
박지혁
고려대학교 정보대학 컴퓨터학과

(with 안승민, 윤동준, 박지희, 김경원, 이강욱, 류석영 교수님)

SIGPL Summer School 2023
2023.08.24

PL 구현체를 위한 새로운 커버리지를
제안하기까지의 여정

/ 342

Background + Problem

ECMA-262
(JS Spec.)

Mech. Spec.
Extraction

Conform. Test
Synthesis

Mechanized
Spec.

Conformance
Tests

JavaScript
Engines

ASE 2020 ICSE 2021

Feature-Sens.
Coverage

PLDI 2023

/ 343

JavaScript is Everywhere

Client-Side Programming

Sever-Side Programming

Mobile/Desktop Applications

Others (PDF, IoT, Microcontrollers, etc.)

/ 344

JavaScript is Everywhere
1

2

3

4

5

6

7

8

9

10

https://octoverse.github.com/
2014 2015 2016 2017 2018 2019 2020 2021 2022

https://octoverse.github.com/

/ 345

But, JavaScript is Complicated

+ JS - JS

/ 345

But, JavaScript is Complicated

+ JS - JS

4 + 2
JS

/ 345

But, JavaScript is Complicated

+ JS

6

- JS

4 + 2
JS

/ 345

But, JavaScript is Complicated

+ JS

6

- JS

4 + 2
JS

4 + "2"
JS

/ 345

But, JavaScript is Complicated

+ JS

6

- JS

"42"

4 + 2
JS

4 + "2"
JS

/ 345

But, JavaScript is Complicated

+ JS

6

- JS

"42"

4 + 2
JS

4 + "2"
JS

4 - "2"
JS

/ 345

But, JavaScript is Complicated

+ JS

6

- JS

"42"

2

4 + 2
JS

4 + "2"
JS

4 - "2"
JS

/ 345

But, JavaScript is Complicated

+ JS

6

- JS

"42"

2

4 + 2
JS

4 + "2"
JS

4 - "2"
JS

[1,2] + 3
JS

/ 345

But, JavaScript is Complicated

+ JS

6

- JS

"42"

2

"1,23"4 + 2
JS

4 + "2"
JS

4 - "2"
JS

[1,2] + 3
JS

/ 345

But, JavaScript is Complicated

+ JS

6

- JS

"42"

2

"1,23"4 + 2
JS

4 + "2"
JS

4 - "2"
JS

[1,2] + 3
JS

[1,2] - 3
JS

/ 345

But, JavaScript is Complicated

+ JS

6

- JS

"42"

2

"1,23"

NaN

4 + 2
JS

4 + "2"
JS

4 - "2"
JS

[1,2] + 3
JS

[1,2] - 3
JS

/ 345

But, JavaScript is Complicated

+ JS

6

- JS

"42"

2

"1,23"

NaN

4 + 2
JS

4 + "2"
JS

4 - "2"
JS

[1,2] + 3
JS

[1,2] - 3
JS

[] - 3
JS

/ 345

But, JavaScript is Complicated

+ JS

6

- JS

"42"

2

"1,23"

NaN

-3

4 + 2
JS

4 + "2"
JS

4 - "2"
JS

[1,2] + 3
JS

[1,2] - 3
JS

[] - 3
JS

/ 345

But, JavaScript is Complicated

+ JS

6

- JS

"42"

2

"1,23"

NaN

-3

4 + 2
JS

4 + "2"
JS

4 - "2"
JS

[1,2] + 3
JS

[1,2] - 3
JS

[] - 3
JS

4 + 2n
JS

/ 345

But, JavaScript is Complicated

+ JS

6

- JS

"42"

2

"1,23"

NaN

-3

TypeError4 + 2
JS

4 + "2"
JS

4 - "2"
JS

[1,2] + 3
JS

[1,2] - 3
JS

[] - 3
JS

4 + 2n
JS

/ 345

But, JavaScript is Complicated

+ JS

6

- JS

"42"

2

"1,23"

NaN

-3

TypeError4 + 2
JS

4 + "2"
JS

4 - "2"
JS

[1,2] + 3
JS

[1,2] - 3
JS

[] - 3
JS

4 + 2n
JS

4 + Symbol()
JS

/ 345

But, JavaScript is Complicated

+ JS

6

- JS

"42"

2

"1,23"

NaN

-3

TypeError

TypeError

4 + 2
JS

4 + "2"
JS

4 - "2"
JS

[1,2] + 3
JS

[1,2] - 3
JS

[] - 3
JS

4 + 2n
JS

4 + Symbol()
JS

/ 345

But, JavaScript is Complicated

+ JS

6

- JS

"42"

2

"1,23"

NaN

-3

TypeError

TypeError

4 + 2
JS

4 + "2"
JS

4 - "2"
JS

[1,2] + 3
JS

[1,2] - 3
JS

[] - 3
JS

4 + 2n
JS

4 + Symbol()
JS

...

/ 345

But, JavaScript is Complicated

+ JS

6

- JS

"42"

2

"1,23"

NaN

-3

 (![]+[])[+[]] + // "f"
 (![]+[])[+!+[]] + // "a"
 ([![]]+[][[]])[+!+[]+[+[]]] + // "i"
 (![]+[])[!+[]+!+[]] // "l"

"fail"

JS

TypeError

TypeError

4 + 2
JS

4 + "2"
JS

4 - "2"
JS

[1,2] + 3
JS

[1,2] - 3
JS

[] - 3
JS

4 + 2n
JS

4 + Symbol()
JS

...

/ 34

AdditiveExpression[Yield, Await] :

MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] + MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] - MultiplicativeExpression[?Yield, ?Await]

NOTE The addition operator either performs string concatenation or numeric addition.

AdditiveExpression : AdditiveExpression + MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, +, MultiplicativeExpression).

NOTE The - operator performs subtraction, producing the difference of its operands.

AdditiveExpression : AdditiveExpression - MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, -, MultiplicativeExpression).

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification

13.8 Additive Operators

Syntax

13.8.1 The Addition Operator (+)

13.8.1.1 Runtime Semantics: Evaluation

13.8.2 The Subtraction Operator (-)

13.8.2.1 Runtime Semantics: Evaluation

6

Language Specification (ECMA-262) of JavaScript

Reference number
ECMA-123:2009

© Ecma International 2009

ECMA-262
�4th Edition / June 20�3

ECMAScript® ���3
Language Specification

ECMA-262
(JavaScript Spec.)

Syntax

Semantics

AdditiveExpression[Yield, Await] :

MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] + MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] - MultiplicativeExpression[?Yield, ?Await]

NOTE The addition operator either performs string concatenation or numeric addition.

AdditiveExpression : AdditiveExpression + MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, +, MultiplicativeExpression).

NOTE The - operator performs subtraction, producing the difference of its operands.

AdditiveExpression : AdditiveExpression - MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, -, MultiplicativeExpression).

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification

13.8 Additive Operators

Syntax

13.8.1 The Addition Operator (+)

13.8.1.1 Runtime Semantics: Evaluation

13.8.2 The Subtraction Operator (-)

13.8.2.1 Runtime Semantics: Evaluation

AdditiveExpression[Yield, Await] :

MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] + MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] - MultiplicativeExpression[?Yield, ?Await]

NOTE The addition operator either performs string concatenation or numeric addition.

AdditiveExpression : AdditiveExpression + MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, +, MultiplicativeExpression).

NOTE The - operator performs subtraction, producing the difference of its operands.

AdditiveExpression : AdditiveExpression - MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, -, MultiplicativeExpression).

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification

13.8 Additive Operators

Syntax

13.8.1 The Addition Operator (+)

13.8.1.1 Runtime Semantics: Evaluation

13.8.2 The Subtraction Operator (-)

13.8.2.1 Runtime Semantics: Evaluation

AdditiveExpression[Yield, Await] :

MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] + MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] - MultiplicativeExpression[?Yield, ?Await]

NOTE The addition operator either performs string concatenation or numeric addition.

AdditiveExpression : AdditiveExpression + MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, +, MultiplicativeExpression).

NOTE The - operator performs subtraction, producing the difference of its operands.

AdditiveExpression : AdditiveExpression - MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, -, MultiplicativeExpression).

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification

13.8 Additive Operators

Syntax

13.8.1 The Addition Operator (+)

13.8.1.1 Runtime Semantics: Evaluation

13.8.2 The Subtraction Operator (-)

13.8.2.1 Runtime Semantics: Evaluation

+ JS

/ 34

AdditiveExpression[Yield, Await] :

MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] + MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] - MultiplicativeExpression[?Yield, ?Await]

NOTE The addition operator either performs string concatenation or numeric addition.

AdditiveExpression : AdditiveExpression + MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, +, MultiplicativeExpression).

NOTE The - operator performs subtraction, producing the difference of its operands.

AdditiveExpression : AdditiveExpression - MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, -, MultiplicativeExpression).

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification

13.8 Additive Operators

Syntax

13.8.1 The Addition Operator (+)

13.8.1.1 Runtime Semantics: Evaluation

13.8.2 The Subtraction Operator (-)

13.8.2.1 Runtime Semantics: Evaluation

AdditiveExpression[Yield, Await] :

MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] + MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] - MultiplicativeExpression[?Yield, ?Await]

NOTE The addition operator either performs string concatenation or numeric addition.

AdditiveExpression : AdditiveExpression + MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, +, MultiplicativeExpression).

NOTE The - operator performs subtraction, producing the difference of its operands.

AdditiveExpression : AdditiveExpression - MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, -, MultiplicativeExpression).

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification

13.8 Additive Operators

Syntax

13.8.1 The Addition Operator (+)

13.8.1.1 Runtime Semantics: Evaluation

13.8.2 The Subtraction Operator (-)

13.8.2.1 Runtime Semantics: Evaluation

AdditiveExpression[Yield, Await] :

MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] + MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] - MultiplicativeExpression[?Yield, ?Await]

NOTE The addition operator either performs string concatenation or numeric addition.

AdditiveExpression : AdditiveExpression + MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, +, MultiplicativeExpression).

NOTE The - operator performs subtraction, producing the difference of its operands.

AdditiveExpression : AdditiveExpression - MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, -, MultiplicativeExpression).

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification

13.8 Additive Operators

Syntax

13.8.1 The Addition Operator (+)

13.8.1.1 Runtime Semantics: Evaluation

13.8.2 The Subtraction Operator (-)

13.8.2.1 Runtime Semantics: Evaluation

7

Language Specification (ECMA-262) of JavaScript

4 + 2n
JS

TypeError

/ 34

AdditiveExpression[Yield, Await] :

MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] + MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] - MultiplicativeExpression[?Yield, ?Await]

NOTE The addition operator either performs string concatenation or numeric addition.

AdditiveExpression : AdditiveExpression + MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, +, MultiplicativeExpression).

NOTE The - operator performs subtraction, producing the difference of its operands.

AdditiveExpression : AdditiveExpression - MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, -, MultiplicativeExpression).

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification

13.8 Additive Operators

Syntax

13.8.1 The Addition Operator (+)

13.8.1.1 Runtime Semantics: Evaluation

13.8.2 The Subtraction Operator (-)

13.8.2.1 Runtime Semantics: Evaluation

AdditiveExpression[Yield, Await] :

MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] + MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] - MultiplicativeExpression[?Yield, ?Await]

NOTE The addition operator either performs string concatenation or numeric addition.

AdditiveExpression : AdditiveExpression + MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, +, MultiplicativeExpression).

NOTE The - operator performs subtraction, producing the difference of its operands.

AdditiveExpression : AdditiveExpression - MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, -, MultiplicativeExpression).

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification

13.8 Additive Operators

Syntax

13.8.1 The Addition Operator (+)

13.8.1.1 Runtime Semantics: Evaluation

13.8.2 The Subtraction Operator (-)

13.8.2.1 Runtime Semantics: Evaluation

AdditiveExpression[Yield, Await] :

MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] + MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] - MultiplicativeExpression[?Yield, ?Await]

NOTE The addition operator either performs string concatenation or numeric addition.

AdditiveExpression : AdditiveExpression + MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, +, MultiplicativeExpression).

NOTE The - operator performs subtraction, producing the difference of its operands.

AdditiveExpression : AdditiveExpression - MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, -, MultiplicativeExpression).

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification

13.8 Additive Operators

Syntax

13.8.1 The Addition Operator (+)

13.8.1.1 Runtime Semantics: Evaluation

13.8.2 The Subtraction Operator (-)

13.8.2.1 Runtime Semantics: Evaluation

The abstract operation EvaluateStringOrNumericBinaryExpression takes arguments leftOperand (a Parse Node), opText (a
sequence of Unicode code points), and rightOperand (a Parse Node) and returns either a normal completion containing
either a String, a BigInt, or a Number, or an abrupt completion. It performs the following steps when called:

1. Let lref be ? Evaluation of leftOperand.
2. Let lval be ? GetValue(lref).
3. Let rref be ? Evaluation of rightOperand.
4. Let rval be ? GetValue(rref).
5. Return ? ApplyStringOrNumericBinaryOperator(lval, opText, rval).

Expression[In, Yield, Await] :

AssignmentExpression[?In, ?Yield, ?Await]
Expression[?In, ?Yield, ?Await] , AssignmentExpression[?In, ?Yield, ?Await]

Expression : Expression , AssignmentExpression

1. Let lref be ? Evaluation of Expression.
2. Perform ? GetValue(lref).
3. Let rref be ? Evaluation of AssignmentExpression.
4. Return ? GetValue(rref).

NOTE GetValue must be called even though its value is not used because it may have observable side-effects.

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification
13 ECMAScript Language: Expressions

13.15.4 EvaluateStringOrNumericBinaryExpression (leftOperand, opText, rightOperand)

13.16 Comma Operator (,)

Syntax

13.16.1 Runtime Semantics: Evaluation

The abstract operation EvaluateStringOrNumericBinaryExpression takes arguments leftOperand (a Parse Node), opText (a
sequence of Unicode code points), and rightOperand (a Parse Node) and returns either a normal completion containing
either a String, a BigInt, or a Number, or an abrupt completion. It performs the following steps when called:

1. Let lref be ? Evaluation of leftOperand.
2. Let lval be ? GetValue(lref).
3. Let rref be ? Evaluation of rightOperand.
4. Let rval be ? GetValue(rref).
5. Return ? ApplyStringOrNumericBinaryOperator(lval, opText, rval).

Expression[In, Yield, Await] :

AssignmentExpression[?In, ?Yield, ?Await]
Expression[?In, ?Yield, ?Await] , AssignmentExpression[?In, ?Yield, ?Await]

Expression : Expression , AssignmentExpression

1. Let lref be ? Evaluation of Expression.
2. Perform ? GetValue(lref).
3. Let rref be ? Evaluation of AssignmentExpression.
4. Return ? GetValue(rref).

NOTE GetValue must be called even though its value is not used because it may have observable side-effects.

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification
13 ECMAScript Language: Expressions

13.15.4 EvaluateStringOrNumericBinaryExpression (leftOperand, opText, rightOperand)

13.16 Comma Operator (,)

Syntax

13.16.1 Runtime Semantics: Evaluation

7

Language Specification (ECMA-262) of JavaScript

4 + 2n
JS

TypeError

/ 34

AdditiveExpression[Yield, Await] :

MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] + MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] - MultiplicativeExpression[?Yield, ?Await]

NOTE The addition operator either performs string concatenation or numeric addition.

AdditiveExpression : AdditiveExpression + MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, +, MultiplicativeExpression).

NOTE The - operator performs subtraction, producing the difference of its operands.

AdditiveExpression : AdditiveExpression - MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, -, MultiplicativeExpression).

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification

13.8 Additive Operators

Syntax

13.8.1 The Addition Operator (+)

13.8.1.1 Runtime Semantics: Evaluation

13.8.2 The Subtraction Operator (-)

13.8.2.1 Runtime Semantics: Evaluation

AdditiveExpression[Yield, Await] :

MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] + MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] - MultiplicativeExpression[?Yield, ?Await]

NOTE The addition operator either performs string concatenation or numeric addition.

AdditiveExpression : AdditiveExpression + MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, +, MultiplicativeExpression).

NOTE The - operator performs subtraction, producing the difference of its operands.

AdditiveExpression : AdditiveExpression - MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, -, MultiplicativeExpression).

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification

13.8 Additive Operators

Syntax

13.8.1 The Addition Operator (+)

13.8.1.1 Runtime Semantics: Evaluation

13.8.2 The Subtraction Operator (-)

13.8.2.1 Runtime Semantics: Evaluation

AdditiveExpression[Yield, Await] :

MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] + MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] - MultiplicativeExpression[?Yield, ?Await]

NOTE The addition operator either performs string concatenation or numeric addition.

AdditiveExpression : AdditiveExpression + MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, +, MultiplicativeExpression).

NOTE The - operator performs subtraction, producing the difference of its operands.

AdditiveExpression : AdditiveExpression - MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, -, MultiplicativeExpression).

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification

13.8 Additive Operators

Syntax

13.8.1 The Addition Operator (+)

13.8.1.1 Runtime Semantics: Evaluation

13.8.2 The Subtraction Operator (-)

13.8.2.1 Runtime Semantics: Evaluation

The abstract operation EvaluateStringOrNumericBinaryExpression takes arguments leftOperand (a Parse Node), opText (a
sequence of Unicode code points), and rightOperand (a Parse Node) and returns either a normal completion containing
either a String, a BigInt, or a Number, or an abrupt completion. It performs the following steps when called:

1. Let lref be ? Evaluation of leftOperand.
2. Let lval be ? GetValue(lref).
3. Let rref be ? Evaluation of rightOperand.
4. Let rval be ? GetValue(rref).
5. Return ? ApplyStringOrNumericBinaryOperator(lval, opText, rval).

Expression[In, Yield, Await] :

AssignmentExpression[?In, ?Yield, ?Await]
Expression[?In, ?Yield, ?Await] , AssignmentExpression[?In, ?Yield, ?Await]

Expression : Expression , AssignmentExpression

1. Let lref be ? Evaluation of Expression.
2. Perform ? GetValue(lref).
3. Let rref be ? Evaluation of AssignmentExpression.
4. Return ? GetValue(rref).

NOTE GetValue must be called even though its value is not used because it may have observable side-effects.

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification
13 ECMAScript Language: Expressions

13.15.4 EvaluateStringOrNumericBinaryExpression (leftOperand, opText, rightOperand)

13.16 Comma Operator (,)

Syntax

13.16.1 Runtime Semantics: Evaluation

The abstract operation EvaluateStringOrNumericBinaryExpression takes arguments leftOperand (a Parse Node), opText (a
sequence of Unicode code points), and rightOperand (a Parse Node) and returns either a normal completion containing
either a String, a BigInt, or a Number, or an abrupt completion. It performs the following steps when called:

1. Let lref be ? Evaluation of leftOperand.
2. Let lval be ? GetValue(lref).
3. Let rref be ? Evaluation of rightOperand.
4. Let rval be ? GetValue(rref).
5. Return ? ApplyStringOrNumericBinaryOperator(lval, opText, rval).

Expression[In, Yield, Await] :

AssignmentExpression[?In, ?Yield, ?Await]
Expression[?In, ?Yield, ?Await] , AssignmentExpression[?In, ?Yield, ?Await]

Expression : Expression , AssignmentExpression

1. Let lref be ? Evaluation of Expression.
2. Perform ? GetValue(lref).
3. Let rref be ? Evaluation of AssignmentExpression.
4. Return ? GetValue(rref).

NOTE GetValue must be called even though its value is not used because it may have observable side-effects.

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification
13 ECMAScript Language: Expressions

13.15.4 EvaluateStringOrNumericBinaryExpression (leftOperand, opText, rightOperand)

13.16 Comma Operator (,)

Syntax

13.16.1 Runtime Semantics: Evaluation

7

Language Specification (ECMA-262) of JavaScript

4 + 2n
JS

TypeError

Expr 4 Expr 2n+

/ 34

AdditiveExpression[Yield, Await] :

MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] + MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] - MultiplicativeExpression[?Yield, ?Await]

NOTE The addition operator either performs string concatenation or numeric addition.

AdditiveExpression : AdditiveExpression + MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, +, MultiplicativeExpression).

NOTE The - operator performs subtraction, producing the difference of its operands.

AdditiveExpression : AdditiveExpression - MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, -, MultiplicativeExpression).

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification

13.8 Additive Operators

Syntax

13.8.1 The Addition Operator (+)

13.8.1.1 Runtime Semantics: Evaluation

13.8.2 The Subtraction Operator (-)

13.8.2.1 Runtime Semantics: Evaluation

AdditiveExpression[Yield, Await] :

MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] + MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] - MultiplicativeExpression[?Yield, ?Await]

NOTE The addition operator either performs string concatenation or numeric addition.

AdditiveExpression : AdditiveExpression + MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, +, MultiplicativeExpression).

NOTE The - operator performs subtraction, producing the difference of its operands.

AdditiveExpression : AdditiveExpression - MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, -, MultiplicativeExpression).

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification

13.8 Additive Operators

Syntax

13.8.1 The Addition Operator (+)

13.8.1.1 Runtime Semantics: Evaluation

13.8.2 The Subtraction Operator (-)

13.8.2.1 Runtime Semantics: Evaluation

AdditiveExpression[Yield, Await] :

MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] + MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] - MultiplicativeExpression[?Yield, ?Await]

NOTE The addition operator either performs string concatenation or numeric addition.

AdditiveExpression : AdditiveExpression + MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, +, MultiplicativeExpression).

NOTE The - operator performs subtraction, producing the difference of its operands.

AdditiveExpression : AdditiveExpression - MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, -, MultiplicativeExpression).

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification

13.8 Additive Operators

Syntax

13.8.1 The Addition Operator (+)

13.8.1.1 Runtime Semantics: Evaluation

13.8.2 The Subtraction Operator (-)

13.8.2.1 Runtime Semantics: Evaluation

The abstract operation EvaluateStringOrNumericBinaryExpression takes arguments leftOperand (a Parse Node), opText (a
sequence of Unicode code points), and rightOperand (a Parse Node) and returns either a normal completion containing
either a String, a BigInt, or a Number, or an abrupt completion. It performs the following steps when called:

1. Let lref be ? Evaluation of leftOperand.
2. Let lval be ? GetValue(lref).
3. Let rref be ? Evaluation of rightOperand.
4. Let rval be ? GetValue(rref).
5. Return ? ApplyStringOrNumericBinaryOperator(lval, opText, rval).

Expression[In, Yield, Await] :

AssignmentExpression[?In, ?Yield, ?Await]
Expression[?In, ?Yield, ?Await] , AssignmentExpression[?In, ?Yield, ?Await]

Expression : Expression , AssignmentExpression

1. Let lref be ? Evaluation of Expression.
2. Perform ? GetValue(lref).
3. Let rref be ? Evaluation of AssignmentExpression.
4. Return ? GetValue(rref).

NOTE GetValue must be called even though its value is not used because it may have observable side-effects.

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification
13 ECMAScript Language: Expressions

13.15.4 EvaluateStringOrNumericBinaryExpression (leftOperand, opText, rightOperand)

13.16 Comma Operator (,)

Syntax

13.16.1 Runtime Semantics: Evaluation

The abstract operation EvaluateStringOrNumericBinaryExpression takes arguments leftOperand (a Parse Node), opText (a
sequence of Unicode code points), and rightOperand (a Parse Node) and returns either a normal completion containing
either a String, a BigInt, or a Number, or an abrupt completion. It performs the following steps when called:

1. Let lref be ? Evaluation of leftOperand.
2. Let lval be ? GetValue(lref).
3. Let rref be ? Evaluation of rightOperand.
4. Let rval be ? GetValue(rref).
5. Return ? ApplyStringOrNumericBinaryOperator(lval, opText, rval).

Expression[In, Yield, Await] :

AssignmentExpression[?In, ?Yield, ?Await]
Expression[?In, ?Yield, ?Await] , AssignmentExpression[?In, ?Yield, ?Await]

Expression : Expression , AssignmentExpression

1. Let lref be ? Evaluation of Expression.
2. Perform ? GetValue(lref).
3. Let rref be ? Evaluation of AssignmentExpression.
4. Return ? GetValue(rref).

NOTE GetValue must be called even though its value is not used because it may have observable side-effects.

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification
13 ECMAScript Language: Expressions

13.15.4 EvaluateStringOrNumericBinaryExpression (leftOperand, opText, rightOperand)

13.16 Comma Operator (,)

Syntax

13.16.1 Runtime Semantics: Evaluation

7

Language Specification (ECMA-262) of JavaScript

4 + 2n
JS

TypeError

Expr 4 Expr 2n+

Evaluate Left

/ 34

AdditiveExpression[Yield, Await] :

MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] + MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] - MultiplicativeExpression[?Yield, ?Await]

NOTE The addition operator either performs string concatenation or numeric addition.

AdditiveExpression : AdditiveExpression + MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, +, MultiplicativeExpression).

NOTE The - operator performs subtraction, producing the difference of its operands.

AdditiveExpression : AdditiveExpression - MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, -, MultiplicativeExpression).

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification

13.8 Additive Operators

Syntax

13.8.1 The Addition Operator (+)

13.8.1.1 Runtime Semantics: Evaluation

13.8.2 The Subtraction Operator (-)

13.8.2.1 Runtime Semantics: Evaluation

AdditiveExpression[Yield, Await] :

MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] + MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] - MultiplicativeExpression[?Yield, ?Await]

NOTE The addition operator either performs string concatenation or numeric addition.

AdditiveExpression : AdditiveExpression + MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, +, MultiplicativeExpression).

NOTE The - operator performs subtraction, producing the difference of its operands.

AdditiveExpression : AdditiveExpression - MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, -, MultiplicativeExpression).

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification

13.8 Additive Operators

Syntax

13.8.1 The Addition Operator (+)

13.8.1.1 Runtime Semantics: Evaluation

13.8.2 The Subtraction Operator (-)

13.8.2.1 Runtime Semantics: Evaluation

AdditiveExpression[Yield, Await] :

MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] + MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] - MultiplicativeExpression[?Yield, ?Await]

NOTE The addition operator either performs string concatenation or numeric addition.

AdditiveExpression : AdditiveExpression + MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, +, MultiplicativeExpression).

NOTE The - operator performs subtraction, producing the difference of its operands.

AdditiveExpression : AdditiveExpression - MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, -, MultiplicativeExpression).

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification

13.8 Additive Operators

Syntax

13.8.1 The Addition Operator (+)

13.8.1.1 Runtime Semantics: Evaluation

13.8.2 The Subtraction Operator (-)

13.8.2.1 Runtime Semantics: Evaluation

The abstract operation EvaluateStringOrNumericBinaryExpression takes arguments leftOperand (a Parse Node), opText (a
sequence of Unicode code points), and rightOperand (a Parse Node) and returns either a normal completion containing
either a String, a BigInt, or a Number, or an abrupt completion. It performs the following steps when called:

1. Let lref be ? Evaluation of leftOperand.
2. Let lval be ? GetValue(lref).
3. Let rref be ? Evaluation of rightOperand.
4. Let rval be ? GetValue(rref).
5. Return ? ApplyStringOrNumericBinaryOperator(lval, opText, rval).

Expression[In, Yield, Await] :

AssignmentExpression[?In, ?Yield, ?Await]
Expression[?In, ?Yield, ?Await] , AssignmentExpression[?In, ?Yield, ?Await]

Expression : Expression , AssignmentExpression

1. Let lref be ? Evaluation of Expression.
2. Perform ? GetValue(lref).
3. Let rref be ? Evaluation of AssignmentExpression.
4. Return ? GetValue(rref).

NOTE GetValue must be called even though its value is not used because it may have observable side-effects.

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification
13 ECMAScript Language: Expressions

13.15.4 EvaluateStringOrNumericBinaryExpression (leftOperand, opText, rightOperand)

13.16 Comma Operator (,)

Syntax

13.16.1 Runtime Semantics: Evaluation

The abstract operation EvaluateStringOrNumericBinaryExpression takes arguments leftOperand (a Parse Node), opText (a
sequence of Unicode code points), and rightOperand (a Parse Node) and returns either a normal completion containing
either a String, a BigInt, or a Number, or an abrupt completion. It performs the following steps when called:

1. Let lref be ? Evaluation of leftOperand.
2. Let lval be ? GetValue(lref).
3. Let rref be ? Evaluation of rightOperand.
4. Let rval be ? GetValue(rref).
5. Return ? ApplyStringOrNumericBinaryOperator(lval, opText, rval).

Expression[In, Yield, Await] :

AssignmentExpression[?In, ?Yield, ?Await]
Expression[?In, ?Yield, ?Await] , AssignmentExpression[?In, ?Yield, ?Await]

Expression : Expression , AssignmentExpression

1. Let lref be ? Evaluation of Expression.
2. Perform ? GetValue(lref).
3. Let rref be ? Evaluation of AssignmentExpression.
4. Return ? GetValue(rref).

NOTE GetValue must be called even though its value is not used because it may have observable side-effects.

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification
13 ECMAScript Language: Expressions

13.15.4 EvaluateStringOrNumericBinaryExpression (leftOperand, opText, rightOperand)

13.16 Comma Operator (,)

Syntax

13.16.1 Runtime Semantics: Evaluation

7

Language Specification (ECMA-262) of JavaScript

4 + 2n
JS

TypeError

Expr 4 Expr 2n+

Evaluate Right

Evaluate Left

/ 34

AdditiveExpression[Yield, Await] :

MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] + MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] - MultiplicativeExpression[?Yield, ?Await]

NOTE The addition operator either performs string concatenation or numeric addition.

AdditiveExpression : AdditiveExpression + MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, +, MultiplicativeExpression).

NOTE The - operator performs subtraction, producing the difference of its operands.

AdditiveExpression : AdditiveExpression - MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, -, MultiplicativeExpression).

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification

13.8 Additive Operators

Syntax

13.8.1 The Addition Operator (+)

13.8.1.1 Runtime Semantics: Evaluation

13.8.2 The Subtraction Operator (-)

13.8.2.1 Runtime Semantics: Evaluation

AdditiveExpression[Yield, Await] :

MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] + MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] - MultiplicativeExpression[?Yield, ?Await]

NOTE The addition operator either performs string concatenation or numeric addition.

AdditiveExpression : AdditiveExpression + MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, +, MultiplicativeExpression).

NOTE The - operator performs subtraction, producing the difference of its operands.

AdditiveExpression : AdditiveExpression - MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, -, MultiplicativeExpression).

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification

13.8 Additive Operators

Syntax

13.8.1 The Addition Operator (+)

13.8.1.1 Runtime Semantics: Evaluation

13.8.2 The Subtraction Operator (-)

13.8.2.1 Runtime Semantics: Evaluation

AdditiveExpression[Yield, Await] :

MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] + MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] - MultiplicativeExpression[?Yield, ?Await]

NOTE The addition operator either performs string concatenation or numeric addition.

AdditiveExpression : AdditiveExpression + MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, +, MultiplicativeExpression).

NOTE The - operator performs subtraction, producing the difference of its operands.

AdditiveExpression : AdditiveExpression - MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, -, MultiplicativeExpression).

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification

13.8 Additive Operators

Syntax

13.8.1 The Addition Operator (+)

13.8.1.1 Runtime Semantics: Evaluation

13.8.2 The Subtraction Operator (-)

13.8.2.1 Runtime Semantics: Evaluation

The abstract operation EvaluateStringOrNumericBinaryExpression takes arguments leftOperand (a Parse Node), opText (a
sequence of Unicode code points), and rightOperand (a Parse Node) and returns either a normal completion containing
either a String, a BigInt, or a Number, or an abrupt completion. It performs the following steps when called:

1. Let lref be ? Evaluation of leftOperand.
2. Let lval be ? GetValue(lref).
3. Let rref be ? Evaluation of rightOperand.
4. Let rval be ? GetValue(rref).
5. Return ? ApplyStringOrNumericBinaryOperator(lval, opText, rval).

Expression[In, Yield, Await] :

AssignmentExpression[?In, ?Yield, ?Await]
Expression[?In, ?Yield, ?Await] , AssignmentExpression[?In, ?Yield, ?Await]

Expression : Expression , AssignmentExpression

1. Let lref be ? Evaluation of Expression.
2. Perform ? GetValue(lref).
3. Let rref be ? Evaluation of AssignmentExpression.
4. Return ? GetValue(rref).

NOTE GetValue must be called even though its value is not used because it may have observable side-effects.

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification
13 ECMAScript Language: Expressions

13.15.4 EvaluateStringOrNumericBinaryExpression (leftOperand, opText, rightOperand)

13.16 Comma Operator (,)

Syntax

13.16.1 Runtime Semantics: Evaluation

The abstract operation EvaluateStringOrNumericBinaryExpression takes arguments leftOperand (a Parse Node), opText (a
sequence of Unicode code points), and rightOperand (a Parse Node) and returns either a normal completion containing
either a String, a BigInt, or a Number, or an abrupt completion. It performs the following steps when called:

1. Let lref be ? Evaluation of leftOperand.
2. Let lval be ? GetValue(lref).
3. Let rref be ? Evaluation of rightOperand.
4. Let rval be ? GetValue(rref).
5. Return ? ApplyStringOrNumericBinaryOperator(lval, opText, rval).

Expression[In, Yield, Await] :

AssignmentExpression[?In, ?Yield, ?Await]
Expression[?In, ?Yield, ?Await] , AssignmentExpression[?In, ?Yield, ?Await]

Expression : Expression , AssignmentExpression

1. Let lref be ? Evaluation of Expression.
2. Perform ? GetValue(lref).
3. Let rref be ? Evaluation of AssignmentExpression.
4. Return ? GetValue(rref).

NOTE GetValue must be called even though its value is not used because it may have observable side-effects.

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification
13 ECMAScript Language: Expressions

13.15.4 EvaluateStringOrNumericBinaryExpression (leftOperand, opText, rightOperand)

13.16 Comma Operator (,)

Syntax

13.16.1 Runtime Semantics: Evaluation

2. Let lval be ? GetValue(lref).
3. If lval is neither undefined nor null, return lval.
4. If IsAnonymousFunctionDefinition(AssignmentExpression) is true and IsIdentifierRef of

LeftHandSideExpression is true, then
a. Let rval be ? NamedEvaluation of AssignmentExpression with argument lref.

[[ReferencedName]].
5. Else,

a. Let rref be ? Evaluation of AssignmentExpression.
b. Let rval be ? GetValue(rref).

6. Perform ? PutValue(lref, rval).
7. Return rval.

NOTE When this expression occurs within strict mode code, it is a runtime error if lref in
step 1.d, 2, 2, 2, 2 is an unresolvable reference. If it is, a ReferenceError exception is
thrown. Additionally, it is a runtime error if the lref in step 8, 7, 7, 6 is a reference to
a data property with the attribute value { [[Writable]]: false }, to an accessor
property with the attribute value { [[Set]]: undefined }, or to a non-existent
property of an object for which the IsExtensible predicate returns the value false.
In these cases a TypeError exception is thrown.

The abstract operation ApplyStringOrNumericBinaryOperator takes arguments lval (an
ECMAScript language value), opText (**, *, /, %, +, -, <<, >>, >>>, &, ^, or |), and rval (an
ECMAScript language value) and returns either a normal completion containing either a String, a
BigInt, or a Number, or a throw completion. It performs the following steps when called:

1. If opText is +, then
a. Let lprim be ? ToPrimitive(lval).
b. Let rprim be ? ToPrimitive(rval).
c. If lprim is a String or rprim is a String, then

i. Let lstr be ? ToString(lprim).
ii. Let rstr be ? ToString(rprim).

iii. Return the string-concatenation of lstr and rstr.
d. Set lval to lprim.
e. Set rval to rprim.

2. NOTE: At this point, it must be a numeric operation.
3. Let lnum be ? ToNumeric(lval).
4. Let rnum be ? ToNumeric(rval).
5. If Type(lnum) is not Type(rnum), throw a TypeError exception.
6. If lnum is a BigInt, then

13.15.3 ApplyStringOrNumericBinaryOperator (lval, opText, rval)

2. Let lval be ? GetValue(lref).
3. If lval is neither undefined nor null, return lval.
4. If IsAnonymousFunctionDefinition(AssignmentExpression) is true and IsIdentifierRef of

LeftHandSideExpression is true, then
a. Let rval be ? NamedEvaluation of AssignmentExpression with argument lref.

[[ReferencedName]].
5. Else,

a. Let rref be ? Evaluation of AssignmentExpression.
b. Let rval be ? GetValue(rref).

6. Perform ? PutValue(lref, rval).
7. Return rval.

NOTE When this expression occurs within strict mode code, it is a runtime error if lref in
step 1.d, 2, 2, 2, 2 is an unresolvable reference. If it is, a ReferenceError exception is
thrown. Additionally, it is a runtime error if the lref in step 8, 7, 7, 6 is a reference to
a data property with the attribute value { [[Writable]]: false }, to an accessor
property with the attribute value { [[Set]]: undefined }, or to a non-existent
property of an object for which the IsExtensible predicate returns the value false.
In these cases a TypeError exception is thrown.

The abstract operation ApplyStringOrNumericBinaryOperator takes arguments lval (an
ECMAScript language value), opText (**, *, /, %, +, -, <<, >>, >>>, &, ^, or |), and rval (an
ECMAScript language value) and returns either a normal completion containing either a String, a
BigInt, or a Number, or a throw completion. It performs the following steps when called:

1. If opText is +, then
a. Let lprim be ? ToPrimitive(lval).
b. Let rprim be ? ToPrimitive(rval).
c. If lprim is a String or rprim is a String, then

i. Let lstr be ? ToString(lprim).
ii. Let rstr be ? ToString(rprim).

iii. Return the string-concatenation of lstr and rstr.
d. Set lval to lprim.
e. Set rval to rprim.

2. NOTE: At this point, it must be a numeric operation.
3. Let lnum be ? ToNumeric(lval).
4. Let rnum be ? ToNumeric(rval).
5. If Type(lnum) is not Type(rnum), throw a TypeError exception.
6. If lnum is a BigInt, then

13.15.3 ApplyStringOrNumericBinaryOperator (lval, opText, rval)

…

7

Language Specification (ECMA-262) of JavaScript

4 + 2n
JS

TypeError

Expr 4 Expr 2n+

Evaluate Right

Evaluate Left

/ 34

AdditiveExpression[Yield, Await] :

MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] + MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] - MultiplicativeExpression[?Yield, ?Await]

NOTE The addition operator either performs string concatenation or numeric addition.

AdditiveExpression : AdditiveExpression + MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, +, MultiplicativeExpression).

NOTE The - operator performs subtraction, producing the difference of its operands.

AdditiveExpression : AdditiveExpression - MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, -, MultiplicativeExpression).

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification

13.8 Additive Operators

Syntax

13.8.1 The Addition Operator (+)

13.8.1.1 Runtime Semantics: Evaluation

13.8.2 The Subtraction Operator (-)

13.8.2.1 Runtime Semantics: Evaluation

AdditiveExpression[Yield, Await] :

MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] + MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] - MultiplicativeExpression[?Yield, ?Await]

NOTE The addition operator either performs string concatenation or numeric addition.

AdditiveExpression : AdditiveExpression + MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, +, MultiplicativeExpression).

NOTE The - operator performs subtraction, producing the difference of its operands.

AdditiveExpression : AdditiveExpression - MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, -, MultiplicativeExpression).

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification

13.8 Additive Operators

Syntax

13.8.1 The Addition Operator (+)

13.8.1.1 Runtime Semantics: Evaluation

13.8.2 The Subtraction Operator (-)

13.8.2.1 Runtime Semantics: Evaluation

AdditiveExpression[Yield, Await] :

MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] + MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] - MultiplicativeExpression[?Yield, ?Await]

NOTE The addition operator either performs string concatenation or numeric addition.

AdditiveExpression : AdditiveExpression + MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, +, MultiplicativeExpression).

NOTE The - operator performs subtraction, producing the difference of its operands.

AdditiveExpression : AdditiveExpression - MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, -, MultiplicativeExpression).

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification

13.8 Additive Operators

Syntax

13.8.1 The Addition Operator (+)

13.8.1.1 Runtime Semantics: Evaluation

13.8.2 The Subtraction Operator (-)

13.8.2.1 Runtime Semantics: Evaluation

The abstract operation EvaluateStringOrNumericBinaryExpression takes arguments leftOperand (a Parse Node), opText (a
sequence of Unicode code points), and rightOperand (a Parse Node) and returns either a normal completion containing
either a String, a BigInt, or a Number, or an abrupt completion. It performs the following steps when called:

1. Let lref be ? Evaluation of leftOperand.
2. Let lval be ? GetValue(lref).
3. Let rref be ? Evaluation of rightOperand.
4. Let rval be ? GetValue(rref).
5. Return ? ApplyStringOrNumericBinaryOperator(lval, opText, rval).

Expression[In, Yield, Await] :

AssignmentExpression[?In, ?Yield, ?Await]
Expression[?In, ?Yield, ?Await] , AssignmentExpression[?In, ?Yield, ?Await]

Expression : Expression , AssignmentExpression

1. Let lref be ? Evaluation of Expression.
2. Perform ? GetValue(lref).
3. Let rref be ? Evaluation of AssignmentExpression.
4. Return ? GetValue(rref).

NOTE GetValue must be called even though its value is not used because it may have observable side-effects.

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification
13 ECMAScript Language: Expressions

13.15.4 EvaluateStringOrNumericBinaryExpression (leftOperand, opText, rightOperand)

13.16 Comma Operator (,)

Syntax

13.16.1 Runtime Semantics: Evaluation

The abstract operation EvaluateStringOrNumericBinaryExpression takes arguments leftOperand (a Parse Node), opText (a
sequence of Unicode code points), and rightOperand (a Parse Node) and returns either a normal completion containing
either a String, a BigInt, or a Number, or an abrupt completion. It performs the following steps when called:

1. Let lref be ? Evaluation of leftOperand.
2. Let lval be ? GetValue(lref).
3. Let rref be ? Evaluation of rightOperand.
4. Let rval be ? GetValue(rref).
5. Return ? ApplyStringOrNumericBinaryOperator(lval, opText, rval).

Expression[In, Yield, Await] :

AssignmentExpression[?In, ?Yield, ?Await]
Expression[?In, ?Yield, ?Await] , AssignmentExpression[?In, ?Yield, ?Await]

Expression : Expression , AssignmentExpression

1. Let lref be ? Evaluation of Expression.
2. Perform ? GetValue(lref).
3. Let rref be ? Evaluation of AssignmentExpression.
4. Return ? GetValue(rref).

NOTE GetValue must be called even though its value is not used because it may have observable side-effects.

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification
13 ECMAScript Language: Expressions

13.15.4 EvaluateStringOrNumericBinaryExpression (leftOperand, opText, rightOperand)

13.16 Comma Operator (,)

Syntax

13.16.1 Runtime Semantics: Evaluation

2. Let lval be ? GetValue(lref).
3. If lval is neither undefined nor null, return lval.
4. If IsAnonymousFunctionDefinition(AssignmentExpression) is true and IsIdentifierRef of

LeftHandSideExpression is true, then
a. Let rval be ? NamedEvaluation of AssignmentExpression with argument lref.

[[ReferencedName]].
5. Else,

a. Let rref be ? Evaluation of AssignmentExpression.
b. Let rval be ? GetValue(rref).

6. Perform ? PutValue(lref, rval).
7. Return rval.

NOTE When this expression occurs within strict mode code, it is a runtime error if lref in
step 1.d, 2, 2, 2, 2 is an unresolvable reference. If it is, a ReferenceError exception is
thrown. Additionally, it is a runtime error if the lref in step 8, 7, 7, 6 is a reference to
a data property with the attribute value { [[Writable]]: false }, to an accessor
property with the attribute value { [[Set]]: undefined }, or to a non-existent
property of an object for which the IsExtensible predicate returns the value false.
In these cases a TypeError exception is thrown.

The abstract operation ApplyStringOrNumericBinaryOperator takes arguments lval (an
ECMAScript language value), opText (**, *, /, %, +, -, <<, >>, >>>, &, ^, or |), and rval (an
ECMAScript language value) and returns either a normal completion containing either a String, a
BigInt, or a Number, or a throw completion. It performs the following steps when called:

1. If opText is +, then
a. Let lprim be ? ToPrimitive(lval).
b. Let rprim be ? ToPrimitive(rval).
c. If lprim is a String or rprim is a String, then

i. Let lstr be ? ToString(lprim).
ii. Let rstr be ? ToString(rprim).

iii. Return the string-concatenation of lstr and rstr.
d. Set lval to lprim.
e. Set rval to rprim.

2. NOTE: At this point, it must be a numeric operation.
3. Let lnum be ? ToNumeric(lval).
4. Let rnum be ? ToNumeric(rval).
5. If Type(lnum) is not Type(rnum), throw a TypeError exception.
6. If lnum is a BigInt, then

13.15.3 ApplyStringOrNumericBinaryOperator (lval, opText, rval)

2. Let lval be ? GetValue(lref).
3. If lval is neither undefined nor null, return lval.
4. If IsAnonymousFunctionDefinition(AssignmentExpression) is true and IsIdentifierRef of

LeftHandSideExpression is true, then
a. Let rval be ? NamedEvaluation of AssignmentExpression with argument lref.

[[ReferencedName]].
5. Else,

a. Let rref be ? Evaluation of AssignmentExpression.
b. Let rval be ? GetValue(rref).

6. Perform ? PutValue(lref, rval).
7. Return rval.

NOTE When this expression occurs within strict mode code, it is a runtime error if lref in
step 1.d, 2, 2, 2, 2 is an unresolvable reference. If it is, a ReferenceError exception is
thrown. Additionally, it is a runtime error if the lref in step 8, 7, 7, 6 is a reference to
a data property with the attribute value { [[Writable]]: false }, to an accessor
property with the attribute value { [[Set]]: undefined }, or to a non-existent
property of an object for which the IsExtensible predicate returns the value false.
In these cases a TypeError exception is thrown.

The abstract operation ApplyStringOrNumericBinaryOperator takes arguments lval (an
ECMAScript language value), opText (**, *, /, %, +, -, <<, >>, >>>, &, ^, or |), and rval (an
ECMAScript language value) and returns either a normal completion containing either a String, a
BigInt, or a Number, or a throw completion. It performs the following steps when called:

1. If opText is +, then
a. Let lprim be ? ToPrimitive(lval).
b. Let rprim be ? ToPrimitive(rval).
c. If lprim is a String or rprim is a String, then

i. Let lstr be ? ToString(lprim).
ii. Let rstr be ? ToString(rprim).

iii. Return the string-concatenation of lstr and rstr.
d. Set lval to lprim.
e. Set rval to rprim.

2. NOTE: At this point, it must be a numeric operation.
3. Let lnum be ? ToNumeric(lval).
4. Let rnum be ? ToNumeric(rval).
5. If Type(lnum) is not Type(rnum), throw a TypeError exception.
6. If lnum is a BigInt, then

13.15.3 ApplyStringOrNumericBinaryOperator (lval, opText, rval)

…

7

Language Specification (ECMA-262) of JavaScript

4 + 2n
JS

TypeError

Expr 4 Expr 2n+

Number 4

BigInt 2n

+

Evaluate Right

Evaluate Left

/ 34

AdditiveExpression[Yield, Await] :

MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] + MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] - MultiplicativeExpression[?Yield, ?Await]

NOTE The addition operator either performs string concatenation or numeric addition.

AdditiveExpression : AdditiveExpression + MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, +, MultiplicativeExpression).

NOTE The - operator performs subtraction, producing the difference of its operands.

AdditiveExpression : AdditiveExpression - MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, -, MultiplicativeExpression).

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification

13.8 Additive Operators

Syntax

13.8.1 The Addition Operator (+)

13.8.1.1 Runtime Semantics: Evaluation

13.8.2 The Subtraction Operator (-)

13.8.2.1 Runtime Semantics: Evaluation

AdditiveExpression[Yield, Await] :

MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] + MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] - MultiplicativeExpression[?Yield, ?Await]

NOTE The addition operator either performs string concatenation or numeric addition.

AdditiveExpression : AdditiveExpression + MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, +, MultiplicativeExpression).

NOTE The - operator performs subtraction, producing the difference of its operands.

AdditiveExpression : AdditiveExpression - MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, -, MultiplicativeExpression).

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification

13.8 Additive Operators

Syntax

13.8.1 The Addition Operator (+)

13.8.1.1 Runtime Semantics: Evaluation

13.8.2 The Subtraction Operator (-)

13.8.2.1 Runtime Semantics: Evaluation

AdditiveExpression[Yield, Await] :

MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] + MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] - MultiplicativeExpression[?Yield, ?Await]

NOTE The addition operator either performs string concatenation or numeric addition.

AdditiveExpression : AdditiveExpression + MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, +, MultiplicativeExpression).

NOTE The - operator performs subtraction, producing the difference of its operands.

AdditiveExpression : AdditiveExpression - MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, -, MultiplicativeExpression).

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification

13.8 Additive Operators

Syntax

13.8.1 The Addition Operator (+)

13.8.1.1 Runtime Semantics: Evaluation

13.8.2 The Subtraction Operator (-)

13.8.2.1 Runtime Semantics: Evaluation

The abstract operation EvaluateStringOrNumericBinaryExpression takes arguments leftOperand (a Parse Node), opText (a
sequence of Unicode code points), and rightOperand (a Parse Node) and returns either a normal completion containing
either a String, a BigInt, or a Number, or an abrupt completion. It performs the following steps when called:

1. Let lref be ? Evaluation of leftOperand.
2. Let lval be ? GetValue(lref).
3. Let rref be ? Evaluation of rightOperand.
4. Let rval be ? GetValue(rref).
5. Return ? ApplyStringOrNumericBinaryOperator(lval, opText, rval).

Expression[In, Yield, Await] :

AssignmentExpression[?In, ?Yield, ?Await]
Expression[?In, ?Yield, ?Await] , AssignmentExpression[?In, ?Yield, ?Await]

Expression : Expression , AssignmentExpression

1. Let lref be ? Evaluation of Expression.
2. Perform ? GetValue(lref).
3. Let rref be ? Evaluation of AssignmentExpression.
4. Return ? GetValue(rref).

NOTE GetValue must be called even though its value is not used because it may have observable side-effects.

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification
13 ECMAScript Language: Expressions

13.15.4 EvaluateStringOrNumericBinaryExpression (leftOperand, opText, rightOperand)

13.16 Comma Operator (,)

Syntax

13.16.1 Runtime Semantics: Evaluation

The abstract operation EvaluateStringOrNumericBinaryExpression takes arguments leftOperand (a Parse Node), opText (a
sequence of Unicode code points), and rightOperand (a Parse Node) and returns either a normal completion containing
either a String, a BigInt, or a Number, or an abrupt completion. It performs the following steps when called:

1. Let lref be ? Evaluation of leftOperand.
2. Let lval be ? GetValue(lref).
3. Let rref be ? Evaluation of rightOperand.
4. Let rval be ? GetValue(rref).
5. Return ? ApplyStringOrNumericBinaryOperator(lval, opText, rval).

Expression[In, Yield, Await] :

AssignmentExpression[?In, ?Yield, ?Await]
Expression[?In, ?Yield, ?Await] , AssignmentExpression[?In, ?Yield, ?Await]

Expression : Expression , AssignmentExpression

1. Let lref be ? Evaluation of Expression.
2. Perform ? GetValue(lref).
3. Let rref be ? Evaluation of AssignmentExpression.
4. Return ? GetValue(rref).

NOTE GetValue must be called even though its value is not used because it may have observable side-effects.

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification
13 ECMAScript Language: Expressions

13.15.4 EvaluateStringOrNumericBinaryExpression (leftOperand, opText, rightOperand)

13.16 Comma Operator (,)

Syntax

13.16.1 Runtime Semantics: Evaluation

2. Let lval be ? GetValue(lref).
3. If lval is neither undefined nor null, return lval.
4. If IsAnonymousFunctionDefinition(AssignmentExpression) is true and IsIdentifierRef of

LeftHandSideExpression is true, then
a. Let rval be ? NamedEvaluation of AssignmentExpression with argument lref.

[[ReferencedName]].
5. Else,

a. Let rref be ? Evaluation of AssignmentExpression.
b. Let rval be ? GetValue(rref).

6. Perform ? PutValue(lref, rval).
7. Return rval.

NOTE When this expression occurs within strict mode code, it is a runtime error if lref in
step 1.d, 2, 2, 2, 2 is an unresolvable reference. If it is, a ReferenceError exception is
thrown. Additionally, it is a runtime error if the lref in step 8, 7, 7, 6 is a reference to
a data property with the attribute value { [[Writable]]: false }, to an accessor
property with the attribute value { [[Set]]: undefined }, or to a non-existent
property of an object for which the IsExtensible predicate returns the value false.
In these cases a TypeError exception is thrown.

The abstract operation ApplyStringOrNumericBinaryOperator takes arguments lval (an
ECMAScript language value), opText (**, *, /, %, +, -, <<, >>, >>>, &, ^, or |), and rval (an
ECMAScript language value) and returns either a normal completion containing either a String, a
BigInt, or a Number, or a throw completion. It performs the following steps when called:

1. If opText is +, then
a. Let lprim be ? ToPrimitive(lval).
b. Let rprim be ? ToPrimitive(rval).
c. If lprim is a String or rprim is a String, then

i. Let lstr be ? ToString(lprim).
ii. Let rstr be ? ToString(rprim).

iii. Return the string-concatenation of lstr and rstr.
d. Set lval to lprim.
e. Set rval to rprim.

2. NOTE: At this point, it must be a numeric operation.
3. Let lnum be ? ToNumeric(lval).
4. Let rnum be ? ToNumeric(rval).
5. If Type(lnum) is not Type(rnum), throw a TypeError exception.
6. If lnum is a BigInt, then

13.15.3 ApplyStringOrNumericBinaryOperator (lval, opText, rval)

2. Let lval be ? GetValue(lref).
3. If lval is neither undefined nor null, return lval.
4. If IsAnonymousFunctionDefinition(AssignmentExpression) is true and IsIdentifierRef of

LeftHandSideExpression is true, then
a. Let rval be ? NamedEvaluation of AssignmentExpression with argument lref.

[[ReferencedName]].
5. Else,

a. Let rref be ? Evaluation of AssignmentExpression.
b. Let rval be ? GetValue(rref).

6. Perform ? PutValue(lref, rval).
7. Return rval.

NOTE When this expression occurs within strict mode code, it is a runtime error if lref in
step 1.d, 2, 2, 2, 2 is an unresolvable reference. If it is, a ReferenceError exception is
thrown. Additionally, it is a runtime error if the lref in step 8, 7, 7, 6 is a reference to
a data property with the attribute value { [[Writable]]: false }, to an accessor
property with the attribute value { [[Set]]: undefined }, or to a non-existent
property of an object for which the IsExtensible predicate returns the value false.
In these cases a TypeError exception is thrown.

The abstract operation ApplyStringOrNumericBinaryOperator takes arguments lval (an
ECMAScript language value), opText (**, *, /, %, +, -, <<, >>, >>>, &, ^, or |), and rval (an
ECMAScript language value) and returns either a normal completion containing either a String, a
BigInt, or a Number, or a throw completion. It performs the following steps when called:

1. If opText is +, then
a. Let lprim be ? ToPrimitive(lval).
b. Let rprim be ? ToPrimitive(rval).
c. If lprim is a String or rprim is a String, then

i. Let lstr be ? ToString(lprim).
ii. Let rstr be ? ToString(rprim).

iii. Return the string-concatenation of lstr and rstr.
d. Set lval to lprim.
e. Set rval to rprim.

2. NOTE: At this point, it must be a numeric operation.
3. Let lnum be ? ToNumeric(lval).
4. Let rnum be ? ToNumeric(rval).
5. If Type(lnum) is not Type(rnum), throw a TypeError exception.
6. If lnum is a BigInt, then

13.15.3 ApplyStringOrNumericBinaryOperator (lval, opText, rval)

…

7

Language Specification (ECMA-262) of JavaScript

4 + 2n
JS

TypeError

Expr 4 Expr 2n+

Number 4

BigInt 2n

+

Conversion to
Primitive

Evaluate Right

Evaluate Left

/ 34

AdditiveExpression[Yield, Await] :

MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] + MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] - MultiplicativeExpression[?Yield, ?Await]

NOTE The addition operator either performs string concatenation or numeric addition.

AdditiveExpression : AdditiveExpression + MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, +, MultiplicativeExpression).

NOTE The - operator performs subtraction, producing the difference of its operands.

AdditiveExpression : AdditiveExpression - MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, -, MultiplicativeExpression).

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification

13.8 Additive Operators

Syntax

13.8.1 The Addition Operator (+)

13.8.1.1 Runtime Semantics: Evaluation

13.8.2 The Subtraction Operator (-)

13.8.2.1 Runtime Semantics: Evaluation

AdditiveExpression[Yield, Await] :

MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] + MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] - MultiplicativeExpression[?Yield, ?Await]

NOTE The addition operator either performs string concatenation or numeric addition.

AdditiveExpression : AdditiveExpression + MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, +, MultiplicativeExpression).

NOTE The - operator performs subtraction, producing the difference of its operands.

AdditiveExpression : AdditiveExpression - MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, -, MultiplicativeExpression).

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification

13.8 Additive Operators

Syntax

13.8.1 The Addition Operator (+)

13.8.1.1 Runtime Semantics: Evaluation

13.8.2 The Subtraction Operator (-)

13.8.2.1 Runtime Semantics: Evaluation

AdditiveExpression[Yield, Await] :

MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] + MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] - MultiplicativeExpression[?Yield, ?Await]

NOTE The addition operator either performs string concatenation or numeric addition.

AdditiveExpression : AdditiveExpression + MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, +, MultiplicativeExpression).

NOTE The - operator performs subtraction, producing the difference of its operands.

AdditiveExpression : AdditiveExpression - MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, -, MultiplicativeExpression).

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification

13.8 Additive Operators

Syntax

13.8.1 The Addition Operator (+)

13.8.1.1 Runtime Semantics: Evaluation

13.8.2 The Subtraction Operator (-)

13.8.2.1 Runtime Semantics: Evaluation

The abstract operation EvaluateStringOrNumericBinaryExpression takes arguments leftOperand (a Parse Node), opText (a
sequence of Unicode code points), and rightOperand (a Parse Node) and returns either a normal completion containing
either a String, a BigInt, or a Number, or an abrupt completion. It performs the following steps when called:

1. Let lref be ? Evaluation of leftOperand.
2. Let lval be ? GetValue(lref).
3. Let rref be ? Evaluation of rightOperand.
4. Let rval be ? GetValue(rref).
5. Return ? ApplyStringOrNumericBinaryOperator(lval, opText, rval).

Expression[In, Yield, Await] :

AssignmentExpression[?In, ?Yield, ?Await]
Expression[?In, ?Yield, ?Await] , AssignmentExpression[?In, ?Yield, ?Await]

Expression : Expression , AssignmentExpression

1. Let lref be ? Evaluation of Expression.
2. Perform ? GetValue(lref).
3. Let rref be ? Evaluation of AssignmentExpression.
4. Return ? GetValue(rref).

NOTE GetValue must be called even though its value is not used because it may have observable side-effects.

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification
13 ECMAScript Language: Expressions

13.15.4 EvaluateStringOrNumericBinaryExpression (leftOperand, opText, rightOperand)

13.16 Comma Operator (,)

Syntax

13.16.1 Runtime Semantics: Evaluation

The abstract operation EvaluateStringOrNumericBinaryExpression takes arguments leftOperand (a Parse Node), opText (a
sequence of Unicode code points), and rightOperand (a Parse Node) and returns either a normal completion containing
either a String, a BigInt, or a Number, or an abrupt completion. It performs the following steps when called:

1. Let lref be ? Evaluation of leftOperand.
2. Let lval be ? GetValue(lref).
3. Let rref be ? Evaluation of rightOperand.
4. Let rval be ? GetValue(rref).
5. Return ? ApplyStringOrNumericBinaryOperator(lval, opText, rval).

Expression[In, Yield, Await] :

AssignmentExpression[?In, ?Yield, ?Await]
Expression[?In, ?Yield, ?Await] , AssignmentExpression[?In, ?Yield, ?Await]

Expression : Expression , AssignmentExpression

1. Let lref be ? Evaluation of Expression.
2. Perform ? GetValue(lref).
3. Let rref be ? Evaluation of AssignmentExpression.
4. Return ? GetValue(rref).

NOTE GetValue must be called even though its value is not used because it may have observable side-effects.

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification
13 ECMAScript Language: Expressions

13.15.4 EvaluateStringOrNumericBinaryExpression (leftOperand, opText, rightOperand)

13.16 Comma Operator (,)

Syntax

13.16.1 Runtime Semantics: Evaluation

2. Let lval be ? GetValue(lref).
3. If lval is neither undefined nor null, return lval.
4. If IsAnonymousFunctionDefinition(AssignmentExpression) is true and IsIdentifierRef of

LeftHandSideExpression is true, then
a. Let rval be ? NamedEvaluation of AssignmentExpression with argument lref.

[[ReferencedName]].
5. Else,

a. Let rref be ? Evaluation of AssignmentExpression.
b. Let rval be ? GetValue(rref).

6. Perform ? PutValue(lref, rval).
7. Return rval.

NOTE When this expression occurs within strict mode code, it is a runtime error if lref in
step 1.d, 2, 2, 2, 2 is an unresolvable reference. If it is, a ReferenceError exception is
thrown. Additionally, it is a runtime error if the lref in step 8, 7, 7, 6 is a reference to
a data property with the attribute value { [[Writable]]: false }, to an accessor
property with the attribute value { [[Set]]: undefined }, or to a non-existent
property of an object for which the IsExtensible predicate returns the value false.
In these cases a TypeError exception is thrown.

The abstract operation ApplyStringOrNumericBinaryOperator takes arguments lval (an
ECMAScript language value), opText (**, *, /, %, +, -, <<, >>, >>>, &, ^, or |), and rval (an
ECMAScript language value) and returns either a normal completion containing either a String, a
BigInt, or a Number, or a throw completion. It performs the following steps when called:

1. If opText is +, then
a. Let lprim be ? ToPrimitive(lval).
b. Let rprim be ? ToPrimitive(rval).
c. If lprim is a String or rprim is a String, then

i. Let lstr be ? ToString(lprim).
ii. Let rstr be ? ToString(rprim).

iii. Return the string-concatenation of lstr and rstr.
d. Set lval to lprim.
e. Set rval to rprim.

2. NOTE: At this point, it must be a numeric operation.
3. Let lnum be ? ToNumeric(lval).
4. Let rnum be ? ToNumeric(rval).
5. If Type(lnum) is not Type(rnum), throw a TypeError exception.
6. If lnum is a BigInt, then

13.15.3 ApplyStringOrNumericBinaryOperator (lval, opText, rval)

2. Let lval be ? GetValue(lref).
3. If lval is neither undefined nor null, return lval.
4. If IsAnonymousFunctionDefinition(AssignmentExpression) is true and IsIdentifierRef of

LeftHandSideExpression is true, then
a. Let rval be ? NamedEvaluation of AssignmentExpression with argument lref.

[[ReferencedName]].
5. Else,

a. Let rref be ? Evaluation of AssignmentExpression.
b. Let rval be ? GetValue(rref).

6. Perform ? PutValue(lref, rval).
7. Return rval.

NOTE When this expression occurs within strict mode code, it is a runtime error if lref in
step 1.d, 2, 2, 2, 2 is an unresolvable reference. If it is, a ReferenceError exception is
thrown. Additionally, it is a runtime error if the lref in step 8, 7, 7, 6 is a reference to
a data property with the attribute value { [[Writable]]: false }, to an accessor
property with the attribute value { [[Set]]: undefined }, or to a non-existent
property of an object for which the IsExtensible predicate returns the value false.
In these cases a TypeError exception is thrown.

The abstract operation ApplyStringOrNumericBinaryOperator takes arguments lval (an
ECMAScript language value), opText (**, *, /, %, +, -, <<, >>, >>>, &, ^, or |), and rval (an
ECMAScript language value) and returns either a normal completion containing either a String, a
BigInt, or a Number, or a throw completion. It performs the following steps when called:

1. If opText is +, then
a. Let lprim be ? ToPrimitive(lval).
b. Let rprim be ? ToPrimitive(rval).
c. If lprim is a String or rprim is a String, then

i. Let lstr be ? ToString(lprim).
ii. Let rstr be ? ToString(rprim).

iii. Return the string-concatenation of lstr and rstr.
d. Set lval to lprim.
e. Set rval to rprim.

2. NOTE: At this point, it must be a numeric operation.
3. Let lnum be ? ToNumeric(lval).
4. Let rnum be ? ToNumeric(rval).
5. If Type(lnum) is not Type(rnum), throw a TypeError exception.
6. If lnum is a BigInt, then

13.15.3 ApplyStringOrNumericBinaryOperator (lval, opText, rval)

…

7

Language Specification (ECMA-262) of JavaScript

4 + 2n
JS

TypeError

Expr 4 Expr 2n+

Number 4

BigInt 2n

+

Conversion to
Primitive

Conversion to
Numeric

Evaluate Right

Evaluate Left

/ 34

AdditiveExpression[Yield, Await] :

MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] + MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] - MultiplicativeExpression[?Yield, ?Await]

NOTE The addition operator either performs string concatenation or numeric addition.

AdditiveExpression : AdditiveExpression + MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, +, MultiplicativeExpression).

NOTE The - operator performs subtraction, producing the difference of its operands.

AdditiveExpression : AdditiveExpression - MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, -, MultiplicativeExpression).

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification

13.8 Additive Operators

Syntax

13.8.1 The Addition Operator (+)

13.8.1.1 Runtime Semantics: Evaluation

13.8.2 The Subtraction Operator (-)

13.8.2.1 Runtime Semantics: Evaluation

AdditiveExpression[Yield, Await] :

MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] + MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] - MultiplicativeExpression[?Yield, ?Await]

NOTE The addition operator either performs string concatenation or numeric addition.

AdditiveExpression : AdditiveExpression + MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, +, MultiplicativeExpression).

NOTE The - operator performs subtraction, producing the difference of its operands.

AdditiveExpression : AdditiveExpression - MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, -, MultiplicativeExpression).

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification

13.8 Additive Operators

Syntax

13.8.1 The Addition Operator (+)

13.8.1.1 Runtime Semantics: Evaluation

13.8.2 The Subtraction Operator (-)

13.8.2.1 Runtime Semantics: Evaluation

AdditiveExpression[Yield, Await] :

MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] + MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] - MultiplicativeExpression[?Yield, ?Await]

NOTE The addition operator either performs string concatenation or numeric addition.

AdditiveExpression : AdditiveExpression + MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, +, MultiplicativeExpression).

NOTE The - operator performs subtraction, producing the difference of its operands.

AdditiveExpression : AdditiveExpression - MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, -, MultiplicativeExpression).

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification

13.8 Additive Operators

Syntax

13.8.1 The Addition Operator (+)

13.8.1.1 Runtime Semantics: Evaluation

13.8.2 The Subtraction Operator (-)

13.8.2.1 Runtime Semantics: Evaluation

The abstract operation EvaluateStringOrNumericBinaryExpression takes arguments leftOperand (a Parse Node), opText (a
sequence of Unicode code points), and rightOperand (a Parse Node) and returns either a normal completion containing
either a String, a BigInt, or a Number, or an abrupt completion. It performs the following steps when called:

1. Let lref be ? Evaluation of leftOperand.
2. Let lval be ? GetValue(lref).
3. Let rref be ? Evaluation of rightOperand.
4. Let rval be ? GetValue(rref).
5. Return ? ApplyStringOrNumericBinaryOperator(lval, opText, rval).

Expression[In, Yield, Await] :

AssignmentExpression[?In, ?Yield, ?Await]
Expression[?In, ?Yield, ?Await] , AssignmentExpression[?In, ?Yield, ?Await]

Expression : Expression , AssignmentExpression

1. Let lref be ? Evaluation of Expression.
2. Perform ? GetValue(lref).
3. Let rref be ? Evaluation of AssignmentExpression.
4. Return ? GetValue(rref).

NOTE GetValue must be called even though its value is not used because it may have observable side-effects.

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification
13 ECMAScript Language: Expressions

13.15.4 EvaluateStringOrNumericBinaryExpression (leftOperand, opText, rightOperand)

13.16 Comma Operator (,)

Syntax

13.16.1 Runtime Semantics: Evaluation

The abstract operation EvaluateStringOrNumericBinaryExpression takes arguments leftOperand (a Parse Node), opText (a
sequence of Unicode code points), and rightOperand (a Parse Node) and returns either a normal completion containing
either a String, a BigInt, or a Number, or an abrupt completion. It performs the following steps when called:

1. Let lref be ? Evaluation of leftOperand.
2. Let lval be ? GetValue(lref).
3. Let rref be ? Evaluation of rightOperand.
4. Let rval be ? GetValue(rref).
5. Return ? ApplyStringOrNumericBinaryOperator(lval, opText, rval).

Expression[In, Yield, Await] :

AssignmentExpression[?In, ?Yield, ?Await]
Expression[?In, ?Yield, ?Await] , AssignmentExpression[?In, ?Yield, ?Await]

Expression : Expression , AssignmentExpression

1. Let lref be ? Evaluation of Expression.
2. Perform ? GetValue(lref).
3. Let rref be ? Evaluation of AssignmentExpression.
4. Return ? GetValue(rref).

NOTE GetValue must be called even though its value is not used because it may have observable side-effects.

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification
13 ECMAScript Language: Expressions

13.15.4 EvaluateStringOrNumericBinaryExpression (leftOperand, opText, rightOperand)

13.16 Comma Operator (,)

Syntax

13.16.1 Runtime Semantics: Evaluation

2. Let lval be ? GetValue(lref).
3. If lval is neither undefined nor null, return lval.
4. If IsAnonymousFunctionDefinition(AssignmentExpression) is true and IsIdentifierRef of

LeftHandSideExpression is true, then
a. Let rval be ? NamedEvaluation of AssignmentExpression with argument lref.

[[ReferencedName]].
5. Else,

a. Let rref be ? Evaluation of AssignmentExpression.
b. Let rval be ? GetValue(rref).

6. Perform ? PutValue(lref, rval).
7. Return rval.

NOTE When this expression occurs within strict mode code, it is a runtime error if lref in
step 1.d, 2, 2, 2, 2 is an unresolvable reference. If it is, a ReferenceError exception is
thrown. Additionally, it is a runtime error if the lref in step 8, 7, 7, 6 is a reference to
a data property with the attribute value { [[Writable]]: false }, to an accessor
property with the attribute value { [[Set]]: undefined }, or to a non-existent
property of an object for which the IsExtensible predicate returns the value false.
In these cases a TypeError exception is thrown.

The abstract operation ApplyStringOrNumericBinaryOperator takes arguments lval (an
ECMAScript language value), opText (**, *, /, %, +, -, <<, >>, >>>, &, ^, or |), and rval (an
ECMAScript language value) and returns either a normal completion containing either a String, a
BigInt, or a Number, or a throw completion. It performs the following steps when called:

1. If opText is +, then
a. Let lprim be ? ToPrimitive(lval).
b. Let rprim be ? ToPrimitive(rval).
c. If lprim is a String or rprim is a String, then

i. Let lstr be ? ToString(lprim).
ii. Let rstr be ? ToString(rprim).

iii. Return the string-concatenation of lstr and rstr.
d. Set lval to lprim.
e. Set rval to rprim.

2. NOTE: At this point, it must be a numeric operation.
3. Let lnum be ? ToNumeric(lval).
4. Let rnum be ? ToNumeric(rval).
5. If Type(lnum) is not Type(rnum), throw a TypeError exception.
6. If lnum is a BigInt, then

13.15.3 ApplyStringOrNumericBinaryOperator (lval, opText, rval)

2. Let lval be ? GetValue(lref).
3. If lval is neither undefined nor null, return lval.
4. If IsAnonymousFunctionDefinition(AssignmentExpression) is true and IsIdentifierRef of

LeftHandSideExpression is true, then
a. Let rval be ? NamedEvaluation of AssignmentExpression with argument lref.

[[ReferencedName]].
5. Else,

a. Let rref be ? Evaluation of AssignmentExpression.
b. Let rval be ? GetValue(rref).

6. Perform ? PutValue(lref, rval).
7. Return rval.

NOTE When this expression occurs within strict mode code, it is a runtime error if lref in
step 1.d, 2, 2, 2, 2 is an unresolvable reference. If it is, a ReferenceError exception is
thrown. Additionally, it is a runtime error if the lref in step 8, 7, 7, 6 is a reference to
a data property with the attribute value { [[Writable]]: false }, to an accessor
property with the attribute value { [[Set]]: undefined }, or to a non-existent
property of an object for which the IsExtensible predicate returns the value false.
In these cases a TypeError exception is thrown.

The abstract operation ApplyStringOrNumericBinaryOperator takes arguments lval (an
ECMAScript language value), opText (**, *, /, %, +, -, <<, >>, >>>, &, ^, or |), and rval (an
ECMAScript language value) and returns either a normal completion containing either a String, a
BigInt, or a Number, or a throw completion. It performs the following steps when called:

1. If opText is +, then
a. Let lprim be ? ToPrimitive(lval).
b. Let rprim be ? ToPrimitive(rval).
c. If lprim is a String or rprim is a String, then

i. Let lstr be ? ToString(lprim).
ii. Let rstr be ? ToString(rprim).

iii. Return the string-concatenation of lstr and rstr.
d. Set lval to lprim.
e. Set rval to rprim.

2. NOTE: At this point, it must be a numeric operation.
3. Let lnum be ? ToNumeric(lval).
4. Let rnum be ? ToNumeric(rval).
5. If Type(lnum) is not Type(rnum), throw a TypeError exception.
6. If lnum is a BigInt, then

13.15.3 ApplyStringOrNumericBinaryOperator (lval, opText, rval)

…

7

Language Specification (ECMA-262) of JavaScript

4 + 2n
JS

TypeError

Expr 4 Expr 2n+

Number 4

BigInt 2n

+

Number

Conversion to
Primitive

Conversion to
Numeric

Evaluate Right

Evaluate Left

/ 34

AdditiveExpression[Yield, Await] :

MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] + MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] - MultiplicativeExpression[?Yield, ?Await]

NOTE The addition operator either performs string concatenation or numeric addition.

AdditiveExpression : AdditiveExpression + MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, +, MultiplicativeExpression).

NOTE The - operator performs subtraction, producing the difference of its operands.

AdditiveExpression : AdditiveExpression - MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, -, MultiplicativeExpression).

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification

13.8 Additive Operators

Syntax

13.8.1 The Addition Operator (+)

13.8.1.1 Runtime Semantics: Evaluation

13.8.2 The Subtraction Operator (-)

13.8.2.1 Runtime Semantics: Evaluation

AdditiveExpression[Yield, Await] :

MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] + MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] - MultiplicativeExpression[?Yield, ?Await]

NOTE The addition operator either performs string concatenation or numeric addition.

AdditiveExpression : AdditiveExpression + MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, +, MultiplicativeExpression).

NOTE The - operator performs subtraction, producing the difference of its operands.

AdditiveExpression : AdditiveExpression - MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, -, MultiplicativeExpression).

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification

13.8 Additive Operators

Syntax

13.8.1 The Addition Operator (+)

13.8.1.1 Runtime Semantics: Evaluation

13.8.2 The Subtraction Operator (-)

13.8.2.1 Runtime Semantics: Evaluation

AdditiveExpression[Yield, Await] :

MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] + MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] - MultiplicativeExpression[?Yield, ?Await]

NOTE The addition operator either performs string concatenation or numeric addition.

AdditiveExpression : AdditiveExpression + MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, +, MultiplicativeExpression).

NOTE The - operator performs subtraction, producing the difference of its operands.

AdditiveExpression : AdditiveExpression - MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, -, MultiplicativeExpression).

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification

13.8 Additive Operators

Syntax

13.8.1 The Addition Operator (+)

13.8.1.1 Runtime Semantics: Evaluation

13.8.2 The Subtraction Operator (-)

13.8.2.1 Runtime Semantics: Evaluation

The abstract operation EvaluateStringOrNumericBinaryExpression takes arguments leftOperand (a Parse Node), opText (a
sequence of Unicode code points), and rightOperand (a Parse Node) and returns either a normal completion containing
either a String, a BigInt, or a Number, or an abrupt completion. It performs the following steps when called:

1. Let lref be ? Evaluation of leftOperand.
2. Let lval be ? GetValue(lref).
3. Let rref be ? Evaluation of rightOperand.
4. Let rval be ? GetValue(rref).
5. Return ? ApplyStringOrNumericBinaryOperator(lval, opText, rval).

Expression[In, Yield, Await] :

AssignmentExpression[?In, ?Yield, ?Await]
Expression[?In, ?Yield, ?Await] , AssignmentExpression[?In, ?Yield, ?Await]

Expression : Expression , AssignmentExpression

1. Let lref be ? Evaluation of Expression.
2. Perform ? GetValue(lref).
3. Let rref be ? Evaluation of AssignmentExpression.
4. Return ? GetValue(rref).

NOTE GetValue must be called even though its value is not used because it may have observable side-effects.

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification
13 ECMAScript Language: Expressions

13.15.4 EvaluateStringOrNumericBinaryExpression (leftOperand, opText, rightOperand)

13.16 Comma Operator (,)

Syntax

13.16.1 Runtime Semantics: Evaluation

The abstract operation EvaluateStringOrNumericBinaryExpression takes arguments leftOperand (a Parse Node), opText (a
sequence of Unicode code points), and rightOperand (a Parse Node) and returns either a normal completion containing
either a String, a BigInt, or a Number, or an abrupt completion. It performs the following steps when called:

1. Let lref be ? Evaluation of leftOperand.
2. Let lval be ? GetValue(lref).
3. Let rref be ? Evaluation of rightOperand.
4. Let rval be ? GetValue(rref).
5. Return ? ApplyStringOrNumericBinaryOperator(lval, opText, rval).

Expression[In, Yield, Await] :

AssignmentExpression[?In, ?Yield, ?Await]
Expression[?In, ?Yield, ?Await] , AssignmentExpression[?In, ?Yield, ?Await]

Expression : Expression , AssignmentExpression

1. Let lref be ? Evaluation of Expression.
2. Perform ? GetValue(lref).
3. Let rref be ? Evaluation of AssignmentExpression.
4. Return ? GetValue(rref).

NOTE GetValue must be called even though its value is not used because it may have observable side-effects.

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification
13 ECMAScript Language: Expressions

13.15.4 EvaluateStringOrNumericBinaryExpression (leftOperand, opText, rightOperand)

13.16 Comma Operator (,)

Syntax

13.16.1 Runtime Semantics: Evaluation

2. Let lval be ? GetValue(lref).
3. If lval is neither undefined nor null, return lval.
4. If IsAnonymousFunctionDefinition(AssignmentExpression) is true and IsIdentifierRef of

LeftHandSideExpression is true, then
a. Let rval be ? NamedEvaluation of AssignmentExpression with argument lref.

[[ReferencedName]].
5. Else,

a. Let rref be ? Evaluation of AssignmentExpression.
b. Let rval be ? GetValue(rref).

6. Perform ? PutValue(lref, rval).
7. Return rval.

NOTE When this expression occurs within strict mode code, it is a runtime error if lref in
step 1.d, 2, 2, 2, 2 is an unresolvable reference. If it is, a ReferenceError exception is
thrown. Additionally, it is a runtime error if the lref in step 8, 7, 7, 6 is a reference to
a data property with the attribute value { [[Writable]]: false }, to an accessor
property with the attribute value { [[Set]]: undefined }, or to a non-existent
property of an object for which the IsExtensible predicate returns the value false.
In these cases a TypeError exception is thrown.

The abstract operation ApplyStringOrNumericBinaryOperator takes arguments lval (an
ECMAScript language value), opText (**, *, /, %, +, -, <<, >>, >>>, &, ^, or |), and rval (an
ECMAScript language value) and returns either a normal completion containing either a String, a
BigInt, or a Number, or a throw completion. It performs the following steps when called:

1. If opText is +, then
a. Let lprim be ? ToPrimitive(lval).
b. Let rprim be ? ToPrimitive(rval).
c. If lprim is a String or rprim is a String, then

i. Let lstr be ? ToString(lprim).
ii. Let rstr be ? ToString(rprim).

iii. Return the string-concatenation of lstr and rstr.
d. Set lval to lprim.
e. Set rval to rprim.

2. NOTE: At this point, it must be a numeric operation.
3. Let lnum be ? ToNumeric(lval).
4. Let rnum be ? ToNumeric(rval).
5. If Type(lnum) is not Type(rnum), throw a TypeError exception.
6. If lnum is a BigInt, then

13.15.3 ApplyStringOrNumericBinaryOperator (lval, opText, rval)

2. Let lval be ? GetValue(lref).
3. If lval is neither undefined nor null, return lval.
4. If IsAnonymousFunctionDefinition(AssignmentExpression) is true and IsIdentifierRef of

LeftHandSideExpression is true, then
a. Let rval be ? NamedEvaluation of AssignmentExpression with argument lref.

[[ReferencedName]].
5. Else,

a. Let rref be ? Evaluation of AssignmentExpression.
b. Let rval be ? GetValue(rref).

6. Perform ? PutValue(lref, rval).
7. Return rval.

NOTE When this expression occurs within strict mode code, it is a runtime error if lref in
step 1.d, 2, 2, 2, 2 is an unresolvable reference. If it is, a ReferenceError exception is
thrown. Additionally, it is a runtime error if the lref in step 8, 7, 7, 6 is a reference to
a data property with the attribute value { [[Writable]]: false }, to an accessor
property with the attribute value { [[Set]]: undefined }, or to a non-existent
property of an object for which the IsExtensible predicate returns the value false.
In these cases a TypeError exception is thrown.

The abstract operation ApplyStringOrNumericBinaryOperator takes arguments lval (an
ECMAScript language value), opText (**, *, /, %, +, -, <<, >>, >>>, &, ^, or |), and rval (an
ECMAScript language value) and returns either a normal completion containing either a String, a
BigInt, or a Number, or a throw completion. It performs the following steps when called:

1. If opText is +, then
a. Let lprim be ? ToPrimitive(lval).
b. Let rprim be ? ToPrimitive(rval).
c. If lprim is a String or rprim is a String, then

i. Let lstr be ? ToString(lprim).
ii. Let rstr be ? ToString(rprim).

iii. Return the string-concatenation of lstr and rstr.
d. Set lval to lprim.
e. Set rval to rprim.

2. NOTE: At this point, it must be a numeric operation.
3. Let lnum be ? ToNumeric(lval).
4. Let rnum be ? ToNumeric(rval).
5. If Type(lnum) is not Type(rnum), throw a TypeError exception.
6. If lnum is a BigInt, then

13.15.3 ApplyStringOrNumericBinaryOperator (lval, opText, rval)

…

7

Language Specification (ECMA-262) of JavaScript

4 + 2n
JS

TypeError

Expr 4 Expr 2n+

Number 4

BigInt 2n

+

Number BigInt

Conversion to
Primitive

Conversion to
Numeric

Evaluate Right

Evaluate Left

/ 34

AdditiveExpression[Yield, Await] :

MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] + MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] - MultiplicativeExpression[?Yield, ?Await]

NOTE The addition operator either performs string concatenation or numeric addition.

AdditiveExpression : AdditiveExpression + MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, +, MultiplicativeExpression).

NOTE The - operator performs subtraction, producing the difference of its operands.

AdditiveExpression : AdditiveExpression - MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, -, MultiplicativeExpression).

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification

13.8 Additive Operators

Syntax

13.8.1 The Addition Operator (+)

13.8.1.1 Runtime Semantics: Evaluation

13.8.2 The Subtraction Operator (-)

13.8.2.1 Runtime Semantics: Evaluation

AdditiveExpression[Yield, Await] :

MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] + MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] - MultiplicativeExpression[?Yield, ?Await]

NOTE The addition operator either performs string concatenation or numeric addition.

AdditiveExpression : AdditiveExpression + MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, +, MultiplicativeExpression).

NOTE The - operator performs subtraction, producing the difference of its operands.

AdditiveExpression : AdditiveExpression - MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, -, MultiplicativeExpression).

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification

13.8 Additive Operators

Syntax

13.8.1 The Addition Operator (+)

13.8.1.1 Runtime Semantics: Evaluation

13.8.2 The Subtraction Operator (-)

13.8.2.1 Runtime Semantics: Evaluation

AdditiveExpression[Yield, Await] :

MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] + MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] - MultiplicativeExpression[?Yield, ?Await]

NOTE The addition operator either performs string concatenation or numeric addition.

AdditiveExpression : AdditiveExpression + MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, +, MultiplicativeExpression).

NOTE The - operator performs subtraction, producing the difference of its operands.

AdditiveExpression : AdditiveExpression - MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, -, MultiplicativeExpression).

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification

13.8 Additive Operators

Syntax

13.8.1 The Addition Operator (+)

13.8.1.1 Runtime Semantics: Evaluation

13.8.2 The Subtraction Operator (-)

13.8.2.1 Runtime Semantics: Evaluation

The abstract operation EvaluateStringOrNumericBinaryExpression takes arguments leftOperand (a Parse Node), opText (a
sequence of Unicode code points), and rightOperand (a Parse Node) and returns either a normal completion containing
either a String, a BigInt, or a Number, or an abrupt completion. It performs the following steps when called:

1. Let lref be ? Evaluation of leftOperand.
2. Let lval be ? GetValue(lref).
3. Let rref be ? Evaluation of rightOperand.
4. Let rval be ? GetValue(rref).
5. Return ? ApplyStringOrNumericBinaryOperator(lval, opText, rval).

Expression[In, Yield, Await] :

AssignmentExpression[?In, ?Yield, ?Await]
Expression[?In, ?Yield, ?Await] , AssignmentExpression[?In, ?Yield, ?Await]

Expression : Expression , AssignmentExpression

1. Let lref be ? Evaluation of Expression.
2. Perform ? GetValue(lref).
3. Let rref be ? Evaluation of AssignmentExpression.
4. Return ? GetValue(rref).

NOTE GetValue must be called even though its value is not used because it may have observable side-effects.

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification
13 ECMAScript Language: Expressions

13.15.4 EvaluateStringOrNumericBinaryExpression (leftOperand, opText, rightOperand)

13.16 Comma Operator (,)

Syntax

13.16.1 Runtime Semantics: Evaluation

The abstract operation EvaluateStringOrNumericBinaryExpression takes arguments leftOperand (a Parse Node), opText (a
sequence of Unicode code points), and rightOperand (a Parse Node) and returns either a normal completion containing
either a String, a BigInt, or a Number, or an abrupt completion. It performs the following steps when called:

1. Let lref be ? Evaluation of leftOperand.
2. Let lval be ? GetValue(lref).
3. Let rref be ? Evaluation of rightOperand.
4. Let rval be ? GetValue(rref).
5. Return ? ApplyStringOrNumericBinaryOperator(lval, opText, rval).

Expression[In, Yield, Await] :

AssignmentExpression[?In, ?Yield, ?Await]
Expression[?In, ?Yield, ?Await] , AssignmentExpression[?In, ?Yield, ?Await]

Expression : Expression , AssignmentExpression

1. Let lref be ? Evaluation of Expression.
2. Perform ? GetValue(lref).
3. Let rref be ? Evaluation of AssignmentExpression.
4. Return ? GetValue(rref).

NOTE GetValue must be called even though its value is not used because it may have observable side-effects.

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification
13 ECMAScript Language: Expressions

13.15.4 EvaluateStringOrNumericBinaryExpression (leftOperand, opText, rightOperand)

13.16 Comma Operator (,)

Syntax

13.16.1 Runtime Semantics: Evaluation

2. Let lval be ? GetValue(lref).
3. If lval is neither undefined nor null, return lval.
4. If IsAnonymousFunctionDefinition(AssignmentExpression) is true and IsIdentifierRef of

LeftHandSideExpression is true, then
a. Let rval be ? NamedEvaluation of AssignmentExpression with argument lref.

[[ReferencedName]].
5. Else,

a. Let rref be ? Evaluation of AssignmentExpression.
b. Let rval be ? GetValue(rref).

6. Perform ? PutValue(lref, rval).
7. Return rval.

NOTE When this expression occurs within strict mode code, it is a runtime error if lref in
step 1.d, 2, 2, 2, 2 is an unresolvable reference. If it is, a ReferenceError exception is
thrown. Additionally, it is a runtime error if the lref in step 8, 7, 7, 6 is a reference to
a data property with the attribute value { [[Writable]]: false }, to an accessor
property with the attribute value { [[Set]]: undefined }, or to a non-existent
property of an object for which the IsExtensible predicate returns the value false.
In these cases a TypeError exception is thrown.

The abstract operation ApplyStringOrNumericBinaryOperator takes arguments lval (an
ECMAScript language value), opText (**, *, /, %, +, -, <<, >>, >>>, &, ^, or |), and rval (an
ECMAScript language value) and returns either a normal completion containing either a String, a
BigInt, or a Number, or a throw completion. It performs the following steps when called:

1. If opText is +, then
a. Let lprim be ? ToPrimitive(lval).
b. Let rprim be ? ToPrimitive(rval).
c. If lprim is a String or rprim is a String, then

i. Let lstr be ? ToString(lprim).
ii. Let rstr be ? ToString(rprim).

iii. Return the string-concatenation of lstr and rstr.
d. Set lval to lprim.
e. Set rval to rprim.

2. NOTE: At this point, it must be a numeric operation.
3. Let lnum be ? ToNumeric(lval).
4. Let rnum be ? ToNumeric(rval).
5. If Type(lnum) is not Type(rnum), throw a TypeError exception.
6. If lnum is a BigInt, then

13.15.3 ApplyStringOrNumericBinaryOperator (lval, opText, rval)

2. Let lval be ? GetValue(lref).
3. If lval is neither undefined nor null, return lval.
4. If IsAnonymousFunctionDefinition(AssignmentExpression) is true and IsIdentifierRef of

LeftHandSideExpression is true, then
a. Let rval be ? NamedEvaluation of AssignmentExpression with argument lref.

[[ReferencedName]].
5. Else,

a. Let rref be ? Evaluation of AssignmentExpression.
b. Let rval be ? GetValue(rref).

6. Perform ? PutValue(lref, rval).
7. Return rval.

NOTE When this expression occurs within strict mode code, it is a runtime error if lref in
step 1.d, 2, 2, 2, 2 is an unresolvable reference. If it is, a ReferenceError exception is
thrown. Additionally, it is a runtime error if the lref in step 8, 7, 7, 6 is a reference to
a data property with the attribute value { [[Writable]]: false }, to an accessor
property with the attribute value { [[Set]]: undefined }, or to a non-existent
property of an object for which the IsExtensible predicate returns the value false.
In these cases a TypeError exception is thrown.

The abstract operation ApplyStringOrNumericBinaryOperator takes arguments lval (an
ECMAScript language value), opText (**, *, /, %, +, -, <<, >>, >>>, &, ^, or |), and rval (an
ECMAScript language value) and returns either a normal completion containing either a String, a
BigInt, or a Number, or a throw completion. It performs the following steps when called:

1. If opText is +, then
a. Let lprim be ? ToPrimitive(lval).
b. Let rprim be ? ToPrimitive(rval).
c. If lprim is a String or rprim is a String, then

i. Let lstr be ? ToString(lprim).
ii. Let rstr be ? ToString(rprim).

iii. Return the string-concatenation of lstr and rstr.
d. Set lval to lprim.
e. Set rval to rprim.

2. NOTE: At this point, it must be a numeric operation.
3. Let lnum be ? ToNumeric(lval).
4. Let rnum be ? ToNumeric(rval).
5. If Type(lnum) is not Type(rnum), throw a TypeError exception.
6. If lnum is a BigInt, then

13.15.3 ApplyStringOrNumericBinaryOperator (lval, opText, rval)

…

7

Language Specification (ECMA-262) of JavaScript

4 + 2n
JS

TypeError

Expr 4 Expr 2n+

Number 4

BigInt 2n

+

TypeErrorNumber BigInt

Conversion to
Primitive

Conversion to
Numeric

Evaluate Right

Evaluate Left

/ 348

Conformance of JavaScript Engines

ConformanceReference number
ECMA-123:2009

© Ecma International 2009

ECMA-262
�4th Edition / June 20�3

ECMAScript® ���3
Language Specification

ECMA-262
(JavaScript Spec.)

JavaScript
Engines

QuickJS

/ 348

Conformance of JavaScript Engines

ConformanceReference number
ECMA-123:2009

© Ecma International 2009

ECMA-262
�4th Edition / June 20�3

ECMAScript® ���3
Language Specification

ECMA-262
(JavaScript Spec.)

JavaScript
Engines

QuickJSHow?

/ 348

Conformance of JavaScript Engines

ConformanceReference number
ECMA-123:2009

© Ecma International 2009

ECMA-262
�4th Edition / June 20�3

ECMAScript® ���3
Language Specification

ECMA-262
(JavaScript Spec.)

JavaScript
Engines

QuickJSHow?
Conformance Tests

Program Assertion

JS

Test262
(Official Test Suite)

/ 348

Conformance of JavaScript Engines

ConformanceReference number
ECMA-123:2009

© Ecma International 2009

ECMA-262
�4th Edition / June 20�3

ECMAScript® ���3
Language Specification

ECMA-262
(JavaScript Spec.)

JavaScript
Engines

QuickJSHow?

4 + 2n
JS

TypeErrorExample:

Conformance Tests

Program Assertion

JS

Test262
(Official Test Suite)

/ 349

Problem - Manual Approach

ConformanceReference number
ECMA-123:2009

© Ecma International 2009

ECMA-262
�4th Edition / June 20�3

ECMAScript® ���3
Language Specification

ECMA-262
(JavaScript Spec.)

JavaScript
Engines

QuickJSHow?
Conformance Tests

Program Assertion

JS

4 + 2n
JS

TypeErrorExample:

Test262
(Official Test Suite)

Manual

/ 3410

ECMA-262
(JS Spec.)

Mech. Spec.
Extraction

Conform. Test
Synthesis

Mechanized
Spec.

Conformance
Tests

JavaScript
Engines

ASE 2020 ICSE 2021

Feature-Sens.
Coverage

PLDI 2023

[ASE’20] J. Park, J. Park, S. An, and S. Ryu, JISET: JavaScript IR-based Semantics Extraction Toolchain

/ 3410

ECMA-262
(JS Spec.)

Mech. Spec.
Extraction

Conform. Test
Synthesis

Mechanized
Spec.

Conformance
Tests

JavaScript
Engines

ASE 2020 ICSE 2021

Feature-Sens.
Coverage

PLDI 2023

[ASE’20] J. Park, J. Park, S. An, and S. Ryu, JISET: JavaScript IR-based Semantics Extraction Toolchain

/ 3411

JISET (JavaScript IR-based Semantics Extraction Toolchain)

ECMA-262
(JS Spec.) Spec. Parser

Parser
Generator

BNFES Prods.
(Syntax)

JavaScript
Parser

Algorithm
Compiler

Algorithms
(Semantics)

Compile
Rules

Metalanguage
Functions

Mechanized Spec.
(Interpreter)

JISET

/ 3411

JISET (JavaScript IR-based Semantics Extraction Toolchain)

ECMA-262
(JS Spec.) Spec. Parser

Parser
Generator

BNFES Prods.
(Syntax)

JavaScript
Parser

Algorithm
Compiler

Algorithms
(Semantics)

Compile
Rules

Metalanguage
Functions

Mechanized Spec.
(Interpreter)

JISET

/ 3412

JISET - Metalanguage for Spec. (ECMA-262)

A Meta-Level Static Analysis for JavaScript
Anonymous Author(s)

In this report, we formalize a meta-level static analysis for
JavaScript as a de�ned-language with IRES as a de�ning-
language. We �rst de�ne IRES and a JavaScript de�nitional
interpreter as an IRES program. Then, we de�ne a meta-level
static analysis for JavaScript with the abstract semantics of
IRES in the abstract interpretation framework [2, 3]. In addi-
tion, we explain how to indirectly express abstract domains
and analysis sensitivities for JavaScript.

1 IRES: An IR for ECMAScript
We �rst de�ne IRES, an Intermediate Representation for EC-
MAScript, with its collecting and restricted semantics.

Programs P 3 % ::= 5 ⇤

Functions F 3 5 ::= syntax? def x(x⇤) {[l : 8]⇤}
Variables X 3 x
Labels L 3 l
Instructions I 3 8 ::= A B 4 | x B {} | x B 4(4⇤)

| if 4 l l | return 4
Expressions E 3 4 ::= Ep | op(4⇤) | A
References R 3 A ::= x | 4[4] | 4[4]js
Syntax and Notations. An IRES program % is a sequence

of functions. A function 5 is de�ned with its name, parame-
ters, and body instructions with labels. If it is de�ned with
the pre�x syntax, it is a syntax-directed function, otherwise,
a normal function. An instruction 8 is a reference update,
an object allocation, a function call, a branch, or a return
instruction. An expression 4 is a primitive value, a primitive
operation, or a reference expression. A reference is a vari-
able, an internal �eld access, or an external �eld access. For
a given program % , three helper functions func : L ! F ,
inst : L ! I, and next : L ! L return the function,
instruction, and next label, respectively, of a given label.

States f 2 S = L ⇥ E ⇥ C⇤ ⇥ H
Environments d 2 E = X �n��!V
Calling Contexts 2 2 C = L ⇥ E
Heaps ⌘ 2 H = A

�n��!L ⇥M ⇥Mjs

Internal Field Maps < 2 M = Vstr
�n��!V

External Field Maps <js 2 Mjs = Vstr
�n��!V

Values E 2 V = A] Vp] T] F
Primitive Values Ep 2 Vp = Vbool] Vint] Vstr] · · ·
JS ASTs C 2 T

Concrete States. An IRES state f 2 S consists of a label,
an environment, a stack of calling contexts, and a heap. An
environment d 2 E is a �nite mapping from variables to
values. A calling context 2 2 C consists of a label and an

environment of the caller. A heap ⌘ 2 H is a �nite map-
ping from addresses to labels for allocation sites and two
�nite mappings from strings to values. The former mapping
represents internal �elds accessible by 4[4], and the latter
represents external �elds accessible by 4[4]js. A value E 2 V
is an address, a primitive value (e.g., a boolean 1, an integer : ,
and a string B), a JavaScript AST C 2 T, or a function 5 2 F .
Since IRES treats JavaScript ASTs as its values, we de�ne

them with tree nodes � as follows:
T 3 C ::= g: hq⇤i
� 3 q ::= B | C

A JavaScript AST g: hq1, · · · ,q=i denotes :-th alternative
in the syntactic production of nonterminal symbol g with
multiple tree nodes q1, · · · ,q= . A tree node is a string for a
terminal symbol or another tree for a nonterminal symbol.
We de�ne several notations to easily deal with JavaScript
ASTs. The notation g: .eval denotes an Evaluation function of
:-th alternative in the production g . Similarly, the notation
C .eval denotes the Evaluation function of the AST C , and it
is same with g: .eval when C = g: h· · · i. The Evaluation of
each AST takes the AST itself and its tree nodes that are
nonterminals as arguments. The notation subs(C) denotes
tree nodes that are subtrees of C .

Collecting Semantics. We de�ne denotational semantics
of instructions J8K : S! S and expressions J4K : S! V in
Section 1.1 and Section 1.2, respectively. Then, the collecting
semantics J%K of an IRES program % is a set of reachable states
P(S) from the initial states S] ✓ S. We can compute it using
a �xpoint algorithm:

J%K = lim
=!1

�= (S])

with a transfer function � : P(S) ! P(S):
� (() = ([{f 0 2 S | f 2 (^ f {% f 0}

where f {% f 0 denotes the one-step transition of a state f
to another state f 0 in the program % :

f {% f 0 () f = (l , _, _, _) ^ Jinst(l)K(f) = f 0

Restricted Semantics. Moreover, the restricted semantics
J%KR : P(S) ! P(S) is a set of reachable states from the
initial states restricted by a given set of states:

J%KR (() = lim
=!1

�= (S] \ ()

1.1 Instructions
J8K : S! S

• Variable Assignments:

Jx B 4K(f) = (next(l), d [x 7! E], 2,⌘)
1

A Meta-Level Static Analysis for JavaScript
Anonymous Author(s)

In this report, we formalize a meta-level static analysis for
JavaScript as a de�ned-language with IRES as a de�ning-
language. We �rst de�ne IRES and a JavaScript de�nitional
interpreter as an IRES program. Then, we de�ne a meta-level
static analysis for JavaScript with the abstract semantics of
IRES in the abstract interpretation framework [2, 3]. In addi-
tion, we explain how to indirectly express abstract domains
and analysis sensitivities for JavaScript.

1 IRES: An IR for ECMAScript
We �rst de�ne IRES, an Intermediate Representation for EC-
MAScript, with its collecting and restricted semantics.

Programs P 3 % ::= 5 ⇤

Functions F 3 5 ::= syntax? def x(x⇤) {[l : 8]⇤}
Variables X 3 x
Labels L 3 l
Instructions I 3 8 ::= A B 4 | x B {} | x B 4(4⇤)

| if 4 l l | return 4
Expressions E 3 4 ::= Ep | op(4⇤) | A
References R 3 A ::= x | 4[4] | 4[4]js
Syntax and Notations. An IRES program % is a sequence

of functions. A function 5 is de�ned with its name, parame-
ters, and body instructions with labels. If it is de�ned with
the pre�x syntax, it is a syntax-directed function, otherwise,
a normal function. An instruction 8 is a reference update,
an object allocation, a function call, a branch, or a return
instruction. An expression 4 is a primitive value, a primitive
operation, or a reference expression. A reference is a vari-
able, an internal �eld access, or an external �eld access. For
a given program % , three helper functions func : L ! F ,
inst : L ! I, and next : L ! L return the function,
instruction, and next label, respectively, of a given label.

States f 2 S = L ⇥ E ⇥ C⇤ ⇥ H
Environments d 2 E = X �n��!V
Calling Contexts 2 2 C = L ⇥ E
Heaps ⌘ 2 H = A

�n��!L ⇥M ⇥Mjs

Internal Field Maps < 2 M = Vstr
�n��!V

External Field Maps <js 2 Mjs = Vstr
�n��!V

Values E 2 V = A] Vp] T] F
Primitive Values Ep 2 Vp = Vbool] Vint] Vstr] · · ·
JS ASTs C 2 T

Concrete States. An IRES state f 2 S consists of a label,
an environment, a stack of calling contexts, and a heap. An
environment d 2 E is a �nite mapping from variables to
values. A calling context 2 2 C consists of a label and an

environment of the caller. A heap ⌘ 2 H is a �nite map-
ping from addresses to labels for allocation sites and two
�nite mappings from strings to values. The former mapping
represents internal �elds accessible by 4[4], and the latter
represents external �elds accessible by 4[4]js. A value E 2 V
is an address, a primitive value (e.g., a boolean 1, an integer : ,
and a string B), a JavaScript AST C 2 T, or a function 5 2 F .
Since IRES treats JavaScript ASTs as its values, we de�ne

them with tree nodes � as follows:
T 3 C ::= g: hq⇤i
� 3 q ::= B | C

A JavaScript AST g: hq1, · · · ,q=i denotes :-th alternative
in the syntactic production of nonterminal symbol g with
multiple tree nodes q1, · · · ,q= . A tree node is a string for a
terminal symbol or another tree for a nonterminal symbol.
We de�ne several notations to easily deal with JavaScript
ASTs. The notation g: .eval denotes an Evaluation function of
:-th alternative in the production g . Similarly, the notation
C .eval denotes the Evaluation function of the AST C , and it
is same with g: .eval when C = g: h· · · i. The Evaluation of
each AST takes the AST itself and its tree nodes that are
nonterminals as arguments. The notation subs(C) denotes
tree nodes that are subtrees of C .

Collecting Semantics. We de�ne denotational semantics
of instructions J8K : S! S and expressions J4K : S! V in
Section 1.1 and Section 1.2, respectively. Then, the collecting
semantics J%K of an IRES program % is a set of reachable states
P(S) from the initial states S] ✓ S. We can compute it using
a �xpoint algorithm:

J%K = lim
=!1

�= (S])

with a transfer function � : P(S) ! P(S):
� (() = ([{f 0 2 S | f 2 (^ f {% f 0}

where f {% f 0 denotes the one-step transition of a state f
to another state f 0 in the program % :

f {% f 0 () f = (l , _, _, _) ^ Jinst(l)K(f) = f 0

Restricted Semantics. Moreover, the restricted semantics
J%KR : P(S) ! P(S) is a set of reachable states from the
initial states restricted by a given set of states:

J%KR (() = lim
=!1

�= (S] \ ()

1.1 Instructions
J8K : S! S

• Variable Assignments:

Jx B 4K(f) = (next(l), d [x 7! E], 2,⌘)
1

<latexit sha1_base64="JXzBjyZgmsI8ags2tosNzBng8sY=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69BIvgqSRS1GPRi8cK9gPaUDabTbt2sxt2J0Ip/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZemApu0PO+ncLa+sbmVnG7tLO7t39QPjxqGZVpyppUCaU7ITFMcMmayFGwTqoZSULB2uHodua3n5g2XMkHHKcsSMhA8phTglZq9Wik0PTLFa/qzeGuEj8nFcjR6Je/epGiWcIkUkGM6fpeisGEaORUsGmplxmWEjoiA9a1VJKEmWAyv3bqnlklcmOlbUl05+rviQlJjBknoe1MCA7NsjcT//O6GcbXwYTLNEMm6WJRnAkXlTt73Y24ZhTF2BJCNbe3unRINKFoAyrZEPzll1dJ66LqX1Zr97VK/SaPowgncArn4MMV1OEOGtAECo/wDK/w5ijnxXl3PhatBSefOYY/cD5/ALFFjzg=</latexit>· · ·
<latexit sha1_base64="JXzBjyZgmsI8ags2tosNzBng8sY=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69BIvgqSRS1GPRi8cK9gPaUDabTbt2sxt2J0Ip/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZemApu0PO+ncLa+sbmVnG7tLO7t39QPjxqGZVpyppUCaU7ITFMcMmayFGwTqoZSULB2uHodua3n5g2XMkHHKcsSMhA8phTglZq9Wik0PTLFa/qzeGuEj8nFcjR6Je/epGiWcIkUkGM6fpeisGEaORUsGmplxmWEjoiA9a1VJKEmWAyv3bqnlklcmOlbUl05+rviQlJjBknoe1MCA7NsjcT//O6GcbXwYTLNEMm6WJRnAkXlTt73Y24ZhTF2BJCNbe3unRINKFoAyrZEPzll1dJ66LqX1Zr97VK/SaPowgncArn4MMV1OEOGtAECo/wDK/w5ijnxXl3PhatBSefOYY/cD5/ALFFjzg=</latexit>· · ·

/ 3412

JISET - Metalanguage for Spec. (ECMA-262)

A Meta-Level Static Analysis for JavaScript
Anonymous Author(s)

In this report, we formalize a meta-level static analysis for
JavaScript as a de�ned-language with IRES as a de�ning-
language. We �rst de�ne IRES and a JavaScript de�nitional
interpreter as an IRES program. Then, we de�ne a meta-level
static analysis for JavaScript with the abstract semantics of
IRES in the abstract interpretation framework [2, 3]. In addi-
tion, we explain how to indirectly express abstract domains
and analysis sensitivities for JavaScript.

1 IRES: An IR for ECMAScript
We �rst de�ne IRES, an Intermediate Representation for EC-
MAScript, with its collecting and restricted semantics.

Programs P 3 % ::= 5 ⇤

Functions F 3 5 ::= syntax? def x(x⇤) {[l : 8]⇤}
Variables X 3 x
Labels L 3 l
Instructions I 3 8 ::= A B 4 | x B {} | x B 4(4⇤)

| if 4 l l | return 4
Expressions E 3 4 ::= Ep | op(4⇤) | A
References R 3 A ::= x | 4[4] | 4[4]js
Syntax and Notations. An IRES program % is a sequence

of functions. A function 5 is de�ned with its name, parame-
ters, and body instructions with labels. If it is de�ned with
the pre�x syntax, it is a syntax-directed function, otherwise,
a normal function. An instruction 8 is a reference update,
an object allocation, a function call, a branch, or a return
instruction. An expression 4 is a primitive value, a primitive
operation, or a reference expression. A reference is a vari-
able, an internal �eld access, or an external �eld access. For
a given program % , three helper functions func : L ! F ,
inst : L ! I, and next : L ! L return the function,
instruction, and next label, respectively, of a given label.

States f 2 S = L ⇥ E ⇥ C⇤ ⇥ H
Environments d 2 E = X �n��!V
Calling Contexts 2 2 C = L ⇥ E
Heaps ⌘ 2 H = A

�n��!L ⇥M ⇥Mjs

Internal Field Maps < 2 M = Vstr
�n��!V

External Field Maps <js 2 Mjs = Vstr
�n��!V

Values E 2 V = A] Vp] T] F
Primitive Values Ep 2 Vp = Vbool] Vint] Vstr] · · ·
JS ASTs C 2 T

Concrete States. An IRES state f 2 S consists of a label,
an environment, a stack of calling contexts, and a heap. An
environment d 2 E is a �nite mapping from variables to
values. A calling context 2 2 C consists of a label and an

environment of the caller. A heap ⌘ 2 H is a �nite map-
ping from addresses to labels for allocation sites and two
�nite mappings from strings to values. The former mapping
represents internal �elds accessible by 4[4], and the latter
represents external �elds accessible by 4[4]js. A value E 2 V
is an address, a primitive value (e.g., a boolean 1, an integer : ,
and a string B), a JavaScript AST C 2 T, or a function 5 2 F .
Since IRES treats JavaScript ASTs as its values, we de�ne

them with tree nodes � as follows:
T 3 C ::= g: hq⇤i
� 3 q ::= B | C

A JavaScript AST g: hq1, · · · ,q=i denotes :-th alternative
in the syntactic production of nonterminal symbol g with
multiple tree nodes q1, · · · ,q= . A tree node is a string for a
terminal symbol or another tree for a nonterminal symbol.
We de�ne several notations to easily deal with JavaScript
ASTs. The notation g: .eval denotes an Evaluation function of
:-th alternative in the production g . Similarly, the notation
C .eval denotes the Evaluation function of the AST C , and it
is same with g: .eval when C = g: h· · · i. The Evaluation of
each AST takes the AST itself and its tree nodes that are
nonterminals as arguments. The notation subs(C) denotes
tree nodes that are subtrees of C .

Collecting Semantics. We de�ne denotational semantics
of instructions J8K : S! S and expressions J4K : S! V in
Section 1.1 and Section 1.2, respectively. Then, the collecting
semantics J%K of an IRES program % is a set of reachable states
P(S) from the initial states S] ✓ S. We can compute it using
a �xpoint algorithm:

J%K = lim
=!1

�= (S])

with a transfer function � : P(S) ! P(S):
� (() = ([{f 0 2 S | f 2 (^ f {% f 0}

where f {% f 0 denotes the one-step transition of a state f
to another state f 0 in the program % :

f {% f 0 () f = (l , _, _, _) ^ Jinst(l)K(f) = f 0

Restricted Semantics. Moreover, the restricted semantics
J%KR : P(S) ! P(S) is a set of reachable states from the
initial states restricted by a given set of states:

J%KR (() = lim
=!1

�= (S] \ ()

1.1 Instructions
J8K : S! S

• Variable Assignments:

Jx B 4K(f) = (next(l), d [x 7! E], 2,⌘)
1

A Meta-Level Static Analysis for JavaScript
Anonymous Author(s)

In this report, we formalize a meta-level static analysis for
JavaScript as a de�ned-language with IRES as a de�ning-
language. We �rst de�ne IRES and a JavaScript de�nitional
interpreter as an IRES program. Then, we de�ne a meta-level
static analysis for JavaScript with the abstract semantics of
IRES in the abstract interpretation framework [2, 3]. In addi-
tion, we explain how to indirectly express abstract domains
and analysis sensitivities for JavaScript.

1 IRES: An IR for ECMAScript
We �rst de�ne IRES, an Intermediate Representation for EC-
MAScript, with its collecting and restricted semantics.

Programs P 3 % ::= 5 ⇤

Functions F 3 5 ::= syntax? def x(x⇤) {[l : 8]⇤}
Variables X 3 x
Labels L 3 l
Instructions I 3 8 ::= A B 4 | x B {} | x B 4(4⇤)

| if 4 l l | return 4
Expressions E 3 4 ::= Ep | op(4⇤) | A
References R 3 A ::= x | 4[4] | 4[4]js
Syntax and Notations. An IRES program % is a sequence

of functions. A function 5 is de�ned with its name, parame-
ters, and body instructions with labels. If it is de�ned with
the pre�x syntax, it is a syntax-directed function, otherwise,
a normal function. An instruction 8 is a reference update,
an object allocation, a function call, a branch, or a return
instruction. An expression 4 is a primitive value, a primitive
operation, or a reference expression. A reference is a vari-
able, an internal �eld access, or an external �eld access. For
a given program % , three helper functions func : L ! F ,
inst : L ! I, and next : L ! L return the function,
instruction, and next label, respectively, of a given label.

States f 2 S = L ⇥ E ⇥ C⇤ ⇥ H
Environments d 2 E = X �n��!V
Calling Contexts 2 2 C = L ⇥ E
Heaps ⌘ 2 H = A

�n��!L ⇥M ⇥Mjs

Internal Field Maps < 2 M = Vstr
�n��!V

External Field Maps <js 2 Mjs = Vstr
�n��!V

Values E 2 V = A] Vp] T] F
Primitive Values Ep 2 Vp = Vbool] Vint] Vstr] · · ·
JS ASTs C 2 T

Concrete States. An IRES state f 2 S consists of a label,
an environment, a stack of calling contexts, and a heap. An
environment d 2 E is a �nite mapping from variables to
values. A calling context 2 2 C consists of a label and an

environment of the caller. A heap ⌘ 2 H is a �nite map-
ping from addresses to labels for allocation sites and two
�nite mappings from strings to values. The former mapping
represents internal �elds accessible by 4[4], and the latter
represents external �elds accessible by 4[4]js. A value E 2 V
is an address, a primitive value (e.g., a boolean 1, an integer : ,
and a string B), a JavaScript AST C 2 T, or a function 5 2 F .
Since IRES treats JavaScript ASTs as its values, we de�ne

them with tree nodes � as follows:
T 3 C ::= g: hq⇤i
� 3 q ::= B | C

A JavaScript AST g: hq1, · · · ,q=i denotes :-th alternative
in the syntactic production of nonterminal symbol g with
multiple tree nodes q1, · · · ,q= . A tree node is a string for a
terminal symbol or another tree for a nonterminal symbol.
We de�ne several notations to easily deal with JavaScript
ASTs. The notation g: .eval denotes an Evaluation function of
:-th alternative in the production g . Similarly, the notation
C .eval denotes the Evaluation function of the AST C , and it
is same with g: .eval when C = g: h· · · i. The Evaluation of
each AST takes the AST itself and its tree nodes that are
nonterminals as arguments. The notation subs(C) denotes
tree nodes that are subtrees of C .

Collecting Semantics. We de�ne denotational semantics
of instructions J8K : S! S and expressions J4K : S! V in
Section 1.1 and Section 1.2, respectively. Then, the collecting
semantics J%K of an IRES program % is a set of reachable states
P(S) from the initial states S] ✓ S. We can compute it using
a �xpoint algorithm:

J%K = lim
=!1

�= (S])

with a transfer function � : P(S) ! P(S):
� (() = ([{f 0 2 S | f 2 (^ f {% f 0}

where f {% f 0 denotes the one-step transition of a state f
to another state f 0 in the program % :

f {% f 0 () f = (l , _, _, _) ^ Jinst(l)K(f) = f 0

Restricted Semantics. Moreover, the restricted semantics
J%KR : P(S) ! P(S) is a set of reachable states from the
initial states restricted by a given set of states:

J%KR (() = lim
=!1

�= (S] \ ()

1.1 Instructions
J8K : S! S

• Variable Assignments:

Jx B 4K(f) = (next(l), d [x 7! E], 2,⌘)
1

<latexit sha1_base64="JXzBjyZgmsI8ags2tosNzBng8sY=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69BIvgqSRS1GPRi8cK9gPaUDabTbt2sxt2J0Ip/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZemApu0PO+ncLa+sbmVnG7tLO7t39QPjxqGZVpyppUCaU7ITFMcMmayFGwTqoZSULB2uHodua3n5g2XMkHHKcsSMhA8phTglZq9Wik0PTLFa/qzeGuEj8nFcjR6Je/epGiWcIkUkGM6fpeisGEaORUsGmplxmWEjoiA9a1VJKEmWAyv3bqnlklcmOlbUl05+rviQlJjBknoe1MCA7NsjcT//O6GcbXwYTLNEMm6WJRnAkXlTt73Y24ZhTF2BJCNbe3unRINKFoAyrZEPzll1dJ66LqX1Zr97VK/SaPowgncArn4MMV1OEOGtAECo/wDK/w5ijnxXl3PhatBSefOYY/cD5/ALFFjzg=</latexit>· · ·
<latexit sha1_base64="JXzBjyZgmsI8ags2tosNzBng8sY=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69BIvgqSRS1GPRi8cK9gPaUDabTbt2sxt2J0Ip/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZemApu0PO+ncLa+sbmVnG7tLO7t39QPjxqGZVpyppUCaU7ITFMcMmayFGwTqoZSULB2uHodua3n5g2XMkHHKcsSMhA8phTglZq9Wik0PTLFa/qzeGuEj8nFcjR6Je/epGiWcIkUkGM6fpeisGEaORUsGmplxmWEjoiA9a1VJKEmWAyv3bqnlklcmOlbUl05+rviQlJjBknoe1MCA7NsjcT//O6GcbXwYTLNEMm6WJRnAkXlTt73Y24ZhTF2BJCNbe3unRINKFoAyrZEPzll1dJ66LqX1Zr97VK/SaPowgncArn4MMV1OEOGtAECo/wDK/w5ijnxXl3PhatBSefOYY/cD5/ALFFjzg=</latexit>· · ·

/ 3413

JISET - Algorithm Compiler

2. Let lval be ? GetValue(lref).
3. If lval is neither undefined nor null, return lval.
4. If IsAnonymousFunctionDefinition(AssignmentExpression) is true and IsIdentifierRef of

LeftHandSideExpression is true, then
a. Let rval be ? NamedEvaluation of AssignmentExpression with argument lref.

[[ReferencedName]].
5. Else,

a. Let rref be ? Evaluation of AssignmentExpression.
b. Let rval be ? GetValue(rref).

6. Perform ? PutValue(lref, rval).
7. Return rval.

NOTE When this expression occurs within strict mode code, it is a runtime error if lref in
step 1.d, 2, 2, 2, 2 is an unresolvable reference. If it is, a ReferenceError exception is
thrown. Additionally, it is a runtime error if the lref in step 8, 7, 7, 6 is a reference to
a data property with the attribute value { [[Writable]]: false }, to an accessor
property with the attribute value { [[Set]]: undefined }, or to a non-existent
property of an object for which the IsExtensible predicate returns the value false.
In these cases a TypeError exception is thrown.

The abstract operation ApplyStringOrNumericBinaryOperator takes arguments lval (an
ECMAScript language value), opText (**, *, /, %, +, -, <<, >>, >>>, &, ^, or |), and rval (an
ECMAScript language value) and returns either a normal completion containing either a String, a
BigInt, or a Number, or a throw completion. It performs the following steps when called:

1. If opText is +, then
a. Let lprim be ? ToPrimitive(lval).
b. Let rprim be ? ToPrimitive(rval).
c. If lprim is a String or rprim is a String, then

i. Let lstr be ? ToString(lprim).
ii. Let rstr be ? ToString(rprim).

iii. Return the string-concatenation of lstr and rstr.
d. Set lval to lprim.
e. Set rval to rprim.

2. NOTE: At this point, it must be a numeric operation.
3. Let lnum be ? ToNumeric(lval).
4. Let rnum be ? ToNumeric(rval).
5. If Type(lnum) is not Type(rnum), throw a TypeError exception.
6. If lnum is a BigInt, then

13.15.3 ApplyStringOrNumericBinaryOperator (lval, opText, rval)

2. Let lval be ? GetValue(lref).
3. If lval is neither undefined nor null, return lval.
4. If IsAnonymousFunctionDefinition(AssignmentExpression) is true and IsIdentifierRef of

LeftHandSideExpression is true, then
a. Let rval be ? NamedEvaluation of AssignmentExpression with argument lref.

[[ReferencedName]].
5. Else,

a. Let rref be ? Evaluation of AssignmentExpression.
b. Let rval be ? GetValue(rref).

6. Perform ? PutValue(lref, rval).
7. Return rval.

NOTE When this expression occurs within strict mode code, it is a runtime error if lref in
step 1.d, 2, 2, 2, 2 is an unresolvable reference. If it is, a ReferenceError exception is
thrown. Additionally, it is a runtime error if the lref in step 8, 7, 7, 6 is a reference to
a data property with the attribute value { [[Writable]]: false }, to an accessor
property with the attribute value { [[Set]]: undefined }, or to a non-existent
property of an object for which the IsExtensible predicate returns the value false.
In these cases a TypeError exception is thrown.

The abstract operation ApplyStringOrNumericBinaryOperator takes arguments lval (an
ECMAScript language value), opText (**, *, /, %, +, -, <<, >>, >>>, &, ^, or |), and rval (an
ECMAScript language value) and returns either a normal completion containing either a String, a
BigInt, or a Number, or a throw completion. It performs the following steps when called:

1. If opText is +, then
a. Let lprim be ? ToPrimitive(lval).
b. Let rprim be ? ToPrimitive(rval).
c. If lprim is a String or rprim is a String, then

i. Let lstr be ? ToString(lprim).
ii. Let rstr be ? ToString(rprim).

iii. Return the string-concatenation of lstr and rstr.
d. Set lval to lprim.
e. Set rval to rprim.

2. NOTE: At this point, it must be a numeric operation.
3. Let lnum be ? ToNumeric(lval).
4. Let rnum be ? ToNumeric(rval).
5. If Type(lnum) is not Type(rnum), throw a TypeError exception.
6. If lnum is a BigInt, then

13.15.3 ApplyStringOrNumericBinaryOperator (lval, opText, rval)

…

def ApplyStringOrNumericBinaryOperator(
 lval, opText, rval
) {
 if (= opText "+") {
 let lprim = [? ToPrimitive(lval)]
 let rprim = [? ToPrimitive(rval)]
 if (|| (= (typeof lprim) @String)
 (= (typeof rprim) @String)) {
 let lstr = [? ToString(lprim)]
 let rstr = [? ToString(rprim)]
 return (concat lstr rstr)
 }
 lval = lprim
 rval = rprim
 }
 let lnum = [? ToNumeric(lval)]
 let rnum = [? ToNumeric(rval)]
 if (! (= (typeof lnum) (typeof rnum))) {
 return comp[~throw~](new TypeError)
 }
 ...
}

118
Compile

Rules

/ 3414

JISET - Evaluation
≈ 96% Compiled

https://github.com/es-meta/esmeta

ESMeta

CICI passingpassing licenselicense BSD-3-ClauseBSD-3-Clause releaserelease v0.3.2v0.3.2 PRsPRs 105105 slackslack esmetaesmeta

sitesite jekylljekyll docdoc scaladocscaladoc

https://github.com/es-meta/esmeta

/ 3415

ECMA-262
(JS Spec.)

Mech. Spec.
Extraction

Conform. Test
Synthesis

Mechanized
Spec.

Conformance
Tests

JavaScript
Engines

ASE 2020 ICSE 2021

Feature-Sens.
Coverage

PLDI 2023

[ICSE’21] J. Park, S. An, D. Youn, G. Kim, and S. Ryu, JEST: N+1-version Differential Testing of Both
JavaScript Engines and Specification

/ 34

• Conformance Test Synthesis using Coverage-guided Fuzzing in Mechanized Spec.

16

JEST (JavaScript Engines and Specification Tester)

Mechanized
Spec.

Seed
Synthesizer

Program
Mutator

Assertion
Injector

Program
Pool

JEST

Conformance
Tests

Spec.
Coverage

/ 3417

JEST - Coverage-guided Fuzzing (in Spec.)

2. Let lval be ? GetValue(lref).
3. If lval is neither undefined nor null, return lval.
4. If IsAnonymousFunctionDefinition(AssignmentExpression) is true and IsIdentifierRef of

LeftHandSideExpression is true, then
a. Let rval be ? NamedEvaluation of AssignmentExpression with argument lref.

[[ReferencedName]].
5. Else,

a. Let rref be ? Evaluation of AssignmentExpression.
b. Let rval be ? GetValue(rref).

6. Perform ? PutValue(lref, rval).
7. Return rval.

NOTE When this expression occurs within strict mode code, it is a runtime error if lref in
step 1.d, 2, 2, 2, 2 is an unresolvable reference. If it is, a ReferenceError exception is
thrown. Additionally, it is a runtime error if the lref in step 8, 7, 7, 6 is a reference to
a data property with the attribute value { [[Writable]]: false }, to an accessor
property with the attribute value { [[Set]]: undefined }, or to a non-existent
property of an object for which the IsExtensible predicate returns the value false.
In these cases a TypeError exception is thrown.

The abstract operation ApplyStringOrNumericBinaryOperator takes arguments lval (an
ECMAScript language value), opText (**, *, /, %, +, -, <<, >>, >>>, &, ^, or |), and rval (an
ECMAScript language value) and returns either a normal completion containing either a String, a
BigInt, or a Number, or a throw completion. It performs the following steps when called:

1. If opText is +, then
a. Let lprim be ? ToPrimitive(lval).
b. Let rprim be ? ToPrimitive(rval).
c. If lprim is a String or rprim is a String, then

i. Let lstr be ? ToString(lprim).
ii. Let rstr be ? ToString(rprim).

iii. Return the string-concatenation of lstr and rstr.
d. Set lval to lprim.
e. Set rval to rprim.

2. NOTE: At this point, it must be a numeric operation.
3. Let lnum be ? ToNumeric(lval).
4. Let rnum be ? ToNumeric(rval).
5. If Type(lnum) is not Type(rnum), throw a TypeError exception.
6. If lnum is a BigInt, then

13.15.3 ApplyStringOrNumericBinaryOperator (lval, opText, rval)

2. Let lval be ? GetValue(lref).
3. If lval is neither undefined nor null, return lval.
4. If IsAnonymousFunctionDefinition(AssignmentExpression) is true and IsIdentifierRef of

LeftHandSideExpression is true, then
a. Let rval be ? NamedEvaluation of AssignmentExpression with argument lref.

[[ReferencedName]].
5. Else,

a. Let rref be ? Evaluation of AssignmentExpression.
b. Let rval be ? GetValue(rref).

6. Perform ? PutValue(lref, rval).
7. Return rval.

NOTE When this expression occurs within strict mode code, it is a runtime error if lref in
step 1.d, 2, 2, 2, 2 is an unresolvable reference. If it is, a ReferenceError exception is
thrown. Additionally, it is a runtime error if the lref in step 8, 7, 7, 6 is a reference to
a data property with the attribute value { [[Writable]]: false }, to an accessor
property with the attribute value { [[Set]]: undefined }, or to a non-existent
property of an object for which the IsExtensible predicate returns the value false.
In these cases a TypeError exception is thrown.

The abstract operation ApplyStringOrNumericBinaryOperator takes arguments lval (an
ECMAScript language value), opText (**, *, /, %, +, -, <<, >>, >>>, &, ^, or |), and rval (an
ECMAScript language value) and returns either a normal completion containing either a String, a
BigInt, or a Number, or a throw completion. It performs the following steps when called:

1. If opText is +, then
a. Let lprim be ? ToPrimitive(lval).
b. Let rprim be ? ToPrimitive(rval).
c. If lprim is a String or rprim is a String, then

i. Let lstr be ? ToString(lprim).
ii. Let rstr be ? ToString(rprim).

iii. Return the string-concatenation of lstr and rstr.
d. Set lval to lprim.
e. Set rval to rprim.

2. NOTE: At this point, it must be a numeric operation.
3. Let lnum be ? ToNumeric(lval).
4. Let rnum be ? ToNumeric(rval).
5. If Type(lnum) is not Type(rnum), throw a TypeError exception.
6. If lnum is a BigInt, then

13.15.3 ApplyStringOrNumericBinaryOperator (lval, opText, rval)

…

…

a. If opText is **, return ? BigInt::exponentiate(lnum, rnum).
b. If opText is /, return ? BigInt::divide(lnum, rnum).
c. If opText is %, return ? BigInt::remainder(lnum, rnum).
d. If opText is >>>, return ? BigInt::unsignedRightShift(lnum, rnum).

7. Let operation be the abstract operation associated with opText and Type(lnum) in the following
table:

opText Type(lnum) operation
** Number Number::exponentiate
* Number Number::multiply
* BigInt BigInt::multiply
/ Number Number::divide
% Number Number::remainder
+ Number Number::add
+ BigInt BigInt::add
- Number Number::subtract
- BigInt BigInt::subtract
<< Number Number::leftShift
<< BigInt BigInt::leftShift
>> Number Number::signedRightShift
>> BigInt BigInt::signedRightShift
>>> Number Number::unsignedRightShift
& Number Number::bitwiseAND
& BigInt BigInt::bitwiseAND
^ Number Number::bitwiseXOR
^ BigInt BigInt::bitwiseXOR
| Number Number::bitwiseOR
| BigInt BigInt::bitwiseOR

8. Return operation(lnum, rnum).

NOTE 1 No hint is provided in the calls to ToPrimitive in steps 1.a and 1.b. All standard
objects except Dates handle the absence of a hint as if number were given; Dates
handle the absence of a hint as if string were given. Exotic objects may handle the
absence of a hint in some other manner.

NOTE 2 Step 1.c differs from step 3 of the IsLessThan algorithm, by using the logical-or
operation instead of the logical-and operation.

1. Throw a TypeError exception.

mean the same things as:

1. Return ThrowCompletion(a newly created TypeError object).

Algorithms steps that say or are otherwise equivalent to:

1. ReturnIfAbrupt(argument).

mean the same thing as:

1. Assert: argument is a Completion Record.
2. If argument is an abrupt completion, return Completion(argument).
3. Else, set argument to argument.[[Value]].

Algorithms steps that say or are otherwise equivalent to:

1. ReturnIfAbrupt(AbstractOperation()).

mean the same thing as:

1. Let hygienicTemp be AbstractOperation().
2. Assert: hygienicTemp is a Completion Record.
3. If hygienicTemp is an abrupt completion, return Completion(hygienicTemp).
4. Else, set hygienicTemp to hygienicTemp.[[Value]].

Where hygienicTemp is ephemeral and visible only in the steps pertaining to ReturnIfAbrupt.

Algorithms steps that say or are otherwise equivalent to:

1. Let result be AbstractOperation(ReturnIfAbrupt(argument)).

mean the same thing as:

1. Assert: argument is a Completion Record.
2. If argument is an abrupt completion, return Completion(argument).
3. Else, set argument to argument.[[Value]].
4. Let result be AbstractOperation(argument).

Invocations of abstract operations and syntax-directed operations that are prefixed by ? indicate
that ReturnIfAbrupt should be applied to the resulting Completion Record. For example, the step:

5.2.3.3 ReturnIfAbrupt

5.2.3.4 ReturnIfAbrupt Shorthands

…

/ 3417

JEST - Coverage-guided Fuzzing (in Spec.)

2. Let lval be ? GetValue(lref).
3. If lval is neither undefined nor null, return lval.
4. If IsAnonymousFunctionDefinition(AssignmentExpression) is true and IsIdentifierRef of

LeftHandSideExpression is true, then
a. Let rval be ? NamedEvaluation of AssignmentExpression with argument lref.

[[ReferencedName]].
5. Else,

a. Let rref be ? Evaluation of AssignmentExpression.
b. Let rval be ? GetValue(rref).

6. Perform ? PutValue(lref, rval).
7. Return rval.

NOTE When this expression occurs within strict mode code, it is a runtime error if lref in
step 1.d, 2, 2, 2, 2 is an unresolvable reference. If it is, a ReferenceError exception is
thrown. Additionally, it is a runtime error if the lref in step 8, 7, 7, 6 is a reference to
a data property with the attribute value { [[Writable]]: false }, to an accessor
property with the attribute value { [[Set]]: undefined }, or to a non-existent
property of an object for which the IsExtensible predicate returns the value false.
In these cases a TypeError exception is thrown.

The abstract operation ApplyStringOrNumericBinaryOperator takes arguments lval (an
ECMAScript language value), opText (**, *, /, %, +, -, <<, >>, >>>, &, ^, or |), and rval (an
ECMAScript language value) and returns either a normal completion containing either a String, a
BigInt, or a Number, or a throw completion. It performs the following steps when called:

1. If opText is +, then
a. Let lprim be ? ToPrimitive(lval).
b. Let rprim be ? ToPrimitive(rval).
c. If lprim is a String or rprim is a String, then

i. Let lstr be ? ToString(lprim).
ii. Let rstr be ? ToString(rprim).

iii. Return the string-concatenation of lstr and rstr.
d. Set lval to lprim.
e. Set rval to rprim.

2. NOTE: At this point, it must be a numeric operation.
3. Let lnum be ? ToNumeric(lval).
4. Let rnum be ? ToNumeric(rval).
5. If Type(lnum) is not Type(rnum), throw a TypeError exception.
6. If lnum is a BigInt, then

13.15.3 ApplyStringOrNumericBinaryOperator (lval, opText, rval)

2. Let lval be ? GetValue(lref).
3. If lval is neither undefined nor null, return lval.
4. If IsAnonymousFunctionDefinition(AssignmentExpression) is true and IsIdentifierRef of

LeftHandSideExpression is true, then
a. Let rval be ? NamedEvaluation of AssignmentExpression with argument lref.

[[ReferencedName]].
5. Else,

a. Let rref be ? Evaluation of AssignmentExpression.
b. Let rval be ? GetValue(rref).

6. Perform ? PutValue(lref, rval).
7. Return rval.

NOTE When this expression occurs within strict mode code, it is a runtime error if lref in
step 1.d, 2, 2, 2, 2 is an unresolvable reference. If it is, a ReferenceError exception is
thrown. Additionally, it is a runtime error if the lref in step 8, 7, 7, 6 is a reference to
a data property with the attribute value { [[Writable]]: false }, to an accessor
property with the attribute value { [[Set]]: undefined }, or to a non-existent
property of an object for which the IsExtensible predicate returns the value false.
In these cases a TypeError exception is thrown.

The abstract operation ApplyStringOrNumericBinaryOperator takes arguments lval (an
ECMAScript language value), opText (**, *, /, %, +, -, <<, >>, >>>, &, ^, or |), and rval (an
ECMAScript language value) and returns either a normal completion containing either a String, a
BigInt, or a Number, or a throw completion. It performs the following steps when called:

1. If opText is +, then
a. Let lprim be ? ToPrimitive(lval).
b. Let rprim be ? ToPrimitive(rval).
c. If lprim is a String or rprim is a String, then

i. Let lstr be ? ToString(lprim).
ii. Let rstr be ? ToString(rprim).

iii. Return the string-concatenation of lstr and rstr.
d. Set lval to lprim.
e. Set rval to rprim.

2. NOTE: At this point, it must be a numeric operation.
3. Let lnum be ? ToNumeric(lval).
4. Let rnum be ? ToNumeric(rval).
5. If Type(lnum) is not Type(rnum), throw a TypeError exception.
6. If lnum is a BigInt, then

13.15.3 ApplyStringOrNumericBinaryOperator (lval, opText, rval)

…

…

4 + 2n
JS

a. If opText is **, return ? BigInt::exponentiate(lnum, rnum).
b. If opText is /, return ? BigInt::divide(lnum, rnum).
c. If opText is %, return ? BigInt::remainder(lnum, rnum).
d. If opText is >>>, return ? BigInt::unsignedRightShift(lnum, rnum).

7. Let operation be the abstract operation associated with opText and Type(lnum) in the following
table:

opText Type(lnum) operation
** Number Number::exponentiate
* Number Number::multiply
* BigInt BigInt::multiply
/ Number Number::divide
% Number Number::remainder
+ Number Number::add
+ BigInt BigInt::add
- Number Number::subtract
- BigInt BigInt::subtract
<< Number Number::leftShift
<< BigInt BigInt::leftShift
>> Number Number::signedRightShift
>> BigInt BigInt::signedRightShift
>>> Number Number::unsignedRightShift
& Number Number::bitwiseAND
& BigInt BigInt::bitwiseAND
^ Number Number::bitwiseXOR
^ BigInt BigInt::bitwiseXOR
| Number Number::bitwiseOR
| BigInt BigInt::bitwiseOR

8. Return operation(lnum, rnum).

NOTE 1 No hint is provided in the calls to ToPrimitive in steps 1.a and 1.b. All standard
objects except Dates handle the absence of a hint as if number were given; Dates
handle the absence of a hint as if string were given. Exotic objects may handle the
absence of a hint in some other manner.

NOTE 2 Step 1.c differs from step 3 of the IsLessThan algorithm, by using the logical-or
operation instead of the logical-and operation.

1. Throw a TypeError exception.

mean the same things as:

1. Return ThrowCompletion(a newly created TypeError object).

Algorithms steps that say or are otherwise equivalent to:

1. ReturnIfAbrupt(argument).

mean the same thing as:

1. Assert: argument is a Completion Record.
2. If argument is an abrupt completion, return Completion(argument).
3. Else, set argument to argument.[[Value]].

Algorithms steps that say or are otherwise equivalent to:

1. ReturnIfAbrupt(AbstractOperation()).

mean the same thing as:

1. Let hygienicTemp be AbstractOperation().
2. Assert: hygienicTemp is a Completion Record.
3. If hygienicTemp is an abrupt completion, return Completion(hygienicTemp).
4. Else, set hygienicTemp to hygienicTemp.[[Value]].

Where hygienicTemp is ephemeral and visible only in the steps pertaining to ReturnIfAbrupt.

Algorithms steps that say or are otherwise equivalent to:

1. Let result be AbstractOperation(ReturnIfAbrupt(argument)).

mean the same thing as:

1. Assert: argument is a Completion Record.
2. If argument is an abrupt completion, return Completion(argument).
3. Else, set argument to argument.[[Value]].
4. Let result be AbstractOperation(argument).

Invocations of abstract operations and syntax-directed operations that are prefixed by ? indicate
that ReturnIfAbrupt should be applied to the resulting Completion Record. For example, the step:

5.2.3.3 ReturnIfAbrupt

5.2.3.4 ReturnIfAbrupt Shorthands

…

/ 3417

JEST - Coverage-guided Fuzzing (in Spec.)

2. Let lval be ? GetValue(lref).
3. If lval is neither undefined nor null, return lval.
4. If IsAnonymousFunctionDefinition(AssignmentExpression) is true and IsIdentifierRef of

LeftHandSideExpression is true, then
a. Let rval be ? NamedEvaluation of AssignmentExpression with argument lref.

[[ReferencedName]].
5. Else,

a. Let rref be ? Evaluation of AssignmentExpression.
b. Let rval be ? GetValue(rref).

6. Perform ? PutValue(lref, rval).
7. Return rval.

NOTE When this expression occurs within strict mode code, it is a runtime error if lref in
step 1.d, 2, 2, 2, 2 is an unresolvable reference. If it is, a ReferenceError exception is
thrown. Additionally, it is a runtime error if the lref in step 8, 7, 7, 6 is a reference to
a data property with the attribute value { [[Writable]]: false }, to an accessor
property with the attribute value { [[Set]]: undefined }, or to a non-existent
property of an object for which the IsExtensible predicate returns the value false.
In these cases a TypeError exception is thrown.

The abstract operation ApplyStringOrNumericBinaryOperator takes arguments lval (an
ECMAScript language value), opText (**, *, /, %, +, -, <<, >>, >>>, &, ^, or |), and rval (an
ECMAScript language value) and returns either a normal completion containing either a String, a
BigInt, or a Number, or a throw completion. It performs the following steps when called:

1. If opText is +, then
a. Let lprim be ? ToPrimitive(lval).
b. Let rprim be ? ToPrimitive(rval).
c. If lprim is a String or rprim is a String, then

i. Let lstr be ? ToString(lprim).
ii. Let rstr be ? ToString(rprim).

iii. Return the string-concatenation of lstr and rstr.
d. Set lval to lprim.
e. Set rval to rprim.

2. NOTE: At this point, it must be a numeric operation.
3. Let lnum be ? ToNumeric(lval).
4. Let rnum be ? ToNumeric(rval).
5. If Type(lnum) is not Type(rnum), throw a TypeError exception.
6. If lnum is a BigInt, then

13.15.3 ApplyStringOrNumericBinaryOperator (lval, opText, rval)

2. Let lval be ? GetValue(lref).
3. If lval is neither undefined nor null, return lval.
4. If IsAnonymousFunctionDefinition(AssignmentExpression) is true and IsIdentifierRef of

LeftHandSideExpression is true, then
a. Let rval be ? NamedEvaluation of AssignmentExpression with argument lref.

[[ReferencedName]].
5. Else,

a. Let rref be ? Evaluation of AssignmentExpression.
b. Let rval be ? GetValue(rref).

6. Perform ? PutValue(lref, rval).
7. Return rval.

NOTE When this expression occurs within strict mode code, it is a runtime error if lref in
step 1.d, 2, 2, 2, 2 is an unresolvable reference. If it is, a ReferenceError exception is
thrown. Additionally, it is a runtime error if the lref in step 8, 7, 7, 6 is a reference to
a data property with the attribute value { [[Writable]]: false }, to an accessor
property with the attribute value { [[Set]]: undefined }, or to a non-existent
property of an object for which the IsExtensible predicate returns the value false.
In these cases a TypeError exception is thrown.

The abstract operation ApplyStringOrNumericBinaryOperator takes arguments lval (an
ECMAScript language value), opText (**, *, /, %, +, -, <<, >>, >>>, &, ^, or |), and rval (an
ECMAScript language value) and returns either a normal completion containing either a String, a
BigInt, or a Number, or a throw completion. It performs the following steps when called:

1. If opText is +, then
a. Let lprim be ? ToPrimitive(lval).
b. Let rprim be ? ToPrimitive(rval).
c. If lprim is a String or rprim is a String, then

i. Let lstr be ? ToString(lprim).
ii. Let rstr be ? ToString(rprim).

iii. Return the string-concatenation of lstr and rstr.
d. Set lval to lprim.
e. Set rval to rprim.

2. NOTE: At this point, it must be a numeric operation.
3. Let lnum be ? ToNumeric(lval).
4. Let rnum be ? ToNumeric(rval).
5. If Type(lnum) is not Type(rnum), throw a TypeError exception.
6. If lnum is a BigInt, then

13.15.3 ApplyStringOrNumericBinaryOperator (lval, opText, rval)

…

…

4 + 2n
JS

a. If opText is **, return ? BigInt::exponentiate(lnum, rnum).
b. If opText is /, return ? BigInt::divide(lnum, rnum).
c. If opText is %, return ? BigInt::remainder(lnum, rnum).
d. If opText is >>>, return ? BigInt::unsignedRightShift(lnum, rnum).

7. Let operation be the abstract operation associated with opText and Type(lnum) in the following
table:

opText Type(lnum) operation
** Number Number::exponentiate
* Number Number::multiply
* BigInt BigInt::multiply
/ Number Number::divide
% Number Number::remainder
+ Number Number::add
+ BigInt BigInt::add
- Number Number::subtract
- BigInt BigInt::subtract
<< Number Number::leftShift
<< BigInt BigInt::leftShift
>> Number Number::signedRightShift
>> BigInt BigInt::signedRightShift
>>> Number Number::unsignedRightShift
& Number Number::bitwiseAND
& BigInt BigInt::bitwiseAND
^ Number Number::bitwiseXOR
^ BigInt BigInt::bitwiseXOR
| Number Number::bitwiseOR
| BigInt BigInt::bitwiseOR

8. Return operation(lnum, rnum).

NOTE 1 No hint is provided in the calls to ToPrimitive in steps 1.a and 1.b. All standard
objects except Dates handle the absence of a hint as if number were given; Dates
handle the absence of a hint as if string were given. Exotic objects may handle the
absence of a hint in some other manner.

NOTE 2 Step 1.c differs from step 3 of the IsLessThan algorithm, by using the logical-or
operation instead of the logical-and operation.

1. Throw a TypeError exception.

mean the same things as:

1. Return ThrowCompletion(a newly created TypeError object).

Algorithms steps that say or are otherwise equivalent to:

1. ReturnIfAbrupt(argument).

mean the same thing as:

1. Assert: argument is a Completion Record.
2. If argument is an abrupt completion, return Completion(argument).
3. Else, set argument to argument.[[Value]].

Algorithms steps that say or are otherwise equivalent to:

1. ReturnIfAbrupt(AbstractOperation()).

mean the same thing as:

1. Let hygienicTemp be AbstractOperation().
2. Assert: hygienicTemp is a Completion Record.
3. If hygienicTemp is an abrupt completion, return Completion(hygienicTemp).
4. Else, set hygienicTemp to hygienicTemp.[[Value]].

Where hygienicTemp is ephemeral and visible only in the steps pertaining to ReturnIfAbrupt.

Algorithms steps that say or are otherwise equivalent to:

1. Let result be AbstractOperation(ReturnIfAbrupt(argument)).

mean the same thing as:

1. Assert: argument is a Completion Record.
2. If argument is an abrupt completion, return Completion(argument).
3. Else, set argument to argument.[[Value]].
4. Let result be AbstractOperation(argument).

Invocations of abstract operations and syntax-directed operations that are prefixed by ? indicate
that ReturnIfAbrupt should be applied to the resulting Completion Record. For example, the step:

5.2.3.3 ReturnIfAbrupt

5.2.3.4 ReturnIfAbrupt Shorthands

…

1n + 2n
JS

/ 3417

JEST - Coverage-guided Fuzzing (in Spec.)

2. Let lval be ? GetValue(lref).
3. If lval is neither undefined nor null, return lval.
4. If IsAnonymousFunctionDefinition(AssignmentExpression) is true and IsIdentifierRef of

LeftHandSideExpression is true, then
a. Let rval be ? NamedEvaluation of AssignmentExpression with argument lref.

[[ReferencedName]].
5. Else,

a. Let rref be ? Evaluation of AssignmentExpression.
b. Let rval be ? GetValue(rref).

6. Perform ? PutValue(lref, rval).
7. Return rval.

NOTE When this expression occurs within strict mode code, it is a runtime error if lref in
step 1.d, 2, 2, 2, 2 is an unresolvable reference. If it is, a ReferenceError exception is
thrown. Additionally, it is a runtime error if the lref in step 8, 7, 7, 6 is a reference to
a data property with the attribute value { [[Writable]]: false }, to an accessor
property with the attribute value { [[Set]]: undefined }, or to a non-existent
property of an object for which the IsExtensible predicate returns the value false.
In these cases a TypeError exception is thrown.

The abstract operation ApplyStringOrNumericBinaryOperator takes arguments lval (an
ECMAScript language value), opText (**, *, /, %, +, -, <<, >>, >>>, &, ^, or |), and rval (an
ECMAScript language value) and returns either a normal completion containing either a String, a
BigInt, or a Number, or a throw completion. It performs the following steps when called:

1. If opText is +, then
a. Let lprim be ? ToPrimitive(lval).
b. Let rprim be ? ToPrimitive(rval).
c. If lprim is a String or rprim is a String, then

i. Let lstr be ? ToString(lprim).
ii. Let rstr be ? ToString(rprim).

iii. Return the string-concatenation of lstr and rstr.
d. Set lval to lprim.
e. Set rval to rprim.

2. NOTE: At this point, it must be a numeric operation.
3. Let lnum be ? ToNumeric(lval).
4. Let rnum be ? ToNumeric(rval).
5. If Type(lnum) is not Type(rnum), throw a TypeError exception.
6. If lnum is a BigInt, then

13.15.3 ApplyStringOrNumericBinaryOperator (lval, opText, rval)

2. Let lval be ? GetValue(lref).
3. If lval is neither undefined nor null, return lval.
4. If IsAnonymousFunctionDefinition(AssignmentExpression) is true and IsIdentifierRef of

LeftHandSideExpression is true, then
a. Let rval be ? NamedEvaluation of AssignmentExpression with argument lref.

[[ReferencedName]].
5. Else,

a. Let rref be ? Evaluation of AssignmentExpression.
b. Let rval be ? GetValue(rref).

6. Perform ? PutValue(lref, rval).
7. Return rval.

NOTE When this expression occurs within strict mode code, it is a runtime error if lref in
step 1.d, 2, 2, 2, 2 is an unresolvable reference. If it is, a ReferenceError exception is
thrown. Additionally, it is a runtime error if the lref in step 8, 7, 7, 6 is a reference to
a data property with the attribute value { [[Writable]]: false }, to an accessor
property with the attribute value { [[Set]]: undefined }, or to a non-existent
property of an object for which the IsExtensible predicate returns the value false.
In these cases a TypeError exception is thrown.

The abstract operation ApplyStringOrNumericBinaryOperator takes arguments lval (an
ECMAScript language value), opText (**, *, /, %, +, -, <<, >>, >>>, &, ^, or |), and rval (an
ECMAScript language value) and returns either a normal completion containing either a String, a
BigInt, or a Number, or a throw completion. It performs the following steps when called:

1. If opText is +, then
a. Let lprim be ? ToPrimitive(lval).
b. Let rprim be ? ToPrimitive(rval).
c. If lprim is a String or rprim is a String, then

i. Let lstr be ? ToString(lprim).
ii. Let rstr be ? ToString(rprim).

iii. Return the string-concatenation of lstr and rstr.
d. Set lval to lprim.
e. Set rval to rprim.

2. NOTE: At this point, it must be a numeric operation.
3. Let lnum be ? ToNumeric(lval).
4. Let rnum be ? ToNumeric(rval).
5. If Type(lnum) is not Type(rnum), throw a TypeError exception.
6. If lnum is a BigInt, then

13.15.3 ApplyStringOrNumericBinaryOperator (lval, opText, rval)

…

…

4 + 2n
JS

a. If opText is **, return ? BigInt::exponentiate(lnum, rnum).
b. If opText is /, return ? BigInt::divide(lnum, rnum).
c. If opText is %, return ? BigInt::remainder(lnum, rnum).
d. If opText is >>>, return ? BigInt::unsignedRightShift(lnum, rnum).

7. Let operation be the abstract operation associated with opText and Type(lnum) in the following
table:

opText Type(lnum) operation
** Number Number::exponentiate
* Number Number::multiply
* BigInt BigInt::multiply
/ Number Number::divide
% Number Number::remainder
+ Number Number::add
+ BigInt BigInt::add
- Number Number::subtract
- BigInt BigInt::subtract
<< Number Number::leftShift
<< BigInt BigInt::leftShift
>> Number Number::signedRightShift
>> BigInt BigInt::signedRightShift
>>> Number Number::unsignedRightShift
& Number Number::bitwiseAND
& BigInt BigInt::bitwiseAND
^ Number Number::bitwiseXOR
^ BigInt BigInt::bitwiseXOR
| Number Number::bitwiseOR
| BigInt BigInt::bitwiseOR

8. Return operation(lnum, rnum).

NOTE 1 No hint is provided in the calls to ToPrimitive in steps 1.a and 1.b. All standard
objects except Dates handle the absence of a hint as if number were given; Dates
handle the absence of a hint as if string were given. Exotic objects may handle the
absence of a hint in some other manner.

NOTE 2 Step 1.c differs from step 3 of the IsLessThan algorithm, by using the logical-or
operation instead of the logical-and operation.

1. Throw a TypeError exception.

mean the same things as:

1. Return ThrowCompletion(a newly created TypeError object).

Algorithms steps that say or are otherwise equivalent to:

1. ReturnIfAbrupt(argument).

mean the same thing as:

1. Assert: argument is a Completion Record.
2. If argument is an abrupt completion, return Completion(argument).
3. Else, set argument to argument.[[Value]].

Algorithms steps that say or are otherwise equivalent to:

1. ReturnIfAbrupt(AbstractOperation()).

mean the same thing as:

1. Let hygienicTemp be AbstractOperation().
2. Assert: hygienicTemp is a Completion Record.
3. If hygienicTemp is an abrupt completion, return Completion(hygienicTemp).
4. Else, set hygienicTemp to hygienicTemp.[[Value]].

Where hygienicTemp is ephemeral and visible only in the steps pertaining to ReturnIfAbrupt.

Algorithms steps that say or are otherwise equivalent to:

1. Let result be AbstractOperation(ReturnIfAbrupt(argument)).

mean the same thing as:

1. Assert: argument is a Completion Record.
2. If argument is an abrupt completion, return Completion(argument).
3. Else, set argument to argument.[[Value]].
4. Let result be AbstractOperation(argument).

Invocations of abstract operations and syntax-directed operations that are prefixed by ? indicate
that ReturnIfAbrupt should be applied to the resulting Completion Record. For example, the step:

5.2.3.3 ReturnIfAbrupt

5.2.3.4 ReturnIfAbrupt Shorthands

…

1n + 2n
JS

3 + 2
JS

/ 3418

JEST - Assertion Injection

 var x = 3 + 2;

+ $assert.equal(x, 5);

4 + 2n
JS

1n + 2n
JS

3 + 2
JS

 var x = 1n + 2n;

+ $assert.equal(x, 3n);

 var x = 4 + 2n;

+ // [THROW] TypeError

/ 3419

JEST - Assertion Injection
function f() {}

JS

 function f() {}

+ $assert.equal(Object.getPrototypeOf(f), Function.prototype);

+ $assert.verifyProperty(f, "prototype", {
+ writable: true,
+ enumerable: false,
+ configurable: false,
+ });

+ $assert.compare(Reflect.ownKeys(f), ['length', 'name', 'prototype'], f);

+ ...

/ 3419

JEST - Assertion Injection
function f() {}

JS

 function f() {}

+ $assert.equal(Object.getPrototypeOf(f), Function.prototype);

+ $assert.verifyProperty(f, "prototype", {
+ writable: true,
+ enumerable: false,
+ configurable: false,
+ });

+ $assert.compare(Reflect.ownKeys(f), ['length', 'name', 'prototype'], f);

+ ...

Prototype Chain

/ 3419

JEST - Assertion Injection
function f() {}

JS

 function f() {}

+ $assert.equal(Object.getPrototypeOf(f), Function.prototype);

+ $assert.verifyProperty(f, "prototype", {
+ writable: true,
+ enumerable: false,
+ configurable: false,
+ });

+ $assert.compare(Reflect.ownKeys(f), ['length', 'name', 'prototype'], f);

+ ...

Prototype Chain

Property Descriptor

/ 3419

JEST - Assertion Injection
function f() {}

JS

 function f() {}

+ $assert.equal(Object.getPrototypeOf(f), Function.prototype);

+ $assert.verifyProperty(f, "prototype", {
+ writable: true,
+ enumerable: false,
+ configurable: false,
+ });

+ $assert.compare(Reflect.ownKeys(f), ['length', 'name', 'prototype'], f);

+ ...

Prototype Chain

Property Descriptor
Property Order

/ 3419

JEST - Assertion Injection
function f() {}

JS

 function f() {}

+ $assert.equal(Object.getPrototypeOf(f), Function.prototype);

+ $assert.verifyProperty(f, "prototype", {
+ writable: true,
+ enumerable: false,
+ configurable: false,
+ });

+ $assert.compare(Reflect.ownKeys(f), ['length', 'name', 'prototype'], f);

+ ...

Prototype Chain

Property Descriptor
Property Order

Etc.

/ 34

• JEST synthesized 1,700 conformance tests from ES2020

20

JEST - Evaluation
JEST: N+1-version Differential Testing of
Both JavaScript Engines and Specification

Jihyeok Park
School of Computing

KAIST

Daejeon, South Korea
jhpark0223@kaist.ac.kr

Seungmin An
School of Computing

KAIST

Daejeon, South Korea
h2oche@kaist.ac.kr

Dongjun Youn
School of Computing

KAIST

Daejeon, South Korea
f52985@kaist.ac.kr

Gyeongwon Kim
School of Computing

KAIST

Daejeon, South Korea
gyeongwon.kim@kaist.ac.kr

Sukyoung Ryu
School of Computing

KAIST

Daejeon, South Korea
sryu.cs@kaist.ac.kr

GraalVM
Abstract—Modern programming follows the continuous inte-

gration (CI) and continuous deployment (CD) approach rather
than the traditional waterfall model. Even the development of
modern programming languages uses the CI/CD approach to
swiftly provide new language features and to adapt to new devel-
opment environments. Unlike in the conventional approach, in the
modern CI/CD approach, a language specification is no more the
oracle of the language semantics because both the specification
and its implementations (interpreters or compilers) can co-evolve.
In this setting, both the specification and implementations may
have bugs, and guaranteeing their correctness is non-trivial.

In this paper, we propose a novel N+1-version differential
testing to resolve the problem. Unlike the traditional differential
testing, our approach consists of three steps: 1) to automatically
synthesize programs guided by the syntax and semantics from a
given language specification, 2) to generate conformance tests by
injecting assertions to the synthesized programs to check their
final program states, 3) to detect bugs in the specification and
implementations via executing the conformance tests on multiple
implementations, and 4) to localize bugs on the specification
using statistical information. We actualize our approach for the
JavaScript programming language via JEST, which performs
N+1-version differential testing for modern JavaScript engines
and ECMAScript, the language specification describing the
syntax and semantics of JavaScript in a natural language. We
evaluated JEST with four JavaScript engines that support all
modern JavaScript language features and the latest version of
ECMAScript (ES11, 2020). JEST automatically synthesized 1,700
programs that covered 97.78% of syntax and 87.70% of semantics
from ES11. Using the assertion-injected JavaScript programs,
it detected 44 engine bugs in four different engines and 27
specification bugs in ES11.

Index Terms—JavaScript, conformance test generation, mech-
anized specification, differential testing

I. INTRODUCTION

In Peter O’Hearn’s keynote speech in ICSE 2020, he quoted
the following from Mark Zuckerberg’s Letter to Investors [1]:

The Hacker Way is an approach to building that in-
volves continuous improvement and iteration. Hack-
ers believe that somethings can always be better, and
that nothing is ever complete.

Indeed, modern programming follows the continuous integra-
tion (CI) and continuous deployment (CD) approach [2] rather
than the traditional waterfall model. Instead of a sequential
model that divides software development into several phases,

each of which takes time, CI/CD amounts to a cycle of quick
software development, deployment, and back to development
with feedback. Even the development of programming lan-
guages uses the CI/CD approach.

Consider JavaScript, one of the most widely used pro-
gramming languages for client-side and server-side program-
ming [3] and embedded systems [4]–[6]. Various JavaScript
engines provide diverse extensions to adapt to fast-changing
user demands. At the same time, ECMAScript, the offi-
cial specification that describes the syntax and semantics of
JavaScript, is annually updated since ECMAScript 6 (ES6,
2015) [7] to support new features in response to user demands.
Such updates in both the specification and implementations in
tandem make it difficult for them to be in sync.

Another example is Solidity [8], the standard smart contract
programming language for the Ethereum blockchain. The
Solidity language specification is continuously updated, and
the Solidity compiler is also frequently released. According to
Hwang and Ryu [9], the average number of days between
consecutive releases from Solidity 0.1.2 to 0.5.7 is 27. In
most cases, the Solidity compiler reflects updates in the
specification, but even the specification is revised according to
the semantics implemented in the compiler. As in JavaScript,
bidirectional effects in the specification and the implementa-
tion make it hard to guarantee their correspondence.

In this approach, both the specification and the implemen-
tation may contain bugs, and guaranteeing their correctness
is a challenging task. The conventional approach to build
a programming language is uni-directional from a language
specification to its implementation. The specification is be-
lieved to be correct and the conformance of an implementation
to the specification is checked by dynamic testing. Unlike in
the conventional approach, in the modern CI/CD approach,
the specification may not be the oracle, because both the
specification and the implementation can co-evolve.

In this paper, we propose a novel N+1-version differential

testing, which enables testing of co-evolving specifications
and their implementations. The differential testing [10] is a
testing technique, which executes N implementations of a
specification concurrently for each input, and detects a prob-
lem when the outputs are in disagreement. In addition to N
implementations, our approach tests the specification as well

44 Bugs
Detected

“Right now, we are running Test262 and the V8 and

Nashorn unit test suites in our CI for every change,

it might make sense to add your suite as well.”

- A Developer of . .

try { ++undefined; } catch (e) { }

Crash

/ 3421

ECMA-262
(JS Spec.)

Mech. Spec.
Extraction

Conform. Test
Synthesis

Mechanized
Spec.

Conformance
Tests

JavaScript
Engines

ASE 2020 ICSE 2021

Feature-Sens.
Coverage

PLDI 2023

[PLDI’23] J. Park, D. Youn, K, Lee, and S. Ryu, Feature-Sensitive Coverage for Conformance Testing
of Programming Language Implementations

/ 3422

Graph Coverage for Language Specification

Graph Coverage

Measure

Quality of
Conformance Tests

Mechanized
Spec.

Conformance
Tests

/ 3422

Graph Coverage for Language Specification

Graph Coverage

Measure

Quality of
Conformance Tests

Coverage Criteria

Node Coverage

Branch Coverage

Prime Path Coverage

Def-Use Coverage

…

Mechanized
Spec.

Conformance
Tests

/ 3422

Graph Coverage for Language Specification

Graph Coverage

Measure

Quality of
Conformance Tests

Coverage Criteria

Node Coverage

Branch Coverage

Prime Path Coverage

Def-Use Coverage

…

Test Requirements (TRs)

Mechanized
Spec.

Conformance
Tests

/ 3422

Graph Coverage for Language Specification

Graph Coverage

Measure

Quality of
Conformance Tests

Coverage Criteria

Node Coverage

Branch Coverage

Prime Path Coverage

Def-Use Coverage

…

Test Requirements (TRs)

Are they sufficient?

Mechanized
Spec.

Conformance
Tests

/ 3423

Motivating Example 1 with Node Coverage
1 + 2n

Program P1

JS
TypeError

/ 34
Abstract Algorithms in ECMA-262 (ES13, 2022), JavaScript Language Specification

Evaluation of AddExpr : AddExpr + MulExpr

1. Return ? EvalStrOrNumBinExpr (AddExpr, +, MulExpr).

ADD
feat

23

Motivating Example 1 with Node Coverage
1 + 2n

Program P1

JS
TypeError

/ 34
Abstract Algorithms in ECMA-262 (ES13, 2022), JavaScript Language Specification

Evaluation of AddExpr : AddExpr + MulExpr

1. Return ? EvalStrOrNumBinExpr (AddExpr, +, MulExpr).

ADD
feat

EvalStrOrNumBinExpr (lval, opText, rval)
…
5. Return ? ApplyStrOrNumBinOp (lval, opText, rval).

23

Motivating Example 1 with Node Coverage
1 + 2n

Program P1

JS
TypeError

/ 34
Abstract Algorithms in ECMA-262 (ES13, 2022), JavaScript Language Specification

Evaluation of AddExpr : AddExpr + MulExpr

1. Return ? EvalStrOrNumBinExpr (AddExpr, +, MulExpr).

ADD
feat

EvalStrOrNumBinExpr (lval, opText, rval)
…
5. Return ? ApplyStrOrNumBinOp (lval, opText, rval).

ApplyStrOrNumBinOp (lval, opText, rval)
…
5. If Type(lnum) is different from Type(rnum),

throw a TypeError exception.
…

23

Motivating Example 1 with Node Coverage
1 + 2n

Program P1

JS
TypeError

/ 34
Abstract Algorithms in ECMA-262 (ES13, 2022), JavaScript Language Specification

Evaluation of AddExpr : AddExpr + MulExpr

1. Return ? EvalStrOrNumBinExpr (AddExpr, +, MulExpr).

ADD
feat

EvalStrOrNumBinExpr (lval, opText, rval)
…
5. Return ? ApplyStrOrNumBinOp (lval, opText, rval).

ApplyStrOrNumBinOp (lval, opText, rval)
…
5. If Type(lnum) is different from Type(rnum),

throw a TypeError exception.
…

23

Motivating Example 1 with Node Coverage

1

1 + 2n
Program P1

JS
TypeError

/ 34
Abstract Algorithms in ECMA-262 (ES13, 2022), JavaScript Language Specification

Evaluation of AddExpr : AddExpr + MulExpr

1. Return ? EvalStrOrNumBinExpr (AddExpr, +, MulExpr).

ADD
feat

EvalStrOrNumBinExpr (lval, opText, rval)
…
5. Return ? ApplyStrOrNumBinOp (lval, opText, rval).

ApplyStrOrNumBinOp (lval, opText, rval)
…
5. If Type(lnum) is different from Type(rnum),

throw a TypeError exception.
…

23

Motivating Example 1 with Node Coverage

1

1 + 2n
Program P1

JS
TypeErrorNode Coverage

TR = Node

/ 34
Abstract Algorithms in ECMA-262 (ES13, 2022), JavaScript Language Specification

Evaluation of AddExpr : AddExpr + MulExpr

1. Return ? EvalStrOrNumBinExpr (AddExpr, +, MulExpr).

ADD
feat

EvalStrOrNumBinExpr (lval, opText, rval)
…
5. Return ? ApplyStrOrNumBinOp (lval, opText, rval).

ApplyStrOrNumBinOp (lval, opText, rval)
…
5. If Type(lnum) is different from Type(rnum),

throw a TypeError exception.
…

23

Motivating Example 1 with Node Coverage

1

1
cover

1 + 2n
Program P1

JS
TypeErrorNode Coverage

TR = Node

/ 34
Abstract Algorithms in ECMA-262 (ES13, 2022), JavaScript Language Specification

Evaluation of AddExpr : AddExpr + MulExpr

1. Return ? EvalStrOrNumBinExpr (AddExpr, +, MulExpr).

ADD
feat

EvalStrOrNumBinExpr (lval, opText, rval)
…
5. Return ? ApplyStrOrNumBinOp (lval, opText, rval).

ApplyStrOrNumBinOp (lval, opText, rval)
…
5. If Type(lnum) is different from Type(rnum),

throw a TypeError exception.
…

23

Motivating Example 1 with Node Coverage

1

1
cover

1 + 2n
Program P1

JS
TypeError

1 - 2n
Program P2

JS
TypeError

Node Coverage

TR = Node

/ 34
Abstract Algorithms in ECMA-262 (ES13, 2022), JavaScript Language Specification

Evaluation of AddExpr : AddExpr + MulExpr

1. Return ? EvalStrOrNumBinExpr (AddExpr, +, MulExpr).

ADD
feat

EvalStrOrNumBinExpr (lval, opText, rval)
…
5. Return ? ApplyStrOrNumBinOp (lval, opText, rval).

ApplyStrOrNumBinOp (lval, opText, rval)
…
5. If Type(lnum) is different from Type(rnum),

throw a TypeError exception.
…

23

Motivating Example 1 with Node Coverage

1

Evaluation of AddExpr : AddExpr - MulExpr

1. Return ? EvalStrOrNumBinExpr (AddExpr, -, MulExpr).

SUB
feat

1
cover

1 + 2n
Program P1

JS
TypeError

1 - 2n
Program P2

JS
TypeError

Node Coverage

TR = Node

/ 34
Abstract Algorithms in ECMA-262 (ES13, 2022), JavaScript Language Specification

Evaluation of AddExpr : AddExpr + MulExpr

1. Return ? EvalStrOrNumBinExpr (AddExpr, +, MulExpr).

ADD
feat

EvalStrOrNumBinExpr (lval, opText, rval)
…
5. Return ? ApplyStrOrNumBinOp (lval, opText, rval).

ApplyStrOrNumBinOp (lval, opText, rval)
…
5. If Type(lnum) is different from Type(rnum),

throw a TypeError exception.
…

23

Motivating Example 1 with Node Coverage

1

Evaluation of AddExpr : AddExpr - MulExpr

1. Return ? EvalStrOrNumBinExpr (AddExpr, -, MulExpr).

SUB
feat

1
cover

1
cover

1 + 2n
Program P1

JS
TypeError

1 - 2n
Program P2

JS
TypeError

Node Coverage

TR = Node

/ 34
Abstract Algorithms in ECMA-262 (ES13, 2022), JavaScript Language Specification

Evaluation of AddExpr : AddExpr + MulExpr

1. Return ? EvalStrOrNumBinExpr (AddExpr, +, MulExpr).

ADD
feat

EvalStrOrNumBinExpr (lval, opText, rval)
…
5. Return ? ApplyStrOrNumBinOp (lval, opText, rval).

ApplyStrOrNumBinOp (lval, opText, rval)
…
5. If Type(lnum) is different from Type(rnum),

throw a TypeError exception.
…

23

Motivating Example 1 with Node Coverage

1

Evaluation of AddExpr : AddExpr - MulExpr

1. Return ? EvalStrOrNumBinExpr (AddExpr, -, MulExpr).

SUB
feat

Same TRs

1
cover

1
cover

1 + 2n
Program P1

JS
TypeError

1 - 2n
Program P2

JS
TypeError

Node Coverage

TR = Node

/ 34
Abstract Algorithms in ECMA-262 (ES13, 2022), JavaScript Language Specification

Evaluation of AddExpr : AddExpr + MulExpr

1. Return ? EvalStrOrNumBinExpr (AddExpr, +, MulExpr).

ADD
feat

EvalStrOrNumBinExpr (lval, opText, rval)
…
5. Return ? ApplyStrOrNumBinOp (lval, opText, rval).

ApplyStrOrNumBinOp (lval, opText, rval)
…
5. If Type(lnum) is different from Type(rnum),

throw a TypeError exception.
…

23

Motivating Example 1 with Node Coverage

1

Evaluation of AddExpr : AddExpr - MulExpr

1. Return ? EvalStrOrNumBinExpr (AddExpr, -, MulExpr).

SUB
feat

Same TRs

1
cover

1
cover

Cannot
Distinguish
P1 and P2

1 + 2n
Program P1

JS
TypeError

1 - 2n
Program P2

JS
TypeError

Node Coverage

TR = Node

/ 3424

Insight from Context Tunneling [OOPSLA’18]

140:4 Minseok Jeon, Sehun Jeong, and Hakjoo Oh

1 class A {} class B {}

2 class C {

3 static Object id (Object v, int i){

4 return i >= 0 ? id(v, i-1) : v;

5 }

6 public static void main (){

7 int i = input();

8 A a = (A) id(new A(), i); //Query 1

9 B b = (B) id(new B(), i); //Query 2

10 }

11 }

(a) Example code

main

[·]

id

[8]

id

[9]

id

[8, 4]

id

[9, 4]

id

[8, 4, · · · , 4| {z }
k

]

id

[9, 4, · · · , 4| {z }
k

]

id

[4, · · · , 4| {z }
k

]

(b) Call-graph by k-CFA

main

[·]

id

[8]

id

[9]

(c) Call-graph by 1-CFA with tunneling

Fig. 1. Example and call-graphs constructed by the conventional k-call-site-sensitivity (k-CFA) and our
1-call-site-sensitivity with context tunneling

Conventional Call-Site-Sensitivity. The traditional k-call-site-sensitive analysis fails to prove
the queries no matter what k value is used. Because the value of i can be any integer, the following
set K1 of in�nite number of call-strings can be generated for method id at runtime:

K1 = {[8], [9], [8, 4], [9, 4], [8, 4, 4], [9, 4, 4], [8, 4, 4, 4], [9, 4, 4, 4], . . .}

where, for example, [8, 4] denotes the context that method id was called along the sequence of
call-sites 8 and 4. The k-call-site-sensitive analysis approximates the call-strings in K1 by their
su�xes of length up to k . For example, when k = 2, the analysis uses the following setK2 of abstract
contexts:

K2 = {[8], [9], [8, 4], [9, 4], [4, 4]}
where an in�nite number of contexts, {[8, 4, 4], [9, 4, 4], [8, 4, 4, 4], [9, 4, 4, 4], . . .}, in K1 are approx-
imated by their common su�x [4, 4]. The analysis analyzes the method id separately for each
context in K2. Although this approximation ensures termination, the analysis is now unable to
di�erentiate the two separate calls to id at lines 8 and 9, causing the argument v of id to point
to both objects A and B at the same time when the context becomes [4, 4]. Thus, both objects get
returned to both queries simultaneously, making the analysis fail to prove their cast safety. Note
that the analysis fails to prove the queries for any k values, because all the context strings longer
than k are eventually merged into a single context [4, . . . , 4| {z }

k

] (see Fig. 1b).

Context Tunneling. With context tunneling, however, even 1-call-site sensitive analysis be-
comes to prove the queries. The main weakness of the conventional k-context-sensitive analysis
is that it blindly updates the context of a method at every call-site, thereby allowing important
context elements for the method to be easily overwritten by less important ones. In the example,
distinguishing the two call-sites at lines 8 and 9 is essential to proving the queries. However, this
information is eventually lost by repeatedly appending the less important call-site 4 to the context
of id (Fig. 1b). Our technique aims to overcome this weakness by maintaining important context
elements only during analysis. For example, we exclude the call-site 4 from the context strings

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 140. Publication date: November 2018.

140:4 Minseok Jeon, Sehun Jeong, and Hakjoo Oh

1 class A {} class B {}

2 class C {

3 static Object id (Object v, int i){

4 return i >= 0 ? id(v, i-1) : v;

5 }

6 public static void main (){

7 int i = input();

8 A a = (A) id(new A(), i); //Query 1

9 B b = (B) id(new B(), i); //Query 2

10 }

11 }

(a) Example code

main

[·]

id

[8]

id

[9]

id

[8, 4]

id

[9, 4]

id

[8, 4, · · · , 4| {z }
k

]

id

[9, 4, · · · , 4| {z }
k

]

id

[4, · · · , 4| {z }
k

]

(b) Call-graph by k-CFA

main

[·]

id

[8]

id

[9]

(c) Call-graph by 1-CFA with tunneling

Fig. 1. Example and call-graphs constructed by the conventional k-call-site-sensitivity (k-CFA) and our
1-call-site-sensitivity with context tunneling

Conventional Call-Site-Sensitivity. The traditional k-call-site-sensitive analysis fails to prove
the queries no matter what k value is used. Because the value of i can be any integer, the following
set K1 of in�nite number of call-strings can be generated for method id at runtime:

K1 = {[8], [9], [8, 4], [9, 4], [8, 4, 4], [9, 4, 4], [8, 4, 4, 4], [9, 4, 4, 4], . . .}

where, for example, [8, 4] denotes the context that method id was called along the sequence of
call-sites 8 and 4. The k-call-site-sensitive analysis approximates the call-strings in K1 by their
su�xes of length up to k . For example, when k = 2, the analysis uses the following setK2 of abstract
contexts:

K2 = {[8], [9], [8, 4], [9, 4], [4, 4]}
where an in�nite number of contexts, {[8, 4, 4], [9, 4, 4], [8, 4, 4, 4], [9, 4, 4, 4], . . .}, in K1 are approx-
imated by their common su�x [4, 4]. The analysis analyzes the method id separately for each
context in K2. Although this approximation ensures termination, the analysis is now unable to
di�erentiate the two separate calls to id at lines 8 and 9, causing the argument v of id to point
to both objects A and B at the same time when the context becomes [4, 4]. Thus, both objects get
returned to both queries simultaneously, making the analysis fail to prove their cast safety. Note
that the analysis fails to prove the queries for any k values, because all the context strings longer
than k are eventually merged into a single context [4, . . . , 4| {z }

k

] (see Fig. 1b).

Context Tunneling. With context tunneling, however, even 1-call-site sensitive analysis be-
comes to prove the queries. The main weakness of the conventional k-context-sensitive analysis
is that it blindly updates the context of a method at every call-site, thereby allowing important
context elements for the method to be easily overwritten by less important ones. In the example,
distinguishing the two call-sites at lines 8 and 9 is essential to proving the queries. However, this
information is eventually lost by repeatedly appending the less important call-site 4 to the context
of id (Fig. 1b). Our technique aims to overcome this weakness by maintaining important context
elements only during analysis. For example, we exclude the call-site 4 from the context strings

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 140. Publication date: November 2018.

[OOPSLA’18] M. Jeon, S. Jeong, and H, Oh, Precise and Scalable Points-to Analysis via Data-Driven Context Tunneling

𝑘-Callsite Sensitivity

/ 3424

Insight from Context Tunneling [OOPSLA’18]

140:4 Minseok Jeon, Sehun Jeong, and Hakjoo Oh

1 class A {} class B {}

2 class C {

3 static Object id (Object v, int i){

4 return i >= 0 ? id(v, i-1) : v;

5 }

6 public static void main (){

7 int i = input();

8 A a = (A) id(new A(), i); //Query 1

9 B b = (B) id(new B(), i); //Query 2

10 }

11 }

(a) Example code

main

[·]

id

[8]

id

[9]

id

[8, 4]

id

[9, 4]

id

[8, 4, · · · , 4| {z }
k

]

id

[9, 4, · · · , 4| {z }
k

]

id

[4, · · · , 4| {z }
k

]

(b) Call-graph by k-CFA

main

[·]

id

[8]

id

[9]

(c) Call-graph by 1-CFA with tunneling

Fig. 1. Example and call-graphs constructed by the conventional k-call-site-sensitivity (k-CFA) and our
1-call-site-sensitivity with context tunneling

Conventional Call-Site-Sensitivity. The traditional k-call-site-sensitive analysis fails to prove
the queries no matter what k value is used. Because the value of i can be any integer, the following
set K1 of in�nite number of call-strings can be generated for method id at runtime:

K1 = {[8], [9], [8, 4], [9, 4], [8, 4, 4], [9, 4, 4], [8, 4, 4, 4], [9, 4, 4, 4], . . .}

where, for example, [8, 4] denotes the context that method id was called along the sequence of
call-sites 8 and 4. The k-call-site-sensitive analysis approximates the call-strings in K1 by their
su�xes of length up to k . For example, when k = 2, the analysis uses the following setK2 of abstract
contexts:

K2 = {[8], [9], [8, 4], [9, 4], [4, 4]}
where an in�nite number of contexts, {[8, 4, 4], [9, 4, 4], [8, 4, 4, 4], [9, 4, 4, 4], . . .}, in K1 are approx-
imated by their common su�x [4, 4]. The analysis analyzes the method id separately for each
context in K2. Although this approximation ensures termination, the analysis is now unable to
di�erentiate the two separate calls to id at lines 8 and 9, causing the argument v of id to point
to both objects A and B at the same time when the context becomes [4, 4]. Thus, both objects get
returned to both queries simultaneously, making the analysis fail to prove their cast safety. Note
that the analysis fails to prove the queries for any k values, because all the context strings longer
than k are eventually merged into a single context [4, . . . , 4| {z }

k

] (see Fig. 1b).

Context Tunneling. With context tunneling, however, even 1-call-site sensitive analysis be-
comes to prove the queries. The main weakness of the conventional k-context-sensitive analysis
is that it blindly updates the context of a method at every call-site, thereby allowing important
context elements for the method to be easily overwritten by less important ones. In the example,
distinguishing the two call-sites at lines 8 and 9 is essential to proving the queries. However, this
information is eventually lost by repeatedly appending the less important call-site 4 to the context
of id (Fig. 1b). Our technique aims to overcome this weakness by maintaining important context
elements only during analysis. For example, we exclude the call-site 4 from the context strings

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 140. Publication date: November 2018.

140:4 Minseok Jeon, Sehun Jeong, and Hakjoo Oh

1 class A {} class B {}

2 class C {

3 static Object id (Object v, int i){

4 return i >= 0 ? id(v, i-1) : v;

5 }

6 public static void main (){

7 int i = input();

8 A a = (A) id(new A(), i); //Query 1

9 B b = (B) id(new B(), i); //Query 2

10 }

11 }

(a) Example code

main

[·]

id

[8]

id

[9]

id

[8, 4]

id

[9, 4]

id

[8, 4, · · · , 4| {z }
k

]

id

[9, 4, · · · , 4| {z }
k

]

id

[4, · · · , 4| {z }
k

]

(b) Call-graph by k-CFA

main

[·]

id

[8]

id

[9]

(c) Call-graph by 1-CFA with tunneling

Fig. 1. Example and call-graphs constructed by the conventional k-call-site-sensitivity (k-CFA) and our
1-call-site-sensitivity with context tunneling

Conventional Call-Site-Sensitivity. The traditional k-call-site-sensitive analysis fails to prove
the queries no matter what k value is used. Because the value of i can be any integer, the following
set K1 of in�nite number of call-strings can be generated for method id at runtime:

K1 = {[8], [9], [8, 4], [9, 4], [8, 4, 4], [9, 4, 4], [8, 4, 4, 4], [9, 4, 4, 4], . . .}

where, for example, [8, 4] denotes the context that method id was called along the sequence of
call-sites 8 and 4. The k-call-site-sensitive analysis approximates the call-strings in K1 by their
su�xes of length up to k . For example, when k = 2, the analysis uses the following setK2 of abstract
contexts:

K2 = {[8], [9], [8, 4], [9, 4], [4, 4]}
where an in�nite number of contexts, {[8, 4, 4], [9, 4, 4], [8, 4, 4, 4], [9, 4, 4, 4], . . .}, in K1 are approx-
imated by their common su�x [4, 4]. The analysis analyzes the method id separately for each
context in K2. Although this approximation ensures termination, the analysis is now unable to
di�erentiate the two separate calls to id at lines 8 and 9, causing the argument v of id to point
to both objects A and B at the same time when the context becomes [4, 4]. Thus, both objects get
returned to both queries simultaneously, making the analysis fail to prove their cast safety. Note
that the analysis fails to prove the queries for any k values, because all the context strings longer
than k are eventually merged into a single context [4, . . . , 4| {z }

k

] (see Fig. 1b).

Context Tunneling. With context tunneling, however, even 1-call-site sensitive analysis be-
comes to prove the queries. The main weakness of the conventional k-context-sensitive analysis
is that it blindly updates the context of a method at every call-site, thereby allowing important
context elements for the method to be easily overwritten by less important ones. In the example,
distinguishing the two call-sites at lines 8 and 9 is essential to proving the queries. However, this
information is eventually lost by repeatedly appending the less important call-site 4 to the context
of id (Fig. 1b). Our technique aims to overcome this weakness by maintaining important context
elements only during analysis. For example, we exclude the call-site 4 from the context strings

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 140. Publication date: November 2018.

[OOPSLA’18] M. Jeon, S. Jeong, and H, Oh, Precise and Scalable Points-to Analysis via Data-Driven Context Tunneling

Unnecessary
Split

𝑘-Callsite Sensitivity

/ 3424

Insight from Context Tunneling [OOPSLA’18]

140:4 Minseok Jeon, Sehun Jeong, and Hakjoo Oh

1 class A {} class B {}

2 class C {

3 static Object id (Object v, int i){

4 return i >= 0 ? id(v, i-1) : v;

5 }

6 public static void main (){

7 int i = input();

8 A a = (A) id(new A(), i); //Query 1

9 B b = (B) id(new B(), i); //Query 2

10 }

11 }

(a) Example code

main

[·]

id

[8]

id

[9]

id

[8, 4]

id

[9, 4]

id

[8, 4, · · · , 4| {z }
k

]

id

[9, 4, · · · , 4| {z }
k

]

id

[4, · · · , 4| {z }
k

]

(b) Call-graph by k-CFA

main

[·]

id

[8]

id

[9]

(c) Call-graph by 1-CFA with tunneling

Fig. 1. Example and call-graphs constructed by the conventional k-call-site-sensitivity (k-CFA) and our
1-call-site-sensitivity with context tunneling

Conventional Call-Site-Sensitivity. The traditional k-call-site-sensitive analysis fails to prove
the queries no matter what k value is used. Because the value of i can be any integer, the following
set K1 of in�nite number of call-strings can be generated for method id at runtime:

K1 = {[8], [9], [8, 4], [9, 4], [8, 4, 4], [9, 4, 4], [8, 4, 4, 4], [9, 4, 4, 4], . . .}

where, for example, [8, 4] denotes the context that method id was called along the sequence of
call-sites 8 and 4. The k-call-site-sensitive analysis approximates the call-strings in K1 by their
su�xes of length up to k . For example, when k = 2, the analysis uses the following setK2 of abstract
contexts:

K2 = {[8], [9], [8, 4], [9, 4], [4, 4]}
where an in�nite number of contexts, {[8, 4, 4], [9, 4, 4], [8, 4, 4, 4], [9, 4, 4, 4], . . .}, in K1 are approx-
imated by their common su�x [4, 4]. The analysis analyzes the method id separately for each
context in K2. Although this approximation ensures termination, the analysis is now unable to
di�erentiate the two separate calls to id at lines 8 and 9, causing the argument v of id to point
to both objects A and B at the same time when the context becomes [4, 4]. Thus, both objects get
returned to both queries simultaneously, making the analysis fail to prove their cast safety. Note
that the analysis fails to prove the queries for any k values, because all the context strings longer
than k are eventually merged into a single context [4, . . . , 4| {z }

k

] (see Fig. 1b).

Context Tunneling. With context tunneling, however, even 1-call-site sensitive analysis be-
comes to prove the queries. The main weakness of the conventional k-context-sensitive analysis
is that it blindly updates the context of a method at every call-site, thereby allowing important
context elements for the method to be easily overwritten by less important ones. In the example,
distinguishing the two call-sites at lines 8 and 9 is essential to proving the queries. However, this
information is eventually lost by repeatedly appending the less important call-site 4 to the context
of id (Fig. 1b). Our technique aims to overcome this weakness by maintaining important context
elements only during analysis. For example, we exclude the call-site 4 from the context strings

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 140. Publication date: November 2018.

140:4 Minseok Jeon, Sehun Jeong, and Hakjoo Oh

1 class A {} class B {}

2 class C {

3 static Object id (Object v, int i){

4 return i >= 0 ? id(v, i-1) : v;

5 }

6 public static void main (){

7 int i = input();

8 A a = (A) id(new A(), i); //Query 1

9 B b = (B) id(new B(), i); //Query 2

10 }

11 }

(a) Example code

main

[·]

id

[8]

id

[9]

id

[8, 4]

id

[9, 4]

id

[8, 4, · · · , 4| {z }
k

]

id

[9, 4, · · · , 4| {z }
k

]

id

[4, · · · , 4| {z }
k

]

(b) Call-graph by k-CFA

main

[·]

id

[8]

id

[9]

(c) Call-graph by 1-CFA with tunneling

Fig. 1. Example and call-graphs constructed by the conventional k-call-site-sensitivity (k-CFA) and our
1-call-site-sensitivity with context tunneling

Conventional Call-Site-Sensitivity. The traditional k-call-site-sensitive analysis fails to prove
the queries no matter what k value is used. Because the value of i can be any integer, the following
set K1 of in�nite number of call-strings can be generated for method id at runtime:

K1 = {[8], [9], [8, 4], [9, 4], [8, 4, 4], [9, 4, 4], [8, 4, 4, 4], [9, 4, 4, 4], . . .}

where, for example, [8, 4] denotes the context that method id was called along the sequence of
call-sites 8 and 4. The k-call-site-sensitive analysis approximates the call-strings in K1 by their
su�xes of length up to k . For example, when k = 2, the analysis uses the following setK2 of abstract
contexts:

K2 = {[8], [9], [8, 4], [9, 4], [4, 4]}
where an in�nite number of contexts, {[8, 4, 4], [9, 4, 4], [8, 4, 4, 4], [9, 4, 4, 4], . . .}, in K1 are approx-
imated by their common su�x [4, 4]. The analysis analyzes the method id separately for each
context in K2. Although this approximation ensures termination, the analysis is now unable to
di�erentiate the two separate calls to id at lines 8 and 9, causing the argument v of id to point
to both objects A and B at the same time when the context becomes [4, 4]. Thus, both objects get
returned to both queries simultaneously, making the analysis fail to prove their cast safety. Note
that the analysis fails to prove the queries for any k values, because all the context strings longer
than k are eventually merged into a single context [4, . . . , 4| {z }

k

] (see Fig. 1b).

Context Tunneling. With context tunneling, however, even 1-call-site sensitive analysis be-
comes to prove the queries. The main weakness of the conventional k-context-sensitive analysis
is that it blindly updates the context of a method at every call-site, thereby allowing important
context elements for the method to be easily overwritten by less important ones. In the example,
distinguishing the two call-sites at lines 8 and 9 is essential to proving the queries. However, this
information is eventually lost by repeatedly appending the less important call-site 4 to the context
of id (Fig. 1b). Our technique aims to overcome this weakness by maintaining important context
elements only during analysis. For example, we exclude the call-site 4 from the context strings

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 140. Publication date: November 2018.

[OOPSLA’18] M. Jeon, S. Jeong, and H, Oh, Precise and Scalable Points-to Analysis via Data-Driven Context Tunneling

Unnecessary
Split

Unnecessary
Merge

𝑘-Callsite Sensitivity

/ 3424

Insight from Context Tunneling [OOPSLA’18]

140:4 Minseok Jeon, Sehun Jeong, and Hakjoo Oh

1 class A {} class B {}

2 class C {

3 static Object id (Object v, int i){

4 return i >= 0 ? id(v, i-1) : v;

5 }

6 public static void main (){

7 int i = input();

8 A a = (A) id(new A(), i); //Query 1

9 B b = (B) id(new B(), i); //Query 2

10 }

11 }

(a) Example code

main

[·]

id

[8]

id

[9]

id

[8, 4]

id

[9, 4]

id

[8, 4, · · · , 4| {z }
k

]

id

[9, 4, · · · , 4| {z }
k

]

id

[4, · · · , 4| {z }
k

]

(b) Call-graph by k-CFA

main

[·]

id

[8]

id

[9]

(c) Call-graph by 1-CFA with tunneling

Fig. 1. Example and call-graphs constructed by the conventional k-call-site-sensitivity (k-CFA) and our
1-call-site-sensitivity with context tunneling

Conventional Call-Site-Sensitivity. The traditional k-call-site-sensitive analysis fails to prove
the queries no matter what k value is used. Because the value of i can be any integer, the following
set K1 of in�nite number of call-strings can be generated for method id at runtime:

K1 = {[8], [9], [8, 4], [9, 4], [8, 4, 4], [9, 4, 4], [8, 4, 4, 4], [9, 4, 4, 4], . . .}

where, for example, [8, 4] denotes the context that method id was called along the sequence of
call-sites 8 and 4. The k-call-site-sensitive analysis approximates the call-strings in K1 by their
su�xes of length up to k . For example, when k = 2, the analysis uses the following setK2 of abstract
contexts:

K2 = {[8], [9], [8, 4], [9, 4], [4, 4]}
where an in�nite number of contexts, {[8, 4, 4], [9, 4, 4], [8, 4, 4, 4], [9, 4, 4, 4], . . .}, in K1 are approx-
imated by their common su�x [4, 4]. The analysis analyzes the method id separately for each
context in K2. Although this approximation ensures termination, the analysis is now unable to
di�erentiate the two separate calls to id at lines 8 and 9, causing the argument v of id to point
to both objects A and B at the same time when the context becomes [4, 4]. Thus, both objects get
returned to both queries simultaneously, making the analysis fail to prove their cast safety. Note
that the analysis fails to prove the queries for any k values, because all the context strings longer
than k are eventually merged into a single context [4, . . . , 4| {z }

k

] (see Fig. 1b).

Context Tunneling. With context tunneling, however, even 1-call-site sensitive analysis be-
comes to prove the queries. The main weakness of the conventional k-context-sensitive analysis
is that it blindly updates the context of a method at every call-site, thereby allowing important
context elements for the method to be easily overwritten by less important ones. In the example,
distinguishing the two call-sites at lines 8 and 9 is essential to proving the queries. However, this
information is eventually lost by repeatedly appending the less important call-site 4 to the context
of id (Fig. 1b). Our technique aims to overcome this weakness by maintaining important context
elements only during analysis. For example, we exclude the call-site 4 from the context strings

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 140. Publication date: November 2018.

Not
Important

140:4 Minseok Jeon, Sehun Jeong, and Hakjoo Oh

1 class A {} class B {}

2 class C {

3 static Object id (Object v, int i){

4 return i >= 0 ? id(v, i-1) : v;

5 }

6 public static void main (){

7 int i = input();

8 A a = (A) id(new A(), i); //Query 1

9 B b = (B) id(new B(), i); //Query 2

10 }

11 }

(a) Example code

main

[·]

id

[8]

id

[9]

id

[8, 4]

id

[9, 4]

id

[8, 4, · · · , 4| {z }
k

]

id

[9, 4, · · · , 4| {z }
k

]

id

[4, · · · , 4| {z }
k

]

(b) Call-graph by k-CFA

main

[·]

id

[8]

id

[9]

(c) Call-graph by 1-CFA with tunneling

Fig. 1. Example and call-graphs constructed by the conventional k-call-site-sensitivity (k-CFA) and our
1-call-site-sensitivity with context tunneling

Conventional Call-Site-Sensitivity. The traditional k-call-site-sensitive analysis fails to prove
the queries no matter what k value is used. Because the value of i can be any integer, the following
set K1 of in�nite number of call-strings can be generated for method id at runtime:

K1 = {[8], [9], [8, 4], [9, 4], [8, 4, 4], [9, 4, 4], [8, 4, 4, 4], [9, 4, 4, 4], . . .}

where, for example, [8, 4] denotes the context that method id was called along the sequence of
call-sites 8 and 4. The k-call-site-sensitive analysis approximates the call-strings in K1 by their
su�xes of length up to k . For example, when k = 2, the analysis uses the following setK2 of abstract
contexts:

K2 = {[8], [9], [8, 4], [9, 4], [4, 4]}
where an in�nite number of contexts, {[8, 4, 4], [9, 4, 4], [8, 4, 4, 4], [9, 4, 4, 4], . . .}, in K1 are approx-
imated by their common su�x [4, 4]. The analysis analyzes the method id separately for each
context in K2. Although this approximation ensures termination, the analysis is now unable to
di�erentiate the two separate calls to id at lines 8 and 9, causing the argument v of id to point
to both objects A and B at the same time when the context becomes [4, 4]. Thus, both objects get
returned to both queries simultaneously, making the analysis fail to prove their cast safety. Note
that the analysis fails to prove the queries for any k values, because all the context strings longer
than k are eventually merged into a single context [4, . . . , 4| {z }

k

] (see Fig. 1b).

Context Tunneling. With context tunneling, however, even 1-call-site sensitive analysis be-
comes to prove the queries. The main weakness of the conventional k-context-sensitive analysis
is that it blindly updates the context of a method at every call-site, thereby allowing important
context elements for the method to be easily overwritten by less important ones. In the example,
distinguishing the two call-sites at lines 8 and 9 is essential to proving the queries. However, this
information is eventually lost by repeatedly appending the less important call-site 4 to the context
of id (Fig. 1b). Our technique aims to overcome this weakness by maintaining important context
elements only during analysis. For example, we exclude the call-site 4 from the context strings

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 140. Publication date: November 2018.

[OOPSLA’18] M. Jeon, S. Jeong, and H, Oh, Precise and Scalable Points-to Analysis via Data-Driven Context Tunneling

Unnecessary
Split

Unnecessary
Merge

𝑘-Callsite Sensitivity

/ 3424

Insight from Context Tunneling [OOPSLA’18]

140:4 Minseok Jeon, Sehun Jeong, and Hakjoo Oh

1 class A {} class B {}

2 class C {

3 static Object id (Object v, int i){

4 return i >= 0 ? id(v, i-1) : v;

5 }

6 public static void main (){

7 int i = input();

8 A a = (A) id(new A(), i); //Query 1

9 B b = (B) id(new B(), i); //Query 2

10 }

11 }

(a) Example code

main

[·]

id

[8]

id

[9]

id

[8, 4]

id

[9, 4]

id

[8, 4, · · · , 4| {z }
k

]

id

[9, 4, · · · , 4| {z }
k

]

id

[4, · · · , 4| {z }
k

]

(b) Call-graph by k-CFA

main

[·]

id

[8]

id

[9]

(c) Call-graph by 1-CFA with tunneling

Fig. 1. Example and call-graphs constructed by the conventional k-call-site-sensitivity (k-CFA) and our
1-call-site-sensitivity with context tunneling

Conventional Call-Site-Sensitivity. The traditional k-call-site-sensitive analysis fails to prove
the queries no matter what k value is used. Because the value of i can be any integer, the following
set K1 of in�nite number of call-strings can be generated for method id at runtime:

K1 = {[8], [9], [8, 4], [9, 4], [8, 4, 4], [9, 4, 4], [8, 4, 4, 4], [9, 4, 4, 4], . . .}

where, for example, [8, 4] denotes the context that method id was called along the sequence of
call-sites 8 and 4. The k-call-site-sensitive analysis approximates the call-strings in K1 by their
su�xes of length up to k . For example, when k = 2, the analysis uses the following setK2 of abstract
contexts:

K2 = {[8], [9], [8, 4], [9, 4], [4, 4]}
where an in�nite number of contexts, {[8, 4, 4], [9, 4, 4], [8, 4, 4, 4], [9, 4, 4, 4], . . .}, in K1 are approx-
imated by their common su�x [4, 4]. The analysis analyzes the method id separately for each
context in K2. Although this approximation ensures termination, the analysis is now unable to
di�erentiate the two separate calls to id at lines 8 and 9, causing the argument v of id to point
to both objects A and B at the same time when the context becomes [4, 4]. Thus, both objects get
returned to both queries simultaneously, making the analysis fail to prove their cast safety. Note
that the analysis fails to prove the queries for any k values, because all the context strings longer
than k are eventually merged into a single context [4, . . . , 4| {z }

k

] (see Fig. 1b).

Context Tunneling. With context tunneling, however, even 1-call-site sensitive analysis be-
comes to prove the queries. The main weakness of the conventional k-context-sensitive analysis
is that it blindly updates the context of a method at every call-site, thereby allowing important
context elements for the method to be easily overwritten by less important ones. In the example,
distinguishing the two call-sites at lines 8 and 9 is essential to proving the queries. However, this
information is eventually lost by repeatedly appending the less important call-site 4 to the context
of id (Fig. 1b). Our technique aims to overcome this weakness by maintaining important context
elements only during analysis. For example, we exclude the call-site 4 from the context strings

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 140. Publication date: November 2018.

Not
Important

140:4 Minseok Jeon, Sehun Jeong, and Hakjoo Oh

1 class A {} class B {}

2 class C {

3 static Object id (Object v, int i){

4 return i >= 0 ? id(v, i-1) : v;

5 }

6 public static void main (){

7 int i = input();

8 A a = (A) id(new A(), i); //Query 1

9 B b = (B) id(new B(), i); //Query 2

10 }

11 }

(a) Example code

main

[·]

id

[8]

id

[9]

id

[8, 4]

id

[9, 4]

id

[8, 4, · · · , 4| {z }
k

]

id

[9, 4, · · · , 4| {z }
k

]

id

[4, · · · , 4| {z }
k

]

(b) Call-graph by k-CFA

main

[·]

id

[8]

id

[9]

(c) Call-graph by 1-CFA with tunneling

Fig. 1. Example and call-graphs constructed by the conventional k-call-site-sensitivity (k-CFA) and our
1-call-site-sensitivity with context tunneling

Conventional Call-Site-Sensitivity. The traditional k-call-site-sensitive analysis fails to prove
the queries no matter what k value is used. Because the value of i can be any integer, the following
set K1 of in�nite number of call-strings can be generated for method id at runtime:

K1 = {[8], [9], [8, 4], [9, 4], [8, 4, 4], [9, 4, 4], [8, 4, 4, 4], [9, 4, 4, 4], . . .}

where, for example, [8, 4] denotes the context that method id was called along the sequence of
call-sites 8 and 4. The k-call-site-sensitive analysis approximates the call-strings in K1 by their
su�xes of length up to k . For example, when k = 2, the analysis uses the following setK2 of abstract
contexts:

K2 = {[8], [9], [8, 4], [9, 4], [4, 4]}
where an in�nite number of contexts, {[8, 4, 4], [9, 4, 4], [8, 4, 4, 4], [9, 4, 4, 4], . . .}, in K1 are approx-
imated by their common su�x [4, 4]. The analysis analyzes the method id separately for each
context in K2. Although this approximation ensures termination, the analysis is now unable to
di�erentiate the two separate calls to id at lines 8 and 9, causing the argument v of id to point
to both objects A and B at the same time when the context becomes [4, 4]. Thus, both objects get
returned to both queries simultaneously, making the analysis fail to prove their cast safety. Note
that the analysis fails to prove the queries for any k values, because all the context strings longer
than k are eventually merged into a single context [4, . . . , 4| {z }

k

] (see Fig. 1b).

Context Tunneling. With context tunneling, however, even 1-call-site sensitive analysis be-
comes to prove the queries. The main weakness of the conventional k-context-sensitive analysis
is that it blindly updates the context of a method at every call-site, thereby allowing important
context elements for the method to be easily overwritten by less important ones. In the example,
distinguishing the two call-sites at lines 8 and 9 is essential to proving the queries. However, this
information is eventually lost by repeatedly appending the less important call-site 4 to the context
of id (Fig. 1b). Our technique aims to overcome this weakness by maintaining important context
elements only during analysis. For example, we exclude the call-site 4 from the context strings

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 140. Publication date: November 2018.

Important

[OOPSLA’18] M. Jeon, S. Jeong, and H, Oh, Precise and Scalable Points-to Analysis via Data-Driven Context Tunneling

Unnecessary
Split

Unnecessary
Merge

𝑘-Callsite Sensitivity

/ 3425

Insight from Context Tunneling [OOPSLA’18]

Not
Important

140:4 Minseok Jeon, Sehun Jeong, and Hakjoo Oh

1 class A {} class B {}

2 class C {

3 static Object id (Object v, int i){

4 return i >= 0 ? id(v, i-1) : v;

5 }

6 public static void main (){

7 int i = input();

8 A a = (A) id(new A(), i); //Query 1

9 B b = (B) id(new B(), i); //Query 2

10 }

11 }

(a) Example code

main

[·]

id

[8]

id

[9]

id

[8, 4]

id

[9, 4]

id

[8, 4, · · · , 4| {z }
k

]

id

[9, 4, · · · , 4| {z }
k

]

id

[4, · · · , 4| {z }
k

]

(b) Call-graph by k-CFA

main

[·]

id

[8]

id

[9]

(c) Call-graph by 1-CFA with tunneling

Fig. 1. Example and call-graphs constructed by the conventional k-call-site-sensitivity (k-CFA) and our
1-call-site-sensitivity with context tunneling

Conventional Call-Site-Sensitivity. The traditional k-call-site-sensitive analysis fails to prove
the queries no matter what k value is used. Because the value of i can be any integer, the following
set K1 of in�nite number of call-strings can be generated for method id at runtime:

K1 = {[8], [9], [8, 4], [9, 4], [8, 4, 4], [9, 4, 4], [8, 4, 4, 4], [9, 4, 4, 4], . . .}

where, for example, [8, 4] denotes the context that method id was called along the sequence of
call-sites 8 and 4. The k-call-site-sensitive analysis approximates the call-strings in K1 by their
su�xes of length up to k . For example, when k = 2, the analysis uses the following setK2 of abstract
contexts:

K2 = {[8], [9], [8, 4], [9, 4], [4, 4]}
where an in�nite number of contexts, {[8, 4, 4], [9, 4, 4], [8, 4, 4, 4], [9, 4, 4, 4], . . .}, in K1 are approx-
imated by their common su�x [4, 4]. The analysis analyzes the method id separately for each
context in K2. Although this approximation ensures termination, the analysis is now unable to
di�erentiate the two separate calls to id at lines 8 and 9, causing the argument v of id to point
to both objects A and B at the same time when the context becomes [4, 4]. Thus, both objects get
returned to both queries simultaneously, making the analysis fail to prove their cast safety. Note
that the analysis fails to prove the queries for any k values, because all the context strings longer
than k are eventually merged into a single context [4, . . . , 4| {z }

k

] (see Fig. 1b).

Context Tunneling. With context tunneling, however, even 1-call-site sensitive analysis be-
comes to prove the queries. The main weakness of the conventional k-context-sensitive analysis
is that it blindly updates the context of a method at every call-site, thereby allowing important
context elements for the method to be easily overwritten by less important ones. In the example,
distinguishing the two call-sites at lines 8 and 9 is essential to proving the queries. However, this
information is eventually lost by repeatedly appending the less important call-site 4 to the context
of id (Fig. 1b). Our technique aims to overcome this weakness by maintaining important context
elements only during analysis. For example, we exclude the call-site 4 from the context strings

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 140. Publication date: November 2018.

Important

140:4 Minseok Jeon, Sehun Jeong, and Hakjoo Oh

1 class A {} class B {}

2 class C {

3 static Object id (Object v, int i){

4 return i >= 0 ? id(v, i-1) : v;

5 }

6 public static void main (){

7 int i = input();

8 A a = (A) id(new A(), i); //Query 1

9 B b = (B) id(new B(), i); //Query 2

10 }

11 }

(a) Example code

main

[·]

id

[8]

id

[9]

id

[8, 4]

id

[9, 4]

id

[8, 4, · · · , 4| {z }
k

]

id

[9, 4, · · · , 4| {z }
k

]

id

[4, · · · , 4| {z }
k

]

(b) Call-graph by k-CFA

main

[·]

id

[8]

id

[9]

(c) Call-graph by 1-CFA with tunneling

Fig. 1. Example and call-graphs constructed by the conventional k-call-site-sensitivity (k-CFA) and our
1-call-site-sensitivity with context tunneling

Conventional Call-Site-Sensitivity. The traditional k-call-site-sensitive analysis fails to prove
the queries no matter what k value is used. Because the value of i can be any integer, the following
set K1 of in�nite number of call-strings can be generated for method id at runtime:

K1 = {[8], [9], [8, 4], [9, 4], [8, 4, 4], [9, 4, 4], [8, 4, 4, 4], [9, 4, 4, 4], . . .}

where, for example, [8, 4] denotes the context that method id was called along the sequence of
call-sites 8 and 4. The k-call-site-sensitive analysis approximates the call-strings in K1 by their
su�xes of length up to k . For example, when k = 2, the analysis uses the following setK2 of abstract
contexts:

K2 = {[8], [9], [8, 4], [9, 4], [4, 4]}
where an in�nite number of contexts, {[8, 4, 4], [9, 4, 4], [8, 4, 4, 4], [9, 4, 4, 4], . . .}, in K1 are approx-
imated by their common su�x [4, 4]. The analysis analyzes the method id separately for each
context in K2. Although this approximation ensures termination, the analysis is now unable to
di�erentiate the two separate calls to id at lines 8 and 9, causing the argument v of id to point
to both objects A and B at the same time when the context becomes [4, 4]. Thus, both objects get
returned to both queries simultaneously, making the analysis fail to prove their cast safety. Note
that the analysis fails to prove the queries for any k values, because all the context strings longer
than k are eventually merged into a single context [4, . . . , 4| {z }

k

] (see Fig. 1b).

Context Tunneling. With context tunneling, however, even 1-call-site sensitive analysis be-
comes to prove the queries. The main weakness of the conventional k-context-sensitive analysis
is that it blindly updates the context of a method at every call-site, thereby allowing important
context elements for the method to be easily overwritten by less important ones. In the example,
distinguishing the two call-sites at lines 8 and 9 is essential to proving the queries. However, this
information is eventually lost by repeatedly appending the less important call-site 4 to the context
of id (Fig. 1b). Our technique aims to overcome this weakness by maintaining important context
elements only during analysis. For example, we exclude the call-site 4 from the context strings

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 140. Publication date: November 2018.

[OOPSLA’18] M. Jeon, S. Jeong, and H, Oh, Precise and Scalable Points-to Analysis via Data-Driven Context Tunneling

Context Tunneling

/ 3426

Feature-Sensitive (FS) Coverage
1 + 2n

Program P1

JS
TypeError

1 - 2n
Program P2

JS
TypeError

/ 3426

Feature-Sensitive (FS) Coverage
1 + 2n

Program P1

JS
TypeError

1 - 2n
Program P2

JS
TypeError

FS Coverage

TR = (Feature, given TR)
• Feature-Sensitive (FS) coverage criterion divides 

the given TRs with the innermost enclosing language features

/ 3426

Feature-Sensitive (FS) Coverage

Evaluation of AddExpr : AddExpr + MulExpr

1. Return ? EvalStrOrNumBinExpr (AddExpr, +, MulExpr).

Evaluation of AddExpr : AddExpr - MulExpr

1. Return ? EvalStrOrNumBinExpr (AddExpr, -, MulExpr).

ADD
feat

SUB
feat

1 + 2n
Program P1

JS
TypeError

1 - 2n
Program P2

JS
TypeError

FS Coverage

TR = (Feature, given TR)
• Feature-Sensitive (FS) coverage criterion divides 

the given TRs with the innermost enclosing language features

/ 3426

Feature-Sensitive (FS) Coverage

Evaluation of AddExpr : AddExpr + MulExpr

1. Return ? EvalStrOrNumBinExpr (AddExpr, +, MulExpr).

Evaluation of AddExpr : AddExpr - MulExpr

1. Return ? EvalStrOrNumBinExpr (AddExpr, -, MulExpr).

ADD
feat

SUB
feat

FS Node Coverage

TR = (Feature, Node)

1 + 2n
Program P1

JS
TypeError

1 - 2n
Program P2

JS
TypeError

FS Coverage

TR = (Feature, given TR)
• Feature-Sensitive (FS) coverage criterion divides 

the given TRs with the innermost enclosing language features

/ 3426

Feature-Sensitive (FS) Coverage

Evaluation of AddExpr : AddExpr + MulExpr

1. Return ? EvalStrOrNumBinExpr (AddExpr, +, MulExpr).

Evaluation of AddExpr : AddExpr - MulExpr

1. Return ? EvalStrOrNumBinExpr (AddExpr, -, MulExpr).

ADD
feat

SUB
feat

(ADD,)1
coverFS Node Coverage

TR = (Feature, Node)

1 + 2n
Program P1

JS
TypeError

1 - 2n
Program P2

JS
TypeError

FS Coverage

TR = (Feature, given TR)
• Feature-Sensitive (FS) coverage criterion divides 

the given TRs with the innermost enclosing language features

/ 3426

Feature-Sensitive (FS) Coverage

Evaluation of AddExpr : AddExpr + MulExpr

1. Return ? EvalStrOrNumBinExpr (AddExpr, +, MulExpr).

Evaluation of AddExpr : AddExpr - MulExpr

1. Return ? EvalStrOrNumBinExpr (AddExpr, -, MulExpr).

ADD
feat

SUB
feat

(ADD,)1
coverFS Node Coverage

TR = (Feature, Node)

1 + 2n
Program P1

JS
TypeError

1 - 2n
Program P2

JS
TypeError (SUB,)1

cover

FS Coverage

TR = (Feature, given TR)
• Feature-Sensitive (FS) coverage criterion divides 

the given TRs with the innermost enclosing language features

/ 3426

Feature-Sensitive (FS) Coverage

Evaluation of AddExpr : AddExpr + MulExpr

1. Return ? EvalStrOrNumBinExpr (AddExpr, +, MulExpr).

Evaluation of AddExpr : AddExpr - MulExpr

1. Return ? EvalStrOrNumBinExpr (AddExpr, -, MulExpr).

ADD
feat

SUB
feat

Different TRs

(ADD,)1
coverFS Node Coverage

TR = (Feature, Node)

1 + 2n
Program P1

JS
TypeError

1 - 2n
Program P2

JS
TypeError (SUB,)1

cover

FS Coverage

TR = (Feature, given TR)
• Feature-Sensitive (FS) coverage criterion divides 

the given TRs with the innermost enclosing language features

/ 3426

Feature-Sensitive (FS) Coverage

Evaluation of AddExpr : AddExpr + MulExpr

1. Return ? EvalStrOrNumBinExpr (AddExpr, +, MulExpr).

Evaluation of AddExpr : AddExpr - MulExpr

1. Return ? EvalStrOrNumBinExpr (AddExpr, -, MulExpr).

ADD
feat

SUB
feat

Different TRs

(ADD,)1
coverFS Node Coverage

TR = (Feature, Node)

Can
Distinguish
P1 and P21 + 2n

Program P1

JS
TypeError

1 - 2n
Program P2

JS
TypeError (SUB,)1

cover

FS Coverage

TR = (Feature, given TR)
• Feature-Sensitive (FS) coverage criterion divides 

the given TRs with the innermost enclosing language features

/ 34

• 𝑘-Feature-Sensitive (𝑘-FS) coverage criterion divides the given 
TRs with at most 𝑘-innermost enclosing language features

27

𝑘-Feature-Sensitive (𝑘-FS) Coverage

𝑘-FS Coverage

TR = (Feature≤𝑘, given TR)

42 - (1 + 2n)
Program P3

JS
TypeError

Evaluation of AddExpr : AddExpr + MulExpr

1. Return ? EvalStrOrNumBinExpr (AddExpr, +, MulExpr).

Evaluation of AddExpr : AddExpr - MulExpr

1. Return ? EvalStrOrNumBinExpr (AddExpr, -, MulExpr).

ADD
feat

SUB
feat

/ 34

• 𝑘-Feature-Sensitive (𝑘-FS) coverage criterion divides the given 
TRs with at most 𝑘-innermost enclosing language features

27

𝑘-Feature-Sensitive (𝑘-FS) Coverage

𝑘-FS Coverage

TR = (Feature≤𝑘, given TR)

2-FS Node Coverage

TR = (Feature≤2, Node)
42 - (1 + 2n)

Program P3

JS
TypeError

Evaluation of AddExpr : AddExpr + MulExpr

1. Return ? EvalStrOrNumBinExpr (AddExpr, +, MulExpr).

Evaluation of AddExpr : AddExpr - MulExpr

1. Return ? EvalStrOrNumBinExpr (AddExpr, -, MulExpr).

ADD
feat

SUB
feat

/ 34

• 𝑘-Feature-Sensitive (𝑘-FS) coverage criterion divides the given 
TRs with at most 𝑘-innermost enclosing language features

27

𝑘-Feature-Sensitive (𝑘-FS) Coverage

𝑘-FS Coverage

TR = (Feature≤𝑘, given TR)

([SUB, ADD],)1
cover

2-FS Node Coverage

TR = (Feature≤2, Node)
42 - (1 + 2n)

Program P3

JS
TypeError

Evaluation of AddExpr : AddExpr + MulExpr

1. Return ? EvalStrOrNumBinExpr (AddExpr, +, MulExpr).

Evaluation of AddExpr : AddExpr - MulExpr

1. Return ? EvalStrOrNumBinExpr (AddExpr, -, MulExpr).

ADD
feat

SUB
feat

/ 3428

Motivating Example 2
Symbol() + 1

Program P4

JS
TypeError

/ 34Abstract Algorithms in ECMA-262 (ES13, 2022), JavaScript Language Specification

Evaluation of AddExpr : AddExpr + MulExpr

ADD
feat

28

Motivating Example 2
Symbol() + 1

Program P4

JS
TypeError

/ 34Abstract Algorithms in ECMA-262 (ES13, 2022), JavaScript Language Specification

Evaluation of AddExpr : AddExpr + MulExpr

ADD
feat

EvalStrOrNumBinExpr (lval, opText, rval)

28

Motivating Example 2
Symbol() + 1

Program P4

JS
TypeError

/ 34Abstract Algorithms in ECMA-262 (ES13, 2022), JavaScript Language Specification

Evaluation of AddExpr : AddExpr + MulExpr

ADD
feat

EvalStrOrNumBinExpr (lval, opText, rval)

ApplyStrOrNumBinOp (lval, opText, rval)
…
3. Let lnum be ? ToNumeric (lval).

4. Let rnum be ? ToNumeric (rval).
…

28

Motivating Example 2
Symbol() + 1

Program P4

JS
TypeError

/ 34Abstract Algorithms in ECMA-262 (ES13, 2022), JavaScript Language Specification

Evaluation of AddExpr : AddExpr + MulExpr

ADD
feat

EvalStrOrNumBinExpr (lval, opText, rval)

ApplyStrOrNumBinOp (lval, opText, rval)
…
3. Let lnum be ? ToNumeric (lval).

4. Let rnum be ? ToNumeric (rval).
…

28

Motivating Example 2
Symbol() + 1

Program P4

JS
TypeError

ToNumeric (value)
…
3. Return ? ToNumber (primValue).

/ 34Abstract Algorithms in ECMA-262 (ES13, 2022), JavaScript Language Specification

Evaluation of AddExpr : AddExpr + MulExpr

ADD
feat

EvalStrOrNumBinExpr (lval, opText, rval)

ApplyStrOrNumBinOp (lval, opText, rval)
…
3. Let lnum be ? ToNumeric (lval).

4. Let rnum be ? ToNumeric (rval).
…

28

Motivating Example 2
Symbol() + 1

Program P4

JS
TypeError

ToNumeric (value)
…
3. Return ? ToNumber (primValue).

ToNumber (argument)
…
6. If Type (argument) is Symbol,

throw a TypeError exception.
…

/ 34Abstract Algorithms in ECMA-262 (ES13, 2022), JavaScript Language Specification

Evaluation of AddExpr : AddExpr + MulExpr

ADD
feat

EvalStrOrNumBinExpr (lval, opText, rval)

ApplyStrOrNumBinOp (lval, opText, rval)
…
3. Let lnum be ? ToNumeric (lval).

4. Let rnum be ? ToNumeric (rval).
…

28

Motivating Example 2
Symbol() + 1

Program P4

JS
TypeError

ToNumeric (value)
…
3. Return ? ToNumber (primValue).

ToNumber (argument)
…
6. If Type (argument) is Symbol,

throw a TypeError exception.
… 2

/ 34Abstract Algorithms in ECMA-262 (ES13, 2022), JavaScript Language Specification

Evaluation of AddExpr : AddExpr + MulExpr

ADD
feat

EvalStrOrNumBinExpr (lval, opText, rval)

ApplyStrOrNumBinOp (lval, opText, rval)
…
3. Let lnum be ? ToNumeric (lval).

4. Let rnum be ? ToNumeric (rval).
…

28

Motivating Example 2
Symbol() + 1

Program P4

JS
TypeError1-FS Node Coverage

TR = (Feature, Node)

ToNumeric (value)
…
3. Return ? ToNumber (primValue).

ToNumber (argument)
…
6. If Type (argument) is Symbol,

throw a TypeError exception.
… 2

/ 34Abstract Algorithms in ECMA-262 (ES13, 2022), JavaScript Language Specification

Evaluation of AddExpr : AddExpr + MulExpr

ADD
feat

EvalStrOrNumBinExpr (lval, opText, rval)

ApplyStrOrNumBinOp (lval, opText, rval)
…
3. Let lnum be ? ToNumeric (lval).

4. Let rnum be ? ToNumeric (rval).
…

28

Motivating Example 2
Symbol() + 1

Program P4

JS
TypeError1-FS Node Coverage

TR = (Feature, Node)

(ADD,)2
cover

ToNumeric (value)
…
3. Return ? ToNumber (primValue).

ToNumber (argument)
…
6. If Type (argument) is Symbol,

throw a TypeError exception.
… 2

/ 34Abstract Algorithms in ECMA-262 (ES13, 2022), JavaScript Language Specification

Evaluation of AddExpr : AddExpr + MulExpr

ADD
feat

EvalStrOrNumBinExpr (lval, opText, rval)

ApplyStrOrNumBinOp (lval, opText, rval)
…
3. Let lnum be ? ToNumeric (lval).

4. Let rnum be ? ToNumeric (rval).
…

28

Motivating Example 2
Symbol() + 1

Program P4

JS
TypeError

1 + Symbol()
Program P5

JS
TypeError

1-FS Node Coverage

TR = (Feature, Node)

(ADD,)2
cover

ToNumeric (value)
…
3. Return ? ToNumber (primValue).

ToNumber (argument)
…
6. If Type (argument) is Symbol,

throw a TypeError exception.
… 2

/ 34Abstract Algorithms in ECMA-262 (ES13, 2022), JavaScript Language Specification

Evaluation of AddExpr : AddExpr + MulExpr

ADD
feat

EvalStrOrNumBinExpr (lval, opText, rval)

ApplyStrOrNumBinOp (lval, opText, rval)
…
3. Let lnum be ? ToNumeric (lval).

4. Let rnum be ? ToNumeric (rval).
…

28

Motivating Example 2
Symbol() + 1

Program P4

JS
TypeError

1 + Symbol()
Program P5

JS
TypeError

1-FS Node Coverage

TR = (Feature, Node)

(ADD,)2
cover

ToNumeric (value)
…
3. Return ? ToNumber (primValue).

ToNumber (argument)
…
6. If Type (argument) is Symbol,

throw a TypeError exception.
… 2

/ 34Abstract Algorithms in ECMA-262 (ES13, 2022), JavaScript Language Specification

Evaluation of AddExpr : AddExpr + MulExpr

ADD
feat

EvalStrOrNumBinExpr (lval, opText, rval)

ApplyStrOrNumBinOp (lval, opText, rval)
…
3. Let lnum be ? ToNumeric (lval).

4. Let rnum be ? ToNumeric (rval).
…

28

Motivating Example 2
Symbol() + 1

Program P4

JS
TypeError

1 + Symbol()
Program P5

JS
TypeError

1-FS Node Coverage

TR = (Feature, Node)

(ADD,)2
cover

(ADD,)2
cover

ToNumeric (value)
…
3. Return ? ToNumber (primValue).

ToNumber (argument)
…
6. If Type (argument) is Symbol,

throw a TypeError exception.
… 2

/ 34Abstract Algorithms in ECMA-262 (ES13, 2022), JavaScript Language Specification

Evaluation of AddExpr : AddExpr + MulExpr

ADD
feat

EvalStrOrNumBinExpr (lval, opText, rval)

ApplyStrOrNumBinOp (lval, opText, rval)
…
3. Let lnum be ? ToNumeric (lval).

4. Let rnum be ? ToNumeric (rval).
…

28

Motivating Example 2

Same TRs

Symbol() + 1
Program P4

JS
TypeError

1 + Symbol()
Program P5

JS
TypeError

1-FS Node Coverage

TR = (Feature, Node)

(ADD,)2
cover

(ADD,)2
cover

ToNumeric (value)
…
3. Return ? ToNumber (primValue).

ToNumber (argument)
…
6. If Type (argument) is Symbol,

throw a TypeError exception.
… 2

/ 34Abstract Algorithms in ECMA-262 (ES13, 2022), JavaScript Language Specification

Evaluation of AddExpr : AddExpr + MulExpr

ADD
feat

EvalStrOrNumBinExpr (lval, opText, rval)

ApplyStrOrNumBinOp (lval, opText, rval)
…
3. Let lnum be ? ToNumeric (lval).

4. Let rnum be ? ToNumeric (rval).
…

28

Motivating Example 2

Same TRs

Cannot
Distinguish
P4 and P5Symbol() + 1

Program P4

JS
TypeError

1 + Symbol()
Program P5

JS
TypeError

1-FS Node Coverage

TR = (Feature, Node)

(ADD,)2
cover

(ADD,)2
cover

ToNumeric (value)
…
3. Return ? ToNumber (primValue).

ToNumber (argument)
…
6. If Type (argument) is Symbol,

throw a TypeError exception.
… 2

/ 34Abstract Algorithms in ECMA-262 (ES13, 2022), JavaScript Language Specification

Evaluation of AddExpr : AddExpr + MulExpr

ADD
feat

EvalStrOrNumBinExpr (lval, opText, rval)

ApplyStrOrNumBinOp (lval, opText, rval)
…
3. Let lnum be ? ToNumeric (lval).

4. Let rnum be ? ToNumeric (rval).
…

28

Motivating Example 2

Same TRs

Cannot
Distinguish
P4 and P5Symbol() + 1

Program P4

JS
TypeError

1 + Symbol()
Program P5

JS
TypeError

1-FS Node Coverage

TR = (Feature, Node)

(ADD,)2
cover

(ADD,)2
cover

ToNumeric (value)
…
3. Return ? ToNumber (primValue).

ToNumber (argument)
…
6. If Type (argument) is Symbol,

throw a TypeError exception.
… 2

3

4

call

call

5

6

call

call

7 call

/ 34

• 𝑘-Feature-Call-Path-Sensitive (𝑘-FCPS) coverage 
criterion divides the 𝑘-FS TRs with the call-paths  
from the innermost enclosing language feature

29

𝑘-Feature-Call-Path-Sensitive (𝑘-FCPS) Coverage

𝑘-FCPS Coverage

TR = (Feature≤𝑘, Call-Path, given TR)

Symbol() + 1
Program P4

JS
TypeError

1 + Symbol()
Program P5

JS
TypeError

/ 34

• 𝑘-Feature-Call-Path-Sensitive (𝑘-FCPS) coverage 
criterion divides the 𝑘-FS TRs with the call-paths  
from the innermost enclosing language feature

29

𝑘-Feature-Call-Path-Sensitive (𝑘-FCPS) Coverage

𝑘-FCPS Coverage

TR = (Feature≤𝑘, Call-Path, given TR)

Symbol() + 1
Program P4

JS
TypeError

1 + Symbol()
Program P5

JS
TypeError

1-FCPS Node Coverage

TR = (Feature, 
Call-Path, Node)

/ 34

• 𝑘-Feature-Call-Path-Sensitive (𝑘-FCPS) coverage 
criterion divides the 𝑘-FS TRs with the call-paths  
from the innermost enclosing language feature

29

𝑘-Feature-Call-Path-Sensitive (𝑘-FCPS) Coverage

𝑘-FCPS Coverage

TR = (Feature≤𝑘, Call-Path, given TR)

Symbol() + 1
Program P4

JS
TypeError

1 + Symbol()
Program P5

JS
TypeError

1-FCPS Node Coverage

TR = (Feature, 
Call-Path, Node)

3 4 5 7ADD<latexit sha1_base64="SPti2hMefRxNKWNntZBVQBrDZAY=">AAACFXicbVDLSsNAFJ34rPVVdekmWARXJRFfy6IblxXsA9pQJpNJO3YeYeZGqKH/4E70X9yJW9f+iiunbRa29cCFwzn3zp17woQzA5737Swtr6yurRc2iptb2zu7pb39hlGpJrROFFe6FWJDOZO0Dgw4bSWaYhFy2gwHN2O/+Ui1YUrewzChgcA9yWJGMFip0SGRAtMtlb2KN4G7SPyclFGOWrf004kUSQWVQDg2pu17CQQZ1sAIp6NiJzU0wWSAe7RtqcSCmiCb/HbkHlslcmOlbUlwJ+rfiQwLY4YitJ0CQ9/Me2PxX8+AwHqoo7n9EF8FGZNJClSS6fo45S4odxyIGzFNCfChJZhoZi9wSR9rTMDGNvM+sMHTqGjD8uejWSSN04p/UTm/OytXr/PYCugQHaET5KNLVEW3qIbqiKAH9Ixe0Zvz4rw7H87ntHXJyWcO0Aycr18dwqBP</latexit>· · · 2call call call call

/ 34

(ADD, [3, 4, 5, 7],)2
cover

• 𝑘-Feature-Call-Path-Sensitive (𝑘-FCPS) coverage 
criterion divides the 𝑘-FS TRs with the call-paths  
from the innermost enclosing language feature

29

𝑘-Feature-Call-Path-Sensitive (𝑘-FCPS) Coverage

𝑘-FCPS Coverage

TR = (Feature≤𝑘, Call-Path, given TR)

Symbol() + 1
Program P4

JS
TypeError

1 + Symbol()
Program P5

JS
TypeError

1-FCPS Node Coverage

TR = (Feature, 
Call-Path, Node)

3 4 5 7ADD<latexit sha1_base64="SPti2hMefRxNKWNntZBVQBrDZAY=">AAACFXicbVDLSsNAFJ34rPVVdekmWARXJRFfy6IblxXsA9pQJpNJO3YeYeZGqKH/4E70X9yJW9f+iiunbRa29cCFwzn3zp17woQzA5737Swtr6yurRc2iptb2zu7pb39hlGpJrROFFe6FWJDOZO0Dgw4bSWaYhFy2gwHN2O/+Ui1YUrewzChgcA9yWJGMFip0SGRAtMtlb2KN4G7SPyclFGOWrf004kUSQWVQDg2pu17CQQZ1sAIp6NiJzU0wWSAe7RtqcSCmiCb/HbkHlslcmOlbUlwJ+rfiQwLY4YitJ0CQ9/Me2PxX8+AwHqoo7n9EF8FGZNJClSS6fo45S4odxyIGzFNCfChJZhoZi9wSR9rTMDGNvM+sMHTqGjD8uejWSSN04p/UTm/OytXr/PYCugQHaET5KNLVEW3qIbqiKAH9Ixe0Zvz4rw7H87ntHXJyWcO0Aycr18dwqBP</latexit>· · · 2call call call call

/ 34

(ADD, [3, 4, 5, 7],)2
cover

• 𝑘-Feature-Call-Path-Sensitive (𝑘-FCPS) coverage 
criterion divides the 𝑘-FS TRs with the call-paths  
from the innermost enclosing language feature

29

𝑘-Feature-Call-Path-Sensitive (𝑘-FCPS) Coverage

𝑘-FCPS Coverage

TR = (Feature≤𝑘, Call-Path, given TR)

Symbol() + 1
Program P4

JS
TypeError

1 + Symbol()
Program P5

JS
TypeError

1-FCPS Node Coverage

TR = (Feature, 
Call-Path, Node)

3 4 6 7ADD<latexit sha1_base64="SPti2hMefRxNKWNntZBVQBrDZAY=">AAACFXicbVDLSsNAFJ34rPVVdekmWARXJRFfy6IblxXsA9pQJpNJO3YeYeZGqKH/4E70X9yJW9f+iiunbRa29cCFwzn3zp17woQzA5737Swtr6yurRc2iptb2zu7pb39hlGpJrROFFe6FWJDOZO0Dgw4bSWaYhFy2gwHN2O/+Ui1YUrewzChgcA9yWJGMFip0SGRAtMtlb2KN4G7SPyclFGOWrf004kUSQWVQDg2pu17CQQZ1sAIp6NiJzU0wWSAe7RtqcSCmiCb/HbkHlslcmOlbUlwJ+rfiQwLY4YitJ0CQ9/Me2PxX8+AwHqoo7n9EF8FGZNJClSS6fo45S4odxyIGzFNCfChJZhoZi9wSR9rTMDGNvM+sMHTqGjD8uejWSSN04p/UTm/OytXr/PYCugQHaET5KNLVEW3qIbqiKAH9Ixe0Zvz4rw7H87ntHXJyWcO0Aycr18dwqBP</latexit>· · · 2call call call call

3 4 5 7ADD<latexit sha1_base64="SPti2hMefRxNKWNntZBVQBrDZAY=">AAACFXicbVDLSsNAFJ34rPVVdekmWARXJRFfy6IblxXsA9pQJpNJO3YeYeZGqKH/4E70X9yJW9f+iiunbRa29cCFwzn3zp17woQzA5737Swtr6yurRc2iptb2zu7pb39hlGpJrROFFe6FWJDOZO0Dgw4bSWaYhFy2gwHN2O/+Ui1YUrewzChgcA9yWJGMFip0SGRAtMtlb2KN4G7SPyclFGOWrf004kUSQWVQDg2pu17CQQZ1sAIp6NiJzU0wWSAe7RtqcSCmiCb/HbkHlslcmOlbUlwJ+rfiQwLY4YitJ0CQ9/Me2PxX8+AwHqoo7n9EF8FGZNJClSS6fo45S4odxyIGzFNCfChJZhoZi9wSR9rTMDGNvM+sMHTqGjD8uejWSSN04p/UTm/OytXr/PYCugQHaET5KNLVEW3qIbqiKAH9Ixe0Zvz4rw7H87ntHXJyWcO0Aycr18dwqBP</latexit>· · · 2call call call call

/ 34

(ADD, [3, 4, 5, 7],)2
cover

• 𝑘-Feature-Call-Path-Sensitive (𝑘-FCPS) coverage 
criterion divides the 𝑘-FS TRs with the call-paths  
from the innermost enclosing language feature

29

𝑘-Feature-Call-Path-Sensitive (𝑘-FCPS) Coverage

𝑘-FCPS Coverage

TR = (Feature≤𝑘, Call-Path, given TR)

Symbol() + 1
Program P4

JS
TypeError

1 + Symbol()
Program P5

JS
TypeError

1-FCPS Node Coverage

TR = (Feature, 
Call-Path, Node)

3 4 6 7ADD<latexit sha1_base64="SPti2hMefRxNKWNntZBVQBrDZAY=">AAACFXicbVDLSsNAFJ34rPVVdekmWARXJRFfy6IblxXsA9pQJpNJO3YeYeZGqKH/4E70X9yJW9f+iiunbRa29cCFwzn3zp17woQzA5737Swtr6yurRc2iptb2zu7pb39hlGpJrROFFe6FWJDOZO0Dgw4bSWaYhFy2gwHN2O/+Ui1YUrewzChgcA9yWJGMFip0SGRAtMtlb2KN4G7SPyclFGOWrf004kUSQWVQDg2pu17CQQZ1sAIp6NiJzU0wWSAe7RtqcSCmiCb/HbkHlslcmOlbUlwJ+rfiQwLY4YitJ0CQ9/Me2PxX8+AwHqoo7n9EF8FGZNJClSS6fo45S4odxyIGzFNCfChJZhoZi9wSR9rTMDGNvM+sMHTqGjD8uejWSSN04p/UTm/OytXr/PYCugQHaET5KNLVEW3qIbqiKAH9Ixe0Zvz4rw7H87ntHXJyWcO0Aycr18dwqBP</latexit>· · · 2call call call call

3 4 5 7ADD<latexit sha1_base64="SPti2hMefRxNKWNntZBVQBrDZAY=">AAACFXicbVDLSsNAFJ34rPVVdekmWARXJRFfy6IblxXsA9pQJpNJO3YeYeZGqKH/4E70X9yJW9f+iiunbRa29cCFwzn3zp17woQzA5737Swtr6yurRc2iptb2zu7pb39hlGpJrROFFe6FWJDOZO0Dgw4bSWaYhFy2gwHN2O/+Ui1YUrewzChgcA9yWJGMFip0SGRAtMtlb2KN4G7SPyclFGOWrf004kUSQWVQDg2pu17CQQZ1sAIp6NiJzU0wWSAe7RtqcSCmiCb/HbkHlslcmOlbUlwJ+rfiQwLY4YitJ0CQ9/Me2PxX8+AwHqoo7n9EF8FGZNJClSS6fo45S4odxyIGzFNCfChJZhoZi9wSR9rTMDGNvM+sMHTqGjD8uejWSSN04p/UTm/OytXr/PYCugQHaET5KNLVEW3qIbqiKAH9Ixe0Zvz4rw7H87ntHXJyWcO0Aycr18dwqBP</latexit>· · · 2call call call call
step 3

step 4

/ 34

(ADD, [3, 4, 5, 7],)2
cover

(ADD, [3, 4, 6, 7],)2
cover

• 𝑘-Feature-Call-Path-Sensitive (𝑘-FCPS) coverage 
criterion divides the 𝑘-FS TRs with the call-paths  
from the innermost enclosing language feature

29

𝑘-Feature-Call-Path-Sensitive (𝑘-FCPS) Coverage

𝑘-FCPS Coverage

TR = (Feature≤𝑘, Call-Path, given TR)

Symbol() + 1
Program P4

JS
TypeError

1 + Symbol()
Program P5

JS
TypeError

1-FCPS Node Coverage

TR = (Feature, 
Call-Path, Node)

3 4 6 7ADD<latexit sha1_base64="SPti2hMefRxNKWNntZBVQBrDZAY=">AAACFXicbVDLSsNAFJ34rPVVdekmWARXJRFfy6IblxXsA9pQJpNJO3YeYeZGqKH/4E70X9yJW9f+iiunbRa29cCFwzn3zp17woQzA5737Swtr6yurRc2iptb2zu7pb39hlGpJrROFFe6FWJDOZO0Dgw4bSWaYhFy2gwHN2O/+Ui1YUrewzChgcA9yWJGMFip0SGRAtMtlb2KN4G7SPyclFGOWrf004kUSQWVQDg2pu17CQQZ1sAIp6NiJzU0wWSAe7RtqcSCmiCb/HbkHlslcmOlbUlwJ+rfiQwLY4YitJ0CQ9/Me2PxX8+AwHqoo7n9EF8FGZNJClSS6fo45S4odxyIGzFNCfChJZhoZi9wSR9rTMDGNvM+sMHTqGjD8uejWSSN04p/UTm/OytXr/PYCugQHaET5KNLVEW3qIbqiKAH9Ixe0Zvz4rw7H87ntHXJyWcO0Aycr18dwqBP</latexit>· · · 2call call call call

3 4 5 7ADD<latexit sha1_base64="SPti2hMefRxNKWNntZBVQBrDZAY=">AAACFXicbVDLSsNAFJ34rPVVdekmWARXJRFfy6IblxXsA9pQJpNJO3YeYeZGqKH/4E70X9yJW9f+iiunbRa29cCFwzn3zp17woQzA5737Swtr6yurRc2iptb2zu7pb39hlGpJrROFFe6FWJDOZO0Dgw4bSWaYhFy2gwHN2O/+Ui1YUrewzChgcA9yWJGMFip0SGRAtMtlb2KN4G7SPyclFGOWrf004kUSQWVQDg2pu17CQQZ1sAIp6NiJzU0wWSAe7RtqcSCmiCb/HbkHlslcmOlbUlwJ+rfiQwLY4YitJ0CQ9/Me2PxX8+AwHqoo7n9EF8FGZNJClSS6fo45S4odxyIGzFNCfChJZhoZi9wSR9rTMDGNvM+sMHTqGjD8uejWSSN04p/UTm/OytXr/PYCugQHaET5KNLVEW3qIbqiKAH9Ixe0Zvz4rw7H87ntHXJyWcO0Aycr18dwqBP</latexit>· · · 2call call call call
step 3

step 4

/ 34

Different TRs

(ADD, [3, 4, 5, 7],)2
cover

(ADD, [3, 4, 6, 7],)2
cover

• 𝑘-Feature-Call-Path-Sensitive (𝑘-FCPS) coverage 
criterion divides the 𝑘-FS TRs with the call-paths  
from the innermost enclosing language feature

29

𝑘-Feature-Call-Path-Sensitive (𝑘-FCPS) Coverage

𝑘-FCPS Coverage

TR = (Feature≤𝑘, Call-Path, given TR)

Symbol() + 1
Program P4

JS
TypeError

1 + Symbol()
Program P5

JS
TypeError

1-FCPS Node Coverage

TR = (Feature, 
Call-Path, Node)

3 4 6 7ADD<latexit sha1_base64="SPti2hMefRxNKWNntZBVQBrDZAY=">AAACFXicbVDLSsNAFJ34rPVVdekmWARXJRFfy6IblxXsA9pQJpNJO3YeYeZGqKH/4E70X9yJW9f+iiunbRa29cCFwzn3zp17woQzA5737Swtr6yurRc2iptb2zu7pb39hlGpJrROFFe6FWJDOZO0Dgw4bSWaYhFy2gwHN2O/+Ui1YUrewzChgcA9yWJGMFip0SGRAtMtlb2KN4G7SPyclFGOWrf004kUSQWVQDg2pu17CQQZ1sAIp6NiJzU0wWSAe7RtqcSCmiCb/HbkHlslcmOlbUlwJ+rfiQwLY4YitJ0CQ9/Me2PxX8+AwHqoo7n9EF8FGZNJClSS6fo45S4odxyIGzFNCfChJZhoZi9wSR9rTMDGNvM+sMHTqGjD8uejWSSN04p/UTm/OytXr/PYCugQHaET5KNLVEW3qIbqiKAH9Ixe0Zvz4rw7H87ntHXJyWcO0Aycr18dwqBP</latexit>· · · 2call call call call

3 4 5 7ADD<latexit sha1_base64="SPti2hMefRxNKWNntZBVQBrDZAY=">AAACFXicbVDLSsNAFJ34rPVVdekmWARXJRFfy6IblxXsA9pQJpNJO3YeYeZGqKH/4E70X9yJW9f+iiunbRa29cCFwzn3zp17woQzA5737Swtr6yurRc2iptb2zu7pb39hlGpJrROFFe6FWJDOZO0Dgw4bSWaYhFy2gwHN2O/+Ui1YUrewzChgcA9yWJGMFip0SGRAtMtlb2KN4G7SPyclFGOWrf004kUSQWVQDg2pu17CQQZ1sAIp6NiJzU0wWSAe7RtqcSCmiCb/HbkHlslcmOlbUlwJ+rfiQwLY4YitJ0CQ9/Me2PxX8+AwHqoo7n9EF8FGZNJClSS6fo45S4odxyIGzFNCfChJZhoZi9wSR9rTMDGNvM+sMHTqGjD8uejWSSN04p/UTm/OytXr/PYCugQHaET5KNLVEW3qIbqiKAH9Ixe0Zvz4rw7H87ntHXJyWcO0Aycr18dwqBP</latexit>· · · 2call call call call
step 3

step 4

/ 34

Different TRs

(ADD, [3, 4, 5, 7],)2
cover

(ADD, [3, 4, 6, 7],)2
cover

• 𝑘-Feature-Call-Path-Sensitive (𝑘-FCPS) coverage 
criterion divides the 𝑘-FS TRs with the call-paths  
from the innermost enclosing language feature

29

𝑘-Feature-Call-Path-Sensitive (𝑘-FCPS) Coverage

𝑘-FCPS Coverage

TR = (Feature≤𝑘, Call-Path, given TR)

Can
Distinguish
P4 and P5

Symbol() + 1
Program P4

JS
TypeError

1 + Symbol()
Program P5

JS
TypeError

1-FCPS Node Coverage

TR = (Feature, 
Call-Path, Node)

3 4 6 7ADD<latexit sha1_base64="SPti2hMefRxNKWNntZBVQBrDZAY=">AAACFXicbVDLSsNAFJ34rPVVdekmWARXJRFfy6IblxXsA9pQJpNJO3YeYeZGqKH/4E70X9yJW9f+iiunbRa29cCFwzn3zp17woQzA5737Swtr6yurRc2iptb2zu7pb39hlGpJrROFFe6FWJDOZO0Dgw4bSWaYhFy2gwHN2O/+Ui1YUrewzChgcA9yWJGMFip0SGRAtMtlb2KN4G7SPyclFGOWrf004kUSQWVQDg2pu17CQQZ1sAIp6NiJzU0wWSAe7RtqcSCmiCb/HbkHlslcmOlbUlwJ+rfiQwLY4YitJ0CQ9/Me2PxX8+AwHqoo7n9EF8FGZNJClSS6fo45S4odxyIGzFNCfChJZhoZi9wSR9rTMDGNvM+sMHTqGjD8uejWSSN04p/UTm/OytXr/PYCugQHaET5KNLVEW3qIbqiKAH9Ixe0Zvz4rw7H87ntHXJyWcO0Aycr18dwqBP</latexit>· · · 2call call call call

3 4 5 7ADD<latexit sha1_base64="SPti2hMefRxNKWNntZBVQBrDZAY=">AAACFXicbVDLSsNAFJ34rPVVdekmWARXJRFfy6IblxXsA9pQJpNJO3YeYeZGqKH/4E70X9yJW9f+iiunbRa29cCFwzn3zp17woQzA5737Swtr6yurRc2iptb2zu7pb39hlGpJrROFFe6FWJDOZO0Dgw4bSWaYhFy2gwHN2O/+Ui1YUrewzChgcA9yWJGMFip0SGRAtMtlb2KN4G7SPyclFGOWrf004kUSQWVQDg2pu17CQQZ1sAIp6NiJzU0wWSAe7RtqcSCmiCb/HbkHlslcmOlbUlwJ+rfiQwLY4YitJ0CQ9/Me2PxX8+AwHqoo7n9EF8FGZNJClSS6fo45S4odxyIGzFNCfChJZhoZi9wSR9rTMDGNvM+sMHTqGjD8uejWSSN04p/UTm/OytXr/PYCugQHaET5KNLVEW3qIbqiKAH9Ixe0Zvz4rw7H87ntHXJyWcO0Aycr18dwqBP</latexit>· · · 2call call call call
step 3

step 4

/ 34

• Conformance Test Synthesis in 50 hours with 0-FS / 1-FS / 2-FS / 1-FCPS / 2-FCPS

• JavaScript Specification — ECMA-262 for ES13 (2022)

• JavaScript Implementations — 4 Engines and 4 Transpilers

30

Evaluation
5 different 𝑘-FS and 𝑘-FCPS coverage criteria

Kind Name Version Release

Engine

V8 v10.8.121 2022.10.06
JSC v615.1.10 2022.10.26

GraalJS v22.2.0 2022.07.26
SpiderMonkey v107.0b4 2022.10.24

Transpiler

Babel v7.19.1 2022.09.15
SWC v1.3.10 2022.10.21

Terser v5.15.1 2022.10.05
Obfuscator v4.0.0 2022.02.15

/ 34

Feature-Sensitive Coverage for Conformance Testing 126:15

Table 1. Detected conformance bugs in JavaScript engines and transpilers

Kind Name Version Release
Detected Unique Bugs

New # Con!rmed # Reported

Engine

V8 v10.8.121 2022.10.06 0 0 4
JSC v615.1.10 2022.10.26 15 15 24
GraalJS v22.2.0 2022.07.26 9 9 10
SpiderMonkey v107.0b4 2022.10.24 1 3 4

Total 25 27 42

Transpiler

Babel v7.19.1 2022.09.15 30 30 35
SWC v1.3.10 2022.10.21 27 27 41
Terser v5.15.1 2022.10.05 1 1 18
Obfuscator v4.0.0 2022.02.15 0 0 7

Total 58 58 101

Total 83 85 143

5 EVALUATION

This section evaluates feature-sensitive coverage criteria with the following research questions:

• RQ1 (Conformance Bug Detection): How many conformance bugs in JavaScript imple-
mentations are detected by synthesized conformance tests? (Section 5.1)

• RQ2 (E"ectiveness of !-FS Coverage Criteria): Are higher !-FS coverage criteria more
e!ective than lower !-FS coverage criteria in detecting conformance bugs? (Section 5.2)

• RQ3 (E"ectiveness of !-FCPS Coverage Criteria): Are !-FCPS coverage criteria more
e!ective than !-FS coverage criteria in detecting conformance bugs? (Section 5.3)

• RQ4 (Comparisonwith Test262):Can conformance tests synthesized by JESTfs complement
Test262, the o"cial JavaScript conformance suite maintained manually? (Section 5.4)

We apply JESTfs to the latest language speci#cation (ES13, 2022) [ECMA International 2022a],
which synthesized 237,981 conformance tests in 50 hours with #ve graph coverage criteria: 1) 0-FS,
2) 1-FS, 3) 2-FS, 4) 1-FCPS, and 5) 2-FCPS node-or-branch coverage. We performed our experiments
with #ve Ubuntu machines with a 4.0GHz Intel(R) Core(TM) i7-6700k and 32GB of RAM (Samsung
DDR4 2133MHz 8GB*4).
Using the synthesized JavaScript conformance tests, we check the conformance of eight main-

stream implementations listed in Table 1. We select them as evaluation targets because they support
all the language features in ES13. V8, JSC, and SpiderMonkey are JavaScript engines used in web
browsers, Google Chrome, Apple Safari, and Mozilla Firefox, respectively, and GraalJS is a JavaScript
engine by Oracle. Babel and SWC are transpilers that desugar new language features into old ones,
usually ES5.1 features, for legacy host environments. Terser is a code compressor that reduces
code size, and Obfuscator obfuscates code to make it hard to understand and reverse-engineering.
For the transpiler conformance check, we use V8 as the default engine to execute transpiled code
with assertions. If a test fails on V8, we use another engine that passes the test; if a test fails on all
engines, we do not use the test.

5.1 Conformance Bug Detection

Table 1 summarizes the conformance bugs detected by JESTfs in all the evaluation targets. We
manually inspected the failed conformance test cases, found 143 distinct conformance bugs, and
reported them to the corresponding developers. As a result, 85 out of 143 bugs were o"cially
con#rmed, and 83 were newly discovered bugs. The other 47 reported bugs are still under review,
or developers have not yet responded. Among 143 detected bugs, 42 are engine bugs, and 101 are
transpiler bugs. We present two real-world bug examples.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 126. Publication date: June 2023.

31

RQ1) Conformance Bug Detection

/ 34

Feature-Sensitive Coverage for Conformance Testing 126:15

Table 1. Detected conformance bugs in JavaScript engines and transpilers

Kind Name Version Release
Detected Unique Bugs

New # Con!rmed # Reported

Engine

V8 v10.8.121 2022.10.06 0 0 4
JSC v615.1.10 2022.10.26 15 15 24
GraalJS v22.2.0 2022.07.26 9 9 10
SpiderMonkey v107.0b4 2022.10.24 1 3 4

Total 25 27 42

Transpiler

Babel v7.19.1 2022.09.15 30 30 35
SWC v1.3.10 2022.10.21 27 27 41
Terser v5.15.1 2022.10.05 1 1 18
Obfuscator v4.0.0 2022.02.15 0 0 7

Total 58 58 101

Total 83 85 143

5 EVALUATION

This section evaluates feature-sensitive coverage criteria with the following research questions:

• RQ1 (Conformance Bug Detection): How many conformance bugs in JavaScript imple-
mentations are detected by synthesized conformance tests? (Section 5.1)

• RQ2 (E"ectiveness of !-FS Coverage Criteria): Are higher !-FS coverage criteria more
e!ective than lower !-FS coverage criteria in detecting conformance bugs? (Section 5.2)

• RQ3 (E"ectiveness of !-FCPS Coverage Criteria): Are !-FCPS coverage criteria more
e!ective than !-FS coverage criteria in detecting conformance bugs? (Section 5.3)

• RQ4 (Comparisonwith Test262):Can conformance tests synthesized by JESTfs complement
Test262, the o"cial JavaScript conformance suite maintained manually? (Section 5.4)

We apply JESTfs to the latest language speci#cation (ES13, 2022) [ECMA International 2022a],
which synthesized 237,981 conformance tests in 50 hours with #ve graph coverage criteria: 1) 0-FS,
2) 1-FS, 3) 2-FS, 4) 1-FCPS, and 5) 2-FCPS node-or-branch coverage. We performed our experiments
with #ve Ubuntu machines with a 4.0GHz Intel(R) Core(TM) i7-6700k and 32GB of RAM (Samsung
DDR4 2133MHz 8GB*4).
Using the synthesized JavaScript conformance tests, we check the conformance of eight main-

stream implementations listed in Table 1. We select them as evaluation targets because they support
all the language features in ES13. V8, JSC, and SpiderMonkey are JavaScript engines used in web
browsers, Google Chrome, Apple Safari, and Mozilla Firefox, respectively, and GraalJS is a JavaScript
engine by Oracle. Babel and SWC are transpilers that desugar new language features into old ones,
usually ES5.1 features, for legacy host environments. Terser is a code compressor that reduces
code size, and Obfuscator obfuscates code to make it hard to understand and reverse-engineering.
For the transpiler conformance check, we use V8 as the default engine to execute transpiled code
with assertions. If a test fails on V8, we use another engine that passes the test; if a test fails on all
engines, we do not use the test.

5.1 Conformance Bug Detection

Table 1 summarizes the conformance bugs detected by JESTfs in all the evaluation targets. We
manually inspected the failed conformance test cases, found 143 distinct conformance bugs, and
reported them to the corresponding developers. As a result, 85 out of 143 bugs were o"cially
con#rmed, and 83 were newly discovered bugs. The other 47 reported bugs are still under review,
or developers have not yet responded. Among 143 detected bugs, 42 are engine bugs, and 101 are
transpiler bugs. We present two real-world bug examples.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 126. Publication date: June 2023.

31

RQ1) Conformance Bug Detection

/ 34

Feature-Sensitive Coverage for Conformance Testing 126:15

Table 1. Detected conformance bugs in JavaScript engines and transpilers

Kind Name Version Release
Detected Unique Bugs

New # Con!rmed # Reported

Engine

V8 v10.8.121 2022.10.06 0 0 4
JSC v615.1.10 2022.10.26 15 15 24
GraalJS v22.2.0 2022.07.26 9 9 10
SpiderMonkey v107.0b4 2022.10.24 1 3 4

Total 25 27 42

Transpiler

Babel v7.19.1 2022.09.15 30 30 35
SWC v1.3.10 2022.10.21 27 27 41
Terser v5.15.1 2022.10.05 1 1 18
Obfuscator v4.0.0 2022.02.15 0 0 7

Total 58 58 101

Total 83 85 143

5 EVALUATION

This section evaluates feature-sensitive coverage criteria with the following research questions:

• RQ1 (Conformance Bug Detection): How many conformance bugs in JavaScript imple-
mentations are detected by synthesized conformance tests? (Section 5.1)

• RQ2 (E"ectiveness of !-FS Coverage Criteria): Are higher !-FS coverage criteria more
e!ective than lower !-FS coverage criteria in detecting conformance bugs? (Section 5.2)

• RQ3 (E"ectiveness of !-FCPS Coverage Criteria): Are !-FCPS coverage criteria more
e!ective than !-FS coverage criteria in detecting conformance bugs? (Section 5.3)

• RQ4 (Comparisonwith Test262):Can conformance tests synthesized by JESTfs complement
Test262, the o"cial JavaScript conformance suite maintained manually? (Section 5.4)

We apply JESTfs to the latest language speci#cation (ES13, 2022) [ECMA International 2022a],
which synthesized 237,981 conformance tests in 50 hours with #ve graph coverage criteria: 1) 0-FS,
2) 1-FS, 3) 2-FS, 4) 1-FCPS, and 5) 2-FCPS node-or-branch coverage. We performed our experiments
with #ve Ubuntu machines with a 4.0GHz Intel(R) Core(TM) i7-6700k and 32GB of RAM (Samsung
DDR4 2133MHz 8GB*4).
Using the synthesized JavaScript conformance tests, we check the conformance of eight main-

stream implementations listed in Table 1. We select them as evaluation targets because they support
all the language features in ES13. V8, JSC, and SpiderMonkey are JavaScript engines used in web
browsers, Google Chrome, Apple Safari, and Mozilla Firefox, respectively, and GraalJS is a JavaScript
engine by Oracle. Babel and SWC are transpilers that desugar new language features into old ones,
usually ES5.1 features, for legacy host environments. Terser is a code compressor that reduces
code size, and Obfuscator obfuscates code to make it hard to understand and reverse-engineering.
For the transpiler conformance check, we use V8 as the default engine to execute transpiled code
with assertions. If a test fails on V8, we use another engine that passes the test; if a test fails on all
engines, we do not use the test.

5.1 Conformance Bug Detection

Table 1 summarizes the conformance bugs detected by JESTfs in all the evaluation targets. We
manually inspected the failed conformance test cases, found 143 distinct conformance bugs, and
reported them to the corresponding developers. As a result, 85 out of 143 bugs were o"cially
con#rmed, and 83 were newly discovered bugs. The other 47 reported bugs are still under review,
or developers have not yet responded. Among 143 detected bugs, 42 are engine bugs, and 101 are
transpiler bugs. We present two real-world bug examples.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 126. Publication date: June 2023.

31

RQ1) Conformance Bug Detection

/ 34

Feature-Sensitive Coverage for Conformance Testing 126:15

Table 1. Detected conformance bugs in JavaScript engines and transpilers

Kind Name Version Release
Detected Unique Bugs

New # Con!rmed # Reported

Engine

V8 v10.8.121 2022.10.06 0 0 4
JSC v615.1.10 2022.10.26 15 15 24
GraalJS v22.2.0 2022.07.26 9 9 10
SpiderMonkey v107.0b4 2022.10.24 1 3 4

Total 25 27 42

Transpiler

Babel v7.19.1 2022.09.15 30 30 35
SWC v1.3.10 2022.10.21 27 27 41
Terser v5.15.1 2022.10.05 1 1 18
Obfuscator v4.0.0 2022.02.15 0 0 7

Total 58 58 101

Total 83 85 143

5 EVALUATION

This section evaluates feature-sensitive coverage criteria with the following research questions:

• RQ1 (Conformance Bug Detection): How many conformance bugs in JavaScript imple-
mentations are detected by synthesized conformance tests? (Section 5.1)

• RQ2 (E"ectiveness of !-FS Coverage Criteria): Are higher !-FS coverage criteria more
e!ective than lower !-FS coverage criteria in detecting conformance bugs? (Section 5.2)

• RQ3 (E"ectiveness of !-FCPS Coverage Criteria): Are !-FCPS coverage criteria more
e!ective than !-FS coverage criteria in detecting conformance bugs? (Section 5.3)

• RQ4 (Comparisonwith Test262):Can conformance tests synthesized by JESTfs complement
Test262, the o"cial JavaScript conformance suite maintained manually? (Section 5.4)

We apply JESTfs to the latest language speci#cation (ES13, 2022) [ECMA International 2022a],
which synthesized 237,981 conformance tests in 50 hours with #ve graph coverage criteria: 1) 0-FS,
2) 1-FS, 3) 2-FS, 4) 1-FCPS, and 5) 2-FCPS node-or-branch coverage. We performed our experiments
with #ve Ubuntu machines with a 4.0GHz Intel(R) Core(TM) i7-6700k and 32GB of RAM (Samsung
DDR4 2133MHz 8GB*4).
Using the synthesized JavaScript conformance tests, we check the conformance of eight main-

stream implementations listed in Table 1. We select them as evaluation targets because they support
all the language features in ES13. V8, JSC, and SpiderMonkey are JavaScript engines used in web
browsers, Google Chrome, Apple Safari, and Mozilla Firefox, respectively, and GraalJS is a JavaScript
engine by Oracle. Babel and SWC are transpilers that desugar new language features into old ones,
usually ES5.1 features, for legacy host environments. Terser is a code compressor that reduces
code size, and Obfuscator obfuscates code to make it hard to understand and reverse-engineering.
For the transpiler conformance check, we use V8 as the default engine to execute transpiled code
with assertions. If a test fails on V8, we use another engine that passes the test; if a test fails on all
engines, we do not use the test.

5.1 Conformance Bug Detection

Table 1 summarizes the conformance bugs detected by JESTfs in all the evaluation targets. We
manually inspected the failed conformance test cases, found 143 distinct conformance bugs, and
reported them to the corresponding developers. As a result, 85 out of 143 bugs were o"cially
con#rmed, and 83 were newly discovered bugs. The other 47 reported bugs are still under review,
or developers have not yet responded. Among 143 detected bugs, 42 are engine bugs, and 101 are
transpiler bugs. We present two real-world bug examples.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 126. Publication date: June 2023.

31

RQ1) Conformance Bug Detection

/ 3432

RQ2) Effectiveness of 𝑘-FS Coverage Criteria
126:16 Jihyeok Park, Dongjun Youn, Kanguk Lee, and Sukyoung Ryu

Table 2. Comparison of synthesized conformance tests guided by five graph coverage criteria

Coverage Criteria⇠G
Covered :-F(CP)S-TR (k) # Syn. Test # Bug# Node # Branch # Total

0-FS node-or-branch (0-fs) 10.0 5.6 15.6 2,111 55
1-FS node-or-branch (1-fs) 79.3 45.7 125.0 6,766 83

1-FCPS node-or-branch (1-fcps) 179.7 97.6 277.3 9,092 87
2-FS node-or-branch (2-fs) 1,199.8 696.3 1,896.1 97,423 102

2-FCPS node-or-branch (2-fcps) 2,323.1 1,297.6 3,620.7 122,589 111

Order of Execution. JavaScript engines must follow the execution order of each language feature
described in the language speci�cation. However, we found a bug10 related to the execution order
of the delete operation that causes the execution of originally unreachable code in GraalJS. For
example, while the following code should return false, it throws an exception with �ERR� by
executing the originally unreachable code inside the arrow function in GraalJS:

false && delete (() => { throw �ERR�; })(); // Expected: false

In addition, we detected another bug11 related to the execution order of property reads in all
target engines. ECMA-262 may consider changing the semantics according to the one used in most
implementations.

Asynchronous Function / Generator. One of the complex language features in JavaScript is
asynchronous functions and generators introduced in ES6 (2015). We detected a bug12 in Spider-
Monkey that breaks the logic of asynchronous function calls. For example, the following code must
return a rejected Promise object because a non-iterable value undefined is assigned to an array
destructuring pattern [] in the async arrow function:

(async function ([]) {})(); // Expected: A rejected Promise object

However, it unexpectedly terminates with a TypeError exception in SpiderMonkey. A developer
of SpiderMonkey explained it as follows:

“The async-function spec was changed at some point [. . .]
this is also not covered by test262.”

5.2 E�ectiveness of :-FS Coverage Criteria
Table 2 shows the result of conformance test synthesis via JESTfs with �ve graph coverage criteria.
Note that 0-FS node-or-branch coverage criterion is the same with the node-or-branch coverage
criterion. To evaluate the e�ectiveness of :-FS coverage criteria, we compare the synthesized
conformance tests guided by di�erent :-FS node-or-branch coverage criteria (0-fs, 1-fs, and 2-fs in
Table 2). The second to the fourth columns denote the numbers of covered :-FS- or :-FCPS-TRs
for nodes (# Node), branches (# Branch), and both (# Total), respectively. The �fth and the sixth
columns denote the numbers of synthesized conformance tests (# Syn. Test) and detected distinct
bugs (# Bug), respectively.
The results show that higher :-FS coverage criteria are more e�ective than lower :-FS. On

average, 8.03 (125.0K / 15.6K) 1-FS-TRs exist per each 0-FS-TR, and 15.17 (1,896.1K / 125.0K) 2-FS-
TRs exist per each 1-FS-TR. It means that each node or branch is used in 8.03 di�erent language
features, and each language feature could be used in 15.17 other language features on average. For
a more detailed information, we draw a histogram of the number of covered 1-FS-TRs (or 2-FS-TRs)
10https://github.com/oracle/graaljs/issues/671
11https://github.com/tc39/ecma262/issues/2659
12https://bugzilla.mozilla.org/show_bug.cgi?id=1799288

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 126. Publication date: June 2023.

/ 3432

RQ2) Effectiveness of 𝑘-FS Coverage Criteria
126:16 Jihyeok Park, Dongjun Youn, Kanguk Lee, and Sukyoung Ryu

Table 2. Comparison of synthesized conformance tests guided by five graph coverage criteria

Coverage Criteria⇠G
Covered :-F(CP)S-TR (k) # Syn. Test # Bug# Node # Branch # Total

0-FS node-or-branch (0-fs) 10.0 5.6 15.6 2,111 55
1-FS node-or-branch (1-fs) 79.3 45.7 125.0 6,766 83

1-FCPS node-or-branch (1-fcps) 179.7 97.6 277.3 9,092 87
2-FS node-or-branch (2-fs) 1,199.8 696.3 1,896.1 97,423 102

2-FCPS node-or-branch (2-fcps) 2,323.1 1,297.6 3,620.7 122,589 111

Order of Execution. JavaScript engines must follow the execution order of each language feature
described in the language speci�cation. However, we found a bug10 related to the execution order
of the delete operation that causes the execution of originally unreachable code in GraalJS. For
example, while the following code should return false, it throws an exception with �ERR� by
executing the originally unreachable code inside the arrow function in GraalJS:

false && delete (() => { throw �ERR�; })(); // Expected: false

In addition, we detected another bug11 related to the execution order of property reads in all
target engines. ECMA-262 may consider changing the semantics according to the one used in most
implementations.

Asynchronous Function / Generator. One of the complex language features in JavaScript is
asynchronous functions and generators introduced in ES6 (2015). We detected a bug12 in Spider-
Monkey that breaks the logic of asynchronous function calls. For example, the following code must
return a rejected Promise object because a non-iterable value undefined is assigned to an array
destructuring pattern [] in the async arrow function:

(async function ([]) {})(); // Expected: A rejected Promise object

However, it unexpectedly terminates with a TypeError exception in SpiderMonkey. A developer
of SpiderMonkey explained it as follows:

“The async-function spec was changed at some point [. . .]
this is also not covered by test262.”

5.2 E�ectiveness of :-FS Coverage Criteria
Table 2 shows the result of conformance test synthesis via JESTfs with �ve graph coverage criteria.
Note that 0-FS node-or-branch coverage criterion is the same with the node-or-branch coverage
criterion. To evaluate the e�ectiveness of :-FS coverage criteria, we compare the synthesized
conformance tests guided by di�erent :-FS node-or-branch coverage criteria (0-fs, 1-fs, and 2-fs in
Table 2). The second to the fourth columns denote the numbers of covered :-FS- or :-FCPS-TRs
for nodes (# Node), branches (# Branch), and both (# Total), respectively. The �fth and the sixth
columns denote the numbers of synthesized conformance tests (# Syn. Test) and detected distinct
bugs (# Bug), respectively.
The results show that higher :-FS coverage criteria are more e�ective than lower :-FS. On

average, 8.03 (125.0K / 15.6K) 1-FS-TRs exist per each 0-FS-TR, and 15.17 (1,896.1K / 125.0K) 2-FS-
TRs exist per each 1-FS-TR. It means that each node or branch is used in 8.03 di�erent language
features, and each language feature could be used in 15.17 other language features on average. For
a more detailed information, we draw a histogram of the number of covered 1-FS-TRs (or 2-FS-TRs)
10https://github.com/oracle/graaljs/issues/671
11https://github.com/tc39/ecma262/issues/2659
12https://bugzilla.mozilla.org/show_bug.cgi?id=1799288

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 126. Publication date: June 2023.

+28

/ 3432

RQ2) Effectiveness of 𝑘-FS Coverage Criteria
126:16 Jihyeok Park, Dongjun Youn, Kanguk Lee, and Sukyoung Ryu

Table 2. Comparison of synthesized conformance tests guided by five graph coverage criteria

Coverage Criteria⇠G
Covered :-F(CP)S-TR (k) # Syn. Test # Bug# Node # Branch # Total

0-FS node-or-branch (0-fs) 10.0 5.6 15.6 2,111 55
1-FS node-or-branch (1-fs) 79.3 45.7 125.0 6,766 83

1-FCPS node-or-branch (1-fcps) 179.7 97.6 277.3 9,092 87
2-FS node-or-branch (2-fs) 1,199.8 696.3 1,896.1 97,423 102

2-FCPS node-or-branch (2-fcps) 2,323.1 1,297.6 3,620.7 122,589 111

Order of Execution. JavaScript engines must follow the execution order of each language feature
described in the language speci�cation. However, we found a bug10 related to the execution order
of the delete operation that causes the execution of originally unreachable code in GraalJS. For
example, while the following code should return false, it throws an exception with �ERR� by
executing the originally unreachable code inside the arrow function in GraalJS:

false && delete (() => { throw �ERR�; })(); // Expected: false

In addition, we detected another bug11 related to the execution order of property reads in all
target engines. ECMA-262 may consider changing the semantics according to the one used in most
implementations.

Asynchronous Function / Generator. One of the complex language features in JavaScript is
asynchronous functions and generators introduced in ES6 (2015). We detected a bug12 in Spider-
Monkey that breaks the logic of asynchronous function calls. For example, the following code must
return a rejected Promise object because a non-iterable value undefined is assigned to an array
destructuring pattern [] in the async arrow function:

(async function ([]) {})(); // Expected: A rejected Promise object

However, it unexpectedly terminates with a TypeError exception in SpiderMonkey. A developer
of SpiderMonkey explained it as follows:

“The async-function spec was changed at some point [. . .]
this is also not covered by test262.”

5.2 E�ectiveness of :-FS Coverage Criteria
Table 2 shows the result of conformance test synthesis via JESTfs with �ve graph coverage criteria.
Note that 0-FS node-or-branch coverage criterion is the same with the node-or-branch coverage
criterion. To evaluate the e�ectiveness of :-FS coverage criteria, we compare the synthesized
conformance tests guided by di�erent :-FS node-or-branch coverage criteria (0-fs, 1-fs, and 2-fs in
Table 2). The second to the fourth columns denote the numbers of covered :-FS- or :-FCPS-TRs
for nodes (# Node), branches (# Branch), and both (# Total), respectively. The �fth and the sixth
columns denote the numbers of synthesized conformance tests (# Syn. Test) and detected distinct
bugs (# Bug), respectively.
The results show that higher :-FS coverage criteria are more e�ective than lower :-FS. On

average, 8.03 (125.0K / 15.6K) 1-FS-TRs exist per each 0-FS-TR, and 15.17 (1,896.1K / 125.0K) 2-FS-
TRs exist per each 1-FS-TR. It means that each node or branch is used in 8.03 di�erent language
features, and each language feature could be used in 15.17 other language features on average. For
a more detailed information, we draw a histogram of the number of covered 1-FS-TRs (or 2-FS-TRs)
10https://github.com/oracle/graaljs/issues/671
11https://github.com/tc39/ecma262/issues/2659
12https://bugzilla.mozilla.org/show_bug.cgi?id=1799288

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 126. Publication date: June 2023.

+28

for (let {} = 0; 0;) ;

Synthesized with 1-FS but not with 0-FS

Crash
Wrong Result

Babel
Terminated

Expected

Spec.

/ 3432

RQ2) Effectiveness of 𝑘-FS Coverage Criteria
126:16 Jihyeok Park, Dongjun Youn, Kanguk Lee, and Sukyoung Ryu

Table 2. Comparison of synthesized conformance tests guided by five graph coverage criteria

Coverage Criteria⇠G
Covered :-F(CP)S-TR (k) # Syn. Test # Bug# Node # Branch # Total

0-FS node-or-branch (0-fs) 10.0 5.6 15.6 2,111 55
1-FS node-or-branch (1-fs) 79.3 45.7 125.0 6,766 83

1-FCPS node-or-branch (1-fcps) 179.7 97.6 277.3 9,092 87
2-FS node-or-branch (2-fs) 1,199.8 696.3 1,896.1 97,423 102

2-FCPS node-or-branch (2-fcps) 2,323.1 1,297.6 3,620.7 122,589 111

Order of Execution. JavaScript engines must follow the execution order of each language feature
described in the language speci�cation. However, we found a bug10 related to the execution order
of the delete operation that causes the execution of originally unreachable code in GraalJS. For
example, while the following code should return false, it throws an exception with �ERR� by
executing the originally unreachable code inside the arrow function in GraalJS:

false && delete (() => { throw �ERR�; })(); // Expected: false

In addition, we detected another bug11 related to the execution order of property reads in all
target engines. ECMA-262 may consider changing the semantics according to the one used in most
implementations.

Asynchronous Function / Generator. One of the complex language features in JavaScript is
asynchronous functions and generators introduced in ES6 (2015). We detected a bug12 in Spider-
Monkey that breaks the logic of asynchronous function calls. For example, the following code must
return a rejected Promise object because a non-iterable value undefined is assigned to an array
destructuring pattern [] in the async arrow function:

(async function ([]) {})(); // Expected: A rejected Promise object

However, it unexpectedly terminates with a TypeError exception in SpiderMonkey. A developer
of SpiderMonkey explained it as follows:

“The async-function spec was changed at some point [. . .]
this is also not covered by test262.”

5.2 E�ectiveness of :-FS Coverage Criteria
Table 2 shows the result of conformance test synthesis via JESTfs with �ve graph coverage criteria.
Note that 0-FS node-or-branch coverage criterion is the same with the node-or-branch coverage
criterion. To evaluate the e�ectiveness of :-FS coverage criteria, we compare the synthesized
conformance tests guided by di�erent :-FS node-or-branch coverage criteria (0-fs, 1-fs, and 2-fs in
Table 2). The second to the fourth columns denote the numbers of covered :-FS- or :-FCPS-TRs
for nodes (# Node), branches (# Branch), and both (# Total), respectively. The �fth and the sixth
columns denote the numbers of synthesized conformance tests (# Syn. Test) and detected distinct
bugs (# Bug), respectively.
The results show that higher :-FS coverage criteria are more e�ective than lower :-FS. On

average, 8.03 (125.0K / 15.6K) 1-FS-TRs exist per each 0-FS-TR, and 15.17 (1,896.1K / 125.0K) 2-FS-
TRs exist per each 1-FS-TR. It means that each node or branch is used in 8.03 di�erent language
features, and each language feature could be used in 15.17 other language features on average. For
a more detailed information, we draw a histogram of the number of covered 1-FS-TRs (or 2-FS-TRs)
10https://github.com/oracle/graaljs/issues/671
11https://github.com/tc39/ecma262/issues/2659
12https://bugzilla.mozilla.org/show_bug.cgi?id=1799288

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 126. Publication date: June 2023.

+28

+19

for (let {} = 0; 0;) ;

Synthesized with 1-FS but not with 0-FS

Crash
Wrong Result

Babel
Terminated

Expected

Spec.

/ 3432

RQ2) Effectiveness of 𝑘-FS Coverage Criteria
126:16 Jihyeok Park, Dongjun Youn, Kanguk Lee, and Sukyoung Ryu

Table 2. Comparison of synthesized conformance tests guided by five graph coverage criteria

Coverage Criteria⇠G
Covered :-F(CP)S-TR (k) # Syn. Test # Bug# Node # Branch # Total

0-FS node-or-branch (0-fs) 10.0 5.6 15.6 2,111 55
1-FS node-or-branch (1-fs) 79.3 45.7 125.0 6,766 83

1-FCPS node-or-branch (1-fcps) 179.7 97.6 277.3 9,092 87
2-FS node-or-branch (2-fs) 1,199.8 696.3 1,896.1 97,423 102

2-FCPS node-or-branch (2-fcps) 2,323.1 1,297.6 3,620.7 122,589 111

Order of Execution. JavaScript engines must follow the execution order of each language feature
described in the language speci�cation. However, we found a bug10 related to the execution order
of the delete operation that causes the execution of originally unreachable code in GraalJS. For
example, while the following code should return false, it throws an exception with �ERR� by
executing the originally unreachable code inside the arrow function in GraalJS:

false && delete (() => { throw �ERR�; })(); // Expected: false

In addition, we detected another bug11 related to the execution order of property reads in all
target engines. ECMA-262 may consider changing the semantics according to the one used in most
implementations.

Asynchronous Function / Generator. One of the complex language features in JavaScript is
asynchronous functions and generators introduced in ES6 (2015). We detected a bug12 in Spider-
Monkey that breaks the logic of asynchronous function calls. For example, the following code must
return a rejected Promise object because a non-iterable value undefined is assigned to an array
destructuring pattern [] in the async arrow function:

(async function ([]) {})(); // Expected: A rejected Promise object

However, it unexpectedly terminates with a TypeError exception in SpiderMonkey. A developer
of SpiderMonkey explained it as follows:

“The async-function spec was changed at some point [. . .]
this is also not covered by test262.”

5.2 E�ectiveness of :-FS Coverage Criteria
Table 2 shows the result of conformance test synthesis via JESTfs with �ve graph coverage criteria.
Note that 0-FS node-or-branch coverage criterion is the same with the node-or-branch coverage
criterion. To evaluate the e�ectiveness of :-FS coverage criteria, we compare the synthesized
conformance tests guided by di�erent :-FS node-or-branch coverage criteria (0-fs, 1-fs, and 2-fs in
Table 2). The second to the fourth columns denote the numbers of covered :-FS- or :-FCPS-TRs
for nodes (# Node), branches (# Branch), and both (# Total), respectively. The �fth and the sixth
columns denote the numbers of synthesized conformance tests (# Syn. Test) and detected distinct
bugs (# Bug), respectively.
The results show that higher :-FS coverage criteria are more e�ective than lower :-FS. On

average, 8.03 (125.0K / 15.6K) 1-FS-TRs exist per each 0-FS-TR, and 15.17 (1,896.1K / 125.0K) 2-FS-
TRs exist per each 1-FS-TR. It means that each node or branch is used in 8.03 di�erent language
features, and each language feature could be used in 15.17 other language features on average. For
a more detailed information, we draw a histogram of the number of covered 1-FS-TRs (or 2-FS-TRs)
10https://github.com/oracle/graaljs/issues/671
11https://github.com/tc39/ecma262/issues/2659
12https://bugzilla.mozilla.org/show_bug.cgi?id=1799288

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 126. Publication date: June 2023.

+28

+19

class C { async ["f"](){} }
C.prototype.f.name

Synthesized with 2-FS but not with 1-FS

"async"
Wrong Result

JSC
"f"

Expected

Spec.

for (let {} = 0; 0;) ;

Synthesized with 1-FS but not with 0-FS

Crash
Wrong Result

Babel
Terminated

Expected

Spec.

/ 3433

RQ3) Effectiveness of 𝑘-FCPS Coverage Criteria
126:16 Jihyeok Park, Dongjun Youn, Kanguk Lee, and Sukyoung Ryu

Table 2. Comparison of synthesized conformance tests guided by five graph coverage criteria

Coverage Criteria⇠G
Covered :-F(CP)S-TR (k) # Syn. Test # Bug# Node # Branch # Total

0-FS node-or-branch (0-fs) 10.0 5.6 15.6 2,111 55
1-FS node-or-branch (1-fs) 79.3 45.7 125.0 6,766 83

1-FCPS node-or-branch (1-fcps) 179.7 97.6 277.3 9,092 87
2-FS node-or-branch (2-fs) 1,199.8 696.3 1,896.1 97,423 102

2-FCPS node-or-branch (2-fcps) 2,323.1 1,297.6 3,620.7 122,589 111

Order of Execution. JavaScript engines must follow the execution order of each language feature
described in the language speci�cation. However, we found a bug10 related to the execution order
of the delete operation that causes the execution of originally unreachable code in GraalJS. For
example, while the following code should return false, it throws an exception with �ERR� by
executing the originally unreachable code inside the arrow function in GraalJS:

false && delete (() => { throw �ERR�; })(); // Expected: false

In addition, we detected another bug11 related to the execution order of property reads in all
target engines. ECMA-262 may consider changing the semantics according to the one used in most
implementations.

Asynchronous Function / Generator. One of the complex language features in JavaScript is
asynchronous functions and generators introduced in ES6 (2015). We detected a bug12 in Spider-
Monkey that breaks the logic of asynchronous function calls. For example, the following code must
return a rejected Promise object because a non-iterable value undefined is assigned to an array
destructuring pattern [] in the async arrow function:

(async function ([]) {})(); // Expected: A rejected Promise object

However, it unexpectedly terminates with a TypeError exception in SpiderMonkey. A developer
of SpiderMonkey explained it as follows:

“The async-function spec was changed at some point [. . .]
this is also not covered by test262.”

5.2 E�ectiveness of :-FS Coverage Criteria
Table 2 shows the result of conformance test synthesis via JESTfs with �ve graph coverage criteria.
Note that 0-FS node-or-branch coverage criterion is the same with the node-or-branch coverage
criterion. To evaluate the e�ectiveness of :-FS coverage criteria, we compare the synthesized
conformance tests guided by di�erent :-FS node-or-branch coverage criteria (0-fs, 1-fs, and 2-fs in
Table 2). The second to the fourth columns denote the numbers of covered :-FS- or :-FCPS-TRs
for nodes (# Node), branches (# Branch), and both (# Total), respectively. The �fth and the sixth
columns denote the numbers of synthesized conformance tests (# Syn. Test) and detected distinct
bugs (# Bug), respectively.
The results show that higher :-FS coverage criteria are more e�ective than lower :-FS. On

average, 8.03 (125.0K / 15.6K) 1-FS-TRs exist per each 0-FS-TR, and 15.17 (1,896.1K / 125.0K) 2-FS-
TRs exist per each 1-FS-TR. It means that each node or branch is used in 8.03 di�erent language
features, and each language feature could be used in 15.17 other language features on average. For
a more detailed information, we draw a histogram of the number of covered 1-FS-TRs (or 2-FS-TRs)
10https://github.com/oracle/graaljs/issues/671
11https://github.com/tc39/ecma262/issues/2659
12https://bugzilla.mozilla.org/show_bug.cgi?id=1799288

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 126. Publication date: June 2023.

/ 3433

RQ3) Effectiveness of 𝑘-FCPS Coverage Criteria
126:16 Jihyeok Park, Dongjun Youn, Kanguk Lee, and Sukyoung Ryu

Table 2. Comparison of synthesized conformance tests guided by five graph coverage criteria

Coverage Criteria⇠G
Covered :-F(CP)S-TR (k) # Syn. Test # Bug# Node # Branch # Total

0-FS node-or-branch (0-fs) 10.0 5.6 15.6 2,111 55
1-FS node-or-branch (1-fs) 79.3 45.7 125.0 6,766 83

1-FCPS node-or-branch (1-fcps) 179.7 97.6 277.3 9,092 87
2-FS node-or-branch (2-fs) 1,199.8 696.3 1,896.1 97,423 102

2-FCPS node-or-branch (2-fcps) 2,323.1 1,297.6 3,620.7 122,589 111

Order of Execution. JavaScript engines must follow the execution order of each language feature
described in the language speci�cation. However, we found a bug10 related to the execution order
of the delete operation that causes the execution of originally unreachable code in GraalJS. For
example, while the following code should return false, it throws an exception with �ERR� by
executing the originally unreachable code inside the arrow function in GraalJS:

false && delete (() => { throw �ERR�; })(); // Expected: false

In addition, we detected another bug11 related to the execution order of property reads in all
target engines. ECMA-262 may consider changing the semantics according to the one used in most
implementations.

Asynchronous Function / Generator. One of the complex language features in JavaScript is
asynchronous functions and generators introduced in ES6 (2015). We detected a bug12 in Spider-
Monkey that breaks the logic of asynchronous function calls. For example, the following code must
return a rejected Promise object because a non-iterable value undefined is assigned to an array
destructuring pattern [] in the async arrow function:

(async function ([]) {})(); // Expected: A rejected Promise object

However, it unexpectedly terminates with a TypeError exception in SpiderMonkey. A developer
of SpiderMonkey explained it as follows:

“The async-function spec was changed at some point [. . .]
this is also not covered by test262.”

5.2 E�ectiveness of :-FS Coverage Criteria
Table 2 shows the result of conformance test synthesis via JESTfs with �ve graph coverage criteria.
Note that 0-FS node-or-branch coverage criterion is the same with the node-or-branch coverage
criterion. To evaluate the e�ectiveness of :-FS coverage criteria, we compare the synthesized
conformance tests guided by di�erent :-FS node-or-branch coverage criteria (0-fs, 1-fs, and 2-fs in
Table 2). The second to the fourth columns denote the numbers of covered :-FS- or :-FCPS-TRs
for nodes (# Node), branches (# Branch), and both (# Total), respectively. The �fth and the sixth
columns denote the numbers of synthesized conformance tests (# Syn. Test) and detected distinct
bugs (# Bug), respectively.
The results show that higher :-FS coverage criteria are more e�ective than lower :-FS. On

average, 8.03 (125.0K / 15.6K) 1-FS-TRs exist per each 0-FS-TR, and 15.17 (1,896.1K / 125.0K) 2-FS-
TRs exist per each 1-FS-TR. It means that each node or branch is used in 8.03 di�erent language
features, and each language feature could be used in 15.17 other language features on average. For
a more detailed information, we draw a histogram of the number of covered 1-FS-TRs (or 2-FS-TRs)
10https://github.com/oracle/graaljs/issues/671
11https://github.com/tc39/ecma262/issues/2659
12https://bugzilla.mozilla.org/show_bug.cgi?id=1799288

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 126. Publication date: June 2023.

+4

/ 3433

RQ3) Effectiveness of 𝑘-FCPS Coverage Criteria
126:16 Jihyeok Park, Dongjun Youn, Kanguk Lee, and Sukyoung Ryu

Table 2. Comparison of synthesized conformance tests guided by five graph coverage criteria

Coverage Criteria⇠G
Covered :-F(CP)S-TR (k) # Syn. Test # Bug# Node # Branch # Total

0-FS node-or-branch (0-fs) 10.0 5.6 15.6 2,111 55
1-FS node-or-branch (1-fs) 79.3 45.7 125.0 6,766 83

1-FCPS node-or-branch (1-fcps) 179.7 97.6 277.3 9,092 87
2-FS node-or-branch (2-fs) 1,199.8 696.3 1,896.1 97,423 102

2-FCPS node-or-branch (2-fcps) 2,323.1 1,297.6 3,620.7 122,589 111

Order of Execution. JavaScript engines must follow the execution order of each language feature
described in the language speci�cation. However, we found a bug10 related to the execution order
of the delete operation that causes the execution of originally unreachable code in GraalJS. For
example, while the following code should return false, it throws an exception with �ERR� by
executing the originally unreachable code inside the arrow function in GraalJS:

false && delete (() => { throw �ERR�; })(); // Expected: false

In addition, we detected another bug11 related to the execution order of property reads in all
target engines. ECMA-262 may consider changing the semantics according to the one used in most
implementations.

Asynchronous Function / Generator. One of the complex language features in JavaScript is
asynchronous functions and generators introduced in ES6 (2015). We detected a bug12 in Spider-
Monkey that breaks the logic of asynchronous function calls. For example, the following code must
return a rejected Promise object because a non-iterable value undefined is assigned to an array
destructuring pattern [] in the async arrow function:

(async function ([]) {})(); // Expected: A rejected Promise object

However, it unexpectedly terminates with a TypeError exception in SpiderMonkey. A developer
of SpiderMonkey explained it as follows:

“The async-function spec was changed at some point [. . .]
this is also not covered by test262.”

5.2 E�ectiveness of :-FS Coverage Criteria
Table 2 shows the result of conformance test synthesis via JESTfs with �ve graph coverage criteria.
Note that 0-FS node-or-branch coverage criterion is the same with the node-or-branch coverage
criterion. To evaluate the e�ectiveness of :-FS coverage criteria, we compare the synthesized
conformance tests guided by di�erent :-FS node-or-branch coverage criteria (0-fs, 1-fs, and 2-fs in
Table 2). The second to the fourth columns denote the numbers of covered :-FS- or :-FCPS-TRs
for nodes (# Node), branches (# Branch), and both (# Total), respectively. The �fth and the sixth
columns denote the numbers of synthesized conformance tests (# Syn. Test) and detected distinct
bugs (# Bug), respectively.
The results show that higher :-FS coverage criteria are more e�ective than lower :-FS. On

average, 8.03 (125.0K / 15.6K) 1-FS-TRs exist per each 0-FS-TR, and 15.17 (1,896.1K / 125.0K) 2-FS-
TRs exist per each 1-FS-TR. It means that each node or branch is used in 8.03 di�erent language
features, and each language feature could be used in 15.17 other language features on average. For
a more detailed information, we draw a histogram of the number of covered 1-FS-TRs (or 2-FS-TRs)
10https://github.com/oracle/graaljs/issues/671
11https://github.com/tc39/ecma262/issues/2659
12https://bugzilla.mozilla.org/show_bug.cgi?id=1799288

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 126. Publication date: June 2023.

+4

+9

/ 3433

RQ3) Effectiveness of 𝑘-FCPS Coverage Criteria
126:16 Jihyeok Park, Dongjun Youn, Kanguk Lee, and Sukyoung Ryu

Table 2. Comparison of synthesized conformance tests guided by five graph coverage criteria

Coverage Criteria⇠G
Covered :-F(CP)S-TR (k) # Syn. Test # Bug# Node # Branch # Total

0-FS node-or-branch (0-fs) 10.0 5.6 15.6 2,111 55
1-FS node-or-branch (1-fs) 79.3 45.7 125.0 6,766 83

1-FCPS node-or-branch (1-fcps) 179.7 97.6 277.3 9,092 87
2-FS node-or-branch (2-fs) 1,199.8 696.3 1,896.1 97,423 102

2-FCPS node-or-branch (2-fcps) 2,323.1 1,297.6 3,620.7 122,589 111

Order of Execution. JavaScript engines must follow the execution order of each language feature
described in the language speci�cation. However, we found a bug10 related to the execution order
of the delete operation that causes the execution of originally unreachable code in GraalJS. For
example, while the following code should return false, it throws an exception with �ERR� by
executing the originally unreachable code inside the arrow function in GraalJS:

false && delete (() => { throw �ERR�; })(); // Expected: false

In addition, we detected another bug11 related to the execution order of property reads in all
target engines. ECMA-262 may consider changing the semantics according to the one used in most
implementations.

Asynchronous Function / Generator. One of the complex language features in JavaScript is
asynchronous functions and generators introduced in ES6 (2015). We detected a bug12 in Spider-
Monkey that breaks the logic of asynchronous function calls. For example, the following code must
return a rejected Promise object because a non-iterable value undefined is assigned to an array
destructuring pattern [] in the async arrow function:

(async function ([]) {})(); // Expected: A rejected Promise object

However, it unexpectedly terminates with a TypeError exception in SpiderMonkey. A developer
of SpiderMonkey explained it as follows:

“The async-function spec was changed at some point [. . .]
this is also not covered by test262.”

5.2 E�ectiveness of :-FS Coverage Criteria
Table 2 shows the result of conformance test synthesis via JESTfs with �ve graph coverage criteria.
Note that 0-FS node-or-branch coverage criterion is the same with the node-or-branch coverage
criterion. To evaluate the e�ectiveness of :-FS coverage criteria, we compare the synthesized
conformance tests guided by di�erent :-FS node-or-branch coverage criteria (0-fs, 1-fs, and 2-fs in
Table 2). The second to the fourth columns denote the numbers of covered :-FS- or :-FCPS-TRs
for nodes (# Node), branches (# Branch), and both (# Total), respectively. The �fth and the sixth
columns denote the numbers of synthesized conformance tests (# Syn. Test) and detected distinct
bugs (# Bug), respectively.
The results show that higher :-FS coverage criteria are more e�ective than lower :-FS. On

average, 8.03 (125.0K / 15.6K) 1-FS-TRs exist per each 0-FS-TR, and 15.17 (1,896.1K / 125.0K) 2-FS-
TRs exist per each 1-FS-TR. It means that each node or branch is used in 8.03 di�erent language
features, and each language feature could be used in 15.17 other language features on average. For
a more detailed information, we draw a histogram of the number of covered 1-FS-TRs (or 2-FS-TRs)
10https://github.com/oracle/graaljs/issues/671
11https://github.com/tc39/ecma262/issues/2659
12https://bugzilla.mozilla.org/show_bug.cgi?id=1799288

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 126. Publication date: June 2023.

+4

+9

String.prototype
 .normalize
 .call(0, "");

Synthesized with 1-FCPS or 2-FCPS but not with 1-FS or 2-FS

RangeError

Expected

Spec.
Terminated
Wrong Result

GraalJS

/ 3434

ECMA-262
(JS Spec.)

Mech. Spec.
Extraction

Conform. Test
Synthesis

Mechanized
Spec.

Conformance
Tests

JavaScript
Engines

ASE 2020 ICSE 2021

Feature-Sens.
Coverage

PLDI 2023

/ 3434

ECMA-262
(JS Spec.)

Mech. Spec.
Extraction

Conform. Test
Synthesis

Mechanized
Spec.

Conformance
Tests

JavaScript
Engines

ASE 2020 ICSE 2021

Feature-Sens.
Coverage

PLDI 2023

Selective
FS-Coverage

Ongoing

Feature-Sens.
Coverage

/ 3434

ECMA-262
(JS Spec.)

Mech. Spec.
Extraction

Conform. Test
Synthesis

Mechanized
Spec.

Conformance
Tests

JavaScript
Engines

ASE 2020 ICSE 2021

Feature-Sens.
Coverage

PLDI 2023

Spec. Type
Analysis

Type-related
Spec. Bug

Mechanized
Spec.

ECMA-262
(JS Spec.)

ASE 2021

Selective
FS-Coverage

Ongoing

Feature-Sens.
Coverage

/ 3434

ECMA-262
(JS Spec.)

Mech. Spec.
Extraction

Conform. Test
Synthesis

Mechanized
Spec.

Conformance
Tests

JavaScript
Engines

ASE 2020 ICSE 2021

Feature-Sens.
Coverage

PLDI 2023

Spec. Type
Analysis

Type-related
Spec. Bug

Mechanized
Spec.

ECMA-262
(JS Spec.)

ASE 2021

Type Guard
Inference

Ongoing

Spec. Type
Analysis

Selective
FS-Coverage

Ongoing

Feature-Sens.
Coverage

/ 3434

ECMA-262
(JS Spec.)

Mech. Spec.
Extraction

Conform. Test
Synthesis

Mechanized
Spec.

Conformance
Tests

JavaScript
Engines

ASE 2020 ICSE 2021

Feature-Sens.
Coverage

PLDI 2023

Spec. Type
Analysis

Type-related
Spec. Bug

Mechanized
Spec.

ECMA-262
(JS Spec.)

ASE 2021

Type Guard
Inference

Ongoing

Spec. Type
Analysis

Spec.
Repair Tool

Future Work

Type-related
Spec. Bug

ECMA-262
(JS Spec.)

Selective
FS-Coverage

Ongoing

Feature-Sens.
Coverage

/ 3434

ECMA-262
(JS Spec.)

Mech. Spec.
Extraction

Conform. Test
Synthesis

Mechanized
Spec.

Conformance
Tests

JavaScript
Engines

ASE 2020 ICSE 2021

Feature-Sens.
Coverage

PLDI 2023

Spec. Type
Analysis

Type-related
Spec. Bug

Mechanized
Spec.

ECMA-262
(JS Spec.)

ASE 2021

Type Guard
Inference

Ongoing

Spec. Type
Analysis

Spec.
Repair Tool

Future Work

Type-related
Spec. Bug

ECMA-262
(JS Spec.)

Static Analyzer
Derivation

FSE 2022

Static Analyzer

Mechanized
Spec.

Selective
FS-Coverage

Ongoing

Feature-Sens.
Coverage

/ 3434

ECMA-262
(JS Spec.)

Mech. Spec.
Extraction

Conform. Test
Synthesis

Mechanized
Spec.

Conformance
Tests

JavaScript
Engines

ASE 2020 ICSE 2021

Feature-Sens.
Coverage

PLDI 2023

Spec. Type
Analysis

Type-related
Spec. Bug

Mechanized
Spec.

ECMA-262
(JS Spec.)

ASE 2021

Type Guard
Inference

Ongoing

Spec. Type
Analysis

Spec.
Repair Tool

Future Work

Type-related
Spec. Bug

ECMA-262
(JS Spec.)

Static Analyzer
Derivation

FSE 2022

Static Analyzer

Mechanized
Spec.

Dataflow Facts
Derivation

Future Work

Dataflow
Facts

Mechanized
Spec.

Selective
FS-Coverage

Ongoing

Feature-Sens.
Coverage

/ 3434

ECMA-262
(JS Spec.)

Mech. Spec.
Extraction

Conform. Test
Synthesis

Mechanized
Spec.

Conformance
Tests

JavaScript
Engines

ASE 2020 ICSE 2021

Feature-Sens.
Coverage

PLDI 2023

Spec. Type
Analysis

Type-related
Spec. Bug

Mechanized
Spec.

ECMA-262
(JS Spec.)

ASE 2021

Type Guard
Inference

Ongoing

Spec. Type
Analysis

Spec.
Repair Tool

Future Work

Type-related
Spec. Bug

ECMA-262
(JS Spec.)

Static Analyzer
Derivation

FSE 2022

Static Analyzer

Mechanized
Spec.

Dataflow Facts
Derivation

Future Work

Dataflow
Facts

Mechanized
Spec.

Spec.
Synthesis

Ongoing

JavaScript
Engines

ECMA-262
(JS Spec.)

Selective
FS-Coverage

Ongoing

Feature-Sens.
Coverage

