-Path-Sensitive (𝑘-FCPS) Coverage

𝑘-FCPS Coverage

TR = (Feature≤𝑘, Call-Path, given TR)

Symbol() + 1
Program P4

JS
TypeError

1 + Symbol()
Program P5

JS
TypeError

1-FCPS Node Coverage

TR = (Feature, 
Call-Path, Node)

/ 15

• 𝑘-Feature-Call-Path-Sensitive (𝑘-FCPS) coverage 
criterion divides the 𝑘-FS TRs with the call-paths  
from the innermost enclosing language feature

9

𝑘-Feature-Call-Path-Sensitive (𝑘-FCPS) Coverage

𝑘-FCPS Coverage

TR = (Feature≤𝑘, Call-Path, given TR)

Symbol() + 1
Program P4

JS
TypeError

1 + Symbol()
Program P5

JS
TypeError

1-FCPS Node Coverage

TR = (Feature, 
Call-Path, Node)

3 4 5 7ADD<latexit sha1_base64="SPti2hMefRxNKWNntZBVQBrDZAY=">AAACFXicbVDLSsNAFJ34rPVVdekmWARXJRFfy6IblxXsA9pQJpNJO3YeYeZGqKH/4E70X9yJW9f+iiunbRa29cCFwzn3zp17woQzA5737Swtr6yurRc2iptb2zu7pb39hlGpJrROFFe6FWJDOZO0Dgw4bSWaYhFy2gwHN2O/+Ui1YUrewzChgcA9yWJGMFip0SGRAtMtlb2KN4G7SPyclFGOWrf004kUSQWVQDg2pu17CQQZ1sAIp6NiJzU0wWSAe7RtqcSCmiCb/HbkHlslcmOlbUlwJ+rfiQwLY4YitJ0CQ9/Me2PxX8+AwHqoo7n9EF8FGZNJClSS6fo45S4odxyIGzFNCfChJZhoZi9wSR9rTMDGNvM+sMHTqGjD8uejWSSN04p/UTm/OytXr/PYCugQHaET5KNLVEW3qIbqiKAH9Ixe0Zvz4rw7H87ntHXJyWcO0Aycr18dwqBP</latexit>· · · 2call call call call

/ 15

(ADD, [3, 4, 5, 7],)2
cover

• 𝑘-Feature-Call-Path-Sensitive (𝑘-FCPS) coverage 
criterion divides the 𝑘-FS TRs with the call-paths  
from the innermost enclosing language feature

9

𝑘-Feature-Call-Path-Sensitive (𝑘-FCPS) Coverage

𝑘-FCPS Coverage

TR = (Feature≤𝑘, Call-Path, given TR)

Symbol() + 1
Program P4

JS
TypeError

1 + Symbol()
Program P5

JS
TypeError

1-FCPS Node Coverage

TR = (Feature, 
Call-Path, Node)

3 4 5 7ADD<latexit sha1_base64="SPti2hMefRxNKWNntZBVQBrDZAY=">AAACFXicbVDLSsNAFJ34rPVVdekmWARXJRFfy6IblxXsA9pQJpNJO3YeYeZGqKH/4E70X9yJW9f+iiunbRa29cCFwzn3zp17woQzA5737Swtr6yurRc2iptb2zu7pb39hlGpJrROFFe6FWJDOZO0Dgw4bSWaYhFy2gwHN2O/+Ui1YUrewzChgcA9yWJGMFip0SGRAtMtlb2KN4G7SPyclFGOWrf004kUSQWVQDg2pu17CQQZ1sAIp6NiJzU0wWSAe7RtqcSCmiCb/HbkHlslcmOlbUlwJ+rfiQwLY4YitJ0CQ9/Me2PxX8+AwHqoo7n9EF8FGZNJClSS6fo45S4odxyIGzFNCfChJZhoZi9wSR9rTMDGNvM+sMHTqGjD8uejWSSN04p/UTm/OytXr/PYCugQHaET5KNLVEW3qIbqiKAH9Ixe0Zvz4rw7H87ntHXJyWcO0Aycr18dwqBP</latexit>· · · 2call call call call

/ 15

(ADD, [3, 4, 5, 7],)2
cover

• 𝑘-Feature-Call-Path-Sensitive (𝑘-FCPS) coverage 
criterion divides the 𝑘-FS TRs with the call-paths  
from the innermost enclosing language feature

9

𝑘-Feature-Call-Path-Sensitive (𝑘-FCPS) Coverage

𝑘-FCPS Coverage

TR = (Feature≤𝑘, Call-Path, given TR)

Symbol() + 1
Program P4

JS
TypeError

1 + Symbol()
Program P5

JS
TypeError

1-FCPS Node Coverage

TR = (Feature, 
Call-Path, Node)

3 4 6 7ADD<latexit sha1_base64="SPti2hMefRxNKWNntZBVQBrDZAY=">AAACFXicbVDLSsNAFJ34rPVVdekmWARXJRFfy6IblxXsA9pQJpNJO3YeYeZGqKH/4E70X9yJW9f+iiunbRa29cCFwzn3zp17woQzA5737Swtr6yurRc2iptb2zu7pb39hlGpJrROFFe6FWJDOZO0Dgw4bSWaYhFy2gwHN2O/+Ui1YUrewzChgcA9yWJGMFip0SGRAtMtlb2KN4G7SPyclFGOWrf004kUSQWVQDg2pu17CQQZ1sAIp6NiJzU0wWSAe7RtqcSCmiCb/HbkHlslcmOlbUlwJ+rfiQwLY4YitJ0CQ9/Me2PxX8+AwHqoo7n9EF8FGZNJClSS6fo45S4odxyIGzFNCfChJZhoZi9wSR9rTMDGNvM+sMHTqGjD8uejWSSN04p/UTm/OytXr/PYCugQHaET5KNLVEW3qIbqiKAH9Ixe0Zvz4rw7H87ntHXJyWcO0Aycr18dwqBP</latexit>· · · 2call call call call

3 4 5 7ADD<latexit sha1_base64="SPti2hMefRxNKWNntZBVQBrDZAY=">AAACFXicbVDLSsNAFJ34rPVVdekmWARXJRFfy6IblxXsA9pQJpNJO3YeYeZGqKH/4E70X9yJW9f+iiunbRa29cCFwzn3zp17woQzA5737Swtr6yurRc2iptb2zu7pb39hlGpJrROFFe6FWJDOZO0Dgw4bSWaYhFy2gwHN2O/+Ui1YUrewzChgcA9yWJGMFip0SGRAtMtlb2KN4G7SPyclFGOWrf004kUSQWVQDg2pu17CQQZ1sAIp6NiJzU0wWSAe7RtqcSCmiCb/HbkHlslcmOlbUlwJ+rfiQwLY4YitJ0CQ9/Me2PxX8+AwHqoo7n9EF8FGZNJClSS6fo45S4odxyIGzFNCfChJZhoZi9wSR9rTMDGNvM+sMHTqGjD8uejWSSN04p/UTm/OytXr/PYCugQHaET5KNLVEW3qIbqiKAH9Ixe0Zvz4rw7H87ntHXJyWcO0Aycr18dwqBP</latexit>· · · 2call call call call

/ 15

(ADD, [3, 4, 5, 7],)2
cover

• 𝑘-Feature-Call-Path-Sensitive (𝑘-FCPS) coverage 
criterion divides the 𝑘-FS TRs with the call-paths  
from the innermost enclosing language feature

9

𝑘-Feature-Call-Path-Sensitive (𝑘-FCPS) Coverage

𝑘-FCPS Coverage

TR = (Feature≤𝑘, Call-Path, given TR)

Symbol() + 1
Program P4

JS
TypeError

1 + Symbol()
Program P5

JS
TypeError

1-FCPS Node Coverage

TR = (Feature, 
Call-Path, Node)

3 4 6 7ADD<latexit sha1_base64="SPti2hMefRxNKWNntZBVQBrDZAY=">AAACFXicbVDLSsNAFJ34rPVVdekmWARXJRFfy6IblxXsA9pQJpNJO3YeYeZGqKH/4E70X9yJW9f+iiunbRa29cCFwzn3zp17woQzA5737Swtr6yurRc2iptb2zu7pb39hlGpJrROFFe6FWJDOZO0Dgw4bSWaYhFy2gwHN2O/+Ui1YUrewzChgcA9yWJGMFip0SGRAtMtlb2KN4G7SPyclFGOWrf004kUSQWVQDg2pu17CQQZ1sAIp6NiJzU0wWSAe7RtqcSCmiCb/HbkHlslcmOlbUlwJ+rfiQwLY4YitJ0CQ9/Me2PxX8+AwHqoo7n9EF8FGZNJClSS6fo45S4odxyIGzFNCfChJZhoZi9wSR9rTMDGNvM+sMHTqGjD8uejWSSN04p/UTm/OytXr/PYCugQHaET5KNLVEW3qIbqiKAH9Ixe0Zvz4rw7H87ntHXJyWcO0Aycr18dwqBP</latexit>· · · 2call call call call

3 4 5 7ADD<latexit sha1_base64="SPti2hMefRxNKWNntZBVQBrDZAY=">AAACFXicbVDLSsNAFJ34rPVVdekmWARXJRFfy6IblxXsA9pQJpNJO3YeYeZGqKH/4E70X9yJW9f+iiunbRa29cCFwzn3zp17woQzA5737Swtr6yurRc2iptb2zu7pb39hlGpJrROFFe6FWJDOZO0Dgw4bSWaYhFy2gwHN2O/+Ui1YUrewzChgcA9yWJGMFip0SGRAtMtlb2KN4G7SPyclFGOWrf004kUSQWVQDg2pu17CQQZ1sAIp6NiJzU0wWSAe7RtqcSCmiCb/HbkHlslcmOlbUlwJ+rfiQwLY4YitJ0CQ9/Me2PxX8+AwHqoo7n9EF8FGZNJClSS6fo45S4odxyIGzFNCfChJZhoZi9wSR9rTMDGNvM+sMHTqGjD8uejWSSN04p/UTm/OytXr/PYCugQHaET5KNLVEW3qIbqiKAH9Ixe0Zvz4rw7H87ntHXJyWcO0Aycr18dwqBP</latexit>· · · 2call call call call
step 3

step 4

/ 15

(ADD, [3, 4, 5, 7],)2
cover

(ADD, [3, 4, 6, 7],)2
cover

• 𝑘-Feature-Call-Path-Sensitive (𝑘-FCPS) coverage 
criterion divides the 𝑘-FS TRs with the call-paths  
from the innermost enclosing language feature

9

𝑘-Feature-Call-Path-Sensitive (𝑘-FCPS) Coverage

𝑘-FCPS Coverage

TR = (Feature≤𝑘, Call-Path, given TR)

Symbol() + 1
Program P4

JS
TypeError

1 + Symbol()
Program P5

JS
TypeError

1-FCPS Node Coverage

TR = (Feature, 
Call-Path, Node)

3 4 6 7ADD<latexit sha1_base64="SPti2hMefRxNKWNntZBVQBrDZAY=">AAACFXicbVDLSsNAFJ34rPVVdekmWARXJRFfy6IblxXsA9pQJpNJO3YeYeZGqKH/4E70X9yJW9f+iiunbRa29cCFwzn3zp17woQzA5737Swtr6yurRc2iptb2zu7pb39hlGpJrROFFe6FWJDOZO0Dgw4bSWaYhFy2gwHN2O/+Ui1YUrewzChgcA9yWJGMFip0SGRAtMtlb2KN4G7SPyclFGOWrf004kUSQWVQDg2pu17CQQZ1sAIp6NiJzU0wWSAe7RtqcSCmiCb/HbkHlslcmOlbUlwJ+rfiQwLY4YitJ0CQ9/Me2PxX8+AwHqoo7n9EF8FGZNJClSS6fo45S4odxyIGzFNCfChJZhoZi9wSR9rTMDGNvM+sMHTqGjD8uejWSSN04p/UTm/OytXr/PYCugQHaET5KNLVEW3qIbqiKAH9Ixe0Zvz4rw7H87ntHXJyWcO0Aycr18dwqBP</latexit>· · · 2call call call call

3 4 5 7ADD<latexit sha1_base64="SPti2hMefRxNKWNntZBVQBrDZAY=">AAACFXicbVDLSsNAFJ34rPVVdekmWARXJRFfy6IblxXsA9pQJpNJO3YeYeZGqKH/4E70X9yJW9f+iiunbRa29cCFwzn3zp17woQzA5737Swtr6yurRc2iptb2zu7pb39hlGpJrROFFe6FWJDOZO0Dgw4bSWaYhFy2gwHN2O/+Ui1YUrewzChgcA9yWJGMFip0SGRAtMtlb2KN4G7SPyclFGOWrf004kUSQWVQDg2pu17CQQZ1sAIp6NiJzU0wWSAe7RtqcSCmiCb/HbkHlslcmOlbUlwJ+rfiQwLY4YitJ0CQ9/Me2PxX8+AwHqoo7n9EF8FGZNJClSS6fo45S4odxyIGzFNCfChJZhoZi9wSR9rTMDGNvM+sMHTqGjD8uejWSSN04p/UTm/OytXr/PYCugQHaET5KNLVEW3qIbqiKAH9Ixe0Zvz4rw7H87ntHXJyWcO0Aycr18dwqBP</latexit>· · · 2call call call call
step 3

step 4

/ 15

Different TRs

(ADD, [3, 4, 5, 7],)2
cover

(ADD, [3, 4, 6, 7],)2
cover

• 𝑘-Feature-Call-Path-Sensitive (𝑘-FCPS) coverage 
criterion divides the 𝑘-FS TRs with the call-paths  
from the innermost enclosing language feature

9

𝑘-Feature-Call-Path-Sensitive (𝑘-FCPS) Coverage

𝑘-FCPS Coverage

TR = (Feature≤𝑘, Call-Path, given TR)

Symbol() + 1
Program P4

JS
TypeError

1 + Symbol()
Program P5

JS
TypeError

1-FCPS Node Coverage

TR = (Feature, 
Call-Path, Node)

3 4 6 7ADD<latexit sha1_base64="SPti2hMefRxNKWNntZBVQBrDZAY=">AAACFXicbVDLSsNAFJ34rPVVdekmWARXJRFfy6IblxXsA9pQJpNJO3YeYeZGqKH/4E70X9yJW9f+iiunbRa29cCFwzn3zp17woQzA5737Swtr6yurRc2iptb2zu7pb39hlGpJrROFFe6FWJDOZO0Dgw4bSWaYhFy2gwHN2O/+Ui1YUrewzChgcA9yWJGMFip0SGRAtMtlb2KN4G7SPyclFGOWrf004kUSQWVQDg2pu17CQQZ1sAIp6NiJzU0wWSAe7RtqcSCmiCb/HbkHlslcmOlbUlwJ+rfiQwLY4YitJ0CQ9/Me2PxX8+AwHqoo7n9EF8FGZNJClSS6fo45S4odxyIGzFNCfChJZhoZi9wSR9rTMDGNvM+sMHTqGjD8uejWSSN04p/UTm/OytXr/PYCugQHaET5KNLVEW3qIbqiKAH9Ixe0Zvz4rw7H87ntHXJyWcO0Aycr18dwqBP</latexit>· · · 2call call call call

3 4 5 7ADD<latexit sha1_base64="SPti2hMefRxNKWNntZBVQBrDZAY=">AAACFXicbVDLSsNAFJ34rPVVdekmWARXJRFfy6IblxXsA9pQJpNJO3YeYeZGqKH/4E70X9yJW9f+iiunbRa29cCFwzn3zp17woQzA5737Swtr6yurRc2iptb2zu7pb39hlGpJrROFFe6FWJDOZO0Dgw4bSWaYhFy2gwHN2O/+Ui1YUrewzChgcA9yWJGMFip0SGRAtMtlb2KN4G7SPyclFGOWrf004kUSQWVQDg2pu17CQQZ1sAIp6NiJzU0wWSAe7RtqcSCmiCb/HbkHlslcmOlbUlwJ+rfiQwLY4YitJ0CQ9/Me2PxX8+AwHqoo7n9EF8FGZNJClSS6fo45S4odxyIGzFNCfChJZhoZi9wSR9rTMDGNvM+sMHTqGjD8uejWSSN04p/UTm/OytXr/PYCugQHaET5KNLVEW3qIbqiKAH9Ixe0Zvz4rw7H87ntHXJyWcO0Aycr18dwqBP</latexit>· · · 2call call call call
step 3

step 4

/ 15

Different TRs

(ADD, [3, 4, 5, 7],)2
cover

(ADD, [3, 4, 6, 7],)2
cover

• 𝑘-Feature-Call-Path-Sensitive (𝑘-FCPS) coverage 
criterion divides the 𝑘-FS TRs with the call-paths  
from the innermost enclosing language feature

9

𝑘-Feature-Call-Path-Sensitive (𝑘-FCPS) Coverage

𝑘-FCPS Coverage

TR = (Feature≤𝑘, Call-Path, given TR)

Can
Distinguish
P4 and P5

Symbol() + 1
Program P4

JS
TypeError

1 + Symbol()
Program P5

JS
TypeError

1-FCPS Node Coverage

TR = (Feature, 
Call-Path, Node)

3 4 6 7ADD<latexit sha1_base64="SPti2hMefRxNKWNntZBVQBrDZAY=">AAACFXicbVDLSsNAFJ34rPVVdekmWARXJRFfy6IblxXsA9pQJpNJO3YeYeZGqKH/4E70X9yJW9f+iiunbRa29cCFwzn3zp17woQzA5737Swtr6yurRc2iptb2zu7pb39hlGpJrROFFe6FWJDOZO0Dgw4bSWaYhFy2gwHN2O/+Ui1YUrewzChgcA9yWJGMFip0SGRAtMtlb2KN4G7SPyclFGOWrf004kUSQWVQDg2pu17CQQZ1sAIp6NiJzU0wWSAe7RtqcSCmiCb/HbkHlslcmOlbUlwJ+rfiQwLY4YitJ0CQ9/Me2PxX8+AwHqoo7n9EF8FGZNJClSS6fo45S4odxyIGzFNCfChJZhoZi9wSR9rTMDGNvM+sMHTqGjD8uejWSSN04p/UTm/OytXr/PYCugQHaET5KNLVEW3qIbqiKAH9Ixe0Zvz4rw7H87ntHXJyWcO0Aycr18dwqBP</latexit>· · · 2call call call call

3 4 5 7ADD<latexit sha1_base64="SPti2hMefRxNKWNntZBVQBrDZAY=">AAACFXicbVDLSsNAFJ34rPVVdekmWARXJRFfy6IblxXsA9pQJpNJO3YeYeZGqKH/4E70X9yJW9f+iiunbRa29cCFwzn3zp17woQzA5737Swtr6yurRc2iptb2zu7pb39hlGpJrROFFe6FWJDOZO0Dgw4bSWaYhFy2gwHN2O/+Ui1YUrewzChgcA9yWJGMFip0SGRAtMtlb2KN4G7SPyclFGOWrf004kUSQWVQDg2pu17CQQZ1sAIp6NiJzU0wWSAe7RtqcSCmiCb/HbkHlslcmOlbUlwJ+rfiQwLY4YitJ0CQ9/Me2PxX8+AwHqoo7n9EF8FGZNJClSS6fo45S4odxyIGzFNCfChJZhoZi9wSR9rTMDGNvM+sMHTqGjD8uejWSSN04p/UTm/OytXr/PYCugQHaET5KNLVEW3qIbqiKAH9Ixe0Zvz4rw7H87ntHXJyWcO0Aycr18dwqBP</latexit>· · · 2call call call call
step 3

step 4

/ 15

• JEST [1] is a JavaScript conformance test generator using Coverage-Guided Fuzzing

• We implemented JESTfs as an extension of JEST with 𝑘-FS and 𝑘-FCPS coverage criteria

10

Implementation — JESTfs

[1] Park et al., "JEST: N+1-version Differential Testing of Both JavaScript Engines and Specification", ICSE 2021

Seed

Synthesizer

<latexit sha1_base64="BAYUFYNPPDk+F8E7N02xSewRlds=">AAACI3icbVDLSsNAFJ2pr1pfrS7dBIvgqiQi6rLYhS4r2Ac0oUymk3boTBJmboQQ+htudePXuBM3LvwXJ20WtvXAwOGce7lnjh8LrsG2v3FpY3Nre6e8W9nbPzg8qtaOuzpKFGUdGolI9X2imeAh6wAHwfqxYkT6gvX8aSv3e89MaR6FT5DGzJNkHPKAUwJGcltDVxKY+H52PxtW63bDnsNaJ05B6qhAe1jD2B1FNJEsBCqI1gPHjsHLiAJOBZtV3ESzmNApGbOBoSGRTHvZPPTMOjfKyAoiZV4I1lz9u5ERqXUqfTOZR9SrXi7+5w0SCG69jIdxAiyki0NBIiyIrLwBa8QVoyBSQwhV3GS16IQoQsH0tHRFgyQqVaOln2RSsAAUH09gVqmY0pzVitZJ97LhXDeuHq/qzbuivjI6RWfoAjnoBjXRA2qjDqIoRi/oFb3hd/yBP/HXYrSEi50TtAT88wuSQaRr</latexit>

CG
Coverage

Criterion

Program

Pool

JSJSJS

<latexit sha1_base64="LAjDT+KvUJlC68obPh9iBbDk7jo=">AAACMnicbVBNSwMxEE38rPWr1ZN4WSyCp7IrRT0WRRBPFa0W2lKy6WwbmuwuyaxYlsVf41Uv/hm9iVd/hGmtYNUHgTfvzTCZ58dSGHTdFzozOze/sJhbyi+vrK6tF4ob1yZKNIc6j2SkGz4zIEUIdRQooRFrYMqXcOMPTkb+zS1oI6LwCocxtBXrhSIQnKGVOoWtFsIdmiA9P728yjrfVWCyTqHklt0xnL/Em5ASmaDWKVLa6kY8URAil8yYpufG2E6ZRsElZPlWYiBmfMB60LQ0ZApMOx3fkDm7Vuk6QaTtC9EZqz8nUqaMGSrfdiqGffPbG4n/ec0Eg6N2KsI4QQj516IgkQ5GzigQpys0cJRDSxjXwv7V4X2mGUcb29QWg4rpoe5OXZIqCQFq0etjls/b0LzfEf0l1/tl76BcuaiUqseT+HJkm+yQPeKRQ1IlZ6RG6oSTe/JAHskTfaav9I2+f7XO0MnMJpkC/fgE9pSqxQ==</latexit>

JESTfs

Mechanized

Spec. for JS

Target

Selector

Program

MutatorTarget

Program

JS

Mutated

Program

JS

Assertion

Injector Conform.

Test Suite

JSJSJS
Program

Pool

JSJSJS

https://doi.org/10.1109/ICSE43902.2021.00015

/ 15

• JESTfs in 50 hours with 0-FS / 1-FS / 2-FS / 1-FCPS / 2-FCPS

• JavaScript Specification — ECMA-262 for ES13 (2022)

• JavaScript Implementations — 4 Engines and 4 Transpilers

11

Evaluation
5 different 𝑘-FS and 𝑘-FCPS coverage criteria

Kind Name Version Release

Engine

V8 v10.8.121 2022.10.06
JSC v615.1.10 2022.10.26

GraalJS v22.2.0 2022.07.26
SpiderMonkey v107.0b4 2022.10.24

Transpiler

Babel v7.19.1 2022.09.15
SWC v1.3.10 2022.10.21

Terser v5.15.1 2022.10.05
Obfuscator v4.0.0 2022.02.15

/ 15

Feature-Sensitive Coverage for Conformance Testing 126:15

Table 1. Detected conformance bugs in JavaScript engines and transpilers

Kind Name Version Release
Detected Unique Bugs

New # Con!rmed # Reported

Engine

V8 v10.8.121 2022.10.06 0 0 4
JSC v615.1.10 2022.10.26 15 15 24
GraalJS v22.2.0 2022.07.26 9 9 10
SpiderMonkey v107.0b4 2022.10.24 1 3 4

Total 25 27 42

Transpiler

Babel v7.19.1 2022.09.15 30 30 35
SWC v1.3.10 2022.10.21 27 27 41
Terser v5.15.1 2022.10.05 1 1 18
Obfuscator v4.0.0 2022.02.15 0 0 7

Total 58 58 101

Total 83 85 143

5 EVALUATION

This section evaluates feature-sensitive coverage criteria with the following research questions:

• RQ1 (Conformance Bug Detection): How many conformance bugs in JavaScript imple-
mentations are detected by synthesized conformance tests? (Section 5.1)

• RQ2 (E"ectiveness of !-FS Coverage Criteria): Are higher !-FS coverage criteria more
e!ective than lower !-FS coverage criteria in detecting conformance bugs? (Section 5.2)

• RQ3 (E"ectiveness of !-FCPS Coverage Criteria): Are !-FCPS coverage criteria more
e!ective than !-FS coverage criteria in detecting conformance bugs? (Section 5.3)

• RQ4 (Comparisonwith Test262):Can conformance tests synthesized by JESTfs complement
Test262, the o"cial JavaScript conformance suite maintained manually? (Section 5.4)

We apply JESTfs to the latest language speci#cation (ES13, 2022) [ECMA International 2022a],
which synthesized 237,981 conformance tests in 50 hours with #ve graph coverage criteria: 1) 0-FS,
2) 1-FS, 3) 2-FS, 4) 1-FCPS, and 5) 2-FCPS node-or-branch coverage. We performed our experiments
with #ve Ubuntu machines with a 4.0GHz Intel(R) Core(TM) i7-6700k and 32GB of RAM (Samsung
DDR4 2133MHz 8GB*4).
Using the synthesized JavaScript conformance tests, we check the conformance of eight main-

stream implementations listed in Table 1. We select them as evaluation targets because they support
all the language features in ES13. V8, JSC, and SpiderMonkey are JavaScript engines used in web
browsers, Google Chrome, Apple Safari, and Mozilla Firefox, respectively, and GraalJS is a JavaScript
engine by Oracle. Babel and SWC are transpilers that desugar new language features into old ones,
usually ES5.1 features, for legacy host environments. Terser is a code compressor that reduces
code size, and Obfuscator obfuscates code to make it hard to understand and reverse-engineering.
For the transpiler conformance check, we use V8 as the default engine to execute transpiled code
with assertions. If a test fails on V8, we use another engine that passes the test; if a test fails on all
engines, we do not use the test.

5.1 Conformance Bug Detection

Table 1 summarizes the conformance bugs detected by JESTfs in all the evaluation targets. We
manually inspected the failed conformance test cases, found 143 distinct conformance bugs, and
reported them to the corresponding developers. As a result, 85 out of 143 bugs were o"cially
con#rmed, and 83 were newly discovered bugs. The other 47 reported bugs are still under review,
or developers have not yet responded. Among 143 detected bugs, 42 are engine bugs, and 101 are
transpiler bugs. We present two real-world bug examples.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 126. Publication date: June 2023.

12

RQ1) Conformance Bug Detection

/ 15

Feature-Sensitive Coverage for Conformance Testing 126:15

Table 1. Detected conformance bugs in JavaScript engines and transpilers

Kind Name Version Release
Detected Unique Bugs

New # Con!rmed # Reported

Engine

V8 v10.8.121 2022.10.06 0 0 4
JSC v615.1.10 2022.10.26 15 15 24
GraalJS v22.2.0 2022.07.26 9 9 10
SpiderMonkey v107.0b4 2022.10.24 1 3 4

Total 25 27 42

Transpiler

Babel v7.19.1 2022.09.15 30 30 35
SWC v1.3.10 2022.10.21 27 27 41
Terser v5.15.1 2022.10.05 1 1 18
Obfuscator v4.0.0 2022.02.15 0 0 7

Total 58 58 101

Total 83 85 143

5 EVALUATION

This section evaluates feature-sensitive coverage criteria with the following research questions:

• RQ1 (Conformance Bug Detection): How many conformance bugs in JavaScript imple-
mentations are detected by synthesized conformance tests? (Section 5.1)

• RQ2 (E"ectiveness of !-FS Coverage Criteria): Are higher !-FS coverage criteria more
e!ective than lower !-FS coverage criteria in detecting conformance bugs? (Section 5.2)

• RQ3 (E"ectiveness of !-FCPS Coverage Criteria): Are !-FCPS coverage criteria more
e!ective than !-FS coverage criteria in detecting conformance bugs? (Section 5.3)

• RQ4 (Comparisonwith Test262):Can conformance tests synthesized by JESTfs complement
Test262, the o"cial JavaScript conformance suite maintained manually? (Section 5.4)

We apply JESTfs to the latest language speci#cation (ES13, 2022) [ECMA International 2022a],
which synthesized 237,981 conformance tests in 50 hours with #ve graph coverage criteria: 1) 0-FS,
2) 1-FS, 3) 2-FS, 4) 1-FCPS, and 5) 2-FCPS node-or-branch coverage. We performed our experiments
with #ve Ubuntu machines with a 4.0GHz Intel(R) Core(TM) i7-6700k and 32GB of RAM (Samsung
DDR4 2133MHz 8GB*4).
Using the synthesized JavaScript conformance tests, we check the conformance of eight main-

stream implementations listed in Table 1. We select them as evaluation targets because they support
all the language features in ES13. V8, JSC, and SpiderMonkey are JavaScript engines used in web
browsers, Google Chrome, Apple Safari, and Mozilla Firefox, respectively, and GraalJS is a JavaScript
engine by Oracle. Babel and SWC are transpilers that desugar new language features into old ones,
usually ES5.1 features, for legacy host environments. Terser is a code compressor that reduces
code size, and Obfuscator obfuscates code to make it hard to understand and reverse-engineering.
For the transpiler conformance check, we use V8 as the default engine to execute transpiled code
with assertions. If a test fails on V8, we use another engine that passes the test; if a test fails on all
engines, we do not use the test.

5.1 Conformance Bug Detection

Table 1 summarizes the conformance bugs detected by JESTfs in all the evaluation targets. We
manually inspected the failed conformance test cases, found 143 distinct conformance bugs, and
reported them to the corresponding developers. As a result, 85 out of 143 bugs were o"cially
con#rmed, and 83 were newly discovered bugs. The other 47 reported bugs are still under review,
or developers have not yet responded. Among 143 detected bugs, 42 are engine bugs, and 101 are
transpiler bugs. We present two real-world bug examples.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 126. Publication date: June 2023.

12

RQ1) Conformance Bug Detection

/ 15

Feature-Sensitive Coverage for Conformance Testing 126:15

Table 1. Detected conformance bugs in JavaScript engines and transpilers

Kind Name Version Release
Detected Unique Bugs

New # Con!rmed # Reported

Engine

V8 v10.8.121 2022.10.06 0 0 4
JSC v615.1.10 2022.10.26 15 15 24
GraalJS v22.2.0 2022.07.26 9 9 10
SpiderMonkey v107.0b4 2022.10.24 1 3 4

Total 25 27 42

Transpiler

Babel v7.19.1 2022.09.15 30 30 35
SWC v1.3.10 2022.10.21 27 27 41
Terser v5.15.1 2022.10.05 1 1 18
Obfuscator v4.0.0 2022.02.15 0 0 7

Total 58 58 101

Total 83 85 143

5 EVALUATION

This section evaluates feature-sensitive coverage criteria with the following research questions:

• RQ1 (Conformance Bug Detection): How many conformance bugs in JavaScript imple-
mentations are detected by synthesized conformance tests? (Section 5.1)

• RQ2 (E"ectiveness of !-FS Coverage Criteria): Are higher !-FS coverage criteria more
e!ective than lower !-FS coverage criteria in detecting conformance bugs? (Section 5.2)

• RQ3 (E"ectiveness of !-FCPS Coverage Criteria): Are !-FCPS coverage criteria more
e!ective than !-FS coverage criteria in detecting conformance bugs? (Section 5.3)

• RQ4 (Comparisonwith Test262):Can conformance tests synthesized by JESTfs complement
Test262, the o"cial JavaScript conformance suite maintained manually? (Section 5.4)

We apply JESTfs to the latest language speci#cation (ES13, 2022) [ECMA International 2022a],
which synthesized 237,981 conformance tests in 50 hours with #ve graph coverage criteria: 1) 0-FS,
2) 1-FS, 3) 2-FS, 4) 1-FCPS, and 5) 2-FCPS node-or-branch coverage. We performed our experiments
with #ve Ubuntu machines with a 4.0GHz Intel(R) Core(TM) i7-6700k and 32GB of RAM (Samsung
DDR4 2133MHz 8GB*4).
Using the synthesized JavaScript conformance tests, we check the conformance of eight main-

stream implementations listed in Table 1. We select them as evaluation targets because they support
all the language features in ES13. V8, JSC, and SpiderMonkey are JavaScript engines used in web
browsers, Google Chrome, Apple Safari, and Mozilla Firefox, respectively, and GraalJS is a JavaScript
engine by Oracle. Babel and SWC are transpilers that desugar new language features into old ones,
usually ES5.1 features, for legacy host environments. Terser is a code compressor that reduces
code size, and Obfuscator obfuscates code to make it hard to understand and reverse-engineering.
For the transpiler conformance check, we use V8 as the default engine to execute transpiled code
with assertions. If a test fails on V8, we use another engine that passes the test; if a test fails on all
engines, we do not use the test.

5.1 Conformance Bug Detection

Table 1 summarizes the conformance bugs detected by JESTfs in all the evaluation targets. We
manually inspected the failed conformance test cases, found 143 distinct conformance bugs, and
reported them to the corresponding developers. As a result, 85 out of 143 bugs were o"cially
con#rmed, and 83 were newly discovered bugs. The other 47 reported bugs are still under review,
or developers have not yet responded. Among 143 detected bugs, 42 are engine bugs, and 101 are
transpiler bugs. We present two real-world bug examples.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 126. Publication date: June 2023.

12

RQ1) Conformance Bug Detection

/ 15

Feature-Sensitive Coverage for Conformance Testing 126:15

Table 1. Detected conformance bugs in JavaScript engines and transpilers

Kind Name Version Release
Detected Unique Bugs

New # Con!rmed # Reported

Engine

V8 v10.8.121 2022.10.06 0 0 4
JSC v615.1.10 2022.10.26 15 15 24
GraalJS v22.2.0 2022.07.26 9 9 10
SpiderMonkey v107.0b4 2022.10.24 1 3 4

Total 25 27 42

Transpiler

Babel v7.19.1 2022.09.15 30 30 35
SWC v1.3.10 2022.10.21 27 27 41
Terser v5.15.1 2022.10.05 1 1 18
Obfuscator v4.0.0 2022.02.15 0 0 7

Total 58 58 101

Total 83 85 143

5 EVALUATION

This section evaluates feature-sensitive coverage criteria with the following research questions:

• RQ1 (Conformance Bug Detection): How many conformance bugs in JavaScript imple-
mentations are detected by synthesized conformance tests? (Section 5.1)

• RQ2 (E"ectiveness of !-FS Coverage Criteria): Are higher !-FS coverage criteria more
e!ective than lower !-FS coverage criteria in detecting conformance bugs? (Section 5.2)

• RQ3 (E"ectiveness of !-FCPS Coverage Criteria): Are !-FCPS coverage criteria more
e!ective than !-FS coverage criteria in detecting conformance bugs? (Section 5.3)

• RQ4 (Comparisonwith Test262):Can conformance tests synthesized by JESTfs complement
Test262, the o"cial JavaScript conformance suite maintained manually? (Section 5.4)

We apply JESTfs to the latest language speci#cation (ES13, 2022) [ECMA International 2022a],
which synthesized 237,981 conformance tests in 50 hours with #ve graph coverage criteria: 1) 0-FS,
2) 1-FS, 3) 2-FS, 4) 1-FCPS, and 5) 2-FCPS node-or-branch coverage. We performed our experiments
with #ve Ubuntu machines with a 4.0GHz Intel(R) Core(TM) i7-6700k and 32GB of RAM (Samsung
DDR4 2133MHz 8GB*4).
Using the synthesized JavaScript conformance tests, we check the conformance of eight main-

stream implementations listed in Table 1. We select them as evaluation targets because they support
all the language features in ES13. V8, JSC, and SpiderMonkey are JavaScript engines used in web
browsers, Google Chrome, Apple Safari, and Mozilla Firefox, respectively, and GraalJS is a JavaScript
engine by Oracle. Babel and SWC are transpilers that desugar new language features into old ones,
usually ES5.1 features, for legacy host environments. Terser is a code compressor that reduces
code size, and Obfuscator obfuscates code to make it hard to understand and reverse-engineering.
For the transpiler conformance check, we use V8 as the default engine to execute transpiled code
with assertions. If a test fails on V8, we use another engine that passes the test; if a test fails on all
engines, we do not use the test.

5.1 Conformance Bug Detection

Table 1 summarizes the conformance bugs detected by JESTfs in all the evaluation targets. We
manually inspected the failed conformance test cases, found 143 distinct conformance bugs, and
reported them to the corresponding developers. As a result, 85 out of 143 bugs were o"cially
con#rmed, and 83 were newly discovered bugs. The other 47 reported bugs are still under review,
or developers have not yet responded. Among 143 detected bugs, 42 are engine bugs, and 101 are
transpiler bugs. We present two real-world bug examples.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 126. Publication date: June 2023.

12

RQ1) Conformance Bug Detection

/ 1513

RQ2) Effectiveness of 𝑘-FS Coverage Criteria
126:16 Jihyeok Park, Dongjun Youn, Kanguk Lee, and Sukyoung Ryu

Table 2. Comparison of synthesized conformance tests guided by five graph coverage criteria

Coverage Criteria⇠G
Covered :-F(CP)S-TR (k) # Syn. Test # Bug# Node # Branch # Total

0-FS node-or-branch (0-fs) 10.0 5.6 15.6 2,111 55
1-FS node-or-branch (1-fs) 79.3 45.7 125.0 6,766 83

1-FCPS node-or-branch (1-fcps) 179.7 97.6 277.3 9,092 87
2-FS node-or-branch (2-fs) 1,199.8 696.3 1,896.1 97,423 102

2-FCPS node-or-branch (2-fcps) 2,323.1 1,297.6 3,620.7 122,589 111

Order of Execution. JavaScript engines must follow the execution order of each language feature
described in the language speci�cation. However, we found a bug10 related to the execution order
of the delete operation that causes the execution of originally unreachable code in GraalJS. For
example, while the following code should return false, it throws an exception with �ERR� by
executing the originally unreachable code inside the arrow function in GraalJS:

false && delete (() => { throw �ERR�; })(); // Expected: false

In addition, we detected another bug11 related to the execution order of property reads in all
target engines. ECMA-262 may consider changing the semantics according to the one used in most
implementations.

Asynchronous Function / Generator. One of the complex language features in JavaScript is
asynchronous functions and generators introduced in ES6 (2015). We detected a bug12 in Spider-
Monkey that breaks the logic of asynchronous function calls. For example, the following code must
return a rejected Promise object because a non-iterable value undefined is assigned to an array
destructuring pattern [] in the async arrow function:

(async function ([]) {})(); // Expected: A rejected Promise object

However, it unexpectedly terminates with a TypeError exception in SpiderMonkey. A developer
of SpiderMonkey explained it as follows:

“The async-function spec was changed at some point [. . .]
this is also not covered by test262.”

5.2 E�ectiveness of :-FS Coverage Criteria
Table 2 shows the result of conformance test synthesis via JESTfs with �ve graph coverage criteria.
Note that 0-FS node-or-branch coverage criterion is the same with the node-or-branch coverage
criterion. To evaluate the e�ectiveness of :-FS coverage criteria, we compare the synthesized
conformance tests guided by di�erent :-FS node-or-branch coverage criteria (0-fs, 1-fs, and 2-fs in
Table 2). The second to the fourth columns denote the numbers of covered :-FS- or :-FCPS-TRs
for nodes (# Node), branches (# Branch), and both (# Total), respectively. The �fth and the sixth
columns denote the numbers of synthesized conformance tests (# Syn. Test) and detected distinct
bugs (# Bug), respectively.
The results show that higher :-FS coverage criteria are more e�ective than lower :-FS. On

average, 8.03 (125.0K / 15.6K) 1-FS-TRs exist per each 0-FS-TR, and 15.17 (1,896.1K / 125.0K) 2-FS-
TRs exist per each 1-FS-TR. It means that each node or branch is used in 8.03 di�erent language
features, and each language feature could be used in 15.17 other language features on average. For
a more detailed information, we draw a histogram of the number of covered 1-FS-TRs (or 2-FS-TRs)
10https://github.com/oracle/graaljs/issues/671
11https://github.com/tc39/ecma262/issues/2659
12https://bugzilla.mozilla.org/show_bug.cgi?id=1799288

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 126. Publication date: June 2023.

/ 1513

RQ2) Effectiveness of 𝑘-FS Coverage Criteria
126:16 Jihyeok Park, Dongjun Youn, Kanguk Lee, and Sukyoung Ryu

Table 2. Comparison of synthesized conformance tests guided by five graph coverage criteria

Coverage Criteria⇠G
Covered :-F(CP)S-TR (k) # Syn. Test # Bug# Node # Branch # Total

0-FS node-or-branch (0-fs) 10.0 5.6 15.6 2,111 55
1-FS node-or-branch (1-fs) 79.3 45.7 125.0 6,766 83

1-FCPS node-or-branch (1-fcps) 179.7 97.6 277.3 9,092 87
2-FS node-or-branch (2-fs) 1,199.8 696.3 1,896.1 97,423 102

2-FCPS node-or-branch (2-fcps) 2,323.1 1,297.6 3,620.7 122,589 111

Order of Execution. JavaScript engines must follow the execution order of each language feature
described in the language speci�cation. However, we found a bug10 related to the execution order
of the delete operation that causes the execution of originally unreachable code in GraalJS. For
example, while the following code should return false, it throws an exception with �ERR� by
executing the originally unreachable code inside the arrow function in GraalJS:

false && delete (() => { throw �ERR�; })(); // Expected: false

In addition, we detected another bug11 related to the execution order of property reads in all
target engines. ECMA-262 may consider changing the semantics according to the one used in most
implementations.

Asynchronous Function / Generator. One of the complex language features in JavaScript is
asynchronous functions and generators introduced in ES6 (2015). We detected a bug12 in Spider-
Monkey that breaks the logic of asynchronous function calls. For example, the following code must
return a rejected Promise object because a non-iterable value undefined is assigned to an array
destructuring pattern [] in the async arrow function:

(async function ([]) {})(); // Expected: A rejected Promise object

However, it unexpectedly terminates with a TypeError exception in SpiderMonkey. A developer
of SpiderMonkey explained it as follows:

“The async-function spec was changed at some point [. . .]
this is also not covered by test262.”

5.2 E�ectiveness of :-FS Coverage Criteria
Table 2 shows the result of conformance test synthesis via JESTfs with �ve graph coverage criteria.
Note that 0-FS node-or-branch coverage criterion is the same with the node-or-branch coverage
criterion. To evaluate the e�ectiveness of :-FS coverage criteria, we compare the synthesized
conformance tests guided by di�erent :-FS node-or-branch coverage criteria (0-fs, 1-fs, and 2-fs in
Table 2). The second to the fourth columns denote the numbers of covered :-FS- or :-FCPS-TRs
for nodes (# Node), branches (# Branch), and both (# Total), respectively. The �fth and the sixth
columns denote the numbers of synthesized conformance tests (# Syn. Test) and detected distinct
bugs (# Bug), respectively.
The results show that higher :-FS coverage criteria are more e�ective than lower :-FS. On

average, 8.03 (125.0K / 15.6K) 1-FS-TRs exist per each 0-FS-TR, and 15.17 (1,896.1K / 125.0K) 2-FS-
TRs exist per each 1-FS-TR. It means that each node or branch is used in 8.03 di�erent language
features, and each language feature could be used in 15.17 other language features on average. For
a more detailed information, we draw a histogram of the number of covered 1-FS-TRs (or 2-FS-TRs)
10https://github.com/oracle/graaljs/issues/671
11https://github.com/tc39/ecma262/issues/2659
12https://bugzilla.mozilla.org/show_bug.cgi?id=1799288

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 126. Publication date: June 2023.

+28

/ 1513

RQ2) Effectiveness of 𝑘-FS Coverage Criteria
126:16 Jihyeok Park, Dongjun Youn, Kanguk Lee, and Sukyoung Ryu

Table 2. Comparison of synthesized conformance tests guided by five graph coverage criteria

Coverage Criteria⇠G
Covered :-F(CP)S-TR (k) # Syn. Test # Bug# Node # Branch # Total

0-FS node-or-branch (0-fs) 10.0 5.6 15.6 2,111 55
1-FS node-or-branch (1-fs) 79.3 45.7 125.0 6,766 83

1-FCPS node-or-branch (1-fcps) 179.7 97.6 277.3 9,092 87
2-FS node-or-branch (2-fs) 1,199.8 696.3 1,896.1 97,423 102

2-FCPS node-or-branch (2-fcps) 2,323.1 1,297.6 3,620.7 122,589 111

Order of Execution. JavaScript engines must follow the execution order of each language feature
described in the language speci�cation. However, we found a bug10 related to the execution order
of the delete operation that causes the execution of originally unreachable code in GraalJS. For
example, while the following code should return false, it throws an exception with �ERR� by
executing the originally unreachable code inside the arrow function in GraalJS:

false && delete (() => { throw �ERR�; })(); // Expected: false

In addition, we detected another bug11 related to the execution order of property reads in all
target engines. ECMA-262 may consider changing the semantics according to the one used in most
implementations.

Asynchronous Function / Generator. One of the complex language features in JavaScript is
asynchronous functions and generators introduced in ES6 (2015). We detected a bug12 in Spider-
Monkey that breaks the logic of asynchronous function calls. For example, the following code must
return a rejected Promise object because a non-iterable value undefined is assigned to an array
destructuring pattern [] in the async arrow function:

(async function ([]) {})(); // Expected: A rejected Promise object

However, it unexpectedly terminates with a TypeError exception in SpiderMonkey. A developer
of SpiderMonkey explained it as follows:

“The async-function spec was changed at some point [. . .]
this is also not covered by test262.”

5.2 E�ectiveness of :-FS Coverage Criteria
Table 2 shows the result of conformance test synthesis via JESTfs with �ve graph coverage criteria.
Note that 0-FS node-or-branch coverage criterion is the same with the node-or-branch coverage
criterion. To evaluate the e�ectiveness of :-FS coverage criteria, we compare the synthesized
conformance tests guided by di�erent :-FS node-or-branch coverage criteria (0-fs, 1-fs, and 2-fs in
Table 2). The second to the fourth columns denote the numbers of covered :-FS- or :-FCPS-TRs
for nodes (# Node), branches (# Branch), and both (# Total), respectively. The �fth and the sixth
columns denote the numbers of synthesized conformance tests (# Syn. Test) and detected distinct
bugs (# Bug), respectively.
The results show that higher :-FS coverage criteria are more e�ective than lower :-FS. On

average, 8.03 (125.0K / 15.6K) 1-FS-TRs exist per each 0-FS-TR, and 15.17 (1,896.1K / 125.0K) 2-FS-
TRs exist per each 1-FS-TR. It means that each node or branch is used in 8.03 di�erent language
features, and each language feature could be used in 15.17 other language features on average. For
a more detailed information, we draw a histogram of the number of covered 1-FS-TRs (or 2-FS-TRs)
10https://github.com/oracle/graaljs/issues/671
11https://github.com/tc39/ecma262/issues/2659
12https://bugzilla.mozilla.org/show_bug.cgi?id=1799288

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 126. Publication date: June 2023.

+28

for (let {} = 0; 0;) ;

Synthesized with 1-FS but not with 0-FS

Crash
Wrong Result

Babel
Terminated

Expected

Spec.

/ 1513

RQ2) Effectiveness of 𝑘-FS Coverage Criteria
126:16 Jihyeok Park, Dongjun Youn, Kanguk Lee, and Sukyoung Ryu

Table 2. Comparison of synthesized conformance tests guided by five graph coverage criteria

Coverage Criteria⇠G
Covered :-F(CP)S-TR (k) # Syn. Test # Bug# Node # Branch # Total

0-FS node-or-branch (0-fs) 10.0 5.6 15.6 2,111 55
1-FS node-or-branch (1-fs) 79.3 45.7 125.0 6,766 83

1-FCPS node-or-branch (1-fcps) 179.7 97.6 277.3 9,092 87
2-FS node-or-branch (2-fs) 1,199.8 696.3 1,896.1 97,423 102

2-FCPS node-or-branch (2-fcps) 2,323.1 1,297.6 3,620.7 122,589 111

Order of Execution. JavaScript engines must follow the execution order of each language feature
described in the language speci�cation. However, we found a bug10 related to the execution order
of the delete operation that causes the execution of originally unreachable code in GraalJS. For
example, while the following code should return false, it throws an exception with �ERR� by
executing the originally unreachable code inside the arrow function in GraalJS:

false && delete (() => { throw �ERR�; })(); // Expected: false

In addition, we detected another bug11 related to the execution order of property reads in all
target engines. ECMA-262 may consider changing the semantics according to the one used in most
implementations.

Asynchronous Function / Generator. One of the complex language features in JavaScript is
asynchronous functions and generators introduced in ES6 (2015). We detected a bug12 in Spider-
Monkey that breaks the logic of asynchronous function calls. For example, the following code must
return a rejected Promise object because a non-iterable value undefined is assigned to an array
destructuring pattern [] in the async arrow function:

(async function ([]) {})(); // Expected: A rejected Promise object

However, it unexpectedly terminates with a TypeError exception in SpiderMonkey. A developer
of SpiderMonkey explained it as follows:

“The async-function spec was changed at some point [. . .]
this is also not covered by test262.”

5.2 E�ectiveness of :-FS Coverage Criteria
Table 2 shows the result of conformance test synthesis via JESTfs with �ve graph coverage criteria.
Note that 0-FS node-or-branch coverage criterion is the same with the node-or-branch coverage
criterion. To evaluate the e�ectiveness of :-FS coverage criteria, we compare the synthesized
conformance tests guided by di�erent :-FS node-or-branch coverage criteria (0-fs, 1-fs, and 2-fs in
Table 2). The second to the fourth columns denote the numbers of covered :-FS- or :-FCPS-TRs
for nodes (# Node), branches (# Branch), and both (# Total), respectively. The �fth and the sixth
columns denote the numbers of synthesized conformance tests (# Syn. Test) and detected distinct
bugs (# Bug), respectively.
The results show that higher :-FS coverage criteria are more e�ective than lower :-FS. On

average, 8.03 (125.0K / 15.6K) 1-FS-TRs exist per each 0-FS-TR, and 15.17 (1,896.1K / 125.0K) 2-FS-
TRs exist per each 1-FS-TR. It means that each node or branch is used in 8.03 di�erent language
features, and each language feature could be used in 15.17 other language features on average. For
a more detailed information, we draw a histogram of the number of covered 1-FS-TRs (or 2-FS-TRs)
10https://github.com/oracle/graaljs/issues/671
11https://github.com/tc39/ecma262/issues/2659
12https://bugzilla.mozilla.org/show_bug.cgi?id=1799288

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 126. Publication date: June 2023.

+28

+19

for (let {} = 0; 0;) ;

Synthesized with 1-FS but not with 0-FS

Crash
Wrong Result

Babel
Terminated

Expected

Spec.

/ 1513

RQ2) Effectiveness of 𝑘-FS Coverage Criteria
126:16 Jihyeok Park, Dongjun Youn, Kanguk Lee, and Sukyoung Ryu

Table 2. Comparison of synthesized conformance tests guided by five graph coverage criteria

Coverage Criteria⇠G
Covered :-F(CP)S-TR (k) # Syn. Test # Bug# Node # Branch # Total

0-FS node-or-branch (0-fs) 10.0 5.6 15.6 2,111 55
1-FS node-or-branch (1-fs) 79.3 45.7 125.0 6,766 83

1-FCPS node-or-branch (1-fcps) 179.7 97.6 277.3 9,092 87
2-FS node-or-branch (2-fs) 1,199.8 696.3 1,896.1 97,423 102

2-FCPS node-or-branch (2-fcps) 2,323.1 1,297.6 3,620.7 122,589 111

Order of Execution. JavaScript engines must follow the execution order of each language feature
described in the language speci�cation. However, we found a bug10 related to the execution order
of the delete operation that causes the execution of originally unreachable code in GraalJS. For
example, while the following code should return false, it throws an exception with �ERR� by
executing the originally unreachable code inside the arrow function in GraalJS:

false && delete (() => { throw �ERR�; })(); // Expected: false

In addition, we detected another bug11 related to the execution order of property reads in all
target engines. ECMA-262 may consider changing the semantics according to the one used in most
implementations.

Asynchronous Function / Generator. One of the complex language features in JavaScript is
asynchronous functions and generators introduced in ES6 (2015). We detected a bug12 in Spider-
Monkey that breaks the logic of asynchronous function calls. For example, the following code must
return a rejected Promise object because a non-iterable value undefined is assigned to an array
destructuring pattern [] in the async arrow function:

(async function ([]) {})(); // Expected: A rejected Promise object

However, it unexpectedly terminates with a TypeError exception in SpiderMonkey. A developer
of SpiderMonkey explained it as follows:

“The async-function spec was changed at some point [. . .]
this is also not covered by test262.”

5.2 E�ectiveness of :-FS Coverage Criteria
Table 2 shows the result of conformance test synthesis via JESTfs with �ve graph coverage criteria.
Note that 0-FS node-or-branch coverage criterion is the same with the node-or-branch coverage
criterion. To evaluate the e�ectiveness of :-FS coverage criteria, we compare the synthesized
conformance tests guided by di�erent :-FS node-or-branch coverage criteria (0-fs, 1-fs, and 2-fs in
Table 2). The second to the fourth columns denote the numbers of covered :-FS- or :-FCPS-TRs
for nodes (# Node), branches (# Branch), and both (# Total), respectively. The �fth and the sixth
columns denote the numbers of synthesized conformance tests (# Syn. Test) and detected distinct
bugs (# Bug), respectively.
The results show that higher :-FS coverage criteria are more e�ective than lower :-FS. On

average, 8.03 (125.0K / 15.6K) 1-FS-TRs exist per each 0-FS-TR, and 15.17 (1,896.1K / 125.0K) 2-FS-
TRs exist per each 1-FS-TR. It means that each node or branch is used in 8.03 di�erent language
features, and each language feature could be used in 15.17 other language features on average. For
a more detailed information, we draw a histogram of the number of covered 1-FS-TRs (or 2-FS-TRs)
10https://github.com/oracle/graaljs/issues/671
11https://github.com/tc39/ecma262/issues/2659
12https://bugzilla.mozilla.org/show_bug.cgi?id=1799288

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 126. Publication date: June 2023.

+28

+19

class C { async ["f"](){} } 
C.prototype.f.name

Synthesized with 2-FS but not with 1-FS

"async"
Wrong Result

JSC
"f"

Expected

Spec.

for (let {} = 0; 0;) ;

Synthesized with 1-FS but not with 0-FS

Crash
Wrong Result

Babel
Terminated

Expected

Spec.

/ 1514

RQ3) Effectiveness of 𝑘-FCPS Coverage Criteria
126:16 Jihyeok Park, Dongjun Youn, Kanguk Lee, and Sukyoung Ryu

Table 2. Comparison of synthesized conformance tests guided by five graph coverage criteria

Coverage Criteria⇠G
Covered :-F(CP)S-TR (k) # Syn. Test # Bug# Node # Branch # Total

0-FS node-or-branch (0-fs) 10.0 5.6 15.6 2,111 55
1-FS node-or-branch (1-fs) 79.3 45.7 125.0 6,766 83

1-FCPS node-or-branch (1-fcps) 179.7 97.6 277.3 9,092 87
2-FS node-or-branch (2-fs) 1,199.8 696.3 1,896.1 97,423 102

2-FCPS node-or-branch (2-fcps) 2,323.1 1,297.6 3,620.7 122,589 111

Order of Execution. JavaScript engines must follow the execution order of each language feature
described in the language speci�cation. However, we found a bug10 related to the execution order
of the delete operation that causes the execution of originally unreachable code in GraalJS. For
example, while the following code should return false, it throws an exception with �ERR� by
executing the originally unreachable code inside the arrow function in GraalJS:

false && delete (() => { throw �ERR�; })(); // Expected: false

In addition, we detected another bug11 related to the execution order of property reads in all
target engines. ECMA-262 may consider changing the semantics according to the one used in most
implementations.

Asynchronous Function / Generator. One of the complex language features in JavaScript is
asynchronous functions and generators introduced in ES6 (2015). We detected a bug12 in Spider-
Monkey that breaks the logic of asynchronous function calls. For example, the following code must
return a rejected Promise object because a non-iterable value undefined is assigned to an array
destructuring pattern [] in the async arrow function:

(async function ([]) {})(); // Expected: A rejected Promise object

However, it unexpectedly terminates with a TypeError exception in SpiderMonkey. A developer
of SpiderMonkey explained it as follows:

“The async-function spec was changed at some point [. . .]
this is also not covered by test262.”

5.2 E�ectiveness of :-FS Coverage Criteria
Table 2 shows the result of conformance test synthesis via JESTfs with �ve graph coverage criteria.
Note that 0-FS node-or-branch coverage criterion is the same with the node-or-branch coverage
criterion. To evaluate the e�ectiveness of :-FS coverage criteria, we compare the synthesized
conformance tests guided by di�erent :-FS node-or-branch coverage criteria (0-fs, 1-fs, and 2-fs in
Table 2). The second to the fourth columns denote the numbers of covered :-FS- or :-FCPS-TRs
for nodes (# Node), branches (# Branch), and both (# Total), respectively. The �fth and the sixth
columns denote the numbers of synthesized conformance tests (# Syn. Test) and detected distinct
bugs (# Bug), respectively.
The results show that higher :-FS coverage criteria are more e�ective than lower :-FS. On

average, 8.03 (125.0K / 15.6K) 1-FS-TRs exist per each 0-FS-TR, and 15.17 (1,896.1K / 125.0K) 2-FS-
TRs exist per each 1-FS-TR. It means that each node or branch is used in 8.03 di�erent language
features, and each language feature could be used in 15.17 other language features on average. For
a more detailed information, we draw a histogram of the number of covered 1-FS-TRs (or 2-FS-TRs)
10https://github.com/oracle/graaljs/issues/671
11https://github.com/tc39/ecma262/issues/2659
12https://bugzilla.mozilla.org/show_bug.cgi?id=1799288

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 126. Publication date: June 2023.

/ 1514

RQ3) Effectiveness of 𝑘-FCPS Coverage Criteria
126:16 Jihyeok Park, Dongjun Youn, Kanguk Lee, and Sukyoung Ryu

Table 2. Comparison of synthesized conformance tests guided by five graph coverage criteria

Coverage Criteria⇠G
Covered :-F(CP)S-TR (k) # Syn. Test # Bug# Node # Branch # Total

0-FS node-or-branch (0-fs) 10.0 5.6 15.6 2,111 55
1-FS node-or-branch (1-fs) 79.3 45.7 125.0 6,766 83

1-FCPS node-or-branch (1-fcps) 179.7 97.6 277.3 9,092 87
2-FS node-or-branch (2-fs) 1,199.8 696.3 1,896.1 97,423 102

2-FCPS node-or-branch (2-fcps) 2,323.1 1,297.6 3,620.7 122,589 111

Order of Execution. JavaScript engines must follow the execution order of each language feature
described in the language speci�cation. However, we found a bug10 related to the execution order
of the delete operation that causes the execution of originally unreachable code in GraalJS. For
example, while the following code should return false, it throws an exception with �ERR� by
executing the originally unreachable code inside the arrow function in GraalJS:

false && delete (() => { throw �ERR�; })(); // Expected: false

In addition, we detected another bug11 related to the execution order of property reads in all
target engines. ECMA-262 may consider changing the semantics according to the one used in most
implementations.

Asynchronous Function / Generator. One of the complex language features in JavaScript is
asynchronous functions and generators introduced in ES6 (2015). We detected a bug12 in Spider-
Monkey that breaks the logic of asynchronous function calls. For example, the following code must
return a rejected Promise object because a non-iterable value undefined is assigned to an array
destructuring pattern [] in the async arrow function:

(async function ([]) {})(); // Expected: A rejected Promise object

However, it unexpectedly terminates with a TypeError exception in SpiderMonkey. A developer
of SpiderMonkey explained it as follows:

“The async-function spec was changed at some point [. . .]
this is also not covered by test262.”

5.2 E�ectiveness of :-FS Coverage Criteria
Table 2 shows the result of conformance test synthesis via JESTfs with �ve graph coverage criteria.
Note that 0-FS node-or-branch coverage criterion is the same with the node-or-branch coverage
criterion. To evaluate the e�ectiveness of :-FS coverage criteria, we compare the synthesized
conformance tests guided by di�erent :-FS node-or-branch coverage criteria (0-fs, 1-fs, and 2-fs in
Table 2). The second to the fourth columns denote the numbers of covered :-FS- or :-FCPS-TRs
for nodes (# Node), branches (# Branch), and both (# Total), respectively. The �fth and the sixth
columns denote the numbers of synthesized conformance tests (# Syn. Test) and detected distinct
bugs (# Bug), respectively.
The results show that higher :-FS coverage criteria are more e�ective than lower :-FS. On

average, 8.03 (125.0K / 15.6K) 1-FS-TRs exist per each 0-FS-TR, and 15.17 (1,896.1K / 125.0K) 2-FS-
TRs exist per each 1-FS-TR. It means that each node or branch is used in 8.03 di�erent language
features, and each language feature could be used in 15.17 other language features on average. For
a more detailed information, we draw a histogram of the number of covered 1-FS-TRs (or 2-FS-TRs)
10https://github.com/oracle/graaljs/issues/671
11https://github.com/tc39/ecma262/issues/2659
12https://bugzilla.mozilla.org/show_bug.cgi?id=1799288

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 126. Publication date: June 2023.

+4

/ 1514

RQ3) Effectiveness of 𝑘-FCPS Coverage Criteria
126:16 Jihyeok Park, Dongjun Youn, Kanguk Lee, and Sukyoung Ryu

Table 2. Comparison of synthesized conformance tests guided by five graph coverage criteria

Coverage Criteria⇠G
Covered :-F(CP)S-TR (k) # Syn. Test # Bug# Node # Branch # Total

0-FS node-or-branch (0-fs) 10.0 5.6 15.6 2,111 55
1-FS node-or-branch (1-fs) 79.3 45.7 125.0 6,766 83

1-FCPS node-or-branch (1-fcps) 179.7 97.6 277.3 9,092 87
2-FS node-or-branch (2-fs) 1,199.8 696.3 1,896.1 97,423 102

2-FCPS node-or-branch (2-fcps) 2,323.1 1,297.6 3,620.7 122,589 111

Order of Execution. JavaScript engines must follow the execution order of each language feature
described in the language speci�cation. However, we found a bug10 related to the execution order
of the delete operation that causes the execution of originally unreachable code in GraalJS. For
example, while the following code should return false, it throws an exception with �ERR� by
executing the originally unreachable code inside the arrow function in GraalJS:

false && delete (() => { throw �ERR�; })(); // Expected: false

In addition, we detected another bug11 related to the execution order of property reads in all
target engines. ECMA-262 may consider changing the semantics according to the one used in most
implementations.

Asynchronous Function / Generator. One of the complex language features in JavaScript is
asynchronous functions and generators introduced in ES6 (2015). We detected a bug12 in Spider-
Monkey that breaks the logic of asynchronous function calls. For example, the following code must
return a rejected Promise object because a non-iterable value undefined is assigned to an array
destructuring pattern [] in the async arrow function:

(async function ([]) {})(); // Expected: A rejected Promise object

However, it unexpectedly terminates with a TypeError exception in SpiderMonkey. A developer
of SpiderMonkey explained it as follows:

“The async-function spec was changed at some point [. . .]
this is also not covered by test262.”

5.2 E�ectiveness of :-FS Coverage Criteria
Table 2 shows the result of conformance test synthesis via JESTfs with �ve graph coverage criteria.
Note that 0-FS node-or-branch coverage criterion is the same with the node-or-branch coverage
criterion. To evaluate the e�ectiveness of :-FS coverage criteria, we compare the synthesized
conformance tests guided by di�erent :-FS node-or-branch coverage criteria (0-fs, 1-fs, and 2-fs in
Table 2). The second to the fourth columns denote the numbers of covered :-FS- or :-FCPS-TRs
for nodes (# Node), branches (# Branch), and both (# Total), respectively. The �fth and the sixth
columns denote the numbers of synthesized conformance tests (# Syn. Test) and detected distinct
bugs (# Bug), respectively.
The results show that higher :-FS coverage criteria are more e�ective than lower :-FS. On

average, 8.03 (125.0K / 15.6K) 1-FS-TRs exist per each 0-FS-TR, and 15.17 (1,896.1K / 125.0K) 2-FS-
TRs exist per each 1-FS-TR. It means that each node or branch is used in 8.03 di�erent language
features, and each language feature could be used in 15.17 other language features on average. For
a more detailed information, we draw a histogram of the number of covered 1-FS-TRs (or 2-FS-TRs)
10https://github.com/oracle/graaljs/issues/671
11https://github.com/tc39/ecma262/issues/2659
12https://bugzilla.mozilla.org/show_bug.cgi?id=1799288

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 126. Publication date: June 2023.

+4

+9

/ 1514

RQ3) Effectiveness of 𝑘-FCPS Coverage Criteria
126:16 Jihyeok Park, Dongjun Youn, Kanguk Lee, and Sukyoung Ryu

Table 2. Comparison of synthesized conformance tests guided by five graph coverage criteria

Coverage Criteria⇠G
Covered :-F(CP)S-TR (k) # Syn. Test # Bug# Node # Branch # Total

0-FS node-or-branch (0-fs) 10.0 5.6 15.6 2,111 55
1-FS node-or-branch (1-fs) 79.3 45.7 125.0 6,766 83

1-FCPS node-or-branch (1-fcps) 179.7 97.6 277.3 9,092 87
2-FS node-or-branch (2-fs) 1,199.8 696.3 1,896.1 97,423 102

2-FCPS node-or-branch (2-fcps) 2,323.1 1,297.6 3,620.7 122,589 111

Order of Execution. JavaScript engines must follow the execution order of each language feature
described in the language speci�cation. However, we found a bug10 related to the execution order
of the delete operation that causes the execution of originally unreachable code in GraalJS. For
example, while the following code should return false, it throws an exception with �ERR� by
executing the originally unreachable code inside the arrow function in GraalJS:

false && delete (() => { throw �ERR�; })(); // Expected: false

In addition, we detected another bug11 related to the execution order of property reads in all
target engines. ECMA-262 may consider changing the semantics according to the one used in most
implementations.

Asynchronous Function / Generator. One of the complex language features in JavaScript is
asynchronous functions and generators introduced in ES6 (2015). We detected a bug12 in Spider-
Monkey that breaks the logic of asynchronous function calls. For example, the following code must
return a rejected Promise object because a non-iterable value undefined is assigned to an array
destructuring pattern [] in the async arrow function:

(async function ([]) {})(); // Expected: A rejected Promise object

However, it unexpectedly terminates with a TypeError exception in SpiderMonkey. A developer
of SpiderMonkey explained it as follows:

“The async-function spec was changed at some point [. . .]
this is also not covered by test262.”

5.2 E�ectiveness of :-FS Coverage Criteria
Table 2 shows the result of conformance test synthesis via JESTfs with �ve graph coverage criteria.
Note that 0-FS node-or-branch coverage criterion is the same with the node-or-branch coverage
criterion. To evaluate the e�ectiveness of :-FS coverage criteria, we compare the synthesized
conformance tests guided by di�erent :-FS node-or-branch coverage criteria (0-fs, 1-fs, and 2-fs in
Table 2). The second to the fourth columns denote the numbers of covered :-FS- or :-FCPS-TRs
for nodes (# Node), branches (# Branch), and both (# Total), respectively. The �fth and the sixth
columns denote the numbers of synthesized conformance tests (# Syn. Test) and detected distinct
bugs (# Bug), respectively.
The results show that higher :-FS coverage criteria are more e�ective than lower :-FS. On

average, 8.03 (125.0K / 15.6K) 1-FS-TRs exist per each 0-FS-TR, and 15.17 (1,896.1K / 125.0K) 2-FS-
TRs exist per each 1-FS-TR. It means that each node or branch is used in 8.03 di�erent language
features, and each language feature could be used in 15.17 other language features on average. For
a more detailed information, we draw a histogram of the number of covered 1-FS-TRs (or 2-FS-TRs)
10https://github.com/oracle/graaljs/issues/671
11https://github.com/tc39/ecma262/issues/2659
12https://bugzilla.mozilla.org/show_bug.cgi?id=1799288

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 126. Publication date: June 2023.

+4

+9

String.prototype

 .normalize

 .call(0, "");

Synthesized with 1-FCPS or 2-FCPS but not with 1-FS or 2-FS

RangeError

Expected

Spec.
Terminated
Wrong Result

GraalJS

/ 1515

/ 15

• !-Feature-Sensitive (!-FS) coverage criterion divides the given 
TRs with the at most !-innermost enclosing language features

7

!-Feature-Sensitive (!-FS) Coverage

FS Coverage

TR = (Feature≤!, given TR)

([SUB, ADD],)1
cover

2-FS Node Coverage

TR = (Feature≤2, Node)
42 - (1 + 2n)

Program P3

JS
TypeError

Evaluation of AddExpr : AddExpr + MulExpr

1. Return ? EvalStrOrNumBinExpr (AddExpr, +, MulExpr).

Evaluation of AddExpr : AddExpr - MulExpr

1. Return ? EvalStrOrNumBinExpr (AddExpr, -, MulExpr).

ADD
feat

SUB
feat

/ 15

Different TRs(ADD, [3, 4, 6, 7],)2
cover

• !-Feature-Call-Path-Sensitive (!-FCPS) coverage 
criterion divides the !-FS TRs with the call-paths 
from the innermost enclosing language feature

9

!-Feature-Call-Path-Sensitive (!-FCPS) Coverage

FS Coverage

TR = (Feature≤!, Call-Path, given TR)

Can
Distinguish
P4 and P5

Symbol() + 1
Program P4

JS
TypeError

1 + Symbol()
Program P5

JS
TypeError

(ADD, [3, 4, 5, 7],)2
cover

1-FCPS NodeCoverage

TR = (Feature, 
Call-Path, Node)

3 4 6 7ADD<latexit sha1_base64="SPti2hMefRxNKWNntZBVQBrDZAY=">AAACFXicbVDLSsNAFJ34rPVVdekmWARXJRFfy6IblxXsA9pQJpNJO3YeYeZGqKH/4E70X9yJW9f+iiunbRa29cCFwzn3zp17woQzA5737Swtr6yurRc2iptb2zu7pb39hlGpJrROFFe6FWJDOZO0Dgw4bSWaYhFy2gwHN2O/+Ui1YUrewzChgcA9yWJGMFip0SGRAtMtlb2KN4G7SPyclFGOWrf004kUSQWVQDg2pu17CQQZ1sAIp6NiJzU0wWSAe7RtqcSCmiCb/HbkHlslcmOlbUlwJ+rfiQwLY4YitJ0CQ9/Me2PxX8+AwHqoo7n9EF8FGZNJClSS6fo45S4odxyIGzFNCfChJZhoZi9wSR9rTMDGNvM+sMHTqGjD8uejWSSN04p/UTm/OytXr/PYCugQHaET5KNLVEW3qIbqiKAH9Ixe0Zvz4rw7H87ntHXJyWcO0Aycr18dwqBP</latexit>· · · 2call call call call

3 4 5 7ADD<latexit sha1_base64="SPti2hMefRxNKWNntZBVQBrDZAY=">AAACFXicbVDLSsNAFJ34rPVVdekmWARXJRFfy6IblxXsA9pQJpNJO3YeYeZGqKH/4E70X9yJW9f+iiunbRa29cCFwzn3zp17woQzA5737Swtr6yurRc2iptb2zu7pb39hlGpJrROFFe6FWJDOZO0Dgw4bSWaYhFy2gwHN2O/+Ui1YUrewzChgcA9yWJGMFip0SGRAtMtlb2KN4G7SPyclFGOWrf004kUSQWVQDg2pu17CQQZ1sAIp6NiJzU0wWSAe7RtqcSCmiCb/HbkHlslcmOlbUlwJ+rfiQwLY4YitJ0CQ9/Me2PxX8+AwHqoo7n9EF8FGZNJClSS6fo45S4odxyIGzFNCfChJZhoZi9wSR9rTMDGNvM+sMHTqGjD8uejWSSN04p/UTm/OytXr/PYCugQHaET5KNLVEW3qIbqiKAH9Ixe0Zvz4rw7H87ntHXJyWcO0Aycr18dwqBP</latexit>· · · 2call call call call

Backup Slides

/ 1514

RQ3) Effectiveness of !-FCPS Coverage Criteria
126:16 Jihyeok Park, Dongjun Youn, Kanguk Lee, and Sukyoung Ryu

Table 2. Comparison of synthesized conformance tests guided by five graph coverage criteria

Coverage Criteria⇠G
Covered :-F(CP)S-TR (k) # Syn. Test # Bug# Node # Branch # Total

0-FS node-or-branch (0-fs) 10.0 5.6 15.6 2,111 55
1-FS node-or-branch (1-fs) 79.3 45.7 125.0 6,766 83

1-FCPS node-or-branch (1-fcps) 179.7 97.6 277.3 9,092 87
2-FS node-or-branch (2-fs) 1,199.8 696.3 1,896.1 97,423 102

2-FCPS node-or-branch (2-fcps) 2,323.1 1,297.6 3,620.7 122,589 111

Order of Execution. JavaScript engines must follow the execution order of each language feature
described in the language speci�cation. However, we found a bug10 related to the execution order
of the delete operation that causes the execution of originally unreachable code in GraalJS. For
example, while the following code should return false, it throws an exception with �ERR� by
executing the originally unreachable code inside the arrow function in GraalJS:

false && delete (() => { throw �ERR�; })(); // Expected: false

In addition, we detected another bug11 related to the execution order of property reads in all
target engines. ECMA-262 may consider changing the semantics according to the one used in most
implementations.

Asynchronous Function / Generator. One of the complex language features in JavaScript is
asynchronous functions and generators introduced in ES6 (2015). We detected a bug12 in Spider-
Monkey that breaks the logic of asynchronous function calls. For example, the following code must
return a rejected Promise object because a non-iterable value undefined is assigned to an array
destructuring pattern [] in the async arrow function:

(async function ([]) {})(); // Expected: A rejected Promise object

However, it unexpectedly terminates with a TypeError exception in SpiderMonkey. A developer
of SpiderMonkey explained it as follows:

“The async-function spec was changed at some point [. . .]
this is also not covered by test262.”

5.2 E�ectiveness of :-FS Coverage Criteria
Table 2 shows the result of conformance test synthesis via JESTfs with �ve graph coverage criteria.
Note that 0-FS node-or-branch coverage criterion is the same with the node-or-branch coverage
criterion. To evaluate the e�ectiveness of :-FS coverage criteria, we compare the synthesized
conformance tests guided by di�erent :-FS node-or-branch coverage criteria (0-fs, 1-fs, and 2-fs in
Table 2). The second to the fourth columns denote the numbers of covered :-FS- or :-FCPS-TRs
for nodes (# Node), branches (# Branch), and both (# Total), respectively. The �fth and the sixth
columns denote the numbers of synthesized conformance tests (# Syn. Test) and detected distinct
bugs (# Bug), respectively.
The results show that higher :-FS coverage criteria are more e�ective than lower :-FS. On

average, 8.03 (125.0K / 15.6K) 1-FS-TRs exist per each 0-FS-TR, and 15.17 (1,896.1K / 125.0K) 2-FS-
TRs exist per each 1-FS-TR. It means that each node or branch is used in 8.03 di�erent language
features, and each language feature could be used in 15.17 other language features on average. For
a more detailed information, we draw a histogram of the number of covered 1-FS-TRs (or 2-FS-TRs)
10https://github.com/oracle/graaljs/issues/671
11https://github.com/tc39/ecma262/issues/2659
12https://bugzilla.mozilla.org/show_bug.cgi?id=1799288

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 126. Publication date: June 2023.

+4

+9

String.prototype
 .normalize
 .call(0, "");

Synthesized with 1-FCPS or 2-FCPS but not with 1-FS or 2-FS

RangeError

Expected

Spec.
Terminated
Wrong Result

GraalJS

/ 1513

RQ2) Effectiveness of !-FS Coverage Criteria
126:16 Jihyeok Park, Dongjun Youn, Kanguk Lee, and Sukyoung Ryu

Table 2. Comparison of synthesized conformance tests guided by five graph coverage criteria

Coverage Criteria⇠G
Covered :-F(CP)S-TR (k) # Syn. Test # Bug# Node # Branch # Total

0-FS node-or-branch (0-fs) 10.0 5.6 15.6 2,111 55
1-FS node-or-branch (1-fs) 79.3 45.7 125.0 6,766 83

1-FCPS node-or-branch (1-fcps) 179.7 97.6 277.3 9,092 87
2-FS node-or-branch (2-fs) 1,199.8 696.3 1,896.1 97,423 102

2-FCPS node-or-branch (2-fcps) 2,323.1 1,297.6 3,620.7 122,589 111

Order of Execution. JavaScript engines must follow the execution order of each language feature
described in the language speci�cation. However, we found a bug10 related to the execution order
of the delete operation that causes the execution of originally unreachable code in GraalJS. For
example, while the following code should return false, it throws an exception with �ERR� by
executing the originally unreachable code inside the arrow function in GraalJS:

false && delete (() => { throw �ERR�; })(); // Expected: false

In addition, we detected another bug11 related to the execution order of property reads in all
target engines. ECMA-262 may consider changing the semantics according to the one used in most
implementations.

Asynchronous Function / Generator. One of the complex language features in JavaScript is
asynchronous functions and generators introduced in ES6 (2015). We detected a bug12 in Spider-
Monkey that breaks the logic of asynchronous function calls. For example, the following code must
return a rejected Promise object because a non-iterable value undefined is assigned to an array
destructuring pattern [] in the async arrow function:

(async function ([]) {})(); // Expected: A rejected Promise object

However, it unexpectedly terminates with a TypeError exception in SpiderMonkey. A developer
of SpiderMonkey explained it as follows:

“The async-function spec was changed at some point [. . .]
this is also not covered by test262.”

5.2 E�ectiveness of :-FS Coverage Criteria
Table 2 shows the result of conformance test synthesis via JESTfs with �ve graph coverage criteria.
Note that 0-FS node-or-branch coverage criterion is the same with the node-or-branch coverage
criterion. To evaluate the e�ectiveness of :-FS coverage criteria, we compare the synthesized
conformance tests guided by di�erent :-FS node-or-branch coverage criteria (0-fs, 1-fs, and 2-fs in
Table 2). The second to the fourth columns denote the numbers of covered :-FS- or :-FCPS-TRs
for nodes (# Node), branches (# Branch), and both (# Total), respectively. The �fth and the sixth
columns denote the numbers of synthesized conformance tests (# Syn. Test) and detected distinct
bugs (# Bug), respectively.
The results show that higher :-FS coverage criteria are more e�ective than lower :-FS. On

average, 8.03 (125.0K / 15.6K) 1-FS-TRs exist per each 0-FS-TR, and 15.17 (1,896.1K / 125.0K) 2-FS-
TRs exist per each 1-FS-TR. It means that each node or branch is used in 8.03 di�erent language
features, and each language feature could be used in 15.17 other language features on average. For
a more detailed information, we draw a histogram of the number of covered 1-FS-TRs (or 2-FS-TRs)
10https://github.com/oracle/graaljs/issues/671
11https://github.com/tc39/ecma262/issues/2659
12https://bugzilla.mozilla.org/show_bug.cgi?id=1799288

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 126. Publication date: June 2023.

+28

+19

class C { async ["f"](){} }
C.prototype.f.name

Synthesized with 2-FS but not with 1-FS

"async"
Wrong Result

JSC
"f"

Expected

Spec.

for (let {} = 0; 0;) ;

Synthesized with 1-FS but not with 0-FS

Crash
Wrong Result

Babel
Terminated

Expected

Spec.

/ 15

• JEST [1] is a JavaScript conformance test generator using Coverage-Guided Fuzzing

• We implemented JESTfs as an extension of JEST with !-FS and !-FCPS coverage criteria

10

Implementation — JESTfs

[1] Park et al., "JEST: N+1-version Differential Testing of Both JavaScript Engines and Specification", ICSE 2021

Seed

Synthesizer

<latexit sha1_base64="BAYUFYNPPDk+F8E7N02xSewRlds=">AAACI3icbVDLSsNAFJ2pr1pfrS7dBIvgqiQi6rLYhS4r2Ac0oUymk3boTBJmboQQ+htudePXuBM3LvwXJ20WtvXAwOGce7lnjh8LrsG2v3FpY3Nre6e8W9nbPzg8qtaOuzpKFGUdGolI9X2imeAh6wAHwfqxYkT6gvX8aSv3e89MaR6FT5DGzJNkHPKAUwJGcltDVxKY+H52PxtW63bDnsNaJ05B6qhAe1jD2B1FNJEsBCqI1gPHjsHLiAJOBZtV3ESzmNApGbOBoSGRTHvZPPTMOjfKyAoiZV4I1lz9u5ERqXUqfTOZR9SrXi7+5w0SCG69jIdxAiyki0NBIiyIrLwBa8QVoyBSQwhV3GS16IQoQsH0tHRFgyQqVaOln2RSsAAUH09gVqmY0pzVitZJ97LhXDeuHq/qzbuivjI6RWfoAjnoBjXRA2qjDqIoRi/oFb3hd/yBP/HXYrSEi50TtAT88wuSQaRr</latexit>

CG
Coverage

Criterion

Program

Pool

JSJSJS

<latexit sha1_base64="LAjDT+KvUJlC68obPh9iBbDk7jo=">AAACMnicbVBNSwMxEE38rPWr1ZN4WSyCp7IrRT0WRRBPFa0W2lKy6WwbmuwuyaxYlsVf41Uv/hm9iVd/hGmtYNUHgTfvzTCZ58dSGHTdFzozOze/sJhbyi+vrK6tF4ob1yZKNIc6j2SkGz4zIEUIdRQooRFrYMqXcOMPTkb+zS1oI6LwCocxtBXrhSIQnKGVOoWtFsIdmiA9P728yjrfVWCyTqHklt0xnL/Em5ASmaDWKVLa6kY8URAil8yYpufG2E6ZRsElZPlWYiBmfMB60LQ0ZApMOx3fkDm7Vuk6QaTtC9EZqz8nUqaMGSrfdiqGffPbG4n/ec0Eg6N2KsI4QQj516IgkQ5GzigQpys0cJRDSxjXwv7V4X2mGUcb29QWg4rpoe5OXZIqCQFq0etjls/b0LzfEf0l1/tl76BcuaiUqseT+HJkm+yQPeKRQ1IlZ6RG6oSTe/JAHskTfaav9I2+f7XO0MnMJpkC/fgE9pSqxQ==</latexit>

JESTfs

Mechanized

Spec. for JS

Target

Selector

Program

MutatorTarget

Program

JS

Mutated

Program

JS

Assertion

Injector Conform.

Test Suite

JSJSJS
Program

Pool

JSJSJS

Backup Slides

/ 1517

RQ4) Comparison with Test262Feature-Sensitive Coverage for Conformance Testing 126:19

#0-FS-TR #1-FS-TR #2-FS-TR

#2-FCPS-TR#1-FCPS-TR

2.6K
14.6K

0.9K 26.0K
96.3K

28.7K
0.15M

0.24M 1.65M

93.6K
197.3K

80.0K
0.37M

0.35M 3.26M

syn-test

test262

(14.4%)
(80.4%)

(5.2%)

(25.2%)
(53.2%)

(21.6%)
(9.2%)

(8.8%) (82.0%)

(7.3%)

(12.0%) (80.8%)
(17.2%)

(63.8%)
(19.0%)

(a) Covered TRs by synthesized tests and Test262

our

our test

syn-test

test262

0 25 50

2-

FS
-T

R

time (h)

our test262
1.90M

0.39M

0 25 50

1-

FC
PS

-T
R

time (h)

our test262
290.9K

189.6K

0 25 50

1-

FS
-T

R

time (h)

our test262
125.0K
122.3K

0 25 50

0-

FS
-T

R

time (h)

our test262
17.2K

15.6K

0 25 50

2-

FC
PS

-T
R

time (h)

0.72M

3.62M

(b) Covered TRs over time

Fig. 10. Covered !-FS-TRs and !-FCPS-TRs for synthesized tests via JESTfs and Test262

Figure 10 shows (a) Venn diagrams of the numbers of covered !-FS-TRs and !-FCPS-TRs for the
synthesized conformance tests (syn-test) via JESTfs and applicable conformance tests in Test262
(test262) and (b) their changes over time. Without any feature-sensitive coverages, the coverage of
synthesized tests is less than that of Test262, and only 5.2% (0.9K) 0-FS-TRs are newly covered by
the synthesized tests. On the other hand, the numbers of !-FS-TRs covered by only synthesized
tests increase when using higher ! : 28.7K (19.0%) for 1-FS-TRs and 1.65M (80.8%) for 2-FS-TRs. In
addition, the number of 1-FCPS-TRs (or 2-FCPS-TRs) covered by only synthesized tests is higher
than the number of 1-FS-TRs (or 2-FS-TRs) covered by only synthesized tests: 80.0K (21.6%) for
1-FCPS-TRs and 3.26M (82.0%) for 2-FCPS-TRs. Figure 10(b) also shows that the coverage of Test262
is better than that of synthesized tests without any feature-sensitive coverages, but the coverage of
synthesized tests outperforms that of Test262 with 2-FS-TRs and 2-FCPS-TRs.

6 RELATEDWORK

Coverage Criteria in So!ware Testing. Coverage criteria in software testing are essential in
measuring the quality of test inputs. The most common coverage criteria are structural coverages
in a given program’s control-!ow graph (CFG) [Ammann and O"utt 2008; Chilenski and Miller
1994] also utilizing data-!ow information [Herman 1976] and type information [Bae et al. 2017].
On the other hand, model-based coverage [Utting and Legeard 2010] criteria consider specialized
abstract behavior models and de#ne the test requirements in the model. Such models include state
transitions [Artho et al. 2017], autonomous driving systems [Laurent et al. 2022], deep neural
networks (DLLs) [Ma et al. 2018; Odena et al. 2019; Pei et al. 2017; Sun et al. 2018; Xie et al. 2019].
However, there are no specialized coverage criteria for programming language tools, such as
compilers, interpreters, and transpilers. In this paper, we #rst presented feature-sensitive coverages
as general extensions of graph coverages for programming language tools to discriminate test
requirements based on enclosing language features or feature-call-paths.

Mechanized Speci"cation. Researchers have presented mechanized speci#cations to formally
describe the semantics of diverse programming languages, such as OCaml [Owens 2008], C [Blazy
and Leroy 2009], C++[Ramananandro et al. 2012], Java [Bogdanas and Roşu 2015], and POSIX
shell [Greenberg and Blatt 2019]. At the same time, general metalanguages or frameworks for
mechanized language speci#cations have also emerge as. For example, Sewell et al. [2010] presented
Ott as a tool that compiles language semantics into proof assistant code and supports ametalanguage
used in de#ning language semantics as inference rules. The K framework [Ros, u and S, erbănută
2010] proposed a formalism for writing operational semantics and provides a derivation of veri#ers
directly from the semantics. Bodin et al. [2019] developed a skeletal semantics framework in Coq
for creating big-step semantics by focusing on the structure of the semantics.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 126. Publication date: June 2023.

Feature-Sensitive Coverage for Conformance Testing 126:19

#0-FS-TR #1-FS-TR #2-FS-TR

#2-FCPS-TR#1-FCPS-TR

2.6K
14.6K

0.9K 26.0K
96.3K

28.7K
0.15M

0.24M 1.65M

93.6K
197.3K

80.0K
0.37M

0.35M 3.26M

syn-test

test262

(14.4%)
(80.4%)

(5.2%)

(25.2%)
(53.2%)

(21.6%)
(9.2%)

(8.8%) (82.0%)

(7.3%)

(12.0%) (80.8%)
(17.2%)

(63.8%)
(19.0%)

(a) Covered TRs by synthesized tests and Test262

our

our test

syn-test

test262

0 25 50

2-

FS
-T

R

time (h)

our test262
1.90M

0.39M

0 25 50

1-

FC
PS

-T
R

time (h)

our test262
290.9K

189.6K

0 25 50

1-

FS
-T

R

time (h)

our test262
125.0K
122.3K

0 25 50

0-

FS
-T

R

time (h)

our test262
17.2K

15.6K

0 25 50

2-

FC
PS

-T
R

time (h)

0.72M

3.62M

(b) Covered TRs over time

Fig. 10. Covered !-FS-TRs and !-FCPS-TRs for synthesized tests via JESTfs and Test262

Figure 10 shows (a) Venn diagrams of the numbers of covered !-FS-TRs and !-FCPS-TRs for the
synthesized conformance tests (syn-test) via JESTfs and applicable conformance tests in Test262
(test262) and (b) their changes over time. Without any feature-sensitive coverages, the coverage of
synthesized tests is less than that of Test262, and only 5.2% (0.9K) 0-FS-TRs are newly covered by
the synthesized tests. On the other hand, the numbers of !-FS-TRs covered by only synthesized
tests increase when using higher ! : 28.7K (19.0%) for 1-FS-TRs and 1.65M (80.8%) for 2-FS-TRs. In
addition, the number of 1-FCPS-TRs (or 2-FCPS-TRs) covered by only synthesized tests is higher
than the number of 1-FS-TRs (or 2-FS-TRs) covered by only synthesized tests: 80.0K (21.6%) for
1-FCPS-TRs and 3.26M (82.0%) for 2-FCPS-TRs. Figure 10(b) also shows that the coverage of Test262
is better than that of synthesized tests without any feature-sensitive coverages, but the coverage of
synthesized tests outperforms that of Test262 with 2-FS-TRs and 2-FCPS-TRs.

6 RELATEDWORK

Coverage Criteria in So!ware Testing. Coverage criteria in software testing are essential in
measuring the quality of test inputs. The most common coverage criteria are structural coverages
in a given program’s control-!ow graph (CFG) [Ammann and O"utt 2008; Chilenski and Miller
1994] also utilizing data-!ow information [Herman 1976] and type information [Bae et al. 2017].
On the other hand, model-based coverage [Utting and Legeard 2010] criteria consider specialized
abstract behavior models and de#ne the test requirements in the model. Such models include state
transitions [Artho et al. 2017], autonomous driving systems [Laurent et al. 2022], deep neural
networks (DLLs) [Ma et al. 2018; Odena et al. 2019; Pei et al. 2017; Sun et al. 2018; Xie et al. 2019].
However, there are no specialized coverage criteria for programming language tools, such as
compilers, interpreters, and transpilers. In this paper, we #rst presented feature-sensitive coverages
as general extensions of graph coverages for programming language tools to discriminate test
requirements based on enclosing language features or feature-call-paths.

Mechanized Speci"cation. Researchers have presented mechanized speci#cations to formally
describe the semantics of diverse programming languages, such as OCaml [Owens 2008], C [Blazy
and Leroy 2009], C++[Ramananandro et al. 2012], Java [Bogdanas and Roşu 2015], and POSIX
shell [Greenberg and Blatt 2019]. At the same time, general metalanguages or frameworks for
mechanized language speci#cations have also emerge as. For example, Sewell et al. [2010] presented
Ott as a tool that compiles language semantics into proof assistant code and supports ametalanguage
used in de#ning language semantics as inference rules. The K framework [Ros, u and S, erbănută
2010] proposed a formalism for writing operational semantics and provides a derivation of veri#ers
directly from the semantics. Bodin et al. [2019] developed a skeletal semantics framework in Coq
for creating big-step semantics by focusing on the structure of the semantics.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 126. Publication date: June 2023.

Feature-Sensitive Coverage for Conformance Testing 126:19

#0-FS-TR #1-FS-TR #2-FS-TR

#2-FCPS-TR#1-FCPS-TR

2.6K
14.6K

0.9K 26.0K
96.3K

28.7K
0.15M

0.24M 1.65M

93.6K
197.3K

80.0K
0.37M

0.35M 3.26M

syn-test

test262

(14.4%)
(80.4%)

(5.2%)

(25.2%)
(53.2%)

(21.6%)
(9.2%)

(8.8%) (82.0%)

(7.3%)

(12.0%) (80.8%)
(17.2%)

(63.8%)
(19.0%)

(a) Covered TRs by synthesized tests and Test262

our

our test

syn-test

test262

0 25 50

2-

FS
-T

R

time (h)

our test262
1.90M

0.39M

0 25 50

1-

FC
PS

-T
R

time (h)

our test262
290.9K

189.6K

0 25 50

1-
FS

-T
R

time (h)

our test262
125.0K
122.3K

0 25 50

0-

FS
-T

R

time (h)

our test262
17.2K

15.6K

0 25 50

2-

FC
PS

-T
R

time (h)

0.72M

3.62M

(b) Covered TRs over time

Fig. 10. Covered !-FS-TRs and !-FCPS-TRs for synthesized tests via JESTfs and Test262

Figure 10 shows (a) Venn diagrams of the numbers of covered !-FS-TRs and !-FCPS-TRs for the
synthesized conformance tests (syn-test) via JESTfs and applicable conformance tests in Test262
(test262) and (b) their changes over time. Without any feature-sensitive coverages, the coverage of
synthesized tests is less than that of Test262, and only 5.2% (0.9K) 0-FS-TRs are newly covered by
the synthesized tests. On the other hand, the numbers of !-FS-TRs covered by only synthesized
tests increase when using higher ! : 28.7K (19.0%) for 1-FS-TRs and 1.65M (80.8%) for 2-FS-TRs. In
addition, the number of 1-FCPS-TRs (or 2-FCPS-TRs) covered by only synthesized tests is higher
than the number of 1-FS-TRs (or 2-FS-TRs) covered by only synthesized tests: 80.0K (21.6%) for
1-FCPS-TRs and 3.26M (82.0%) for 2-FCPS-TRs. Figure 10(b) also shows that the coverage of Test262
is better than that of synthesized tests without any feature-sensitive coverages, but the coverage of
synthesized tests outperforms that of Test262 with 2-FS-TRs and 2-FCPS-TRs.

6 RELATEDWORK

Coverage Criteria in So!ware Testing. Coverage criteria in software testing are essential in
measuring the quality of test inputs. The most common coverage criteria are structural coverages
in a given program’s control-!ow graph (CFG) [Ammann and O"utt 2008; Chilenski and Miller
1994] also utilizing data-!ow information [Herman 1976] and type information [Bae et al. 2017].
On the other hand, model-based coverage [Utting and Legeard 2010] criteria consider specialized
abstract behavior models and de#ne the test requirements in the model. Such models include state
transitions [Artho et al. 2017], autonomous driving systems [Laurent et al. 2022], deep neural
networks (DLLs) [Ma et al. 2018; Odena et al. 2019; Pei et al. 2017; Sun et al. 2018; Xie et al. 2019].
However, there are no specialized coverage criteria for programming language tools, such as
compilers, interpreters, and transpilers. In this paper, we #rst presented feature-sensitive coverages
as general extensions of graph coverages for programming language tools to discriminate test
requirements based on enclosing language features or feature-call-paths.

Mechanized Speci"cation. Researchers have presented mechanized speci#cations to formally
describe the semantics of diverse programming languages, such as OCaml [Owens 2008], C [Blazy
and Leroy 2009], C++[Ramananandro et al. 2012], Java [Bogdanas and Roşu 2015], and POSIX
shell [Greenberg and Blatt 2019]. At the same time, general metalanguages or frameworks for
mechanized language speci#cations have also emerge as. For example, Sewell et al. [2010] presented
Ott as a tool that compiles language semantics into proof assistant code and supports ametalanguage
used in de#ning language semantics as inference rules. The K framework [Ros, u and S, erbănută
2010] proposed a formalism for writing operational semantics and provides a derivation of veri#ers
directly from the semantics. Bodin et al. [2019] developed a skeletal semantics framework in Coq
for creating big-step semantics by focusing on the structure of the semantics.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 126. Publication date: June 2023.

Feature-Sensitive Coverage for Conformance Testing 126:19

#0-FS-TR #1-FS-TR #2-FS-TR

#2-FCPS-TR#1-FCPS-TR

2.6K
14.6K

0.9K 26.0K
96.3K

28.7K
0.15M

0.24M 1.65M

93.6K
197.3K

80.0K
0.37M

0.35M 3.26M

syn-test

test262

(14.4%)
(80.4%)

(5.2%)

(25.2%)
(53.2%)

(21.6%)
(9.2%)

(8.8%) (82.0%)

(7.3%)

(12.0%) (80.8%)
(17.2%)

(63.8%)
(19.0%)

(a) Covered TRs by synthesized tests and Test262

our

our test

syn-test

test262

0 25 50

2-

FS
-T

R

time (h)

our test262
1.90M

0.39M

0 25 50

1-

FC
PS

-T
R

time (h)

our test262
290.9K

189.6K

0 25 50

1-

FS
-T

R

time (h)

our test262
125.0K
122.3K

0 25 50

0-

FS
-T

R

time (h)

our test262
17.2K

15.6K

0 25 50

2-

FC
PS

-T
R

time (h)

0.72M

3.62M

(b) Covered TRs over time

Fig. 10. Covered !-FS-TRs and !-FCPS-TRs for synthesized tests via JESTfs and Test262

Figure 10 shows (a) Venn diagrams of the numbers of covered !-FS-TRs and !-FCPS-TRs for the
synthesized conformance tests (syn-test) via JESTfs and applicable conformance tests in Test262
(test262) and (b) their changes over time. Without any feature-sensitive coverages, the coverage of
synthesized tests is less than that of Test262, and only 5.2% (0.9K) 0-FS-TRs are newly covered by
the synthesized tests. On the other hand, the numbers of !-FS-TRs covered by only synthesized
tests increase when using higher ! : 28.7K (19.0%) for 1-FS-TRs and 1.65M (80.8%) for 2-FS-TRs. In
addition, the number of 1-FCPS-TRs (or 2-FCPS-TRs) covered by only synthesized tests is higher
than the number of 1-FS-TRs (or 2-FS-TRs) covered by only synthesized tests: 80.0K (21.6%) for
1-FCPS-TRs and 3.26M (82.0%) for 2-FCPS-TRs. Figure 10(b) also shows that the coverage of Test262
is better than that of synthesized tests without any feature-sensitive coverages, but the coverage of
synthesized tests outperforms that of Test262 with 2-FS-TRs and 2-FCPS-TRs.

6 RELATEDWORK

Coverage Criteria in So!ware Testing. Coverage criteria in software testing are essential in
measuring the quality of test inputs. The most common coverage criteria are structural coverages
in a given program’s control-!ow graph (CFG) [Ammann and O"utt 2008; Chilenski and Miller
1994] also utilizing data-!ow information [Herman 1976] and type information [Bae et al. 2017].
On the other hand, model-based coverage [Utting and Legeard 2010] criteria consider specialized
abstract behavior models and de#ne the test requirements in the model. Such models include state
transitions [Artho et al. 2017], autonomous driving systems [Laurent et al. 2022], deep neural
networks (DLLs) [Ma et al. 2018; Odena et al. 2019; Pei et al. 2017; Sun et al. 2018; Xie et al. 2019].
However, there are no specialized coverage criteria for programming language tools, such as
compilers, interpreters, and transpilers. In this paper, we #rst presented feature-sensitive coverages
as general extensions of graph coverages for programming language tools to discriminate test
requirements based on enclosing language features or feature-call-paths.

Mechanized Speci"cation. Researchers have presented mechanized speci#cations to formally
describe the semantics of diverse programming languages, such as OCaml [Owens 2008], C [Blazy
and Leroy 2009], C++[Ramananandro et al. 2012], Java [Bogdanas and Roşu 2015], and POSIX
shell [Greenberg and Blatt 2019]. At the same time, general metalanguages or frameworks for
mechanized language speci#cations have also emerge as. For example, Sewell et al. [2010] presented
Ott as a tool that compiles language semantics into proof assistant code and supports ametalanguage
used in de#ning language semantics as inference rules. The K framework [Ros, u and S, erbănută
2010] proposed a formalism for writing operational semantics and provides a derivation of veri#ers
directly from the semantics. Bodin et al. [2019] developed a skeletal semantics framework in Coq
for creating big-step semantics by focusing on the structure of the semantics.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 126. Publication date: June 2023.

Feature-Sensitive Coverage for Conformance Testing 126:19

#0-FS-TR #1-FS-TR #2-FS-TR

#2-FCPS-TR#1-FCPS-TR

2.6K
14.6K

0.9K 26.0K
96.3K

28.7K
0.15M

0.24M 1.65M

93.6K
197.3K

80.0K
0.37M

0.35M 3.26M

syn-test

test262

(14.4%)
(80.4%)

(5.2%)

(25.2%)
(53.2%)

(21.6%)
(9.2%)

(8.8%) (82.0%)

(7.3%)

(12.0%) (80.8%)
(17.2%)

(63.8%)
(19.0%)

(a) Covered TRs by synthesized tests and Test262

our

our test

syn-test

test262

0 25 50

2-

FS
-T

R

time (h)

our test262
1.90M

0.39M

0 25 50

1-

FC
PS

-T
R

time (h)

our test262
290.9K

189.6K

0 25 50

1-

FS
-T

R

time (h)

our test262
125.0K
122.3K

0 25 50

0-

FS
-T

R

time (h)

our test262
17.2K

15.6K

0 25 50

2-

FC
PS

-T
R

time (h)

0.72M

3.62M

(b) Covered TRs over time

Fig. 10. Covered !-FS-TRs and !-FCPS-TRs for synthesized tests via JESTfs and Test262

Figure 10 shows (a) Venn diagrams of the numbers of covered !-FS-TRs and !-FCPS-TRs for the
synthesized conformance tests (syn-test) via JESTfs and applicable conformance tests in Test262
(test262) and (b) their changes over time. Without any feature-sensitive coverages, the coverage of
synthesized tests is less than that of Test262, and only 5.2% (0.9K) 0-FS-TRs are newly covered by
the synthesized tests. On the other hand, the numbers of !-FS-TRs covered by only synthesized
tests increase when using higher ! : 28.7K (19.0%) for 1-FS-TRs and 1.65M (80.8%) for 2-FS-TRs. In
addition, the number of 1-FCPS-TRs (or 2-FCPS-TRs) covered by only synthesized tests is higher
than the number of 1-FS-TRs (or 2-FS-TRs) covered by only synthesized tests: 80.0K (21.6%) for
1-FCPS-TRs and 3.26M (82.0%) for 2-FCPS-TRs. Figure 10(b) also shows that the coverage of Test262
is better than that of synthesized tests without any feature-sensitive coverages, but the coverage of
synthesized tests outperforms that of Test262 with 2-FS-TRs and 2-FCPS-TRs.

6 RELATEDWORK

Coverage Criteria in So!ware Testing. Coverage criteria in software testing are essential in
measuring the quality of test inputs. The most common coverage criteria are structural coverages
in a given program’s control-!ow graph (CFG) [Ammann and O"utt 2008; Chilenski and Miller
1994] also utilizing data-!ow information [Herman 1976] and type information [Bae et al. 2017].
On the other hand, model-based coverage [Utting and Legeard 2010] criteria consider specialized
abstract behavior models and de#ne the test requirements in the model. Such models include state
transitions [Artho et al. 2017], autonomous driving systems [Laurent et al. 2022], deep neural
networks (DLLs) [Ma et al. 2018; Odena et al. 2019; Pei et al. 2017; Sun et al. 2018; Xie et al. 2019].
However, there are no specialized coverage criteria for programming language tools, such as
compilers, interpreters, and transpilers. In this paper, we #rst presented feature-sensitive coverages
as general extensions of graph coverages for programming language tools to discriminate test
requirements based on enclosing language features or feature-call-paths.

Mechanized Speci"cation. Researchers have presented mechanized speci#cations to formally
describe the semantics of diverse programming languages, such as OCaml [Owens 2008], C [Blazy
and Leroy 2009], C++[Ramananandro et al. 2012], Java [Bogdanas and Roşu 2015], and POSIX
shell [Greenberg and Blatt 2019]. At the same time, general metalanguages or frameworks for
mechanized language speci#cations have also emerge as. For example, Sewell et al. [2010] presented
Ott as a tool that compiles language semantics into proof assistant code and supports ametalanguage
used in de#ning language semantics as inference rules. The K framework [Ros, u and S, erbănută
2010] proposed a formalism for writing operational semantics and provides a derivation of veri#ers
directly from the semantics. Bodin et al. [2019] developed a skeletal semantics framework in Coq
for creating big-step semantics by focusing on the structure of the semantics.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 126. Publication date: June 2023.

Feature-Sensitive Coverage for Conformance Testing 126:19

#0-FS-TR #1-FS-TR #2-FS-TR

#2-FCPS-TR#1-FCPS-TR

2.6K
14.6K

0.9K 26.0K
96.3K

28.7K
0.15M

0.24M 1.65M

93.6K
197.3K

80.0K
0.37M

0.35M 3.26M

syn-test

test262

(14.4%)
(80.4%)

(5.2%)

(25.2%)
(53.2%)

(21.6%)
(9.2%)

(8.8%) (82.0%)

(7.3%)

(12.0%) (80.8%)
(17.2%)

(63.8%)
(19.0%)

(a) Covered TRs by synthesized tests and Test262

our

our test

syn-test

test262

0 25 50

2-

FS
-T

R

time (h)

our test262
1.90M

0.39M

0 25 50

1-

FC
PS

-T
R

time (h)

our test262
290.9K

189.6K

0 25 50

1-

FS
-T

R

time (h)

our test262
125.0K
122.3K

0 25 50

0-

FS
-T

R

time (h)

our test262
17.2K

15.6K

0 25 50

2-

FC
PS

-T
R

time (h)

0.72M

3.62M

(b) Covered TRs over time

Fig. 10. Covered !-FS-TRs and !-FCPS-TRs for synthesized tests via JESTfs and Test262

Figure 10 shows (a) Venn diagrams of the numbers of covered !-FS-TRs and !-FCPS-TRs for the
synthesized conformance tests (syn-test) via JESTfs and applicable conformance tests in Test262
(test262) and (b) their changes over time. Without any feature-sensitive coverages, the coverage of
synthesized tests is less than that of Test262, and only 5.2% (0.9K) 0-FS-TRs are newly covered by
the synthesized tests. On the other hand, the numbers of !-FS-TRs covered by only synthesized
tests increase when using higher ! : 28.7K (19.0%) for 1-FS-TRs and 1.65M (80.8%) for 2-FS-TRs. In
addition, the number of 1-FCPS-TRs (or 2-FCPS-TRs) covered by only synthesized tests is higher
than the number of 1-FS-TRs (or 2-FS-TRs) covered by only synthesized tests: 80.0K (21.6%) for
1-FCPS-TRs and 3.26M (82.0%) for 2-FCPS-TRs. Figure 10(b) also shows that the coverage of Test262
is better than that of synthesized tests without any feature-sensitive coverages, but the coverage of
synthesized tests outperforms that of Test262 with 2-FS-TRs and 2-FCPS-TRs.

6 RELATEDWORK

Coverage Criteria in So!ware Testing. Coverage criteria in software testing are essential in
measuring the quality of test inputs. The most common coverage criteria are structural coverages
in a given program’s control-!ow graph (CFG) [Ammann and O"utt 2008; Chilenski and Miller
1994] also utilizing data-!ow information [Herman 1976] and type information [Bae et al. 2017].
On the other hand, model-based coverage [Utting and Legeard 2010] criteria consider specialized
abstract behavior models and de#ne the test requirements in the model. Such models include state
transitions [Artho et al. 2017], autonomous driving systems [Laurent et al. 2022], deep neural
networks (DLLs) [Ma et al. 2018; Odena et al. 2019; Pei et al. 2017; Sun et al. 2018; Xie et al. 2019].
However, there are no specialized coverage criteria for programming language tools, such as
compilers, interpreters, and transpilers. In this paper, we #rst presented feature-sensitive coverages
as general extensions of graph coverages for programming language tools to discriminate test
requirements based on enclosing language features or feature-call-paths.

Mechanized Speci"cation. Researchers have presented mechanized speci#cations to formally
describe the semantics of diverse programming languages, such as OCaml [Owens 2008], C [Blazy
and Leroy 2009], C++[Ramananandro et al. 2012], Java [Bogdanas and Roşu 2015], and POSIX
shell [Greenberg and Blatt 2019]. At the same time, general metalanguages or frameworks for
mechanized language speci#cations have also emerge as. For example, Sewell et al. [2010] presented
Ott as a tool that compiles language semantics into proof assistant code and supports ametalanguage
used in de#ning language semantics as inference rules. The K framework [Ros, u and S, erbănută
2010] proposed a formalism for writing operational semantics and provides a derivation of veri#ers
directly from the semantics. Bodin et al. [2019] developed a skeletal semantics framework in Coq
for creating big-step semantics by focusing on the structure of the semantics.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 126. Publication date: June 2023.

Feature-Sensitive Coverage for Conformance Testing 126:19

#0-FS-TR #1-FS-TR #2-FS-TR

#2-FCPS-TR#1-FCPS-TR

2.6K
14.6K

0.9K 26.0K
96.3K

28.7K
0.15M

0.24M 1.65M

93.6K
197.3K

80.0K
0.37M

0.35M 3.26M

syn-test

test262

(14.4%)
(80.4%)

(5.2%)

(25.2%)
(53.2%)

(21.6%)
(9.2%)

(8.8%) (82.0%)

(7.3%)

(12.0%) (80.8%)
(17.2%)

(63.8%)
(19.0%)

(a) Covered TRs by synthesized tests and Test262

our

our test

syn-test

test262

0 25 50

2-

FS
-T

R

time (h)

our test262
1.90M

0.39M

0 25 50

1-

FC
PS

-T
R

time (h)

our test262
290.9K

189.6K

0 25 50

1-

FS
-T

R

time (h)

our test262
125.0K
122.3K

0 25 50

0-

FS
-T

R

time (h)

our test262
17.2K

15.6K

0 25 50

2-

FC
PS

-T
R

time (h)

0.72M

3.62M

(b) Covered TRs over time

Fig. 10. Covered !-FS-TRs and !-FCPS-TRs for synthesized tests via JESTfs and Test262

Figure 10 shows (a) Venn diagrams of the numbers of covered !-FS-TRs and !-FCPS-TRs for the
synthesized conformance tests (syn-test) via JESTfs and applicable conformance tests in Test262
(test262) and (b) their changes over time. Without any feature-sensitive coverages, the coverage of
synthesized tests is less than that of Test262, and only 5.2% (0.9K) 0-FS-TRs are newly covered by
the synthesized tests. On the other hand, the numbers of !-FS-TRs covered by only synthesized
tests increase when using higher ! : 28.7K (19.0%) for 1-FS-TRs and 1.65M (80.8%) for 2-FS-TRs. In
addition, the number of 1-FCPS-TRs (or 2-FCPS-TRs) covered by only synthesized tests is higher
than the number of 1-FS-TRs (or 2-FS-TRs) covered by only synthesized tests: 80.0K (21.6%) for
1-FCPS-TRs and 3.26M (82.0%) for 2-FCPS-TRs. Figure 10(b) also shows that the coverage of Test262
is better than that of synthesized tests without any feature-sensitive coverages, but the coverage of
synthesized tests outperforms that of Test262 with 2-FS-TRs and 2-FCPS-TRs.

6 RELATEDWORK

Coverage Criteria in So!ware Testing. Coverage criteria in software testing are essential in
measuring the quality of test inputs. The most common coverage criteria are structural coverages
in a given program’s control-!ow graph (CFG) [Ammann and O"utt 2008; Chilenski and Miller
1994] also utilizing data-!ow information [Herman 1976] and type information [Bae et al. 2017].
On the other hand, model-based coverage [Utting and Legeard 2010] criteria consider specialized
abstract behavior models and de#ne the test requirements in the model. Such models include state
transitions [Artho et al. 2017], autonomous driving systems [Laurent et al. 2022], deep neural
networks (DLLs) [Ma et al. 2018; Odena et al. 2019; Pei et al. 2017; Sun et al. 2018; Xie et al. 2019].
However, there are no specialized coverage criteria for programming language tools, such as
compilers, interpreters, and transpilers. In this paper, we #rst presented feature-sensitive coverages
as general extensions of graph coverages for programming language tools to discriminate test
requirements based on enclosing language features or feature-call-paths.

Mechanized Speci"cation. Researchers have presented mechanized speci#cations to formally
describe the semantics of diverse programming languages, such as OCaml [Owens 2008], C [Blazy
and Leroy 2009], C++[Ramananandro et al. 2012], Java [Bogdanas and Roşu 2015], and POSIX
shell [Greenberg and Blatt 2019]. At the same time, general metalanguages or frameworks for
mechanized language speci#cations have also emerge as. For example, Sewell et al. [2010] presented
Ott as a tool that compiles language semantics into proof assistant code and supports ametalanguage
used in de#ning language semantics as inference rules. The K framework [Ros, u and S, erbănută
2010] proposed a formalism for writing operational semantics and provides a derivation of veri#ers
directly from the semantics. Bodin et al. [2019] developed a skeletal semantics framework in Coq
for creating big-step semantics by focusing on the structure of the semantics.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 126. Publication date: June 2023.

Feature-Sensitive Coverage for Conformance Testing 126:19

#0-FS-TR #1-FS-TR #2-FS-TR

#2-FCPS-TR#1-FCPS-TR

2.6K
14.6K

0.9K 26.0K
96.3K

28.7K
0.15M

0.24M 1.65M

93.6K
197.3K

80.0K
0.37M

0.35M 3.26M

syn-test

test262

(14.4%)
(80.4%)

(5.2%)

(25.2%)
(53.2%)

(21.6%)
(9.2%)

(8.8%) (82.0%)

(7.3%)

(12.0%) (80.8%)
(17.2%)

(63.8%)
(19.0%)

(a) Covered TRs by synthesized tests and Test262

our

our test

syn-test

test262

0 25 50

2-

FS
-T

R

time (h)

our test262
1.90M

0.39M

0 25 50

1-

FC
PS

-T
R

time (h)

our test262
290.9K

189.6K

0 25 50

1-

FS
-T

R

time (h)

our test262
125.0K
122.3K

0 25 50

0-

FS
-T

R

time (h)

our test262
17.2K

15.6K

0 25 50

2-

FC
PS

-T
R

time (h)

0.72M

3.62M

(b) Covered TRs over time

Fig. 10. Covered !-FS-TRs and !-FCPS-TRs for synthesized tests via JESTfs and Test262

Figure 10 shows (a) Venn diagrams of the numbers of covered !-FS-TRs and !-FCPS-TRs for the
synthesized conformance tests (syn-test) via JESTfs and applicable conformance tests in Test262
(test262) and (b) their changes over time. Without any feature-sensitive coverages, the coverage of
synthesized tests is less than that of Test262, and only 5.2% (0.9K) 0-FS-TRs are newly covered by
the synthesized tests. On the other hand, the numbers of !-FS-TRs covered by only synthesized
tests increase when using higher ! : 28.7K (19.0%) for 1-FS-TRs and 1.65M (80.8%) for 2-FS-TRs. In
addition, the number of 1-FCPS-TRs (or 2-FCPS-TRs) covered by only synthesized tests is higher
than the number of 1-FS-TRs (or 2-FS-TRs) covered by only synthesized tests: 80.0K (21.6%) for
1-FCPS-TRs and 3.26M (82.0%) for 2-FCPS-TRs. Figure 10(b) also shows that the coverage of Test262
is better than that of synthesized tests without any feature-sensitive coverages, but the coverage of
synthesized tests outperforms that of Test262 with 2-FS-TRs and 2-FCPS-TRs.

6 RELATEDWORK

Coverage Criteria in So!ware Testing. Coverage criteria in software testing are essential in
measuring the quality of test inputs. The most common coverage criteria are structural coverages
in a given program’s control-!ow graph (CFG) [Ammann and O"utt 2008; Chilenski and Miller
1994] also utilizing data-!ow information [Herman 1976] and type information [Bae et al. 2017].
On the other hand, model-based coverage [Utting and Legeard 2010] criteria consider specialized
abstract behavior models and de#ne the test requirements in the model. Such models include state
transitions [Artho et al. 2017], autonomous driving systems [Laurent et al. 2022], deep neural
networks (DLLs) [Ma et al. 2018; Odena et al. 2019; Pei et al. 2017; Sun et al. 2018; Xie et al. 2019].
However, there are no specialized coverage criteria for programming language tools, such as
compilers, interpreters, and transpilers. In this paper, we #rst presented feature-sensitive coverages
as general extensions of graph coverages for programming language tools to discriminate test
requirements based on enclosing language features or feature-call-paths.

Mechanized Speci"cation. Researchers have presented mechanized speci#cations to formally
describe the semantics of diverse programming languages, such as OCaml [Owens 2008], C [Blazy
and Leroy 2009], C++[Ramananandro et al. 2012], Java [Bogdanas and Roşu 2015], and POSIX
shell [Greenberg and Blatt 2019]. At the same time, general metalanguages or frameworks for
mechanized language speci#cations have also emerge as. For example, Sewell et al. [2010] presented
Ott as a tool that compiles language semantics into proof assistant code and supports ametalanguage
used in de#ning language semantics as inference rules. The K framework [Ros, u and S, erbănută
2010] proposed a formalism for writing operational semantics and provides a derivation of veri#ers
directly from the semantics. Bodin et al. [2019] developed a skeletal semantics framework in Coq
for creating big-step semantics by focusing on the structure of the semantics.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 126. Publication date: June 2023.

Feature-Sensitive Coverage for Conformance Testing 126:19

#0-FS-TR #1-FS-TR #2-FS-TR

#2-FCPS-TR#1-FCPS-TR

2.6K
14.6K

0.9K 26.0K
96.3K

28.7K
0.15M

0.24M 1.65M

93.6K
197.3K

80.0K
0.37M

0.35M 3.26M

syn-test

test262

(14.4%)
(80.4%)

(5.2%)

(25.2%)
(53.2%)

(21.6%)
(9.2%)

(8.8%) (82.0%)

(7.3%)

(12.0%) (80.8%)
(17.2%)

(63.8%)
(19.0%)

(a) Covered TRs by synthesized tests and Test262

our

our test

syn-test

test262

0 25 50

2-

FS
-T

R

time (h)

our test262
1.90M

0.39M

0 25 50

1-

FC
PS

-T
R

time (h)

our test262
290.9K

189.6K

0 25 50

1-

FS
-T

R

time (h)

our test262
125.0K
122.3K

0 25 50

0-

FS
-T

R

time (h)

our test262
17.2K

15.6K

0 25 50

2-

FC
PS

-T
R

time (h)

0.72M

3.62M

(b) Covered TRs over time

Fig. 10. Covered !-FS-TRs and !-FCPS-TRs for synthesized tests via JESTfs and Test262

Figure 10 shows (a) Venn diagrams of the numbers of covered !-FS-TRs and !-FCPS-TRs for the
synthesized conformance tests (syn-test) via JESTfs and applicable conformance tests in Test262
(test262) and (b) their changes over time. Without any feature-sensitive coverages, the coverage of
synthesized tests is less than that of Test262, and only 5.2% (0.9K) 0-FS-TRs are newly covered by
the synthesized tests. On the other hand, the numbers of !-FS-TRs covered by only synthesized
tests increase when using higher ! : 28.7K (19.0%) for 1-FS-TRs and 1.65M (80.8%) for 2-FS-TRs. In
addition, the number of 1-FCPS-TRs (or 2-FCPS-TRs) covered by only synthesized tests is higher
than the number of 1-FS-TRs (or 2-FS-TRs) covered by only synthesized tests: 80.0K (21.6%) for
1-FCPS-TRs and 3.26M (82.0%) for 2-FCPS-TRs. Figure 10(b) also shows that the coverage of Test262
is better than that of synthesized tests without any feature-sensitive coverages, but the coverage of
synthesized tests outperforms that of Test262 with 2-FS-TRs and 2-FCPS-TRs.

6 RELATEDWORK

Coverage Criteria in So!ware Testing. Coverage criteria in software testing are essential in
measuring the quality of test inputs. The most common coverage criteria are structural coverages
in a given program’s control-!ow graph (CFG) [Ammann and O"utt 2008; Chilenski and Miller
1994] also utilizing data-!ow information [Herman 1976] and type information [Bae et al. 2017].
On the other hand, model-based coverage [Utting and Legeard 2010] criteria consider specialized
abstract behavior models and de#ne the test requirements in the model. Such models include state
transitions [Artho et al. 2017], autonomous driving systems [Laurent et al. 2022], deep neural
networks (DLLs) [Ma et al. 2018; Odena et al. 2019; Pei et al. 2017; Sun et al. 2018; Xie et al. 2019].
However, there are no specialized coverage criteria for programming language tools, such as
compilers, interpreters, and transpilers. In this paper, we #rst presented feature-sensitive coverages
as general extensions of graph coverages for programming language tools to discriminate test
requirements based on enclosing language features or feature-call-paths.

Mechanized Speci"cation. Researchers have presented mechanized speci#cations to formally
describe the semantics of diverse programming languages, such as OCaml [Owens 2008], C [Blazy
and Leroy 2009], C++[Ramananandro et al. 2012], Java [Bogdanas and Roşu 2015], and POSIX
shell [Greenberg and Blatt 2019]. At the same time, general metalanguages or frameworks for
mechanized language speci#cations have also emerge as. For example, Sewell et al. [2010] presented
Ott as a tool that compiles language semantics into proof assistant code and supports ametalanguage
used in de#ning language semantics as inference rules. The K framework [Ros, u and S, erbănută
2010] proposed a formalism for writing operational semantics and provides a derivation of veri#ers
directly from the semantics. Bodin et al. [2019] developed a skeletal semantics framework in Coq
for creating big-step semantics by focusing on the structure of the semantics.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 126. Publication date: June 2023.

Feature-Sensitive Coverage for Conformance Testing 126:19

#0-FS-TR #1-FS-TR #2-FS-TR

#2-FCPS-TR#1-FCPS-TR

2.6K
14.6K

0.9K 26.0K
96.3K

28.7K
0.15M

0.24M 1.65M

93.6K
197.3K

80.0K
0.37M

0.35M 3.26M

syn-test

test262

(14.4%)
(80.4%)

(5.2%)

(25.2%)
(53.2%)

(21.6%)
(9.2%)

(8.8%) (82.0%)

(7.3%)

(12.0%) (80.8%)
(17.2%)

(63.8%)
(19.0%)

(a) Covered TRs by synthesized tests and Test262

our

our test

syn-test

test262

0 25 50

2-

FS
-T

R

time (h)

our test262
1.90M

0.39M

0 25 50

1-
FC

PS
-T

R
time (h)

our test262
290.9K

189.6K

0 25 50

1-

FS
-T

R

time (h)

our test262
125.0K
122.3K

0 25 50

0-

FS
-T

R

time (h)

our test262
17.2K

15.6K

0 25 50

2-

FC
PS

-T
R

time (h)

0.72M

3.62M

(b) Covered TRs over time

Fig. 10. Covered !-FS-TRs and !-FCPS-TRs for synthesized tests via JESTfs and Test262

Figure 10 shows (a) Venn diagrams of the numbers of covered !-FS-TRs and !-FCPS-TRs for the
synthesized conformance tests (syn-test) via JESTfs and applicable conformance tests in Test262
(test262) and (b) their changes over time. Without any feature-sensitive coverages, the coverage of
synthesized tests is less than that of Test262, and only 5.2% (0.9K) 0-FS-TRs are newly covered by
the synthesized tests. On the other hand, the numbers of !-FS-TRs covered by only synthesized
tests increase when using higher ! : 28.7K (19.0%) for 1-FS-TRs and 1.65M (80.8%) for 2-FS-TRs. In
addition, the number of 1-FCPS-TRs (or 2-FCPS-TRs) covered by only synthesized tests is higher
than the number of 1-FS-TRs (or 2-FS-TRs) covered by only synthesized tests: 80.0K (21.6%) for
1-FCPS-TRs and 3.26M (82.0%) for 2-FCPS-TRs. Figure 10(b) also shows that the coverage of Test262
is better than that of synthesized tests without any feature-sensitive coverages, but the coverage of
synthesized tests outperforms that of Test262 with 2-FS-TRs and 2-FCPS-TRs.

6 RELATEDWORK

Coverage Criteria in So!ware Testing. Coverage criteria in software testing are essential in
measuring the quality of test inputs. The most common coverage criteria are structural coverages
in a given program’s control-!ow graph (CFG) [Ammann and O"utt 2008; Chilenski and Miller
1994] also utilizing data-!ow information [Herman 1976] and type information [Bae et al. 2017].
On the other hand, model-based coverage [Utting and Legeard 2010] criteria consider specialized
abstract behavior models and de#ne the test requirements in the model. Such models include state
transitions [Artho et al. 2017], autonomous driving systems [Laurent et al. 2022], deep neural
networks (DLLs) [Ma et al. 2018; Odena et al. 2019; Pei et al. 2017; Sun et al. 2018; Xie et al. 2019].
However, there are no specialized coverage criteria for programming language tools, such as
compilers, interpreters, and transpilers. In this paper, we #rst presented feature-sensitive coverages
as general extensions of graph coverages for programming language tools to discriminate test
requirements based on enclosing language features or feature-call-paths.

Mechanized Speci"cation. Researchers have presented mechanized speci#cations to formally
describe the semantics of diverse programming languages, such as OCaml [Owens 2008], C [Blazy
and Leroy 2009], C++[Ramananandro et al. 2012], Java [Bogdanas and Roşu 2015], and POSIX
shell [Greenberg and Blatt 2019]. At the same time, general metalanguages or frameworks for
mechanized language speci#cations have also emerge as. For example, Sewell et al. [2010] presented
Ott as a tool that compiles language semantics into proof assistant code and supports ametalanguage
used in de#ning language semantics as inference rules. The K framework [Ros, u and S, erbănută
2010] proposed a formalism for writing operational semantics and provides a derivation of veri#ers
directly from the semantics. Bodin et al. [2019] developed a skeletal semantics framework in Coq
for creating big-step semantics by focusing on the structure of the semantics.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 126. Publication date: June 2023.

Feature-Sensitive Coverage for Conformance Testing 126:19

#0-FS-TR #1-FS-TR #2-FS-TR

#2-FCPS-TR#1-FCPS-TR

2.6K
14.6K

0.9K 26.0K
96.3K

28.7K
0.15M

0.24M 1.65M

93.6K
197.3K

80.0K
0.37M

0.35M 3.26M

syn-test

test262

(14.4%)
(80.4%)

(5.2%)

(25.2%)
(53.2%)

(21.6%)
(9.2%)

(8.8%) (82.0%)

(7.3%)

(12.0%) (80.8%)
(17.2%)

(63.8%)
(19.0%)

(a) Covered TRs by synthesized tests and Test262

our

our test

syn-test

test262

0 25 50

2-

FS
-T

R

time (h)

our test262
1.90M

0.39M

0 25 50

1-

FC
PS

-T
R

time (h)

our test262
290.9K

189.6K

0 25 50

1-

FS
-T

R

time (h)

our test262
125.0K
122.3K

0 25 50

0-

FS
-T

R

time (h)

our test262
17.2K

15.6K

0 25 50

2-

FC
PS

-T
R

time (h)

0.72M

3.62M

(b) Covered TRs over time

Fig. 10. Covered !-FS-TRs and !-FCPS-TRs for synthesized tests via JESTfs and Test262

Figure 10 shows (a) Venn diagrams of the numbers of covered !-FS-TRs and !-FCPS-TRs for the
synthesized conformance tests (syn-test) via JESTfs and applicable conformance tests in Test262
(test262) and (b) their changes over time. Without any feature-sensitive coverages, the coverage of
synthesized tests is less than that of Test262, and only 5.2% (0.9K) 0-FS-TRs are newly covered by
the synthesized tests. On the other hand, the numbers of !-FS-TRs covered by only synthesized
tests increase when using higher ! : 28.7K (19.0%) for 1-FS-TRs and 1.65M (80.8%) for 2-FS-TRs. In
addition, the number of 1-FCPS-TRs (or 2-FCPS-TRs) covered by only synthesized tests is higher
than the number of 1-FS-TRs (or 2-FS-TRs) covered by only synthesized tests: 80.0K (21.6%) for
1-FCPS-TRs and 3.26M (82.0%) for 2-FCPS-TRs. Figure 10(b) also shows that the coverage of Test262
is better than that of synthesized tests without any feature-sensitive coverages, but the coverage of
synthesized tests outperforms that of Test262 with 2-FS-TRs and 2-FCPS-TRs.

6 RELATEDWORK

Coverage Criteria in So!ware Testing. Coverage criteria in software testing are essential in
measuring the quality of test inputs. The most common coverage criteria are structural coverages
in a given program’s control-!ow graph (CFG) [Ammann and O"utt 2008; Chilenski and Miller
1994] also utilizing data-!ow information [Herman 1976] and type information [Bae et al. 2017].
On the other hand, model-based coverage [Utting and Legeard 2010] criteria consider specialized
abstract behavior models and de#ne the test requirements in the model. Such models include state
transitions [Artho et al. 2017], autonomous driving systems [Laurent et al. 2022], deep neural
networks (DLLs) [Ma et al. 2018; Odena et al. 2019; Pei et al. 2017; Sun et al. 2018; Xie et al. 2019].
However, there are no specialized coverage criteria for programming language tools, such as
compilers, interpreters, and transpilers. In this paper, we #rst presented feature-sensitive coverages
as general extensions of graph coverages for programming language tools to discriminate test
requirements based on enclosing language features or feature-call-paths.

Mechanized Speci"cation. Researchers have presented mechanized speci#cations to formally
describe the semantics of diverse programming languages, such as OCaml [Owens 2008], C [Blazy
and Leroy 2009], C++[Ramananandro et al. 2012], Java [Bogdanas and Roşu 2015], and POSIX
shell [Greenberg and Blatt 2019]. At the same time, general metalanguages or frameworks for
mechanized language speci#cations have also emerge as. For example, Sewell et al. [2010] presented
Ott as a tool that compiles language semantics into proof assistant code and supports ametalanguage
used in de#ning language semantics as inference rules. The K framework [Ros, u and S, erbănută
2010] proposed a formalism for writing operational semantics and provides a derivation of veri#ers
directly from the semantics. Bodin et al. [2019] developed a skeletal semantics framework in Coq
for creating big-step semantics by focusing on the structure of the semantics.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 126. Publication date: June 2023.

Feature-Sensitive Coverage for Conformance Testing 126:19

#0-FS-TR #1-FS-TR #2-FS-TR

#2-FCPS-TR#1-FCPS-TR

2.6K
14.6K

0.9K 26.0K
96.3K

28.7K
0.15M

0.24M 1.65M

93.6K
197.3K

80.0K
0.37M

0.35M 3.26M

syn-test

test262

(14.4%)
(80.4%)

(5.2%)

(25.2%)
(53.2%)

(21.6%)
(9.2%)

(8.8%) (82.0%)

(7.3%)

(12.0%) (80.8%)
(17.2%)

(63.8%)
(19.0%)

(a) Covered TRs by synthesized tests and Test262

our

our test

syn-test

test262

0 25 50

2-

FS
-T

R

time (h)

our test262
1.90M

0.39M

0 25 50

1-

FC
PS

-T
R

time (h)

our test262
290.9K

189.6K

0 25 50

1-

FS
-T

R

time (h)

our test262
125.0K
122.3K

0 25 50

0-

FS
-T

R

time (h)

our test262
17.2K

15.6K

0 25 50

2-

FC
PS

-T
R

time (h)

0.72M

3.62M

(b) Covered TRs over time

Fig. 10. Covered !-FS-TRs and !-FCPS-TRs for synthesized tests via JESTfs and Test262

Figure 10 shows (a) Venn diagrams of the numbers of covered !-FS-TRs and !-FCPS-TRs for the
synthesized conformance tests (syn-test) via JESTfs and applicable conformance tests in Test262
(test262) and (b) their changes over time. Without any feature-sensitive coverages, the coverage of
synthesized tests is less than that of Test262, and only 5.2% (0.9K) 0-FS-TRs are newly covered by
the synthesized tests. On the other hand, the numbers of !-FS-TRs covered by only synthesized
tests increase when using higher ! : 28.7K (19.0%) for 1-FS-TRs and 1.65M (80.8%) for 2-FS-TRs. In
addition, the number of 1-FCPS-TRs (or 2-FCPS-TRs) covered by only synthesized tests is higher
than the number of 1-FS-TRs (or 2-FS-TRs) covered by only synthesized tests: 80.0K (21.6%) for
1-FCPS-TRs and 3.26M (82.0%) for 2-FCPS-TRs. Figure 10(b) also shows that the coverage of Test262
is better than that of synthesized tests without any feature-sensitive coverages, but the coverage of
synthesized tests outperforms that of Test262 with 2-FS-TRs and 2-FCPS-TRs.

6 RELATEDWORK

Coverage Criteria in So!ware Testing. Coverage criteria in software testing are essential in
measuring the quality of test inputs. The most common coverage criteria are structural coverages
in a given program’s control-!ow graph (CFG) [Ammann and O"utt 2008; Chilenski and Miller
1994] also utilizing data-!ow information [Herman 1976] and type information [Bae et al. 2017].
On the other hand, model-based coverage [Utting and Legeard 2010] criteria consider specialized
abstract behavior models and de#ne the test requirements in the model. Such models include state
transitions [Artho et al. 2017], autonomous driving systems [Laurent et al. 2022], deep neural
networks (DLLs) [Ma et al. 2018; Odena et al. 2019; Pei et al. 2017; Sun et al. 2018; Xie et al. 2019].
However, there are no specialized coverage criteria for programming language tools, such as
compilers, interpreters, and transpilers. In this paper, we #rst presented feature-sensitive coverages
as general extensions of graph coverages for programming language tools to discriminate test
requirements based on enclosing language features or feature-call-paths.

Mechanized Speci"cation. Researchers have presented mechanized speci#cations to formally
describe the semantics of diverse programming languages, such as OCaml [Owens 2008], C [Blazy
and Leroy 2009], C++[Ramananandro et al. 2012], Java [Bogdanas and Roşu 2015], and POSIX
shell [Greenberg and Blatt 2019]. At the same time, general metalanguages or frameworks for
mechanized language speci#cations have also emerge as. For example, Sewell et al. [2010] presented
Ott as a tool that compiles language semantics into proof assistant code and supports ametalanguage
used in de#ning language semantics as inference rules. The K framework [Ros, u and S, erbănută
2010] proposed a formalism for writing operational semantics and provides a derivation of veri#ers
directly from the semantics. Bodin et al. [2019] developed a skeletal semantics framework in Coq
for creating big-step semantics by focusing on the structure of the semantics.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 126. Publication date: June 2023.

