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JavaScript is Everywhere

Client-side Programming

Server-side Programming

Mobile/Desktop Applications

Others (PDF, IoT, Microcontrollers, etc.)
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JavaScript Complex Semantics

function f(x) { return x == !x; }

Always return false?
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JavaScript Complex Semantics

function f(x) { return x == !x; }

Always return false?

NO!!
f([]) -> [] == ![]

      -> [] == false

      -> +[] == +false

      -> 0 == 0

      -> true
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• API Misuse Detection using TypeScript Declarations (Mod'14)


- Modeling abstract semantics using TypeScript d.ts files


• SAFE (Scalable Analysis Framework for ECMAScript) 2.0 (ICSE'17 - Demo)


- Extensibility (Abs. Domain, Sensitivity) / GUI Web Debugger


• Revisiting Recency Abstraction (SOAP'17)


- Explaining why recency abstraction is not monotone


• Dynamic Inter-Device Task Dispatch (ProWeb'18)

5

Early Research on JS Static Analysis
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Problem: Fast Evolving JavaScript

2000 2005 2010 2015 2020

1997 - ES1 
First edition

1998 - ES2 
Editorial 
changes

1999 - ES3 
RegEx, String, 
Try/catch, etc

2009 - ES5 
getters/setters,

strict mode,

exceptions, etc

2011 - ES5.1 
Editorial 
Changes

2015 - ES6 
classes, modules, etc.

2016 - ES7 
destructuring patterns, etc.

2017 - ES8 
object manipulation, etc.

2018 - ES9
2020 - ES11

2019 - ES10
2021 - ES12

<latexit sha1_base64="MJ/kdLY9U4kkYOGJnSN4fLHVAm4="></latexit>

KJS, JSIL, JSCert
<latexit sha1_base64="bFjUIf8UdRmAPc2FjPUcR6RCit8="></latexit>

SAFE, TAJS
WALA, JSAI

<latexit sha1_base64="bFjUIf8UdRmAPc2FjPUcR6RCit8="></latexit>

SAFE, TAJS
WALA, JSAI

<latexit sha1_base64="bFjUIf8UdRmAPc2FjPUcR6RCit8="></latexit>

SAFE, TAJS
WALA, JSAI

<latexit sha1_base64="bFjUIf8UdRmAPc2FjPUcR6RCit8="></latexit>

SAFE, TAJS
WALA, JSAI

<latexit sha1_base64="MJ/kdLY9U4kkYOGJnSN4fLHVAm4="></latexit>

KJS, JSIL, JSCert
<latexit sha1_base64="MIe41XfV/Rjo6kgw3dO6hEXxyHA="></latexit>

�JS
KJS
JSIL
JSCert
...

  Annual UpdateES2022 (ES13) - 833 pages

2022 - ES13
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Problem: Manual Update
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Derivation of Static Analyzer?
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(JS Spec.)
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Result
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More..?

10

Idea: Mechanized Specification

ECMA-262

(JS Spec.)

Static

Analyzer

Analysis

Result

JS

Program

Mechanized

Specification

? ?
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[ASE'20] J. Park, et al. "JISET: JavaScript IR-based Semantics Extraction Toolchain"
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ECMA-262 (JavaScript Spec.)

The production of ArrayLiteral in ES13

The Evaluation algorithm for the third alternative of ArrayLiteral in ES13

Syntax

Semantics
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JISET - ASE'20
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JISET - ASE'20
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JISET - Parser Generator (Syntax)

Parsing Expression Grammar 
(PEG)

[POPL'04] B. Ford, "Parsing Expression Grammars: A Recognition-based Syntactic Foundation"
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• Context-Free Grammar (CFG) 

- Unordered Choices


• Parsing Expression Grammar 
(PEG) 

- Ordered Choices


• PEG with Lookahead Parsing 

- Ordered Choices with 
Lookahead Tokens

16

JISET - Parser Generator (Syntax)

[POPL'04] B. Ford, "Parsing Expression Grammars: A Recognition-based Syntactic Foundation"

A ::= B; | B + B;
B ::= x | xy

<latexit sha1_base64="Cx84iCzeaI1ZCQzcAAHOt0S1F5c="></latexit>

xy;
<latexit sha1_base64="U8uPUGiyhrVLaBAFUFKM0a7rj8k=">AAACInicbVDLSsNAFL3xbX3r0k2wCK5KooKCG18LN4JCq0JTZDK9tYOTZJi5EeuQ33CrC7/GnbgS/BgnbRe+DgwczrmvObGSwlAQfHgjo2PjE5NT05WZ2bn5hcWl5QuT5Zpjg2cy01cxMyhFig0SJPFKaWRJLPEyvj0q/cs71EZkaZ16ClsJu0lFR3BGTooiwnsisve9veJ6sRrUgj78vyQckioMcXa95EHUznieYEpcMmOaYaCoZZkmwSUWlSg3qBi/ZTfYdDRlCZqW7R9d+OtOafudTLuXkt9Xv3dYlhjTS2JXmTDqmt9eKf7nNXPq7LasSFVOmPLBok4ufcr8MgG/LTRykj1HGNfC3erzLtOMk8upEh2j+4vGUzf3QKoui5FsVG5RD7yw9bCwfZIUVlCZWfg7ob/kYrMWbtU2z7er+4fD9KZgFdZgA0LYgX04gTNoAAcFj/AEz96L9+q9ee+D0hFv2LMCP+B9fgH7waU8</latexit>

x+x;
<latexit sha1_base64="6tvJ7UVejFATLGDs9OaX6pBpz24=">AAACI3icbVDJSgNBFHzjbtz16GUwCIIQZlRQ8OJ28CIoGBUyg/R0XkyTnsXuN5LYzHd41YNf4028ePBf7Ik5uBU0FFVv64oyKTR53rszNDwyOjY+MVmZmp6ZnZtfWLzQaa441nkqU3UVMY1SJFgnQRKvMoUsjiReRp3D0r+8Q6VFmpxTL8MwZjeJaAnOyEphQNglItNd7+4W1/NVr+b14f4l/oBUYYDT6wUHgmbK8xgT4pJp3fC9jELDFAkusagEucaM8Q67wYalCYtRh6Z/deGuWqXptlJlX0JuX/3eYVisdS+ObGXMqK1/e6X4n9fIqbUTGpFkOWHCvxa1culS6pYRuE2hkJPsWcK4EvZWl7eZYpxsUJXgCO1fFJ7Yufsya7MIyQTlluyeF+bcL0yfxIURVGbm/07oL7nYqPmbtY2zrerewSC9CViGFVgDH7ZhD47hFOrA4RYe4BGenGfnxXl13r5Kh5xBzxL8gPPxCWzSpXA=</latexit>

A ::= B; / B + B;
B ::= x / xy

<latexit sha1_base64="Gy2vXkNCxBEZUx9WCbJKa44pHvA="></latexit>

always 
ignored

xy;
<latexit sha1_base64="U8uPUGiyhrVLaBAFUFKM0a7rj8k=">AAACInicbVDLSsNAFL3xbX3r0k2wCK5KooKCG18LN4JCq0JTZDK9tYOTZJi5EeuQ33CrC7/GnbgS/BgnbRe+DgwczrmvObGSwlAQfHgjo2PjE5NT05WZ2bn5hcWl5QuT5Zpjg2cy01cxMyhFig0SJPFKaWRJLPEyvj0q/cs71EZkaZ16ClsJu0lFR3BGTooiwnsisve9veJ6sRrUgj78vyQckioMcXa95EHUznieYEpcMmOaYaCoZZkmwSUWlSg3qBi/ZTfYdDRlCZqW7R9d+OtOafudTLuXkt9Xv3dYlhjTS2JXmTDqmt9eKf7nNXPq7LasSFVOmPLBok4ufcr8MgG/LTRykj1HGNfC3erzLtOMk8upEh2j+4vGUzf3QKoui5FsVG5RD7yw9bCwfZIUVlCZWfg7ob/kYrMWbtU2z7er+4fD9KZgFdZgA0LYgX04gTNoAAcFj/AEz96L9+q9ee+D0hFv2LMCP+B9fgH7waU8</latexit>

x+x;
<latexit sha1_base64="6tvJ7UVejFATLGDs9OaX6pBpz24=">AAACI3icbVDJSgNBFHzjbtz16GUwCIIQZlRQ8OJ28CIoGBUyg/R0XkyTnsXuN5LYzHd41YNf4028ePBf7Ik5uBU0FFVv64oyKTR53rszNDwyOjY+MVmZmp6ZnZtfWLzQaa441nkqU3UVMY1SJFgnQRKvMoUsjiReRp3D0r+8Q6VFmpxTL8MwZjeJaAnOyEphQNglItNd7+4W1/NVr+b14f4l/oBUYYDT6wUHgmbK8xgT4pJp3fC9jELDFAkusagEucaM8Q67wYalCYtRh6Z/deGuWqXptlJlX0JuX/3eYVisdS+ObGXMqK1/e6X4n9fIqbUTGpFkOWHCvxa1culS6pYRuE2hkJPsWcK4EvZWl7eZYpxsUJXgCO1fFJ7Yufsya7MIyQTlluyeF+bcL0yfxIURVGbm/07oL7nYqPmbtY2zrerewSC9CViGFVgDH7ZhD47hFOrA4RYe4BGenGfnxXl13r5Kh5xBzxL8gPPxCWzSpXA=</latexit>

xy;
<latexit sha1_base64="U8uPUGiyhrVLaBAFUFKM0a7rj8k=">AAACInicbVDLSsNAFL3xbX3r0k2wCK5KooKCG18LN4JCq0JTZDK9tYOTZJi5EeuQ33CrC7/GnbgS/BgnbRe+DgwczrmvObGSwlAQfHgjo2PjE5NT05WZ2bn5hcWl5QuT5Zpjg2cy01cxMyhFig0SJPFKaWRJLPEyvj0q/cs71EZkaZ16ClsJu0lFR3BGTooiwnsisve9veJ6sRrUgj78vyQckioMcXa95EHUznieYEpcMmOaYaCoZZkmwSUWlSg3qBi/ZTfYdDRlCZqW7R9d+OtOafudTLuXkt9Xv3dYlhjTS2JXmTDqmt9eKf7nNXPq7LasSFVOmPLBok4ufcr8MgG/LTRykj1HGNfC3erzLtOMk8upEh2j+4vGUzf3QKoui5FsVG5RD7yw9bCwfZIUVlCZWfg7ob/kYrMWbtU2z7er+4fD9KZgFdZgA0LYgX04gTNoAAcFj/AEz96L9+q9ee+D0hFv2LMCP+B9fgH7waU8</latexit>

x+x;
<latexit sha1_base64="6tvJ7UVejFATLGDs9OaX6pBpz24=">AAACI3icbVDJSgNBFHzjbtz16GUwCIIQZlRQ8OJ28CIoGBUyg/R0XkyTnsXuN5LYzHd41YNf4028ePBf7Ik5uBU0FFVv64oyKTR53rszNDwyOjY+MVmZmp6ZnZtfWLzQaa441nkqU3UVMY1SJFgnQRKvMoUsjiReRp3D0r+8Q6VFmpxTL8MwZjeJaAnOyEphQNglItNd7+4W1/NVr+b14f4l/oBUYYDT6wUHgmbK8xgT4pJp3fC9jELDFAkusagEucaM8Q67wYalCYtRh6Z/deGuWqXptlJlX0JuX/3eYVisdS+ObGXMqK1/e6X4n9fIqbUTGpFkOWHCvxa1culS6pYRuE2hkJPsWcK4EvZWl7eZYpxsUJXgCO1fFJ7Yufsya7MIyQTlluyeF+bcL0yfxIURVGbm/07oL7nYqPmbtY2zrerewSC9CViGFVgDH7ZhD47hFOrA4RYe4BGenGfnxXl13r5Kh5xBzxL8gPPxCWzSpXA=</latexit>

A ::= B; / B + B;
B ::= x / xy

<latexit sha1_base64="Gy2vXkNCxBEZUx9WCbJKa44pHvA="></latexit>
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• IRES - Intermediate Representation for ECMA-262

18

JISET - Metalanguages for ECMA-262

A Meta-Level Static Analysis for JavaScript
Anonymous Author(s)

In this report, we formalize a meta-level static analysis for
JavaScript as a de�ned-language with IRES as a de�ning-
language. We �rst de�ne IRES and a JavaScript de�nitional
interpreter as an IRES program. Then, we de�ne a meta-level
static analysis for JavaScript with the abstract semantics of
IRES in the abstract interpretation framework [2, 3]. In addi-
tion, we explain how to indirectly express abstract domains
and analysis sensitivities for JavaScript.

1 IRES: An IR for ECMAScript
We �rst de�ne IRES, an Intermediate Representation for EC-
MAScript, with its collecting and restricted semantics.

Programs P 3 % ::= 5 ⇤

Functions F 3 5 ::= syntax? def x(x⇤) {[l : 8]⇤}
Variables X 3 x
Labels L 3 l
Instructions I 3 8 ::= A B 4 | x B {} | x B 4(4⇤)

| if 4 l l | return 4
Expressions E 3 4 ::= Ep | op(4⇤) | A
References R 3 A ::= x | 4[4] | 4[4]js
Syntax and Notations. An IRES program % is a sequence

of functions. A function 5 is de�ned with its name, parame-
ters, and body instructions with labels. If it is de�ned with
the pre�x syntax, it is a syntax-directed function, otherwise,
a normal function. An instruction 8 is a reference update,
an object allocation, a function call, a branch, or a return
instruction. An expression 4 is a primitive value, a primitive
operation, or a reference expression. A reference is a vari-
able, an internal �eld access, or an external �eld access. For
a given program % , three helper functions func : L ! F ,
inst : L ! I, and next : L ! L return the function,
instruction, and next label, respectively, of a given label.

States f 2 S = L ⇥ E ⇥ C⇤ ⇥ H
Environments d 2 E = X �n��!V
Calling Contexts 2 2 C = L ⇥ E
Heaps ⌘ 2 H = A

�n��!L ⇥M ⇥Mjs

Internal Field Maps < 2 M = Vstr
�n��!V

External Field Maps <js 2 Mjs = Vstr
�n��!V

Values E 2 V = A ] Vp ] T ] F
Primitive Values Ep 2 Vp = Vbool ] Vint ] Vstr ] · · ·
JS ASTs C 2 T

Concrete States. An IRES state f 2 S consists of a label,
an environment, a stack of calling contexts, and a heap. An
environment d 2 E is a �nite mapping from variables to
values. A calling context 2 2 C consists of a label and an

environment of the caller. A heap ⌘ 2 H is a �nite map-
ping from addresses to labels for allocation sites and two
�nite mappings from strings to values. The former mapping
represents internal �elds accessible by 4[4], and the latter
represents external �elds accessible by 4[4]js. A value E 2 V
is an address, a primitive value (e.g., a boolean 1, an integer : ,
and a string B), a JavaScript AST C 2 T, or a function 5 2 F .
Since IRES treats JavaScript ASTs as its values, we de�ne

them with tree nodes � as follows:
T 3 C ::= g: hq⇤i
� 3 q ::= B | C

A JavaScript AST g: hq1, · · · ,q=i denotes :-th alternative
in the syntactic production of nonterminal symbol g with
multiple tree nodes q1, · · · ,q= . A tree node is a string for a
terminal symbol or another tree for a nonterminal symbol.
We de�ne several notations to easily deal with JavaScript
ASTs. The notation g: .eval denotes an Evaluation function of
:-th alternative in the production g . Similarly, the notation
C .eval denotes the Evaluation function of the AST C , and it
is same with g: .eval when C = g: h· · · i. The Evaluation of
each AST takes the AST itself and its tree nodes that are
nonterminals as arguments. The notation subs(C) denotes
tree nodes that are subtrees of C .

Collecting Semantics. We de�ne denotational semantics
of instructions J8K : S! S and expressions J4K : S! V in
Section 1.1 and Section 1.2, respectively. Then, the collecting
semantics J%K of an IRES program % is a set of reachable states
P(S) from the initial states S] ✓ S. We can compute it using
a �xpoint algorithm:

J%K = lim
=!1

�= (S])

with a transfer function � : P(S) ! P(S):
� (() = ( [ {f 0 2 S | f 2 ( ^ f {% f 0}

where f {% f 0 denotes the one-step transition of a state f
to another state f 0 in the program % :

f {% f 0 () f = (l , _, _, _) ^ Jinst(l )K(f) = f 0

Restricted Semantics. Moreover, the restricted semantics
J%KR : P(S) ! P(S) is a set of reachable states from the
initial states restricted by a given set of states:

J%KR (() = lim
=!1

�= (S] \ ()

1.1 Instructions
J8K : S! S

• Variable Assignments:

Jx B 4K(f) = (next(l ), d [x 7! E], 2,⌘)
1
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represents external �elds accessible by 4[4]js. A value E 2 V
is an address, a primitive value (e.g., a boolean 1, an integer : ,
and a string B), a JavaScript AST C 2 T, or a function 5 2 F .
Since IRES treats JavaScript ASTs as its values, we de�ne

them with tree nodes � as follows:
T 3 C ::= g: hq⇤i
� 3 q ::= B | C

A JavaScript AST g: hq1, · · · ,q=i denotes :-th alternative
in the syntactic production of nonterminal symbol g with
multiple tree nodes q1, · · · ,q= . A tree node is a string for a
terminal symbol or another tree for a nonterminal symbol.
We de�ne several notations to easily deal with JavaScript
ASTs. The notation g: .eval denotes an Evaluation function of
:-th alternative in the production g . Similarly, the notation
C .eval denotes the Evaluation function of the AST C , and it
is same with g: .eval when C = g: h· · · i. The Evaluation of
each AST takes the AST itself and its tree nodes that are
nonterminals as arguments. The notation subs(C) denotes
tree nodes that are subtrees of C .

Collecting Semantics. We de�ne denotational semantics
of instructions J8K : S! S and expressions J4K : S! V in
Section 1.1 and Section 1.2, respectively. Then, the collecting
semantics J%K of an IRES program % is a set of reachable states
P(S) from the initial states S] ✓ S. We can compute it using
a �xpoint algorithm:

J%K = lim
=!1

�= (S])

with a transfer function � : P(S) ! P(S):
� (() = ( [ {f 0 2 S | f 2 ( ^ f {% f 0}

where f {% f 0 denotes the one-step transition of a state f
to another state f 0 in the program % :

f {% f 0 () f = (l , _, _, _) ^ Jinst(l )K(f) = f 0

Restricted Semantics. Moreover, the restricted semantics
J%KR : P(S) ! P(S) is a set of reachable states from the
initial states restricted by a given set of states:

J%KR (() = lim
=!1

�= (S] \ ()

1.1 Instructions
J8K : S! S

• Variable Assignments:

Jx B 4K(f) = (next(l ), d [x 7! E], 2,⌘)
1
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A Meta-Level Static Analysis for JavaScript
Anonymous Author(s)

In this report, we formalize a meta-level static analysis for
JavaScript as a de�ned-language with IRES as a de�ning-
language. We �rst de�ne IRES and a JavaScript de�nitional
interpreter as an IRES program. Then, we de�ne a meta-level
static analysis for JavaScript with the abstract semantics of
IRES in the abstract interpretation framework [2, 3]. In addi-
tion, we explain how to indirectly express abstract domains
and analysis sensitivities for JavaScript.

1 IRES: An IR for ECMAScript
We �rst de�ne IRES, an Intermediate Representation for EC-
MAScript, with its collecting and restricted semantics.

Programs P 3 % ::= 5 ⇤

Functions F 3 5 ::= syntax? def x(x⇤) {[l : 8]⇤}
Variables X 3 x
Labels L 3 l
Instructions I 3 8 ::= A B 4 | x B {} | x B 4(4⇤)

| if 4 l l | return 4
Expressions E 3 4 ::= Ep | op(4⇤) | A
References R 3 A ::= x | 4[4] | 4[4]js
Syntax and Notations. An IRES program % is a sequence

of functions. A function 5 is de�ned with its name, parame-
ters, and body instructions with labels. If it is de�ned with
the pre�x syntax, it is a syntax-directed function, otherwise,
a normal function. An instruction 8 is a reference update,
an object allocation, a function call, a branch, or a return
instruction. An expression 4 is a primitive value, a primitive
operation, or a reference expression. A reference is a vari-
able, an internal �eld access, or an external �eld access. For
a given program % , three helper functions func : L ! F ,
inst : L ! I, and next : L ! L return the function,
instruction, and next label, respectively, of a given label.

States f 2 S = L ⇥ E ⇥ C⇤ ⇥ H
Environments d 2 E = X �n��!V
Calling Contexts 2 2 C = L ⇥ E
Heaps ⌘ 2 H = A

�n��!L ⇥M ⇥Mjs

Internal Field Maps < 2 M = Vstr
�n��!V

External Field Maps <js 2 Mjs = Vstr
�n��!V

Values E 2 V = A ] Vp ] T ] F
Primitive Values Ep 2 Vp = Vbool ] Vint ] Vstr ] · · ·
JS ASTs C 2 T

Concrete States. An IRES state f 2 S consists of a label,
an environment, a stack of calling contexts, and a heap. An
environment d 2 E is a �nite mapping from variables to
values. A calling context 2 2 C consists of a label and an

environment of the caller. A heap ⌘ 2 H is a �nite map-
ping from addresses to labels for allocation sites and two
�nite mappings from strings to values. The former mapping
represents internal �elds accessible by 4[4], and the latter
represents external �elds accessible by 4[4]js. A value E 2 V
is an address, a primitive value (e.g., a boolean 1, an integer : ,
and a string B), a JavaScript AST C 2 T, or a function 5 2 F .
Since IRES treats JavaScript ASTs as its values, we de�ne

them with tree nodes � as follows:
T 3 C ::= g: hq⇤i
� 3 q ::= B | C

A JavaScript AST g: hq1, · · · ,q=i denotes :-th alternative
in the syntactic production of nonterminal symbol g with
multiple tree nodes q1, · · · ,q= . A tree node is a string for a
terminal symbol or another tree for a nonterminal symbol.
We de�ne several notations to easily deal with JavaScript
ASTs. The notation g: .eval denotes an Evaluation function of
:-th alternative in the production g . Similarly, the notation
C .eval denotes the Evaluation function of the AST C , and it
is same with g: .eval when C = g: h· · · i. The Evaluation of
each AST takes the AST itself and its tree nodes that are
nonterminals as arguments. The notation subs(C) denotes
tree nodes that are subtrees of C .

Collecting Semantics. We de�ne denotational semantics
of instructions J8K : S! S and expressions J4K : S! V in
Section 1.1 and Section 1.2, respectively. Then, the collecting
semantics J%K of an IRES program % is a set of reachable states
P(S) from the initial states S] ✓ S. We can compute it using
a �xpoint algorithm:

J%K = lim
=!1

�= (S])

with a transfer function � : P(S) ! P(S):
� (() = ( [ {f 0 2 S | f 2 ( ^ f {% f 0}

where f {% f 0 denotes the one-step transition of a state f
to another state f 0 in the program % :

f {% f 0 () f = (l , _, _, _) ^ Jinst(l )K(f) = f 0

Restricted Semantics. Moreover, the restricted semantics
J%KR : P(S) ! P(S) is a set of reachable states from the
initial states restricted by a given set of states:

J%KR (() = lim
=!1

�= (S] \ ()

1.1 Instructions
J8K : S! S

• Variable Assignments:

Jx B 4K(f) = (next(l ), d [x 7! E], 2,⌘)
1
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interpreter as an IRES program. Then, we de�ne a meta-level
static analysis for JavaScript with the abstract semantics of
IRES in the abstract interpretation framework [2, 3]. In addi-
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We �rst de�ne IRES, an Intermediate Representation for EC-
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Functions F 3 5 ::= syntax? def x(x⇤) {[l : 8]⇤}
Variables X 3 x
Labels L 3 l
Instructions I 3 8 ::= A B 4 | x B {} | x B 4(4⇤)

| if 4 l l | return 4
Expressions E 3 4 ::= Ep | op(4⇤) | A
References R 3 A ::= x | 4[4] | 4[4]js
Syntax and Notations. An IRES program % is a sequence

of functions. A function 5 is de�ned with its name, parame-
ters, and body instructions with labels. If it is de�ned with
the pre�x syntax, it is a syntax-directed function, otherwise,
a normal function. An instruction 8 is a reference update,
an object allocation, a function call, a branch, or a return
instruction. An expression 4 is a primitive value, a primitive
operation, or a reference expression. A reference is a vari-
able, an internal �eld access, or an external �eld access. For
a given program % , three helper functions func : L ! F ,
inst : L ! I, and next : L ! L return the function,
instruction, and next label, respectively, of a given label.
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Concrete States. An IRES state f 2 S consists of a label,
an environment, a stack of calling contexts, and a heap. An
environment d 2 E is a �nite mapping from variables to
values. A calling context 2 2 C consists of a label and an

environment of the caller. A heap ⌘ 2 H is a �nite map-
ping from addresses to labels for allocation sites and two
�nite mappings from strings to values. The former mapping
represents internal �elds accessible by 4[4], and the latter
represents external �elds accessible by 4[4]js. A value E 2 V
is an address, a primitive value (e.g., a boolean 1, an integer : ,
and a string B), a JavaScript AST C 2 T, or a function 5 2 F .
Since IRES treats JavaScript ASTs as its values, we de�ne

them with tree nodes � as follows:
T 3 C ::= g: hq⇤i
� 3 q ::= B | C

A JavaScript AST g: hq1, · · · ,q=i denotes :-th alternative
in the syntactic production of nonterminal symbol g with
multiple tree nodes q1, · · · ,q= . A tree node is a string for a
terminal symbol or another tree for a nonterminal symbol.
We de�ne several notations to easily deal with JavaScript
ASTs. The notation g: .eval denotes an Evaluation function of
:-th alternative in the production g . Similarly, the notation
C .eval denotes the Evaluation function of the AST C , and it
is same with g: .eval when C = g: h· · · i. The Evaluation of
each AST takes the AST itself and its tree nodes that are
nonterminals as arguments. The notation subs(C) denotes
tree nodes that are subtrees of C .

Collecting Semantics. We de�ne denotational semantics
of instructions J8K : S! S and expressions J4K : S! V in
Section 1.1 and Section 1.2, respectively. Then, the collecting
semantics J%K of an IRES program % is a set of reachable states
P(S) from the initial states S] ✓ S. We can compute it using
a �xpoint algorithm:

J%K = lim
=!1

�= (S])

with a transfer function � : P(S) ! P(S):
� (() = ( [ {f 0 2 S | f 2 ( ^ f {% f 0}

where f {% f 0 denotes the one-step transition of a state f
to another state f 0 in the program % :

f {% f 0 () f = (l , _, _, _) ^ Jinst(l )K(f) = f 0

Restricted Semantics. Moreover, the restricted semantics
J%KR : P(S) ! P(S) is a set of reachable states from the
initial states restricted by a given set of states:
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JISET - Evaluation ≈ 96% Compiled



ESMeta
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https://github.com/es-meta/esmeta
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[ASE'21] J. Park, et al. "JSTAR: JavaScript Specification Type Analyzer using Refinement"
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Types in ECMA-262

https://github.com/tc39/ecma262/tree/575149cfd77aebcf3a129e165bd89e14caafc31c
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Types in ECMA-262

https://github.com/tc39/ecma262/tree/575149cfd77aebcf3a129e165bd89e14caafc31c

x: (String v Boolean v Number v Object v ...)
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Types in ECMA-262

https://github.com/tc39/ecma262/tree/575149cfd77aebcf3a129e165bd89e14caafc31c

x: (String v Boolean v Number v Object v ...)

ToNumber(x): (Number v Exception)
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Types in ECMA-262

https://github.com/tc39/ecma262/tree/575149cfd77aebcf3a129e165bd89e14caafc31c

x: (String v Boolean v Number v Object v ...)

 ∧ n: (Number)ToNumber(x): (Number v Exception)
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Types in ECMA-262
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JSTAR - Condition-based Refinement
TABLE I: Type-related specification bugs fixed by pull re-
quests for the recent three years from 2018 to 2021

Category Bug Kind # Pull Requests # Bug Fixes

Reference
UnknownVar 5 12

DuplicatedVar 2 12

Arity MissingParam 2 4

Assertion Assertion 4 5

Operand
NoNumber 1 2

Abrupt 5 6

Total 19 41

refine(!e, b)(�]) = refine(e,¬b)(�])

refine(e0 || e1, b)(�]) =

⇢
�]
0 t �]

1 if b
�]
0 u �]

1 if ¬b

refine(e0 && e1, b)(�]) =

⇢
�]
0 u �]

1 if b
�]
0 t �]

1 if ¬b
refine(x.Type == cnormal, #t)(�

]) = �][x 7! ⌧ ]x u normal(T)]
refine(x.Type == cnormal, #f)(�

]) = �][x 7! ⌧ ]x u {abrupt}]
refine(x == e, #t)(�]) = �][x 7! ⌧ ]x u ⌧ ]e ]
refine(x == e, #f)(�]) = �][x 7! ⌧ ]x \ b⌧ ]ec]
refine(x : ⌧, #t)(�]) = �][x 7! ⌧ ]x u {⌧}]
refine(x : ⌧, #f)(�]) = �][x 7! ⌧ ]x \ {⌧ 0 | ⌧ 0 <: ⌧}]

refine(e, b)(�]) = �]

where �]
j = refine(ej , b)(�]) for j = 0, 1, ⌧ ]e = JeK]e(�]),

and b⌧ ]c returns {⌧} if ⌧ ] denotes a singleton type ⌧ , or returns
?, otherwise.

IV. BUG DETECTOR

We develop a bug detector to statically detect type-related
specification bugs in ECMAScript using an augmented ab-
stract transfer function F ]

a with additional checkers. Before
implementing checkers, we manually investigated pull requests
for the recent three years from 2018 to 2021 to identify
important bugs to detect. As summarized in Table I, we found
19 pull requests that fixed 41 type-related specification bugs,
and classified the bugs into four categories with six kinds.
To detect them automatically, we implement four checkers: a
reference checker, an arity checker, an assertion checker, and
an operand checker.

A. Reference Checker

ECMAScript abstract algorithms dynamically introduce
variables in any contexts. A reference bug occurs when trying
to access variables not yet defined (UnknownVar) or to redefine
variables already defined (DuplicatedVar). According to our
manual investigation of the pull requests, the reference bug
is the most prevalent type-related specification bugs; five pull
requests fixed 12 unknown variable bugs and two pull requests
fixed 12 duplicated variable declaration bugs. We implement a
reference checker by adding additional checks to the abstract
semantics of variable lookups and variable declarations as
follows:

JxK]e(�]) =

⇢
unknown variable x if JxK]r(�]) = {?}
· · · otherwise

Jlet x = eK]i(l , ⌧)(d]) =
⇢

already defined variable x if ⌧ ] = {#t}
· · · otherwise

where ⌧ ] = Jx?K]e(d](l , ⌧))

If the abstract semantics of a variable lookup for x is a
singleton {?}, x is always an unknown variable. For example,
consider the syntax-directed algorithm in Figure 2(a). Since
the GetReferencedName algorithm is removed, the variable
GetReferencedName does not exist in abstract environments
and its lookup returns {?}. Thus, the reference checker reports
the unknown variable bug for GetReferencedName. For
duplicated variable declarations, the reference checker utilizes
the abstract semantics of the existence check Jx?K]e to see
whether the variable x of each variable declaration is already
defined.

B. Arity Checker

The arity of a function f = def f(p1, · · · ,pn,[ · · · , pm])l
is an interval [n,m] where n and m� n denote the numbers
of normal and optional parameters, respectively. In function
invocations, an arity bug occurs when the number of argu-
ments does not match with the function arity (MissingParam).
In the last three years, two pull requests fixed four missing
parameter bugs. The arity checker detects them by adding an
additional check to the abstract semantics of the function call
instruction:

Jx = (e e1 · · · ek)K]i(l , ⌧)(d]) =⇢
missing parameters pk+1, · · · , pnf

if 9f 2 ⌧ ]. s.t. k < nf

· · · otherwise
where f = def f(p1, · · · , pnf

, [ · · · , pmf])l ^
⌧ ] = JeK]e(d](l , ⌧)).

For each function f in the abstract semantics of the function
expression e, the arity checker compares the number of
arguments with the arity of f to detect missing parameters.
For example, consider the syntax-directed algorithm in Fig-
ure 2(b). The algorithm invocation on line 2 is compiled to
the following function call instruction:

x = (formals.IteratorBindingInitialization formals)

using a temporary variable x. Because it passes only a single
argument formals even though the function arity is [3, 3], the
arity checker reports missing parameter bugs for two additional
parameters iteratorRecord and environment.

C. Assertion Checker

An assertion failure (Assertion) is a specification bug that
occurs when the condition of an assertion instruction is not
true. We found four pull requests that fixed five assertion
failures. The assertion checker detects them using an additional
check in the abstract semantics of the assertion instruction:

Jassert eK]i(l , ⌧)(d]) =
⇢

assertion failure e if {#t} 6v ⌧ ]

· · · otherwise
where ⌧ ] = JeK]e(d](l , ⌧))

It checks whether the abstract semantics of the condi-
tion expression e subsumes {#t}. For example, consider
the syntax-directed algorithm in Figure 2(c). The parameter
environment of this algorithm has an environment record or
undefined. Since type sensitivity divides the abstract types

x: number

#t #f

x: number  v

   boolean v

   string
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JSTAR - Condition-based Refinement
TABLE I: Type-related specification bugs fixed by pull re-
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Category Bug Kind # Pull Requests # Bug Fixes
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Operand
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Abrupt 5 6

Total 19 41
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and b⌧ ]c returns {⌧} if ⌧ ] denotes a singleton type ⌧ , or returns
?, otherwise.

IV. BUG DETECTOR

We develop a bug detector to statically detect type-related
specification bugs in ECMAScript using an augmented ab-
stract transfer function F ]

a with additional checkers. Before
implementing checkers, we manually investigated pull requests
for the recent three years from 2018 to 2021 to identify
important bugs to detect. As summarized in Table I, we found
19 pull requests that fixed 41 type-related specification bugs,
and classified the bugs into four categories with six kinds.
To detect them automatically, we implement four checkers: a
reference checker, an arity checker, an assertion checker, and
an operand checker.

A. Reference Checker

ECMAScript abstract algorithms dynamically introduce
variables in any contexts. A reference bug occurs when trying
to access variables not yet defined (UnknownVar) or to redefine
variables already defined (DuplicatedVar). According to our
manual investigation of the pull requests, the reference bug
is the most prevalent type-related specification bugs; five pull
requests fixed 12 unknown variable bugs and two pull requests
fixed 12 duplicated variable declaration bugs. We implement a
reference checker by adding additional checks to the abstract
semantics of variable lookups and variable declarations as
follows:

JxK]e(�]) =

⇢
unknown variable x if JxK]r(�]) = {?}
· · · otherwise

Jlet x = eK]i(l , ⌧)(d]) =
⇢

already defined variable x if ⌧ ] = {#t}
· · · otherwise

where ⌧ ] = Jx?K]e(d](l , ⌧))

If the abstract semantics of a variable lookup for x is a
singleton {?}, x is always an unknown variable. For example,
consider the syntax-directed algorithm in Figure 2(a). Since
the GetReferencedName algorithm is removed, the variable
GetReferencedName does not exist in abstract environments
and its lookup returns {?}. Thus, the reference checker reports
the unknown variable bug for GetReferencedName. For
duplicated variable declarations, the reference checker utilizes
the abstract semantics of the existence check Jx?K]e to see
whether the variable x of each variable declaration is already
defined.

B. Arity Checker

The arity of a function f = def f(p1, · · · ,pn,[ · · · , pm])l
is an interval [n,m] where n and m� n denote the numbers
of normal and optional parameters, respectively. In function
invocations, an arity bug occurs when the number of argu-
ments does not match with the function arity (MissingParam).
In the last three years, two pull requests fixed four missing
parameter bugs. The arity checker detects them by adding an
additional check to the abstract semantics of the function call
instruction:

Jx = (e e1 · · · ek)K]i(l , ⌧)(d]) =⇢
missing parameters pk+1, · · · , pnf
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, [ · · · , pmf])l ^
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For each function f in the abstract semantics of the function
expression e, the arity checker compares the number of
arguments with the arity of f to detect missing parameters.
For example, consider the syntax-directed algorithm in Fig-
ure 2(b). The algorithm invocation on line 2 is compiled to
the following function call instruction:

x = (formals.IteratorBindingInitialization formals)

using a temporary variable x. Because it passes only a single
argument formals even though the function arity is [3, 3], the
arity checker reports missing parameter bugs for two additional
parameters iteratorRecord and environment.

C. Assertion Checker

An assertion failure (Assertion) is a specification bug that
occurs when the condition of an assertion instruction is not
true. We found four pull requests that fixed five assertion
failures. The assertion checker detects them using an additional
check in the abstract semantics of the assertion instruction:

Jassert eK]i(l , ⌧)(d]) =
⇢

assertion failure e if {#t} 6v ⌧ ]

· · · otherwise
where ⌧ ] = JeK]e(d](l , ⌧))

It checks whether the abstract semantics of the condi-
tion expression e subsumes {#t}. For example, consider
the syntax-directed algorithm in Figure 2(c). The parameter
environment of this algorithm has an environment record or
undefined. Since type sensitivity divides the abstract types
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• Target: 864 versions of ECMA-262 in 3 years
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JSTAR - Evaluation

TABLE II: The analysis precision of JSTAR without refinement (no-refine), with refinement (refine), and their difference (�)

Checker Bug Kind Precision = (# True Bugs) / (# Detected Bugs)
no-refine refine �

Reference
UnknownVar 62 / 106 17 / 60 63 / 78 17 / 31 +1 / -28 / -29
DuplicatedVar 45 / 46 46 / 47 +1 / +1

Arity MissingParam 4 / 4 4 / 4 4 / 4 4 / 4 / /
Assertion Assertion 4 / 56 4 / 56 4 / 31 4 / 31 / -25 / -25

Operand
NoNumber 22 / 113 2 / 65 22 / 44 2 / 6 / -69 / -59
Abrupt 20 / 48 20 / 38 / -10

Total 92 / 279 (33.0%) 93 / 157 (59.2%) +1 / -122 (+26.3%)

(a) Life spans sorted by creation (b) The histogram of life spans

Fig. 7: Life spans of true bugs

A. Performance

Figure 6 shows the statistics of the type analysis using
JSTAR for 864 versions of ECMAScript: (a) the number of
analyzed functions, (b) the number of flow- and type-sensitive
views, (c) the number of worklist iterations, and (d) the analy-
sis time. For each version, JSTAR analyzed 1,696.6 functions
on average. Since ECMAScript has gradually evolved, it ana-
lyzed 1,491 functions for the first version in 2018 but analyzed
1,864 functions in the latest. JSTAR analyzes functions with
flow- and type-sensitive views. On average, each version has
92.0K views and each function has 54.1 views.

We measured the performance of JSTAR with the worklist
iteration number and the analysis time. For each version of
ECMAScript, JSTAR took 137.3 seconds with 301.6K worklist
iterations on average. The average analysis time is 8.0 seconds
for specification extraction (extract), 128.5 seconds for type
analysis (analyze), and 0.8 seconds for bug detection (detect).
The performance overhead is modest enough for JSTAR to be
integrated in the open development process of ECMAScript.

B. Precision

We measured the analysis precision with the ratio of true
bugs in the reported bugs by JSTAR. As summarized in the
refine column of Table II, the analysis precision is 59.2%; 93
out of 157 detected bugs are true bugs. The reference checker
detected the most bugs with 80.8% precision; 17 unknown
variables (UnknownVar) and 46 duplicated variable declara-
tions (DuplicatedVar) are true bugs. We found four missing
parameters (MissingParam) with 100.0% precision and four
assertion failures (Assertion) with 12.9% precision. Finally,
the operand checker detected two non-numeric operand bugs

(NoNumber) with 33.3% precision and 20 unchecked abrupt
completion bugs (Abrupt) with 52.6% precision.

To understand the impact of the detected true bugs, we
extended JSTAR to automatically extract when they are created
and resolved in the ECMAScript official repository. A bug is
created when it exists in a specific version but does not exist in
its previous version, and a bug is resolved vice versa. The life

span of a bug denotes the number of days between the created
date and the resolved date. Figure 7 illustrates the life spans of
true bugs; Figure 7(a) depicts the life spans sorted by creation
and Figure 7(b) depicts the histogram of the life spans in a
logarithmic scale. Among 93 true bugs, 49 bugs are inherited,
which means that they are created before 2018. Moreover, 14
bugs still exist in the latest ECMAScript, which are newly
detected by JSTAR. We discuss the details of 14 newly found
bugs in Section V-D. Even though we assume that 49 inherited
bugs are created on January 1, 2018, the average life span is
422.8 and the maximum life span is 1,164. All the bugs with
the maximum life span are inherited ones and they are all
newly detected.

We manually investigated 64 false-positive bugs to under-
stand why JSTAR detected them. Among them, 17 bugs are
due to extraction failure of mechanized specifications caused
by wrong writing styles. Because ECMAScript is written in
HTML, JISET extracts abstract algorithms using the emu-alg
HTML tag. Unfortunately, several abstract algorithms are
defined with the opening tag <emu-alg> but without the
closing tag </emu-alg>, which causes extraction failure of
mechanized specifications leading to false-positive bugs. The
remaining 47 bugs are due to imprecise analysis. We found
that 28 bugs are due to imprecise analysis of the conditions
of assertions and branches for specific function calls. For
example, consider the following algorithm step for GetValue:

Since IsPropertyReference always returns false when the
Base field of a given reference record is cunresolvable, the
field access V .[[Base]] cannot be cunresolvable on line 4.a.
However, because the type analysis does not compute such in-
formation, cunresolvable is also passed as the argument of
ToObject. We believe that an advanced refinement technique

93 Bugs
Detected

14 Bugs
in ES12

59.2%
Precision
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CI System of ECMA-262
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JEST - Coverage-guided Fuzzing (in Spec.)

0 + { valueOf() { throw 42; }



/ 57세미나 @ 소프트웨어 분석 연구실 37

JEST - Assertion Injection

  function f() {}


+ $assert.sameValue(Object.getPrototypeOf(f),

+                   Function.prototype);

+ $assert.sameValue(Object.isExtensible(x), true); 
+ $assert.callable(f); 
+ $assert.constructable(f);
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• JEST synthesized 1,700 conformance tests from ES11
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GraalVM
Abstract—Modern programming follows the continuous inte-

gration (CI) and continuous deployment (CD) approach rather
than the traditional waterfall model. Even the development of
modern programming languages uses the CI/CD approach to
swiftly provide new language features and to adapt to new devel-
opment environments. Unlike in the conventional approach, in the
modern CI/CD approach, a language specification is no more the
oracle of the language semantics because both the specification
and its implementations (interpreters or compilers) can co-evolve.
In this setting, both the specification and implementations may
have bugs, and guaranteeing their correctness is non-trivial.

In this paper, we propose a novel N+1-version differential
testing to resolve the problem. Unlike the traditional differential
testing, our approach consists of three steps: 1) to automatically
synthesize programs guided by the syntax and semantics from a
given language specification, 2) to generate conformance tests by
injecting assertions to the synthesized programs to check their
final program states, 3) to detect bugs in the specification and
implementations via executing the conformance tests on multiple
implementations, and 4) to localize bugs on the specification
using statistical information. We actualize our approach for the
JavaScript programming language via JEST, which performs
N+1-version differential testing for modern JavaScript engines
and ECMAScript, the language specification describing the
syntax and semantics of JavaScript in a natural language. We
evaluated JEST with four JavaScript engines that support all
modern JavaScript language features and the latest version of
ECMAScript (ES11, 2020). JEST automatically synthesized 1,700
programs that covered 97.78% of syntax and 87.70% of semantics
from ES11. Using the assertion-injected JavaScript programs,
it detected 44 engine bugs in four different engines and 27
specification bugs in ES11.

Index Terms—JavaScript, conformance test generation, mech-
anized specification, differential testing

I. INTRODUCTION

In Peter O’Hearn’s keynote speech in ICSE 2020, he quoted
the following from Mark Zuckerberg’s Letter to Investors [1]:

The Hacker Way is an approach to building that in-
volves continuous improvement and iteration. Hack-
ers believe that somethings can always be better, and
that nothing is ever complete.

Indeed, modern programming follows the continuous integra-
tion (CI) and continuous deployment (CD) approach [2] rather
than the traditional waterfall model. Instead of a sequential
model that divides software development into several phases,

each of which takes time, CI/CD amounts to a cycle of quick
software development, deployment, and back to development
with feedback. Even the development of programming lan-
guages uses the CI/CD approach.

Consider JavaScript, one of the most widely used pro-
gramming languages for client-side and server-side program-
ming [3] and embedded systems [4]–[6]. Various JavaScript
engines provide diverse extensions to adapt to fast-changing
user demands. At the same time, ECMAScript, the offi-
cial specification that describes the syntax and semantics of
JavaScript, is annually updated since ECMAScript 6 (ES6,
2015) [7] to support new features in response to user demands.
Such updates in both the specification and implementations in
tandem make it difficult for them to be in sync.

Another example is Solidity [8], the standard smart contract
programming language for the Ethereum blockchain. The
Solidity language specification is continuously updated, and
the Solidity compiler is also frequently released. According to
Hwang and Ryu [9], the average number of days between
consecutive releases from Solidity 0.1.2 to 0.5.7 is 27. In
most cases, the Solidity compiler reflects updates in the
specification, but even the specification is revised according to
the semantics implemented in the compiler. As in JavaScript,
bidirectional effects in the specification and the implementa-
tion make it hard to guarantee their correspondence.

In this approach, both the specification and the implemen-
tation may contain bugs, and guaranteeing their correctness
is a challenging task. The conventional approach to build
a programming language is uni-directional from a language
specification to its implementation. The specification is be-
lieved to be correct and the conformance of an implementation
to the specification is checked by dynamic testing. Unlike in
the conventional approach, in the modern CI/CD approach,
the specification may not be the oracle, because both the
specification and the implementation can co-evolve.

In this paper, we propose a novel N+1-version differential

testing, which enables testing of co-evolving specifications
and their implementations. The differential testing [10] is a
testing technique, which executes N implementations of a
specification concurrently for each input, and detects a prob-
lem when the outputs are in disagreement. In addition to N
implementations, our approach tests the specification as well

44 Bugs
in Engines

27 Bugs
in Spec.
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AdditiveExpression[Yield, Await]:
MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] + MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] - MultiplicativeExpression[?Yield, ?Await]

Fig. 1. Syntax of AdditiveExpression in ES13

Syntax-directed operations (SDOs)

Evaluation of AdditiveExpression : AdditiveExpression + MultiplicativeExpression
1. Return ?2 EvaluateStringOrNumericBinaryExpression1(AdditiveExpression, +, MultiplicativeExpression).3

Evaluation of AdditiveExpression : AdditiveExpression - MultiplicativeExpression
1. Return ?5 EvaluateStringOrNumericBinaryExpression4(AdditiveExpression, -, MultiplicativeExpression).6

Fig. 2. Semantics of AdditiveExpression defined with two syntax-directed operations (SDOs) in ES13

2 BACKGROUND ANDMOTIVATION
In this section, we explain why traditional graph coverage may not produce high-quality confor-
mance tests using JavaScript as an example language. We select JavaScript because its mechanized
speci�cations are actively maintained, while most mechanized speci�cations of other languages are
outdated. Since all the existing JavaScript mechanized speci�cations [19, 28, 40, 44] closely capture
the abstract algorithms in ECMA-262 [16], we show how JavaScript mechanized speci�cations
describe the JavaScript syntax and semantics using ECMA-262. Then, we explain the control-�ow
graph (CFG) of abstract algorithms in ECMA-262 and how to use the CFG in coverage-guided
fuzzing. Finally, we demonstrate why a simple node coverage criterion cannot fully discriminate
di�erent semantics in di�erent language features or even in the same language feature.

2.1 JavaScript Language Specification (ECMA-262)
Now, we explain how the latest version of ECAM-262 (ES13, 2022) describes the syntax and
semantics of JavaScript language features with simple examples.

2.1.1 Syntax. ECMA-262 de�nes the JavaScript syntax with a variant of the extended Backus–Naur
form (EBNF). It consists of syntactic productions de�ned with multiple alternatives; each alternative
is a sequence of symbols. Unlike the original EBNF, its nonterminals are parametric with boolean
arguments: ? denotes passing the argument as is, and + and ⇠ denote passing true and false,
respectively. In addition, it supports various extensions, including context-sensitive symbols and
conditional alternatives. For example, consider the following simple additive expression:

1 + 2 (1)
It computes the addition of two Number values, 1 and 2. Figure 1 describes its syntax with the
production ofAdditiveExpression1. It requires two boolean parameters, Yield and Await, and consists
of three alternatives. The second (or third) alternative consists of three symbols: a nonterminal
AdditiveExpression, a terminal + (or -), and a nonterminal MultiplicativeExpression.

2.1.2 Semantics. ECMA-262 de�nes the JavaScript semantics using abstract algorithms, and there
are three kinds of abstract algorithms:

• Syntax-directed operations (SDOs) (e.g., Evaluation of AdditiveExpression : · · · in Figure 2)
• Normal algorithms (e.g., ToNumeric in Figure 3)
• Built-in methods (e.g., Number in Figure 4)

1https://262.ecma-international.org/13.0/#prod-AdditiveExpression

4

0 + { valueOf() { throw 42; }



/ 57세미나 @ 소프트웨어 분석 연구실 39

Feature-Sensitive (FS) Coverage - PLDI'23

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

PLDI’23, June 03–05, 2018, Woodstock, NY Anonymous Author(s)

AdditiveExpression[Yield, Await]:
MultiplicativeExpression[?Yield, ?Await]
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AdditiveExpression[?Yield, ?Await] - MultiplicativeExpression[?Yield, ?Await]

Fig. 1. Syntax of AdditiveExpression in ES13

Syntax-directed operations (SDOs)

Evaluation of AdditiveExpression : AdditiveExpression + MultiplicativeExpression
1. Return ?2 EvaluateStringOrNumericBinaryExpression1(AdditiveExpression, +, MultiplicativeExpression).3

Evaluation of AdditiveExpression : AdditiveExpression - MultiplicativeExpression
1. Return ?5 EvaluateStringOrNumericBinaryExpression4(AdditiveExpression, -, MultiplicativeExpression).6

Fig. 2. Semantics of AdditiveExpression defined with two syntax-directed operations (SDOs) in ES13

2 BACKGROUND ANDMOTIVATION
In this section, we explain why traditional graph coverage may not produce high-quality confor-
mance tests using JavaScript as an example language. We select JavaScript because its mechanized
speci�cations are actively maintained, while most mechanized speci�cations of other languages are
outdated. Since all the existing JavaScript mechanized speci�cations [19, 28, 40, 44] closely capture
the abstract algorithms in ECMA-262 [16], we show how JavaScript mechanized speci�cations
describe the JavaScript syntax and semantics using ECMA-262. Then, we explain the control-�ow
graph (CFG) of abstract algorithms in ECMA-262 and how to use the CFG in coverage-guided
fuzzing. Finally, we demonstrate why a simple node coverage criterion cannot fully discriminate
di�erent semantics in di�erent language features or even in the same language feature.

2.1 JavaScript Language Specification (ECMA-262)
Now, we explain how the latest version of ECAM-262 (ES13, 2022) describes the syntax and
semantics of JavaScript language features with simple examples.

2.1.1 Syntax. ECMA-262 de�nes the JavaScript syntax with a variant of the extended Backus–Naur
form (EBNF). It consists of syntactic productions de�ned with multiple alternatives; each alternative
is a sequence of symbols. Unlike the original EBNF, its nonterminals are parametric with boolean
arguments: ? denotes passing the argument as is, and + and ⇠ denote passing true and false,
respectively. In addition, it supports various extensions, including context-sensitive symbols and
conditional alternatives. For example, consider the following simple additive expression:

1 + 2 (1)
It computes the addition of two Number values, 1 and 2. Figure 1 describes its syntax with the
production ofAdditiveExpression1. It requires two boolean parameters, Yield and Await, and consists
of three alternatives. The second (or third) alternative consists of three symbols: a nonterminal
AdditiveExpression, a terminal + (or -), and a nonterminal MultiplicativeExpression.

2.1.2 Semantics. ECMA-262 de�nes the JavaScript semantics using abstract algorithms, and there
are three kinds of abstract algorithms:

• Syntax-directed operations (SDOs) (e.g., Evaluation of AdditiveExpression : · · · in Figure 2)
• Normal algorithms (e.g., ToNumeric in Figure 3)
• Built-in methods (e.g., Number in Figure 4)

1https://262.ecma-international.org/13.0/#prod-AdditiveExpression
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Syntax-directed operations (SDOs)

Evaluation of AdditiveExpression : AdditiveExpression + MultiplicativeExpression
1. Return ?2 EvaluateStringOrNumericBinaryExpression1(AdditiveExpression, +, MultiplicativeExpression).3

Evaluation of AdditiveExpression : AdditiveExpression - MultiplicativeExpression
1. Return ?5 EvaluateStringOrNumericBinaryExpression4(AdditiveExpression, -, MultiplicativeExpression).6

Fig. 2. Semantics of AdditiveExpression defined with two syntax-directed operations (SDOs) in ES13

2 BACKGROUND ANDMOTIVATION
In this section, we explain why traditional graph coverage may not produce high-quality confor-
mance tests using JavaScript as an example language. We select JavaScript because its mechanized
speci�cations are actively maintained, while most mechanized speci�cations of other languages are
outdated. Since all the existing JavaScript mechanized speci�cations [19, 28, 40, 44] closely capture
the abstract algorithms in ECMA-262 [16], we show how JavaScript mechanized speci�cations
describe the JavaScript syntax and semantics using ECMA-262. Then, we explain the control-�ow
graph (CFG) of abstract algorithms in ECMA-262 and how to use the CFG in coverage-guided
fuzzing. Finally, we demonstrate why a simple node coverage criterion cannot fully discriminate
di�erent semantics in di�erent language features or even in the same language feature.

2.1 JavaScript Language Specification (ECMA-262)
Now, we explain how the latest version of ECAM-262 (ES13, 2022) describes the syntax and
semantics of JavaScript language features with simple examples.

2.1.1 Syntax. ECMA-262 de�nes the JavaScript syntax with a variant of the extended Backus–Naur
form (EBNF). It consists of syntactic productions de�ned with multiple alternatives; each alternative
is a sequence of symbols. Unlike the original EBNF, its nonterminals are parametric with boolean
arguments: ? denotes passing the argument as is, and + and ⇠ denote passing true and false,
respectively. In addition, it supports various extensions, including context-sensitive symbols and
conditional alternatives. For example, consider the following simple additive expression:

1 + 2 (1)
It computes the addition of two Number values, 1 and 2. Figure 1 describes its syntax with the
production ofAdditiveExpression1. It requires two boolean parameters, Yield and Await, and consists
of three alternatives. The second (or third) alternative consists of three symbols: a nonterminal
AdditiveExpression, a terminal + (or -), and a nonterminal MultiplicativeExpression.

2.1.2 Semantics. ECMA-262 de�nes the JavaScript semantics using abstract algorithms, and there
are three kinds of abstract algorithms:

• Syntax-directed operations (SDOs) (e.g., Evaluation of AdditiveExpression : · · · in Figure 2)
• Normal algorithms (e.g., ToNumeric in Figure 3)
• Built-in methods (e.g., Number in Figure 4)

1https://262.ecma-international.org/13.0/#prod-AdditiveExpression

4

0 + { valueOf() { throw 42; }
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Syntax-directed operations (SDOs)

Evaluation of AdditiveExpression : AdditiveExpression + MultiplicativeExpression
1. Return ?2 EvaluateStringOrNumericBinaryExpression1(AdditiveExpression, +, MultiplicativeExpression).3

Evaluation of AdditiveExpression : AdditiveExpression - MultiplicativeExpression
1. Return ?5 EvaluateStringOrNumericBinaryExpression4(AdditiveExpression, -, MultiplicativeExpression).6

Fig. 2. Semantics of AdditiveExpression defined with two syntax-directed operations (SDOs) in ES13

2 BACKGROUND ANDMOTIVATION
In this section, we explain why traditional graph coverage may not produce high-quality confor-
mance tests using JavaScript as an example language. We select JavaScript because its mechanized
speci�cations are actively maintained, while most mechanized speci�cations of other languages are
outdated. Since all the existing JavaScript mechanized speci�cations [19, 28, 40, 44] closely capture
the abstract algorithms in ECMA-262 [16], we show how JavaScript mechanized speci�cations
describe the JavaScript syntax and semantics using ECMA-262. Then, we explain the control-�ow
graph (CFG) of abstract algorithms in ECMA-262 and how to use the CFG in coverage-guided
fuzzing. Finally, we demonstrate why a simple node coverage criterion cannot fully discriminate
di�erent semantics in di�erent language features or even in the same language feature.

2.1 JavaScript Language Specification (ECMA-262)
Now, we explain how the latest version of ECAM-262 (ES13, 2022) describes the syntax and
semantics of JavaScript language features with simple examples.

2.1.1 Syntax. ECMA-262 de�nes the JavaScript syntax with a variant of the extended Backus–Naur
form (EBNF). It consists of syntactic productions de�ned with multiple alternatives; each alternative
is a sequence of symbols. Unlike the original EBNF, its nonterminals are parametric with boolean
arguments: ? denotes passing the argument as is, and + and ⇠ denote passing true and false,
respectively. In addition, it supports various extensions, including context-sensitive symbols and
conditional alternatives. For example, consider the following simple additive expression:

1 + 2 (1)
It computes the addition of two Number values, 1 and 2. Figure 1 describes its syntax with the
production ofAdditiveExpression1. It requires two boolean parameters, Yield and Await, and consists
of three alternatives. The second (or third) alternative consists of three symbols: a nonterminal
AdditiveExpression, a terminal + (or -), and a nonterminal MultiplicativeExpression.

2.1.2 Semantics. ECMA-262 de�nes the JavaScript semantics using abstract algorithms, and there
are three kinds of abstract algorithms:

• Syntax-directed operations (SDOs) (e.g., Evaluation of AdditiveExpression : · · · in Figure 2)
• Normal algorithms (e.g., ToNumeric in Figure 3)
• Built-in methods (e.g., Number in Figure 4)
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Syntax-directed operations (SDOs)

Evaluation of AdditiveExpression : AdditiveExpression + MultiplicativeExpression
1. Return ?2 EvaluateStringOrNumericBinaryExpression1(AdditiveExpression, +, MultiplicativeExpression).3

Evaluation of AdditiveExpression : AdditiveExpression - MultiplicativeExpression
1. Return ?5 EvaluateStringOrNumericBinaryExpression4(AdditiveExpression, -, MultiplicativeExpression).6

Fig. 2. Semantics of AdditiveExpression defined with two syntax-directed operations (SDOs) in ES13

2 BACKGROUND ANDMOTIVATION
In this section, we explain why traditional graph coverage may not produce high-quality confor-
mance tests using JavaScript as an example language. We select JavaScript because its mechanized
speci�cations are actively maintained, while most mechanized speci�cations of other languages are
outdated. Since all the existing JavaScript mechanized speci�cations [19, 28, 40, 44] closely capture
the abstract algorithms in ECMA-262 [16], we show how JavaScript mechanized speci�cations
describe the JavaScript syntax and semantics using ECMA-262. Then, we explain the control-�ow
graph (CFG) of abstract algorithms in ECMA-262 and how to use the CFG in coverage-guided
fuzzing. Finally, we demonstrate why a simple node coverage criterion cannot fully discriminate
di�erent semantics in di�erent language features or even in the same language feature.

2.1 JavaScript Language Specification (ECMA-262)
Now, we explain how the latest version of ECAM-262 (ES13, 2022) describes the syntax and
semantics of JavaScript language features with simple examples.

2.1.1 Syntax. ECMA-262 de�nes the JavaScript syntax with a variant of the extended Backus–Naur
form (EBNF). It consists of syntactic productions de�ned with multiple alternatives; each alternative
is a sequence of symbols. Unlike the original EBNF, its nonterminals are parametric with boolean
arguments: ? denotes passing the argument as is, and + and ⇠ denote passing true and false,
respectively. In addition, it supports various extensions, including context-sensitive symbols and
conditional alternatives. For example, consider the following simple additive expression:

1 + 2 (1)
It computes the addition of two Number values, 1 and 2. Figure 1 describes its syntax with the
production ofAdditiveExpression1. It requires two boolean parameters, Yield and Await, and consists
of three alternatives. The second (or third) alternative consists of three symbols: a nonterminal
AdditiveExpression, a terminal + (or -), and a nonterminal MultiplicativeExpression.

2.1.2 Semantics. ECMA-262 de�nes the JavaScript semantics using abstract algorithms, and there
are three kinds of abstract algorithms:

• Syntax-directed operations (SDOs) (e.g., Evaluation of AdditiveExpression : · · · in Figure 2)
• Normal algorithms (e.g., ToNumeric in Figure 3)
• Built-in methods (e.g., Number in Figure 4)

1https://262.ecma-international.org/13.0/#prod-AdditiveExpression
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0 + { valueOf() { throw 42; }

0 - { valueOf() { throw 42; }
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Table 2. Comparison of synthesized conformance tests guided by five graph coverage criteria

Coverage Criteria⇠G
# Covered :-F(CP)S-TR (k) # Syn. Test # Bug# Node # Branch # Total

0-FS node-or-branch (0-fs) 10.0 5.6 15.6 2,111 55
1-FS node-or-branch (1-fs) 79.3 45.7 125.0 6,766 83
2-FS node-or-branch (2-fs) 1,199.8 696.3 1,896.1 97,423 102

1-FCPS node-or-branch (1-fcps) 179.7 97.6 277.3 9,092 87
2-FCPS node-or-branch (2-fcps) 2,323.1 1,297.6 3,620.7 122,589 111

or developers have not yet responded. Among 143 detected bugs, 42 are engine bugs, and 101 are
transpiler bugs. We present two real-world bug examples.

Order of Execution. JavaScript engines must follow the execution order of each language feature
described in the language speci�cation. However, we found a bug7 related to the execution order
of the delete operation that causes the execution of originally unreachable code in GraalJS. For
example, while the following code should return false, it throws an exception with �ERR� by
executing the originally unreachable code inside the arrow function in GraalJS:

false && delete (() => { throw �ERR�; })(); // Expected: false

In addition, we detected another bug8 related to the execution order of property reads in all target
engines. ECMA-262 may consider changing the semantics according to the one used in most
implementations.

Asynchronous Function / Generator. One of the complex language features in JavaScript is
asynchronous functions and generators introduced in ES6 (2015). We detected a bug9 in Spider-
Monkey that breaks the logic of asynchronous function calls. For example, the following code must
return a rejected Promise object because a non-iterable value undefined is assigned to an array
destructuring pattern [] in the async arrow function:

(async function ([]) {})(); // Expected: A rejected Promise object

However, it unexpectedly terminates with a TypeError exception in SpiderMonkey. A developer
of SpiderMonkey explained it as follows:

“The async-function spec was changed at some point [. . .]
this is also not covered by test262.”

5.2 E�ectiveness of :-FS Coverage Criteria
Table 2 shows the result of conformance test synthesis via JESTfs with �ve graph coverage criteria.
Note that 0-FS node-or-branch coverage criterion is the same with the node-or-branch coverage
criterion. To evaluate the e�ectiveness of :-FS coverage criteria, we compare the synthesized
conformance tests guided by di�erent :-FS node-or-branch coverage criteria (0-fs, 1-fs, and 2-fs in
Table 2). The second to the fourth columns denote the numbers of covered :-FS- or :-FCPS-TRs
for nodes (# Node), branches (# Branch), and both (# Total), respectively. The �fth and the sixth
columns denote the numbers of synthesized conformance tests (# Syn. Test) and detected distinct
bugs (# Bug), respectively.

7We anonymized links of bug reports for double-blinded reviewing.
8We anonymized links of bug reports for double-blinded reviewing.
9We anonymized links of bug reports for double-blinded reviewing.
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Table 1. Detected conformance bugs in JavaScript engines and transpilers

Kind Name Version Release # Detected Unique Bugs
# New # Con�rmed # Reported

Engine

V8 v10.8.121 2022.10.06 0 0 4
JSC v615.1.10 2022.10.26 15 15 24
GraalJS v22.2.0 2022.07.26 9 9 10
SpiderMonkey v107.0b4 2022.10.24 1 3 4

Total 25 27 42

Transpiler

Babel v7.19.1 2022.09.15 30 30 35
SWC v1.3.10 2022.10.21 27 27 41
Terser v5.15.1 2022.10.05 1 1 18
Obfuscator v4.0.0 2022.02.15 0 0 7

Total 58 58 101
Total 83 85 143

run the transpiled program and assertions together using a trusted engine. If at least one assertion
fails, the target transpiler has a conformance bug related to the test.

5 EVALUATION
This section evaluates feature-sensitive coverage criteria with the following research questions:

• RQ1 (Conformance Bug Detection): How many conformance bugs in JavaScript imple-
mentations are detected by synthesized conformance tests? (Section 5.1)

• RQ2 (E�ectiveness of :-FS Coverage Criteria): Are higher :-FS coverage criteria more
e�ective than lower :-FS coverage criteria in detecting conformance bugs? (Section 5.2)

• RQ3 (E�ectiveness of :-FCPS Coverage Criteria): Are :-FCPS coverage criteria more
e�ective than :-FS coverage criteria in detecting conformance bugs? (Section 5.3)

• RQ4 (Comparison with Test262): Can conformance tests synthesized by JESTfs comple-
ment Test262, the o�cial JavaScript conformance suite maintained manually? (Section 5.4)

We apply JESTfs to the latest language speci�cation (ES13, 2022) [16], which synthesized 237,981
conformance tests in 50 hours with �ve graph coverage criteria: 1) 0-FS, 2) 1-FS, 3) 2-FS, 4) 1-FCPS,
and 5) 2-FCPS node-or-branch coverage. We performed our experiments with �ve Ubuntu machines
with a 4.0GHz Intel(R) Core(TM) i7-6700k and 32GB of RAM (Samsung DDR4 2133MHz 8GB*4).

Using the synthesized JavaScript conformance tests, we check the conformance of eight main-
stream implementations listed in Table 1. We select them as evaluation targets because they support
all the language features in ES13. V8, JSC, and SpiderMonkey are JavaScript engines used in web
browsers, Google Chrome, Apple Safari, and Mozilla Firefox, respectively, and GraalJS is a JavaScript
engine by Oracle. Babel and SWC are transpilers that desugar new language features into old ones,
usually ES5.1 features, for legacy host environments. Terser is a code compressor that reduces
code size, and Obfuscator obfuscates code to make it hard to understand and reverse-engineering.
For the transpiler conformance check, we use V8 as the default engine to execute transpiled code
with assertions. If a test fails on V8, we use another engine that passes the test; if a test fails on all
engines, we do not use the test.

5.1 Conformance Bug Detection
Table 1 summarizes the conformance bugs detected by JESTfs in all the evaluation targets. We
manually inspected the failed conformance test cases, found 143 distinct conformance bugs, and
reported them to the corresponding developers. As a result, 85 out of 143 bugs were o�cially
con�rmed, and 83 were newly discovered bugs. The other 47 reported bugs are still under review,
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Specification (ECMA-262) Synthesis (Idea)
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Execution Trace

Object.hasOwn(42)
+

Execution Trace
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+

Execution Trace

<latexit sha1_base64="JXzBjyZgmsI8ags2tosNzBng8sY=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69BIvgqSRS1GPRi8cK9gPaUDabTbt2sxt2J0Ip/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZemApu0PO+ncLa+sbmVnG7tLO7t39QPjxqGZVpyppUCaU7ITFMcMmayFGwTqoZSULB2uHodua3n5g2XMkHHKcsSMhA8phTglZq9Wik0PTLFa/qzeGuEj8nFcjR6Je/epGiWcIkUkGM6fpeisGEaORUsGmplxmWEjoiA9a1VJKEmWAyv3bqnlklcmOlbUl05+rviQlJjBknoe1MCA7NsjcT//O6GcbXwYTLNEMm6WJRnAkXlTt73Y24ZhTF2BJCNbe3unRINKFoAyrZEPzll1dJ66LqX1Zr97VK/SaPowgncArn4MMV1OEOGtAECo/wDK/w5ijnxXl3PhatBSefOYY/cD5/ALFFjzg=</latexit>

···
<latexit sha1_base64="JXzBjyZgmsI8ags2tosNzBng8sY=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69BIvgqSRS1GPRi8cK9gPaUDabTbt2sxt2J0Ip/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZemApu0PO+ncLa+sbmVnG7tLO7t39QPjxqGZVpyppUCaU7ITFMcMmayFGwTqoZSULB2uHodua3n5g2XMkHHKcsSMhA8phTglZq9Wik0PTLFa/qzeGuEj8nFcjR6Je/epGiWcIkUkGM6fpeisGEaORUsGmplxmWEjoiA9a1VJKEmWAyv3bqnlklcmOlbUl05+rviQlJjBknoe1MCA7NsjcT//O6GcbXwYTLNEMm6WJRnAkXlTt73Y24ZhTF2BJCNbe3unRINKFoAyrZEPzll1dJ66LqX1Zr97VK/SaPowgncArn4MMV1OEOGtAECo/wDK/w5ijnxXl3PhatBSefOYY/cD5/ALFFjzg=</latexit>

···

Related Work - [FSE'15] S. Heule, et al. "Mimic: Computing Models for Opaque Code"
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Meta-level Static Analysis - Example
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(a) Evaluation algorithm for the logical OR assignment

1 syntax def AssignmentExpression [8]. Evaluation(
2 this , LeftHandSideExpression , AssignmentExpression
3 ) {
4 let lref = (LeftHandSideExpression.Evaluation)
5 let lval = [? (GetValue lref)]
6 let lbool = [! (ToBoolean lval)]
7 if (= lbool true) return lval
8 ...
9 }

(b) Extracted IRES function for the logical OR assignment

1 syntax def IdentifierReference [0]
2 .Evaluation(this , Identifier) {
3 return [?
4 (ResolveBinding
5 (Identifier.StringValue)
6 )
7 ]
8 }

(c) Extracted IRES function for the logical
OR assignment

Figure 2: Evaluation algorithm for the eighth alternative of AssignmentExpression in ES12 and its extracted IRES function

However, static analyzers with the compiler-based approach
are unable to keep up with fast-evolving JavaScript because they
requiremanual updates for new language semantics. The JavaScript
language itself is rapidly evolving nowadays. Since 2015, the Ecma
Technical Committee 39 (TC39) has maintained the speci�cation
as an open-source GitHub project and released its o�cial versions
annually. The speci�cation size has been getting bigger as well, and
the latest version of ECMA-262 (ES12, 2021) [20] is 879 pages. Since
existing JavaScript static analyzers cannot update JavaScript-IR
compilers automatically, they still focus on ES5.1 and only support
a few ES6 features manually. Because recent JavaScript programs
often use new features like arrow functions, and promises, the lack
of their support becomes increasingly problematic.

To alleviate this problem, we present JSAVER, a JavaScript Static
Analyzer via ECMAScript Representations. It is the �rst tool that
automatically derives JavaScript static analyzers from language
speci�cations. The main idea of JSAVER is to shift the paradigm
from compiler-based approaches to interpreter-based ones to uti-
lize “the interpreter-based nature” of JavaScript. The history of
JavaScript [56] testi�es that the working group designing JavaScript
in the 1990s de�ned the semantics using reference interpreters:

Guy Steele would ask a question about some edge-
case feature behavior. [. . .] they would each turn to
their respective implementation and try a test case. If
they got the same answer, that became the speci�ed
behavior.

The interpreter-based nature also a�ects the writing style of the
speci�cations. ECMA-262 describes the language semantics with

pseudocode algorithms consisting of sequentially numbered steps to
represent program executions. To fully utilize this interpreter-based
nature of JavaScript, JSAVER derives a static analyzer by 1) extracting
a de�nitional interpreter [46] from ECMA-262 and 2) performing a
meta-level static analysis with the extracted interpreter.

First, JSAVER extracts de�nitional interpreters from ECMAScript
language speci�cations. A de�nitional interpreter provides a way
to represent the language semantics of a de�ned-language using its
interpreter written in a de�ning-language. We extract a JavaScript
de�nitional interpreter from ECMA-262 using JISET [42], which
automatically extracts a de�nitional interpreter from ECMA-262
taking advantage of its writing style. In the extracted de�nitional
interpreter, the de�ned-language is JavaScript, and the de�ning-
language is IRES, which is an intermediate representation for EC-
MAScript language speci�cations. JISET shows its adaptability by
extracting de�nitional interpreters from future versions of ECMA-
262 without extending IRES.

Then, we present ameta-level static analysis to analyze JavaScript
programs indirectly using the extracted interpreters. A meta-level
static analysis is an interpreter-based approach for static analy-
sis of a de�ned-language !1 using a static analyzer of a de�ning-
language !2 as depicted in Figure 1(b). Since an !1 interpreter is an
!2 program, it indirectly analyzes an !1 program by analyzing the
interpreter using a static analyzer of !2 with the !1 program as the
input. Thus, we develop a static analyzer of IRES for a meta-level
static analysis for JavaScript and experimentally show that it can
indirectly analyze JavaScript programs e�ectively. Moreover, for
its expressivenss, we present ways to indirectly con�gure abstract
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(a) Evaluation algorithm for the logical OR assignment

1 syntax def AssignmentExpression [8]. Evaluation(
2 this , LeftHandSideExpression , AssignmentExpression
3 ) {
4 let lref = (LeftHandSideExpression.Evaluation)
5 let lval = [? (GetValue lref)]
6 let lbool = [! (ToBoolean lval)]
7 if (= lbool true) return lval
8 ...
9 }

(b) Extracted IRES function for the logical OR assignment

1 syntax def IdentifierReference [0]
2 .Evaluation(this , Identifier) {
3 return [?
4 (ResolveBinding
5 (Identifier.StringValue)
6 )
7 ]
8 }

(c) Extracted IRES function for the logical
OR assignment

Figure 2: Evaluation algorithm for the eighth alternative of AssignmentExpression in ES12 and its extracted IRES function

However, static analyzers with the compiler-based approach
are unable to keep up with fast-evolving JavaScript because they
requiremanual updates for new language semantics. The JavaScript
language itself is rapidly evolving nowadays. Since 2015, the Ecma
Technical Committee 39 (TC39) has maintained the speci�cation
as an open-source GitHub project and released its o�cial versions
annually. The speci�cation size has been getting bigger as well, and
the latest version of ECMA-262 (ES12, 2021) [20] is 879 pages. Since
existing JavaScript static analyzers cannot update JavaScript-IR
compilers automatically, they still focus on ES5.1 and only support
a few ES6 features manually. Because recent JavaScript programs
often use new features like arrow functions, and promises, the lack
of their support becomes increasingly problematic.

To alleviate this problem, we present JSAVER, a JavaScript Static
Analyzer via ECMAScript Representations. It is the �rst tool that
automatically derives JavaScript static analyzers from language
speci�cations. The main idea of JSAVER is to shift the paradigm
from compiler-based approaches to interpreter-based ones to uti-
lize “the interpreter-based nature” of JavaScript. The history of
JavaScript [56] testi�es that the working group designing JavaScript
in the 1990s de�ned the semantics using reference interpreters:

Guy Steele would ask a question about some edge-
case feature behavior. [. . .] they would each turn to
their respective implementation and try a test case. If
they got the same answer, that became the speci�ed
behavior.

The interpreter-based nature also a�ects the writing style of the
speci�cations. ECMA-262 describes the language semantics with

pseudocode algorithms consisting of sequentially numbered steps to
represent program executions. To fully utilize this interpreter-based
nature of JavaScript, JSAVER derives a static analyzer by 1) extracting
a de�nitional interpreter [46] from ECMA-262 and 2) performing a
meta-level static analysis with the extracted interpreter.

First, JSAVER extracts de�nitional interpreters from ECMAScript
language speci�cations. A de�nitional interpreter provides a way
to represent the language semantics of a de�ned-language using its
interpreter written in a de�ning-language. We extract a JavaScript
de�nitional interpreter from ECMA-262 using JISET [42], which
automatically extracts a de�nitional interpreter from ECMA-262
taking advantage of its writing style. In the extracted de�nitional
interpreter, the de�ned-language is JavaScript, and the de�ning-
language is IRES, which is an intermediate representation for EC-
MAScript language speci�cations. JISET shows its adaptability by
extracting de�nitional interpreters from future versions of ECMA-
262 without extending IRES.

Then, we present ameta-level static analysis to analyze JavaScript
programs indirectly using the extracted interpreters. A meta-level
static analysis is an interpreter-based approach for static analy-
sis of a de�ned-language !1 using a static analyzer of a de�ning-
language !2 as depicted in Figure 1(b). Since an !1 interpreter is an
!2 program, it indirectly analyzes an !1 program by analyzing the
interpreter using a static analyzer of !2 with the !1 program as the
input. Thus, we develop a static analyzer of IRES for a meta-level
static analysis for JavaScript and experimentally show that it can
indirectly analyze JavaScript programs e�ectively. Moreover, for
its expressivenss, we present ways to indirectly con�gure abstract
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(a) Evaluation algorithm for the logical OR assignment

1 syntax def AssignmentExpression [8]. Evaluation(
2 this , LeftHandSideExpression , AssignmentExpression
3 ) {
4 let lref = (LeftHandSideExpression.Evaluation)
5 let lval = [? (GetValue lref)]
6 let lbool = [! (ToBoolean lval)]
7 if (= lbool true) return lval
8 ...
9 }

(b) Extracted IRES function for the logical OR assignment

1 syntax def IdentifierReference [0]
2 .Evaluation(this , Identifier) {
3 return [?
4 (ResolveBinding
5 (Identifier.StringValue)
6 )
7 ]
8 }

(c) Extracted IRES function for the logical
OR assignment

Figure 2: Evaluation algorithm for the eighth alternative of AssignmentExpression in ES12 and its extracted IRES function

However, static analyzers with the compiler-based approach
are unable to keep up with fast-evolving JavaScript because they
requiremanual updates for new language semantics. The JavaScript
language itself is rapidly evolving nowadays. Since 2015, the Ecma
Technical Committee 39 (TC39) has maintained the speci�cation
as an open-source GitHub project and released its o�cial versions
annually. The speci�cation size has been getting bigger as well, and
the latest version of ECMA-262 (ES12, 2021) [20] is 879 pages. Since
existing JavaScript static analyzers cannot update JavaScript-IR
compilers automatically, they still focus on ES5.1 and only support
a few ES6 features manually. Because recent JavaScript programs
often use new features like arrow functions, and promises, the lack
of their support becomes increasingly problematic.

To alleviate this problem, we present JSAVER, a JavaScript Static
Analyzer via ECMAScript Representations. It is the �rst tool that
automatically derives JavaScript static analyzers from language
speci�cations. The main idea of JSAVER is to shift the paradigm
from compiler-based approaches to interpreter-based ones to uti-
lize “the interpreter-based nature” of JavaScript. The history of
JavaScript [56] testi�es that the working group designing JavaScript
in the 1990s de�ned the semantics using reference interpreters:

Guy Steele would ask a question about some edge-
case feature behavior. [. . .] they would each turn to
their respective implementation and try a test case. If
they got the same answer, that became the speci�ed
behavior.

The interpreter-based nature also a�ects the writing style of the
speci�cations. ECMA-262 describes the language semantics with

pseudocode algorithms consisting of sequentially numbered steps to
represent program executions. To fully utilize this interpreter-based
nature of JavaScript, JSAVER derives a static analyzer by 1) extracting
a de�nitional interpreter [46] from ECMA-262 and 2) performing a
meta-level static analysis with the extracted interpreter.

First, JSAVER extracts de�nitional interpreters from ECMAScript
language speci�cations. A de�nitional interpreter provides a way
to represent the language semantics of a de�ned-language using its
interpreter written in a de�ning-language. We extract a JavaScript
de�nitional interpreter from ECMA-262 using JISET [42], which
automatically extracts a de�nitional interpreter from ECMA-262
taking advantage of its writing style. In the extracted de�nitional
interpreter, the de�ned-language is JavaScript, and the de�ning-
language is IRES, which is an intermediate representation for EC-
MAScript language speci�cations. JISET shows its adaptability by
extracting de�nitional interpreters from future versions of ECMA-
262 without extending IRES.

Then, we present ameta-level static analysis to analyze JavaScript
programs indirectly using the extracted interpreters. A meta-level
static analysis is an interpreter-based approach for static analy-
sis of a de�ned-language !1 using a static analyzer of a de�ning-
language !2 as depicted in Figure 1(b). Since an !1 interpreter is an
!2 program, it indirectly analyzes an !1 program by analyzing the
interpreter using a static analyzer of !2 with the !1 program as the
input. Thus, we develop a static analyzer of IRES for a meta-level
static analysis for JavaScript and experimentally show that it can
indirectly analyze JavaScript programs e�ectively. Moreover, for
its expressivenss, we present ways to indirectly con�gure abstract
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(a) Evaluation algorithm for the logical OR assignment

1 syntax def AssignmentExpression [8]. Evaluation(
2 this , LeftHandSideExpression , AssignmentExpression
3 ) {
4 let lref = (LeftHandSideExpression.Evaluation)
5 let lval = [? (GetValue lref)]
6 let lbool = [! (ToBoolean lval)]
7 if (= lbool true) return lval
8 ...
9 }

(b) Extracted IRES function for the logical OR assignment

1 syntax def IdentifierReference [0]
2 .Evaluation(this , Identifier) {
3 return [?
4 (ResolveBinding
5 (Identifier.StringValue)
6 )
7 ]
8 }

(c) Extracted IRES function for the logical
OR assignment

Figure 2: Evaluation algorithm for the eighth alternative of AssignmentExpression in ES12 and its extracted IRES function

However, static analyzers with the compiler-based approach
are unable to keep up with fast-evolving JavaScript because they
requiremanual updates for new language semantics. The JavaScript
language itself is rapidly evolving nowadays. Since 2015, the Ecma
Technical Committee 39 (TC39) has maintained the speci�cation
as an open-source GitHub project and released its o�cial versions
annually. The speci�cation size has been getting bigger as well, and
the latest version of ECMA-262 (ES12, 2021) [20] is 879 pages. Since
existing JavaScript static analyzers cannot update JavaScript-IR
compilers automatically, they still focus on ES5.1 and only support
a few ES6 features manually. Because recent JavaScript programs
often use new features like arrow functions, and promises, the lack
of their support becomes increasingly problematic.

To alleviate this problem, we present JSAVER, a JavaScript Static
Analyzer via ECMAScript Representations. It is the �rst tool that
automatically derives JavaScript static analyzers from language
speci�cations. The main idea of JSAVER is to shift the paradigm
from compiler-based approaches to interpreter-based ones to uti-
lize “the interpreter-based nature” of JavaScript. The history of
JavaScript [56] testi�es that the working group designing JavaScript
in the 1990s de�ned the semantics using reference interpreters:

Guy Steele would ask a question about some edge-
case feature behavior. [. . .] they would each turn to
their respective implementation and try a test case. If
they got the same answer, that became the speci�ed
behavior.

The interpreter-based nature also a�ects the writing style of the
speci�cations. ECMA-262 describes the language semantics with

pseudocode algorithms consisting of sequentially numbered steps to
represent program executions. To fully utilize this interpreter-based
nature of JavaScript, JSAVER derives a static analyzer by 1) extracting
a de�nitional interpreter [46] from ECMA-262 and 2) performing a
meta-level static analysis with the extracted interpreter.

First, JSAVER extracts de�nitional interpreters from ECMAScript
language speci�cations. A de�nitional interpreter provides a way
to represent the language semantics of a de�ned-language using its
interpreter written in a de�ning-language. We extract a JavaScript
de�nitional interpreter from ECMA-262 using JISET [42], which
automatically extracts a de�nitional interpreter from ECMA-262
taking advantage of its writing style. In the extracted de�nitional
interpreter, the de�ned-language is JavaScript, and the de�ning-
language is IRES, which is an intermediate representation for EC-
MAScript language speci�cations. JISET shows its adaptability by
extracting de�nitional interpreters from future versions of ECMA-
262 without extending IRES.

Then, we present ameta-level static analysis to analyze JavaScript
programs indirectly using the extracted interpreters. A meta-level
static analysis is an interpreter-based approach for static analy-
sis of a de�ned-language !1 using a static analyzer of a de�ning-
language !2 as depicted in Figure 1(b). Since an !1 interpreter is an
!2 program, it indirectly analyzes an !1 program by analyzing the
interpreter using a static analyzer of !2 with the !1 program as the
input. Thus, we develop a static analyzer of IRES for a meta-level
static analysis for JavaScript and experimentally show that it can
indirectly analyze JavaScript programs e�ectively. Moreover, for
its expressivenss, we present ways to indirectly con�gure abstract
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(a) Evaluation algorithm for the logical OR assignment

1 syntax def AssignmentExpression [8]. Evaluation(
2 this , LeftHandSideExpression , AssignmentExpression
3 ) {
4 let lref = (LeftHandSideExpression.Evaluation)
5 let lval = [? (GetValue lref)]
6 let lbool = [! (ToBoolean lval)]
7 if (= lbool true) return lval
8 ...
9 }

(b) Extracted IRES function for the logical OR assignment

1 syntax def IdentifierReference [0]
2 .Evaluation(this , Identifier) {
3 return [?
4 (ResolveBinding
5 (Identifier.StringValue)
6 )
7 ]
8 }

(c) Extracted IRES function for the logical
OR assignment

Figure 2: Evaluation algorithm for the eighth alternative of AssignmentExpression in ES12 and its extracted IRES function

However, static analyzers with the compiler-based approach
are unable to keep up with fast-evolving JavaScript because they
requiremanual updates for new language semantics. The JavaScript
language itself is rapidly evolving nowadays. Since 2015, the Ecma
Technical Committee 39 (TC39) has maintained the speci�cation
as an open-source GitHub project and released its o�cial versions
annually. The speci�cation size has been getting bigger as well, and
the latest version of ECMA-262 (ES12, 2021) [20] is 879 pages. Since
existing JavaScript static analyzers cannot update JavaScript-IR
compilers automatically, they still focus on ES5.1 and only support
a few ES6 features manually. Because recent JavaScript programs
often use new features like arrow functions, and promises, the lack
of their support becomes increasingly problematic.

To alleviate this problem, we present JSAVER, a JavaScript Static
Analyzer via ECMAScript Representations. It is the �rst tool that
automatically derives JavaScript static analyzers from language
speci�cations. The main idea of JSAVER is to shift the paradigm
from compiler-based approaches to interpreter-based ones to uti-
lize “the interpreter-based nature” of JavaScript. The history of
JavaScript [56] testi�es that the working group designing JavaScript
in the 1990s de�ned the semantics using reference interpreters:

Guy Steele would ask a question about some edge-
case feature behavior. [. . .] they would each turn to
their respective implementation and try a test case. If
they got the same answer, that became the speci�ed
behavior.

The interpreter-based nature also a�ects the writing style of the
speci�cations. ECMA-262 describes the language semantics with

pseudocode algorithms consisting of sequentially numbered steps to
represent program executions. To fully utilize this interpreter-based
nature of JavaScript, JSAVER derives a static analyzer by 1) extracting
a de�nitional interpreter [46] from ECMA-262 and 2) performing a
meta-level static analysis with the extracted interpreter.

First, JSAVER extracts de�nitional interpreters from ECMAScript
language speci�cations. A de�nitional interpreter provides a way
to represent the language semantics of a de�ned-language using its
interpreter written in a de�ning-language. We extract a JavaScript
de�nitional interpreter from ECMA-262 using JISET [42], which
automatically extracts a de�nitional interpreter from ECMA-262
taking advantage of its writing style. In the extracted de�nitional
interpreter, the de�ned-language is JavaScript, and the de�ning-
language is IRES, which is an intermediate representation for EC-
MAScript language speci�cations. JISET shows its adaptability by
extracting de�nitional interpreters from future versions of ECMA-
262 without extending IRES.

Then, we present ameta-level static analysis to analyze JavaScript
programs indirectly using the extracted interpreters. A meta-level
static analysis is an interpreter-based approach for static analy-
sis of a de�ned-language !1 using a static analyzer of a de�ning-
language !2 as depicted in Figure 1(b). Since an !1 interpreter is an
!2 program, it indirectly analyzes an !1 program by analyzing the
interpreter using a static analyzer of !2 with the !1 program as the
input. Thus, we develop a static analyzer of IRES for a meta-level
static analysis for JavaScript and experimentally show that it can
indirectly analyze JavaScript programs e�ectively. Moreover, for
its expressivenss, we present ways to indirectly con�gure abstract
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4.3.1 Values. Since a JavaScript value is also an IRES value E 2 V,
we can con�gure bV for JavaScript values. For example, recall that
Figure 6 shows the �ow-sensitive analysis results of the code in
Figure 3 using the interval domain. Assume that we desire to use
the �at domain whose elements are concrete integer values, the
bottom value ?int for nothing, and the top value >int for JavaScript
integers. Then, it is su�cient to use the �at domain for integers in
the IRES abstract values bV. In this setting, the IRES local variable
lval points to >int at point #1. At the exit point, the IRES function
returns >int and the function object whose name property is �f�.

4.3.2 Data Structures. In JavaScript, data structures including envi-
ronment records and objects have external �elds directly accessible
by JavaScript syntax. For example, an environment record has vari-
ables as external �elds, accessible by identi�er references. Similarly,
an object has properties as external �elds accessible by property
read expressions. However, they also have internal �elds, which
are not directly accessible by JavaScript syntax, and one should
update them only indirectly. For example, [[ HasBinding ]] in
environment records or [[ Prototype ]] in objects. While such
internal �elds are pre-de�ned and the number of possible internal
�elds is �nite, the number of external �elds could be in�nite. Thus,
we provide a way to con�gure them di�erently. In Section 4.2, we
de�ne an abstract heap ⌘ 2 H as a �nite mapping from abstract
addresses bA to pairs of two di�erent abstract �elds maps bM anddMjs for internal and external �elds, respectively.

4.4 Analysis Sensitivities for JavaScript
In a JavaScript meta-level static analysis, analysis sensitivities for
JavaScript are di�erent from those for IRES. Consider the analysis
of the following JavaScript code with the �ow-sensitivity for IRES:

let x = 1, y = 2; x + y; // 3

Figure 7 shows (a) its extracted IRES function and (b) the parsing
result of x + y and the initial local environment of the IRES func-
tion. Since the �ow-sensitivity merges states on the same labels,
contexts for the evaluation of both identi�er references x and y

are merged. Thus, the IRES variable Identifier points to their
ASTs as illustrated at the right of Figure 7(b). Due to the imprecise
merge of contexts, StringValue of Identifier returns �x� and
�y�, and ResolveBinding with them returns both 1 and 2. Finally,
the analysis result of x + y becomes { 2, 3, 4 }.

4.4.1 Flow-Sensitivity. To resolve this problem, we present an AST
sensitivity for IRES as a variant of object sensitivity [30, 50] to rep-
resent �ow-sensitivity for JavaScript. It utilizes JavaScript ASTs T
stored in this parameter for syntax-directed functions as views
with a view abstraction X js-flow : T ] {?} ! P(S):

X js-flow (C?) = {f = (_, _, 2, _) 2 S | ast(2) = C?}
where ast : C⇤ ! T ] {?} denotes the JavaScript AST stored
in this parameter of the top-most syntax-directed function for a
given calling context stack:

ast(2) =

8>>>><
>>>>:

C if 92 . 2 = 21 :: · · · :: 2= :: 2 :: · · · ^ 2 = (l , d)^
func(l ) = syntax def · · · ^ d (this) = C^
81 9 =. 2 9 = (l9 , _) ^ func(l9 ) = def · · ·

? otherwise

1 syntax def IdentifierReference [0]. Evaluation(
2 this , Identifier) {
3 return [? (ResolveBinding (Identifier.StringValue))]
4 }

(a) Extracted IRES function for identi�er references

(b) Result of x + y via a de�nitional interpreter

Figure 7: A JavaScriptmeta-level static analysis with the�ow-
sensitivity for IRES

Note that the number of views for the AST sensitivity is �nite as
well because JavaScript ASTs are �nite in a JavaScript program.
We de�ne the �ow-sensitivity for JavaScript using the AST sensi-
tivity for IRES. It successfully divides contexts for the evaluation
of JavaScript identi�ers x and y in the example even though their
labels in IRES are the same.

4.4.2 Callsite-Sensitivity. We de�ne the callsite-sensitivity [48, 49]
for JavaScript by extending the AST sensitivity for speci�c nor-
mal IRES functions. In ECMA-262, all explicit and even implicit
JavaScript function calls invoke normal IRES functions Call and
Construct. Thus, we de�ne the callsite-sensitivity for JavaScript by
extending the AST sensitivity with two normal IRES functions with
a view abstraction X js-:-cfa : T: ! P(S):

X js-:-cfa ( [C1, · · · , C=]) = {f = (_, _, 2, _) 2 S |
=  : ^ (= = : _ js-ctxt=+1 (2) = ?)^
81 8 =. ast � js-ctxt8 (2) = C8 }

where js-ctxt : C⇤ ! C⇤ ] {?} pops out calling contexts until the
function of the top-most context is Call or Construct:

js-ctxt(2) =

8>>>>>><
>>>>>>:

2 if 2 = (l , d) :: _^
(func(l ) = def Call · · ·_
func(l ) = def Construct · · · )

js-ctxt(20) if 2 = _ :: 20
? otherwise

Using this callsite-sensitivity for JavaScript, the meta-level static
analyzer can discriminate implicit JavaScript function calls, includ-
ing getters/setters, user-de�ned implicit conversions, and implicit
function calls in built-in libraries.

We also formally de�ne their abstract semantics X js-flowcJ8K and
X js-:-cfacJ8K in the companion report [1].

5 IMPLEMENTATION
In this section, we describe the challenges in implementing a meta-
level static analyzer and present our solutions for them. The source
code of JSAVER and the dataset of our study are publicly available
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4.3.1 Values. Since a JavaScript value is also an IRES value E 2 V,
we can con�gure bV for JavaScript values. For example, recall that
Figure 6 shows the �ow-sensitive analysis results of the code in
Figure 3 using the interval domain. Assume that we desire to use
the �at domain whose elements are concrete integer values, the
bottom value ?int for nothing, and the top value >int for JavaScript
integers. Then, it is su�cient to use the �at domain for integers in
the IRES abstract values bV. In this setting, the IRES local variable
lval points to >int at point #1. At the exit point, the IRES function
returns >int and the function object whose name property is �f�.

4.3.2 Data Structures. In JavaScript, data structures including envi-
ronment records and objects have external �elds directly accessible
by JavaScript syntax. For example, an environment record has vari-
ables as external �elds, accessible by identi�er references. Similarly,
an object has properties as external �elds accessible by property
read expressions. However, they also have internal �elds, which
are not directly accessible by JavaScript syntax, and one should
update them only indirectly. For example, [[ HasBinding ]] in
environment records or [[ Prototype ]] in objects. While such
internal �elds are pre-de�ned and the number of possible internal
�elds is �nite, the number of external �elds could be in�nite. Thus,
we provide a way to con�gure them di�erently. In Section 4.2, we
de�ne an abstract heap ⌘ 2 H as a �nite mapping from abstract
addresses bA to pairs of two di�erent abstract �elds maps bM anddMjs for internal and external �elds, respectively.

4.4 Analysis Sensitivities for JavaScript
In a JavaScript meta-level static analysis, analysis sensitivities for
JavaScript are di�erent from those for IRES. Consider the analysis
of the following JavaScript code with the �ow-sensitivity for IRES:

let x = 1, y = 2; x + y; // 3

Figure 7 shows (a) its extracted IRES function and (b) the parsing
result of x + y and the initial local environment of the IRES func-
tion. Since the �ow-sensitivity merges states on the same labels,
contexts for the evaluation of both identi�er references x and y

are merged. Thus, the IRES variable Identifier points to their
ASTs as illustrated at the right of Figure 7(b). Due to the imprecise
merge of contexts, StringValue of Identifier returns �x� and
�y�, and ResolveBinding with them returns both 1 and 2. Finally,
the analysis result of x + y becomes { 2, 3, 4 }.

4.4.1 Flow-Sensitivity. To resolve this problem, we present an AST
sensitivity for IRES as a variant of object sensitivity [30, 50] to rep-
resent �ow-sensitivity for JavaScript. It utilizes JavaScript ASTs T
stored in this parameter for syntax-directed functions as views
with a view abstraction X js-flow : T ] {?} ! P(S):

X js-flow (C?) = {f = (_, _, 2, _) 2 S | ast(2) = C?}
where ast : C⇤ ! T ] {?} denotes the JavaScript AST stored
in this parameter of the top-most syntax-directed function for a
given calling context stack:

ast(2) =

8>>>><
>>>>:

C if 92 . 2 = 21 :: · · · :: 2= :: 2 :: · · · ^ 2 = (l , d)^
func(l ) = syntax def · · · ^ d (this) = C^
81 9 =. 2 9 = (l9 , _) ^ func(l9 ) = def · · ·

? otherwise

1 syntax def IdentifierReference [0]. Evaluation(
2 this , Identifier) {
3 return [? (ResolveBinding (Identifier.StringValue))]
4 }

(a) Extracted IRES function for identi�er references

(b) Result of x + y via a de�nitional interpreter

Figure 7: A JavaScriptmeta-level static analysis with the�ow-
sensitivity for IRES

Note that the number of views for the AST sensitivity is �nite as
well because JavaScript ASTs are �nite in a JavaScript program.
We de�ne the �ow-sensitivity for JavaScript using the AST sensi-
tivity for IRES. It successfully divides contexts for the evaluation
of JavaScript identi�ers x and y in the example even though their
labels in IRES are the same.

4.4.2 Callsite-Sensitivity. We de�ne the callsite-sensitivity [48, 49]
for JavaScript by extending the AST sensitivity for speci�c nor-
mal IRES functions. In ECMA-262, all explicit and even implicit
JavaScript function calls invoke normal IRES functions Call and
Construct. Thus, we de�ne the callsite-sensitivity for JavaScript by
extending the AST sensitivity with two normal IRES functions with
a view abstraction X js-:-cfa : T: ! P(S):

X js-:-cfa ( [C1, · · · , C=]) = {f = (_, _, 2, _) 2 S |
=  : ^ (= = : _ js-ctxt=+1 (2) = ?)^
81 8 =. ast � js-ctxt8 (2) = C8 }

where js-ctxt : C⇤ ! C⇤ ] {?} pops out calling contexts until the
function of the top-most context is Call or Construct:

js-ctxt(2) =

8>>>>>><
>>>>>>:

2 if 2 = (l , d) :: _^
(func(l ) = def Call · · ·_
func(l ) = def Construct · · · )

js-ctxt(20) if 2 = _ :: 20
? otherwise

Using this callsite-sensitivity for JavaScript, the meta-level static
analyzer can discriminate implicit JavaScript function calls, includ-
ing getters/setters, user-de�ned implicit conversions, and implicit
function calls in built-in libraries.

We also formally de�ne their abstract semantics X js-flowcJ8K and
X js-:-cfacJ8K in the companion report [1].

5 IMPLEMENTATION
In this section, we describe the challenges in implementing a meta-
level static analyzer and present our solutions for them. The source
code of JSAVER and the dataset of our study are publicly available
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(a) Analysis results of TAJS (b) Analysis results of SAFE (c) Analysis results of JSAES12

(d) Analysis results of TAJS with Babel (e) Analysis results of SAFE with Babel

Figure 8: Analysis results of TAJS and SAFE without and with Babel and JSAES12 for 18,556 applicable tests

(a) The analysis precision (b) The analysis performance

Figure 9: The analysis precision and performance for 3,878
tests soundly analyzable by all of �ve analyzers

soundly analyze more than half of Test262 test programs. On the
other hand, JSAES12 successfully analyzes all 18,556 applicable test
programs in a sound way, even without Babel.

6.2 Precision
We measured the analysis precision by counting how many com-
parison targets were precisely analyzed. For all applicable 18,556
Test262 test programs, JSAES12 analyzed them with a high analysis
precision of 99.0% in 590 ms on average. Then, we compared its anal-
ysis precision with that of TAJS and SAFE. For a fair comparison,
we measured the analysis precision for 3,878 test programs soundly
analyzable by all of �ve analyzers: TAJS, TAJS with Babel, SAFE,
SAFE with Babel, and JSAES12. Figure 9(a) depicts the average and
distribution of the analysis precision in violin plots [19]. TAJS and
SAFE analyzed 3,878 test programs with 85.1% and 89.9% precision
on average, respectively. While Babel increased the number of test
programs soundly analyzed by existing analyzers, it decreased the
average analysis precision of TAJS to 84.9% and had no e�ect on

1 let x = /* �a� or �b� */;

2 let y = �c${x}d�; // �cad� or �cbd�

3 let z = �${x}e${x}�; // �aea� or �beb�

Figure 10: A JavaScript program using template literals

SAFE. It is due to that Babel transpiles simple ES6+ features into a
more complex combination of ES5 features even though TAJS di-
rectly supports a small part of the ES6 features like arrow functions
or Symbol. However, JSAES12 has the highest analysis precision of
99.5% on average.

On the other hand, the analysis speed of JSAES12 is slower than
that of TAJS and SAFE, and Figure 9(b) depicts them in violin
plots on a logarithmic scale. TAJS and SAFE took 139 ms and 181
ms, respectively, to analyze 3,878 test programs on average. Babel
increases their average analysis time to 169 ms and 199 ms, respec-
tively, because it transpiles all ES6+ features in test programs to
verbose ES5.1 features. However, JSAES12 took 357 ms on average to
analyze them because JSAVER derives precise abstract semantics for
all language features. On the contrary, TAJS and SAFE developers
often imprecisely or even unsoundly model the abstract semantics
of speci�c language features to increase the analysis speed. For ex-
ample, TAJS does not discriminate positive/negative in�nity values
or positive/negative zeros to reduce the number of possible cases
in abstract values. Similarly, SAFE ignores the semantics of getters
and setters to analyze object property reads quickly.

6.3 Con�gurability
We demonstrate the con�gurability of JSAVER with several case

studies for abstract domains and analysis sensitivities. We discuss
how di�erent abstract domains or analysis sensitivities a�ect anal-
ysis results of JSAES12 with examples.
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(a) Analysis results of TAJS (b) Analysis results of SAFE (c) Analysis results of JSAES12

(d) Analysis results of TAJS with Babel (e) Analysis results of SAFE with Babel

Figure 8: Analysis results of TAJS and SAFE without and with Babel and JSAES12 for 18,556 applicable tests

(a) The analysis precision (b) The analysis performance

Figure 9: The analysis precision and performance for 3,878
tests soundly analyzable by all of �ve analyzers

soundly analyze more than half of Test262 test programs. On the
other hand, JSAES12 successfully analyzes all 18,556 applicable test
programs in a sound way, even without Babel.

6.2 Precision
We measured the analysis precision by counting how many com-
parison targets were precisely analyzed. For all applicable 18,556
Test262 test programs, JSAES12 analyzed them with a high analysis
precision of 99.0% in 590 ms on average. Then, we compared its anal-
ysis precision with that of TAJS and SAFE. For a fair comparison,
we measured the analysis precision for 3,878 test programs soundly
analyzable by all of �ve analyzers: TAJS, TAJS with Babel, SAFE,
SAFE with Babel, and JSAES12. Figure 9(a) depicts the average and
distribution of the analysis precision in violin plots [19]. TAJS and
SAFE analyzed 3,878 test programs with 85.1% and 89.9% precision
on average, respectively. While Babel increased the number of test
programs soundly analyzed by existing analyzers, it decreased the
average analysis precision of TAJS to 84.9% and had no e�ect on

1 let x = /* �a� or �b� */;

2 let y = �c${x}d�; // �cad� or �cbd�

3 let z = �${x}e${x}�; // �aea� or �beb�

Figure 10: A JavaScript program using template literals

SAFE. It is due to that Babel transpiles simple ES6+ features into a
more complex combination of ES5 features even though TAJS di-
rectly supports a small part of the ES6 features like arrow functions
or Symbol. However, JSAES12 has the highest analysis precision of
99.5% on average.

On the other hand, the analysis speed of JSAES12 is slower than
that of TAJS and SAFE, and Figure 9(b) depicts them in violin
plots on a logarithmic scale. TAJS and SAFE took 139 ms and 181
ms, respectively, to analyze 3,878 test programs on average. Babel
increases their average analysis time to 169 ms and 199 ms, respec-
tively, because it transpiles all ES6+ features in test programs to
verbose ES5.1 features. However, JSAES12 took 357 ms on average to
analyze them because JSAVER derives precise abstract semantics for
all language features. On the contrary, TAJS and SAFE developers
often imprecisely or even unsoundly model the abstract semantics
of speci�c language features to increase the analysis speed. For ex-
ample, TAJS does not discriminate positive/negative in�nity values
or positive/negative zeros to reduce the number of possible cases
in abstract values. Similarly, SAFE ignores the semantics of getters
and setters to analyze object property reads quickly.

6.3 Con�gurability
We demonstrate the con�gurability of JSAVER with several case

studies for abstract domains and analysis sensitivities. We discuss
how di�erent abstract domains or analysis sensitivities a�ect anal-
ysis results of JSAES12 with examples.
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(a) Notations (b) x = 0 (c) x > 0 (d) x ∈ N

Figure 5: Abstract interpretation using a combined domain for the running example with di!erent initial values for x.

3.6 Examples
Now, we show examples of abstract interpretation with a combined
domain. Figure 5 depicts the !ow of analysis for the running ex-
ample in Figure 4 with three di"erent initial sets of values for the
variable x. In this example, we use the abstract domain {−, 0,+} for
integers stored in x as introduced in Section 3.2, and the !ow sensi-
tivity that utilizes the labels of states as their views as introduced
in Section 3.3. For brevity, we use concatenation of abstract values
so that −0 denotes the set {−, 0}.

Figure 5(a) presents notations used in each graph. A solid box
denotes an analysis element that is a pair of a label l and an abstract
state d#. A pair enclosed by angle brackets denotes an analysis
element that is a pair of an abstract instantiation map m# and a
sealed state σω . In fact, the sealed state part (right) of each pair in
graphs contains only the value of the variable of x without its label.
For brevity, we represent its label by locating it next to a node with
its label. A solid line is a view transition !l → l ′"# from a label l

to another one l ′. A dotted line is a sealed transition!ω . Three
solid lines with circled labels denote two converters τ #, τω and the
join operator %.

Figure 5(b) shows the analysis with the combined domain when
the initial value of x is 0. First, in the reform step, the converter τω
converts the analysis element (l0, 0) to another analysis element
〈', 0〉 with the label l0. It does not introduce any sealed values
because the value represents only a single value. Until the end of the
program, the sealed execution from 〈', 0〉 successfully continues.
Because there is no more possible sealed transition for the sealed
state 〈', 0〉 with l4, it is converted to (l4, 0) via the converter τ #.

Instead of a single value, assume that the initial value of x is
one of any positive integers. Figure 5(c) describes the analysis !ow
for the case. The initial abstract value at the label l0 is + and it
is impossible to convert it to any sealed values because the next
program statement requires the actual value stored in the variable
x for the branch condition x ≥ 0. Thus, it performs view transition
!l0 → l1"

# from the label l0 to another one l1 for the abstract value
+ and the result is also +. Now, the analysis element (l1,+) can be
converted to 〈ω *→ +,ω〉 with the label l1. This sealed execution
step terminates in the label l3 because the next statement is x =
−x and the negation operator requires the actual value of x. It is
converted to (l3,+) via τ #, performs the view transition, and results
in (l4,−).

For the last case, we assume that all integers are possible for
the initial value of the variable x as described in Figure 5(d). While

it reaches the false branch in the label l2 unlike previous cases, it
cannot perform dynamic shortcuts because the statement in the
false branch is x = −x, which requires the actual value of x. At the
label l3, there are two analysis elements: 1) (l3,+) introduced by
the view transition from the label l2 with −, and 2) 〈ω *→ 0+,ω〉
with l3 introduced by sealed execution started at l1. Since it is not
possible to perform sealed execution for both elements, the second
one is converted to (l3, 0+) and merged with + at l3 via the join
operator %. Finally, the view transition !l3 → l4"

# from l3 to l4 is
performed to the merged abstract state 0+ and the result is −0.

3.7 Soundness and Termination
The converter τω and the sealed transition!ω are keys to con#g-
ure the introduction and termination of sealed execution. To ensure
the soundness and termination of an abstract interpretation de#ned
with a combined domain of a sensitive abstract domain and a sealed
domain, the following conditions should hold.

Theorem 3.8 (Soundness and Termination). An abstract in-
terpretation with dynamic shortcuts is sound and terminates in a
"nite time if:

• the abstract transfer function F # is sound,
• the sensitive abstract domain D#

δ
has a "nite height,

• the sealed transition!ω is valid, and
• there exists N < ∞ such that

∀ϵ ∈ E. τω (ϵ) = (m#
,σω )⇒ σω!

k
ω⊥ ∧ 1 < k ≤ N

For soundness proof, we should prove two conditions presented
in Section 3.2: (1) for the join operator % and (2) for the combined
one-step execution. The core idea of the proof is to use Lemma 3.9
and Lemma 3.10 for the sealed one-step execution stepω and the
reform function, respectively.

Lemma 3.9. Assume that the following condition holds:

∀(m#
,σω ) ∈ dω . ∃σ

′
ω ∈ Sω . σω!ωσ

′
ω

then the following property holds:

step ◦ γω (dω ) ⊆ γω ◦ stepω (dω )

Lemma 3.10. For a given combined state d̃ ∈ D̃, the reform function
satis"es the following two properties:

• γ̃ (d̃) ⊆ γ̃ ◦ reform(d̃)
• ∀(m#

,σω ) ∈ dω . ∃σ
′
ω ∈ Sω . σω!ωσ

′
ω

where (d#
δ
,dω ) = reform(d̃)
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•l0
if ( x ≥ 0 ) •l1

x = x;
else •l2

x = −x;
•l3

x = −x; •l4

Figure 4: Negation of the absolute value of x

3.1 Concrete Semantics
We de!ne a program P as a state transition system (S,!, Sι ). A
program starts with an initial state in Sι and the transition relation
!⊆ S × S describes how states are transformed to other states. A
collecting semantics !P" = {σ ∈ S | σι ∈ Sι ∧ σι !

∗ σ } consists
of reachable states from initial states of the program P . We can
compute it using a transfer function F : D→ D as follows:

!P" = lim
n→∞

Fn (dι ) F (d) = d * step(d)

where the concrete domain D = P(S) is a complete lattice with ∪,
∩, and ⊆ as its join(*), meet(-), and partial order(.) operators. The
set of states dι denotes the initial states Sι . The one-step execution
step : D → D transforms states using the transition relation !:
step(d) = {σ ′ | σ ∈ d ∧ σ ! σ ′}.

For example, the code in Figure 4 is a simple program that calcu-
lates the negation of the absolute value of the variable x. States are
pairs of labels and integers stored in x: S = L ×N. Assume that the
initial states are Sι = {(l0,−42)}, which denotes that the program
starts at l0 with the variable x of value −42. Then, it executes with
the following trace:

(l0,−42) ! (l2,−42) ! (l3, 42) ! (l4,−42)

3.2 Abstract Interpretation
Abstract interpretation [13, 14] over-approximates the transfer func-
tion F as an abstract transfer function F # : D# → D# to get an
abstract semantics !P"# in !nite iterations as follows:

!P"# = lim
n→∞

(F #)n (d#ι )

We de!ne a state abstraction D −−−→←−−−α

γ
D# as a Galois connection

between the concrete domain D and an abstract domain D# with a
concretization function γ and an abstraction function α . The initial
abstract state d#ι ∈ D

# represents an abstraction of the initial state
set: dι ⊆ γ (d#ι ). The abstract transfer function F # : D# → D#

is de!ned as F #(d#) = d# * step#(d#) with an abstract one-step
execution step# : D# → D#. For a sound state abstraction, the join
operator and the abstract one-step execution should satisfy the
following conditions:

∀d#0,d
#
1 ∈ D

#
. γ (d#0) ∪ γ (d

#
1) ⊆ γ (d

#
0 * d

#
1) (1)

∀d# ∈ D#. step ◦ γ (d#) ⊆ γ ◦ step#(d#) (2)

A simple example abstract domain is D#± = P({−,+, 0}) with
set operators as domain operators; − denotes negative integers,
+ positive integers, and 0 zero. Assume that we analyze the code
in Figure 4 with the abstract domain and the initial abstract state
d#ι = {−}. Then, the analysis result is {−,+} because x can have
a positive value by executing x = −x but there is no way for x to
have 0 in this program.

3.3 Analysis Sensitivity
Abstract interpretation is often de!ned with analysis sensitivity to
increase the precision of static analysis. A sensitive abstract domain
D#
δ
: Π → D# is de!ned with a view abstraction δ : Π → D that

provides multiple points of views for reachable states during static
analysis. It maps a !nite number of views Π to sets of statesD. Each
view π ∈ Π represents a set of states δ (π ) and each state is included
in a unique view: ∀σ ∈ S. σ ∈ δ (π )⇒ ∀π ′ ∈ Π.σ ∈ δ (π ′)⇒ π =

π ′. A sensitive state abstraction D −−−−→←−−−−αδ

γδ
D#
δ
is a Galois connection

between the concrete domain D and the sensitive abstract domain
D#
δ
with the following concretization function:

γδ (d
#
δ ) =

⋃

π ∈Π

δ (π ) ∩ γ ◦ d#δ (π )

With analysis sensitivities, the abstract one-step execution step#
δ
:

D#
δ
→ D#

δ
is de!ned as follows:

step#δ (d
#
δ ) = λπ ∈ Π.

⊔

π ′ ∈Π

!π ′ → π"# ◦ d#δ (π
′)

where !π ′ → π"# : D# → D# is an abstract semantics of a view
transition from a view π ′ to another view π . It should satisfy the
following condition for the soundness of the analysis:

∀d# ∈ D#. step(γ (d#) ∩ δ (π ′)) ∩ δ (π ) ⊆ γ ◦ !π ′ → π"#(d#)

One of the most widely-used analysis sensitivity is !ow sensi-
tivity de!ned with a "ow-sensitive view abstraction δFS : L → D
where:

∀l ∈ L. δFS(l ) = {σ | σ = (l , _)}

If we apply the "ow sensitivity for the above examplewith the initial
abstract state [l0 4→ {−, 0,+}], the analysis result is as follows:

L l0 l1 l2 l3 l4

D#± −, 0,+ 0,+ − 0,+ −, 0

3.4 Sealed Execution
We de!ne sealed execution by extending the transition relation
! as a sealed transition relation !ω on sealed states. First, we
extend concrete states S to sealed states Sω by extending values V
with sealed values Ω. We also de!ne the sealed transition relation
!ω ⊆ Sω × Sω . We use the notation!k

ω for k repetition of!ω ,
and write σω!ω⊥ when σω does not have any sealed transitions
to other sealed states. We de!ne the validity of sealed execution as
follows:

De"nition 3.1 (Validity). The sealed transition relation is valid
when the following condition is satis!ed for any sealed states σω
and σ ′ω :

σω!ωσ
′
ω ⇔ ∀m ∈ M. {σ

′ | σω |m ! σ ′} = {σ ′ω |m }

whereM : Ω → V represent instantiation maps from sealed values
to concrete values, and σω |m denotes a state produced by replacing
each sealed value ω in σω with its corresponding valuem(ω) using
the instantiation mapm ∈ M.

Sealed execution is di#erent from traditional symbolic execu-
tion [22] in that it supports only sealed values instead of symbolic
expressions and path constraints. For example, the following trace
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Figure 6: Analysis time for Lodash 4 original tests without
(no-DS) and with (DS) dynamic shortcuts within 5 minutes

Figure 7: Analysis time for Lodash 4 abstracted tests without
(no-DS) and with (DS) dynamic shortcuts within 5 minutes

6.1 Analysis Speed-up
We evaluated the e!ectiveness of dynamic shortcuts by static anal-
ysis of 269 Lodash 4 tests with and without dynamic shortcuts.
Figure 6 depicts cumulative distribution charts for their analysis
time and a box plot in a logarithmic scale for speed up after ap-
plying dynamic shortcuts. In the upper chart, the x-axis is time
and the y-axis shows the number of tests within the time. While
the baseline analysis (no-DS) "nished analysis of 200 out of 269
tests within 5 minutes, our tool (DS) "nished analysis of 265 tests
using dynamic shortcuts. For "nished tests, the average analysis
time is 49.46 seconds for no-DS and 3.21 seconds for DS. Among
200 tests analyzed by no-DS, one test is timeout in DS, thus 199
tests are analyzable by both analyzers. For them, we depict the box
plot for analysis speed up by dynamic shortcuts. It shows that DS
outperforms no-DS up to 83.71x and 22.30x on average. Only for
one test using _.sample, which randomly samples a value from a
given array, DS showed 0.36x speed of no-DS due to 24 times uses
of dynamic shortcuts.

Note that since most tests use concrete values instead of non-
deterministic inputs, they can be analyzed by a few number of dy-
namic shortcuts. In fact, among 269 tests, 259 tests are analyzed by a
single dynamic shortcut without using abstract semantics. However,
in real-world JavaScript programs, arguments of library functions
may include non-deterministic inputs. To evaluate SAFEDS in a
real-world setting, we modi"ed the tests to use abstract values. We
made abstract values by randomly selecting literals and replacing
one of them with its corresponding abstract value. For example,
if we select a numeric literal 42, we modi"ed it to the abstract nu-
meric value !num, which represents all the numeric values. In the
remaining section, we evaluated SAFEDS using the original tests
and the abstracted tests.

Figure 8: Analysis time ratio for 156 abstracted tests

For abstracted tests as well, DS outperformed no-DS. Figure 7
shows the analysis time of the abstracted tests. Among 269 ab-
stracted tests, no-DS "nished analysis of 158 tests within 5 minutes,
but DS "nished analysis of 193 tests. For "nished tests, the average
analysis time is 44.88 seconds for no-DS and 19.05 seconds for DS.
Among 158 tests analyzed by no-DS, DS timed-out for 2 tests. For
156 tests analyzable by both analyzers, DS outperformed no-DS
up to 78.07x and 7.81x on average. Except for 9 test cases, using
dynamic shortcuts did show speed-ups.

Unlike for the original tests, analysis of 156 abstracted tests in-
voked 20.35 dynamic shortcuts. Because taking a dynamic shortcut
requires conversion between abstract states and sealed values and
their exchanges between the static analyzer and the dynamic an-
alyzer, using dynamic shortcuts multiple times may incur more
performance overhead than performance bene"ts by using sealed
execution. One conjecture is that the communication cost between
the static analyzer and the dynamic analyzer may be proportional
to the number of dynamic shortcuts.

To experimentally evaluate the conjecture, we investigated the
relationship between the communication cost (Comm. Cost) be-
tween analyzers and the number of dynamic shortcuts. For 199
original tests, Comm. Cost was only 1.58% compared to the analysis
time of no-DS. However, for 156 abstracted tests, Comm. Cost was
31.06% compared to the analysis time of no-DS. Figure 8 presents
the analysis time ratio for 156 abstracted tests. The x-axis repre-
sents the time ratio normalized by the total analysis time of no-DS
and the y-axis denotes the number of dynamic shortcuts and the
number of corresponding tests. For all 156 tests, Comm. Cost is
larger than both the static analysis time (Static) and the dynamic
analysis time (Dynamic). When dynamic shortcuts are performed
less than 10 times, Comm. Cost is modest compared to the base-
line static analysis time. However, the more dynamic shortcuts
are performed, the less the performance bene"ts by using dynamic
shortcuts. Speci"cally, when dynamic shortcuts are performedmore
than 30 times, Comm. Cost is even larger than half of cost of no-DS.
Based on this evaluation result, we believe that we can leverage
dynamic shortcuts by optimizing Comm. Cost between the static
analyzer and the dynamic analyzer. One possible approach is to
reduce the sizes of JSON objects that represent abstract and sealed
states by representing only their updated parts. Another approach
could be to use a communication system faster than a localhost
server for passing JSON objects.

6.2 Precision Improvement
To evaluate the analysis precision improvement of dynamic short-
cuts, we measured the number of failed assertions produced by
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