

기계화 명세를 이용한 JavaScript 언어의 설계 및 구현

세미나 @ 소프트웨어 분석 연구실

박지혁

고려대학교 컴퓨터학과

2023.03.10

JavaScript is Everywhere

JavaScript is Everywhere

https://octoverse.github.com/

세미나 @ 소프트웨어 분석 연구실

JavaScript Complex Semantics

function f(x) { return x == !x; }

Always return false?

JavaScript Complex Semantics

function f(x) { return x == !x; }

Always return false?

NO!!

PLRG

Early Research on JS Static Analysis

- API Misuse Detection using TypeScript Declarations (Mod'14)
 - Modeling abstract semantics using TypeScript d.ts files
- SAFE (Scalable Analysis Framework for ECMAScript) 2.0 (ICSE'17 Demo)
 - Extensibility (Abs. Domain, Sensitivity) / GUI Web Debugger
- Revisiting Recency Abstraction (SOAP'17)
 - Explaining why recency abstraction is not monotone
- Dynamic Inter-Device Task Dispatch (ProWeb'18)

Early Research on JS Static Analysis

- API Misuse Detection using TypeScript Declarations (Mod'14)
 - Modeling abstract semantics using TypeScript d.ts files
- **SAFE (**Scalable Analysis Framework for ECMAScript) **2.0** (ICSE'17 Demo)
 - Extensibility (Abs. Domain, Sensitivity) / GUI Web Debugger
- Revisiting Recency Abstraction (SOAP'17)
 - Explaining why recency abstraction is not monotone
- Dynamic Inter-Device Task Dispatch (ProWeb'18)

JavaScript Static Analyzers

Problem: Fast Evolving JavaScript

Problem: Manual Update

Derivation of Static Analyzer?

PLRG

세미나 @ 소프트웨어 분석 연구실

Idea: Mechanized Specification

세미나 @ 소프트웨어 분석 연구실

[ASE'20] J. Park, et al. "JISET: JavaScript IR-based Semantics Extraction Toolchain"

ECMA-262 (JavaScript Spec.)

JISET - ASE'20

(JavaScript IR-based Semantics Extraction Toolchain)

JISET - ASE'20

JISET - Parser Generator (Syntax)

[POPL'04] B. Ford, "Parsing Expression Grammars: A Recognition-based Syntactic Foundation"

JISET - Parser Generator (Syntax)

- Context-Free Grammar (CFG)
 - Unordered Choices
- Parsing Expression Grammar (PEG)
 - Ordered Choices

- xy; 🗸 A ::= B; | B + B;x+x; $B ::= \mathbf{x} \mid \mathbf{x}\mathbf{y}$
- A ::= B; / B + B;B ::= x / xy always x+x;

- xy; 🗸 A ::= B; / B + B;x+x; B ::= x / xy
- PEG with Lookahead Parsing Ordered Choices with
 - Lookahead Tokens

[POPL'04] B. Ford, "Parsing Expression Grammars: A Recognition-based Syntactic Foundation"

(JavaScript IR-based Semantics Extraction Toolchain)

PLRG

세미나 @ 소프트웨어 분석 연구실

JISET - Metalanguages for ECMA-262

• IR_{ES} - Intermediate Representation for ECMA-262

Programs	$\mathfrak{P} \ni P ::= f^*$			
Functions	$\mathcal{F} \ni f ::= \text{syntax}^? \text{ def } x(x^*) \{ [l:i]^* \}$			
Variables	$X \ni x$			
Labels	$\mathcal{L} i \ell$			
Instructions	$\mathcal{I} \ni i ::= r \coloneqq e \mid x \coloneqq \{\} \mid x \coloneqq e(e^*)$			
	if <i>e l l</i> return <i>e</i>			
Expressions	$\mathcal{E} \ni e ::= v^p \mid op(e^*) \mid r$			
References	$\mathcal{R} \ni r ::= x \mid e[e] \mid e[e]_{js}$			
	\bullet \bullet \bullet			
Values	$v \in \mathbb{V} = \mathbb{A} \uplus \mathbb{V}^p \uplus \mathbb{T} \uplus \mathcal{F}$			
Primitive Values	$v^{p} \in \mathbb{V}^{p} = \mathbb{V}_{bool} \uplus \mathbb{V}_{int} \uplus \mathbb{V}_{str} \uplus \cdots$			
JS ASTs	$t \in \mathbb{T}$			
-				

JISET - Metalanguages for ECMA-262

• IR_{ES} - Intermediate Representation for ECMA-262

JISET - Metalanguages for ECMA-262

PLRG

JISET - Evaluation

세미나 @ 소프트웨어 분석 연구실

PLRG

ESMeta

es-meta / esmeta Public					
	� Edit Pins ▾ 💿 Unwato	ch 7 ▼ 양 Fo	ork 9 🚽 🛧 Starred 115	•	
<> Code	រៀ Pull requests 1	Discussions	Actions	•••	
우 main -	Go to file Add file -	<> Code -	About	ŝ	
jhnaldo Updated ver	rsion × on Dec 14, :	2022 🕑 976	ECMAScript Specification (ECM 262) Metalanguage	IA-	
.github/wo Upda	ated ci.yml and e2e	3 months ago	javascript ecmascript		
🕞 client @ c6 Upda	ated version of client	3 months ago	🛱 Readme		
🕒 ecma262 Remo	ove implicit wrapping/u	8 months ago	都 BSD-3-Clause license		
project Down	ngraded sbt-assembly f	4 months ago	☆ 115 stars⊙ 7 watching		
src Upda	ated version	3 months ago	ਝ 9 forks		
tests Fixed	l bugs for Test262 (#118)	3 months ago			
C .completion Supp	oorted -extract:eval to e	3 months ago	Releases 11		
🗋 .gitignore Upda	ated .gitignore for local	6 months ago	♥ v0.2.0 Latest		
🗋 .gitmodules Upda	ated README / Added c	6 months ago	on Dec 14, 2022		
jvmoptsAdde	ed -XX:ReservedCodeC	7 months ago	+ 10 releases		

https://github.com/es-meta/esmeta

[ASE'21] J. Park, et al. "JSTAR: JavaScript Specification Type Analyzer using Refinement"

20.3.2.28 Math.round (x)

- 1. Let n be ? ToNumber(x).
- 2. If *n* is an integral Number, return *n*.
- 3. If *x* < 0.5 and *x* > 0, return +0.
- 4. If x < 0 and $x \ge -0.5$, return **-0**.

• • •

20.3.2.28 Math.round (x)

x: (String v Boolean v Number v Object v ...)

- 1. Let *n* be ? ToNumber(*x*).
- 2. If *n* is an integral Number, return *n*.
- 3. If *x* < 0.5 and *x* > 0, return +0.
- 4. If x < 0 and $x \ge -0.5$, return **-0**.
- • •

- **20.3.2.28 Math.round** (x) x: (String v Boolean v Number v Object v ...)
 - 1. Let *n* be ? ToNumber(*x*) ToNumber(x): (Number v Exception)
 - 2. If *n* is an integral Number, return *n*.
 - 3. If *x* < 0.5 and *x* > 0, return +0.
 - 4. If x < 0 and $x \ge -0.5$, return **-0**.

20.3.2.28 Math.round (x) x: (String v Boolean v Number v Object v ...)

1. Let n be? ToNumber(x) ToNumber(x): (Number v Exception)

- 2. If *n* is an integral Number, return *n*.
- 3. If *x* < 0.5 and *x* > 0, return +0.
- 4. If x < 0 and $x \ge -0.5$, return **-0**.

20.3.2.28 Math.round (x) x: (String v Boolean v Number v Object v ...)

- 1. Let n be? ToNumber(x) ToNumber(x): (Number v Exception) \wedge n: (Number)
- 2. If *n* is an integral Number, return *n*.
- 3. If *x* < 0.5 and *x* > 0, return +0.
- 4. If x < 0 and $x \ge -0.5$, return **-0**.

20.3.2.28 Math.round (x)

x: (String v Boolean v Number v Object v ...)

- 1. Let n be? ToNumber(x) ToNumber(x): (Number v Exception) \wedge n: (Number)
- 2. If *n* is an integral Number, return *n*.

3. If x < 0.5 and x > 0 return +0. 4. If x < 0 and $x \ge -0.5$ return **-0**.

Type Mismatch for numeric operator `>`

20.3.2.28 Math.round (x) x: (String v Boolean v Number v Object v ...) 1. Let n be? ToNumber(x) ToNumber(x): (Number v Exception) \wedge n: (Number) 2. If n is an integral Number, return n. 3. If x < 0.5 and x > 0 return +0. 4. If x < 0 and $x \ge -0.5$ return -0. Type Mismatch for numeric operator `>` Math.round(true) = ? Math.round(false) = ?

• • •

https://github.com/tc39/ecma262/tree/575149cfd77aebcf3a129e165bd89e14caafc31c

https://github.com/tc39/ecma262/tree/575149cfd77aebcf3a129e165bd89e14caafc31c

JSTAR - ASE'21

(JavaScript Specification Type Analyzer using Refinement)

PLRG

JSTAR - ASE'21

(JavaScript Specification Type Analyzer using Refinement)

PLRG
JSTAR - Type Sensitivity

JSTAR - Type Sensitivity

PLRG

JSTAR - Condition-based Refinement

$$\begin{aligned} \text{refine}(!e,b)(\sigma^{\sharp}) &= \text{refine}(e,\neg b)(\sigma^{\sharp}) \\ \text{refine}(e_{0} \mid \mid e_{1},b)(\sigma^{\sharp}) &= \begin{cases} \sigma_{0}^{\sharp} \sqcup \sigma_{1}^{\sharp} & \text{if } b \\ \sigma_{0}^{\sharp} \sqcap \sigma_{1}^{\sharp} & \text{if } -b \\ \sigma_{0}^{\sharp} \sqcup \sigma_{1}^{\sharp} & \text{if } -b \end{cases} \\ \text{refine}(e_{0} \&\& e_{1},b)(\sigma^{\sharp}) &= \begin{cases} \sigma_{0}^{\sharp} \sqcap \sigma_{1}^{\sharp} & \text{if } b \\ \sigma_{0}^{\sharp} \sqcup \sigma_{1}^{\sharp} & \text{if } -b \end{cases} \\ \text{refine}(x.\text{Type} == c_{\text{normal}}, \#t)(\sigma^{\sharp}) &= \sigma^{\sharp}[x \mapsto \tau_{x}^{\sharp} \sqcap \text{normal}(\mathbb{T})] \\ \text{refine}(x.\text{Type} == c_{\text{normal}}, \#t)(\sigma^{\sharp}) &= \sigma^{\sharp}[x \mapsto \tau_{x}^{\sharp} \sqcap \{\text{abrupt}\}] \\ \text{refine}(x == e, \#t)(\sigma^{\sharp}) &= \sigma^{\sharp}[x \mapsto \tau_{x}^{\sharp} \sqcap \tau_{e}^{\sharp}] \\ \text{refine}(x == e, \#t)(\sigma^{\sharp}) &= \sigma^{\sharp}[x \mapsto \tau_{x}^{\sharp} \upharpoonright \tau_{e}^{\sharp}] \\ \text{refine}(x : \tau, \#t)(\sigma^{\sharp}) &= \sigma^{\sharp}[x \mapsto \tau_{x}^{\sharp} \upharpoonright \{\tau\}] \\ \text{refine}(x : \tau, \#t)(\sigma^{\sharp}) &= \sigma^{\sharp}[x \mapsto \tau_{x}^{\sharp} \land \{\tau' \mid \tau' <: \tau\}] \\ \text{refine}(e, b)(\sigma^{\sharp}) &= \sigma^{\sharp} \end{aligned}$$

where $\sigma_j^{\sharp} = \text{refine}(e_j, b)(\sigma^{\sharp})$ for $j = 0, 1, \tau_e^{\sharp} = \llbracket e \rrbracket_e^{\sharp}(\sigma^{\sharp})$, and $\lfloor \tau^{\sharp} \rfloor$ returns $\{\tau\}$ if τ^{\sharp} denotes a singleton type τ , or returns \emptyset , otherwise.

PLRG

JSTAR - Condition-based Refinement

$$\begin{aligned} \text{refine}(!e,b)(\sigma^{\sharp}) &= \text{refine}(e,\neg b)(\sigma^{\sharp}) \\ \text{refine}(e_{0} \mid \mid e_{1},b)(\sigma^{\sharp}) &= \begin{cases} \sigma_{0}^{\sharp} \sqcup \sigma_{1}^{\sharp} & \text{if } b \\ \sigma_{0}^{\sharp} \sqcap \sigma_{1}^{\sharp} & \text{if } -b \\ \sigma_{0}^{\sharp} \sqcup \sigma_{1}^{\sharp} & \text{if } -b \end{cases} \\ \text{refine}(e_{0} \&\& e_{1},b)(\sigma^{\sharp}) &= \begin{cases} \sigma_{0}^{\sharp} \sqcap \sigma_{1}^{\sharp} & \text{if } b \\ \sigma_{0}^{\sharp} \sqcup \sigma_{1}^{\sharp} & \text{if } -b \end{cases} \\ \text{refine}(x.\text{Type} == c_{\text{normal}}, \#t)(\sigma^{\sharp}) &= \sigma^{\sharp}[x \mapsto \tau_{x}^{\sharp} \sqcap \text{normal}(\mathbb{T})] \\ \text{refine}(x.\text{Type} == c_{\text{normal}}, \#t)(\sigma^{\sharp}) &= \sigma^{\sharp}[x \mapsto \tau_{x}^{\sharp} \sqcap \{\text{abrupt}\}] \\ \text{refine}(x == e, \#t)(\sigma^{\sharp}) &= \sigma^{\sharp}[x \mapsto \tau_{x}^{\sharp} \sqcap \tau_{e}^{\sharp}] \\ \text{refine}(x == e, \#t)(\sigma^{\sharp}) &= \sigma^{\sharp}[x \mapsto \tau_{x}^{\sharp} \upharpoonright \tau_{e}^{\sharp}] \\ \text{refine}(x : \tau, \#t)(\sigma^{\sharp}) &= \sigma^{\sharp}[x \mapsto \tau_{x}^{\sharp} \upharpoonright \{\tau\}] \\ \text{refine}(x : \tau, \#t)(\sigma^{\sharp}) &= \sigma^{\sharp}[x \mapsto \tau_{x}^{\sharp} \land \{\tau' \mid \tau' <: \tau\}] \\ \text{refine}(e, b)(\sigma^{\sharp}) &= \sigma^{\sharp} \end{aligned}$$

where $\sigma_j^{\sharp} = \operatorname{refine}(e_j, b)(\sigma^{\sharp})$ for $j = 0, 1, \tau_e^{\sharp} = \llbracket e \rrbracket_e^{\sharp}(\sigma^{\sharp})$, and $\lfloor \tau^{\sharp} \rfloor$ returns $\{\tau\}$ if τ^{\sharp} denotes a singleton type τ , or returns \emptyset , otherwise.

PLRG

JSTAR - Evaluation

• Target: 864 versions of ECMA-262 in 3 years

Checker	Bug Kind	Precision = (# True Bugs) / (# Detected Bugs)						
CIICCRCI	Dug Kinu	no-refine		refine		Δ		
Roforonco	UnknownVar	62 / 106	17 / 60	63 / 78	17 / 31	±1 / 28	/ -29	
Relefence	DuplicatedVar	027100	45 / 46	03778	46 / 47	+17 - 20	+1 / +1	
Arity	MissingParam	4/4	4/4	4/4	4/4	/	/	
Assertion	Assertion	4 / 56	4 / 56	4 / 31	4 / 31	/ -25	/ -25	
Operand	NoNumber	22 / 112	2 / 65	22/14	2/6	/ 60	/ -59	
	Abrupt	227113	20 / 48		20 / 38	7 -09	/ -10	
Total		92 / 279 ((33.0%)	93 / 157 (59.2%) +1 / -122 (+26.			(+26.3%)	

Name	Feature	#	Checker	Created	Life Span
ES12-1	Switch	3	Reference	2015-09-22	1,996 days
ES12-2	Try	3	Reference	2015-09-22	1,996 days
ES12-3	Arguments	1	Reference	2015-09-22	1,996 days
ES12-4	Array	2	Reference	2015-09-22	1,996 days
ES12-5	Async	1	Reference	2015-09-22	1,996 days
ES12-6	Class	1	Reference	2015-09-22	1,996 days
ES12-7	Branch	1	Reference	2015-09-22	1,996 days
ES12-8	Arguments	2	Operand	2015-12-16	1,910 days

93 Bugs Detected

59.2% Precision

CI System of ECMA-262

La tc39 / ecma262 Public						
🛇 Edit Pins	र 🔹 💿 Watch 954 👻 😵 Fork 1.3k 📼 🔶 Starr	ed 14k -				
<> Code 💿 Issues 291 🔋	្ហ Pull requests 101 🕑 Actions 🖽 Projects 1 🕮	Wiki •••				
Actions	esmeta typecheck					
All workflows	esmeta-typecheck.yml					
Build Preview	275 workflow runs					
ecma-262	Event - Status - Branch - Actor -					
ecma-262						
ecma-262 deploy	Seditorial: Split identity	ظ				
ecma-262-biblio	esmeta typecheck #277:syg:stratified-identityyesterdaPull request #3027 openedby syg31s					
enforce format						
esmeta typecheck						
pages-build-deployment	esmeta typecheck					
Require "Allow Edits"	#276: Pull request acutmore: change-array-by					
Upload Preview	acutmore	42s				
Management	× Add Class and Class Elem	円				
	esmeta typecheck #275: Pull nzurag: decorators	2 days ago				

Advanced Refinement (Ongoing)

7.3.11 GetMethod (*V*, *P*)

- 1. Let *func* be ? GetV(V, P).
- 2. If *func* is either **undefined** or **null**, return **undefined**.
- 3. If IsCallable(*func*) is **false**, throw a **TypeError** exception.

4. Return *func*.

Specification Repair Tool (Idea)

20.3.2.28 Math.round (x)

- 1. Let n be ? ToNumber(x).
- 2. If *n* is an integral Number, return *n*.

Type Mismatch for numeric operator `>`

Math.round(true) = ?
Math.round(false) = ?

Auto Patch?

3. If *n* < 0.5 and *n* > 0, return +0.

4. If n < 0 and $n \ge -0.5$, return **-0**.

Math.round(true) = 1
Math.round(false) = 0

[ICSE'21] J. Park, et al. "JEST: N+1-version Differential Testing of Both JavaScript Engines" [PLDI'23] J. Park, et al. "Feature-Sensitive Coverage for Conformance Testing of Programming Language Implementations"

Conformance with Engines

PLRG

JEST - ICSE'21

(JavaScript Engines and Specification Tester)

JEST - Coverage-guided Fuzzing (in Spec.)

7.1.3 ToNumeric (*value*)

Let *primValue* be ? ToPrimitive(*value*, number).
 If Type(*primValue*) is BigInt, return *primValue*.
 Return ? ToNumber(*primValue*).

0 + { value0f() { throw 42; }

JEST - Assertion Injection

function f() {}

- + \$assert.sameValue(Object.getPrototypeOf(f), + Function.prototype); + \$assert.sameValue(Object.isExtensible(x), true); + \$assert.callable(f);
- + \$assert.constructable(f);

JEST - Evaluation

 JEST synthesized 1,700 conformance tests from ES11 44 Bugs in Engines

TABLE II: The number of engine bugs detected by JEST

Engines	Exc	Abort	Var	Obj	Desc	Key	In	Total
V8	0	0	0	0	0	2	0	2
GraalVM	6	0	0	0	2	8	0	16
QuickJS	3	0	1	0	0	2	0	6
Moddable XS	12	0	0	0	3	5	0	20
Total	21	0	1	0	5	17	0	44

TABLE III: Specification bugs in ECMAScript 2020 (ES11) detected by JEST

Name	Feature	#	Assertion	Known	Created	Resolved	Existed
ES11-1	Function	12	Key	0	2019-02-07	2020-04-11	429 days
ES11-2	Function	8	Key	0	2015-06-01	2020-04-11	1,776 days
ES11-3	Loop	1	Exc	0	2017-10-17	2020-04-30	926 days
ES11-4	Expression	4	Abort	0	2019-09-27	2020-04-23	209 days
ES11-5	Expression	1	Exc	0	2015-06-01	2020-04-28	1,793 days
ES11-6	Object	1	Exc	X	2019-02-07	2020-11-05	637 days

LRG

세미나 @ 소프트웨어 분석 연구실

Z Bugs in Spec.

Feature-Sensitive (FS) Coverage - PLDI'23

AdditiveExpression + MultiplicativeExpression

7.1.3 ToNumeric (value)

Let *primValue* be ? ToPrimitive(*value*, number).
 If Type(*primValue*) is BigInt, return *primValue*.
 Return ? ToNumber(*primValue*).

0 + { value0f() { throw 42; }

Feature-Sensitive (FS) Coverage - PLDI'23

AdditiveExpression + MultiplicativeExpression

AdditiveExpression - MultiplicativeExpression

7.1.3 ToNumeric (value)

Let *primValue* be ? ToPrimitive(*value*, number).
 If Type(*primValue*) is BigInt, return *primValue*.
 Return ? ToNumber(*primValue*).

0 + { value0f() { throw 42; }

Feature-Sensitive (FS) Coverage - PLDI'23

AdditiveExpression + MultiplicativeExpression

AdditiveExpression - MultiplicativeExpression

7.1.3 ToNumeric (value)

Let *primValue* be ? ToPrimitive(*value*, number).
 If Type(*primValue*) is BigInt, return *primValue*.
 Return ? ToNumber(*primValue*).

0 + { value0f() { throw 42; }

FS Coverage - Evaluation

Table 2. Comparison of synthesized conformance tests guided by five graph coverage criteria

Covorago Critoria Ca	# Cover	red k-F(CP)S	-TR (k)	# Syn Tost	# Bug	
Coverage Cinterna CG	# Node	# Branch	# Total	# Syn. 1est		
0-FS node-or-branch (0-fs)	10.0	5.6	15.6	2,111	55	
1-FS node-or-branch (1-fs)	79.3	45.7	125.0	6,766	83	
2-FS node-or-branch (2-fs)	1,199.8	696.3	1,896.1	97,423	102	
1-FCPS node-or-branch (1-fcps)	179.7	97.6	277.3	9,092	87	
2-FCPS node-or-branch (2-fcps)	2,323.1	1,297.6	3,620.7	122,589	111	

Table 1. Detected conformance bugs in JavaScript engines and transpilers

Kind	Name	Version	Release	# Detected Unique Bugs			
Killu	Name	Version		# New	# Confirmed	# Reported	
	V8	v10.8.121	2022.10.06	0	0	4	
	JSC	v615.1.10	2022.10.26	15	15	24	
Engine	GraalJS	v22.2.0	2022.07.26	9	9	10	
	SpiderMonkey	v107.0b4	2022.10.24	1	3	4	
		Total		25	27	42	
	Babel	v7.19.1	2022.09.15	30	30	35	
Transpiler	SWC	v1.3.10	2022.10.21	27	27	41	
	Terser	v5.15.1	2022.10.05	1	1	18	
	Obfuscator	v4.0.0	2022.02.15	0	0	7	
		Total		58	58	101	
	Total		83	85	143		

Specification (ECMA-262) Synthesis

Specification (ECMA-262) Synthesis (Idea)

20.1.2.13 Object.hasOwn (O, P)

1. Let *obj* be ? ToObject(*O*).

- 2. Let *key* be ? ToPropertyKey(*P*).
- 3. Return ? HasOwnProperty(*obj, key*).

Object.hasOwn

Related Work - [FSE'15] S. Heule, et al. "Mimic: Computing Models for Opaque Code"

[FSE'21] J. Park, et al. "Accelerating JavaScript Static Analysis via Dynamic Shortcuts" [FSE'22] J. Park, et al. "Automatically Deriving JavaScript Static Analyzers from Language Specifications"

Meta-level Static Analysis

PLRG

Meta-level Static Analysis - Example

IR_{ES}

PLRG

Meta-level Static Analysis - Example

PLRG

AST Sensitivity

AST Sensitivity

PLRG

AST Sensitivity

JavaScript	AST Sensitivity in IR _{ES}
Flow- Sensitivity	$\delta^{js-flow}(t_{\perp}) = \{ \sigma = (_, _, \overline{c}, _) \in \mathbb{S} \mid ast(\overline{c}) = t_{\perp} \}$
k-Callsite- Sensitivity	$\delta^{js-k-cfa}([t_1, \cdots, t_n]) = \{\sigma = (_, _, \overline{c}, _) \in \mathbb{S} \mid \\ n \le k \land (n = k \lor js-ctxt^{n+1}(\overline{c}) = \bot) \land \\ \forall 1 \le i \le n. \text{ ast } \circ js-ctxt^i(\overline{c}) = t_i \}$

JSAVER - FSE'22

(JavaScript Static Analyzer via ECMAScript Representation)

PLRG

JSAVER - Evaluation (RQ1: Soundness)

PLRG

JSAVER - Evaluation (RQ2: Prec. & Perf.)

Dynamic Shortcut - FSE'21

PLRG

세미나 @ 소프트웨어 분석 연구실

54 / 57

Dynamic Shortcut - Evaluation

Figure 6: Analysis time for Lodash 4 *original* tests without (no-DS) and with (DS) dynamic shortcuts within 5 minutes

Figure 7: Analysis time for Lodash 4 *abstracted* tests without (no-DS) and with (DS) dynamic shortcuts within 5 minutes

세미나 @ 소프트웨어 분석 연구실

Extraction of Dataflow Rules (Idea)

CodeQL

Discover vulnerabilities across a codebase with CodeQL, our industry-leading semantic code analysis engine. CodeQL lets you query code as though it were data. Write a query to find all variants of a vulnerability, eradicating it forever. Then share your query to help

others do the same

CodeQL is free for research and

세미나 @ 소프트웨어 분석 연구실

