
Jihyeok Park and Sukyoung Ryu

Instituto Superior Técnico of University of Lisbon

2024.06.24

Language Design and Implementation
using JavaScript Mechanized Specification

/ 572

JavaScript is Everywhere

Client-Side Programming

Sever-Side Programming

Mobile/Desktop Applications

Others (PDF, IoT, Microcontrollers, etc.)

/ 573

JavaScript is Everywhere

https://octoverse.github.com/

https://octoverse.github.com/

/ 574

JavaScript is Everywhere

https://octoverse.github.com/

https://octoverse.github.com/

/ 574

JavaScript is Everywhere

https://octoverse.github.com/

https://octoverse.github.com/

/ 575

But, JavaScript is Complicated

+ JS - JS

/ 575

But, JavaScript is Complicated

+ JS - JS

4 + 2
JS

/ 575

But, JavaScript is Complicated

+ JS

6

- JS

4 + 2
JS

/ 575

But, JavaScript is Complicated

+ JS

6

- JS

4 + 2
JS

4 + "2"
JS

/ 575

But, JavaScript is Complicated

+ JS

6

- JS

"42"4 + 2
JS

4 + "2"
JS

/ 575

But, JavaScript is Complicated

+ JS

6

- JS

"42"4 + 2
JS

4 + "2"
JS

4 - "2"
JS

/ 575

But, JavaScript is Complicated

+ JS

6

- JS

"42" 24 + 2
JS

4 + "2"
JS

4 - "2"
JS

/ 575

But, JavaScript is Complicated

+ JS

6

- JS

"42" 24 + 2
JS

4 + "2"
JS

4 - "2"
JS

[1,2] + 3
JS

/ 575

But, JavaScript is Complicated

+ JS

6

- JS

"42" 2

"1,23"

4 + 2
JS

4 + "2"
JS

4 - "2"
JS

[1,2] + 3
JS

/ 575

But, JavaScript is Complicated

+ JS

6

- JS

"42" 2

"1,23"

4 + 2
JS

4 + "2"
JS

4 - "2"
JS

[1,2] + 3
JS

[] - 3
JS

/ 575

But, JavaScript is Complicated

+ JS

6

- JS

"42" 2

"1,23" -3

4 + 2
JS

4 + "2"
JS

4 - "2"
JS

[1,2] + 3
JS

[] - 3
JS

/ 575

But, JavaScript is Complicated

+ JS

6

- JS

"42" 2

"1,23" -3

4 + 2
JS

4 + "2"
JS

4 - "2"
JS

[1,2] + 3
JS

[] - 3
JS

4 + 2n
JS

/ 575

But, JavaScript is Complicated

+ JS

6

- JS

"42" 2

"1,23" -3 TypeError

4 + 2
JS

4 + "2"
JS

4 - "2"
JS

[1,2] + 3
JS

[] - 3
JS

4 + 2n
JS

/ 575

But, JavaScript is Complicated

+ JS

6

- JS

"42" 2

"1,23" -3 TypeError

4 + 2
JS

4 + "2"
JS

4 - "2"
JS

[1,2] + 3
JS

[] - 3
JS

4 + 2n
JS

...

/ 575

But, JavaScript is Complicated

+ JS

6

- JS

"42" 2

"1,23" -3 TypeError

4 + 2
JS

4 + "2"
JS

4 - "2"
JS

[1,2] + 3
JS

[] - 3
JS

4 + 2n
JS

...

 (![]+[])[+[]] +
 (![]+[])[+!+[]] +
 ([![]]+[][[]])[+!+[]+[+[]]] +
 (![]+[])[!+[]+!+[]]

JS

/ 57

 (![]+[])[+[]] + // "f"
 (![]+[])[+!+[]] + // "a"
 ([![]]+[][[]])[+!+[]+[+[]]] + // "i"
 (![]+[])[!+[]+!+[]] // "l"

"fail"

5

But, JavaScript is Complicated

+ JS

6

- JS

"42" 2

"1,23" -3 TypeError

4 + 2
JS

4 + "2"
JS

4 - "2"
JS

[1,2] + 3
JS

[] - 3
JS

4 + 2n
JS

...

 (![]+[])[+[]] +
 (![]+[])[+!+[]] +
 ([![]]+[][[]])[+!+[]+[+[]]] +
 (![]+[])[!+[]+!+[]]

JS

/ 57

AdditiveExpression[Yield, Await] :

MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] + MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] - MultiplicativeExpression[?Yield, ?Await]

NOTE The addition operator either performs string concatenation or numeric addition.

AdditiveExpression : AdditiveExpression + MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, +, MultiplicativeExpression).

NOTE The - operator performs subtraction, producing the difference of its operands.

AdditiveExpression : AdditiveExpression - MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, -, MultiplicativeExpression).

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification

13.8 Additive Operators

Syntax

13.8.1 The Addition Operator (+)

13.8.1.1 Runtime Semantics: Evaluation

13.8.2 The Subtraction Operator (-)

13.8.2.1 Runtime Semantics: Evaluation

6

Language Specification (ECMA-262) of JavaScript

Reference number
ECMA-123:2009

© Ecma International 2009

ECMA-262
�4th Edition / June 20�3

ECMAScript® ���3
Language Specification

ECMA-262
(JavaScript Spec.)

Syntax

Semantics

AdditiveExpression[Yield, Await] :

MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] + MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] - MultiplicativeExpression[?Yield, ?Await]

NOTE The addition operator either performs string concatenation or numeric addition.

AdditiveExpression : AdditiveExpression + MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, +, MultiplicativeExpression).

NOTE The - operator performs subtraction, producing the difference of its operands.

AdditiveExpression : AdditiveExpression - MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, -, MultiplicativeExpression).

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification

13.8 Additive Operators

Syntax

13.8.1 The Addition Operator (+)

13.8.1.1 Runtime Semantics: Evaluation

13.8.2 The Subtraction Operator (-)

13.8.2.1 Runtime Semantics: Evaluation

AdditiveExpression[Yield, Await] :

MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] + MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] - MultiplicativeExpression[?Yield, ?Await]

NOTE The addition operator either performs string concatenation or numeric addition.

AdditiveExpression : AdditiveExpression + MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, +, MultiplicativeExpression).

NOTE The - operator performs subtraction, producing the difference of its operands.

AdditiveExpression : AdditiveExpression - MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, -, MultiplicativeExpression).

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification

13.8 Additive Operators

Syntax

13.8.1 The Addition Operator (+)

13.8.1.1 Runtime Semantics: Evaluation

13.8.2 The Subtraction Operator (-)

13.8.2.1 Runtime Semantics: Evaluation

AdditiveExpression[Yield, Await] :

MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] + MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] - MultiplicativeExpression[?Yield, ?Await]

NOTE The addition operator either performs string concatenation or numeric addition.

AdditiveExpression : AdditiveExpression + MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, +, MultiplicativeExpression).

NOTE The - operator performs subtraction, producing the difference of its operands.

AdditiveExpression : AdditiveExpression - MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, -, MultiplicativeExpression).

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification

13.8 Additive Operators

Syntax

13.8.1 The Addition Operator (+)

13.8.1.1 Runtime Semantics: Evaluation

13.8.2 The Subtraction Operator (-)

13.8.2.1 Runtime Semantics: Evaluation

+ JS

/ 57

AdditiveExpression[Yield, Await] :

MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] + MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] - MultiplicativeExpression[?Yield, ?Await]

NOTE The addition operator either performs string concatenation or numeric addition.

AdditiveExpression : AdditiveExpression + MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, +, MultiplicativeExpression).

NOTE The - operator performs subtraction, producing the difference of its operands.

AdditiveExpression : AdditiveExpression - MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, -, MultiplicativeExpression).

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification

13.8 Additive Operators

Syntax

13.8.1 The Addition Operator (+)

13.8.1.1 Runtime Semantics: Evaluation

13.8.2 The Subtraction Operator (-)

13.8.2.1 Runtime Semantics: Evaluation

AdditiveExpression[Yield, Await] :

MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] + MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] - MultiplicativeExpression[?Yield, ?Await]

NOTE The addition operator either performs string concatenation or numeric addition.

AdditiveExpression : AdditiveExpression + MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, +, MultiplicativeExpression).

NOTE The - operator performs subtraction, producing the difference of its operands.

AdditiveExpression : AdditiveExpression - MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, -, MultiplicativeExpression).

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification

13.8 Additive Operators

Syntax

13.8.1 The Addition Operator (+)

13.8.1.1 Runtime Semantics: Evaluation

13.8.2 The Subtraction Operator (-)

13.8.2.1 Runtime Semantics: Evaluation

AdditiveExpression[Yield, Await] :

MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] + MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] - MultiplicativeExpression[?Yield, ?Await]

NOTE The addition operator either performs string concatenation or numeric addition.

AdditiveExpression : AdditiveExpression + MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, +, MultiplicativeExpression).

NOTE The - operator performs subtraction, producing the difference of its operands.

AdditiveExpression : AdditiveExpression - MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, -, MultiplicativeExpression).

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification

13.8 Additive Operators

Syntax

13.8.1 The Addition Operator (+)

13.8.1.1 Runtime Semantics: Evaluation

13.8.2 The Subtraction Operator (-)

13.8.2.1 Runtime Semantics: Evaluation

7

Language Specification (ECMA-262) of JavaScript

4 + 2n
JS

TypeError

/ 57

AdditiveExpression[Yield, Await] :

MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] + MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] - MultiplicativeExpression[?Yield, ?Await]

NOTE The addition operator either performs string concatenation or numeric addition.

AdditiveExpression : AdditiveExpression + MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, +, MultiplicativeExpression).

NOTE The - operator performs subtraction, producing the difference of its operands.

AdditiveExpression : AdditiveExpression - MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, -, MultiplicativeExpression).

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification

13.8 Additive Operators

Syntax

13.8.1 The Addition Operator (+)

13.8.1.1 Runtime Semantics: Evaluation

13.8.2 The Subtraction Operator (-)

13.8.2.1 Runtime Semantics: Evaluation

AdditiveExpression[Yield, Await] :

MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] + MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] - MultiplicativeExpression[?Yield, ?Await]

NOTE The addition operator either performs string concatenation or numeric addition.

AdditiveExpression : AdditiveExpression + MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, +, MultiplicativeExpression).

NOTE The - operator performs subtraction, producing the difference of its operands.

AdditiveExpression : AdditiveExpression - MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, -, MultiplicativeExpression).

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification

13.8 Additive Operators

Syntax

13.8.1 The Addition Operator (+)

13.8.1.1 Runtime Semantics: Evaluation

13.8.2 The Subtraction Operator (-)

13.8.2.1 Runtime Semantics: Evaluation

AdditiveExpression[Yield, Await] :

MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] + MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] - MultiplicativeExpression[?Yield, ?Await]

NOTE The addition operator either performs string concatenation or numeric addition.

AdditiveExpression : AdditiveExpression + MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, +, MultiplicativeExpression).

NOTE The - operator performs subtraction, producing the difference of its operands.

AdditiveExpression : AdditiveExpression - MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, -, MultiplicativeExpression).

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification

13.8 Additive Operators

Syntax

13.8.1 The Addition Operator (+)

13.8.1.1 Runtime Semantics: Evaluation

13.8.2 The Subtraction Operator (-)

13.8.2.1 Runtime Semantics: Evaluation

The abstract operation EvaluateStringOrNumericBinaryExpression takes arguments leftOperand (a Parse Node), opText (a
sequence of Unicode code points), and rightOperand (a Parse Node) and returns either a normal completion containing
either a String, a BigInt, or a Number, or an abrupt completion. It performs the following steps when called:

1. Let lref be ? Evaluation of leftOperand.
2. Let lval be ? GetValue(lref).
3. Let rref be ? Evaluation of rightOperand.
4. Let rval be ? GetValue(rref).
5. Return ? ApplyStringOrNumericBinaryOperator(lval, opText, rval).

Expression[In, Yield, Await] :

AssignmentExpression[?In, ?Yield, ?Await]
Expression[?In, ?Yield, ?Await] , AssignmentExpression[?In, ?Yield, ?Await]

Expression : Expression , AssignmentExpression

1. Let lref be ? Evaluation of Expression.
2. Perform ? GetValue(lref).
3. Let rref be ? Evaluation of AssignmentExpression.
4. Return ? GetValue(rref).

NOTE GetValue must be called even though its value is not used because it may have observable side-effects.

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification
13 ECMAScript Language: Expressions

13.15.4 EvaluateStringOrNumericBinaryExpression (leftOperand, opText, rightOperand)

13.16 Comma Operator (,)

Syntax

13.16.1 Runtime Semantics: Evaluation

The abstract operation EvaluateStringOrNumericBinaryExpression takes arguments leftOperand (a Parse Node), opText (a
sequence of Unicode code points), and rightOperand (a Parse Node) and returns either a normal completion containing
either a String, a BigInt, or a Number, or an abrupt completion. It performs the following steps when called:

1. Let lref be ? Evaluation of leftOperand.
2. Let lval be ? GetValue(lref).
3. Let rref be ? Evaluation of rightOperand.
4. Let rval be ? GetValue(rref).
5. Return ? ApplyStringOrNumericBinaryOperator(lval, opText, rval).

Expression[In, Yield, Await] :

AssignmentExpression[?In, ?Yield, ?Await]
Expression[?In, ?Yield, ?Await] , AssignmentExpression[?In, ?Yield, ?Await]

Expression : Expression , AssignmentExpression

1. Let lref be ? Evaluation of Expression.
2. Perform ? GetValue(lref).
3. Let rref be ? Evaluation of AssignmentExpression.
4. Return ? GetValue(rref).

NOTE GetValue must be called even though its value is not used because it may have observable side-effects.

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification
13 ECMAScript Language: Expressions

13.15.4 EvaluateStringOrNumericBinaryExpression (leftOperand, opText, rightOperand)

13.16 Comma Operator (,)

Syntax

13.16.1 Runtime Semantics: Evaluation

7

Language Specification (ECMA-262) of JavaScript

4 + 2n
JS

TypeError

/ 57

AdditiveExpression[Yield, Await] :

MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] + MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] - MultiplicativeExpression[?Yield, ?Await]

NOTE The addition operator either performs string concatenation or numeric addition.

AdditiveExpression : AdditiveExpression + MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, +, MultiplicativeExpression).

NOTE The - operator performs subtraction, producing the difference of its operands.

AdditiveExpression : AdditiveExpression - MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, -, MultiplicativeExpression).

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification

13.8 Additive Operators

Syntax

13.8.1 The Addition Operator (+)

13.8.1.1 Runtime Semantics: Evaluation

13.8.2 The Subtraction Operator (-)

13.8.2.1 Runtime Semantics: Evaluation

AdditiveExpression[Yield, Await] :

MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] + MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] - MultiplicativeExpression[?Yield, ?Await]

NOTE The addition operator either performs string concatenation or numeric addition.

AdditiveExpression : AdditiveExpression + MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, +, MultiplicativeExpression).

NOTE The - operator performs subtraction, producing the difference of its operands.

AdditiveExpression : AdditiveExpression - MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, -, MultiplicativeExpression).

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification

13.8 Additive Operators

Syntax

13.8.1 The Addition Operator (+)

13.8.1.1 Runtime Semantics: Evaluation

13.8.2 The Subtraction Operator (-)

13.8.2.1 Runtime Semantics: Evaluation

AdditiveExpression[Yield, Await] :

MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] + MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] - MultiplicativeExpression[?Yield, ?Await]

NOTE The addition operator either performs string concatenation or numeric addition.

AdditiveExpression : AdditiveExpression + MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, +, MultiplicativeExpression).

NOTE The - operator performs subtraction, producing the difference of its operands.

AdditiveExpression : AdditiveExpression - MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, -, MultiplicativeExpression).

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification

13.8 Additive Operators

Syntax

13.8.1 The Addition Operator (+)

13.8.1.1 Runtime Semantics: Evaluation

13.8.2 The Subtraction Operator (-)

13.8.2.1 Runtime Semantics: Evaluation

The abstract operation EvaluateStringOrNumericBinaryExpression takes arguments leftOperand (a Parse Node), opText (a
sequence of Unicode code points), and rightOperand (a Parse Node) and returns either a normal completion containing
either a String, a BigInt, or a Number, or an abrupt completion. It performs the following steps when called:

1. Let lref be ? Evaluation of leftOperand.
2. Let lval be ? GetValue(lref).
3. Let rref be ? Evaluation of rightOperand.
4. Let rval be ? GetValue(rref).
5. Return ? ApplyStringOrNumericBinaryOperator(lval, opText, rval).

Expression[In, Yield, Await] :

AssignmentExpression[?In, ?Yield, ?Await]
Expression[?In, ?Yield, ?Await] , AssignmentExpression[?In, ?Yield, ?Await]

Expression : Expression , AssignmentExpression

1. Let lref be ? Evaluation of Expression.
2. Perform ? GetValue(lref).
3. Let rref be ? Evaluation of AssignmentExpression.
4. Return ? GetValue(rref).

NOTE GetValue must be called even though its value is not used because it may have observable side-effects.

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification
13 ECMAScript Language: Expressions

13.15.4 EvaluateStringOrNumericBinaryExpression (leftOperand, opText, rightOperand)

13.16 Comma Operator (,)

Syntax

13.16.1 Runtime Semantics: Evaluation

The abstract operation EvaluateStringOrNumericBinaryExpression takes arguments leftOperand (a Parse Node), opText (a
sequence of Unicode code points), and rightOperand (a Parse Node) and returns either a normal completion containing
either a String, a BigInt, or a Number, or an abrupt completion. It performs the following steps when called:

1. Let lref be ? Evaluation of leftOperand.
2. Let lval be ? GetValue(lref).
3. Let rref be ? Evaluation of rightOperand.
4. Let rval be ? GetValue(rref).
5. Return ? ApplyStringOrNumericBinaryOperator(lval, opText, rval).

Expression[In, Yield, Await] :

AssignmentExpression[?In, ?Yield, ?Await]
Expression[?In, ?Yield, ?Await] , AssignmentExpression[?In, ?Yield, ?Await]

Expression : Expression , AssignmentExpression

1. Let lref be ? Evaluation of Expression.
2. Perform ? GetValue(lref).
3. Let rref be ? Evaluation of AssignmentExpression.
4. Return ? GetValue(rref).

NOTE GetValue must be called even though its value is not used because it may have observable side-effects.

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification
13 ECMAScript Language: Expressions

13.15.4 EvaluateStringOrNumericBinaryExpression (leftOperand, opText, rightOperand)

13.16 Comma Operator (,)

Syntax

13.16.1 Runtime Semantics: Evaluation

7

Language Specification (ECMA-262) of JavaScript

4 + 2n
JS

TypeError

Expr 4 Expr 2n+

/ 57

AdditiveExpression[Yield, Await] :

MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] + MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] - MultiplicativeExpression[?Yield, ?Await]

NOTE The addition operator either performs string concatenation or numeric addition.

AdditiveExpression : AdditiveExpression + MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, +, MultiplicativeExpression).

NOTE The - operator performs subtraction, producing the difference of its operands.

AdditiveExpression : AdditiveExpression - MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, -, MultiplicativeExpression).

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification

13.8 Additive Operators

Syntax

13.8.1 The Addition Operator (+)

13.8.1.1 Runtime Semantics: Evaluation

13.8.2 The Subtraction Operator (-)

13.8.2.1 Runtime Semantics: Evaluation

AdditiveExpression[Yield, Await] :

MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] + MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] - MultiplicativeExpression[?Yield, ?Await]

NOTE The addition operator either performs string concatenation or numeric addition.

AdditiveExpression : AdditiveExpression + MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, +, MultiplicativeExpression).

NOTE The - operator performs subtraction, producing the difference of its operands.

AdditiveExpression : AdditiveExpression - MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, -, MultiplicativeExpression).

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification

13.8 Additive Operators

Syntax

13.8.1 The Addition Operator (+)

13.8.1.1 Runtime Semantics: Evaluation

13.8.2 The Subtraction Operator (-)

13.8.2.1 Runtime Semantics: Evaluation

AdditiveExpression[Yield, Await] :

MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] + MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] - MultiplicativeExpression[?Yield, ?Await]

NOTE The addition operator either performs string concatenation or numeric addition.

AdditiveExpression : AdditiveExpression + MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, +, MultiplicativeExpression).

NOTE The - operator performs subtraction, producing the difference of its operands.

AdditiveExpression : AdditiveExpression - MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, -, MultiplicativeExpression).

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification

13.8 Additive Operators

Syntax

13.8.1 The Addition Operator (+)

13.8.1.1 Runtime Semantics: Evaluation

13.8.2 The Subtraction Operator (-)

13.8.2.1 Runtime Semantics: Evaluation

The abstract operation EvaluateStringOrNumericBinaryExpression takes arguments leftOperand (a Parse Node), opText (a
sequence of Unicode code points), and rightOperand (a Parse Node) and returns either a normal completion containing
either a String, a BigInt, or a Number, or an abrupt completion. It performs the following steps when called:

1. Let lref be ? Evaluation of leftOperand.
2. Let lval be ? GetValue(lref).
3. Let rref be ? Evaluation of rightOperand.
4. Let rval be ? GetValue(rref).
5. Return ? ApplyStringOrNumericBinaryOperator(lval, opText, rval).

Expression[In, Yield, Await] :

AssignmentExpression[?In, ?Yield, ?Await]
Expression[?In, ?Yield, ?Await] , AssignmentExpression[?In, ?Yield, ?Await]

Expression : Expression , AssignmentExpression

1. Let lref be ? Evaluation of Expression.
2. Perform ? GetValue(lref).
3. Let rref be ? Evaluation of AssignmentExpression.
4. Return ? GetValue(rref).

NOTE GetValue must be called even though its value is not used because it may have observable side-effects.

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification
13 ECMAScript Language: Expressions

13.15.4 EvaluateStringOrNumericBinaryExpression (leftOperand, opText, rightOperand)

13.16 Comma Operator (,)

Syntax

13.16.1 Runtime Semantics: Evaluation

The abstract operation EvaluateStringOrNumericBinaryExpression takes arguments leftOperand (a Parse Node), opText (a
sequence of Unicode code points), and rightOperand (a Parse Node) and returns either a normal completion containing
either a String, a BigInt, or a Number, or an abrupt completion. It performs the following steps when called:

1. Let lref be ? Evaluation of leftOperand.
2. Let lval be ? GetValue(lref).
3. Let rref be ? Evaluation of rightOperand.
4. Let rval be ? GetValue(rref).
5. Return ? ApplyStringOrNumericBinaryOperator(lval, opText, rval).

Expression[In, Yield, Await] :

AssignmentExpression[?In, ?Yield, ?Await]
Expression[?In, ?Yield, ?Await] , AssignmentExpression[?In, ?Yield, ?Await]

Expression : Expression , AssignmentExpression

1. Let lref be ? Evaluation of Expression.
2. Perform ? GetValue(lref).
3. Let rref be ? Evaluation of AssignmentExpression.
4. Return ? GetValue(rref).

NOTE GetValue must be called even though its value is not used because it may have observable side-effects.

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification
13 ECMAScript Language: Expressions

13.15.4 EvaluateStringOrNumericBinaryExpression (leftOperand, opText, rightOperand)

13.16 Comma Operator (,)

Syntax

13.16.1 Runtime Semantics: Evaluation

7

Language Specification (ECMA-262) of JavaScript

4 + 2n
JS

TypeError

Expr 4 Expr 2n+

Evaluate Left

/ 57

AdditiveExpression[Yield, Await] :

MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] + MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] - MultiplicativeExpression[?Yield, ?Await]

NOTE The addition operator either performs string concatenation or numeric addition.

AdditiveExpression : AdditiveExpression + MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, +, MultiplicativeExpression).

NOTE The - operator performs subtraction, producing the difference of its operands.

AdditiveExpression : AdditiveExpression - MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, -, MultiplicativeExpression).

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification

13.8 Additive Operators

Syntax

13.8.1 The Addition Operator (+)

13.8.1.1 Runtime Semantics: Evaluation

13.8.2 The Subtraction Operator (-)

13.8.2.1 Runtime Semantics: Evaluation

AdditiveExpression[Yield, Await] :

MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] + MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] - MultiplicativeExpression[?Yield, ?Await]

NOTE The addition operator either performs string concatenation or numeric addition.

AdditiveExpression : AdditiveExpression + MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, +, MultiplicativeExpression).

NOTE The - operator performs subtraction, producing the difference of its operands.

AdditiveExpression : AdditiveExpression - MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, -, MultiplicativeExpression).

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification

13.8 Additive Operators

Syntax

13.8.1 The Addition Operator (+)

13.8.1.1 Runtime Semantics: Evaluation

13.8.2 The Subtraction Operator (-)

13.8.2.1 Runtime Semantics: Evaluation

AdditiveExpression[Yield, Await] :

MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] + MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] - MultiplicativeExpression[?Yield, ?Await]

NOTE The addition operator either performs string concatenation or numeric addition.

AdditiveExpression : AdditiveExpression + MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, +, MultiplicativeExpression).

NOTE The - operator performs subtraction, producing the difference of its operands.

AdditiveExpression : AdditiveExpression - MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, -, MultiplicativeExpression).

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification

13.8 Additive Operators

Syntax

13.8.1 The Addition Operator (+)

13.8.1.1 Runtime Semantics: Evaluation

13.8.2 The Subtraction Operator (-)

13.8.2.1 Runtime Semantics: Evaluation

The abstract operation EvaluateStringOrNumericBinaryExpression takes arguments leftOperand (a Parse Node), opText (a
sequence of Unicode code points), and rightOperand (a Parse Node) and returns either a normal completion containing
either a String, a BigInt, or a Number, or an abrupt completion. It performs the following steps when called:

1. Let lref be ? Evaluation of leftOperand.
2. Let lval be ? GetValue(lref).
3. Let rref be ? Evaluation of rightOperand.
4. Let rval be ? GetValue(rref).
5. Return ? ApplyStringOrNumericBinaryOperator(lval, opText, rval).

Expression[In, Yield, Await] :

AssignmentExpression[?In, ?Yield, ?Await]
Expression[?In, ?Yield, ?Await] , AssignmentExpression[?In, ?Yield, ?Await]

Expression : Expression , AssignmentExpression

1. Let lref be ? Evaluation of Expression.
2. Perform ? GetValue(lref).
3. Let rref be ? Evaluation of AssignmentExpression.
4. Return ? GetValue(rref).

NOTE GetValue must be called even though its value is not used because it may have observable side-effects.

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification
13 ECMAScript Language: Expressions

13.15.4 EvaluateStringOrNumericBinaryExpression (leftOperand, opText, rightOperand)

13.16 Comma Operator (,)

Syntax

13.16.1 Runtime Semantics: Evaluation

The abstract operation EvaluateStringOrNumericBinaryExpression takes arguments leftOperand (a Parse Node), opText (a
sequence of Unicode code points), and rightOperand (a Parse Node) and returns either a normal completion containing
either a String, a BigInt, or a Number, or an abrupt completion. It performs the following steps when called:

1. Let lref be ? Evaluation of leftOperand.
2. Let lval be ? GetValue(lref).
3. Let rref be ? Evaluation of rightOperand.
4. Let rval be ? GetValue(rref).
5. Return ? ApplyStringOrNumericBinaryOperator(lval, opText, rval).

Expression[In, Yield, Await] :

AssignmentExpression[?In, ?Yield, ?Await]
Expression[?In, ?Yield, ?Await] , AssignmentExpression[?In, ?Yield, ?Await]

Expression : Expression , AssignmentExpression

1. Let lref be ? Evaluation of Expression.
2. Perform ? GetValue(lref).
3. Let rref be ? Evaluation of AssignmentExpression.
4. Return ? GetValue(rref).

NOTE GetValue must be called even though its value is not used because it may have observable side-effects.

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification
13 ECMAScript Language: Expressions

13.15.4 EvaluateStringOrNumericBinaryExpression (leftOperand, opText, rightOperand)

13.16 Comma Operator (,)

Syntax

13.16.1 Runtime Semantics: Evaluation

7

Language Specification (ECMA-262) of JavaScript

4 + 2n
JS

TypeError

Expr 4 Expr 2n+

Evaluate Right

Evaluate Left

/ 57

AdditiveExpression[Yield, Await] :

MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] + MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] - MultiplicativeExpression[?Yield, ?Await]

NOTE The addition operator either performs string concatenation or numeric addition.

AdditiveExpression : AdditiveExpression + MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, +, MultiplicativeExpression).

NOTE The - operator performs subtraction, producing the difference of its operands.

AdditiveExpression : AdditiveExpression - MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, -, MultiplicativeExpression).

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification

13.8 Additive Operators

Syntax

13.8.1 The Addition Operator (+)

13.8.1.1 Runtime Semantics: Evaluation

13.8.2 The Subtraction Operator (-)

13.8.2.1 Runtime Semantics: Evaluation

AdditiveExpression[Yield, Await] :

MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] + MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] - MultiplicativeExpression[?Yield, ?Await]

NOTE The addition operator either performs string concatenation or numeric addition.

AdditiveExpression : AdditiveExpression + MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, +, MultiplicativeExpression).

NOTE The - operator performs subtraction, producing the difference of its operands.

AdditiveExpression : AdditiveExpression - MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, -, MultiplicativeExpression).

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification

13.8 Additive Operators

Syntax

13.8.1 The Addition Operator (+)

13.8.1.1 Runtime Semantics: Evaluation

13.8.2 The Subtraction Operator (-)

13.8.2.1 Runtime Semantics: Evaluation

AdditiveExpression[Yield, Await] :

MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] + MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] - MultiplicativeExpression[?Yield, ?Await]

NOTE The addition operator either performs string concatenation or numeric addition.

AdditiveExpression : AdditiveExpression + MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, +, MultiplicativeExpression).

NOTE The - operator performs subtraction, producing the difference of its operands.

AdditiveExpression : AdditiveExpression - MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, -, MultiplicativeExpression).

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification

13.8 Additive Operators

Syntax

13.8.1 The Addition Operator (+)

13.8.1.1 Runtime Semantics: Evaluation

13.8.2 The Subtraction Operator (-)

13.8.2.1 Runtime Semantics: Evaluation

The abstract operation EvaluateStringOrNumericBinaryExpression takes arguments leftOperand (a Parse Node), opText (a
sequence of Unicode code points), and rightOperand (a Parse Node) and returns either a normal completion containing
either a String, a BigInt, or a Number, or an abrupt completion. It performs the following steps when called:

1. Let lref be ? Evaluation of leftOperand.
2. Let lval be ? GetValue(lref).
3. Let rref be ? Evaluation of rightOperand.
4. Let rval be ? GetValue(rref).
5. Return ? ApplyStringOrNumericBinaryOperator(lval, opText, rval).

Expression[In, Yield, Await] :

AssignmentExpression[?In, ?Yield, ?Await]
Expression[?In, ?Yield, ?Await] , AssignmentExpression[?In, ?Yield, ?Await]

Expression : Expression , AssignmentExpression

1. Let lref be ? Evaluation of Expression.
2. Perform ? GetValue(lref).
3. Let rref be ? Evaluation of AssignmentExpression.
4. Return ? GetValue(rref).

NOTE GetValue must be called even though its value is not used because it may have observable side-effects.

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification
13 ECMAScript Language: Expressions

13.15.4 EvaluateStringOrNumericBinaryExpression (leftOperand, opText, rightOperand)

13.16 Comma Operator (,)

Syntax

13.16.1 Runtime Semantics: Evaluation

The abstract operation EvaluateStringOrNumericBinaryExpression takes arguments leftOperand (a Parse Node), opText (a
sequence of Unicode code points), and rightOperand (a Parse Node) and returns either a normal completion containing
either a String, a BigInt, or a Number, or an abrupt completion. It performs the following steps when called:

1. Let lref be ? Evaluation of leftOperand.
2. Let lval be ? GetValue(lref).
3. Let rref be ? Evaluation of rightOperand.
4. Let rval be ? GetValue(rref).
5. Return ? ApplyStringOrNumericBinaryOperator(lval, opText, rval).

Expression[In, Yield, Await] :

AssignmentExpression[?In, ?Yield, ?Await]
Expression[?In, ?Yield, ?Await] , AssignmentExpression[?In, ?Yield, ?Await]

Expression : Expression , AssignmentExpression

1. Let lref be ? Evaluation of Expression.
2. Perform ? GetValue(lref).
3. Let rref be ? Evaluation of AssignmentExpression.
4. Return ? GetValue(rref).

NOTE GetValue must be called even though its value is not used because it may have observable side-effects.

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification
13 ECMAScript Language: Expressions

13.15.4 EvaluateStringOrNumericBinaryExpression (leftOperand, opText, rightOperand)

13.16 Comma Operator (,)

Syntax

13.16.1 Runtime Semantics: Evaluation

2. Let lval be ? GetValue(lref).
3. If lval is neither undefined nor null, return lval.
4. If IsAnonymousFunctionDefinition(AssignmentExpression) is true and IsIdentifierRef of

LeftHandSideExpression is true, then
a. Let rval be ? NamedEvaluation of AssignmentExpression with argument lref.

[[ReferencedName]].
5. Else,

a. Let rref be ? Evaluation of AssignmentExpression.
b. Let rval be ? GetValue(rref).

6. Perform ? PutValue(lref, rval).
7. Return rval.

NOTE When this expression occurs within strict mode code, it is a runtime error if lref in
step 1.d, 2, 2, 2, 2 is an unresolvable reference. If it is, a ReferenceError exception is
thrown. Additionally, it is a runtime error if the lref in step 8, 7, 7, 6 is a reference to
a data property with the attribute value { [[Writable]]: false }, to an accessor
property with the attribute value { [[Set]]: undefined }, or to a non-existent
property of an object for which the IsExtensible predicate returns the value false.
In these cases a TypeError exception is thrown.

The abstract operation ApplyStringOrNumericBinaryOperator takes arguments lval (an
ECMAScript language value), opText (**, *, /, %, +, -, <<, >>, >>>, &, ^, or |), and rval (an
ECMAScript language value) and returns either a normal completion containing either a String, a
BigInt, or a Number, or a throw completion. It performs the following steps when called:

1. If opText is +, then
a. Let lprim be ? ToPrimitive(lval).
b. Let rprim be ? ToPrimitive(rval).
c. If lprim is a String or rprim is a String, then

i. Let lstr be ? ToString(lprim).
ii. Let rstr be ? ToString(rprim).

iii. Return the string-concatenation of lstr and rstr.
d. Set lval to lprim.
e. Set rval to rprim.

2. NOTE: At this point, it must be a numeric operation.
3. Let lnum be ? ToNumeric(lval).
4. Let rnum be ? ToNumeric(rval).
5. If Type(lnum) is not Type(rnum), throw a TypeError exception.
6. If lnum is a BigInt, then

13.15.3 ApplyStringOrNumericBinaryOperator (lval, opText, rval)

2. Let lval be ? GetValue(lref).
3. If lval is neither undefined nor null, return lval.
4. If IsAnonymousFunctionDefinition(AssignmentExpression) is true and IsIdentifierRef of

LeftHandSideExpression is true, then
a. Let rval be ? NamedEvaluation of AssignmentExpression with argument lref.

[[ReferencedName]].
5. Else,

a. Let rref be ? Evaluation of AssignmentExpression.
b. Let rval be ? GetValue(rref).

6. Perform ? PutValue(lref, rval).
7. Return rval.

NOTE When this expression occurs within strict mode code, it is a runtime error if lref in
step 1.d, 2, 2, 2, 2 is an unresolvable reference. If it is, a ReferenceError exception is
thrown. Additionally, it is a runtime error if the lref in step 8, 7, 7, 6 is a reference to
a data property with the attribute value { [[Writable]]: false }, to an accessor
property with the attribute value { [[Set]]: undefined }, or to a non-existent
property of an object for which the IsExtensible predicate returns the value false.
In these cases a TypeError exception is thrown.

The abstract operation ApplyStringOrNumericBinaryOperator takes arguments lval (an
ECMAScript language value), opText (**, *, /, %, +, -, <<, >>, >>>, &, ^, or |), and rval (an
ECMAScript language value) and returns either a normal completion containing either a String, a
BigInt, or a Number, or a throw completion. It performs the following steps when called:

1. If opText is +, then
a. Let lprim be ? ToPrimitive(lval).
b. Let rprim be ? ToPrimitive(rval).
c. If lprim is a String or rprim is a String, then

i. Let lstr be ? ToString(lprim).
ii. Let rstr be ? ToString(rprim).

iii. Return the string-concatenation of lstr and rstr.
d. Set lval to lprim.
e. Set rval to rprim.

2. NOTE: At this point, it must be a numeric operation.
3. Let lnum be ? ToNumeric(lval).
4. Let rnum be ? ToNumeric(rval).
5. If Type(lnum) is not Type(rnum), throw a TypeError exception.
6. If lnum is a BigInt, then

13.15.3 ApplyStringOrNumericBinaryOperator (lval, opText, rval)

…

7

Language Specification (ECMA-262) of JavaScript

4 + 2n
JS

TypeError

Expr 4 Expr 2n+

Evaluate Right

Evaluate Left

/ 57

AdditiveExpression[Yield, Await] :

MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] + MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] - MultiplicativeExpression[?Yield, ?Await]

NOTE The addition operator either performs string concatenation or numeric addition.

AdditiveExpression : AdditiveExpression + MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, +, MultiplicativeExpression).

NOTE The - operator performs subtraction, producing the difference of its operands.

AdditiveExpression : AdditiveExpression - MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, -, MultiplicativeExpression).

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification

13.8 Additive Operators

Syntax

13.8.1 The Addition Operator (+)

13.8.1.1 Runtime Semantics: Evaluation

13.8.2 The Subtraction Operator (-)

13.8.2.1 Runtime Semantics: Evaluation

AdditiveExpression[Yield, Await] :

MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] + MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] - MultiplicativeExpression[?Yield, ?Await]

NOTE The addition operator either performs string concatenation or numeric addition.

AdditiveExpression : AdditiveExpression + MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, +, MultiplicativeExpression).

NOTE The - operator performs subtraction, producing the difference of its operands.

AdditiveExpression : AdditiveExpression - MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, -, MultiplicativeExpression).

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification

13.8 Additive Operators

Syntax

13.8.1 The Addition Operator (+)

13.8.1.1 Runtime Semantics: Evaluation

13.8.2 The Subtraction Operator (-)

13.8.2.1 Runtime Semantics: Evaluation

AdditiveExpression[Yield, Await] :

MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] + MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] - MultiplicativeExpression[?Yield, ?Await]

NOTE The addition operator either performs string concatenation or numeric addition.

AdditiveExpression : AdditiveExpression + MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, +, MultiplicativeExpression).

NOTE The - operator performs subtraction, producing the difference of its operands.

AdditiveExpression : AdditiveExpression - MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, -, MultiplicativeExpression).

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification

13.8 Additive Operators

Syntax

13.8.1 The Addition Operator (+)

13.8.1.1 Runtime Semantics: Evaluation

13.8.2 The Subtraction Operator (-)

13.8.2.1 Runtime Semantics: Evaluation

The abstract operation EvaluateStringOrNumericBinaryExpression takes arguments leftOperand (a Parse Node), opText (a
sequence of Unicode code points), and rightOperand (a Parse Node) and returns either a normal completion containing
either a String, a BigInt, or a Number, or an abrupt completion. It performs the following steps when called:

1. Let lref be ? Evaluation of leftOperand.
2. Let lval be ? GetValue(lref).
3. Let rref be ? Evaluation of rightOperand.
4. Let rval be ? GetValue(rref).
5. Return ? ApplyStringOrNumericBinaryOperator(lval, opText, rval).

Expression[In, Yield, Await] :

AssignmentExpression[?In, ?Yield, ?Await]
Expression[?In, ?Yield, ?Await] , AssignmentExpression[?In, ?Yield, ?Await]

Expression : Expression , AssignmentExpression

1. Let lref be ? Evaluation of Expression.
2. Perform ? GetValue(lref).
3. Let rref be ? Evaluation of AssignmentExpression.
4. Return ? GetValue(rref).

NOTE GetValue must be called even though its value is not used because it may have observable side-effects.

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification
13 ECMAScript Language: Expressions

13.15.4 EvaluateStringOrNumericBinaryExpression (leftOperand, opText, rightOperand)

13.16 Comma Operator (,)

Syntax

13.16.1 Runtime Semantics: Evaluation

The abstract operation EvaluateStringOrNumericBinaryExpression takes arguments leftOperand (a Parse Node), opText (a
sequence of Unicode code points), and rightOperand (a Parse Node) and returns either a normal completion containing
either a String, a BigInt, or a Number, or an abrupt completion. It performs the following steps when called:

1. Let lref be ? Evaluation of leftOperand.
2. Let lval be ? GetValue(lref).
3. Let rref be ? Evaluation of rightOperand.
4. Let rval be ? GetValue(rref).
5. Return ? ApplyStringOrNumericBinaryOperator(lval, opText, rval).

Expression[In, Yield, Await] :

AssignmentExpression[?In, ?Yield, ?Await]
Expression[?In, ?Yield, ?Await] , AssignmentExpression[?In, ?Yield, ?Await]

Expression : Expression , AssignmentExpression

1. Let lref be ? Evaluation of Expression.
2. Perform ? GetValue(lref).
3. Let rref be ? Evaluation of AssignmentExpression.
4. Return ? GetValue(rref).

NOTE GetValue must be called even though its value is not used because it may have observable side-effects.

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification
13 ECMAScript Language: Expressions

13.15.4 EvaluateStringOrNumericBinaryExpression (leftOperand, opText, rightOperand)

13.16 Comma Operator (,)

Syntax

13.16.1 Runtime Semantics: Evaluation

2. Let lval be ? GetValue(lref).
3. If lval is neither undefined nor null, return lval.
4. If IsAnonymousFunctionDefinition(AssignmentExpression) is true and IsIdentifierRef of

LeftHandSideExpression is true, then
a. Let rval be ? NamedEvaluation of AssignmentExpression with argument lref.

[[ReferencedName]].
5. Else,

a. Let rref be ? Evaluation of AssignmentExpression.
b. Let rval be ? GetValue(rref).

6. Perform ? PutValue(lref, rval).
7. Return rval.

NOTE When this expression occurs within strict mode code, it is a runtime error if lref in
step 1.d, 2, 2, 2, 2 is an unresolvable reference. If it is, a ReferenceError exception is
thrown. Additionally, it is a runtime error if the lref in step 8, 7, 7, 6 is a reference to
a data property with the attribute value { [[Writable]]: false }, to an accessor
property with the attribute value { [[Set]]: undefined }, or to a non-existent
property of an object for which the IsExtensible predicate returns the value false.
In these cases a TypeError exception is thrown.

The abstract operation ApplyStringOrNumericBinaryOperator takes arguments lval (an
ECMAScript language value), opText (**, *, /, %, +, -, <<, >>, >>>, &, ^, or |), and rval (an
ECMAScript language value) and returns either a normal completion containing either a String, a
BigInt, or a Number, or a throw completion. It performs the following steps when called:

1. If opText is +, then
a. Let lprim be ? ToPrimitive(lval).
b. Let rprim be ? ToPrimitive(rval).
c. If lprim is a String or rprim is a String, then

i. Let lstr be ? ToString(lprim).
ii. Let rstr be ? ToString(rprim).

iii. Return the string-concatenation of lstr and rstr.
d. Set lval to lprim.
e. Set rval to rprim.

2. NOTE: At this point, it must be a numeric operation.
3. Let lnum be ? ToNumeric(lval).
4. Let rnum be ? ToNumeric(rval).
5. If Type(lnum) is not Type(rnum), throw a TypeError exception.
6. If lnum is a BigInt, then

13.15.3 ApplyStringOrNumericBinaryOperator (lval, opText, rval)

2. Let lval be ? GetValue(lref).
3. If lval is neither undefined nor null, return lval.
4. If IsAnonymousFunctionDefinition(AssignmentExpression) is true and IsIdentifierRef of

LeftHandSideExpression is true, then
a. Let rval be ? NamedEvaluation of AssignmentExpression with argument lref.

[[ReferencedName]].
5. Else,

a. Let rref be ? Evaluation of AssignmentExpression.
b. Let rval be ? GetValue(rref).

6. Perform ? PutValue(lref, rval).
7. Return rval.

NOTE When this expression occurs within strict mode code, it is a runtime error if lref in
step 1.d, 2, 2, 2, 2 is an unresolvable reference. If it is, a ReferenceError exception is
thrown. Additionally, it is a runtime error if the lref in step 8, 7, 7, 6 is a reference to
a data property with the attribute value { [[Writable]]: false }, to an accessor
property with the attribute value { [[Set]]: undefined }, or to a non-existent
property of an object for which the IsExtensible predicate returns the value false.
In these cases a TypeError exception is thrown.

The abstract operation ApplyStringOrNumericBinaryOperator takes arguments lval (an
ECMAScript language value), opText (**, *, /, %, +, -, <<, >>, >>>, &, ^, or |), and rval (an
ECMAScript language value) and returns either a normal completion containing either a String, a
BigInt, or a Number, or a throw completion. It performs the following steps when called:

1. If opText is +, then
a. Let lprim be ? ToPrimitive(lval).
b. Let rprim be ? ToPrimitive(rval).
c. If lprim is a String or rprim is a String, then

i. Let lstr be ? ToString(lprim).
ii. Let rstr be ? ToString(rprim).

iii. Return the string-concatenation of lstr and rstr.
d. Set lval to lprim.
e. Set rval to rprim.

2. NOTE: At this point, it must be a numeric operation.
3. Let lnum be ? ToNumeric(lval).
4. Let rnum be ? ToNumeric(rval).
5. If Type(lnum) is not Type(rnum), throw a TypeError exception.
6. If lnum is a BigInt, then

13.15.3 ApplyStringOrNumericBinaryOperator (lval, opText, rval)

…

7

Language Specification (ECMA-262) of JavaScript

4 + 2n
JS

TypeError

Expr 4 Expr 2n+

Number 4

BigInt 2n

+

Evaluate Right

Evaluate Left

/ 57

AdditiveExpression[Yield, Await] :

MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] + MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] - MultiplicativeExpression[?Yield, ?Await]

NOTE The addition operator either performs string concatenation or numeric addition.

AdditiveExpression : AdditiveExpression + MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, +, MultiplicativeExpression).

NOTE The - operator performs subtraction, producing the difference of its operands.

AdditiveExpression : AdditiveExpression - MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, -, MultiplicativeExpression).

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification

13.8 Additive Operators

Syntax

13.8.1 The Addition Operator (+)

13.8.1.1 Runtime Semantics: Evaluation

13.8.2 The Subtraction Operator (-)

13.8.2.1 Runtime Semantics: Evaluation

AdditiveExpression[Yield, Await] :

MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] + MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] - MultiplicativeExpression[?Yield, ?Await]

NOTE The addition operator either performs string concatenation or numeric addition.

AdditiveExpression : AdditiveExpression + MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, +, MultiplicativeExpression).

NOTE The - operator performs subtraction, producing the difference of its operands.

AdditiveExpression : AdditiveExpression - MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, -, MultiplicativeExpression).

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification

13.8 Additive Operators

Syntax

13.8.1 The Addition Operator (+)

13.8.1.1 Runtime Semantics: Evaluation

13.8.2 The Subtraction Operator (-)

13.8.2.1 Runtime Semantics: Evaluation

AdditiveExpression[Yield, Await] :

MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] + MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] - MultiplicativeExpression[?Yield, ?Await]

NOTE The addition operator either performs string concatenation or numeric addition.

AdditiveExpression : AdditiveExpression + MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, +, MultiplicativeExpression).

NOTE The - operator performs subtraction, producing the difference of its operands.

AdditiveExpression : AdditiveExpression - MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, -, MultiplicativeExpression).

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification

13.8 Additive Operators

Syntax

13.8.1 The Addition Operator (+)

13.8.1.1 Runtime Semantics: Evaluation

13.8.2 The Subtraction Operator (-)

13.8.2.1 Runtime Semantics: Evaluation

The abstract operation EvaluateStringOrNumericBinaryExpression takes arguments leftOperand (a Parse Node), opText (a
sequence of Unicode code points), and rightOperand (a Parse Node) and returns either a normal completion containing
either a String, a BigInt, or a Number, or an abrupt completion. It performs the following steps when called:

1. Let lref be ? Evaluation of leftOperand.
2. Let lval be ? GetValue(lref).
3. Let rref be ? Evaluation of rightOperand.
4. Let rval be ? GetValue(rref).
5. Return ? ApplyStringOrNumericBinaryOperator(lval, opText, rval).

Expression[In, Yield, Await] :

AssignmentExpression[?In, ?Yield, ?Await]
Expression[?In, ?Yield, ?Await] , AssignmentExpression[?In, ?Yield, ?Await]

Expression : Expression , AssignmentExpression

1. Let lref be ? Evaluation of Expression.
2. Perform ? GetValue(lref).
3. Let rref be ? Evaluation of AssignmentExpression.
4. Return ? GetValue(rref).

NOTE GetValue must be called even though its value is not used because it may have observable side-effects.

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification
13 ECMAScript Language: Expressions

13.15.4 EvaluateStringOrNumericBinaryExpression (leftOperand, opText, rightOperand)

13.16 Comma Operator (,)

Syntax

13.16.1 Runtime Semantics: Evaluation

The abstract operation EvaluateStringOrNumericBinaryExpression takes arguments leftOperand (a Parse Node), opText (a
sequence of Unicode code points), and rightOperand (a Parse Node) and returns either a normal completion containing
either a String, a BigInt, or a Number, or an abrupt completion. It performs the following steps when called:

1. Let lref be ? Evaluation of leftOperand.
2. Let lval be ? GetValue(lref).
3. Let rref be ? Evaluation of rightOperand.
4. Let rval be ? GetValue(rref).
5. Return ? ApplyStringOrNumericBinaryOperator(lval, opText, rval).

Expression[In, Yield, Await] :

AssignmentExpression[?In, ?Yield, ?Await]
Expression[?In, ?Yield, ?Await] , AssignmentExpression[?In, ?Yield, ?Await]

Expression : Expression , AssignmentExpression

1. Let lref be ? Evaluation of Expression.
2. Perform ? GetValue(lref).
3. Let rref be ? Evaluation of AssignmentExpression.
4. Return ? GetValue(rref).

NOTE GetValue must be called even though its value is not used because it may have observable side-effects.

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification
13 ECMAScript Language: Expressions

13.15.4 EvaluateStringOrNumericBinaryExpression (leftOperand, opText, rightOperand)

13.16 Comma Operator (,)

Syntax

13.16.1 Runtime Semantics: Evaluation

2. Let lval be ? GetValue(lref).
3. If lval is neither undefined nor null, return lval.
4. If IsAnonymousFunctionDefinition(AssignmentExpression) is true and IsIdentifierRef of

LeftHandSideExpression is true, then
a. Let rval be ? NamedEvaluation of AssignmentExpression with argument lref.

[[ReferencedName]].
5. Else,

a. Let rref be ? Evaluation of AssignmentExpression.
b. Let rval be ? GetValue(rref).

6. Perform ? PutValue(lref, rval).
7. Return rval.

NOTE When this expression occurs within strict mode code, it is a runtime error if lref in
step 1.d, 2, 2, 2, 2 is an unresolvable reference. If it is, a ReferenceError exception is
thrown. Additionally, it is a runtime error if the lref in step 8, 7, 7, 6 is a reference to
a data property with the attribute value { [[Writable]]: false }, to an accessor
property with the attribute value { [[Set]]: undefined }, or to a non-existent
property of an object for which the IsExtensible predicate returns the value false.
In these cases a TypeError exception is thrown.

The abstract operation ApplyStringOrNumericBinaryOperator takes arguments lval (an
ECMAScript language value), opText (**, *, /, %, +, -, <<, >>, >>>, &, ^, or |), and rval (an
ECMAScript language value) and returns either a normal completion containing either a String, a
BigInt, or a Number, or a throw completion. It performs the following steps when called:

1. If opText is +, then
a. Let lprim be ? ToPrimitive(lval).
b. Let rprim be ? ToPrimitive(rval).
c. If lprim is a String or rprim is a String, then

i. Let lstr be ? ToString(lprim).
ii. Let rstr be ? ToString(rprim).

iii. Return the string-concatenation of lstr and rstr.
d. Set lval to lprim.
e. Set rval to rprim.

2. NOTE: At this point, it must be a numeric operation.
3. Let lnum be ? ToNumeric(lval).
4. Let rnum be ? ToNumeric(rval).
5. If Type(lnum) is not Type(rnum), throw a TypeError exception.
6. If lnum is a BigInt, then

13.15.3 ApplyStringOrNumericBinaryOperator (lval, opText, rval)

2. Let lval be ? GetValue(lref).
3. If lval is neither undefined nor null, return lval.
4. If IsAnonymousFunctionDefinition(AssignmentExpression) is true and IsIdentifierRef of

LeftHandSideExpression is true, then
a. Let rval be ? NamedEvaluation of AssignmentExpression with argument lref.

[[ReferencedName]].
5. Else,

a. Let rref be ? Evaluation of AssignmentExpression.
b. Let rval be ? GetValue(rref).

6. Perform ? PutValue(lref, rval).
7. Return rval.

NOTE When this expression occurs within strict mode code, it is a runtime error if lref in
step 1.d, 2, 2, 2, 2 is an unresolvable reference. If it is, a ReferenceError exception is
thrown. Additionally, it is a runtime error if the lref in step 8, 7, 7, 6 is a reference to
a data property with the attribute value { [[Writable]]: false }, to an accessor
property with the attribute value { [[Set]]: undefined }, or to a non-existent
property of an object for which the IsExtensible predicate returns the value false.
In these cases a TypeError exception is thrown.

The abstract operation ApplyStringOrNumericBinaryOperator takes arguments lval (an
ECMAScript language value), opText (**, *, /, %, +, -, <<, >>, >>>, &, ^, or |), and rval (an
ECMAScript language value) and returns either a normal completion containing either a String, a
BigInt, or a Number, or a throw completion. It performs the following steps when called:

1. If opText is +, then
a. Let lprim be ? ToPrimitive(lval).
b. Let rprim be ? ToPrimitive(rval).
c. If lprim is a String or rprim is a String, then

i. Let lstr be ? ToString(lprim).
ii. Let rstr be ? ToString(rprim).

iii. Return the string-concatenation of lstr and rstr.
d. Set lval to lprim.
e. Set rval to rprim.

2. NOTE: At this point, it must be a numeric operation.
3. Let lnum be ? ToNumeric(lval).
4. Let rnum be ? ToNumeric(rval).
5. If Type(lnum) is not Type(rnum), throw a TypeError exception.
6. If lnum is a BigInt, then

13.15.3 ApplyStringOrNumericBinaryOperator (lval, opText, rval)

…

7

Language Specification (ECMA-262) of JavaScript

4 + 2n
JS

TypeError

Expr 4 Expr 2n+

Number 4

BigInt 2n

+

Conversion to
Primitive

Evaluate Right

Evaluate Left

/ 57

AdditiveExpression[Yield, Await] :

MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] + MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] - MultiplicativeExpression[?Yield, ?Await]

NOTE The addition operator either performs string concatenation or numeric addition.

AdditiveExpression : AdditiveExpression + MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, +, MultiplicativeExpression).

NOTE The - operator performs subtraction, producing the difference of its operands.

AdditiveExpression : AdditiveExpression - MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, -, MultiplicativeExpression).

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification

13.8 Additive Operators

Syntax

13.8.1 The Addition Operator (+)

13.8.1.1 Runtime Semantics: Evaluation

13.8.2 The Subtraction Operator (-)

13.8.2.1 Runtime Semantics: Evaluation

AdditiveExpression[Yield, Await] :

MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] + MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] - MultiplicativeExpression[?Yield, ?Await]

NOTE The addition operator either performs string concatenation or numeric addition.

AdditiveExpression : AdditiveExpression + MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, +, MultiplicativeExpression).

NOTE The - operator performs subtraction, producing the difference of its operands.

AdditiveExpression : AdditiveExpression - MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, -, MultiplicativeExpression).

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification

13.8 Additive Operators

Syntax

13.8.1 The Addition Operator (+)

13.8.1.1 Runtime Semantics: Evaluation

13.8.2 The Subtraction Operator (-)

13.8.2.1 Runtime Semantics: Evaluation

AdditiveExpression[Yield, Await] :

MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] + MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] - MultiplicativeExpression[?Yield, ?Await]

NOTE The addition operator either performs string concatenation or numeric addition.

AdditiveExpression : AdditiveExpression + MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, +, MultiplicativeExpression).

NOTE The - operator performs subtraction, producing the difference of its operands.

AdditiveExpression : AdditiveExpression - MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, -, MultiplicativeExpression).

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification

13.8 Additive Operators

Syntax

13.8.1 The Addition Operator (+)

13.8.1.1 Runtime Semantics: Evaluation

13.8.2 The Subtraction Operator (-)

13.8.2.1 Runtime Semantics: Evaluation

The abstract operation EvaluateStringOrNumericBinaryExpression takes arguments leftOperand (a Parse Node), opText (a
sequence of Unicode code points), and rightOperand (a Parse Node) and returns either a normal completion containing
either a String, a BigInt, or a Number, or an abrupt completion. It performs the following steps when called:

1. Let lref be ? Evaluation of leftOperand.
2. Let lval be ? GetValue(lref).
3. Let rref be ? Evaluation of rightOperand.
4. Let rval be ? GetValue(rref).
5. Return ? ApplyStringOrNumericBinaryOperator(lval, opText, rval).

Expression[In, Yield, Await] :

AssignmentExpression[?In, ?Yield, ?Await]
Expression[?In, ?Yield, ?Await] , AssignmentExpression[?In, ?Yield, ?Await]

Expression : Expression , AssignmentExpression

1. Let lref be ? Evaluation of Expression.
2. Perform ? GetValue(lref).
3. Let rref be ? Evaluation of AssignmentExpression.
4. Return ? GetValue(rref).

NOTE GetValue must be called even though its value is not used because it may have observable side-effects.

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification
13 ECMAScript Language: Expressions

13.15.4 EvaluateStringOrNumericBinaryExpression (leftOperand, opText, rightOperand)

13.16 Comma Operator (,)

Syntax

13.16.1 Runtime Semantics: Evaluation

The abstract operation EvaluateStringOrNumericBinaryExpression takes arguments leftOperand (a Parse Node), opText (a
sequence of Unicode code points), and rightOperand (a Parse Node) and returns either a normal completion containing
either a String, a BigInt, or a Number, or an abrupt completion. It performs the following steps when called:

1. Let lref be ? Evaluation of leftOperand.
2. Let lval be ? GetValue(lref).
3. Let rref be ? Evaluation of rightOperand.
4. Let rval be ? GetValue(rref).
5. Return ? ApplyStringOrNumericBinaryOperator(lval, opText, rval).

Expression[In, Yield, Await] :

AssignmentExpression[?In, ?Yield, ?Await]
Expression[?In, ?Yield, ?Await] , AssignmentExpression[?In, ?Yield, ?Await]

Expression : Expression , AssignmentExpression

1. Let lref be ? Evaluation of Expression.
2. Perform ? GetValue(lref).
3. Let rref be ? Evaluation of AssignmentExpression.
4. Return ? GetValue(rref).

NOTE GetValue must be called even though its value is not used because it may have observable side-effects.

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification
13 ECMAScript Language: Expressions

13.15.4 EvaluateStringOrNumericBinaryExpression (leftOperand, opText, rightOperand)

13.16 Comma Operator (,)

Syntax

13.16.1 Runtime Semantics: Evaluation

2. Let lval be ? GetValue(lref).
3. If lval is neither undefined nor null, return lval.
4. If IsAnonymousFunctionDefinition(AssignmentExpression) is true and IsIdentifierRef of

LeftHandSideExpression is true, then
a. Let rval be ? NamedEvaluation of AssignmentExpression with argument lref.

[[ReferencedName]].
5. Else,

a. Let rref be ? Evaluation of AssignmentExpression.
b. Let rval be ? GetValue(rref).

6. Perform ? PutValue(lref, rval).
7. Return rval.

NOTE When this expression occurs within strict mode code, it is a runtime error if lref in
step 1.d, 2, 2, 2, 2 is an unresolvable reference. If it is, a ReferenceError exception is
thrown. Additionally, it is a runtime error if the lref in step 8, 7, 7, 6 is a reference to
a data property with the attribute value { [[Writable]]: false }, to an accessor
property with the attribute value { [[Set]]: undefined }, or to a non-existent
property of an object for which the IsExtensible predicate returns the value false.
In these cases a TypeError exception is thrown.

The abstract operation ApplyStringOrNumericBinaryOperator takes arguments lval (an
ECMAScript language value), opText (**, *, /, %, +, -, <<, >>, >>>, &, ^, or |), and rval (an
ECMAScript language value) and returns either a normal completion containing either a String, a
BigInt, or a Number, or a throw completion. It performs the following steps when called:

1. If opText is +, then
a. Let lprim be ? ToPrimitive(lval).
b. Let rprim be ? ToPrimitive(rval).
c. If lprim is a String or rprim is a String, then

i. Let lstr be ? ToString(lprim).
ii. Let rstr be ? ToString(rprim).

iii. Return the string-concatenation of lstr and rstr.
d. Set lval to lprim.
e. Set rval to rprim.

2. NOTE: At this point, it must be a numeric operation.
3. Let lnum be ? ToNumeric(lval).
4. Let rnum be ? ToNumeric(rval).
5. If Type(lnum) is not Type(rnum), throw a TypeError exception.
6. If lnum is a BigInt, then

13.15.3 ApplyStringOrNumericBinaryOperator (lval, opText, rval)

2. Let lval be ? GetValue(lref).
3. If lval is neither undefined nor null, return lval.
4. If IsAnonymousFunctionDefinition(AssignmentExpression) is true and IsIdentifierRef of

LeftHandSideExpression is true, then
a. Let rval be ? NamedEvaluation of AssignmentExpression with argument lref.

[[ReferencedName]].
5. Else,

a. Let rref be ? Evaluation of AssignmentExpression.
b. Let rval be ? GetValue(rref).

6. Perform ? PutValue(lref, rval).
7. Return rval.

NOTE When this expression occurs within strict mode code, it is a runtime error if lref in
step 1.d, 2, 2, 2, 2 is an unresolvable reference. If it is, a ReferenceError exception is
thrown. Additionally, it is a runtime error if the lref in step 8, 7, 7, 6 is a reference to
a data property with the attribute value { [[Writable]]: false }, to an accessor
property with the attribute value { [[Set]]: undefined }, or to a non-existent
property of an object for which the IsExtensible predicate returns the value false.
In these cases a TypeError exception is thrown.

The abstract operation ApplyStringOrNumericBinaryOperator takes arguments lval (an
ECMAScript language value), opText (**, *, /, %, +, -, <<, >>, >>>, &, ^, or |), and rval (an
ECMAScript language value) and returns either a normal completion containing either a String, a
BigInt, or a Number, or a throw completion. It performs the following steps when called:

1. If opText is +, then
a. Let lprim be ? ToPrimitive(lval).
b. Let rprim be ? ToPrimitive(rval).
c. If lprim is a String or rprim is a String, then

i. Let lstr be ? ToString(lprim).
ii. Let rstr be ? ToString(rprim).

iii. Return the string-concatenation of lstr and rstr.
d. Set lval to lprim.
e. Set rval to rprim.

2. NOTE: At this point, it must be a numeric operation.
3. Let lnum be ? ToNumeric(lval).
4. Let rnum be ? ToNumeric(rval).
5. If Type(lnum) is not Type(rnum), throw a TypeError exception.
6. If lnum is a BigInt, then

13.15.3 ApplyStringOrNumericBinaryOperator (lval, opText, rval)

…

7

Language Specification (ECMA-262) of JavaScript

4 + 2n
JS

TypeError

Expr 4 Expr 2n+

Number 4

BigInt 2n

+

Conversion to
Primitive

Conversion to
Numeric

Evaluate Right

Evaluate Left

/ 57

AdditiveExpression[Yield, Await] :

MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] + MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] - MultiplicativeExpression[?Yield, ?Await]

NOTE The addition operator either performs string concatenation or numeric addition.

AdditiveExpression : AdditiveExpression + MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, +, MultiplicativeExpression).

NOTE The - operator performs subtraction, producing the difference of its operands.

AdditiveExpression : AdditiveExpression - MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, -, MultiplicativeExpression).

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification

13.8 Additive Operators

Syntax

13.8.1 The Addition Operator (+)

13.8.1.1 Runtime Semantics: Evaluation

13.8.2 The Subtraction Operator (-)

13.8.2.1 Runtime Semantics: Evaluation

AdditiveExpression[Yield, Await] :

MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] + MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] - MultiplicativeExpression[?Yield, ?Await]

NOTE The addition operator either performs string concatenation or numeric addition.

AdditiveExpression : AdditiveExpression + MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, +, MultiplicativeExpression).

NOTE The - operator performs subtraction, producing the difference of its operands.

AdditiveExpression : AdditiveExpression - MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, -, MultiplicativeExpression).

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification

13.8 Additive Operators

Syntax

13.8.1 The Addition Operator (+)

13.8.1.1 Runtime Semantics: Evaluation

13.8.2 The Subtraction Operator (-)

13.8.2.1 Runtime Semantics: Evaluation

AdditiveExpression[Yield, Await] :

MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] + MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] - MultiplicativeExpression[?Yield, ?Await]

NOTE The addition operator either performs string concatenation or numeric addition.

AdditiveExpression : AdditiveExpression + MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, +, MultiplicativeExpression).

NOTE The - operator performs subtraction, producing the difference of its operands.

AdditiveExpression : AdditiveExpression - MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, -, MultiplicativeExpression).

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification

13.8 Additive Operators

Syntax

13.8.1 The Addition Operator (+)

13.8.1.1 Runtime Semantics: Evaluation

13.8.2 The Subtraction Operator (-)

13.8.2.1 Runtime Semantics: Evaluation

The abstract operation EvaluateStringOrNumericBinaryExpression takes arguments leftOperand (a Parse Node), opText (a
sequence of Unicode code points), and rightOperand (a Parse Node) and returns either a normal completion containing
either a String, a BigInt, or a Number, or an abrupt completion. It performs the following steps when called:

1. Let lref be ? Evaluation of leftOperand.
2. Let lval be ? GetValue(lref).
3. Let rref be ? Evaluation of rightOperand.
4. Let rval be ? GetValue(rref).
5. Return ? ApplyStringOrNumericBinaryOperator(lval, opText, rval).

Expression[In, Yield, Await] :

AssignmentExpression[?In, ?Yield, ?Await]
Expression[?In, ?Yield, ?Await] , AssignmentExpression[?In, ?Yield, ?Await]

Expression : Expression , AssignmentExpression

1. Let lref be ? Evaluation of Expression.
2. Perform ? GetValue(lref).
3. Let rref be ? Evaluation of AssignmentExpression.
4. Return ? GetValue(rref).

NOTE GetValue must be called even though its value is not used because it may have observable side-effects.

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification
13 ECMAScript Language: Expressions

13.15.4 EvaluateStringOrNumericBinaryExpression (leftOperand, opText, rightOperand)

13.16 Comma Operator (,)

Syntax

13.16.1 Runtime Semantics: Evaluation

The abstract operation EvaluateStringOrNumericBinaryExpression takes arguments leftOperand (a Parse Node), opText (a
sequence of Unicode code points), and rightOperand (a Parse Node) and returns either a normal completion containing
either a String, a BigInt, or a Number, or an abrupt completion. It performs the following steps when called:

1. Let lref be ? Evaluation of leftOperand.
2. Let lval be ? GetValue(lref).
3. Let rref be ? Evaluation of rightOperand.
4. Let rval be ? GetValue(rref).
5. Return ? ApplyStringOrNumericBinaryOperator(lval, opText, rval).

Expression[In, Yield, Await] :

AssignmentExpression[?In, ?Yield, ?Await]
Expression[?In, ?Yield, ?Await] , AssignmentExpression[?In, ?Yield, ?Await]

Expression : Expression , AssignmentExpression

1. Let lref be ? Evaluation of Expression.
2. Perform ? GetValue(lref).
3. Let rref be ? Evaluation of AssignmentExpression.
4. Return ? GetValue(rref).

NOTE GetValue must be called even though its value is not used because it may have observable side-effects.

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification
13 ECMAScript Language: Expressions

13.15.4 EvaluateStringOrNumericBinaryExpression (leftOperand, opText, rightOperand)

13.16 Comma Operator (,)

Syntax

13.16.1 Runtime Semantics: Evaluation

2. Let lval be ? GetValue(lref).
3. If lval is neither undefined nor null, return lval.
4. If IsAnonymousFunctionDefinition(AssignmentExpression) is true and IsIdentifierRef of

LeftHandSideExpression is true, then
a. Let rval be ? NamedEvaluation of AssignmentExpression with argument lref.

[[ReferencedName]].
5. Else,

a. Let rref be ? Evaluation of AssignmentExpression.
b. Let rval be ? GetValue(rref).

6. Perform ? PutValue(lref, rval).
7. Return rval.

NOTE When this expression occurs within strict mode code, it is a runtime error if lref in
step 1.d, 2, 2, 2, 2 is an unresolvable reference. If it is, a ReferenceError exception is
thrown. Additionally, it is a runtime error if the lref in step 8, 7, 7, 6 is a reference to
a data property with the attribute value { [[Writable]]: false }, to an accessor
property with the attribute value { [[Set]]: undefined }, or to a non-existent
property of an object for which the IsExtensible predicate returns the value false.
In these cases a TypeError exception is thrown.

The abstract operation ApplyStringOrNumericBinaryOperator takes arguments lval (an
ECMAScript language value), opText (**, *, /, %, +, -, <<, >>, >>>, &, ^, or |), and rval (an
ECMAScript language value) and returns either a normal completion containing either a String, a
BigInt, or a Number, or a throw completion. It performs the following steps when called:

1. If opText is +, then
a. Let lprim be ? ToPrimitive(lval).
b. Let rprim be ? ToPrimitive(rval).
c. If lprim is a String or rprim is a String, then

i. Let lstr be ? ToString(lprim).
ii. Let rstr be ? ToString(rprim).

iii. Return the string-concatenation of lstr and rstr.
d. Set lval to lprim.
e. Set rval to rprim.

2. NOTE: At this point, it must be a numeric operation.
3. Let lnum be ? ToNumeric(lval).
4. Let rnum be ? ToNumeric(rval).
5. If Type(lnum) is not Type(rnum), throw a TypeError exception.
6. If lnum is a BigInt, then

13.15.3 ApplyStringOrNumericBinaryOperator (lval, opText, rval)

2. Let lval be ? GetValue(lref).
3. If lval is neither undefined nor null, return lval.
4. If IsAnonymousFunctionDefinition(AssignmentExpression) is true and IsIdentifierRef of

LeftHandSideExpression is true, then
a. Let rval be ? NamedEvaluation of AssignmentExpression with argument lref.

[[ReferencedName]].
5. Else,

a. Let rref be ? Evaluation of AssignmentExpression.
b. Let rval be ? GetValue(rref).

6. Perform ? PutValue(lref, rval).
7. Return rval.

NOTE When this expression occurs within strict mode code, it is a runtime error if lref in
step 1.d, 2, 2, 2, 2 is an unresolvable reference. If it is, a ReferenceError exception is
thrown. Additionally, it is a runtime error if the lref in step 8, 7, 7, 6 is a reference to
a data property with the attribute value { [[Writable]]: false }, to an accessor
property with the attribute value { [[Set]]: undefined }, or to a non-existent
property of an object for which the IsExtensible predicate returns the value false.
In these cases a TypeError exception is thrown.

The abstract operation ApplyStringOrNumericBinaryOperator takes arguments lval (an
ECMAScript language value), opText (**, *, /, %, +, -, <<, >>, >>>, &, ^, or |), and rval (an
ECMAScript language value) and returns either a normal completion containing either a String, a
BigInt, or a Number, or a throw completion. It performs the following steps when called:

1. If opText is +, then
a. Let lprim be ? ToPrimitive(lval).
b. Let rprim be ? ToPrimitive(rval).
c. If lprim is a String or rprim is a String, then

i. Let lstr be ? ToString(lprim).
ii. Let rstr be ? ToString(rprim).

iii. Return the string-concatenation of lstr and rstr.
d. Set lval to lprim.
e. Set rval to rprim.

2. NOTE: At this point, it must be a numeric operation.
3. Let lnum be ? ToNumeric(lval).
4. Let rnum be ? ToNumeric(rval).
5. If Type(lnum) is not Type(rnum), throw a TypeError exception.
6. If lnum is a BigInt, then

13.15.3 ApplyStringOrNumericBinaryOperator (lval, opText, rval)

…

7

Language Specification (ECMA-262) of JavaScript

4 + 2n
JS

TypeError

Expr 4 Expr 2n+

Number 4

BigInt 2n

+

Number

Conversion to
Primitive

Conversion to
Numeric

Evaluate Right

Evaluate Left

/ 57

AdditiveExpression[Yield, Await] :

MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] + MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] - MultiplicativeExpression[?Yield, ?Await]

NOTE The addition operator either performs string concatenation or numeric addition.

AdditiveExpression : AdditiveExpression + MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, +, MultiplicativeExpression).

NOTE The - operator performs subtraction, producing the difference of its operands.

AdditiveExpression : AdditiveExpression - MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, -, MultiplicativeExpression).

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification

13.8 Additive Operators

Syntax

13.8.1 The Addition Operator (+)

13.8.1.1 Runtime Semantics: Evaluation

13.8.2 The Subtraction Operator (-)

13.8.2.1 Runtime Semantics: Evaluation

AdditiveExpression[Yield, Await] :

MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] + MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] - MultiplicativeExpression[?Yield, ?Await]

NOTE The addition operator either performs string concatenation or numeric addition.

AdditiveExpression : AdditiveExpression + MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, +, MultiplicativeExpression).

NOTE The - operator performs subtraction, producing the difference of its operands.

AdditiveExpression : AdditiveExpression - MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, -, MultiplicativeExpression).

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification

13.8 Additive Operators

Syntax

13.8.1 The Addition Operator (+)

13.8.1.1 Runtime Semantics: Evaluation

13.8.2 The Subtraction Operator (-)

13.8.2.1 Runtime Semantics: Evaluation

AdditiveExpression[Yield, Await] :

MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] + MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] - MultiplicativeExpression[?Yield, ?Await]

NOTE The addition operator either performs string concatenation or numeric addition.

AdditiveExpression : AdditiveExpression + MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, +, MultiplicativeExpression).

NOTE The - operator performs subtraction, producing the difference of its operands.

AdditiveExpression : AdditiveExpression - MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, -, MultiplicativeExpression).

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification

13.8 Additive Operators

Syntax

13.8.1 The Addition Operator (+)

13.8.1.1 Runtime Semantics: Evaluation

13.8.2 The Subtraction Operator (-)

13.8.2.1 Runtime Semantics: Evaluation

The abstract operation EvaluateStringOrNumericBinaryExpression takes arguments leftOperand (a Parse Node), opText (a
sequence of Unicode code points), and rightOperand (a Parse Node) and returns either a normal completion containing
either a String, a BigInt, or a Number, or an abrupt completion. It performs the following steps when called:

1. Let lref be ? Evaluation of leftOperand.
2. Let lval be ? GetValue(lref).
3. Let rref be ? Evaluation of rightOperand.
4. Let rval be ? GetValue(rref).
5. Return ? ApplyStringOrNumericBinaryOperator(lval, opText, rval).

Expression[In, Yield, Await] :

AssignmentExpression[?In, ?Yield, ?Await]
Expression[?In, ?Yield, ?Await] , AssignmentExpression[?In, ?Yield, ?Await]

Expression : Expression , AssignmentExpression

1. Let lref be ? Evaluation of Expression.
2. Perform ? GetValue(lref).
3. Let rref be ? Evaluation of AssignmentExpression.
4. Return ? GetValue(rref).

NOTE GetValue must be called even though its value is not used because it may have observable side-effects.

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification
13 ECMAScript Language: Expressions

13.15.4 EvaluateStringOrNumericBinaryExpression (leftOperand, opText, rightOperand)

13.16 Comma Operator (,)

Syntax

13.16.1 Runtime Semantics: Evaluation

The abstract operation EvaluateStringOrNumericBinaryExpression takes arguments leftOperand (a Parse Node), opText (a
sequence of Unicode code points), and rightOperand (a Parse Node) and returns either a normal completion containing
either a String, a BigInt, or a Number, or an abrupt completion. It performs the following steps when called:

1. Let lref be ? Evaluation of leftOperand.
2. Let lval be ? GetValue(lref).
3. Let rref be ? Evaluation of rightOperand.
4. Let rval be ? GetValue(rref).
5. Return ? ApplyStringOrNumericBinaryOperator(lval, opText, rval).

Expression[In, Yield, Await] :

AssignmentExpression[?In, ?Yield, ?Await]
Expression[?In, ?Yield, ?Await] , AssignmentExpression[?In, ?Yield, ?Await]

Expression : Expression , AssignmentExpression

1. Let lref be ? Evaluation of Expression.
2. Perform ? GetValue(lref).
3. Let rref be ? Evaluation of AssignmentExpression.
4. Return ? GetValue(rref).

NOTE GetValue must be called even though its value is not used because it may have observable side-effects.

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification
13 ECMAScript Language: Expressions

13.15.4 EvaluateStringOrNumericBinaryExpression (leftOperand, opText, rightOperand)

13.16 Comma Operator (,)

Syntax

13.16.1 Runtime Semantics: Evaluation

2. Let lval be ? GetValue(lref).
3. If lval is neither undefined nor null, return lval.
4. If IsAnonymousFunctionDefinition(AssignmentExpression) is true and IsIdentifierRef of

LeftHandSideExpression is true, then
a. Let rval be ? NamedEvaluation of AssignmentExpression with argument lref.

[[ReferencedName]].
5. Else,

a. Let rref be ? Evaluation of AssignmentExpression.
b. Let rval be ? GetValue(rref).

6. Perform ? PutValue(lref, rval).
7. Return rval.

NOTE When this expression occurs within strict mode code, it is a runtime error if lref in
step 1.d, 2, 2, 2, 2 is an unresolvable reference. If it is, a ReferenceError exception is
thrown. Additionally, it is a runtime error if the lref in step 8, 7, 7, 6 is a reference to
a data property with the attribute value { [[Writable]]: false }, to an accessor
property with the attribute value { [[Set]]: undefined }, or to a non-existent
property of an object for which the IsExtensible predicate returns the value false.
In these cases a TypeError exception is thrown.

The abstract operation ApplyStringOrNumericBinaryOperator takes arguments lval (an
ECMAScript language value), opText (**, *, /, %, +, -, <<, >>, >>>, &, ^, or |), and rval (an
ECMAScript language value) and returns either a normal completion containing either a String, a
BigInt, or a Number, or a throw completion. It performs the following steps when called:

1. If opText is +, then
a. Let lprim be ? ToPrimitive(lval).
b. Let rprim be ? ToPrimitive(rval).
c. If lprim is a String or rprim is a String, then

i. Let lstr be ? ToString(lprim).
ii. Let rstr be ? ToString(rprim).

iii. Return the string-concatenation of lstr and rstr.
d. Set lval to lprim.
e. Set rval to rprim.

2. NOTE: At this point, it must be a numeric operation.
3. Let lnum be ? ToNumeric(lval).
4. Let rnum be ? ToNumeric(rval).
5. If Type(lnum) is not Type(rnum), throw a TypeError exception.
6. If lnum is a BigInt, then

13.15.3 ApplyStringOrNumericBinaryOperator (lval, opText, rval)

2. Let lval be ? GetValue(lref).
3. If lval is neither undefined nor null, return lval.
4. If IsAnonymousFunctionDefinition(AssignmentExpression) is true and IsIdentifierRef of

LeftHandSideExpression is true, then
a. Let rval be ? NamedEvaluation of AssignmentExpression with argument lref.

[[ReferencedName]].
5. Else,

a. Let rref be ? Evaluation of AssignmentExpression.
b. Let rval be ? GetValue(rref).

6. Perform ? PutValue(lref, rval).
7. Return rval.

NOTE When this expression occurs within strict mode code, it is a runtime error if lref in
step 1.d, 2, 2, 2, 2 is an unresolvable reference. If it is, a ReferenceError exception is
thrown. Additionally, it is a runtime error if the lref in step 8, 7, 7, 6 is a reference to
a data property with the attribute value { [[Writable]]: false }, to an accessor
property with the attribute value { [[Set]]: undefined }, or to a non-existent
property of an object for which the IsExtensible predicate returns the value false.
In these cases a TypeError exception is thrown.

The abstract operation ApplyStringOrNumericBinaryOperator takes arguments lval (an
ECMAScript language value), opText (**, *, /, %, +, -, <<, >>, >>>, &, ^, or |), and rval (an
ECMAScript language value) and returns either a normal completion containing either a String, a
BigInt, or a Number, or a throw completion. It performs the following steps when called:

1. If opText is +, then
a. Let lprim be ? ToPrimitive(lval).
b. Let rprim be ? ToPrimitive(rval).
c. If lprim is a String or rprim is a String, then

i. Let lstr be ? ToString(lprim).
ii. Let rstr be ? ToString(rprim).

iii. Return the string-concatenation of lstr and rstr.
d. Set lval to lprim.
e. Set rval to rprim.

2. NOTE: At this point, it must be a numeric operation.
3. Let lnum be ? ToNumeric(lval).
4. Let rnum be ? ToNumeric(rval).
5. If Type(lnum) is not Type(rnum), throw a TypeError exception.
6. If lnum is a BigInt, then

13.15.3 ApplyStringOrNumericBinaryOperator (lval, opText, rval)

…

7

Language Specification (ECMA-262) of JavaScript

4 + 2n
JS

TypeError

Expr 4 Expr 2n+

Number 4

BigInt 2n

+

Number BigInt

Conversion to
Primitive

Conversion to
Numeric

Evaluate Right

Evaluate Left

/ 57

AdditiveExpression[Yield, Await] :

MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] + MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] - MultiplicativeExpression[?Yield, ?Await]

NOTE The addition operator either performs string concatenation or numeric addition.

AdditiveExpression : AdditiveExpression + MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, +, MultiplicativeExpression).

NOTE The - operator performs subtraction, producing the difference of its operands.

AdditiveExpression : AdditiveExpression - MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, -, MultiplicativeExpression).

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification

13.8 Additive Operators

Syntax

13.8.1 The Addition Operator (+)

13.8.1.1 Runtime Semantics: Evaluation

13.8.2 The Subtraction Operator (-)

13.8.2.1 Runtime Semantics: Evaluation

AdditiveExpression[Yield, Await] :

MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] + MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] - MultiplicativeExpression[?Yield, ?Await]

NOTE The addition operator either performs string concatenation or numeric addition.

AdditiveExpression : AdditiveExpression + MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, +, MultiplicativeExpression).

NOTE The - operator performs subtraction, producing the difference of its operands.

AdditiveExpression : AdditiveExpression - MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, -, MultiplicativeExpression).

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification

13.8 Additive Operators

Syntax

13.8.1 The Addition Operator (+)

13.8.1.1 Runtime Semantics: Evaluation

13.8.2 The Subtraction Operator (-)

13.8.2.1 Runtime Semantics: Evaluation

AdditiveExpression[Yield, Await] :

MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] + MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] - MultiplicativeExpression[?Yield, ?Await]

NOTE The addition operator either performs string concatenation or numeric addition.

AdditiveExpression : AdditiveExpression + MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, +, MultiplicativeExpression).

NOTE The - operator performs subtraction, producing the difference of its operands.

AdditiveExpression : AdditiveExpression - MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, -, MultiplicativeExpression).

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification

13.8 Additive Operators

Syntax

13.8.1 The Addition Operator (+)

13.8.1.1 Runtime Semantics: Evaluation

13.8.2 The Subtraction Operator (-)

13.8.2.1 Runtime Semantics: Evaluation

The abstract operation EvaluateStringOrNumericBinaryExpression takes arguments leftOperand (a Parse Node), opText (a
sequence of Unicode code points), and rightOperand (a Parse Node) and returns either a normal completion containing
either a String, a BigInt, or a Number, or an abrupt completion. It performs the following steps when called:

1. Let lref be ? Evaluation of leftOperand.
2. Let lval be ? GetValue(lref).
3. Let rref be ? Evaluation of rightOperand.
4. Let rval be ? GetValue(rref).
5. Return ? ApplyStringOrNumericBinaryOperator(lval, opText, rval).

Expression[In, Yield, Await] :

AssignmentExpression[?In, ?Yield, ?Await]
Expression[?In, ?Yield, ?Await] , AssignmentExpression[?In, ?Yield, ?Await]

Expression : Expression , AssignmentExpression

1. Let lref be ? Evaluation of Expression.
2. Perform ? GetValue(lref).
3. Let rref be ? Evaluation of AssignmentExpression.
4. Return ? GetValue(rref).

NOTE GetValue must be called even though its value is not used because it may have observable side-effects.

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification
13 ECMAScript Language: Expressions

13.15.4 EvaluateStringOrNumericBinaryExpression (leftOperand, opText, rightOperand)

13.16 Comma Operator (,)

Syntax

13.16.1 Runtime Semantics: Evaluation

The abstract operation EvaluateStringOrNumericBinaryExpression takes arguments leftOperand (a Parse Node), opText (a
sequence of Unicode code points), and rightOperand (a Parse Node) and returns either a normal completion containing
either a String, a BigInt, or a Number, or an abrupt completion. It performs the following steps when called:

1. Let lref be ? Evaluation of leftOperand.
2. Let lval be ? GetValue(lref).
3. Let rref be ? Evaluation of rightOperand.
4. Let rval be ? GetValue(rref).
5. Return ? ApplyStringOrNumericBinaryOperator(lval, opText, rval).

Expression[In, Yield, Await] :

AssignmentExpression[?In, ?Yield, ?Await]
Expression[?In, ?Yield, ?Await] , AssignmentExpression[?In, ?Yield, ?Await]

Expression : Expression , AssignmentExpression

1. Let lref be ? Evaluation of Expression.
2. Perform ? GetValue(lref).
3. Let rref be ? Evaluation of AssignmentExpression.
4. Return ? GetValue(rref).

NOTE GetValue must be called even though its value is not used because it may have observable side-effects.

ECMA-262, 14th edition, June 2023
ECMAScript® 2023 Language Specification
13 ECMAScript Language: Expressions

13.15.4 EvaluateStringOrNumericBinaryExpression (leftOperand, opText, rightOperand)

13.16 Comma Operator (,)

Syntax

13.16.1 Runtime Semantics: Evaluation

2. Let lval be ? GetValue(lref).
3. If lval is neither undefined nor null, return lval.
4. If IsAnonymousFunctionDefinition(AssignmentExpression) is true and IsIdentifierRef of

LeftHandSideExpression is true, then
a. Let rval be ? NamedEvaluation of AssignmentExpression with argument lref.

[[ReferencedName]].
5. Else,

a. Let rref be ? Evaluation of AssignmentExpression.
b. Let rval be ? GetValue(rref).

6. Perform ? PutValue(lref, rval).
7. Return rval.

NOTE When this expression occurs within strict mode code, it is a runtime error if lref in
step 1.d, 2, 2, 2, 2 is an unresolvable reference. If it is, a ReferenceError exception is
thrown. Additionally, it is a runtime error if the lref in step 8, 7, 7, 6 is a reference to
a data property with the attribute value { [[Writable]]: false }, to an accessor
property with the attribute value { [[Set]]: undefined }, or to a non-existent
property of an object for which the IsExtensible predicate returns the value false.
In these cases a TypeError exception is thrown.

The abstract operation ApplyStringOrNumericBinaryOperator takes arguments lval (an
ECMAScript language value), opText (**, *, /, %, +, -, <<, >>, >>>, &, ^, or |), and rval (an
ECMAScript language value) and returns either a normal completion containing either a String, a
BigInt, or a Number, or a throw completion. It performs the following steps when called:

1. If opText is +, then
a. Let lprim be ? ToPrimitive(lval).
b. Let rprim be ? ToPrimitive(rval).
c. If lprim is a String or rprim is a String, then

i. Let lstr be ? ToString(lprim).
ii. Let rstr be ? ToString(rprim).

iii. Return the string-concatenation of lstr and rstr.
d. Set lval to lprim.
e. Set rval to rprim.

2. NOTE: At this point, it must be a numeric operation.
3. Let lnum be ? ToNumeric(lval).
4. Let rnum be ? ToNumeric(rval).
5. If Type(lnum) is not Type(rnum), throw a TypeError exception.
6. If lnum is a BigInt, then

13.15.3 ApplyStringOrNumericBinaryOperator (lval, opText, rval)

2. Let lval be ? GetValue(lref).
3. If lval is neither undefined nor null, return lval.
4. If IsAnonymousFunctionDefinition(AssignmentExpression) is true and IsIdentifierRef of

LeftHandSideExpression is true, then
a. Let rval be ? NamedEvaluation of AssignmentExpression with argument lref.

[[ReferencedName]].
5. Else,

a. Let rref be ? Evaluation of AssignmentExpression.
b. Let rval be ? GetValue(rref).

6. Perform ? PutValue(lref, rval).
7. Return rval.

NOTE When this expression occurs within strict mode code, it is a runtime error if lref in
step 1.d, 2, 2, 2, 2 is an unresolvable reference. If it is, a ReferenceError exception is
thrown. Additionally, it is a runtime error if the lref in step 8, 7, 7, 6 is a reference to
a data property with the attribute value { [[Writable]]: false }, to an accessor
property with the attribute value { [[Set]]: undefined }, or to a non-existent
property of an object for which the IsExtensible predicate returns the value false.
In these cases a TypeError exception is thrown.

The abstract operation ApplyStringOrNumericBinaryOperator takes arguments lval (an
ECMAScript language value), opText (**, *, /, %, +, -, <<, >>, >>>, &, ^, or |), and rval (an
ECMAScript language value) and returns either a normal completion containing either a String, a
BigInt, or a Number, or a throw completion. It performs the following steps when called:

1. If opText is +, then
a. Let lprim be ? ToPrimitive(lval).
b. Let rprim be ? ToPrimitive(rval).
c. If lprim is a String or rprim is a String, then

i. Let lstr be ? ToString(lprim).
ii. Let rstr be ? ToString(rprim).

iii. Return the string-concatenation of lstr and rstr.
d. Set lval to lprim.
e. Set rval to rprim.

2. NOTE: At this point, it must be a numeric operation.
3. Let lnum be ? ToNumeric(lval).
4. Let rnum be ? ToNumeric(rval).
5. If Type(lnum) is not Type(rnum), throw a TypeError exception.
6. If lnum is a BigInt, then

13.15.3 ApplyStringOrNumericBinaryOperator (lval, opText, rval)

…

7

Language Specification (ECMA-262) of JavaScript

4 + 2n
JS

TypeError

Expr 4 Expr 2n+

Number 4

BigInt 2n

+

TypeErrorNumber BigInt

Conversion to
Primitive

Conversion to
Numeric

Evaluate Right

Evaluate Left

/ 578

Design and Implementation of JavaScript

Reference number
ECMA-123:2009

© Ecma International 2009

ECMA-262
�4th Edition / June 20�3

ECMAScript® ���3
Language Specification

ECMA-262
(JavaScript Spec.)

Engines

<latexit sha1_base64="CpgcZA9NrA3nNTWbnfMCi1QIkqQ=">AAACFXicbVC7TsMwFHXKq5RXgZElokJiqhKECmMFC2OR6ENqo8pxnNbUjiP7plKI+g9sCP6FDbEy8ytMuG0G2nKkKx2dc6+v7/FjzjQ4zrdVWFvf2Nwqbpd2dvf2D8qHRy0tE0Vok0guVcfHmnIW0SYw4LQTK4qFz2nbH91O/faYKs1k9ABpTD2BBxELGcFgpFZvHEjQ/XLFqToz2KvEzUkF5Wj0yz+9QJJE0AgIx1p3XScGL8MKGOF0UuolmsaYjPCAdg2NsKDay2a/ndhnRgnsUCpTEdgz9e9EhoXWqfBNp8Aw1MveVPzX0yCwSlWwtB/Cay9jUZwAjch8fZhwG6Q9DcQOmKIEeGoIJoqZC2wyxAoTMLEtvA9s9DQpmbDc5WhWSeui6taqtfvLSv0mj62ITtApOkcuukJ1dIcaqIkIekTP6BW9WS/Wu/Vhfc5bC1Y+c4wWYH39Aj4koGM=</latexit> . . .

JavaScript
Implementations

Transpilers

Analyzers

Debuggers

Conformance

/ 578

Design and Implementation of JavaScript

Reference number
ECMA-123:2009

© Ecma International 2009

ECMA-262
�4th Edition / June 20�3

ECMAScript® ���3
Language Specification

ECMA-262
(JavaScript Spec.)

Engines

<latexit sha1_base64="CpgcZA9NrA3nNTWbnfMCi1QIkqQ=">AAACFXicbVC7TsMwFHXKq5RXgZElokJiqhKECmMFC2OR6ENqo8pxnNbUjiP7plKI+g9sCP6FDbEy8ytMuG0G2nKkKx2dc6+v7/FjzjQ4zrdVWFvf2Nwqbpd2dvf2D8qHRy0tE0Vok0guVcfHmnIW0SYw4LQTK4qFz2nbH91O/faYKs1k9ABpTD2BBxELGcFgpFZvHEjQ/XLFqToz2KvEzUkF5Wj0yz+9QJJE0AgIx1p3XScGL8MKGOF0UuolmsaYjPCAdg2NsKDay2a/ndhnRgnsUCpTEdgz9e9EhoXWqfBNp8Aw1MveVPzX0yCwSlWwtB/Cay9jUZwAjch8fZhwG6Q9DcQOmKIEeGoIJoqZC2wyxAoTMLEtvA9s9DQpmbDc5WhWSeui6taqtfvLSv0mj62ITtApOkcuukJ1dIcaqIkIekTP6BW9WS/Wu/Vhfc5bC1Y+c4wWYH39Aj4koGM=</latexit> . . .

JavaScript
Implementations

Transpilers

Analyzers

Debuggers

Conformance

MANUALMANUALMANUAL

/ 579

Problem - Fast Evolving JavaScript

1995

ES1

2000 2005 2010

ES2

ES3

ES5

ES5.1

/ 5710

Problem - Fast Evolving JavaScript

1995

ES1
Annual Releases

2000 2005 2010 2015 2020

ES2

ES3

ES5

ES5.1

ES2015
ES2017

ES2019
ES2021

ES2023

ES2016
ES2018

ES2020
ES2022

ES.Next

/ 5711

Solution - Mechanized Language Specification

Reference number
ECMA-123:2009

© Ecma International 2009

ECMA-262
�4th Edition / June 20�3

ECMAScript® ���3
Language Specification

ECMA-262
(JavaScript Spec.)

Engines

<latexit sha1_base64="CpgcZA9NrA3nNTWbnfMCi1QIkqQ=">AAACFXicbVC7TsMwFHXKq5RXgZElokJiqhKECmMFC2OR6ENqo8pxnNbUjiP7plKI+g9sCP6FDbEy8ytMuG0G2nKkKx2dc6+v7/FjzjQ4zrdVWFvf2Nwqbpd2dvf2D8qHRy0tE0Vok0guVcfHmnIW0SYw4LQTK4qFz2nbH91O/faYKs1k9ABpTD2BBxELGcFgpFZvHEjQ/XLFqToz2KvEzUkF5Wj0yz+9QJJE0AgIx1p3XScGL8MKGOF0UuolmsaYjPCAdg2NsKDay2a/ndhnRgnsUCpTEdgz9e9EhoXWqfBNp8Aw1MveVPzX0yCwSlWwtB/Cay9jUZwAjch8fZhwG6Q9DcQOmKIEeGoIJoqZC2wyxAoTMLEtvA9s9DQpmbDc5WhWSeui6taqtfvLSv0mj62ITtApOkcuukJ1dIcaqIkIekTP6BW9WS/Wu/Vhfc5bC1Y+c4wWYH39Aj4koGM=</latexit> . . .

JavaScript
Implementations

Transpilers

Analyzers

Debuggers
Conformance

Mechanized
Specification

Automatic

/ 5712

ECMA-262
(JS Spec.) JISET JSAVER

JEST

JSTAR

Mechanized
Specification

Mechanized Spec.
Extraction

Conformance
Test Synthesis

Specification
Type Errors

Conformance
Tests

Static
Analyzer

JavaScript
Engines

ASE 2020

ICSE 2021

Derivation of
Static Analyzer

FSE 2022

FS/FCPS-
Coverage

Feature-Sensitive
Coverage

PLDI 2023

Specification
Type Analysis

ASE 2021

/ 5713

ECMA-262
(JS Spec.) JISET JSAVER

JEST

JSTAR

Mechanized
Specification

Mechanized Spec.
Extraction

Conformance
Test

Specifi
Type Errors

Conformance
Tests

Static
Analyzer

JavaScript
Engines

ASE 2020

ICSE

Derivation
Static

FSE

FS/FCPS-
Coverage

Feature-Sensitive
Coverage

PLDI

Specifi
Type

ASE
[ASE 2020] J. Park et al., “JISET: JavaScript IR-based Semantics Extraction Toolchain”

/ 5714

Language Specification (ECMA-262) of JavaScript

,
JS

[],<latexit sha1_base64="6RP8+7doe9Iuo5HC3XVh3eT6xTc=">AAACFnicbVDLSsNAFJ3UV62vqks3g0VwVRKR6rLoxmUF+4A2lMlk0g6dzISZGyGGfoQ70X9xJ27d+iuuTNosbOuBC4dz7p0793iR4AZs+9sqra1vbG6Vtys7u3v7B9XDo45RsaasTZVQuucRwwSXrA0cBOtFmpHQE6zrTW5zv/vItOFKPkASMTckI8kDTglkUndAfQWmMqzW7Lo9A14lTkFqqEBrWP0Z+IrGIZNABTGm79gRuCnRwKlg08ogNiwidEJGrJ9RSUJm3HT23Sk+yxQfB0pnJQHP1L8TKQmNSUIv6wwJjM2yl4v/egZCohPtL+2H4NpNuYxiYJLO1wexwKBwngj2uWYURJIRQjXPLsB0TDShkOW28D7wydM0D8tZjmaVdC7qTqPeuL+sNW+K2MroBJ2ic+SgK9REd6iF2oiiCXpGr+jNerHerQ/rc95asoqZY7QA6+sXVlugZA==</latexit>· · ·

[1, 2, 3] ["a", 7] [42,] [{p:42}, 42, "a"]

/ 5714

Language Specification (ECMA-262) of JavaScript

258 © Ecma International 2023

1. Return the SV of StringLiteral as defined in 12.9.4.2.

NOTE An ArrayLiteral is an expression describing the initialization of an Array, using a list, of zero or
more expressions each of which represents an array element, enclosed in square brackets.
The elements need not be literals; they are evaluated each time the array initializer is
evaluated.

Array elements may be elided at the beginning, middle or end of the element list. Whenever a comma in the
element list is not preceded by an AssignmentExpression (i.e., a comma at the beginning or after another
comma), the missing array element contributes to the length of the Array and increases the index of
subsequent elements. Elided array elements are not defined. If an element is elided at the end of an array,
that element does not contribute to the length of the Array.

ArrayLiteral[Yield, Await] :
[Elisionopt]
[ElementList[?Yield, ?Await]]
[ElementList[?Yield, ?Await] , Elisionopt]

ElementList[Yield, Await] :
Elisionopt AssignmentExpression[+In, ?Yield, ?Await]
Elisionopt SpreadElement[?Yield, ?Await]
ElementList[?Yield, ?Await] , Elisionopt

AssignmentExpression[+In, ?Yield, ?Await]
ElementList[?Yield, ?Await] , Elisionopt SpreadElement[?Yield, ?Await]

Elision :
,
Elision ,

SpreadElement[Yield, Await] :
... AssignmentExpression[+In, ?Yield, ?Await]

The syntax-directed operation ArrayAccumulation takes arguments array (an Array) and nextIndex (an
integer) and returns either a normal completion containing an integer or an abrupt completion. It is defined
piecewise over the following productions:

Elision : ,

1. Let len be nextIndex + 1.
2. Perform ? Set(array, "length", (len), true).
3. NOTE: The above step throws if len exceeds 232-1.
4. Return len.

Elision : Elision ,

1. Return ? ArrayAccumulation of Elision with arguments array and (nextIndex + 1).

13.2.4 Array Initializer

Syntax

13.2.4.1 Runtime Semantics: ArrayAccumulation

Syntax

,
JS

[],<latexit sha1_base64="6RP8+7doe9Iuo5HC3XVh3eT6xTc=">AAACFnicbVDLSsNAFJ3UV62vqks3g0VwVRKR6rLoxmUF+4A2lMlk0g6dzISZGyGGfoQ70X9xJ27d+iuuTNosbOuBC4dz7p0793iR4AZs+9sqra1vbG6Vtys7u3v7B9XDo45RsaasTZVQuucRwwSXrA0cBOtFmpHQE6zrTW5zv/vItOFKPkASMTckI8kDTglkUndAfQWmMqzW7Lo9A14lTkFqqEBrWP0Z+IrGIZNABTGm79gRuCnRwKlg08ogNiwidEJGrJ9RSUJm3HT23Sk+yxQfB0pnJQHP1L8TKQmNSUIv6wwJjM2yl4v/egZCohPtL+2H4NpNuYxiYJLO1wexwKBwngj2uWYURJIRQjXPLsB0TDShkOW28D7wydM0D8tZjmaVdC7qTqPeuL+sNW+K2MroBJ2ic+SgK9REd6iF2oiiCXpGr+jNerHerQ/rc95asoqZY7QA6+sXVlugZA==</latexit>· · ·

[1, 2, 3] ["a", 7] [42,] [{p:42}, 42, "a"]

/ 5714

Language Specification (ECMA-262) of JavaScript

258 © Ecma International 2023

1. Return the SV of StringLiteral as defined in 12.9.4.2.

NOTE An ArrayLiteral is an expression describing the initialization of an Array, using a list, of zero or
more expressions each of which represents an array element, enclosed in square brackets.
The elements need not be literals; they are evaluated each time the array initializer is
evaluated.

Array elements may be elided at the beginning, middle or end of the element list. Whenever a comma in the
element list is not preceded by an AssignmentExpression (i.e., a comma at the beginning or after another
comma), the missing array element contributes to the length of the Array and increases the index of
subsequent elements. Elided array elements are not defined. If an element is elided at the end of an array,
that element does not contribute to the length of the Array.

ArrayLiteral[Yield, Await] :
[Elisionopt]
[ElementList[?Yield, ?Await]]
[ElementList[?Yield, ?Await] , Elisionopt]

ElementList[Yield, Await] :
Elisionopt AssignmentExpression[+In, ?Yield, ?Await]
Elisionopt SpreadElement[?Yield, ?Await]
ElementList[?Yield, ?Await] , Elisionopt

AssignmentExpression[+In, ?Yield, ?Await]
ElementList[?Yield, ?Await] , Elisionopt SpreadElement[?Yield, ?Await]

Elision :
,
Elision ,

SpreadElement[Yield, Await] :
... AssignmentExpression[+In, ?Yield, ?Await]

The syntax-directed operation ArrayAccumulation takes arguments array (an Array) and nextIndex (an
integer) and returns either a normal completion containing an integer or an abrupt completion. It is defined
piecewise over the following productions:

Elision : ,

1. Let len be nextIndex + 1.
2. Perform ? Set(array, "length", (len), true).
3. NOTE: The above step throws if len exceeds 232-1.
4. Return len.

Elision : Elision ,

1. Return ? ArrayAccumulation of Elision with arguments array and (nextIndex + 1).

13.2.4 Array Initializer

Syntax

13.2.4.1 Runtime Semantics: ArrayAccumulation

Syntax

260 © Ecma International 2023

a. Perform ? ArrayAccumulation of Elision with arguments array and 0.
3. Return array.

ArrayLiteral : [ElementList]

1. Let array be ! ArrayCreate(0).
2. Perform ? ArrayAccumulation of ElementList with arguments array and 0.
3. Return array.

ArrayLiteral : [ElementList , Elisionopt]

1. Let array be ! ArrayCreate(0).
2. Let nextIndex be ? ArrayAccumulation of ElementList with arguments array and 0.
3. If Elision is present, then

a. Perform ? ArrayAccumulation of Elision with arguments array and nextIndex.
4. Return array.

NOTE 1 An object initializer is an expression describing the initialization of an Object, written in
a form resembling a literal. It is a list of zero or more pairs of property keys and
associated values, enclosed in curly brackets. The values need not be literals; they are
evaluated each time the object initializer is evaluated.

ObjectLiteral[Yield, Await] :
{ }
{ PropertyDefinitionList[?Yield, ?Await] }
{ PropertyDefinitionList[?Yield, ?Await] , }

PropertyDefinitionList[Yield, Await] :
PropertyDefinition[?Yield, ?Await]
PropertyDefinitionList[?Yield, ?Await] , PropertyDefinition[?Yield, ?Await]

PropertyDefinition[Yield, Await] :
IdentifierReference[?Yield, ?Await]
CoverInitializedName[?Yield, ?Await]
PropertyName[?Yield, ?Await] : AssignmentExpression[+In, ?Yield, ?Await]
MethodDefinition[?Yield, ?Await]
... AssignmentExpression[+In, ?Yield, ?Await]

PropertyName[Yield, Await] :
LiteralPropertyName
ComputedPropertyName[?Yield, ?Await]

LiteralPropertyName :
IdentifierName
StringLiteral
NumericLiteral

ComputedPropertyName[Yield, Await] :
[AssignmentExpression[+In, ?Yield, ?Await]]

13.2.5 Object Initializer

Syntax

260 © Ecma International 2023

a. Perform ? ArrayAccumulation of Elision with arguments array and 0.
3. Return array.

ArrayLiteral : [ElementList]

1. Let array be ! ArrayCreate(0).
2. Perform ? ArrayAccumulation of ElementList with arguments array and 0.
3. Return array.

ArrayLiteral : [ElementList , Elisionopt]

1. Let array be ! ArrayCreate(0).
2. Let nextIndex be ? ArrayAccumulation of ElementList with arguments array and 0.
3. If Elision is present, then

a. Perform ? ArrayAccumulation of Elision with arguments array and nextIndex.
4. Return array.

NOTE 1 An object initializer is an expression describing the initialization of an Object, written in
a form resembling a literal. It is a list of zero or more pairs of property keys and
associated values, enclosed in curly brackets. The values need not be literals; they are
evaluated each time the object initializer is evaluated.

ObjectLiteral[Yield, Await] :
{ }
{ PropertyDefinitionList[?Yield, ?Await] }
{ PropertyDefinitionList[?Yield, ?Await] , }

PropertyDefinitionList[Yield, Await] :
PropertyDefinition[?Yield, ?Await]
PropertyDefinitionList[?Yield, ?Await] , PropertyDefinition[?Yield, ?Await]

PropertyDefinition[Yield, Await] :
IdentifierReference[?Yield, ?Await]
CoverInitializedName[?Yield, ?Await]
PropertyName[?Yield, ?Await] : AssignmentExpression[+In, ?Yield, ?Await]
MethodDefinition[?Yield, ?Await]
... AssignmentExpression[+In, ?Yield, ?Await]

PropertyName[Yield, Await] :
LiteralPropertyName
ComputedPropertyName[?Yield, ?Await]

LiteralPropertyName :
IdentifierName
StringLiteral
NumericLiteral

ComputedPropertyName[Yield, Await] :
[AssignmentExpression[+In, ?Yield, ?Await]]

13.2.5 Object Initializer

Syntax

260 © Ecma International 2023

a. Perform ? ArrayAccumulation of Elision with arguments array and 0.
3. Return array.

ArrayLiteral : [ElementList]

1. Let array be ! ArrayCreate(0).
2. Perform ? ArrayAccumulation of ElementList with arguments array and 0.
3. Return array.

ArrayLiteral : [ElementList , Elisionopt]

1. Let array be ! ArrayCreate(0).
2. Let nextIndex be ? ArrayAccumulation of ElementList with arguments array and 0.
3. If Elision is present, then

a. Perform ? ArrayAccumulation of Elision with arguments array and nextIndex.
4. Return array.

NOTE 1 An object initializer is an expression describing the initialization of an Object, written in
a form resembling a literal. It is a list of zero or more pairs of property keys and
associated values, enclosed in curly brackets. The values need not be literals; they are
evaluated each time the object initializer is evaluated.

ObjectLiteral[Yield, Await] :
{ }
{ PropertyDefinitionList[?Yield, ?Await] }
{ PropertyDefinitionList[?Yield, ?Await] , }

PropertyDefinitionList[Yield, Await] :
PropertyDefinition[?Yield, ?Await]
PropertyDefinitionList[?Yield, ?Await] , PropertyDefinition[?Yield, ?Await]

PropertyDefinition[Yield, Await] :
IdentifierReference[?Yield, ?Await]
CoverInitializedName[?Yield, ?Await]
PropertyName[?Yield, ?Await] : AssignmentExpression[+In, ?Yield, ?Await]
MethodDefinition[?Yield, ?Await]
... AssignmentExpression[+In, ?Yield, ?Await]

PropertyName[Yield, Await] :
LiteralPropertyName
ComputedPropertyName[?Yield, ?Await]

LiteralPropertyName :
IdentifierName
StringLiteral
NumericLiteral

ComputedPropertyName[Yield, Await] :
[AssignmentExpression[+In, ?Yield, ?Await]]

13.2.5 Object Initializer

Syntax

260 © Ecma International 2023

a. Perform ? ArrayAccumulation of Elision with arguments array and 0.
3. Return array.

ArrayLiteral : [ElementList]

1. Let array be ! ArrayCreate(0).
2. Perform ? ArrayAccumulation of ElementList with arguments array and 0.
3. Return array.

ArrayLiteral : [ElementList , Elisionopt]

1. Let array be ! ArrayCreate(0).
2. Let nextIndex be ? ArrayAccumulation of ElementList with arguments array and 0.
3. If Elision is present, then

a. Perform ? ArrayAccumulation of Elision with arguments array and nextIndex.
4. Return array.

NOTE 1 An object initializer is an expression describing the initialization of an Object, written in
a form resembling a literal. It is a list of zero or more pairs of property keys and
associated values, enclosed in curly brackets. The values need not be literals; they are
evaluated each time the object initializer is evaluated.

ObjectLiteral[Yield, Await] :
{ }
{ PropertyDefinitionList[?Yield, ?Await] }
{ PropertyDefinitionList[?Yield, ?Await] , }

PropertyDefinitionList[Yield, Await] :
PropertyDefinition[?Yield, ?Await]
PropertyDefinitionList[?Yield, ?Await] , PropertyDefinition[?Yield, ?Await]

PropertyDefinition[Yield, Await] :
IdentifierReference[?Yield, ?Await]
CoverInitializedName[?Yield, ?Await]
PropertyName[?Yield, ?Await] : AssignmentExpression[+In, ?Yield, ?Await]
MethodDefinition[?Yield, ?Await]
... AssignmentExpression[+In, ?Yield, ?Await]

PropertyName[Yield, Await] :
LiteralPropertyName
ComputedPropertyName[?Yield, ?Await]

LiteralPropertyName :
IdentifierName
StringLiteral
NumericLiteral

ComputedPropertyName[Yield, Await] :
[AssignmentExpression[+In, ?Yield, ?Await]]

13.2.5 Object Initializer

Syntax

260 © Ecma International 2023

a. Perform ? ArrayAccumulation of Elision with arguments array and 0.
3. Return array.

ArrayLiteral : [ElementList]

1. Let array be ! ArrayCreate(0).
2. Perform ? ArrayAccumulation of ElementList with arguments array and 0.
3. Return array.

ArrayLiteral : [ElementList , Elisionopt]

1. Let array be ! ArrayCreate(0).
2. Let nextIndex be ? ArrayAccumulation of ElementList with arguments array and 0.
3. If Elision is present, then

a. Perform ? ArrayAccumulation of Elision with arguments array and nextIndex.
4. Return array.

NOTE 1 An object initializer is an expression describing the initialization of an Object, written in
a form resembling a literal. It is a list of zero or more pairs of property keys and
associated values, enclosed in curly brackets. The values need not be literals; they are
evaluated each time the object initializer is evaluated.

ObjectLiteral[Yield, Await] :
{ }
{ PropertyDefinitionList[?Yield, ?Await] }
{ PropertyDefinitionList[?Yield, ?Await] , }

PropertyDefinitionList[Yield, Await] :
PropertyDefinition[?Yield, ?Await]
PropertyDefinitionList[?Yield, ?Await] , PropertyDefinition[?Yield, ?Await]

PropertyDefinition[Yield, Await] :
IdentifierReference[?Yield, ?Await]
CoverInitializedName[?Yield, ?Await]
PropertyName[?Yield, ?Await] : AssignmentExpression[+In, ?Yield, ?Await]
MethodDefinition[?Yield, ?Await]
... AssignmentExpression[+In, ?Yield, ?Await]

PropertyName[Yield, Await] :
LiteralPropertyName
ComputedPropertyName[?Yield, ?Await]

LiteralPropertyName :
IdentifierName
StringLiteral
NumericLiteral

ComputedPropertyName[Yield, Await] :
[AssignmentExpression[+In, ?Yield, ?Await]]

13.2.5 Object Initializer

Syntax

260 © Ecma International 2023

a. Perform ? ArrayAccumulation of Elision with arguments array and 0.
3. Return array.

ArrayLiteral : [ElementList]

1. Let array be ! ArrayCreate(0).
2. Perform ? ArrayAccumulation of ElementList with arguments array and 0.
3. Return array.

ArrayLiteral : [ElementList , Elisionopt]

1. Let array be ! ArrayCreate(0).
2. Let nextIndex be ? ArrayAccumulation of ElementList with arguments array and 0.
3. If Elision is present, then

a. Perform ? ArrayAccumulation of Elision with arguments array and nextIndex.
4. Return array.

NOTE 1 An object initializer is an expression describing the initialization of an Object, written in
a form resembling a literal. It is a list of zero or more pairs of property keys and
associated values, enclosed in curly brackets. The values need not be literals; they are
evaluated each time the object initializer is evaluated.

ObjectLiteral[Yield, Await] :
{ }
{ PropertyDefinitionList[?Yield, ?Await] }
{ PropertyDefinitionList[?Yield, ?Await] , }

PropertyDefinitionList[Yield, Await] :
PropertyDefinition[?Yield, ?Await]
PropertyDefinitionList[?Yield, ?Await] , PropertyDefinition[?Yield, ?Await]

PropertyDefinition[Yield, Await] :
IdentifierReference[?Yield, ?Await]
CoverInitializedName[?Yield, ?Await]
PropertyName[?Yield, ?Await] : AssignmentExpression[+In, ?Yield, ?Await]
MethodDefinition[?Yield, ?Await]
... AssignmentExpression[+In, ?Yield, ?Await]

PropertyName[Yield, Await] :
LiteralPropertyName
ComputedPropertyName[?Yield, ?Await]

LiteralPropertyName :
IdentifierName
StringLiteral
NumericLiteral

ComputedPropertyName[Yield, Await] :
[AssignmentExpression[+In, ?Yield, ?Await]]

13.2.5 Object Initializer

Syntax

Semantics

,
JS

[],<latexit sha1_base64="6RP8+7doe9Iuo5HC3XVh3eT6xTc=">AAACFnicbVDLSsNAFJ3UV62vqks3g0VwVRKR6rLoxmUF+4A2lMlk0g6dzISZGyGGfoQ70X9xJ27d+iuuTNosbOuBC4dz7p0793iR4AZs+9sqra1vbG6Vtys7u3v7B9XDo45RsaasTZVQuucRwwSXrA0cBOtFmpHQE6zrTW5zv/vItOFKPkASMTckI8kDTglkUndAfQWmMqzW7Lo9A14lTkFqqEBrWP0Z+IrGIZNABTGm79gRuCnRwKlg08ogNiwidEJGrJ9RSUJm3HT23Sk+yxQfB0pnJQHP1L8TKQmNSUIv6wwJjM2yl4v/egZCohPtL+2H4NpNuYxiYJLO1wexwKBwngj2uWYURJIRQjXPLsB0TDShkOW28D7wydM0D8tZjmaVdC7qTqPeuL+sNW+K2MroBJ2ic+SgK9REd6iF2oiiCXpGr+jNerHerQ/rc95asoqZY7QA6+sXVlugZA==</latexit>· · ·

[1, 2, 3] ["a", 7] [42,] [{p:42}, 42, "a"]

/ 5715

JISET
(JavaScript IR-based Semantics Extraction Toolchain)

ECMA-262
(JS Spec.)

Specification
Extractor

Parser
Generator

Compile
Rules

BNFES
Productions

JavaScript
Parser

Abstract
Algorithms

Algorithm
Compiler

JISET

Mechanized
Specification

IRES
Functions

/ 5715

JISET
(JavaScript IR-based Semantics Extraction Toolchain)

ECMA-262
(JS Spec.)

Specification
Extractor

Parser
Generator

Compile
Rules

BNFES
Productions

JavaScript
Parser

Abstract
Algorithms

Algorithm
Compiler

JISET

Mechanized
Specification

IRES
Functions

/ 5716

JISET - Patterns in Abstract Algorithms

Semantics

,
JS

[],<latexit sha1_base64="6RP8+7doe9Iuo5HC3XVh3eT6xTc=">AAACFnicbVDLSsNAFJ3UV62vqks3g0VwVRKR6rLoxmUF+4A2lMlk0g6dzISZGyGGfoQ70X9xJ27d+iuuTNosbOuBC4dz7p0793iR4AZs+9sqra1vbG6Vtys7u3v7B9XDo45RsaasTZVQuucRwwSXrA0cBOtFmpHQE6zrTW5zv/vItOFKPkASMTckI8kDTglkUndAfQWmMqzW7Lo9A14lTkFqqEBrWP0Z+IrGIZNABTGm79gRuCnRwKlg08ogNiwidEJGrJ9RSUJm3HT23Sk+yxQfB0pnJQHP1L8TKQmNSUIv6wwJjM2yl4v/egZCohPtL+2H4NpNuYxiYJLO1wexwKBwngj2uWYURJIRQjXPLsB0TDShkOW28D7wydM0D8tZjmaVdC7qTqPeuL+sNW+K2MroBJ2ic+SgK9REd6iF2oiiCXpGr+jNerHerQ/rc95asoqZY7QA6+sXVlugZA==</latexit>· · ·

260 © Ecma International 2023

a. Perform ? ArrayAccumulation of Elision with arguments array and 0.
3. Return array.

ArrayLiteral : [ElementList]

1. Let array be ! ArrayCreate(0).
2. Perform ? ArrayAccumulation of ElementList with arguments array and 0.
3. Return array.

ArrayLiteral : [ElementList , Elisionopt]

1. Let array be ! ArrayCreate(0).
2. Let nextIndex be ? ArrayAccumulation of ElementList with arguments array and 0.
3. If Elision is present, then

a. Perform ? ArrayAccumulation of Elision with arguments array and nextIndex.
4. Return array.

NOTE 1 An object initializer is an expression describing the initialization of an Object, written in
a form resembling a literal. It is a list of zero or more pairs of property keys and
associated values, enclosed in curly brackets. The values need not be literals; they are
evaluated each time the object initializer is evaluated.

ObjectLiteral[Yield, Await] :
{ }
{ PropertyDefinitionList[?Yield, ?Await] }
{ PropertyDefinitionList[?Yield, ?Await] , }

PropertyDefinitionList[Yield, Await] :
PropertyDefinition[?Yield, ?Await]
PropertyDefinitionList[?Yield, ?Await] , PropertyDefinition[?Yield, ?Await]

PropertyDefinition[Yield, Await] :
IdentifierReference[?Yield, ?Await]
CoverInitializedName[?Yield, ?Await]
PropertyName[?Yield, ?Await] : AssignmentExpression[+In, ?Yield, ?Await]
MethodDefinition[?Yield, ?Await]
... AssignmentExpression[+In, ?Yield, ?Await]

PropertyName[Yield, Await] :
LiteralPropertyName
ComputedPropertyName[?Yield, ?Await]

LiteralPropertyName :
IdentifierName
StringLiteral
NumericLiteral

ComputedPropertyName[Yield, Await] :
[AssignmentExpression[+In, ?Yield, ?Await]]

13.2.5 Object Initializer

Syntax

260 © Ecma International 2023

a. Perform ? ArrayAccumulation of Elision with arguments array and 0.
3. Return array.

ArrayLiteral : [ElementList]

1. Let array be ! ArrayCreate(0).
2. Perform ? ArrayAccumulation of ElementList with arguments array and 0.
3. Return array.

ArrayLiteral : [ElementList , Elisionopt]

1. Let array be ! ArrayCreate(0).
2. Let nextIndex be ? ArrayAccumulation of ElementList with arguments array and 0.
3. If Elision is present, then

a. Perform ? ArrayAccumulation of Elision with arguments array and nextIndex.
4. Return array.

NOTE 1 An object initializer is an expression describing the initialization of an Object, written in
a form resembling a literal. It is a list of zero or more pairs of property keys and
associated values, enclosed in curly brackets. The values need not be literals; they are
evaluated each time the object initializer is evaluated.

ObjectLiteral[Yield, Await] :
{ }
{ PropertyDefinitionList[?Yield, ?Await] }
{ PropertyDefinitionList[?Yield, ?Await] , }

PropertyDefinitionList[Yield, Await] :
PropertyDefinition[?Yield, ?Await]
PropertyDefinitionList[?Yield, ?Await] , PropertyDefinition[?Yield, ?Await]

PropertyDefinition[Yield, Await] :
IdentifierReference[?Yield, ?Await]
CoverInitializedName[?Yield, ?Await]
PropertyName[?Yield, ?Await] : AssignmentExpression[+In, ?Yield, ?Await]
MethodDefinition[?Yield, ?Await]
... AssignmentExpression[+In, ?Yield, ?Await]

PropertyName[Yield, Await] :
LiteralPropertyName
ComputedPropertyName[?Yield, ?Await]

LiteralPropertyName :
IdentifierName
StringLiteral
NumericLiteral

ComputedPropertyName[Yield, Await] :
[AssignmentExpression[+In, ?Yield, ?Await]]

13.2.5 Object Initializer

Syntax

260 © Ecma International 2023

a. Perform ? ArrayAccumulation of Elision with arguments array and 0.
3. Return array.

ArrayLiteral : [ElementList]

1. Let array be ! ArrayCreate(0).
2. Perform ? ArrayAccumulation of ElementList with arguments array and 0.
3. Return array.

ArrayLiteral : [ElementList , Elisionopt]

1. Let array be ! ArrayCreate(0).
2. Let nextIndex be ? ArrayAccumulation of ElementList with arguments array and 0.
3. If Elision is present, then

a. Perform ? ArrayAccumulation of Elision with arguments array and nextIndex.
4. Return array.

NOTE 1 An object initializer is an expression describing the initialization of an Object, written in
a form resembling a literal. It is a list of zero or more pairs of property keys and
associated values, enclosed in curly brackets. The values need not be literals; they are
evaluated each time the object initializer is evaluated.

ObjectLiteral[Yield, Await] :
{ }
{ PropertyDefinitionList[?Yield, ?Await] }
{ PropertyDefinitionList[?Yield, ?Await] , }

PropertyDefinitionList[Yield, Await] :
PropertyDefinition[?Yield, ?Await]
PropertyDefinitionList[?Yield, ?Await] , PropertyDefinition[?Yield, ?Await]

PropertyDefinition[Yield, Await] :
IdentifierReference[?Yield, ?Await]
CoverInitializedName[?Yield, ?Await]
PropertyName[?Yield, ?Await] : AssignmentExpression[+In, ?Yield, ?Await]
MethodDefinition[?Yield, ?Await]
... AssignmentExpression[+In, ?Yield, ?Await]

PropertyName[Yield, Await] :
LiteralPropertyName
ComputedPropertyName[?Yield, ?Await]

LiteralPropertyName :
IdentifierName
StringLiteral
NumericLiteral

ComputedPropertyName[Yield, Await] :
[AssignmentExpression[+In, ?Yield, ?Await]]

13.2.5 Object Initializer

Syntax

260 © Ecma International 2023

a. Perform ? ArrayAccumulation of Elision with arguments array and 0.
3. Return array.

ArrayLiteral : [ElementList]

1. Let array be ! ArrayCreate(0).
2. Perform ? ArrayAccumulation of ElementList with arguments array and 0.
3. Return array.

ArrayLiteral : [ElementList , Elisionopt]

1. Let array be ! ArrayCreate(0).
2. Let nextIndex be ? ArrayAccumulation of ElementList with arguments array and 0.
3. If Elision is present, then

a. Perform ? ArrayAccumulation of Elision with arguments array and nextIndex.
4. Return array.

NOTE 1 An object initializer is an expression describing the initialization of an Object, written in
a form resembling a literal. It is a list of zero or more pairs of property keys and
associated values, enclosed in curly brackets. The values need not be literals; they are
evaluated each time the object initializer is evaluated.

ObjectLiteral[Yield, Await] :
{ }
{ PropertyDefinitionList[?Yield, ?Await] }
{ PropertyDefinitionList[?Yield, ?Await] , }

PropertyDefinitionList[Yield, Await] :
PropertyDefinition[?Yield, ?Await]
PropertyDefinitionList[?Yield, ?Await] , PropertyDefinition[?Yield, ?Await]

PropertyDefinition[Yield, Await] :
IdentifierReference[?Yield, ?Await]
CoverInitializedName[?Yield, ?Await]
PropertyName[?Yield, ?Await] : AssignmentExpression[+In, ?Yield, ?Await]
MethodDefinition[?Yield, ?Await]
... AssignmentExpression[+In, ?Yield, ?Await]

PropertyName[Yield, Await] :
LiteralPropertyName
ComputedPropertyName[?Yield, ?Await]

LiteralPropertyName :
IdentifierName
StringLiteral
NumericLiteral

ComputedPropertyName[Yield, Await] :
[AssignmentExpression[+In, ?Yield, ?Await]]

13.2.5 Object Initializer

Syntax

260 © Ecma International 2023

a. Perform ? ArrayAccumulation of Elision with arguments array and 0.
3. Return array.

ArrayLiteral : [ElementList]

1. Let array be ! ArrayCreate(0).
2. Perform ? ArrayAccumulation of ElementList with arguments array and 0.
3. Return array.

ArrayLiteral : [ElementList , Elisionopt]

1. Let array be ! ArrayCreate(0).
2. Let nextIndex be ? ArrayAccumulation of ElementList with arguments array and 0.
3. If Elision is present, then

a. Perform ? ArrayAccumulation of Elision with arguments array and nextIndex.
4. Return array.

NOTE 1 An object initializer is an expression describing the initialization of an Object, written in
a form resembling a literal. It is a list of zero or more pairs of property keys and
associated values, enclosed in curly brackets. The values need not be literals; they are
evaluated each time the object initializer is evaluated.

ObjectLiteral[Yield, Await] :
{ }
{ PropertyDefinitionList[?Yield, ?Await] }
{ PropertyDefinitionList[?Yield, ?Await] , }

PropertyDefinitionList[Yield, Await] :
PropertyDefinition[?Yield, ?Await]
PropertyDefinitionList[?Yield, ?Await] , PropertyDefinition[?Yield, ?Await]

PropertyDefinition[Yield, Await] :
IdentifierReference[?Yield, ?Await]
CoverInitializedName[?Yield, ?Await]
PropertyName[?Yield, ?Await] : AssignmentExpression[+In, ?Yield, ?Await]
MethodDefinition[?Yield, ?Await]
... AssignmentExpression[+In, ?Yield, ?Await]

PropertyName[Yield, Await] :
LiteralPropertyName
ComputedPropertyName[?Yield, ?Await]

LiteralPropertyName :
IdentifierName
StringLiteral
NumericLiteral

ComputedPropertyName[Yield, Await] :
[AssignmentExpression[+In, ?Yield, ?Await]]

13.2.5 Object Initializer

Syntax

260 © Ecma International 2023

a. Perform ? ArrayAccumulation of Elision with arguments array and 0.
3. Return array.

ArrayLiteral : [ElementList]

1. Let array be ! ArrayCreate(0).
2. Perform ? ArrayAccumulation of ElementList with arguments array and 0.
3. Return array.

ArrayLiteral : [ElementList , Elisionopt]

1. Let array be ! ArrayCreate(0).
2. Let nextIndex be ? ArrayAccumulation of ElementList with arguments array and 0.
3. If Elision is present, then

a. Perform ? ArrayAccumulation of Elision with arguments array and nextIndex.
4. Return array.

NOTE 1 An object initializer is an expression describing the initialization of an Object, written in
a form resembling a literal. It is a list of zero or more pairs of property keys and
associated values, enclosed in curly brackets. The values need not be literals; they are
evaluated each time the object initializer is evaluated.

ObjectLiteral[Yield, Await] :
{ }
{ PropertyDefinitionList[?Yield, ?Await] }
{ PropertyDefinitionList[?Yield, ?Await] , }

PropertyDefinitionList[Yield, Await] :
PropertyDefinition[?Yield, ?Await]
PropertyDefinitionList[?Yield, ?Await] , PropertyDefinition[?Yield, ?Await]

PropertyDefinition[Yield, Await] :
IdentifierReference[?Yield, ?Await]
CoverInitializedName[?Yield, ?Await]
PropertyName[?Yield, ?Await] : AssignmentExpression[+In, ?Yield, ?Await]
MethodDefinition[?Yield, ?Await]
... AssignmentExpression[+In, ?Yield, ?Await]

PropertyName[Yield, Await] :
LiteralPropertyName
ComputedPropertyName[?Yield, ?Await]

LiteralPropertyName :
IdentifierName
StringLiteral
NumericLiteral

ComputedPropertyName[Yield, Await] :
[AssignmentExpression[+In, ?Yield, ?Await]]

13.2.5 Object Initializer

Syntax

/ 5716

JISET - Patterns in Abstract Algorithms

Semantics

,
JS

[],<latexit sha1_base64="6RP8+7doe9Iuo5HC3XVh3eT6xTc=">AAACFnicbVDLSsNAFJ3UV62vqks3g0VwVRKR6rLoxmUF+4A2lMlk0g6dzISZGyGGfoQ70X9xJ27d+iuuTNosbOuBC4dz7p0793iR4AZs+9sqra1vbG6Vtys7u3v7B9XDo45RsaasTZVQuucRwwSXrA0cBOtFmpHQE6zrTW5zv/vItOFKPkASMTckI8kDTglkUndAfQWmMqzW7Lo9A14lTkFqqEBrWP0Z+IrGIZNABTGm79gRuCnRwKlg08ogNiwidEJGrJ9RSUJm3HT23Sk+yxQfB0pnJQHP1L8TKQmNSUIv6wwJjM2yl4v/egZCohPtL+2H4NpNuYxiYJLO1wexwKBwngj2uWYURJIRQjXPLsB0TDShkOW28D7wydM0D8tZjmaVdC7qTqPeuL+sNW+K2MroBJ2ic+SgK9REd6iF2oiiCXpGr+jNerHerQ/rc95asoqZY7QA6+sXVlugZA==</latexit>· · ·

260 © Ecma International 2023

a. Perform ? ArrayAccumulation of Elision with arguments array and 0.
3. Return array.

ArrayLiteral : [ElementList]

1. Let array be ! ArrayCreate(0).
2. Perform ? ArrayAccumulation of ElementList with arguments array and 0.
3. Return array.

ArrayLiteral : [ElementList , Elisionopt]

1. Let array be ! ArrayCreate(0).
2. Let nextIndex be ? ArrayAccumulation of ElementList with arguments array and 0.
3. If Elision is present, then

a. Perform ? ArrayAccumulation of Elision with arguments array and nextIndex.
4. Return array.

NOTE 1 An object initializer is an expression describing the initialization of an Object, written in
a form resembling a literal. It is a list of zero or more pairs of property keys and
associated values, enclosed in curly brackets. The values need not be literals; they are
evaluated each time the object initializer is evaluated.

ObjectLiteral[Yield, Await] :
{ }
{ PropertyDefinitionList[?Yield, ?Await] }
{ PropertyDefinitionList[?Yield, ?Await] , }

PropertyDefinitionList[Yield, Await] :
PropertyDefinition[?Yield, ?Await]
PropertyDefinitionList[?Yield, ?Await] , PropertyDefinition[?Yield, ?Await]

PropertyDefinition[Yield, Await] :
IdentifierReference[?Yield, ?Await]
CoverInitializedName[?Yield, ?Await]
PropertyName[?Yield, ?Await] : AssignmentExpression[+In, ?Yield, ?Await]
MethodDefinition[?Yield, ?Await]
... AssignmentExpression[+In, ?Yield, ?Await]

PropertyName[Yield, Await] :
LiteralPropertyName
ComputedPropertyName[?Yield, ?Await]

LiteralPropertyName :
IdentifierName
StringLiteral
NumericLiteral

ComputedPropertyName[Yield, Await] :
[AssignmentExpression[+In, ?Yield, ?Await]]

13.2.5 Object Initializer

Syntax

260 © Ecma International 2023

a. Perform ? ArrayAccumulation of Elision with arguments array and 0.
3. Return array.

ArrayLiteral : [ElementList]

1. Let array be ! ArrayCreate(0).
2. Perform ? ArrayAccumulation of ElementList with arguments array and 0.
3. Return array.

ArrayLiteral : [ElementList , Elisionopt]

1. Let array be ! ArrayCreate(0).
2. Let nextIndex be ? ArrayAccumulation of ElementList with arguments array and 0.
3. If Elision is present, then

a. Perform ? ArrayAccumulation of Elision with arguments array and nextIndex.
4. Return array.

NOTE 1 An object initializer is an expression describing the initialization of an Object, written in
a form resembling a literal. It is a list of zero or more pairs of property keys and
associated values, enclosed in curly brackets. The values need not be literals; they are
evaluated each time the object initializer is evaluated.

ObjectLiteral[Yield, Await] :
{ }
{ PropertyDefinitionList[?Yield, ?Await] }
{ PropertyDefinitionList[?Yield, ?Await] , }

PropertyDefinitionList[Yield, Await] :
PropertyDefinition[?Yield, ?Await]
PropertyDefinitionList[?Yield, ?Await] , PropertyDefinition[?Yield, ?Await]

PropertyDefinition[Yield, Await] :
IdentifierReference[?Yield, ?Await]
CoverInitializedName[?Yield, ?Await]
PropertyName[?Yield, ?Await] : AssignmentExpression[+In, ?Yield, ?Await]
MethodDefinition[?Yield, ?Await]
... AssignmentExpression[+In, ?Yield, ?Await]

PropertyName[Yield, Await] :
LiteralPropertyName
ComputedPropertyName[?Yield, ?Await]

LiteralPropertyName :
IdentifierName
StringLiteral
NumericLiteral

ComputedPropertyName[Yield, Await] :
[AssignmentExpression[+In, ?Yield, ?Await]]

13.2.5 Object Initializer

Syntax

260 © Ecma International 2023

a. Perform ? ArrayAccumulation of Elision with arguments array and 0.
3. Return array.

ArrayLiteral : [ElementList]

1. Let array be ! ArrayCreate(0).
2. Perform ? ArrayAccumulation of ElementList with arguments array and 0.
3. Return array.

ArrayLiteral : [ElementList , Elisionopt]

1. Let array be ! ArrayCreate(0).
2. Let nextIndex be ? ArrayAccumulation of ElementList with arguments array and 0.
3. If Elision is present, then

a. Perform ? ArrayAccumulation of Elision with arguments array and nextIndex.
4. Return array.

NOTE 1 An object initializer is an expression describing the initialization of an Object, written in
a form resembling a literal. It is a list of zero or more pairs of property keys and
associated values, enclosed in curly brackets. The values need not be literals; they are
evaluated each time the object initializer is evaluated.

ObjectLiteral[Yield, Await] :
{ }
{ PropertyDefinitionList[?Yield, ?Await] }
{ PropertyDefinitionList[?Yield, ?Await] , }

PropertyDefinitionList[Yield, Await] :
PropertyDefinition[?Yield, ?Await]
PropertyDefinitionList[?Yield, ?Await] , PropertyDefinition[?Yield, ?Await]

PropertyDefinition[Yield, Await] :
IdentifierReference[?Yield, ?Await]
CoverInitializedName[?Yield, ?Await]
PropertyName[?Yield, ?Await] : AssignmentExpression[+In, ?Yield, ?Await]
MethodDefinition[?Yield, ?Await]
... AssignmentExpression[+In, ?Yield, ?Await]

PropertyName[Yield, Await] :
LiteralPropertyName
ComputedPropertyName[?Yield, ?Await]

LiteralPropertyName :
IdentifierName
StringLiteral
NumericLiteral

ComputedPropertyName[Yield, Await] :
[AssignmentExpression[+In, ?Yield, ?Await]]

13.2.5 Object Initializer

Syntax

260 © Ecma International 2023

a. Perform ? ArrayAccumulation of Elision with arguments array and 0.
3. Return array.

ArrayLiteral : [ElementList]

1. Let array be ! ArrayCreate(0).
2. Perform ? ArrayAccumulation of ElementList with arguments array and 0.
3. Return array.

ArrayLiteral : [ElementList , Elisionopt]

1. Let array be ! ArrayCreate(0).
2. Let nextIndex be ? ArrayAccumulation of ElementList with arguments array and 0.
3. If Elision is present, then

a. Perform ? ArrayAccumulation of Elision with arguments array and nextIndex.
4. Return array.

NOTE 1 An object initializer is an expression describing the initialization of an Object, written in
a form resembling a literal. It is a list of zero or more pairs of property keys and
associated values, enclosed in curly brackets. The values need not be literals; they are
evaluated each time the object initializer is evaluated.

ObjectLiteral[Yield, Await] :
{ }
{ PropertyDefinitionList[?Yield, ?Await] }
{ PropertyDefinitionList[?Yield, ?Await] , }

PropertyDefinitionList[Yield, Await] :
PropertyDefinition[?Yield, ?Await]
PropertyDefinitionList[?Yield, ?Await] , PropertyDefinition[?Yield, ?Await]

PropertyDefinition[Yield, Await] :
IdentifierReference[?Yield, ?Await]
CoverInitializedName[?Yield, ?Await]
PropertyName[?Yield, ?Await] : AssignmentExpression[+In, ?Yield, ?Await]
MethodDefinition[?Yield, ?Await]
... AssignmentExpression[+In, ?Yield, ?Await]

PropertyName[Yield, Await] :
LiteralPropertyName
ComputedPropertyName[?Yield, ?Await]

LiteralPropertyName :
IdentifierName
StringLiteral
NumericLiteral

ComputedPropertyName[Yield, Await] :
[AssignmentExpression[+In, ?Yield, ?Await]]

13.2.5 Object Initializer

Syntax

260 © Ecma International 2023

a. Perform ? ArrayAccumulation of Elision with arguments array and 0.
3. Return array.

ArrayLiteral : [ElementList]

1. Let array be ! ArrayCreate(0).
2. Perform ? ArrayAccumulation of ElementList with arguments array and 0.
3. Return array.

ArrayLiteral : [ElementList , Elisionopt]

1. Let array be ! ArrayCreate(0).
2. Let nextIndex be ? ArrayAccumulation of ElementList with arguments array and 0.
3. If Elision is present, then

a. Perform ? ArrayAccumulation of Elision with arguments array and nextIndex.
4. Return array.

NOTE 1 An object initializer is an expression describing the initialization of an Object, written in
a form resembling a literal. It is a list of zero or more pairs of property keys and
associated values, enclosed in curly brackets. The values need not be literals; they are
evaluated each time the object initializer is evaluated.

ObjectLiteral[Yield, Await] :
{ }
{ PropertyDefinitionList[?Yield, ?Await] }
{ PropertyDefinitionList[?Yield, ?Await] , }

PropertyDefinitionList[Yield, Await] :
PropertyDefinition[?Yield, ?Await]
PropertyDefinitionList[?Yield, ?Await] , PropertyDefinition[?Yield, ?Await]

PropertyDefinition[Yield, Await] :
IdentifierReference[?Yield, ?Await]
CoverInitializedName[?Yield, ?Await]
PropertyName[?Yield, ?Await] : AssignmentExpression[+In, ?Yield, ?Await]
MethodDefinition[?Yield, ?Await]
... AssignmentExpression[+In, ?Yield, ?Await]

PropertyName[Yield, Await] :
LiteralPropertyName
ComputedPropertyName[?Yield, ?Await]

LiteralPropertyName :
IdentifierName
StringLiteral
NumericLiteral

ComputedPropertyName[Yield, Await] :
[AssignmentExpression[+In, ?Yield, ?Await]]

13.2.5 Object Initializer

Syntax

260 © Ecma International 2023

a. Perform ? ArrayAccumulation of Elision with arguments array and 0.
3. Return array.

ArrayLiteral : [ElementList]

1. Let array be ! ArrayCreate(0).
2. Perform ? ArrayAccumulation of ElementList with arguments array and 0.
3. Return array.

ArrayLiteral : [ElementList , Elisionopt]

1. Let array be ! ArrayCreate(0).
2. Let nextIndex be ? ArrayAccumulation of ElementList with arguments array and 0.
3. If Elision is present, then

a. Perform ? ArrayAccumulation of Elision with arguments array and nextIndex.
4. Return array.

NOTE 1 An object initializer is an expression describing the initialization of an Object, written in
a form resembling a literal. It is a list of zero or more pairs of property keys and
associated values, enclosed in curly brackets. The values need not be literals; they are
evaluated each time the object initializer is evaluated.

ObjectLiteral[Yield, Await] :
{ }
{ PropertyDefinitionList[?Yield, ?Await] }
{ PropertyDefinitionList[?Yield, ?Await] , }

PropertyDefinitionList[Yield, Await] :
PropertyDefinition[?Yield, ?Await]
PropertyDefinitionList[?Yield, ?Await] , PropertyDefinition[?Yield, ?Await]

PropertyDefinition[Yield, Await] :
IdentifierReference[?Yield, ?Await]
CoverInitializedName[?Yield, ?Await]
PropertyName[?Yield, ?Await] : AssignmentExpression[+In, ?Yield, ?Await]
MethodDefinition[?Yield, ?Await]
... AssignmentExpression[+In, ?Yield, ?Await]

PropertyName[Yield, Await] :
LiteralPropertyName
ComputedPropertyName[?Yield, ?Await]

LiteralPropertyName :
IdentifierName
StringLiteral
NumericLiteral

ComputedPropertyName[Yield, Await] :
[AssignmentExpression[+In, ?Yield, ?Await]]

13.2.5 Object Initializer

Syntax

/ 5716

JISET - Patterns in Abstract Algorithms

Semantics

,
JS

[],<latexit sha1_base64="6RP8+7doe9Iuo5HC3XVh3eT6xTc=">AAACFnicbVDLSsNAFJ3UV62vqks3g0VwVRKR6rLoxmUF+4A2lMlk0g6dzISZGyGGfoQ70X9xJ27d+iuuTNosbOuBC4dz7p0793iR4AZs+9sqra1vbG6Vtys7u3v7B9XDo45RsaasTZVQuucRwwSXrA0cBOtFmpHQE6zrTW5zv/vItOFKPkASMTckI8kDTglkUndAfQWmMqzW7Lo9A14lTkFqqEBrWP0Z+IrGIZNABTGm79gRuCnRwKlg08ogNiwidEJGrJ9RSUJm3HT23Sk+yxQfB0pnJQHP1L8TKQmNSUIv6wwJjM2yl4v/egZCohPtL+2H4NpNuYxiYJLO1wexwKBwngj2uWYURJIRQjXPLsB0TDShkOW28D7wydM0D8tZjmaVdC7qTqPeuL+sNW+K2MroBJ2ic+SgK9REd6iF2oiiCXpGr+jNerHerQ/rc95asoqZY7QA6+sXVlugZA==</latexit>· · ·

260 © Ecma International 2023

a. Perform ? ArrayAccumulation of Elision with arguments array and 0.
3. Return array.

ArrayLiteral : [ElementList]

1. Let array be ! ArrayCreate(0).
2. Perform ? ArrayAccumulation of ElementList with arguments array and 0.
3. Return array.

ArrayLiteral : [ElementList , Elisionopt]

1. Let array be ! ArrayCreate(0).
2. Let nextIndex be ? ArrayAccumulation of ElementList with arguments array and 0.
3. If Elision is present, then

a. Perform ? ArrayAccumulation of Elision with arguments array and nextIndex.
4. Return array.

NOTE 1 An object initializer is an expression describing the initialization of an Object, written in
a form resembling a literal. It is a list of zero or more pairs of property keys and
associated values, enclosed in curly brackets. The values need not be literals; they are
evaluated each time the object initializer is evaluated.

ObjectLiteral[Yield, Await] :
{ }
{ PropertyDefinitionList[?Yield, ?Await] }
{ PropertyDefinitionList[?Yield, ?Await] , }

PropertyDefinitionList[Yield, Await] :
PropertyDefinition[?Yield, ?Await]
PropertyDefinitionList[?Yield, ?Await] , PropertyDefinition[?Yield, ?Await]

PropertyDefinition[Yield, Await] :
IdentifierReference[?Yield, ?Await]
CoverInitializedName[?Yield, ?Await]
PropertyName[?Yield, ?Await] : AssignmentExpression[+In, ?Yield, ?Await]
MethodDefinition[?Yield, ?Await]
... AssignmentExpression[+In, ?Yield, ?Await]

PropertyName[Yield, Await] :
LiteralPropertyName
ComputedPropertyName[?Yield, ?Await]

LiteralPropertyName :
IdentifierName
StringLiteral
NumericLiteral

ComputedPropertyName[Yield, Await] :
[AssignmentExpression[+In, ?Yield, ?Await]]

13.2.5 Object Initializer

Syntax

260 © Ecma International 2023

a. Perform ? ArrayAccumulation of Elision with arguments array and 0.
3. Return array.

ArrayLiteral : [ElementList]

1. Let array be ! ArrayCreate(0).
2. Perform ? ArrayAccumulation of ElementList with arguments array and 0.
3. Return array.

ArrayLiteral : [ElementList , Elisionopt]

1. Let array be ! ArrayCreate(0).
2. Let nextIndex be ? ArrayAccumulation of ElementList with arguments array and 0.
3. If Elision is present, then

a. Perform ? ArrayAccumulation of Elision with arguments array and nextIndex.
4. Return array.

NOTE 1 An object initializer is an expression describing the initialization of an Object, written in
a form resembling a literal. It is a list of zero or more pairs of property keys and
associated values, enclosed in curly brackets. The values need not be literals; they are
evaluated each time the object initializer is evaluated.

ObjectLiteral[Yield, Await] :
{ }
{ PropertyDefinitionList[?Yield, ?Await] }
{ PropertyDefinitionList[?Yield, ?Await] , }

PropertyDefinitionList[Yield, Await] :
PropertyDefinition[?Yield, ?Await]
PropertyDefinitionList[?Yield, ?Await] , PropertyDefinition[?Yield, ?Await]

PropertyDefinition[Yield, Await] :
IdentifierReference[?Yield, ?Await]
CoverInitializedName[?Yield, ?Await]
PropertyName[?Yield, ?Await] : AssignmentExpression[+In, ?Yield, ?Await]
MethodDefinition[?Yield, ?Await]
... AssignmentExpression[+In, ?Yield, ?Await]

PropertyName[Yield, Await] :
LiteralPropertyName
ComputedPropertyName[?Yield, ?Await]

LiteralPropertyName :
IdentifierName
StringLiteral
NumericLiteral

ComputedPropertyName[Yield, Await] :
[AssignmentExpression[+In, ?Yield, ?Await]]

13.2.5 Object Initializer

Syntax

260 © Ecma International 2023

a. Perform ? ArrayAccumulation of Elision with arguments array and 0.
3. Return array.

ArrayLiteral : [ElementList]

1. Let array be ! ArrayCreate(0).
2. Perform ? ArrayAccumulation of ElementList with arguments array and 0.
3. Return array.

ArrayLiteral : [ElementList , Elisionopt]

1. Let array be ! ArrayCreate(0).
2. Let nextIndex be ? ArrayAccumulation of ElementList with arguments array and 0.
3. If Elision is present, then

a. Perform ? ArrayAccumulation of Elision with arguments array and nextIndex.
4. Return array.

NOTE 1 An object initializer is an expression describing the initialization of an Object, written in
a form resembling a literal. It is a list of zero or more pairs of property keys and
associated values, enclosed in curly brackets. The values need not be literals; they are
evaluated each time the object initializer is evaluated.

ObjectLiteral[Yield, Await] :
{ }
{ PropertyDefinitionList[?Yield, ?Await] }
{ PropertyDefinitionList[?Yield, ?Await] , }

PropertyDefinitionList[Yield, Await] :
PropertyDefinition[?Yield, ?Await]
PropertyDefinitionList[?Yield, ?Await] , PropertyDefinition[?Yield, ?Await]

PropertyDefinition[Yield, Await] :
IdentifierReference[?Yield, ?Await]
CoverInitializedName[?Yield, ?Await]
PropertyName[?Yield, ?Await] : AssignmentExpression[+In, ?Yield, ?Await]
MethodDefinition[?Yield, ?Await]
... AssignmentExpression[+In, ?Yield, ?Await]

PropertyName[Yield, Await] :
LiteralPropertyName
ComputedPropertyName[?Yield, ?Await]

LiteralPropertyName :
IdentifierName
StringLiteral
NumericLiteral

ComputedPropertyName[Yield, Await] :
[AssignmentExpression[+In, ?Yield, ?Await]]

13.2.5 Object Initializer

Syntax

260 © Ecma International 2023

a. Perform ? ArrayAccumulation of Elision with arguments array and 0.
3. Return array.

ArrayLiteral : [ElementList]

1. Let array be ! ArrayCreate(0).
2. Perform ? ArrayAccumulation of ElementList with arguments array and 0.
3. Return array.

ArrayLiteral : [ElementList , Elisionopt]

1. Let array be ! ArrayCreate(0).
2. Let nextIndex be ? ArrayAccumulation of ElementList with arguments array and 0.
3. If Elision is present, then

a. Perform ? ArrayAccumulation of Elision with arguments array and nextIndex.
4. Return array.

NOTE 1 An object initializer is an expression describing the initialization of an Object, written in
a form resembling a literal. It is a list of zero or more pairs of property keys and
associated values, enclosed in curly brackets. The values need not be literals; they are
evaluated each time the object initializer is evaluated.

ObjectLiteral[Yield, Await] :
{ }
{ PropertyDefinitionList[?Yield, ?Await] }
{ PropertyDefinitionList[?Yield, ?Await] , }

PropertyDefinitionList[Yield, Await] :
PropertyDefinition[?Yield, ?Await]
PropertyDefinitionList[?Yield, ?Await] , PropertyDefinition[?Yield, ?Await]

PropertyDefinition[Yield, Await] :
IdentifierReference[?Yield, ?Await]
CoverInitializedName[?Yield, ?Await]
PropertyName[?Yield, ?Await] : AssignmentExpression[+In, ?Yield, ?Await]
MethodDefinition[?Yield, ?Await]
... AssignmentExpression[+In, ?Yield, ?Await]

PropertyName[Yield, Await] :
LiteralPropertyName
ComputedPropertyName[?Yield, ?Await]

LiteralPropertyName :
IdentifierName
StringLiteral
NumericLiteral

ComputedPropertyName[Yield, Await] :
[AssignmentExpression[+In, ?Yield, ?Await]]

13.2.5 Object Initializer

Syntax

260 © Ecma International 2023

a. Perform ? ArrayAccumulation of Elision with arguments array and 0.
3. Return array.

ArrayLiteral : [ElementList]

1. Let array be ! ArrayCreate(0).
2. Perform ? ArrayAccumulation of ElementList with arguments array and 0.
3. Return array.

ArrayLiteral : [ElementList , Elisionopt]

1. Let array be ! ArrayCreate(0).
2. Let nextIndex be ? ArrayAccumulation of ElementList with arguments array and 0.
3. If Elision is present, then

a. Perform ? ArrayAccumulation of Elision with arguments array and nextIndex.
4. Return array.

NOTE 1 An object initializer is an expression describing the initialization of an Object, written in
a form resembling a literal. It is a list of zero or more pairs of property keys and
associated values, enclosed in curly brackets. The values need not be literals; they are
evaluated each time the object initializer is evaluated.

ObjectLiteral[Yield, Await] :
{ }
{ PropertyDefinitionList[?Yield, ?Await] }
{ PropertyDefinitionList[?Yield, ?Await] , }

PropertyDefinitionList[Yield, Await] :
PropertyDefinition[?Yield, ?Await]
PropertyDefinitionList[?Yield, ?Await] , PropertyDefinition[?Yield, ?Await]

PropertyDefinition[Yield, Await] :
IdentifierReference[?Yield, ?Await]
CoverInitializedName[?Yield, ?Await]
PropertyName[?Yield, ?Await] : AssignmentExpression[+In, ?Yield, ?Await]
MethodDefinition[?Yield, ?Await]
... AssignmentExpression[+In, ?Yield, ?Await]

PropertyName[Yield, Await] :
LiteralPropertyName
ComputedPropertyName[?Yield, ?Await]

LiteralPropertyName :
IdentifierName
StringLiteral
NumericLiteral

ComputedPropertyName[Yield, Await] :
[AssignmentExpression[+In, ?Yield, ?Await]]

13.2.5 Object Initializer

Syntax

260 © Ecma International 2023

a. Perform ? ArrayAccumulation of Elision with arguments array and 0.
3. Return array.

ArrayLiteral : [ElementList]

1. Let array be ! ArrayCreate(0).
2. Perform ? ArrayAccumulation of ElementList with arguments array and 0.
3. Return array.

ArrayLiteral : [ElementList , Elisionopt]

1. Let array be ! ArrayCreate(0).
2. Let nextIndex be ? ArrayAccumulation of ElementList with arguments array and 0.
3. If Elision is present, then

a. Perform ? ArrayAccumulation of Elision with arguments array and nextIndex.
4. Return array.

NOTE 1 An object initializer is an expression describing the initialization of an Object, written in
a form resembling a literal. It is a list of zero or more pairs of property keys and
associated values, enclosed in curly brackets. The values need not be literals; they are
evaluated each time the object initializer is evaluated.

ObjectLiteral[Yield, Await] :
{ }
{ PropertyDefinitionList[?Yield, ?Await] }
{ PropertyDefinitionList[?Yield, ?Await] , }

PropertyDefinitionList[Yield, Await] :
PropertyDefinition[?Yield, ?Await]
PropertyDefinitionList[?Yield, ?Await] , PropertyDefinition[?Yield, ?Await]

PropertyDefinition[Yield, Await] :
IdentifierReference[?Yield, ?Await]
CoverInitializedName[?Yield, ?Await]
PropertyName[?Yield, ?Await] : AssignmentExpression[+In, ?Yield, ?Await]
MethodDefinition[?Yield, ?Await]
... AssignmentExpression[+In, ?Yield, ?Await]

PropertyName[Yield, Await] :
LiteralPropertyName
ComputedPropertyName[?Yield, ?Await]

LiteralPropertyName :
IdentifierName
StringLiteral
NumericLiteral

ComputedPropertyName[Yield, Await] :
[AssignmentExpression[+In, ?Yield, ?Await]]

13.2.5 Object Initializer

Syntax

/ 5716

JISET - Patterns in Abstract Algorithms

Semantics

,
JS

[],<latexit sha1_base64="6RP8+7doe9Iuo5HC3XVh3eT6xTc=">AAACFnicbVDLSsNAFJ3UV62vqks3g0VwVRKR6rLoxmUF+4A2lMlk0g6dzISZGyGGfoQ70X9xJ27d+iuuTNosbOuBC4dz7p0793iR4AZs+9sqra1vbG6Vtys7u3v7B9XDo45RsaasTZVQuucRwwSXrA0cBOtFmpHQE6zrTW5zv/vItOFKPkASMTckI8kDTglkUndAfQWmMqzW7Lo9A14lTkFqqEBrWP0Z+IrGIZNABTGm79gRuCnRwKlg08ogNiwidEJGrJ9RSUJm3HT23Sk+yxQfB0pnJQHP1L8TKQmNSUIv6wwJjM2yl4v/egZCohPtL+2H4NpNuYxiYJLO1wexwKBwngj2uWYURJIRQjXPLsB0TDShkOW28D7wydM0D8tZjmaVdC7qTqPeuL+sNW+K2MroBJ2ic+SgK9REd6iF2oiiCXpGr+jNerHerQ/rc95asoqZY7QA6+sXVlugZA==</latexit>· · ·

260 © Ecma International 2023

a. Perform ? ArrayAccumulation of Elision with arguments array and 0.
3. Return array.

ArrayLiteral : [ElementList]

1. Let array be ! ArrayCreate(0).
2. Perform ? ArrayAccumulation of ElementList with arguments array and 0.
3. Return array.

ArrayLiteral : [ElementList , Elisionopt]

1. Let array be ! ArrayCreate(0).
2. Let nextIndex be ? ArrayAccumulation of ElementList with arguments array and 0.
3. If Elision is present, then

a. Perform ? ArrayAccumulation of Elision with arguments array and nextIndex.
4. Return array.

NOTE 1 An object initializer is an expression describing the initialization of an Object, written in
a form resembling a literal. It is a list of zero or more pairs of property keys and
associated values, enclosed in curly brackets. The values need not be literals; they are
evaluated each time the object initializer is evaluated.

ObjectLiteral[Yield, Await] :
{ }
{ PropertyDefinitionList[?Yield, ?Await] }
{ PropertyDefinitionList[?Yield, ?Await] , }

PropertyDefinitionList[Yield, Await] :
PropertyDefinition[?Yield, ?Await]
PropertyDefinitionList[?Yield, ?Await] , PropertyDefinition[?Yield, ?Await]

PropertyDefinition[Yield, Await] :
IdentifierReference[?Yield, ?Await]
CoverInitializedName[?Yield, ?Await]
PropertyName[?Yield, ?Await] : AssignmentExpression[+In, ?Yield, ?Await]
MethodDefinition[?Yield, ?Await]
... AssignmentExpression[+In, ?Yield, ?Await]

PropertyName[Yield, Await] :
LiteralPropertyName
ComputedPropertyName[?Yield, ?Await]

LiteralPropertyName :
IdentifierName
StringLiteral
NumericLiteral

ComputedPropertyName[Yield, Await] :
[AssignmentExpression[+In, ?Yield, ?Await]]

13.2.5 Object Initializer

Syntax

260 © Ecma International 2023

a. Perform ? ArrayAccumulation of Elision with arguments array and 0.
3. Return array.

ArrayLiteral : [ElementList]

1. Let array be ! ArrayCreate(0).
2. Perform ? ArrayAccumulation of ElementList with arguments array and 0.
3. Return array.

ArrayLiteral : [ElementList , Elisionopt]

1. Let array be ! ArrayCreate(0).
2. Let nextIndex be ? ArrayAccumulation of ElementList with arguments array and 0.
3. If Elision is present, then

a. Perform ? ArrayAccumulation of Elision with arguments array and nextIndex.
4. Return array.

NOTE 1 An object initializer is an expression describing the initialization of an Object, written in
a form resembling a literal. It is a list of zero or more pairs of property keys and
associated values, enclosed in curly brackets. The values need not be literals; they are
evaluated each time the object initializer is evaluated.

ObjectLiteral[Yield, Await] :
{ }
{ PropertyDefinitionList[?Yield, ?Await] }
{ PropertyDefinitionList[?Yield, ?Await] , }

PropertyDefinitionList[Yield, Await] :
PropertyDefinition[?Yield, ?Await]
PropertyDefinitionList[?Yield, ?Await] , PropertyDefinition[?Yield, ?Await]

PropertyDefinition[Yield, Await] :
IdentifierReference[?Yield, ?Await]
CoverInitializedName[?Yield, ?Await]
PropertyName[?Yield, ?Await] : AssignmentExpression[+In, ?Yield, ?Await]
MethodDefinition[?Yield, ?Await]
... AssignmentExpression[+In, ?Yield, ?Await]

PropertyName[Yield, Await] :
LiteralPropertyName
ComputedPropertyName[?Yield, ?Await]

LiteralPropertyName :
IdentifierName
StringLiteral
NumericLiteral

ComputedPropertyName[Yield, Await] :
[AssignmentExpression[+In, ?Yield, ?Await]]

13.2.5 Object Initializer

Syntax

260 © Ecma International 2023

a. Perform ? ArrayAccumulation of Elision with arguments array and 0.
3. Return array.

ArrayLiteral : [ElementList]

1. Let array be ! ArrayCreate(0).
2. Perform ? ArrayAccumulation of ElementList with arguments array and 0.
3. Return array.

ArrayLiteral : [ElementList , Elisionopt]

1. Let array be ! ArrayCreate(0).
2. Let nextIndex be ? ArrayAccumulation of ElementList with arguments array and 0.
3. If Elision is present, then

a. Perform ? ArrayAccumulation of Elision with arguments array and nextIndex.
4. Return array.

NOTE 1 An object initializer is an expression describing the initialization of an Object, written in
a form resembling a literal. It is a list of zero or more pairs of property keys and
associated values, enclosed in curly brackets. The values need not be literals; they are
evaluated each time the object initializer is evaluated.

ObjectLiteral[Yield, Await] :
{ }
{ PropertyDefinitionList[?Yield, ?Await] }
{ PropertyDefinitionList[?Yield, ?Await] , }

PropertyDefinitionList[Yield, Await] :
PropertyDefinition[?Yield, ?Await]
PropertyDefinitionList[?Yield, ?Await] , PropertyDefinition[?Yield, ?Await]

PropertyDefinition[Yield, Await] :
IdentifierReference[?Yield, ?Await]
CoverInitializedName[?Yield, ?Await]
PropertyName[?Yield, ?Await] : AssignmentExpression[+In, ?Yield, ?Await]
MethodDefinition[?Yield, ?Await]
... AssignmentExpression[+In, ?Yield, ?Await]

PropertyName[Yield, Await] :
LiteralPropertyName
ComputedPropertyName[?Yield, ?Await]

LiteralPropertyName :
IdentifierName
StringLiteral
NumericLiteral

ComputedPropertyName[Yield, Await] :
[AssignmentExpression[+In, ?Yield, ?Await]]

13.2.5 Object Initializer

Syntax

260 © Ecma International 2023

a. Perform ? ArrayAccumulation of Elision with arguments array and 0.
3. Return array.

ArrayLiteral : [ElementList]

1. Let array be ! ArrayCreate(0).
2. Perform ? ArrayAccumulation of ElementList with arguments array and 0.
3. Return array.

ArrayLiteral : [ElementList , Elisionopt]

1. Let array be ! ArrayCreate(0).
2. Let nextIndex be ? ArrayAccumulation of ElementList with arguments array and 0.
3. If Elision is present, then

a. Perform ? ArrayAccumulation of Elision with arguments array and nextIndex.
4. Return array.

NOTE 1 An object initializer is an expression describing the initialization of an Object, written in
a form resembling a literal. It is a list of zero or more pairs of property keys and
associated values, enclosed in curly brackets. The values need not be literals; they are
evaluated each time the object initializer is evaluated.

ObjectLiteral[Yield, Await] :
{ }
{ PropertyDefinitionList[?Yield, ?Await] }
{ PropertyDefinitionList[?Yield, ?Await] , }

PropertyDefinitionList[Yield, Await] :
PropertyDefinition[?Yield, ?Await]
PropertyDefinitionList[?Yield, ?Await] , PropertyDefinition[?Yield, ?Await]

PropertyDefinition[Yield, Await] :
IdentifierReference[?Yield, ?Await]
CoverInitializedName[?Yield, ?Await]
PropertyName[?Yield, ?Await] : AssignmentExpression[+In, ?Yield, ?Await]
MethodDefinition[?Yield, ?Await]
... AssignmentExpression[+In, ?Yield, ?Await]

PropertyName[Yield, Await] :
LiteralPropertyName
ComputedPropertyName[?Yield, ?Await]

LiteralPropertyName :
IdentifierName
StringLiteral
NumericLiteral

ComputedPropertyName[Yield, Await] :
[AssignmentExpression[+In, ?Yield, ?Await]]

13.2.5 Object Initializer

Syntax

260 © Ecma International 2023

a. Perform ? ArrayAccumulation of Elision with arguments array and 0.
3. Return array.

ArrayLiteral : [ElementList]

1. Let array be ! ArrayCreate(0).
2. Perform ? ArrayAccumulation of ElementList with arguments array and 0.
3. Return array.

ArrayLiteral : [ElementList , Elisionopt]

1. Let array be ! ArrayCreate(0).
2. Let nextIndex be ? ArrayAccumulation of ElementList with arguments array and 0.
3. If Elision is present, then

a. Perform ? ArrayAccumulation of Elision with arguments array and nextIndex.
4. Return array.

NOTE 1 An object initializer is an expression describing the initialization of an Object, written in
a form resembling a literal. It is a list of zero or more pairs of property keys and
associated values, enclosed in curly brackets. The values need not be literals; they are
evaluated each time the object initializer is evaluated.

ObjectLiteral[Yield, Await] :
{ }
{ PropertyDefinitionList[?Yield, ?Await] }
{ PropertyDefinitionList[?Yield, ?Await] , }

PropertyDefinitionList[Yield, Await] :
PropertyDefinition[?Yield, ?Await]
PropertyDefinitionList[?Yield, ?Await] , PropertyDefinition[?Yield, ?Await]

PropertyDefinition[Yield, Await] :
IdentifierReference[?Yield, ?Await]
CoverInitializedName[?Yield, ?Await]
PropertyName[?Yield, ?Await] : AssignmentExpression[+In, ?Yield, ?Await]
MethodDefinition[?Yield, ?Await]
... AssignmentExpression[+In, ?Yield, ?Await]

PropertyName[Yield, Await] :
LiteralPropertyName
ComputedPropertyName[?Yield, ?Await]

LiteralPropertyName :
IdentifierName
StringLiteral
NumericLiteral

ComputedPropertyName[Yield, Await] :
[AssignmentExpression[+In, ?Yield, ?Await]]

13.2.5 Object Initializer

Syntax

260 © Ecma International 2023

a. Perform ? ArrayAccumulation of Elision with arguments array and 0.
3. Return array.

ArrayLiteral : [ElementList]

1. Let array be ! ArrayCreate(0).
2. Perform ? ArrayAccumulation of ElementList with arguments array and 0.
3. Return array.

ArrayLiteral : [ElementList , Elisionopt]

1. Let array be ! ArrayCreate(0).
2. Let nextIndex be ? ArrayAccumulation of ElementList with arguments array and 0.
3. If Elision is present, then

a. Perform ? ArrayAccumulation of Elision with arguments array and nextIndex.
4. Return array.

NOTE 1 An object initializer is an expression describing the initialization of an Object, written in
a form resembling a literal. It is a list of zero or more pairs of property keys and
associated values, enclosed in curly brackets. The values need not be literals; they are
evaluated each time the object initializer is evaluated.

ObjectLiteral[Yield, Await] :
{ }
{ PropertyDefinitionList[?Yield, ?Await] }
{ PropertyDefinitionList[?Yield, ?Await] , }

PropertyDefinitionList[Yield, Await] :
PropertyDefinition[?Yield, ?Await]
PropertyDefinitionList[?Yield, ?Await] , PropertyDefinition[?Yield, ?Await]

PropertyDefinition[Yield, Await] :
IdentifierReference[?Yield, ?Await]
CoverInitializedName[?Yield, ?Await]
PropertyName[?Yield, ?Await] : AssignmentExpression[+In, ?Yield, ?Await]
MethodDefinition[?Yield, ?Await]
... AssignmentExpression[+In, ?Yield, ?Await]

PropertyName[Yield, Await] :
LiteralPropertyName
ComputedPropertyName[?Yield, ?Await]

LiteralPropertyName :
IdentifierName
StringLiteral
NumericLiteral

ComputedPropertyName[Yield, Await] :
[AssignmentExpression[+In, ?Yield, ?Await]]

13.2.5 Object Initializer

Syntax

/ 5717

JISET - Metalanguage for ECMA-262

A Meta-Level Static Analysis for JavaScript
Anonymous Author(s)

In this report, we formalize a meta-level static analysis for
JavaScript as a de�ned-language with IRES as a de�ning-
language. We �rst de�ne IRES and a JavaScript de�nitional
interpreter as an IRES program. Then, we de�ne a meta-level
static analysis for JavaScript with the abstract semantics of
IRES in the abstract interpretation framework [2, 3]. In addi-
tion, we explain how to indirectly express abstract domains
and analysis sensitivities for JavaScript.

1 IRES: An IR for ECMAScript
We �rst de�ne IRES, an Intermediate Representation for EC-
MAScript, with its collecting and restricted semantics.

Programs P 3 % ::= 5 ⇤

Functions F 3 5 ::= syntax? def x(x⇤) {[l : 8]⇤}
Variables X 3 x
Labels L 3 l
Instructions I 3 8 ::= A B 4 | x B {} | x B 4(4⇤)

| if 4 l l | return 4
Expressions E 3 4 ::= Ep | op(4⇤) | A
References R 3 A ::= x | 4[4] | 4[4]js
Syntax and Notations. An IRES program % is a sequence

of functions. A function 5 is de�ned with its name, parame-
ters, and body instructions with labels. If it is de�ned with
the pre�x syntax, it is a syntax-directed function, otherwise,
a normal function. An instruction 8 is a reference update,
an object allocation, a function call, a branch, or a return
instruction. An expression 4 is a primitive value, a primitive
operation, or a reference expression. A reference is a vari-
able, an internal �eld access, or an external �eld access. For
a given program % , three helper functions func : L ! F ,
inst : L ! I, and next : L ! L return the function,
instruction, and next label, respectively, of a given label.

States f 2 S = L ⇥ E ⇥ C⇤ ⇥ H
Environments d 2 E = X �n��!V
Calling Contexts 2 2 C = L ⇥ E
Heaps ⌘ 2 H = A

�n��!L ⇥M ⇥Mjs

Internal Field Maps < 2 M = Vstr
�n��!V

External Field Maps <js 2 Mjs = Vstr
�n��!V

Values E 2 V = A] Vp] T] F
Primitive Values Ep 2 Vp = Vbool] Vint] Vstr] · · ·
JS ASTs C 2 T

Concrete States. An IRES state f 2 S consists of a label,
an environment, a stack of calling contexts, and a heap. An
environment d 2 E is a �nite mapping from variables to
values. A calling context 2 2 C consists of a label and an

environment of the caller. A heap ⌘ 2 H is a �nite map-
ping from addresses to labels for allocation sites and two
�nite mappings from strings to values. The former mapping
represents internal �elds accessible by 4[4], and the latter
represents external �elds accessible by 4[4]js. A value E 2 V
is an address, a primitive value (e.g., a boolean 1, an integer : ,
and a string B), a JavaScript AST C 2 T, or a function 5 2 F .
Since IRES treats JavaScript ASTs as its values, we de�ne

them with tree nodes � as follows:
T 3 C ::= g: hq⇤i
� 3 q ::= B | C

A JavaScript AST g: hq1, · · · ,q=i denotes :-th alternative
in the syntactic production of nonterminal symbol g with
multiple tree nodes q1, · · · ,q= . A tree node is a string for a
terminal symbol or another tree for a nonterminal symbol.
We de�ne several notations to easily deal with JavaScript
ASTs. The notation g: .eval denotes an Evaluation function of
:-th alternative in the production g . Similarly, the notation
C .eval denotes the Evaluation function of the AST C , and it
is same with g: .eval when C = g: h· · · i. The Evaluation of
each AST takes the AST itself and its tree nodes that are
nonterminals as arguments. The notation subs(C) denotes
tree nodes that are subtrees of C .

Collecting Semantics. We de�ne denotational semantics
of instructions J8K : S! S and expressions J4K : S! V in
Section 1.1 and Section 1.2, respectively. Then, the collecting
semantics J%K of an IRES program % is a set of reachable states
P(S) from the initial states S] ✓ S. We can compute it using
a �xpoint algorithm:

J%K = lim
=!1

�= (S])

with a transfer function � : P(S) ! P(S):
� (() = ([{f 0 2 S | f 2 (^ f {% f 0}

where f {% f 0 denotes the one-step transition of a state f
to another state f 0 in the program % :

f {% f 0 () f = (l , _, _, _) ^ Jinst(l)K(f) = f 0

Restricted Semantics. Moreover, the restricted semantics
J%KR : P(S) ! P(S) is a set of reachable states from the
initial states restricted by a given set of states:

J%KR (() = lim
=!1

�= (S] \ ()

1.1 Instructions
J8K : S! S

• Variable Assignments:

Jx B 4K(f) = (next(l), d [x 7! E], 2,⌘)
1

A Meta-Level Static Analysis for JavaScript
Anonymous Author(s)

In this report, we formalize a meta-level static analysis for
JavaScript as a de�ned-language with IRES as a de�ning-
language. We �rst de�ne IRES and a JavaScript de�nitional
interpreter as an IRES program. Then, we de�ne a meta-level
static analysis for JavaScript with the abstract semantics of
IRES in the abstract interpretation framework [2, 3]. In addi-
tion, we explain how to indirectly express abstract domains
and analysis sensitivities for JavaScript.

1 IRES: An IR for ECMAScript
We �rst de�ne IRES, an Intermediate Representation for EC-
MAScript, with its collecting and restricted semantics.

Programs P 3 % ::= 5 ⇤

Functions F 3 5 ::= syntax? def x(x⇤) {[l : 8]⇤}
Variables X 3 x
Labels L 3 l
Instructions I 3 8 ::= A B 4 | x B {} | x B 4(4⇤)

| if 4 l l | return 4
Expressions E 3 4 ::= Ep | op(4⇤) | A
References R 3 A ::= x | 4[4] | 4[4]js
Syntax and Notations. An IRES program % is a sequence

of functions. A function 5 is de�ned with its name, parame-
ters, and body instructions with labels. If it is de�ned with
the pre�x syntax, it is a syntax-directed function, otherwise,
a normal function. An instruction 8 is a reference update,
an object allocation, a function call, a branch, or a return
instruction. An expression 4 is a primitive value, a primitive
operation, or a reference expression. A reference is a vari-
able, an internal �eld access, or an external �eld access. For
a given program % , three helper functions func : L ! F ,
inst : L ! I, and next : L ! L return the function,
instruction, and next label, respectively, of a given label.

States f 2 S = L ⇥ E ⇥ C⇤ ⇥ H
Environments d 2 E = X �n��!V
Calling Contexts 2 2 C = L ⇥ E
Heaps ⌘ 2 H = A

�n��!L ⇥M ⇥Mjs

Internal Field Maps < 2 M = Vstr
�n��!V

External Field Maps <js 2 Mjs = Vstr
�n��!V

Values E 2 V = A] Vp] T] F
Primitive Values Ep 2 Vp = Vbool] Vint] Vstr] · · ·
JS ASTs C 2 T

Concrete States. An IRES state f 2 S consists of a label,
an environment, a stack of calling contexts, and a heap. An
environment d 2 E is a �nite mapping from variables to
values. A calling context 2 2 C consists of a label and an

environment of the caller. A heap ⌘ 2 H is a �nite map-
ping from addresses to labels for allocation sites and two
�nite mappings from strings to values. The former mapping
represents internal �elds accessible by 4[4], and the latter
represents external �elds accessible by 4[4]js. A value E 2 V
is an address, a primitive value (e.g., a boolean 1, an integer : ,
and a string B), a JavaScript AST C 2 T, or a function 5 2 F .
Since IRES treats JavaScript ASTs as its values, we de�ne

them with tree nodes � as follows:
T 3 C ::= g: hq⇤i
� 3 q ::= B | C

A JavaScript AST g: hq1, · · · ,q=i denotes :-th alternative
in the syntactic production of nonterminal symbol g with
multiple tree nodes q1, · · · ,q= . A tree node is a string for a
terminal symbol or another tree for a nonterminal symbol.
We de�ne several notations to easily deal with JavaScript
ASTs. The notation g: .eval denotes an Evaluation function of
:-th alternative in the production g . Similarly, the notation
C .eval denotes the Evaluation function of the AST C , and it
is same with g: .eval when C = g: h· · · i. The Evaluation of
each AST takes the AST itself and its tree nodes that are
nonterminals as arguments. The notation subs(C) denotes
tree nodes that are subtrees of C .

Collecting Semantics. We de�ne denotational semantics
of instructions J8K : S! S and expressions J4K : S! V in
Section 1.1 and Section 1.2, respectively. Then, the collecting
semantics J%K of an IRES program % is a set of reachable states
P(S) from the initial states S] ✓ S. We can compute it using
a �xpoint algorithm:

J%K = lim
=!1

�= (S])

with a transfer function � : P(S) ! P(S):
� (() = ([{f 0 2 S | f 2 (^ f {% f 0}

where f {% f 0 denotes the one-step transition of a state f
to another state f 0 in the program % :

f {% f 0 () f = (l , _, _, _) ^ Jinst(l)K(f) = f 0

Restricted Semantics. Moreover, the restricted semantics
J%KR : P(S) ! P(S) is a set of reachable states from the
initial states restricted by a given set of states:

J%KR (() = lim
=!1

�= (S] \ ()

1.1 Instructions
J8K : S! S

• Variable Assignments:

Jx B 4K(f) = (next(l), d [x 7! E], 2,⌘)
1

<latexit sha1_base64="JXzBjyZgmsI8ags2tosNzBng8sY=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69BIvgqSRS1GPRi8cK9gPaUDabTbt2sxt2J0Ip/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZemApu0PO+ncLa+sbmVnG7tLO7t39QPjxqGZVpyppUCaU7ITFMcMmayFGwTqoZSULB2uHodua3n5g2XMkHHKcsSMhA8phTglZq9Wik0PTLFa/qzeGuEj8nFcjR6Je/epGiWcIkUkGM6fpeisGEaORUsGmplxmWEjoiA9a1VJKEmWAyv3bqnlklcmOlbUl05+rviQlJjBknoe1MCA7NsjcT//O6GcbXwYTLNEMm6WJRnAkXlTt73Y24ZhTF2BJCNbe3unRINKFoAyrZEPzll1dJ66LqX1Zr97VK/SaPowgncArn4MMV1OEOGtAECo/wDK/w5ijnxXl3PhatBSefOYY/cD5/ALFFjzg=</latexit>

···

(IRES - Intermediate Representation for ECMA-262)

/ 5717

JISET - Metalanguage for ECMA-262

A Meta-Level Static Analysis for JavaScript
Anonymous Author(s)

In this report, we formalize a meta-level static analysis for
JavaScript as a de�ned-language with IRES as a de�ning-
language. We �rst de�ne IRES and a JavaScript de�nitional
interpreter as an IRES program. Then, we de�ne a meta-level
static analysis for JavaScript with the abstract semantics of
IRES in the abstract interpretation framework [2, 3]. In addi-
tion, we explain how to indirectly express abstract domains
and analysis sensitivities for JavaScript.

1 IRES: An IR for ECMAScript
We �rst de�ne IRES, an Intermediate Representation for EC-
MAScript, with its collecting and restricted semantics.

Programs P 3 % ::= 5 ⇤

Functions F 3 5 ::= syntax? def x(x⇤) {[l : 8]⇤}
Variables X 3 x
Labels L 3 l
Instructions I 3 8 ::= A B 4 | x B {} | x B 4(4⇤)

| if 4 l l | return 4
Expressions E 3 4 ::= Ep | op(4⇤) | A
References R 3 A ::= x | 4[4] | 4[4]js
Syntax and Notations. An IRES program % is a sequence

of functions. A function 5 is de�ned with its name, parame-
ters, and body instructions with labels. If it is de�ned with
the pre�x syntax, it is a syntax-directed function, otherwise,
a normal function. An instruction 8 is a reference update,
an object allocation, a function call, a branch, or a return
instruction. An expression 4 is a primitive value, a primitive
operation, or a reference expression. A reference is a vari-
able, an internal �eld access, or an external �eld access. For
a given program % , three helper functions func : L ! F ,
inst : L ! I, and next : L ! L return the function,
instruction, and next label, respectively, of a given label.

States f 2 S = L ⇥ E ⇥ C⇤ ⇥ H
Environments d 2 E = X �n��!V
Calling Contexts 2 2 C = L ⇥ E
Heaps ⌘ 2 H = A

�n��!L ⇥M ⇥Mjs

Internal Field Maps < 2 M = Vstr
�n��!V

External Field Maps <js 2 Mjs = Vstr
�n��!V

Values E 2 V = A] Vp] T] F
Primitive Values Ep 2 Vp = Vbool] Vint] Vstr] · · ·
JS ASTs C 2 T

Concrete States. An IRES state f 2 S consists of a label,
an environment, a stack of calling contexts, and a heap. An
environment d 2 E is a �nite mapping from variables to
values. A calling context 2 2 C consists of a label and an

environment of the caller. A heap ⌘ 2 H is a �nite map-
ping from addresses to labels for allocation sites and two
�nite mappings from strings to values. The former mapping
represents internal �elds accessible by 4[4], and the latter
represents external �elds accessible by 4[4]js. A value E 2 V
is an address, a primitive value (e.g., a boolean 1, an integer : ,
and a string B), a JavaScript AST C 2 T, or a function 5 2 F .
Since IRES treats JavaScript ASTs as its values, we de�ne

them with tree nodes � as follows:
T 3 C ::= g: hq⇤i
� 3 q ::= B | C

A JavaScript AST g: hq1, · · · ,q=i denotes :-th alternative
in the syntactic production of nonterminal symbol g with
multiple tree nodes q1, · · · ,q= . A tree node is a string for a
terminal symbol or another tree for a nonterminal symbol.
We de�ne several notations to easily deal with JavaScript
ASTs. The notation g: .eval denotes an Evaluation function of
:-th alternative in the production g . Similarly, the notation
C .eval denotes the Evaluation function of the AST C , and it
is same with g: .eval when C = g: h· · · i. The Evaluation of
each AST takes the AST itself and its tree nodes that are
nonterminals as arguments. The notation subs(C) denotes
tree nodes that are subtrees of C .

Collecting Semantics. We de�ne denotational semantics
of instructions J8K : S! S and expressions J4K : S! V in
Section 1.1 and Section 1.2, respectively. Then, the collecting
semantics J%K of an IRES program % is a set of reachable states
P(S) from the initial states S] ✓ S. We can compute it using
a �xpoint algorithm:

J%K = lim
=!1

�= (S])

with a transfer function � : P(S) ! P(S):
� (() = ([{f 0 2 S | f 2 (^ f {% f 0}

where f {% f 0 denotes the one-step transition of a state f
to another state f 0 in the program % :

f {% f 0 () f = (l , _, _, _) ^ Jinst(l)K(f) = f 0

Restricted Semantics. Moreover, the restricted semantics
J%KR : P(S) ! P(S) is a set of reachable states from the
initial states restricted by a given set of states:

J%KR (() = lim
=!1

�= (S] \ ()

1.1 Instructions
J8K : S! S

• Variable Assignments:

Jx B 4K(f) = (next(l), d [x 7! E], 2,⌘)
1

A Meta-Level Static Analysis for JavaScript
Anonymous Author(s)

In this report, we formalize a meta-level static analysis for
JavaScript as a de�ned-language with IRES as a de�ning-
language. We �rst de�ne IRES and a JavaScript de�nitional
interpreter as an IRES program. Then, we de�ne a meta-level
static analysis for JavaScript with the abstract semantics of
IRES in the abstract interpretation framework [2, 3]. In addi-
tion, we explain how to indirectly express abstract domains
and analysis sensitivities for JavaScript.

1 IRES: An IR for ECMAScript
We �rst de�ne IRES, an Intermediate Representation for EC-
MAScript, with its collecting and restricted semantics.

Programs P 3 % ::= 5 ⇤

Functions F 3 5 ::= syntax? def x(x⇤) {[l : 8]⇤}
Variables X 3 x
Labels L 3 l
Instructions I 3 8 ::= A B 4 | x B {} | x B 4(4⇤)

| if 4 l l | return 4
Expressions E 3 4 ::= Ep | op(4⇤) | A
References R 3 A ::= x | 4[4] | 4[4]js
Syntax and Notations. An IRES program % is a sequence

of functions. A function 5 is de�ned with its name, parame-
ters, and body instructions with labels. If it is de�ned with
the pre�x syntax, it is a syntax-directed function, otherwise,
a normal function. An instruction 8 is a reference update,
an object allocation, a function call, a branch, or a return
instruction. An expression 4 is a primitive value, a primitive
operation, or a reference expression. A reference is a vari-
able, an internal �eld access, or an external �eld access. For
a given program % , three helper functions func : L ! F ,
inst : L ! I, and next : L ! L return the function,
instruction, and next label, respectively, of a given label.

States f 2 S = L ⇥ E ⇥ C⇤ ⇥ H
Environments d 2 E = X �n��!V
Calling Contexts 2 2 C = L ⇥ E
Heaps ⌘ 2 H = A

�n��!L ⇥M ⇥Mjs

Internal Field Maps < 2 M = Vstr
�n��!V

External Field Maps <js 2 Mjs = Vstr
�n��!V

Values E 2 V = A] Vp] T] F
Primitive Values Ep 2 Vp = Vbool] Vint] Vstr] · · ·
JS ASTs C 2 T

Concrete States. An IRES state f 2 S consists of a label,
an environment, a stack of calling contexts, and a heap. An
environment d 2 E is a �nite mapping from variables to
values. A calling context 2 2 C consists of a label and an

environment of the caller. A heap ⌘ 2 H is a �nite map-
ping from addresses to labels for allocation sites and two
�nite mappings from strings to values. The former mapping
represents internal �elds accessible by 4[4], and the latter
represents external �elds accessible by 4[4]js. A value E 2 V
is an address, a primitive value (e.g., a boolean 1, an integer : ,
and a string B), a JavaScript AST C 2 T, or a function 5 2 F .
Since IRES treats JavaScript ASTs as its values, we de�ne

them with tree nodes � as follows:
T 3 C ::= g: hq⇤i
� 3 q ::= B | C

A JavaScript AST g: hq1, · · · ,q=i denotes :-th alternative
in the syntactic production of nonterminal symbol g with
multiple tree nodes q1, · · · ,q= . A tree node is a string for a
terminal symbol or another tree for a nonterminal symbol.
We de�ne several notations to easily deal with JavaScript
ASTs. The notation g: .eval denotes an Evaluation function of
:-th alternative in the production g . Similarly, the notation
C .eval denotes the Evaluation function of the AST C , and it
is same with g: .eval when C = g: h· · · i. The Evaluation of
each AST takes the AST itself and its tree nodes that are
nonterminals as arguments. The notation subs(C) denotes
tree nodes that are subtrees of C .

Collecting Semantics. We de�ne denotational semantics
of instructions J8K : S! S and expressions J4K : S! V in
Section 1.1 and Section 1.2, respectively. Then, the collecting
semantics J%K of an IRES program % is a set of reachable states
P(S) from the initial states S] ✓ S. We can compute it using
a �xpoint algorithm:

J%K = lim
=!1

�= (S])

with a transfer function � : P(S) ! P(S):
� (() = ([{f 0 2 S | f 2 (^ f {% f 0}

where f {% f 0 denotes the one-step transition of a state f
to another state f 0 in the program % :

f {% f 0 () f = (l , _, _, _) ^ Jinst(l)K(f) = f 0

Restricted Semantics. Moreover, the restricted semantics
J%KR : P(S) ! P(S) is a set of reachable states from the
initial states restricted by a given set of states:

J%KR (() = lim
=!1

�= (S] \ ()

1.1 Instructions
J8K : S! S

• Variable Assignments:

Jx B 4K(f) = (next(l), d [x 7! E], 2,⌘)
1

<latexit sha1_base64="JXzBjyZgmsI8ags2tosNzBng8sY=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69BIvgqSRS1GPRi8cK9gPaUDabTbt2sxt2J0Ip/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZemApu0PO+ncLa+sbmVnG7tLO7t39QPjxqGZVpyppUCaU7ITFMcMmayFGwTqoZSULB2uHodua3n5g2XMkHHKcsSMhA8phTglZq9Wik0PTLFa/qzeGuEj8nFcjR6Je/epGiWcIkUkGM6fpeisGEaORUsGmplxmWEjoiA9a1VJKEmWAyv3bqnlklcmOlbUl05+rviQlJjBknoe1MCA7NsjcT//O6GcbXwYTLNEMm6WJRnAkXlTt73Y24ZhTF2BJCNbe3unRINKFoAyrZEPzll1dJ66LqX1Zr97VK/SaPowgncArn4MMV1OEOGtAECo/wDK/w5ijnxXl3PhatBSefOYY/cD5/ALFFjzg=</latexit>

···

(IRES - Intermediate Representation for ECMA-262)

/ 5718

JISET - Algorithm Compiler

260 © Ecma International 2023

a. Perform ? ArrayAccumulation of Elision with arguments array and 0.
3. Return array.

ArrayLiteral : [ElementList]

1. Let array be ! ArrayCreate(0).
2. Perform ? ArrayAccumulation of ElementList with arguments array and 0.
3. Return array.

ArrayLiteral : [ElementList , Elisionopt]

1. Let array be ! ArrayCreate(0).
2. Let nextIndex be ? ArrayAccumulation of ElementList with arguments array and 0.
3. If Elision is present, then

a. Perform ? ArrayAccumulation of Elision with arguments array and nextIndex.
4. Return array.

NOTE 1 An object initializer is an expression describing the initialization of an Object, written in
a form resembling a literal. It is a list of zero or more pairs of property keys and
associated values, enclosed in curly brackets. The values need not be literals; they are
evaluated each time the object initializer is evaluated.

ObjectLiteral[Yield, Await] :
{ }
{ PropertyDefinitionList[?Yield, ?Await] }
{ PropertyDefinitionList[?Yield, ?Await] , }

PropertyDefinitionList[Yield, Await] :
PropertyDefinition[?Yield, ?Await]
PropertyDefinitionList[?Yield, ?Await] , PropertyDefinition[?Yield, ?Await]

PropertyDefinition[Yield, Await] :
IdentifierReference[?Yield, ?Await]
CoverInitializedName[?Yield, ?Await]
PropertyName[?Yield, ?Await] : AssignmentExpression[+In, ?Yield, ?Await]
MethodDefinition[?Yield, ?Await]
... AssignmentExpression[+In, ?Yield, ?Await]

PropertyName[Yield, Await] :
LiteralPropertyName
ComputedPropertyName[?Yield, ?Await]

LiteralPropertyName :
IdentifierName
StringLiteral
NumericLiteral

ComputedPropertyName[Yield, Await] :
[AssignmentExpression[+In, ?Yield, ?Await]]

13.2.5 Object Initializer

Syntax

260 © Ecma International 2023

a. Perform ? ArrayAccumulation of Elision with arguments array and 0.
3. Return array.

ArrayLiteral : [ElementList]

1. Let array be ! ArrayCreate(0).
2. Perform ? ArrayAccumulation of ElementList with arguments array and 0.
3. Return array.

ArrayLiteral : [ElementList , Elisionopt]

1. Let array be ! ArrayCreate(0).
2. Let nextIndex be ? ArrayAccumulation of ElementList with arguments array and 0.
3. If Elision is present, then

a. Perform ? ArrayAccumulation of Elision with arguments array and nextIndex.
4. Return array.

NOTE 1 An object initializer is an expression describing the initialization of an Object, written in
a form resembling a literal. It is a list of zero or more pairs of property keys and
associated values, enclosed in curly brackets. The values need not be literals; they are
evaluated each time the object initializer is evaluated.

ObjectLiteral[Yield, Await] :
{ }
{ PropertyDefinitionList[?Yield, ?Await] }
{ PropertyDefinitionList[?Yield, ?Await] , }

PropertyDefinitionList[Yield, Await] :
PropertyDefinition[?Yield, ?Await]
PropertyDefinitionList[?Yield, ?Await] , PropertyDefinition[?Yield, ?Await]

PropertyDefinition[Yield, Await] :
IdentifierReference[?Yield, ?Await]
CoverInitializedName[?Yield, ?Await]
PropertyName[?Yield, ?Await] : AssignmentExpression[+In, ?Yield, ?Await]
MethodDefinition[?Yield, ?Await]
... AssignmentExpression[+In, ?Yield, ?Await]

PropertyName[Yield, Await] :
LiteralPropertyName
ComputedPropertyName[?Yield, ?Await]

LiteralPropertyName :
IdentifierName
StringLiteral
NumericLiteral

ComputedPropertyName[Yield, Await] :
[AssignmentExpression[+In, ?Yield, ?Await]]

13.2.5 Object Initializer

Syntax

260 © Ecma International 2023

a. Perform ? ArrayAccumulation of Elision with arguments array and 0.
3. Return array.

ArrayLiteral : [ElementList]

1. Let array be ! ArrayCreate(0).
2. Perform ? ArrayAccumulation of ElementList with arguments array and 0.
3. Return array.

ArrayLiteral : [ElementList , Elisionopt]

1. Let array be ! ArrayCreate(0).
2. Let nextIndex be ? ArrayAccumulation of ElementList with arguments array and 0.
3. If Elision is present, then

a. Perform ? ArrayAccumulation of Elision with arguments array and nextIndex.
4. Return array.

NOTE 1 An object initializer is an expression describing the initialization of an Object, written in
a form resembling a literal. It is a list of zero or more pairs of property keys and
associated values, enclosed in curly brackets. The values need not be literals; they are
evaluated each time the object initializer is evaluated.

ObjectLiteral[Yield, Await] :
{ }
{ PropertyDefinitionList[?Yield, ?Await] }
{ PropertyDefinitionList[?Yield, ?Await] , }

PropertyDefinitionList[Yield, Await] :
PropertyDefinition[?Yield, ?Await]
PropertyDefinitionList[?Yield, ?Await] , PropertyDefinition[?Yield, ?Await]

PropertyDefinition[Yield, Await] :
IdentifierReference[?Yield, ?Await]
CoverInitializedName[?Yield, ?Await]
PropertyName[?Yield, ?Await] : AssignmentExpression[+In, ?Yield, ?Await]
MethodDefinition[?Yield, ?Await]
... AssignmentExpression[+In, ?Yield, ?Await]

PropertyName[Yield, Await] :
LiteralPropertyName
ComputedPropertyName[?Yield, ?Await]

LiteralPropertyName :
IdentifierName
StringLiteral
NumericLiteral

ComputedPropertyName[Yield, Await] :
[AssignmentExpression[+In, ?Yield, ?Await]]

13.2.5 Object Initializer

Syntax

260 © Ecma International 2023

a. Perform ? ArrayAccumulation of Elision with arguments array and 0.
3. Return array.

ArrayLiteral : [ElementList]

1. Let array be ! ArrayCreate(0).
2. Perform ? ArrayAccumulation of ElementList with arguments array and 0.
3. Return array.

ArrayLiteral : [ElementList , Elisionopt]

1. Let array be ! ArrayCreate(0).
2. Let nextIndex be ? ArrayAccumulation of ElementList with arguments array and 0.
3. If Elision is present, then

a. Perform ? ArrayAccumulation of Elision with arguments array and nextIndex.
4. Return array.

NOTE 1 An object initializer is an expression describing the initialization of an Object, written in
a form resembling a literal. It is a list of zero or more pairs of property keys and
associated values, enclosed in curly brackets. The values need not be literals; they are
evaluated each time the object initializer is evaluated.

ObjectLiteral[Yield, Await] :
{ }
{ PropertyDefinitionList[?Yield, ?Await] }
{ PropertyDefinitionList[?Yield, ?Await] , }

PropertyDefinitionList[Yield, Await] :
PropertyDefinition[?Yield, ?Await]
PropertyDefinitionList[?Yield, ?Await] , PropertyDefinition[?Yield, ?Await]

PropertyDefinition[Yield, Await] :
IdentifierReference[?Yield, ?Await]
CoverInitializedName[?Yield, ?Await]
PropertyName[?Yield, ?Await] : AssignmentExpression[+In, ?Yield, ?Await]
MethodDefinition[?Yield, ?Await]
... AssignmentExpression[+In, ?Yield, ?Await]

PropertyName[Yield, Await] :
LiteralPropertyName
ComputedPropertyName[?Yield, ?Await]

LiteralPropertyName :
IdentifierName
StringLiteral
NumericLiteral

ComputedPropertyName[Yield, Await] :
[AssignmentExpression[+In, ?Yield, ?Await]]

13.2.5 Object Initializer

Syntax

260 © Ecma International 2023

a. Perform ? ArrayAccumulation of Elision with arguments array and 0.
3. Return array.

ArrayLiteral : [ElementList]

1. Let array be ! ArrayCreate(0).
2. Perform ? ArrayAccumulation of ElementList with arguments array and 0.
3. Return array.

ArrayLiteral : [ElementList , Elisionopt]

1. Let array be ! ArrayCreate(0).
2. Let nextIndex be ? ArrayAccumulation of ElementList with arguments array and 0.
3. If Elision is present, then

a. Perform ? ArrayAccumulation of Elision with arguments array and nextIndex.
4. Return array.

NOTE 1 An object initializer is an expression describing the initialization of an Object, written in
a form resembling a literal. It is a list of zero or more pairs of property keys and
associated values, enclosed in curly brackets. The values need not be literals; they are
evaluated each time the object initializer is evaluated.

ObjectLiteral[Yield, Await] :
{ }
{ PropertyDefinitionList[?Yield, ?Await] }
{ PropertyDefinitionList[?Yield, ?Await] , }

PropertyDefinitionList[Yield, Await] :
PropertyDefinition[?Yield, ?Await]
PropertyDefinitionList[?Yield, ?Await] , PropertyDefinition[?Yield, ?Await]

PropertyDefinition[Yield, Await] :
IdentifierReference[?Yield, ?Await]
CoverInitializedName[?Yield, ?Await]
PropertyName[?Yield, ?Await] : AssignmentExpression[+In, ?Yield, ?Await]
MethodDefinition[?Yield, ?Await]
... AssignmentExpression[+In, ?Yield, ?Await]

PropertyName[Yield, Await] :
LiteralPropertyName
ComputedPropertyName[?Yield, ?Await]

LiteralPropertyName :
IdentifierName
StringLiteral
NumericLiteral

ComputedPropertyName[Yield, Await] :
[AssignmentExpression[+In, ?Yield, ?Await]]

13.2.5 Object Initializer

Syntax

260 © Ecma International 2023

a. Perform ? ArrayAccumulation of Elision with arguments array and 0.
3. Return array.

ArrayLiteral : [ElementList]

1. Let array be ! ArrayCreate(0).
2. Perform ? ArrayAccumulation of ElementList with arguments array and 0.
3. Return array.

ArrayLiteral : [ElementList , Elisionopt]

1. Let array be ! ArrayCreate(0).
2. Let nextIndex be ? ArrayAccumulation of ElementList with arguments array and 0.
3. If Elision is present, then

a. Perform ? ArrayAccumulation of Elision with arguments array and nextIndex.
4. Return array.

NOTE 1 An object initializer is an expression describing the initialization of an Object, written in
a form resembling a literal. It is a list of zero or more pairs of property keys and
associated values, enclosed in curly brackets. The values need not be literals; they are
evaluated each time the object initializer is evaluated.

ObjectLiteral[Yield, Await] :
{ }
{ PropertyDefinitionList[?Yield, ?Await] }
{ PropertyDefinitionList[?Yield, ?Await] , }

PropertyDefinitionList[Yield, Await] :
PropertyDefinition[?Yield, ?Await]
PropertyDefinitionList[?Yield, ?Await] , PropertyDefinition[?Yield, ?Await]

PropertyDefinition[Yield, Await] :
IdentifierReference[?Yield, ?Await]
CoverInitializedName[?Yield, ?Await]
PropertyName[?Yield, ?Await] : AssignmentExpression[+In, ?Yield, ?Await]
MethodDefinition[?Yield, ?Await]
... AssignmentExpression[+In, ?Yield, ?Await]

PropertyName[Yield, Await] :
LiteralPropertyName
ComputedPropertyName[?Yield, ?Await]

LiteralPropertyName :
IdentifierName
StringLiteral
NumericLiteral

ComputedPropertyName[Yield, Await] :
[AssignmentExpression[+In, ?Yield, ?Await]]

13.2.5 Object Initializer

Syntax

Semantics

,
JS

[],<latexit sha1_base64="6RP8+7doe9Iuo5HC3XVh3eT6xTc=">AAACFnicbVDLSsNAFJ3UV62vqks3g0VwVRKR6rLoxmUF+4A2lMlk0g6dzISZGyGGfoQ70X9xJ27d+iuuTNosbOuBC4dz7p0793iR4AZs+9sqra1vbG6Vtys7u3v7B9XDo45RsaasTZVQuucRwwSXrA0cBOtFmpHQE6zrTW5zv/vItOFKPkASMTckI8kDTglkUndAfQWmMqzW7Lo9A14lTkFqqEBrWP0Z+IrGIZNABTGm79gRuCnRwKlg08ogNiwidEJGrJ9RSUJm3HT23Sk+yxQfB0pnJQHP1L8TKQmNSUIv6wwJjM2yl4v/egZCohPtL+2H4NpNuYxiYJLO1wexwKBwngj2uWYURJIRQjXPLsB0TDShkOW28D7wydM0D8tZjmaVdC7qTqPeuL+sNW+K2MroBJ2ic+SgK9REd6iF2oiiCXpGr+jNerHerQ/rc95asoqZY7QA6+sXVlugZA==</latexit>· · ·

Abstract algorithm for ArrayLiteral in ES13

/ 5718

JISET - Algorithm Compiler

260 © Ecma International 2023

a. Perform ? ArrayAccumulation of Elision with arguments array and 0.
3. Return array.

ArrayLiteral : [ElementList]

1. Let array be ! ArrayCreate(0).
2. Perform ? ArrayAccumulation of ElementList with arguments array and 0.
3. Return array.

ArrayLiteral : [ElementList , Elisionopt]

1. Let array be ! ArrayCreate(0).
2. Let nextIndex be ? ArrayAccumulation of ElementList with arguments array and 0.
3. If Elision is present, then

a. Perform ? ArrayAccumulation of Elision with arguments array and nextIndex.
4. Return array.

NOTE 1 An object initializer is an expression describing the initialization of an Object, written in
a form resembling a literal. It is a list of zero or more pairs of property keys and
associated values, enclosed in curly brackets. The values need not be literals; they are
evaluated each time the object initializer is evaluated.

ObjectLiteral[Yield, Await] :
{ }
{ PropertyDefinitionList[?Yield, ?Await] }
{ PropertyDefinitionList[?Yield, ?Await] , }

PropertyDefinitionList[Yield, Await] :
PropertyDefinition[?Yield, ?Await]
PropertyDefinitionList[?Yield, ?Await] , PropertyDefinition[?Yield, ?Await]

PropertyDefinition[Yield, Await] :
IdentifierReference[?Yield, ?Await]
CoverInitializedName[?Yield, ?Await]
PropertyName[?Yield, ?Await] : AssignmentExpression[+In, ?Yield, ?Await]
MethodDefinition[?Yield, ?Await]
... AssignmentExpression[+In, ?Yield, ?Await]

PropertyName[Yield, Await] :
LiteralPropertyName
ComputedPropertyName[?Yield, ?Await]

LiteralPropertyName :
IdentifierName
StringLiteral
NumericLiteral

ComputedPropertyName[Yield, Await] :
[AssignmentExpression[+In, ?Yield, ?Await]]

13.2.5 Object Initializer

Syntax

260 © Ecma International 2023

a. Perform ? ArrayAccumulation of Elision with arguments array and 0.
3. Return array.

ArrayLiteral : [ElementList]

1. Let array be ! ArrayCreate(0).
2. Perform ? ArrayAccumulation of ElementList with arguments array and 0.
3. Return array.

ArrayLiteral : [ElementList , Elisionopt]

1. Let array be ! ArrayCreate(0).
2. Let nextIndex be ? ArrayAccumulation of ElementList with arguments array and 0.
3. If Elision is present, then

a. Perform ? ArrayAccumulation of Elision with arguments array and nextIndex.
4. Return array.

NOTE 1 An object initializer is an expression describing the initialization of an Object, written in
a form resembling a literal. It is a list of zero or more pairs of property keys and
associated values, enclosed in curly brackets. The values need not be literals; they are
evaluated each time the object initializer is evaluated.

ObjectLiteral[Yield, Await] :
{ }
{ PropertyDefinitionList[?Yield, ?Await] }
{ PropertyDefinitionList[?Yield, ?Await] , }

PropertyDefinitionList[Yield, Await] :
PropertyDefinition[?Yield, ?Await]
PropertyDefinitionList[?Yield, ?Await] , PropertyDefinition[?Yield, ?Await]

PropertyDefinition[Yield, Await] :
IdentifierReference[?Yield, ?Await]
CoverInitializedName[?Yield, ?Await]
PropertyName[?Yield, ?Await] : AssignmentExpression[+In, ?Yield, ?Await]
MethodDefinition[?Yield, ?Await]
... AssignmentExpression[+In, ?Yield, ?Await]

PropertyName[Yield, Await] :
LiteralPropertyName
ComputedPropertyName[?Yield, ?Await]

LiteralPropertyName :
IdentifierName
StringLiteral
NumericLiteral

ComputedPropertyName[Yield, Await] :
[AssignmentExpression[+In, ?Yield, ?Await]]

13.2.5 Object Initializer

Syntax

260 © Ecma International 2023

a. Perform ? ArrayAccumulation of Elision with arguments array and 0.
3. Return array.

ArrayLiteral : [ElementList]

1. Let array be ! ArrayCreate(0).
2. Perform ? ArrayAccumulation of ElementList with arguments array and 0.
3. Return array.

ArrayLiteral : [ElementList , Elisionopt]

1. Let array be ! ArrayCreate(0).
2. Let nextIndex be ? ArrayAccumulation of ElementList with arguments array and 0.
3. If Elision is present, then

a. Perform ? ArrayAccumulation of Elision with arguments array and nextIndex.
4. Return array.

NOTE 1 An object initializer is an expression describing the initialization of an Object, written in
a form resembling a literal. It is a list of zero or more pairs of property keys and
associated values, enclosed in curly brackets. The values need not be literals; they are
evaluated each time the object initializer is evaluated.

ObjectLiteral[Yield, Await] :
{ }
{ PropertyDefinitionList[?Yield, ?Await] }
{ PropertyDefinitionList[?Yield, ?Await] , }

PropertyDefinitionList[Yield, Await] :
PropertyDefinition[?Yield, ?Await]
PropertyDefinitionList[?Yield, ?Await] , PropertyDefinition[?Yield, ?Await]

PropertyDefinition[Yield, Await] :
IdentifierReference[?Yield, ?Await]
CoverInitializedName[?Yield, ?Await]
PropertyName[?Yield, ?Await] : AssignmentExpression[+In, ?Yield, ?Await]
MethodDefinition[?Yield, ?Await]
... AssignmentExpression[+In, ?Yield, ?Await]

PropertyName[Yield, Await] :
LiteralPropertyName
ComputedPropertyName[?Yield, ?Await]

LiteralPropertyName :
IdentifierName
StringLiteral
NumericLiteral

ComputedPropertyName[Yield, Await] :
[AssignmentExpression[+In, ?Yield, ?Await]]

13.2.5 Object Initializer

Syntax

260 © Ecma International 2023

a. Perform ? ArrayAccumulation of Elision with arguments array and 0.
3. Return array.

ArrayLiteral : [ElementList]

1. Let array be ! ArrayCreate(0).
2. Perform ? ArrayAccumulation of ElementList with arguments array and 0.
3. Return array.

ArrayLiteral : [ElementList , Elisionopt]

1. Let array be ! ArrayCreate(0).
2. Let nextIndex be ? ArrayAccumulation of ElementList with arguments array and 0.
3. If Elision is present, then

a. Perform ? ArrayAccumulation of Elision with arguments array and nextIndex.
4. Return array.

NOTE 1 An object initializer is an expression describing the initialization of an Object, written in
a form resembling a literal. It is a list of zero or more pairs of property keys and
associated values, enclosed in curly brackets. The values need not be literals; they are
evaluated each time the object initializer is evaluated.

ObjectLiteral[Yield, Await] :
{ }
{ PropertyDefinitionList[?Yield, ?Await] }
{ PropertyDefinitionList[?Yield, ?Await] , }

PropertyDefinitionList[Yield, Await] :
PropertyDefinition[?Yield, ?Await]
PropertyDefinitionList[?Yield, ?Await] , PropertyDefinition[?Yield, ?Await]

PropertyDefinition[Yield, Await] :
IdentifierReference[?Yield, ?Await]
CoverInitializedName[?Yield, ?Await]
PropertyName[?Yield, ?Await] : AssignmentExpression[+In, ?Yield, ?Await]
MethodDefinition[?Yield, ?Await]
... AssignmentExpression[+In, ?Yield, ?Await]

PropertyName[Yield, Await] :
LiteralPropertyName
ComputedPropertyName[?Yield, ?Await]

LiteralPropertyName :
IdentifierName
StringLiteral
NumericLiteral

ComputedPropertyName[Yield, Await] :
[AssignmentExpression[+In, ?Yield, ?Await]]

13.2.5 Object Initializer

Syntax

260 © Ecma International 2023

a. Perform ? ArrayAccumulation of Elision with arguments array and 0.
3. Return array.

ArrayLiteral : [ElementList]

1. Let array be ! ArrayCreate(0).
2. Perform ? ArrayAccumulation of ElementList with arguments array and 0.
3. Return array.

ArrayLiteral : [ElementList , Elisionopt]

1. Let array be ! ArrayCreate(0).
2. Let nextIndex be ? ArrayAccumulation of ElementList with arguments array and 0.
3. If Elision is present, then

a. Perform ? ArrayAccumulation of Elision with arguments array and nextIndex.
4. Return array.

NOTE 1 An object initializer is an expression describing the initialization of an Object, written in
a form resembling a literal. It is a list of zero or more pairs of property keys and
associated values, enclosed in curly brackets. The values need not be literals; they are
evaluated each time the object initializer is evaluated.

ObjectLiteral[Yield, Await] :
{ }
{ PropertyDefinitionList[?Yield, ?Await] }
{ PropertyDefinitionList[?Yield, ?Await] , }

PropertyDefinitionList[Yield, Await] :
PropertyDefinition[?Yield, ?Await]
PropertyDefinitionList[?Yield, ?Await] , PropertyDefinition[?Yield, ?Await]

PropertyDefinition[Yield, Await] :
IdentifierReference[?Yield, ?Await]
CoverInitializedName[?Yield, ?Await]
PropertyName[?Yield, ?Await] : AssignmentExpression[+In, ?Yield, ?Await]
MethodDefinition[?Yield, ?Await]
... AssignmentExpression[+In, ?Yield, ?Await]

PropertyName[Yield, Await] :
LiteralPropertyName
ComputedPropertyName[?Yield, ?Await]

LiteralPropertyName :
IdentifierName
StringLiteral
NumericLiteral

ComputedPropertyName[Yield, Await] :
[AssignmentExpression[+In, ?Yield, ?Await]]

13.2.5 Object Initializer

Syntax

260 © Ecma International 2023

a. Perform ? ArrayAccumulation of Elision with arguments array and 0.
3. Return array.

ArrayLiteral : [ElementList]

1. Let array be ! ArrayCreate(0).
2. Perform ? ArrayAccumulation of ElementList with arguments array and 0.
3. Return array.

ArrayLiteral : [ElementList , Elisionopt]

1. Let array be ! ArrayCreate(0).
2. Let nextIndex be ? ArrayAccumulation of ElementList with arguments array and 0.
3. If Elision is present, then

a. Perform ? ArrayAccumulation of Elision with arguments array and nextIndex.
4. Return array.

NOTE 1 An object initializer is an expression describing the initialization of an Object, written in
a form resembling a literal. It is a list of zero or more pairs of property keys and
associated values, enclosed in curly brackets. The values need not be literals; they are
evaluated each time the object initializer is evaluated.

ObjectLiteral[Yield, Await] :
{ }
{ PropertyDefinitionList[?Yield, ?Await] }
{ PropertyDefinitionList[?Yield, ?Await] , }

PropertyDefinitionList[Yield, Await] :
PropertyDefinition[?Yield, ?Await]
PropertyDefinitionList[?Yield, ?Await] , PropertyDefinition[?Yield, ?Await]

PropertyDefinition[Yield, Await] :
IdentifierReference[?Yield, ?Await]
CoverInitializedName[?Yield, ?Await]
PropertyName[?Yield, ?Await] : AssignmentExpression[+In, ?Yield, ?Await]
MethodDefinition[?Yield, ?Await]
... AssignmentExpression[+In, ?Yield, ?Await]

PropertyName[Yield, Await] :
LiteralPropertyName
ComputedPropertyName[?Yield, ?Await]

LiteralPropertyName :
IdentifierName
StringLiteral
NumericLiteral

ComputedPropertyName[Yield, Await] :
[AssignmentExpression[+In, ?Yield, ?Await]]

13.2.5 Object Initializer

Syntax

Semantics

,
JS

[],<latexit sha1_base64="6RP8+7doe9Iuo5HC3XVh3eT6xTc=">AAACFnicbVDLSsNAFJ3UV62vqks3g0VwVRKR6rLoxmUF+4A2lMlk0g6dzISZGyGGfoQ70X9xJ27d+iuuTNosbOuBC4dz7p0793iR4AZs+9sqra1vbG6Vtys7u3v7B9XDo45RsaasTZVQuucRwwSXrA0cBOtFmpHQE6zrTW5zv/vItOFKPkASMTckI8kDTglkUndAfQWmMqzW7Lo9A14lTkFqqEBrWP0Z+IrGIZNABTGm79gRuCnRwKlg08ogNiwidEJGrJ9RSUJm3HT23Sk+yxQfB0pnJQHP1L8TKQmNSUIv6wwJjM2yl4v/egZCohPtL+2H4NpNuYxiYJLO1wexwKBwngj2uWYURJIRQjXPLsB0TDShkOW28D7wydM0D8tZjmaVdC7qTqPeuL+sNW+K2MroBJ2ic+SgK9REd6iF2oiiCXpGr+jNerHerQ/rc95asoqZY7QA6+sXVlugZA==</latexit>· · ·

syntax def ArrayLiteral[2].Evaluation(
 this, ElementList, Elision
){
 let array = [! (ArrayCreate 0)]
 let nextIndex =
 [? (ElementList.ArrayAccumulation array 0)]
 if (! (= Elision absent))
 [? (Elision.ArrayAccumulation array nextIndex)]
 return array
}

118 compile rules for
steps in abstract algorithms

IRES function for ArrayLiteral in ES13

Abstract algorithm for ArrayLiteral in ES13

/ 5719

S = // statements
 Let ~ V ~ be ~ E ~ . ^^ ILet

E = // expressions
 ! E ^^ EAbruptCheck |
 str ~ (~ E ~) ^^ ECall |
 num ^^ _.toDoub le

Simplified compile rules

Parsing rules Conversion Rules

/ 5719

S = // statements
 Let ~ V ~ be ~ E ~ . ^^ ILet

E = // expressions
 ! E ^^ EAbruptCheck |
 str ~ (~ E ~) ^^ ECall |
 num ^^ _.toDoub le

Simplified compile rules

Parsing rules Conversion Rules

/ 5719

S = // statements
 Let ~ V ~ be ~ E ~ . ^^ ILet

E = // expressions
 ! E ^^ EAbruptCheck |
 str ~ (~ E ~) ^^ ECall |
 num ^^ _.toDoub le

Simplified compile rules

Parsing rules Conversion Rules

S = // statements
 Let ~ V ~ be ~ E ~ . ^^ ILet

E = // expressions
 ! E ^^ EAbruptCheck |
 str ~ (~ E ~) ^^ ECall |
 num ^^ _.toDoub le

Simplified compile rules

Parsing rules Conversion Rules

/ 5719

S = // statements
 Let ~ V ~ be ~ E ~ . ^^ ILet

E = // expressions
 ! E ^^ EAbruptCheck |
 str ~ (~ E ~) ^^ ECall |
 num ^^ _.toDoub le

Simplified compile rules

Parsing rules Conversion Rules

S = // statements
 Let ~ V ~ be ~ E ~ . ^^ ILet

E = // expressions
 ! E ^^ EAbruptCheck |
 str ~ (~ E ~) ^^ ECall |
 num ^^ _.toDoub le

Simplified compile rules

Parsing rules Conversion Rules
let array = [! (ArrayCreate 0)]

ILet(array, EAbruptCheck(
 ECall("ArrayCreate", 0)))

S = // statements
 Let ~ V ~ be ~ E ~ . ^^ ILet

E = // expressions
 ! E ^^ EAbruptCheck |
 str ~ (~ E ~) ^^ ECall |
 num ^^ _.toDouble

Simplified compile rules

Parsing rules Conversion Rules

/ 5720

JISET - Evaluation ≈ 96% 
Compiled

/ 5720

JISET - Evaluation

Complete
Missing Parts

≈ 96% 
Compiled

/ 5720

JISET - Evaluation

Complete
Missing Parts

• Test262 
(Official Conformance Tests)

- 18,556 applicable tests

• Parsing tests

- Passed all 18,556 tests

• Evaluation Tests

- Passed all 18,556 tests

Passed
All Tests

≈ 96% 
Compiled

/ 5721

ECMA-262
(JS Spec.) JISET JSAVER

JEST

JSTAR

Mechanized
Specification

Mechanized Spec.
Extraction

Conformance
Test

Specification
Type Errors

Conformance
Tests

Static
Analyzer

JavaScript
Engines

ASE 2020

ICSE

Derivation
Static

FSE

FS/FCPS-
Coverage

Feature-Sensitive
Coverage

PLDI

Specification
Type Analysis

ASE 2021
[ASE 2021] J. Park et al., “JSTAR: JavaScript Specification Type Analyzer using Refinement”

/ 5722

JSTAR - Specification Type Analysis

https://github.com/tc39/ecma262/tree/575149cfd77aebcf3a129e165bd89e14caafc31c

<latexit sha1_base64="CpgcZA9NrA3nNTWbnfMCi1QIkqQ=">AAACFXicbVC7TsMwFHXKq5RXgZElokJiqhKECmMFC2OR6ENqo8pxnNbUjiP7plKI+g9sCP6FDbEy8ytMuG0G2nKkKx2dc6+v7/FjzjQ4zrdVWFvf2Nwqbpd2dvf2D8qHRy0tE0Vok0guVcfHmnIW0SYw4LQTK4qFz2nbH91O/faYKs1k9ABpTD2BBxELGcFgpFZvHEjQ/XLFqToz2KvEzUkF5Wj0yz+9QJJE0AgIx1p3XScGL8MKGOF0UuolmsaYjPCAdg2NsKDay2a/ndhnRgnsUCpTEdgz9e9EhoXWqfBNp8Aw1MveVPzX0yCwSlWwtB/Cay9jUZwAjch8fZhwG6Q9DcQOmKIEeGoIJoqZC2wyxAoTMLEtvA9s9DQpmbDc5WhWSeui6taqtfvLSv0mj62ITtApOkcuukJ1dIcaqIkIekTP6BW9WS/Wu/Vhfc5bC1Y+c4wWYH39Aj4koGM=</latexit> . . .

https://github.com/tc39/ecma262/tree/575149cfd77aebcf3a129e165bd89e14caafc31c

/ 5722

JSTAR - Specification Type Analysis
String | Boolean | Number | Object | ...

https://github.com/tc39/ecma262/tree/575149cfd77aebcf3a129e165bd89e14caafc31c

<latexit sha1_base64="CpgcZA9NrA3nNTWbnfMCi1QIkqQ=">AAACFXicbVC7TsMwFHXKq5RXgZElokJiqhKECmMFC2OR6ENqo8pxnNbUjiP7plKI+g9sCP6FDbEy8ytMuG0G2nKkKx2dc6+v7/FjzjQ4zrdVWFvf2Nwqbpd2dvf2D8qHRy0tE0Vok0guVcfHmnIW0SYw4LQTK4qFz2nbH91O/faYKs1k9ABpTD2BBxELGcFgpFZvHEjQ/XLFqToz2KvEzUkF5Wj0yz+9QJJE0AgIx1p3XScGL8MKGOF0UuolmsaYjPCAdg2NsKDay2a/ndhnRgnsUCpTEdgz9e9EhoXWqfBNp8Aw1MveVPzX0yCwSlWwtB/Cay9jUZwAjch8fZhwG6Q9DcQOmKIEeGoIJoqZC2wyxAoTMLEtvA9s9DQpmbDc5WhWSeui6taqtfvLSv0mj62ITtApOkcuukJ1dIcaqIkIekTP6BW9WS/Wu/Vhfc5bC1Y+c4wWYH39Aj4koGM=</latexit> . . .

https://github.com/tc39/ecma262/tree/575149cfd77aebcf3a129e165bd89e14caafc31c

/ 5722

JSTAR - Specification Type Analysis
String | Boolean | Number | Object | ...

Number | Exception

https://github.com/tc39/ecma262/tree/575149cfd77aebcf3a129e165bd89e14caafc31c

<latexit sha1_base64="CpgcZA9NrA3nNTWbnfMCi1QIkqQ=">AAACFXicbVC7TsMwFHXKq5RXgZElokJiqhKECmMFC2OR6ENqo8pxnNbUjiP7plKI+g9sCP6FDbEy8ytMuG0G2nKkKx2dc6+v7/FjzjQ4zrdVWFvf2Nwqbpd2dvf2D8qHRy0tE0Vok0guVcfHmnIW0SYw4LQTK4qFz2nbH91O/faYKs1k9ABpTD2BBxELGcFgpFZvHEjQ/XLFqToz2KvEzUkF5Wj0yz+9QJJE0AgIx1p3XScGL8MKGOF0UuolmsaYjPCAdg2NsKDay2a/ndhnRgnsUCpTEdgz9e9EhoXWqfBNp8Aw1MveVPzX0yCwSlWwtB/Cay9jUZwAjch8fZhwG6Q9DcQOmKIEeGoIJoqZC2wyxAoTMLEtvA9s9DQpmbDc5WhWSeui6taqtfvLSv0mj62ITtApOkcuukJ1dIcaqIkIekTP6BW9WS/Wu/Vhfc5bC1Y+c4wWYH39Aj4koGM=</latexit> . . .

https://github.com/tc39/ecma262/tree/575149cfd77aebcf3a129e165bd89e14caafc31c

/ 5722

JSTAR - Specification Type Analysis
String | Boolean | Number | Object | ...

Number Number | Exception

https://github.com/tc39/ecma262/tree/575149cfd77aebcf3a129e165bd89e14caafc31c

<latexit sha1_base64="CpgcZA9NrA3nNTWbnfMCi1QIkqQ=">AAACFXicbVC7TsMwFHXKq5RXgZElokJiqhKECmMFC2OR6ENqo8pxnNbUjiP7plKI+g9sCP6FDbEy8ytMuG0G2nKkKx2dc6+v7/FjzjQ4zrdVWFvf2Nwqbpd2dvf2D8qHRy0tE0Vok0guVcfHmnIW0SYw4LQTK4qFz2nbH91O/faYKs1k9ABpTD2BBxELGcFgpFZvHEjQ/XLFqToz2KvEzUkF5Wj0yz+9QJJE0AgIx1p3XScGL8MKGOF0UuolmsaYjPCAdg2NsKDay2a/ndhnRgnsUCpTEdgz9e9EhoXWqfBNp8Aw1MveVPzX0yCwSlWwtB/Cay9jUZwAjch8fZhwG6Q9DcQOmKIEeGoIJoqZC2wyxAoTMLEtvA9s9DQpmbDc5WhWSeui6taqtfvLSv0mj62ITtApOkcuukJ1dIcaqIkIekTP6BW9WS/Wu/Vhfc5bC1Y+c4wWYH39Aj4koGM=</latexit> . . .

https://github.com/tc39/ecma262/tree/575149cfd77aebcf3a129e165bd89e14caafc31c

/ 5722

JSTAR - Specification Type Analysis
String | Boolean | Number | Object | ...

Number Number | Exception

Type Error:
`<`, `>`, and `>=`

are numeric operators

https://github.com/tc39/ecma262/tree/575149cfd77aebcf3a129e165bd89e14caafc31c

<latexit sha1_base64="CpgcZA9NrA3nNTWbnfMCi1QIkqQ=">AAACFXicbVC7TsMwFHXKq5RXgZElokJiqhKECmMFC2OR6ENqo8pxnNbUjiP7plKI+g9sCP6FDbEy8ytMuG0G2nKkKx2dc6+v7/FjzjQ4zrdVWFvf2Nwqbpd2dvf2D8qHRy0tE0Vok0guVcfHmnIW0SYw4LQTK4qFz2nbH91O/faYKs1k9ABpTD2BBxELGcFgpFZvHEjQ/XLFqToz2KvEzUkF5Wj0yz+9QJJE0AgIx1p3XScGL8MKGOF0UuolmsaYjPCAdg2NsKDay2a/ndhnRgnsUCpTEdgz9e9EhoXWqfBNp8Aw1MveVPzX0yCwSlWwtB/Cay9jUZwAjch8fZhwG6Q9DcQOmKIEeGoIJoqZC2wyxAoTMLEtvA9s9DQpmbDc5WhWSeui6taqtfvLSv0mj62ITtApOkcuukJ1dIcaqIkIekTP6BW9WS/Wu/Vhfc5bC1Y+c4wWYH39Aj4koGM=</latexit> . . .

https://github.com/tc39/ecma262/tree/575149cfd77aebcf3a129e165bd89e14caafc31c

/ 5722

JSTAR - Specification Type Analysis
String | Boolean | Number | Object | ...

Number Number | Exception

Math.round(true) = ???
Math.round(false) = ???

Type Error:
`<`, `>`, and `>=`

are numeric operators

https://github.com/tc39/ecma262/tree/575149cfd77aebcf3a129e165bd89e14caafc31c

<latexit sha1_base64="CpgcZA9NrA3nNTWbnfMCi1QIkqQ=">AAACFXicbVC7TsMwFHXKq5RXgZElokJiqhKECmMFC2OR6ENqo8pxnNbUjiP7plKI+g9sCP6FDbEy8ytMuG0G2nKkKx2dc6+v7/FjzjQ4zrdVWFvf2Nwqbpd2dvf2D8qHRy0tE0Vok0guVcfHmnIW0SYw4LQTK4qFz2nbH91O/faYKs1k9ABpTD2BBxELGcFgpFZvHEjQ/XLFqToz2KvEzUkF5Wj0yz+9QJJE0AgIx1p3XScGL8MKGOF0UuolmsaYjPCAdg2NsKDay2a/ndhnRgnsUCpTEdgz9e9EhoXWqfBNp8Aw1MveVPzX0yCwSlWwtB/Cay9jUZwAjch8fZhwG6Q9DcQOmKIEeGoIJoqZC2wyxAoTMLEtvA9s9DQpmbDc5WhWSeui6taqtfvLSv0mj62ITtApOkcuukJ1dIcaqIkIekTP6BW9WS/Wu/Vhfc5bC1Y+c4wWYH39Aj4koGM=</latexit> . . .

https://github.com/tc39/ecma262/tree/575149cfd77aebcf3a129e165bd89e14caafc31c

/ 5722

JSTAR - Specification Type Analysis
String | Boolean | Number | Object | ...

Number Number | Exception

Math.round(true) = ???
Math.round(false) = ???

Type Error:
`<`, `>`, and `>=`

are numeric operators

https://github.com/tc39/ecma262/tree/575149cfd77aebcf3a129e165bd89e14caafc31c

Math.round(true) = 0
Math.round(false) = 1Fixed

<latexit sha1_base64="CpgcZA9NrA3nNTWbnfMCi1QIkqQ=">AAACFXicbVC7TsMwFHXKq5RXgZElokJiqhKECmMFC2OR6ENqo8pxnNbUjiP7plKI+g9sCP6FDbEy8ytMuG0G2nKkKx2dc6+v7/FjzjQ4zrdVWFvf2Nwqbpd2dvf2D8qHRy0tE0Vok0guVcfHmnIW0SYw4LQTK4qFz2nbH91O/faYKs1k9ABpTD2BBxELGcFgpFZvHEjQ/XLFqToz2KvEzUkF5Wj0yz+9QJJE0AgIx1p3XScGL8MKGOF0UuolmsaYjPCAdg2NsKDay2a/ndhnRgnsUCpTEdgz9e9EhoXWqfBNp8Aw1MveVPzX0yCwSlWwtB/Cay9jUZwAjch8fZhwG6Q9DcQOmKIEeGoIJoqZC2wyxAoTMLEtvA9s9DQpmbDc5WhWSeui6taqtfvLSv0mj62ITtApOkcuukJ1dIcaqIkIekTP6BW9WS/Wu/Vhfc5bC1Y+c4wWYH39Aj4koGM=</latexit> . . .

https://github.com/tc39/ecma262/tree/575149cfd77aebcf3a129e165bd89e14caafc31c

/ 5723

JSTAR

Abstract
Transfer Func.

Initial
Abstract States

Type Analysis
Result

Specification
Type Errors

(JavaScript Specification Type Analyzer using Refinement)

Analysis
Initializer

Mechanized
Specification

Reference
Checker

Arity
Checker

Assertion
Checker

Operand
Checker

JSTAR

/ 5723

JSTAR

Abstract
Transfer Func.

Initial
Abstract States

Type Analysis
Result

Specification
Type Errors

(JavaScript Specification Type Analyzer using Refinement)

Analysis
Initializer

Mechanized
Specification

Reference
Checker

Arity
Checker

Assertion
Checker

Operand
Checker

JSTAR

Precision ↑

1. Type Sensitivity

2. Condition-based
Refinement

/ 5724

JSTAR - Type Sensitivity

String, Number,
Null, Symbol,

...

ToNumber (x)

Number,
Exception

/ 5724

JSTAR - Type Sensitivity

String, Number,
Null, Symbol,

...

ToNumber (x)

Number,
Exception

Type
Sensitivity

String

Number

...

Number

Number

Null

+0

Symbol

Exception

/ 5725

JSTAR - Condition-based Refinement

TABLE I: Type-related specification bugs fixed by pull re-
quests for the recent three years from 2018 to 2021

Category Bug Kind # Pull Requests # Bug Fixes

Reference
UnknownVar 5 12

DuplicatedVar 2 12

Arity MissingParam 2 4

Assertion Assertion 4 5

Operand
NoNumber 1 2

Abrupt 5 6

Total 19 41

refine(!e, b)(�]) = refine(e,¬b)(�])

refine(e0 || e1, b)(�]) =

⇢
�]
0 t �]

1 if b
�]
0 u �]

1 if ¬b

refine(e0 && e1, b)(�]) =

⇢
�]
0 u �]

1 if b
�]
0 t �]

1 if ¬b
refine(x.Type == cnormal, #t)(�

]) = �][x 7! ⌧]x u normal(T)]
refine(x.Type == cnormal, #f)(�

]) = �][x 7! ⌧]x u {abrupt}]
refine(x == e, #t)(�]) = �][x 7! ⌧]x u ⌧]e]
refine(x == e, #f)(�]) = �][x 7! ⌧]x \ b⌧]ec]
refine(x : ⌧, #t)(�]) = �][x 7! ⌧]x u {⌧}]
refine(x : ⌧, #f)(�]) = �][x 7! ⌧]x \ {⌧ 0 | ⌧ 0 <: ⌧}]

refine(e, b)(�]) = �]

where �]
j = refine(ej , b)(�]) for j = 0, 1, ⌧]e = JeK]e(�]),

and b⌧]c returns {⌧} if ⌧] denotes a singleton type ⌧ , or returns
?, otherwise.

IV. BUG DETECTOR

We develop a bug detector to statically detect type-related
specification bugs in ECMAScript using an augmented ab-
stract transfer function F]

a with additional checkers. Before
implementing checkers, we manually investigated pull requests
for the recent three years from 2018 to 2021 to identify
important bugs to detect. As summarized in Table I, we found
19 pull requests that fixed 41 type-related specification bugs,
and classified the bugs into four categories with six kinds.
To detect them automatically, we implement four checkers: a
reference checker, an arity checker, an assertion checker, and
an operand checker.

A. Reference Checker

ECMAScript abstract algorithms dynamically introduce
variables in any contexts. A reference bug occurs when trying
to access variables not yet defined (UnknownVar) or to redefine
variables already defined (DuplicatedVar). According to our
manual investigation of the pull requests, the reference bug
is the most prevalent type-related specification bugs; five pull
requests fixed 12 unknown variable bugs and two pull requests
fixed 12 duplicated variable declaration bugs. We implement a
reference checker by adding additional checks to the abstract
semantics of variable lookups and variable declarations as
follows:

JxK]e(�]) =

⇢
unknown variable x if JxK]r(�]) = {?}
· · · otherwise

Jlet x = eK]i(l , ⌧)(d]) =
⇢

already defined variable x if ⌧] = {#t}
· · · otherwise

where ⌧] = Jx?K]e(d](l , ⌧))

If the abstract semantics of a variable lookup for x is a
singleton {?}, x is always an unknown variable. For example,
consider the syntax-directed algorithm in Figure 2(a). Since
the GetReferencedName algorithm is removed, the variable
GetReferencedName does not exist in abstract environments
and its lookup returns {?}. Thus, the reference checker reports
the unknown variable bug for GetReferencedName. For
duplicated variable declarations, the reference checker utilizes
the abstract semantics of the existence check Jx?K]e to see
whether the variable x of each variable declaration is already
defined.

B. Arity Checker

The arity of a function f = def f(p1, · · · ,pn,[· · · , pm])l
is an interval [n,m] where n and m� n denote the numbers
of normal and optional parameters, respectively. In function
invocations, an arity bug occurs when the number of argu-
ments does not match with the function arity (MissingParam).
In the last three years, two pull requests fixed four missing
parameter bugs. The arity checker detects them by adding an
additional check to the abstract semantics of the function call
instruction:

Jx = (e e1 · · · ek)K]i(l , ⌧)(d]) =⇢
missing parameters pk+1, · · · , pnf

if 9f 2 ⌧]. s.t. k < nf

· · · otherwise
where f = def f(p1, · · · , pnf

, [· · · , pmf])l ^
⌧] = JeK]e(d](l , ⌧)).

For each function f in the abstract semantics of the function
expression e, the arity checker compares the number of
arguments with the arity of f to detect missing parameters.
For example, consider the syntax-directed algorithm in Fig-
ure 2(b). The algorithm invocation on line 2 is compiled to
the following function call instruction:

x = (formals.IteratorBindingInitialization formals)

using a temporary variable x. Because it passes only a single
argument formals even though the function arity is [3, 3], the
arity checker reports missing parameter bugs for two additional
parameters iteratorRecord and environment.

C. Assertion Checker

An assertion failure (Assertion) is a specification bug that
occurs when the condition of an assertion instruction is not
true. We found four pull requests that fixed five assertion
failures. The assertion checker detects them using an additional
check in the abstract semantics of the assertion instruction:

Jassert eK]i(l , ⌧)(d]) =
⇢

assertion failure e if {#t} 6v ⌧]

· · · otherwise
where ⌧] = JeK]e(d](l , ⌧))

It checks whether the abstract semantics of the condi-
tion expression e subsumes {#t}. For example, consider
the syntax-directed algorithm in Figure 2(c). The parameter
environment of this algorithm has an environment record or
undefined. Since type sensitivity divides the abstract types

x: number
#t #f

x: number v
 boolean v
 string

x: number v
 boolean v
 string

x: number v
 boolean v
 string

/ 5725

JSTAR - Condition-based Refinement

TABLE I: Type-related specification bugs fixed by pull re-
quests for the recent three years from 2018 to 2021

Category Bug Kind # Pull Requests # Bug Fixes

Reference
UnknownVar 5 12

DuplicatedVar 2 12

Arity MissingParam 2 4

Assertion Assertion 4 5

Operand
NoNumber 1 2

Abrupt 5 6

Total 19 41

refine(!e, b)(�]) = refine(e,¬b)(�])

refine(e0 || e1, b)(�]) =

⇢
�]
0 t �]

1 if b
�]
0 u �]

1 if ¬b

refine(e0 && e1, b)(�]) =

⇢
�]
0 u �]

1 if b
�]
0 t �]

1 if ¬b
refine(x.Type == cnormal, #t)(�

]) = �][x 7! ⌧]x u normal(T)]
refine(x.Type == cnormal, #f)(�

]) = �][x 7! ⌧]x u {abrupt}]
refine(x == e, #t)(�]) = �][x 7! ⌧]x u ⌧]e]
refine(x == e, #f)(�]) = �][x 7! ⌧]x \ b⌧]ec]
refine(x : ⌧, #t)(�]) = �][x 7! ⌧]x u {⌧}]
refine(x : ⌧, #f)(�]) = �][x 7! ⌧]x \ {⌧ 0 | ⌧ 0 <: ⌧}]

refine(e, b)(�]) = �]

where �]
j = refine(ej , b)(�]) for j = 0, 1, ⌧]e = JeK]e(�]),

and b⌧]c returns {⌧} if ⌧] denotes a singleton type ⌧ , or returns
?, otherwise.

IV. BUG DETECTOR

We develop a bug detector to statically detect type-related
specification bugs in ECMAScript using an augmented ab-
stract transfer function F]

a with additional checkers. Before
implementing checkers, we manually investigated pull requests
for the recent three years from 2018 to 2021 to identify
important bugs to detect. As summarized in Table I, we found
19 pull requests that fixed 41 type-related specification bugs,
and classified the bugs into four categories with six kinds.
To detect them automatically, we implement four checkers: a
reference checker, an arity checker, an assertion checker, and
an operand checker.

A. Reference Checker

ECMAScript abstract algorithms dynamically introduce
variables in any contexts. A reference bug occurs when trying
to access variables not yet defined (UnknownVar) or to redefine
variables already defined (DuplicatedVar). According to our
manual investigation of the pull requests, the reference bug
is the most prevalent type-related specification bugs; five pull
requests fixed 12 unknown variable bugs and two pull requests
fixed 12 duplicated variable declaration bugs. We implement a
reference checker by adding additional checks to the abstract
semantics of variable lookups and variable declarations as
follows:

JxK]e(�]) =

⇢
unknown variable x if JxK]r(�]) = {?}
· · · otherwise

Jlet x = eK]i(l , ⌧)(d]) =
⇢

already defined variable x if ⌧] = {#t}
· · · otherwise

where ⌧] = Jx?K]e(d](l , ⌧))

If the abstract semantics of a variable lookup for x is a
singleton {?}, x is always an unknown variable. For example,
consider the syntax-directed algorithm in Figure 2(a). Since
the GetReferencedName algorithm is removed, the variable
GetReferencedName does not exist in abstract environments
and its lookup returns {?}. Thus, the reference checker reports
the unknown variable bug for GetReferencedName. For
duplicated variable declarations, the reference checker utilizes
the abstract semantics of the existence check Jx?K]e to see
whether the variable x of each variable declaration is already
defined.

B. Arity Checker

The arity of a function f = def f(p1, · · · ,pn,[· · · , pm])l
is an interval [n,m] where n and m� n denote the numbers
of normal and optional parameters, respectively. In function
invocations, an arity bug occurs when the number of argu-
ments does not match with the function arity (MissingParam).
In the last three years, two pull requests fixed four missing
parameter bugs. The arity checker detects them by adding an
additional check to the abstract semantics of the function call
instruction:

Jx = (e e1 · · · ek)K]i(l , ⌧)(d]) =⇢
missing parameters pk+1, · · · , pnf

if 9f 2 ⌧]. s.t. k < nf

· · · otherwise
where f = def f(p1, · · · , pnf

, [· · · , pmf])l ^
⌧] = JeK]e(d](l , ⌧)).

For each function f in the abstract semantics of the function
expression e, the arity checker compares the number of
arguments with the arity of f to detect missing parameters.
For example, consider the syntax-directed algorithm in Fig-
ure 2(b). The algorithm invocation on line 2 is compiled to
the following function call instruction:

x = (formals.IteratorBindingInitialization formals)

using a temporary variable x. Because it passes only a single
argument formals even though the function arity is [3, 3], the
arity checker reports missing parameter bugs for two additional
parameters iteratorRecord and environment.

C. Assertion Checker

An assertion failure (Assertion) is a specification bug that
occurs when the condition of an assertion instruction is not
true. We found four pull requests that fixed five assertion
failures. The assertion checker detects them using an additional
check in the abstract semantics of the assertion instruction:

Jassert eK]i(l , ⌧)(d]) =
⇢

assertion failure e if {#t} 6v ⌧]

· · · otherwise
where ⌧] = JeK]e(d](l , ⌧))

It checks whether the abstract semantics of the condi-
tion expression e subsumes {#t}. For example, consider
the syntax-directed algorithm in Figure 2(c). The parameter
environment of this algorithm has an environment record or
undefined. Since type sensitivity divides the abstract types

x: number
#t #f

x: number v
 boolean v
 string

x: number v
 boolean v
 string

x: number v
 boolean v
 string

/ 57

• Type analysis on 864 versions of ECMA-262 in 3 years

26

JSTAR - Evaluation
TABLE II: The analysis precision of JSTAR without refinement (no-refine), with refinement (refine), and their difference (�)

Checker Bug Kind Precision = (# True Bugs) / (# Detected Bugs)
no-refine refine �

Reference
UnknownVar 62 / 106 17 / 60 63 / 78 17 / 31 +1 / -28 / -29
DuplicatedVar 45 / 46 46 / 47 +1 / +1

Arity MissingParam 4 / 4 4 / 4 4 / 4 4 / 4 / /
Assertion Assertion 4 / 56 4 / 56 4 / 31 4 / 31 / -25 / -25

Operand
NoNumber 22 / 113 2 / 65 22 / 44 2 / 6 / -69 / -59
Abrupt 20 / 48 20 / 38 / -10

Total 92 / 279 (33.0%) 93 / 157 (59.2%) +1 / -122 (+26.3%)

(a) Life spans sorted by creation (b) The histogram of life spans

Fig. 7: Life spans of true bugs

A. Performance

Figure 6 shows the statistics of the type analysis using
JSTAR for 864 versions of ECMAScript: (a) the number of
analyzed functions, (b) the number of flow- and type-sensitive
views, (c) the number of worklist iterations, and (d) the analy-
sis time. For each version, JSTAR analyzed 1,696.6 functions
on average. Since ECMAScript has gradually evolved, it ana-
lyzed 1,491 functions for the first version in 2018 but analyzed
1,864 functions in the latest. JSTAR analyzes functions with
flow- and type-sensitive views. On average, each version has
92.0K views and each function has 54.1 views.

We measured the performance of JSTAR with the worklist
iteration number and the analysis time. For each version of
ECMAScript, JSTAR took 137.3 seconds with 301.6K worklist
iterations on average. The average analysis time is 8.0 seconds
for specification extraction (extract), 128.5 seconds for type
analysis (analyze), and 0.8 seconds for bug detection (detect).
The performance overhead is modest enough for JSTAR to be
integrated in the open development process of ECMAScript.

B. Precision

We measured the analysis precision with the ratio of true
bugs in the reported bugs by JSTAR. As summarized in the
refine column of Table II, the analysis precision is 59.2%; 93
out of 157 detected bugs are true bugs. The reference checker
detected the most bugs with 80.8% precision; 17 unknown
variables (UnknownVar) and 46 duplicated variable declara-
tions (DuplicatedVar) are true bugs. We found four missing
parameters (MissingParam) with 100.0% precision and four
assertion failures (Assertion) with 12.9% precision. Finally,
the operand checker detected two non-numeric operand bugs

(NoNumber) with 33.3% precision and 20 unchecked abrupt
completion bugs (Abrupt) with 52.6% precision.

To understand the impact of the detected true bugs, we
extended JSTAR to automatically extract when they are created
and resolved in the ECMAScript official repository. A bug is
created when it exists in a specific version but does not exist in
its previous version, and a bug is resolved vice versa. The life

span of a bug denotes the number of days between the created
date and the resolved date. Figure 7 illustrates the life spans of
true bugs; Figure 7(a) depicts the life spans sorted by creation
and Figure 7(b) depicts the histogram of the life spans in a
logarithmic scale. Among 93 true bugs, 49 bugs are inherited,
which means that they are created before 2018. Moreover, 14
bugs still exist in the latest ECMAScript, which are newly
detected by JSTAR. We discuss the details of 14 newly found
bugs in Section V-D. Even though we assume that 49 inherited
bugs are created on January 1, 2018, the average life span is
422.8 and the maximum life span is 1,164. All the bugs with
the maximum life span are inherited ones and they are all
newly detected.

We manually investigated 64 false-positive bugs to under-
stand why JSTAR detected them. Among them, 17 bugs are
due to extraction failure of mechanized specifications caused
by wrong writing styles. Because ECMAScript is written in
HTML, JISET extracts abstract algorithms using the emu-alg
HTML tag. Unfortunately, several abstract algorithms are
defined with the opening tag <emu-alg> but without the
closing tag </emu-alg>, which causes extraction failure of
mechanized specifications leading to false-positive bugs. The
remaining 47 bugs are due to imprecise analysis. We found
that 28 bugs are due to imprecise analysis of the conditions
of assertions and branches for specific function calls. For
example, consider the following algorithm step for GetValue:

Since IsPropertyReference always returns false when the
Base field of a given reference record is cunresolvable, the
field access V .[[Base]] cannot be cunresolvable on line 4.a.
However, because the type analysis does not compute such in-
formation, cunresolvable is also passed as the argument of
ToObject. We believe that an advanced refinement technique

59.2% 
Precision

93 Errors 
Detected

14 New Bugs
In ES2021

/ 5727

ECMA-262
(JS Spec.) JISET JSAVER

JEST

JSTAR

Mechanized
Specification

Mechanized Spec.
Extraction

Conformance
Test Synthesis

Specification
Type Errors

Conformance
Tests

Static
Analyzer

JavaScript
Engines

ASE 2020

ICSE 2021

Derivation
Static

FSE

FS/FCPS-
Coverage

Feature-Sensitive
Coverage

PLDI

Specification
Type Analysis

ASE 2021
[ICSE 2021] J. Park et al., “JEST: N +1-version Differential Testing of Both JavaScript Engines and Specification”

🏅 SIGSOFT 
Distinguished Paper

/ 5728

Conformance of JavaScript Engines

Conformance

Reference number
ECMA-123:2009

© Ecma International 2009

ECMA-262
11th Edition / June 2020

ECMAScript® 2020
Language Specification

ECMA-262
(JavaScript Spec.) JavaScript

Engines

QuickJS

/ 5728

Conformance of JavaScript Engines

Conformance

How?

Reference number
ECMA-123:2009

© Ecma International 2009

ECMA-262
11th Edition / June 2020

ECMAScript® 2020
Language Specification

ECMA-262
(JavaScript Spec.) JavaScript

Engines

QuickJS

/ 5728

Conformance of JavaScript Engines

Conformance

How?
Conformance Tests

Program Assertion

JS

Test262
(Official Test Suite)

Reference number
ECMA-123:2009

© Ecma International 2009

ECMA-262
11th Edition / June 2020

ECMAScript® 2020
Language Specification

ECMA-262
(JavaScript Spec.) JavaScript

Engines

QuickJS

/ 5728

Conformance of JavaScript Engines

Conformance

How?

4 + 2n
JS

TypeErrorExample:
Assertion

Conformance Tests

Program Assertion

JS

Test262
(Official Test Suite)

Reference number
ECMA-123:2009

© Ecma International 2009

ECMA-262
11th Edition / June 2020

ECMAScript® 2020
Language Specification

ECMA-262
(JavaScript Spec.) JavaScript

Engines

QuickJS

/ 5729

Problem - Manual Approach

Conformance

How?
Conformance Tests

Program Assertion

JS

4 + 2n
JS

TypeErrorExample:
Assertion

Test262
(Official Test Suite)

Manual

Reference number
ECMA-123:2009

© Ecma International 2009

ECMA-262
11th Edition / June 2020

ECMAScript® 2020
Language Specification

JavaScript
Engines

QuickJS

ECMA-262
(JavaScript Spec.)

/ 5730

N+1-version Differential Testing

Synthesize Test QuickJS

test

test

test

test

Reference number
ECMA-123:2009

© Ecma International 2009

ECMA-262
11th Edition / June 2020

ECMAScript® 2020
Language Specification

ECMA-262
(JavaScript Spec.) JavaScript

Engines

/ 5730

N+1-version Differential Testing

Synthesize Test QuickJS

test

test

test

test

Reference number
ECMA-123:2009

© Ecma International 2009

ECMA-262
11th Edition / June 2020

ECMAScript® 2020
Language Specification

ECMA-262
(JavaScript Spec.) JavaScript

Engines

/ 5730

N+1-version Differential Testing

Synthesize Test QuickJS

test

An engine bug in

test

test

test

Reference number
ECMA-123:2009

© Ecma International 2009

ECMA-262
11th Edition / June 2020

ECMAScript® 2020
Language Specification

ECMA-262
(JavaScript Spec.) JavaScript

Engines

/ 5731

N+1-version Differential Testing

TestSynthesize QuickJS

test

test

test

test

Reference number
ECMA-123:2009

© Ecma International 2009

ECMA-262
11th Edition / June 2020

ECMAScript® 2020
Language Specification

ECMA-262
(JavaScript Spec.) JavaScript

Engines

/ 5731

N+1-version Differential Testing

TestSynthesize QuickJS

test

test

test

test

Reference number
ECMA-123:2009

© Ecma International 2009

ECMA-262
11th Edition / June 2020

ECMAScript® 2020
Language Specification

ECMA-262
(JavaScript Spec.) JavaScript

Engines

/ 5731

N+1-version Differential Testing

A specification bug in ECMA-262

TestSynthesize QuickJS

test

test

test

test

Reference number
ECMA-123:2009

© Ecma International 2009

ECMA-262
11th Edition / June 2020

ECMAScript® 2020
Language Specification

ECMA-262
(JavaScript Spec.) JavaScript

Engines

/ 5731

N+1-version Differential Testing

A specification bug in ECMA-262

TestSynthesize QuickJS

test

test

test

test

A specification bug in ECMA-262
An engine bug in

Reference number
ECMA-123:2009

© Ecma International 2009

ECMA-262
11th Edition / June 2020

ECMAScript® 2020
Language Specification

ECMA-262
(JavaScript Spec.) JavaScript

Engines

/ 5732

JEST
(JavaScript Engines and Specification Tester)

Seed
Synthesizer

Mechanized
Specification

Program
MutatorJEST

Assertion
Injector

Program
Pool

Conformance
Tests

Program Pool

/ 5732

JEST
(JavaScript Engines and Specification Tester)

Seed
Synthesizer

Mechanized
Specification

Program
MutatorJEST

Assertion
Injector

Program
Pool

Conformance
Tests

Program Pool

let x = 42;

<latexit sha1_base64="PU5w8gjwK6QSKN4ydQ2SLdgYNKU=">AAACBHicbVDLSsNAFJ3UV62vqks3g0VwVRIRdVl047KCfUAbymQyaYfOTMLMjVBCt+7d6i+4E7f+h3/gZzhps7CtBy4czrmXe+8JEsENuO63U1pb39jcKm9Xdnb39g+qh0dtE6eashaNRay7ATFMcMVawEGwbqIZkYFgnWB8l/udJ6YNj9UjTBLmSzJUPOKUgJU6fRrGYCqDas2tuzPgVeIVpIYKNAfVn34Y01QyBVQQY3qem4CfEQ2cCjat9FPDEkLHZMh6lioimfGz2blTfGaVEEextqUAz9S/ExmRxkxkYDslgZFZ9nLxP6+XQnTjZ1wlKTBF54uiVGCIcf47DrlmFMTEEkI1t7diOiKaULAJLWwxIIme6HCaR+MtB7FK2hd176ruPVzWGrdFSGV0gk7ROfLQNWqge9RELUTRGL2gV/TmPDvvzofzOW8tOcXMMVqA8/ULtvKYug==</latexit>· · ·
<latexit sha1_base64="PU5w8gjwK6QSKN4ydQ2SLdgYNKU=">AAACBHicbVDLSsNAFJ3UV62vqks3g0VwVRIRdVl047KCfUAbymQyaYfOTMLMjVBCt+7d6i+4E7f+h3/gZzhps7CtBy4czrmXe+8JEsENuO63U1pb39jcKm9Xdnb39g+qh0dtE6eashaNRay7ATFMcMVawEGwbqIZkYFgnWB8l/udJ6YNj9UjTBLmSzJUPOKUgJU6fRrGYCqDas2tuzPgVeIVpIYKNAfVn34Y01QyBVQQY3qem4CfEQ2cCjat9FPDEkLHZMh6lioimfGz2blTfGaVEEextqUAz9S/ExmRxkxkYDslgZFZ9nLxP6+XQnTjZ1wlKTBF54uiVGCIcf47DrlmFMTEEkI1t7diOiKaULAJLWwxIIme6HCaR+MtB7FK2hd176ruPVzWGrdFSGV0gk7ROfLQNWqge9RELUTRGL2gV/TmPDvvzofzOW8tOcXMMVqA8/ULtvKYug==</latexit>· · ·

<latexit sha1_base64="PU5w8gjwK6QSKN4ydQ2SLdgYNKU=">AAACBHicbVDLSsNAFJ3UV62vqks3g0VwVRIRdVl047KCfUAbymQyaYfOTMLMjVBCt+7d6i+4E7f+h3/gZzhps7CtBy4czrmXe+8JEsENuO63U1pb39jcKm9Xdnb39g+qh0dtE6eashaNRay7ATFMcMVawEGwbqIZkYFgnWB8l/udJ6YNj9UjTBLmSzJUPOKUgJU6fRrGYCqDas2tuzPgVeIVpIYKNAfVn34Y01QyBVQQY3qem4CfEQ2cCjat9FPDEkLHZMh6lioimfGz2blTfGaVEEextqUAz9S/ExmRxkxkYDslgZFZ9nLxP6+XQnTjZ1wlKTBF54uiVGCIcf47DrlmFMTEEkI1t7diOiKaULAJLWwxIIme6HCaR+MtB7FK2hd176ruPVzWGrdFSGV0gk7ROfLQNWqge9RELUTRGL2gV/TmPDvvzofzOW8tOcXMMVqA8/ULtvKYug==</latexit>· · ·

Syntax-directed
Program Synthesis

/ 5732

JEST
(JavaScript Engines and Specification Tester)

Seed
Synthesizer

Mechanized
Specification

Program
MutatorJEST

Assertion
Injector

Program
Pool

Conformance
Tests

Program Pool

let x = 42;

<latexit sha1_base64="PU5w8gjwK6QSKN4ydQ2SLdgYNKU=">AAACBHicbVDLSsNAFJ3UV62vqks3g0VwVRIRdVl047KCfUAbymQyaYfOTMLMjVBCt+7d6i+4E7f+h3/gZzhps7CtBy4czrmXe+8JEsENuO63U1pb39jcKm9Xdnb39g+qh0dtE6eashaNRay7ATFMcMVawEGwbqIZkYFgnWB8l/udJ6YNj9UjTBLmSzJUPOKUgJU6fRrGYCqDas2tuzPgVeIVpIYKNAfVn34Y01QyBVQQY3qem4CfEQ2cCjat9FPDEkLHZMh6lioimfGz2blTfGaVEEextqUAz9S/ExmRxkxkYDslgZFZ9nLxP6+XQnTjZ1wlKTBF54uiVGCIcf47DrlmFMTEEkI1t7diOiKaULAJLWwxIIme6HCaR+MtB7FK2hd176ruPVzWGrdFSGV0gk7ROfLQNWqge9RELUTRGL2gV/TmPDvvzofzOW8tOcXMMVqA8/ULtvKYug==</latexit>· · ·
<latexit sha1_base64="PU5w8gjwK6QSKN4ydQ2SLdgYNKU=">AAACBHicbVDLSsNAFJ3UV62vqks3g0VwVRIRdVl047KCfUAbymQyaYfOTMLMjVBCt+7d6i+4E7f+h3/gZzhps7CtBy4czrmXe+8JEsENuO63U1pb39jcKm9Xdnb39g+qh0dtE6eashaNRay7ATFMcMVawEGwbqIZkYFgnWB8l/udJ6YNj9UjTBLmSzJUPOKUgJU6fRrGYCqDas2tuzPgVeIVpIYKNAfVn34Y01QyBVQQY3qem4CfEQ2cCjat9FPDEkLHZMh6lioimfGz2blTfGaVEEextqUAz9S/ExmRxkxkYDslgZFZ9nLxP6+XQnTjZ1wlKTBF54uiVGCIcf47DrlmFMTEEkI1t7diOiKaULAJLWwxIIme6HCaR+MtB7FK2hd176ruPVzWGrdFSGV0gk7ROfLQNWqge9RELUTRGL2gV/TmPDvvzofzOW8tOcXMMVqA8/ULtvKYug==</latexit>· · ·

<latexit sha1_base64="PU5w8gjwK6QSKN4ydQ2SLdgYNKU=">AAACBHicbVDLSsNAFJ3UV62vqks3g0VwVRIRdVl047KCfUAbymQyaYfOTMLMjVBCt+7d6i+4E7f+h3/gZzhps7CtBy4czrmXe+8JEsENuO63U1pb39jcKm9Xdnb39g+qh0dtE6eashaNRay7ATFMcMVawEGwbqIZkYFgnWB8l/udJ6YNj9UjTBLmSzJUPOKUgJU6fRrGYCqDas2tuzPgVeIVpIYKNAfVn34Y01QyBVQQY3qem4CfEQ2cCjat9FPDEkLHZMh6lioimfGz2blTfGaVEEextqUAz9S/ExmRxkxkYDslgZFZ9nLxP6+XQnTjZ1wlKTBF54uiVGCIcf47DrlmFMTEEkI1t7diOiKaULAJLWwxIIme6HCaR+MtB7FK2hd176ruPVzWGrdFSGV0gk7ROfLQNWqge9RELUTRGL2gV/TmPDvvzofzOW8tOcXMMVqA8/ULtvKYug==</latexit>· · ·

Syntax-directed
Program Synthesis

let x = 1 + 2;
<latexit sha1_base64="PU5w8gjwK6QSKN4ydQ2SLdgYNKU=">AAACBHicbVDLSsNAFJ3UV62vqks3g0VwVRIRdVl047KCfUAbymQyaYfOTMLMjVBCt+7d6i+4E7f+h3/gZzhps7CtBy4czrmXe+8JEsENuO63U1pb39jcKm9Xdnb39g+qh0dtE6eashaNRay7ATFMcMVawEGwbqIZkYFgnWB8l/udJ6YNj9UjTBLmSzJUPOKUgJU6fRrGYCqDas2tuzPgVeIVpIYKNAfVn34Y01QyBVQQY3qem4CfEQ2cCjat9FPDEkLHZMh6lioimfGz2blTfGaVEEextqUAz9S/ExmRxkxkYDslgZFZ9nLxP6+XQnTjZ1wlKTBF54uiVGCIcf47DrlmFMTEEkI1t7diOiKaULAJLWwxIIme6HCaR+MtB7FK2hd176ruPVzWGrdFSGV0gk7ROfLQNWqge9RELUTRGL2gV/TmPDvvzofzOW8tOcXMMVqA8/ULtvKYug==</latexit>· · ·

Specification
Coverage

/ 5732

JEST
(JavaScript Engines and Specification Tester)

Seed
Synthesizer

Mechanized
Specification

Program
MutatorJEST

Assertion
Injector

Program
Pool

Conformance
Tests

Program Pool

let x = 42;

<latexit sha1_base64="PU5w8gjwK6QSKN4ydQ2SLdgYNKU=">AAACBHicbVDLSsNAFJ3UV62vqks3g0VwVRIRdVl047KCfUAbymQyaYfOTMLMjVBCt+7d6i+4E7f+h3/gZzhps7CtBy4czrmXe+8JEsENuO63U1pb39jcKm9Xdnb39g+qh0dtE6eashaNRay7ATFMcMVawEGwbqIZkYFgnWB8l/udJ6YNj9UjTBLmSzJUPOKUgJU6fRrGYCqDas2tuzPgVeIVpIYKNAfVn34Y01QyBVQQY3qem4CfEQ2cCjat9FPDEkLHZMh6lioimfGz2blTfGaVEEextqUAz9S/ExmRxkxkYDslgZFZ9nLxP6+XQnTjZ1wlKTBF54uiVGCIcf47DrlmFMTEEkI1t7diOiKaULAJLWwxIIme6HCaR+MtB7FK2hd176ruPVzWGrdFSGV0gk7ROfLQNWqge9RELUTRGL2gV/TmPDvvzofzOW8tOcXMMVqA8/ULtvKYug==</latexit>· · ·
<latexit sha1_base64="PU5w8gjwK6QSKN4ydQ2SLdgYNKU=">AAACBHicbVDLSsNAFJ3UV62vqks3g0VwVRIRdVl047KCfUAbymQyaYfOTMLMjVBCt+7d6i+4E7f+h3/gZzhps7CtBy4czrmXe+8JEsENuO63U1pb39jcKm9Xdnb39g+qh0dtE6eashaNRay7ATFMcMVawEGwbqIZkYFgnWB8l/udJ6YNj9UjTBLmSzJUPOKUgJU6fRrGYCqDas2tuzPgVeIVpIYKNAfVn34Y01QyBVQQY3qem4CfEQ2cCjat9FPDEkLHZMh6lioimfGz2blTfGaVEEextqUAz9S/ExmRxkxkYDslgZFZ9nLxP6+XQnTjZ1wlKTBF54uiVGCIcf47DrlmFMTEEkI1t7diOiKaULAJLWwxIIme6HCaR+MtB7FK2hd176ruPVzWGrdFSGV0gk7ROfLQNWqge9RELUTRGL2gV/TmPDvvzofzOW8tOcXMMVqA8/ULtvKYug==</latexit>· · ·

<latexit sha1_base64="PU5w8gjwK6QSKN4ydQ2SLdgYNKU=">AAACBHicbVDLSsNAFJ3UV62vqks3g0VwVRIRdVl047KCfUAbymQyaYfOTMLMjVBCt+7d6i+4E7f+h3/gZzhps7CtBy4czrmXe+8JEsENuO63U1pb39jcKm9Xdnb39g+qh0dtE6eashaNRay7ATFMcMVawEGwbqIZkYFgnWB8l/udJ6YNj9UjTBLmSzJUPOKUgJU6fRrGYCqDas2tuzPgVeIVpIYKNAfVn34Y01QyBVQQY3qem4CfEQ2cCjat9FPDEkLHZMh6lioimfGz2blTfGaVEEextqUAz9S/ExmRxkxkYDslgZFZ9nLxP6+XQnTjZ1wlKTBF54uiVGCIcf47DrlmFMTEEkI1t7diOiKaULAJLWwxIIme6HCaR+MtB7FK2hd176ruPVzWGrdFSGV0gk7ROfLQNWqge9RELUTRGL2gV/TmPDvvzofzOW8tOcXMMVqA8/ULtvKYug==</latexit>· · ·

Syntax-directed
Program Synthesis

let x = 1 + 2;
<latexit sha1_base64="PU5w8gjwK6QSKN4ydQ2SLdgYNKU=">AAACBHicbVDLSsNAFJ3UV62vqks3g0VwVRIRdVl047KCfUAbymQyaYfOTMLMjVBCt+7d6i+4E7f+h3/gZzhps7CtBy4czrmXe+8JEsENuO63U1pb39jcKm9Xdnb39g+qh0dtE6eashaNRay7ATFMcMVawEGwbqIZkYFgnWB8l/udJ6YNj9UjTBLmSzJUPOKUgJU6fRrGYCqDas2tuzPgVeIVpIYKNAfVn34Y01QyBVQQY3qem4CfEQ2cCjat9FPDEkLHZMh6lioimfGz2blTfGaVEEextqUAz9S/ExmRxkxkYDslgZFZ9nLxP6+XQnTjZ1wlKTBF54uiVGCIcf47DrlmFMTEEkI1t7diOiKaULAJLWwxIIme6HCaR+MtB7FK2hd176ruPVzWGrdFSGV0gk7ROfLQNWqge9RELUTRGL2gV/TmPDvvzofzOW8tOcXMMVqA8/ULtvKYug==</latexit>· · ·

Specification
Coverage

let x = ![]; <latexit sha1_base64="PU5w8gjwK6QSKN4ydQ2SLdgYNKU=">AAACBHicbVDLSsNAFJ3UV62vqks3g0VwVRIRdVl047KCfUAbymQyaYfOTMLMjVBCt+7d6i+4E7f+h3/gZzhps7CtBy4czrmXe+8JEsENuO63U1pb39jcKm9Xdnb39g+qh0dtE6eashaNRay7ATFMcMVawEGwbqIZkYFgnWB8l/udJ6YNj9UjTBLmSzJUPOKUgJU6fRrGYCqDas2tuzPgVeIVpIYKNAfVn34Y01QyBVQQY3qem4CfEQ2cCjat9FPDEkLHZMh6lioimfGz2blTfGaVEEextqUAz9S/ExmRxkxkYDslgZFZ9nLxP6+XQnTjZ1wlKTBF54uiVGCIcf47DrlmFMTEEkI1t7diOiKaULAJLWwxIIme6HCaR+MtB7FK2hd176ruPVzWGrdFSGV0gk7ROfLQNWqge9RELUTRGL2gV/TmPDvvzofzOW8tOcXMMVqA8/ULtvKYug==</latexit>· · ·

/ 5732

JEST
(JavaScript Engines and Specification Tester)

Seed
Synthesizer

Mechanized
Specification

Program
MutatorJEST

Assertion
Injector

Program
Pool

Conformance
Tests

Program Pool

let x = 42;

<latexit sha1_base64="PU5w8gjwK6QSKN4ydQ2SLdgYNKU=">AAACBHicbVDLSsNAFJ3UV62vqks3g0VwVRIRdVl047KCfUAbymQyaYfOTMLMjVBCt+7d6i+4E7f+h3/gZzhps7CtBy4czrmXe+8JEsENuO63U1pb39jcKm9Xdnb39g+qh0dtE6eashaNRay7ATFMcMVawEGwbqIZkYFgnWB8l/udJ6YNj9UjTBLmSzJUPOKUgJU6fRrGYCqDas2tuzPgVeIVpIYKNAfVn34Y01QyBVQQY3qem4CfEQ2cCjat9FPDEkLHZMh6lioimfGz2blTfGaVEEextqUAz9S/ExmRxkxkYDslgZFZ9nLxP6+XQnTjZ1wlKTBF54uiVGCIcf47DrlmFMTEEkI1t7diOiKaULAJLWwxIIme6HCaR+MtB7FK2hd176ruPVzWGrdFSGV0gk7ROfLQNWqge9RELUTRGL2gV/TmPDvvzofzOW8tOcXMMVqA8/ULtvKYug==</latexit>· · ·
<latexit sha1_base64="PU5w8gjwK6QSKN4ydQ2SLdgYNKU=">AAACBHicbVDLSsNAFJ3UV62vqks3g0VwVRIRdVl047KCfUAbymQyaYfOTMLMjVBCt+7d6i+4E7f+h3/gZzhps7CtBy4czrmXe+8JEsENuO63U1pb39jcKm9Xdnb39g+qh0dtE6eashaNRay7ATFMcMVawEGwbqIZkYFgnWB8l/udJ6YNj9UjTBLmSzJUPOKUgJU6fRrGYCqDas2tuzPgVeIVpIYKNAfVn34Y01QyBVQQY3qem4CfEQ2cCjat9FPDEkLHZMh6lioimfGz2blTfGaVEEextqUAz9S/ExmRxkxkYDslgZFZ9nLxP6+XQnTjZ1wlKTBF54uiVGCIcf47DrlmFMTEEkI1t7diOiKaULAJLWwxIIme6HCaR+MtB7FK2hd176ruPVzWGrdFSGV0gk7ROfLQNWqge9RELUTRGL2gV/TmPDvvzofzOW8tOcXMMVqA8/ULtvKYug==</latexit>· · ·

<latexit sha1_base64="PU5w8gjwK6QSKN4ydQ2SLdgYNKU=">AAACBHicbVDLSsNAFJ3UV62vqks3g0VwVRIRdVl047KCfUAbymQyaYfOTMLMjVBCt+7d6i+4E7f+h3/gZzhps7CtBy4czrmXe+8JEsENuO63U1pb39jcKm9Xdnb39g+qh0dtE6eashaNRay7ATFMcMVawEGwbqIZkYFgnWB8l/udJ6YNj9UjTBLmSzJUPOKUgJU6fRrGYCqDas2tuzPgVeIVpIYKNAfVn34Y01QyBVQQY3qem4CfEQ2cCjat9FPDEkLHZMh6lioimfGz2blTfGaVEEextqUAz9S/ExmRxkxkYDslgZFZ9nLxP6+XQnTjZ1wlKTBF54uiVGCIcf47DrlmFMTEEkI1t7diOiKaULAJLWwxIIme6HCaR+MtB7FK2hd176ruPVzWGrdFSGV0gk7ROfLQNWqge9RELUTRGL2gV/TmPDvvzofzOW8tOcXMMVqA8/ULtvKYug==</latexit>· · ·

Syntax-directed
Program Synthesis

let x = 1 + 2;
<latexit sha1_base64="PU5w8gjwK6QSKN4ydQ2SLdgYNKU=">AAACBHicbVDLSsNAFJ3UV62vqks3g0VwVRIRdVl047KCfUAbymQyaYfOTMLMjVBCt+7d6i+4E7f+h3/gZzhps7CtBy4czrmXe+8JEsENuO63U1pb39jcKm9Xdnb39g+qh0dtE6eashaNRay7ATFMcMVawEGwbqIZkYFgnWB8l/udJ6YNj9UjTBLmSzJUPOKUgJU6fRrGYCqDas2tuzPgVeIVpIYKNAfVn34Y01QyBVQQY3qem4CfEQ2cCjat9FPDEkLHZMh6lioimfGz2blTfGaVEEextqUAz9S/ExmRxkxkYDslgZFZ9nLxP6+XQnTjZ1wlKTBF54uiVGCIcf47DrlmFMTEEkI1t7diOiKaULAJLWwxIIme6HCaR+MtB7FK2hd176ruPVzWGrdFSGV0gk7ROfLQNWqge9RELUTRGL2gV/TmPDvvzofzOW8tOcXMMVqA8/ULtvKYug==</latexit>· · ·

Specification
Coverage

let x = ![]; <latexit sha1_base64="PU5w8gjwK6QSKN4ydQ2SLdgYNKU=">AAACBHicbVDLSsNAFJ3UV62vqks3g0VwVRIRdVl047KCfUAbymQyaYfOTMLMjVBCt+7d6i+4E7f+h3/gZzhps7CtBy4czrmXe+8JEsENuO63U1pb39jcKm9Xdnb39g+qh0dtE6eashaNRay7ATFMcMVawEGwbqIZkYFgnWB8l/udJ6YNj9UjTBLmSzJUPOKUgJU6fRrGYCqDas2tuzPgVeIVpIYKNAfVn34Y01QyBVQQY3qem4CfEQ2cCjat9FPDEkLHZMh6lioimfGz2blTfGaVEEextqUAz9S/ExmRxkxkYDslgZFZ9nLxP6+XQnTjZ1wlKTBF54uiVGCIcf47DrlmFMTEEkI1t7diOiKaULAJLWwxIIme6HCaR+MtB7FK2hd176ruPVzWGrdFSGV0gk7ROfLQNWqge9RELUTRGL2gV/TmPDvvzofzOW8tOcXMMVqA8/ULtvKYug==</latexit>· · ·
let x = 1 + 2;
assert(x == 3);

let x = 42;
assert(x == 42); let x = ![];

assert(x == false);

Final State-based
Assertions

/ 5733

JEST - Specification Coverage

2. Let lval be ? GetValue(lref).
3. If lval is neither undefined nor null, return lval.
4. If IsAnonymousFunctionDefinition(AssignmentExpression) is true and IsIdentifierRef of

LeftHandSideExpression is true, then
a. Let rval be ? NamedEvaluation of AssignmentExpression with argument lref.

[[ReferencedName]].
5. Else,

a. Let rref be ? Evaluation of AssignmentExpression.
b. Let rval be ? GetValue(rref).

6. Perform ? PutValue(lref, rval).
7. Return rval.

NOTE When this expression occurs within strict mode code, it is a runtime error if lref in
step 1.d, 2, 2, 2, 2 is an unresolvable reference. If it is, a ReferenceError exception is
thrown. Additionally, it is a runtime error if the lref in step 8, 7, 7, 6 is a reference to
a data property with the attribute value { [[Writable]]: false }, to an accessor
property with the attribute value { [[Set]]: undefined }, or to a non-existent
property of an object for which the IsExtensible predicate returns the value false.
In these cases a TypeError exception is thrown.

The abstract operation ApplyStringOrNumericBinaryOperator takes arguments lval (an
ECMAScript language value), opText (**, *, /, %, +, -, <<, >>, >>>, &, ^, or |), and rval (an
ECMAScript language value) and returns either a normal completion containing either a String, a
BigInt, or a Number, or a throw completion. It performs the following steps when called:

1. If opText is +, then
a. Let lprim be ? ToPrimitive(lval).
b. Let rprim be ? ToPrimitive(rval).
c. If lprim is a String or rprim is a String, then

i. Let lstr be ? ToString(lprim).
ii. Let rstr be ? ToString(rprim).

iii. Return the string-concatenation of lstr and rstr.
d. Set lval to lprim.
e. Set rval to rprim.

2. NOTE: At this point, it must be a numeric operation.
3. Let lnum be ? ToNumeric(lval).
4. Let rnum be ? ToNumeric(rval).
5. If Type(lnum) is not Type(rnum), throw a TypeError exception.
6. If lnum is a BigInt, then

13.15.3 ApplyStringOrNumericBinaryOperator (lval, opText, rval)

2. Let lval be ? GetValue(lref).
3. If lval is neither undefined nor null, return lval.
4. If IsAnonymousFunctionDefinition(AssignmentExpression) is true and IsIdentifierRef of

LeftHandSideExpression is true, then
a. Let rval be ? NamedEvaluation of AssignmentExpression with argument lref.

[[ReferencedName]].
5. Else,

a. Let rref be ? Evaluation of AssignmentExpression.
b. Let rval be ? GetValue(rref).

6. Perform ? PutValue(lref, rval).
7. Return rval.

NOTE When this expression occurs within strict mode code, it is a runtime error if lref in
step 1.d, 2, 2, 2, 2 is an unresolvable reference. If it is, a ReferenceError exception is
thrown. Additionally, it is a runtime error if the lref in step 8, 7, 7, 6 is a reference to
a data property with the attribute value { [[Writable]]: false }, to an accessor
property with the attribute value { [[Set]]: undefined }, or to a non-existent
property of an object for which the IsExtensible predicate returns the value false.
In these cases a TypeError exception is thrown.

The abstract operation ApplyStringOrNumericBinaryOperator takes arguments lval (an
ECMAScript language value), opText (**, *, /, %, +, -, <<, >>, >>>, &, ^, or |), and rval (an
ECMAScript language value) and returns either a normal completion containing either a String, a
BigInt, or a Number, or a throw completion. It performs the following steps when called:

1. If opText is +, then
a. Let lprim be ? ToPrimitive(lval).
b. Let rprim be ? ToPrimitive(rval).
c. If lprim is a String or rprim is a String, then

i. Let lstr be ? ToString(lprim).
ii. Let rstr be ? ToString(rprim).

iii. Return the string-concatenation of lstr and rstr.
d. Set lval to lprim.
e. Set rval to rprim.

2. NOTE: At this point, it must be a numeric operation.
3. Let lnum be ? ToNumeric(lval).
4. Let rnum be ? ToNumeric(rval).
5. If Type(lnum) is not Type(rnum), throw a TypeError exception.
6. If lnum is a BigInt, then

13.15.3 ApplyStringOrNumericBinaryOperator (lval, opText, rval)

…

…

a. If opText is **, return ? BigInt::exponentiate(lnum, rnum).
b. If opText is /, return ? BigInt::divide(lnum, rnum).
c. If opText is %, return ? BigInt::remainder(lnum, rnum).
d. If opText is >>>, return ? BigInt::unsignedRightShift(lnum, rnum).

7. Let operation be the abstract operation associated with opText and Type(lnum) in the following
table:

opText Type(lnum) operation
** Number Number::exponentiate
* Number Number::multiply
* BigInt BigInt::multiply
/ Number Number::divide
% Number Number::remainder
+ Number Number::add
+ BigInt BigInt::add
- Number Number::subtract
- BigInt BigInt::subtract
<< Number Number::leftShift
<< BigInt BigInt::leftShift
>> Number Number::signedRightShift
>> BigInt BigInt::signedRightShift
>>> Number Number::unsignedRightShift
& Number Number::bitwiseAND
& BigInt BigInt::bitwiseAND
^ Number Number::bitwiseXOR
^ BigInt BigInt::bitwiseXOR
| Number Number::bitwiseOR
| BigInt BigInt::bitwiseOR

8. Return operation(lnum, rnum).

NOTE 1 No hint is provided in the calls to ToPrimitive in steps 1.a and 1.b. All standard
objects except Dates handle the absence of a hint as if number were given; Dates
handle the absence of a hint as if string were given. Exotic objects may handle the
absence of a hint in some other manner.

NOTE 2 Step 1.c differs from step 3 of the IsLessThan algorithm, by using the logical-or
operation instead of the logical-and operation.

1. Throw a TypeError exception.

mean the same things as:

1. Return ThrowCompletion(a newly created TypeError object).

Algorithms steps that say or are otherwise equivalent to:

1. ReturnIfAbrupt(argument).

mean the same thing as:

1. Assert: argument is a Completion Record.
2. If argument is an abrupt completion, return Completion(argument).
3. Else, set argument to argument.[[Value]].

Algorithms steps that say or are otherwise equivalent to:

1. ReturnIfAbrupt(AbstractOperation()).

mean the same thing as:

1. Let hygienicTemp be AbstractOperation().
2. Assert: hygienicTemp is a Completion Record.
3. If hygienicTemp is an abrupt completion, return Completion(hygienicTemp).
4. Else, set hygienicTemp to hygienicTemp.[[Value]].

Where hygienicTemp is ephemeral and visible only in the steps pertaining to ReturnIfAbrupt.

Algorithms steps that say or are otherwise equivalent to:

1. Let result be AbstractOperation(ReturnIfAbrupt(argument)).

mean the same thing as:

1. Assert: argument is a Completion Record.
2. If argument is an abrupt completion, return Completion(argument).
3. Else, set argument to argument.[[Value]].
4. Let result be AbstractOperation(argument).

Invocations of abstract operations and syntax-directed operations that are prefixed by ? indicate
that ReturnIfAbrupt should be applied to the resulting Completion Record. For example, the step:

5.2.3.3 ReturnIfAbrupt

5.2.3.4 ReturnIfAbrupt Shorthands

…

/ 5733

JEST - Specification Coverage

2. Let lval be ? GetValue(lref).
3. If lval is neither undefined nor null, return lval.
4. If IsAnonymousFunctionDefinition(AssignmentExpression) is true and IsIdentifierRef of

LeftHandSideExpression is true, then
a. Let rval be ? NamedEvaluation of AssignmentExpression with argument lref.

[[ReferencedName]].
5. Else,

a. Let rref be ? Evaluation of AssignmentExpression.
b. Let rval be ? GetValue(rref).

6. Perform ? PutValue(lref, rval).
7. Return rval.

NOTE When this expression occurs within strict mode code, it is a runtime error if lref in
step 1.d, 2, 2, 2, 2 is an unresolvable reference. If it is, a ReferenceError exception is
thrown. Additionally, it is a runtime error if the lref in step 8, 7, 7, 6 is a reference to
a data property with the attribute value { [[Writable]]: false }, to an accessor
property with the attribute value { [[Set]]: undefined }, or to a non-existent
property of an object for which the IsExtensible predicate returns the value false.
In these cases a TypeError exception is thrown.

The abstract operation ApplyStringOrNumericBinaryOperator takes arguments lval (an
ECMAScript language value), opText (**, *, /, %, +, -, <<, >>, >>>, &, ^, or |), and rval (an
ECMAScript language value) and returns either a normal completion containing either a String, a
BigInt, or a Number, or a throw completion. It performs the following steps when called:

1. If opText is +, then
a. Let lprim be ? ToPrimitive(lval).
b. Let rprim be ? ToPrimitive(rval).
c. If lprim is a String or rprim is a String, then

i. Let lstr be ? ToString(lprim).
ii. Let rstr be ? ToString(rprim).

iii. Return the string-concatenation of lstr and rstr.
d. Set lval to lprim.
e. Set rval to rprim.

2. NOTE: At this point, it must be a numeric operation.
3. Let lnum be ? ToNumeric(lval).
4. Let rnum be ? ToNumeric(rval).
5. If Type(lnum) is not Type(rnum), throw a TypeError exception.
6. If lnum is a BigInt, then

13.15.3 ApplyStringOrNumericBinaryOperator (lval, opText, rval)

2. Let lval be ? GetValue(lref).
3. If lval is neither undefined nor null, return lval.
4. If IsAnonymousFunctionDefinition(AssignmentExpression) is true and IsIdentifierRef of

LeftHandSideExpression is true, then
a. Let rval be ? NamedEvaluation of AssignmentExpression with argument lref.

[[ReferencedName]].
5. Else,

a. Let rref be ? Evaluation of AssignmentExpression.
b. Let rval be ? GetValue(rref).

6. Perform ? PutValue(lref, rval).
7. Return rval.

NOTE When this expression occurs within strict mode code, it is a runtime error if lref in
step 1.d, 2, 2, 2, 2 is an unresolvable reference. If it is, a ReferenceError exception is
thrown. Additionally, it is a runtime error if the lref in step 8, 7, 7, 6 is a reference to
a data property with the attribute value { [[Writable]]: false }, to an accessor
property with the attribute value { [[Set]]: undefined }, or to a non-existent
property of an object for which the IsExtensible predicate returns the value false.
In these cases a TypeError exception is thrown.

The abstract operation ApplyStringOrNumericBinaryOperator takes arguments lval (an
ECMAScript language value), opText (**, *, /, %, +, -, <<, >>, >>>, &, ^, or |), and rval (an
ECMAScript language value) and returns either a normal completion containing either a String, a
BigInt, or a Number, or a throw completion. It performs the following steps when called:

1. If opText is +, then
a. Let lprim be ? ToPrimitive(lval).
b. Let rprim be ? ToPrimitive(rval).
c. If lprim is a String or rprim is a String, then

i. Let lstr be ? ToString(lprim).
ii. Let rstr be ? ToString(rprim).

iii. Return the string-concatenation of lstr and rstr.
d. Set lval to lprim.
e. Set rval to rprim.

2. NOTE: At this point, it must be a numeric operation.
3. Let lnum be ? ToNumeric(lval).
4. Let rnum be ? ToNumeric(rval).
5. If Type(lnum) is not Type(rnum), throw a TypeError exception.
6. If lnum is a BigInt, then

13.15.3 ApplyStringOrNumericBinaryOperator (lval, opText, rval)

…

…

4 + 2n
JS

a. If opText is **, return ? BigInt::exponentiate(lnum, rnum).
b. If opText is /, return ? BigInt::divide(lnum, rnum).
c. If opText is %, return ? BigInt::remainder(lnum, rnum).
d. If opText is >>>, return ? BigInt::unsignedRightShift(lnum, rnum).

7. Let operation be the abstract operation associated with opText and Type(lnum) in the following
table:

opText Type(lnum) operation
** Number Number::exponentiate
* Number Number::multiply
* BigInt BigInt::multiply
/ Number Number::divide
% Number Number::remainder
+ Number Number::add
+ BigInt BigInt::add
- Number Number::subtract
- BigInt BigInt::subtract
<< Number Number::leftShift
<< BigInt BigInt::leftShift
>> Number Number::signedRightShift
>> BigInt BigInt::signedRightShift
>>> Number Number::unsignedRightShift
& Number Number::bitwiseAND
& BigInt BigInt::bitwiseAND
^ Number Number::bitwiseXOR
^ BigInt BigInt::bitwiseXOR
| Number Number::bitwiseOR
| BigInt BigInt::bitwiseOR

8. Return operation(lnum, rnum).

NOTE 1 No hint is provided in the calls to ToPrimitive in steps 1.a and 1.b. All standard
objects except Dates handle the absence of a hint as if number were given; Dates
handle the absence of a hint as if string were given. Exotic objects may handle the
absence of a hint in some other manner.

NOTE 2 Step 1.c differs from step 3 of the IsLessThan algorithm, by using the logical-or
operation instead of the logical-and operation.

1. Throw a TypeError exception.

mean the same things as:

1. Return ThrowCompletion(a newly created TypeError object).

Algorithms steps that say or are otherwise equivalent to:

1. ReturnIfAbrupt(argument).

mean the same thing as:

1. Assert: argument is a Completion Record.
2. If argument is an abrupt completion, return Completion(argument).
3. Else, set argument to argument.[[Value]].

Algorithms steps that say or are otherwise equivalent to:

1. ReturnIfAbrupt(AbstractOperation()).

mean the same thing as:

1. Let hygienicTemp be AbstractOperation().
2. Assert: hygienicTemp is a Completion Record.
3. If hygienicTemp is an abrupt completion, return Completion(hygienicTemp).
4. Else, set hygienicTemp to hygienicTemp.[[Value]].

Where hygienicTemp is ephemeral and visible only in the steps pertaining to ReturnIfAbrupt.

Algorithms steps that say or are otherwise equivalent to:

1. Let result be AbstractOperation(ReturnIfAbrupt(argument)).

mean the same thing as:

1. Assert: argument is a Completion Record.
2. If argument is an abrupt completion, return Completion(argument).
3. Else, set argument to argument.[[Value]].
4. Let result be AbstractOperation(argument).

Invocations of abstract operations and syntax-directed operations that are prefixed by ? indicate
that ReturnIfAbrupt should be applied to the resulting Completion Record. For example, the step:

5.2.3.3 ReturnIfAbrupt

5.2.3.4 ReturnIfAbrupt Shorthands

…

/ 5733

JEST - Specification Coverage

2. Let lval be ? GetValue(lref).
3. If lval is neither undefined nor null, return lval.
4. If IsAnonymousFunctionDefinition(AssignmentExpression) is true and IsIdentifierRef of

LeftHandSideExpression is true, then
a. Let rval be ? NamedEvaluation of AssignmentExpression with argument lref.

[[ReferencedName]].
5. Else,

a. Let rref be ? Evaluation of AssignmentExpression.
b. Let rval be ? GetValue(rref).

6. Perform ? PutValue(lref, rval).
7. Return rval.

NOTE When this expression occurs within strict mode code, it is a runtime error if lref in
step 1.d, 2, 2, 2, 2 is an unresolvable reference. If it is, a ReferenceError exception is
thrown. Additionally, it is a runtime error if the lref in step 8, 7, 7, 6 is a reference to
a data property with the attribute value { [[Writable]]: false }, to an accessor
property with the attribute value { [[Set]]: undefined }, or to a non-existent
property of an object for which the IsExtensible predicate returns the value false.
In these cases a TypeError exception is thrown.

The abstract operation ApplyStringOrNumericBinaryOperator takes arguments lval (an
ECMAScript language value), opText (**, *, /, %, +, -, <<, >>, >>>, &, ^, or |), and rval (an
ECMAScript language value) and returns either a normal completion containing either a String, a
BigInt, or a Number, or a throw completion. It performs the following steps when called:

1. If opText is +, then
a. Let lprim be ? ToPrimitive(lval).
b. Let rprim be ? ToPrimitive(rval).
c. If lprim is a String or rprim is a String, then

i. Let lstr be ? ToString(lprim).
ii. Let rstr be ? ToString(rprim).

iii. Return the string-concatenation of lstr and rstr.
d. Set lval to lprim.
e. Set rval to rprim.

2. NOTE: At this point, it must be a numeric operation.
3. Let lnum be ? ToNumeric(lval).
4. Let rnum be ? ToNumeric(rval).
5. If Type(lnum) is not Type(rnum), throw a TypeError exception.
6. If lnum is a BigInt, then

13.15.3 ApplyStringOrNumericBinaryOperator (lval, opText, rval)

2. Let lval be ? GetValue(lref).
3. If lval is neither undefined nor null, return lval.
4. If IsAnonymousFunctionDefinition(AssignmentExpression) is true and IsIdentifierRef of

LeftHandSideExpression is true, then
a. Let rval be ? NamedEvaluation of AssignmentExpression with argument lref.

[[ReferencedName]].
5. Else,

a. Let rref be ? Evaluation of AssignmentExpression.
b. Let rval be ? GetValue(rref).

6. Perform ? PutValue(lref, rval).
7. Return rval.

NOTE When this expression occurs within strict mode code, it is a runtime error if lref in
step 1.d, 2, 2, 2, 2 is an unresolvable reference. If it is, a ReferenceError exception is
thrown. Additionally, it is a runtime error if the lref in step 8, 7, 7, 6 is a reference to
a data property with the attribute value { [[Writable]]: false }, to an accessor
property with the attribute value { [[Set]]: undefined }, or to a non-existent
property of an object for which the IsExtensible predicate returns the value false.
In these cases a TypeError exception is thrown.

The abstract operation ApplyStringOrNumericBinaryOperator takes arguments lval (an
ECMAScript language value), opText (**, *, /, %, +, -, <<, >>, >>>, &, ^, or |), and rval (an
ECMAScript language value) and returns either a normal completion containing either a String, a
BigInt, or a Number, or a throw completion. It performs the following steps when called:

1. If opText is +, then
a. Let lprim be ? ToPrimitive(lval).
b. Let rprim be ? ToPrimitive(rval).
c. If lprim is a String or rprim is a String, then

i. Let lstr be ? ToString(lprim).
ii. Let rstr be ? ToString(rprim).

iii. Return the string-concatenation of lstr and rstr.
d. Set lval to lprim.
e. Set rval to rprim.

2. NOTE: At this point, it must be a numeric operation.
3. Let lnum be ? ToNumeric(lval).
4. Let rnum be ? ToNumeric(rval).
5. If Type(lnum) is not Type(rnum), throw a TypeError exception.
6. If lnum is a BigInt, then

13.15.3 ApplyStringOrNumericBinaryOperator (lval, opText, rval)

…

…

4 + 2n
JS

a. If opText is **, return ? BigInt::exponentiate(lnum, rnum).
b. If opText is /, return ? BigInt::divide(lnum, rnum).
c. If opText is %, return ? BigInt::remainder(lnum, rnum).
d. If opText is >>>, return ? BigInt::unsignedRightShift(lnum, rnum).

7. Let operation be the abstract operation associated with opText and Type(lnum) in the following
table:

opText Type(lnum) operation
** Number Number::exponentiate
* Number Number::multiply
* BigInt BigInt::multiply
/ Number Number::divide
% Number Number::remainder
+ Number Number::add
+ BigInt BigInt::add
- Number Number::subtract
- BigInt BigInt::subtract
<< Number Number::leftShift
<< BigInt BigInt::leftShift
>> Number Number::signedRightShift
>> BigInt BigInt::signedRightShift
>>> Number Number::unsignedRightShift
& Number Number::bitwiseAND
& BigInt BigInt::bitwiseAND
^ Number Number::bitwiseXOR
^ BigInt BigInt::bitwiseXOR
| Number Number::bitwiseOR
| BigInt BigInt::bitwiseOR

8. Return operation(lnum, rnum).

NOTE 1 No hint is provided in the calls to ToPrimitive in steps 1.a and 1.b. All standard
objects except Dates handle the absence of a hint as if number were given; Dates
handle the absence of a hint as if string were given. Exotic objects may handle the
absence of a hint in some other manner.

NOTE 2 Step 1.c differs from step 3 of the IsLessThan algorithm, by using the logical-or
operation instead of the logical-and operation.

1. Throw a TypeError exception.

mean the same things as:

1. Return ThrowCompletion(a newly created TypeError object).

Algorithms steps that say or are otherwise equivalent to:

1. ReturnIfAbrupt(argument).

mean the same thing as:

1. Assert: argument is a Completion Record.
2. If argument is an abrupt completion, return Completion(argument).
3. Else, set argument to argument.[[Value]].

Algorithms steps that say or are otherwise equivalent to:

1. ReturnIfAbrupt(AbstractOperation()).

mean the same thing as:

1. Let hygienicTemp be AbstractOperation().
2. Assert: hygienicTemp is a Completion Record.
3. If hygienicTemp is an abrupt completion, return Completion(hygienicTemp).
4. Else, set hygienicTemp to hygienicTemp.[[Value]].

Where hygienicTemp is ephemeral and visible only in the steps pertaining to ReturnIfAbrupt.

Algorithms steps that say or are otherwise equivalent to:

1. Let result be AbstractOperation(ReturnIfAbrupt(argument)).

mean the same thing as:

1. Assert: argument is a Completion Record.
2. If argument is an abrupt completion, return Completion(argument).
3. Else, set argument to argument.[[Value]].
4. Let result be AbstractOperation(argument).

Invocations of abstract operations and syntax-directed operations that are prefixed by ? indicate
that ReturnIfAbrupt should be applied to the resulting Completion Record. For example, the step:

5.2.3.3 ReturnIfAbrupt

5.2.3.4 ReturnIfAbrupt Shorthands

…

1n + 2n
JS

/ 5733

JEST - Specification Coverage

2. Let lval be ? GetValue(lref).
3. If lval is neither undefined nor null, return lval.
4. If IsAnonymousFunctionDefinition(AssignmentExpression) is true and IsIdentifierRef of

LeftHandSideExpression is true, then
a. Let rval be ? NamedEvaluation of AssignmentExpression with argument lref.

[[ReferencedName]].
5. Else,

a. Let rref be ? Evaluation of AssignmentExpression.
b. Let rval be ? GetValue(rref).

6. Perform ? PutValue(lref, rval).
7. Return rval.

NOTE When this expression occurs within strict mode code, it is a runtime error if lref in
step 1.d, 2, 2, 2, 2 is an unresolvable reference. If it is, a ReferenceError exception is
thrown. Additionally, it is a runtime error if the lref in step 8, 7, 7, 6 is a reference to
a data property with the attribute value { [[Writable]]: false }, to an accessor
property with the attribute value { [[Set]]: undefined }, or to a non-existent
property of an object for which the IsExtensible predicate returns the value false.
In these cases a TypeError exception is thrown.

The abstract operation ApplyStringOrNumericBinaryOperator takes arguments lval (an
ECMAScript language value), opText (**, *, /, %, +, -, <<, >>, >>>, &, ^, or |), and rval (an
ECMAScript language value) and returns either a normal completion containing either a String, a
BigInt, or a Number, or a throw completion. It performs the following steps when called:

1. If opText is +, then
a. Let lprim be ? ToPrimitive(lval).
b. Let rprim be ? ToPrimitive(rval).
c. If lprim is a String or rprim is a String, then

i. Let lstr be ? ToString(lprim).
ii. Let rstr be ? ToString(rprim).

iii. Return the string-concatenation of lstr and rstr.
d. Set lval to lprim.
e. Set rval to rprim.

2. NOTE: At this point, it must be a numeric operation.
3. Let lnum be ? ToNumeric(lval).
4. Let rnum be ? ToNumeric(rval).
5. If Type(lnum) is not Type(rnum), throw a TypeError exception.
6. If lnum is a BigInt, then

13.15.3 ApplyStringOrNumericBinaryOperator (lval, opText, rval)

2. Let lval be ? GetValue(lref).
3. If lval is neither undefined nor null, return lval.
4. If IsAnonymousFunctionDefinition(AssignmentExpression) is true and IsIdentifierRef of

LeftHandSideExpression is true, then
a. Let rval be ? NamedEvaluation of AssignmentExpression with argument lref.

[[ReferencedName]].
5. Else,

a. Let rref be ? Evaluation of AssignmentExpression.
b. Let rval be ? GetValue(rref).

6. Perform ? PutValue(lref, rval).
7. Return rval.

NOTE When this expression occurs within strict mode code, it is a runtime error if lref in
step 1.d, 2, 2, 2, 2 is an unresolvable reference. If it is, a ReferenceError exception is
thrown. Additionally, it is a runtime error if the lref in step 8, 7, 7, 6 is a reference to
a data property with the attribute value { [[Writable]]: false }, to an accessor
property with the attribute value { [[Set]]: undefined }, or to a non-existent
property of an object for which the IsExtensible predicate returns the value false.
In these cases a TypeError exception is thrown.

The abstract operation ApplyStringOrNumericBinaryOperator takes arguments lval (an
ECMAScript language value), opText (**, *, /, %, +, -, <<, >>, >>>, &, ^, or |), and rval (an
ECMAScript language value) and returns either a normal completion containing either a String, a
BigInt, or a Number, or a throw completion. It performs the following steps when called:

1. If opText is +, then
a. Let lprim be ? ToPrimitive(lval).
b. Let rprim be ? ToPrimitive(rval).
c. If lprim is a String or rprim is a String, then

i. Let lstr be ? ToString(lprim).
ii. Let rstr be ? ToString(rprim).

iii. Return the string-concatenation of lstr and rstr.
d. Set lval to lprim.
e. Set rval to rprim.

2. NOTE: At this point, it must be a numeric operation.
3. Let lnum be ? ToNumeric(lval).
4. Let rnum be ? ToNumeric(rval).
5. If Type(lnum) is not Type(rnum), throw a TypeError exception.
6. If lnum is a BigInt, then

13.15.3 ApplyStringOrNumericBinaryOperator (lval, opText, rval)

…

…

4 + 2n
JS

a. If opText is **, return ? BigInt::exponentiate(lnum, rnum).
b. If opText is /, return ? BigInt::divide(lnum, rnum).
c. If opText is %, return ? BigInt::remainder(lnum, rnum).
d. If opText is >>>, return ? BigInt::unsignedRightShift(lnum, rnum).

7. Let operation be the abstract operation associated with opText and Type(lnum) in the following
table:

opText Type(lnum) operation
** Number Number::exponentiate
* Number Number::multiply
* BigInt BigInt::multiply
/ Number Number::divide
% Number Number::remainder
+ Number Number::add
+ BigInt BigInt::add
- Number Number::subtract
- BigInt BigInt::subtract
<< Number Number::leftShift
<< BigInt BigInt::leftShift
>> Number Number::signedRightShift
>> BigInt BigInt::signedRightShift
>>> Number Number::unsignedRightShift
& Number Number::bitwiseAND
& BigInt BigInt::bitwiseAND
^ Number Number::bitwiseXOR
^ BigInt BigInt::bitwiseXOR
| Number Number::bitwiseOR
| BigInt BigInt::bitwiseOR

8. Return operation(lnum, rnum).

NOTE 1 No hint is provided in the calls to ToPrimitive in steps 1.a and 1.b. All standard
objects except Dates handle the absence of a hint as if number were given; Dates
handle the absence of a hint as if string were given. Exotic objects may handle the
absence of a hint in some other manner.

NOTE 2 Step 1.c differs from step 3 of the IsLessThan algorithm, by using the logical-or
operation instead of the logical-and operation.

1. Throw a TypeError exception.

mean the same things as:

1. Return ThrowCompletion(a newly created TypeError object).

Algorithms steps that say or are otherwise equivalent to:

1. ReturnIfAbrupt(argument).

mean the same thing as:

1. Assert: argument is a Completion Record.
2. If argument is an abrupt completion, return Completion(argument).
3. Else, set argument to argument.[[Value]].

Algorithms steps that say or are otherwise equivalent to:

1. ReturnIfAbrupt(AbstractOperation()).

mean the same thing as:

1. Let hygienicTemp be AbstractOperation().
2. Assert: hygienicTemp is a Completion Record.
3. If hygienicTemp is an abrupt completion, return Completion(hygienicTemp).
4. Else, set hygienicTemp to hygienicTemp.[[Value]].

Where hygienicTemp is ephemeral and visible only in the steps pertaining to ReturnIfAbrupt.

Algorithms steps that say or are otherwise equivalent to:

1. Let result be AbstractOperation(ReturnIfAbrupt(argument)).

mean the same thing as:

1. Assert: argument is a Completion Record.
2. If argument is an abrupt completion, return Completion(argument).
3. Else, set argument to argument.[[Value]].
4. Let result be AbstractOperation(argument).

Invocations of abstract operations and syntax-directed operations that are prefixed by ? indicate
that ReturnIfAbrupt should be applied to the resulting Completion Record. For example, the step:

5.2.3.3 ReturnIfAbrupt

5.2.3.4 ReturnIfAbrupt Shorthands

…

1n + 2n
JS

3 + 2
JS

/ 5734

JEST - Final State-based Assertion Injection

 var x = 3 + 2;

+ $assert.equal(x, 5);

4 + 2n
JS

1n + 2n
JS

3 + 2
JS

 var x = 1n + 2n;

+ $assert.equal(x, 3n);

 var x = 4 + 2n;

+ // [THROW] TypeError

/ 5735

JEST - Final State-based Assertion Injection
function f() {}

JS

 function f() {}

+ $assert.equal(Object.getPrototypeOf(f), Function.prototype);

+ $assert.verifyProperty(f, "prototype", {
+ writable: true,
+ enumerable: false,
+ configurable: false,
+ });

+ $assert.compare(Reflect.ownKeys(f), ['length', 'name', 'prototype'], f);

+ ...

/ 5735

JEST - Final State-based Assertion Injection
function f() {}

JS

 function f() {}

+ $assert.equal(Object.getPrototypeOf(f), Function.prototype);

+ $assert.verifyProperty(f, "prototype", {
+ writable: true,
+ enumerable: false,
+ configurable: false,
+ });

+ $assert.compare(Reflect.ownKeys(f), ['length', 'name', 'prototype'], f);

+ ...

Prototype Chain

/ 5735

JEST - Final State-based Assertion Injection
function f() {}

JS

 function f() {}

+ $assert.equal(Object.getPrototypeOf(f), Function.prototype);

+ $assert.verifyProperty(f, "prototype", {
+ writable: true,
+ enumerable: false,
+ configurable: false,
+ });

+ $assert.compare(Reflect.ownKeys(f), ['length', 'name', 'prototype'], f);

+ ...

Prototype Chain

Property Descriptor

/ 5735

JEST - Final State-based Assertion Injection
function f() {}

JS

 function f() {}

+ $assert.equal(Object.getPrototypeOf(f), Function.prototype);

+ $assert.verifyProperty(f, "prototype", {
+ writable: true,
+ enumerable: false,
+ configurable: false,
+ });

+ $assert.compare(Reflect.ownKeys(f), ['length', 'name', 'prototype'], f);

+ ...

Prototype Chain

Property Descriptor
Property Order

/ 5735

JEST - Final State-based Assertion Injection
function f() {}

JS

 function f() {}

+ $assert.equal(Object.getPrototypeOf(f), Function.prototype);

+ $assert.verifyProperty(f, "prototype", {
+ writable: true,
+ enumerable: false,
+ configurable: false,
+ });

+ $assert.compare(Reflect.ownKeys(f), ['length', 'name', 'prototype'], f);

+ ...

Prototype Chain

Property Descriptor
Property Order

Etc.

/ 57

• JEST synthesized 1,700 conformance tests from ES2020

36

JEST - Evaluation

JEST: N+1-version Differential Testing of
Both JavaScript Engines and Specification

Jihyeok Park
School of Computing

KAIST

Daejeon, South Korea
jhpark0223@kaist.ac.kr

Seungmin An
School of Computing

KAIST

Daejeon, South Korea
h2oche@kaist.ac.kr

Dongjun Youn
School of Computing

KAIST

Daejeon, South Korea
f52985@kaist.ac.kr

Gyeongwon Kim
School of Computing

KAIST

Daejeon, South Korea
gyeongwon.kim@kaist.ac.kr

Sukyoung Ryu
School of Computing

KAIST

Daejeon, South Korea
sryu.cs@kaist.ac.kr

GraalVM
Abstract—Modern programming follows the continuous inte-

gration (CI) and continuous deployment (CD) approach rather
than the traditional waterfall model. Even the development of
modern programming languages uses the CI/CD approach to
swiftly provide new language features and to adapt to new devel-
opment environments. Unlike in the conventional approach, in the
modern CI/CD approach, a language specification is no more the
oracle of the language semantics because both the specification
and its implementations (interpreters or compilers) can co-evolve.
In this setting, both the specification and implementations may
have bugs, and guaranteeing their correctness is non-trivial.

In this paper, we propose a novel N+1-version differential
testing to resolve the problem. Unlike the traditional differential
testing, our approach consists of three steps: 1) to automatically
synthesize programs guided by the syntax and semantics from a
given language specification, 2) to generate conformance tests by
injecting assertions to the synthesized programs to check their
final program states, 3) to detect bugs in the specification and
implementations via executing the conformance tests on multiple
implementations, and 4) to localize bugs on the specification
using statistical information. We actualize our approach for the
JavaScript programming language via JEST, which performs
N+1-version differential testing for modern JavaScript engines
and ECMAScript, the language specification describing the
syntax and semantics of JavaScript in a natural language. We
evaluated JEST with four JavaScript engines that support all
modern JavaScript language features and the latest version of
ECMAScript (ES11, 2020). JEST automatically synthesized 1,700
programs that covered 97.78% of syntax and 87.70% of semantics
from ES11. Using the assertion-injected JavaScript programs,
it detected 44 engine bugs in four different engines and 27
specification bugs in ES11.

Index Terms—JavaScript, conformance test generation, mech-
anized specification, differential testing

I. INTRODUCTION

In Peter O’Hearn’s keynote speech in ICSE 2020, he quoted
the following from Mark Zuckerberg’s Letter to Investors [1]:

The Hacker Way is an approach to building that in-
volves continuous improvement and iteration. Hack-
ers believe that somethings can always be better, and
that nothing is ever complete.

Indeed, modern programming follows the continuous integra-
tion (CI) and continuous deployment (CD) approach [2] rather
than the traditional waterfall model. Instead of a sequential
model that divides software development into several phases,

each of which takes time, CI/CD amounts to a cycle of quick
software development, deployment, and back to development
with feedback. Even the development of programming lan-
guages uses the CI/CD approach.

Consider JavaScript, one of the most widely used pro-
gramming languages for client-side and server-side program-
ming [3] and embedded systems [4]–[6]. Various JavaScript
engines provide diverse extensions to adapt to fast-changing
user demands. At the same time, ECMAScript, the offi-
cial specification that describes the syntax and semantics of
JavaScript, is annually updated since ECMAScript 6 (ES6,
2015) [7] to support new features in response to user demands.
Such updates in both the specification and implementations in
tandem make it difficult for them to be in sync.

Another example is Solidity [8], the standard smart contract
programming language for the Ethereum blockchain. The
Solidity language specification is continuously updated, and
the Solidity compiler is also frequently released. According to
Hwang and Ryu [9], the average number of days between
consecutive releases from Solidity 0.1.2 to 0.5.7 is 27. In
most cases, the Solidity compiler reflects updates in the
specification, but even the specification is revised according to
the semantics implemented in the compiler. As in JavaScript,
bidirectional effects in the specification and the implementa-
tion make it hard to guarantee their correspondence.

In this approach, both the specification and the implemen-
tation may contain bugs, and guaranteeing their correctness
is a challenging task. The conventional approach to build
a programming language is uni-directional from a language
specification to its implementation. The specification is be-
lieved to be correct and the conformance of an implementation
to the specification is checked by dynamic testing. Unlike in
the conventional approach, in the modern CI/CD approach,
the specification may not be the oracle, because both the
specification and the implementation can co-evolve.

In this paper, we propose a novel N+1-version differential

testing, which enables testing of co-evolving specifications
and their implementations. The differential testing [10] is a
testing technique, which executes N implementations of a
specification concurrently for each input, and detects a prob-
lem when the outputs are in disagreement. In addition to N
implementations, our approach tests the specification as well

44 Bugs
In Engines

27 Bugs
In Spec.

/ 5737

ECMA-262
(JS Spec.) JISET JSAVER

JEST

JSTAR

Mechanized
Specification

Mechanized Spec.
Extraction

Conformance
Test Synthesis

Specification
Type Errors

Conformance
Tests

Static
Analyzer

JavaScript
Engines

ASE 2020

ICSE 2021

Derivation
Static

FSE

FS/FCPS-
Coverage

Feature-Sensitive
Coverage

PLDI 2023

Specification
Type Analysis

ASE 2021
[PLDI 2023] J. Park et al., “Feature-Sensitive Coverage for Conformance Testing of Programming Language Implementations”

/ 5738

Graph Coverage for Language Specification

Graph Coverage

Measure

Quality of
Conformance Tests

Mechanized
Spec.

Conformance
Tests

/ 5738

Graph Coverage for Language Specification

Graph Coverage

Measure

Quality of
Conformance Tests

Coverage Criteria

Node Coverage

Branch Coverage

Prime Path Coverage

Def-Use Coverage

…

Mechanized
Spec.

Conformance
Tests

/ 5738

Graph Coverage for Language Specification

Graph Coverage

Measure

Quality of
Conformance Tests

Coverage Criteria

Node Coverage

Branch Coverage

Prime Path Coverage

Def-Use Coverage

…

Test Requirements (TRs)

Mechanized
Spec.

Conformance
Tests

/ 5738

Graph Coverage for Language Specification

Graph Coverage

Measure

Quality of
Conformance Tests

Coverage Criteria

Node Coverage

Branch Coverage

Prime Path Coverage

Def-Use Coverage

…

Test Requirements (TRs)

Are they sufficient?

Mechanized
Spec.

Conformance
Tests

/ 5739

Motivating Example 1 with Node Coverage
1 + 2n

Program P1

JS
TypeError

/ 57
Abstract Algorithms in ECMA-262 (ES13, 2022), JavaScript Language Specification

Evaluation of AddExpr : AddExpr + MulExpr

1. Return ? EvalStrOrNumBinExpr (AddExpr, +, MulExpr).

ADD
feat

39

Motivating Example 1 with Node Coverage
1 + 2n

Program P1

JS
TypeError

/ 57
Abstract Algorithms in ECMA-262 (ES13, 2022), JavaScript Language Specification

Evaluation of AddExpr : AddExpr + MulExpr

1. Return ? EvalStrOrNumBinExpr (AddExpr, +, MulExpr).

ADD
feat

EvalStrOrNumBinExpr (lval, opText, rval)
…
5. Return ? ApplyStrOrNumBinOp (lval, opText, rval).

39

Motivating Example 1 with Node Coverage
1 + 2n

Program P1

JS
TypeError

/ 57
Abstract Algorithms in ECMA-262 (ES13, 2022), JavaScript Language Specification

Evaluation of AddExpr : AddExpr + MulExpr

1. Return ? EvalStrOrNumBinExpr (AddExpr, +, MulExpr).

ADD
feat

EvalStrOrNumBinExpr (lval, opText, rval)
…
5. Return ? ApplyStrOrNumBinOp (lval, opText, rval).

ApplyStrOrNumBinOp (lval, opText, rval)
…
5. If Type(lnum) is different from Type(rnum),

throw a TypeError exception.
…

39

Motivating Example 1 with Node Coverage
1 + 2n

Program P1

JS
TypeError

/ 57
Abstract Algorithms in ECMA-262 (ES13, 2022), JavaScript Language Specification

Evaluation of AddExpr : AddExpr + MulExpr

1. Return ? EvalStrOrNumBinExpr (AddExpr, +, MulExpr).

ADD
feat

EvalStrOrNumBinExpr (lval, opText, rval)
…
5. Return ? ApplyStrOrNumBinOp (lval, opText, rval).

ApplyStrOrNumBinOp (lval, opText, rval)
…
5. If Type(lnum) is different from Type(rnum),

throw a TypeError exception.
…

39

Motivating Example 1 with Node Coverage

1

1 + 2n
Program P1

JS
TypeError

/ 57
Abstract Algorithms in ECMA-262 (ES13, 2022), JavaScript Language Specification

Evaluation of AddExpr : AddExpr + MulExpr

1. Return ? EvalStrOrNumBinExpr (AddExpr, +, MulExpr).

ADD
feat

EvalStrOrNumBinExpr (lval, opText, rval)
…
5. Return ? ApplyStrOrNumBinOp (lval, opText, rval).

ApplyStrOrNumBinOp (lval, opText, rval)
…
5. If Type(lnum) is different from Type(rnum),

throw a TypeError exception.
…

39

Motivating Example 1 with Node Coverage

1

1 + 2n
Program P1

JS
TypeErrorNode Coverage

TR = Node

/ 57
Abstract Algorithms in ECMA-262 (ES13, 2022), JavaScript Language Specification

Evaluation of AddExpr : AddExpr + MulExpr

1. Return ? EvalStrOrNumBinExpr (AddExpr, +, MulExpr).

ADD
feat

EvalStrOrNumBinExpr (lval, opText, rval)
…
5. Return ? ApplyStrOrNumBinOp (lval, opText, rval).

ApplyStrOrNumBinOp (lval, opText, rval)
…
5. If Type(lnum) is different from Type(rnum),

throw a TypeError exception.
…

39

Motivating Example 1 with Node Coverage

1

1
cover

1 + 2n
Program P1

JS
TypeErrorNode Coverage

TR = Node

/ 57
Abstract Algorithms in ECMA-262 (ES13, 2022), JavaScript Language Specification

Evaluation of AddExpr : AddExpr + MulExpr

1. Return ? EvalStrOrNumBinExpr (AddExpr, +, MulExpr).

ADD
feat

EvalStrOrNumBinExpr (lval, opText, rval)
…
5. Return ? ApplyStrOrNumBinOp (lval, opText, rval).

ApplyStrOrNumBinOp (lval, opText, rval)
…
5. If Type(lnum) is different from Type(rnum),

throw a TypeError exception.
…

39

Motivating Example 1 with Node Coverage

1

1
cover

1 + 2n
Program P1

JS
TypeError

1 - 2n
Program P2

JS
TypeError

Node Coverage

TR = Node

/ 57
Abstract Algorithms in ECMA-262 (ES13, 2022), JavaScript Language Specification

Evaluation of AddExpr : AddExpr + MulExpr

1. Return ? EvalStrOrNumBinExpr (AddExpr, +, MulExpr).

ADD
feat

EvalStrOrNumBinExpr (lval, opText, rval)
…
5. Return ? ApplyStrOrNumBinOp (lval, opText, rval).

ApplyStrOrNumBinOp (lval, opText, rval)
…
5. If Type(lnum) is different from Type(rnum),

throw a TypeError exception.
…

39

Motivating Example 1 with Node Coverage

1

Evaluation of AddExpr : AddExpr - MulExpr

1. Return ? EvalStrOrNumBinExpr (AddExpr, -, MulExpr).

SUB
feat

1
cover

1 + 2n
Program P1

JS
TypeError

1 - 2n
Program P2

JS
TypeError

Node Coverage

TR = Node

/ 57
Abstract Algorithms in ECMA-262 (ES13, 2022), JavaScript Language Specification

Evaluation of AddExpr : AddExpr + MulExpr

1. Return ? EvalStrOrNumBinExpr (AddExpr, +, MulExpr).

ADD
feat

EvalStrOrNumBinExpr (lval, opText, rval)
…
5. Return ? ApplyStrOrNumBinOp (lval, opText, rval).

ApplyStrOrNumBinOp (lval, opText, rval)
…
5. If Type(lnum) is different from Type(rnum),

throw a TypeError exception.
…

39

Motivating Example 1 with Node Coverage

1

Evaluation of AddExpr : AddExpr - MulExpr

1. Return ? EvalStrOrNumBinExpr (AddExpr, -, MulExpr).

SUB
feat

1
cover

1
cover

1 + 2n
Program P1

JS
TypeError

1 - 2n
Program P2

JS
TypeError

Node Coverage

TR = Node

/ 57
Abstract Algorithms in ECMA-262 (ES13, 2022), JavaScript Language Specification

Evaluation of AddExpr : AddExpr + MulExpr

1. Return ? EvalStrOrNumBinExpr (AddExpr, +, MulExpr).

ADD
feat

EvalStrOrNumBinExpr (lval, opText, rval)
…
5. Return ? ApplyStrOrNumBinOp (lval, opText, rval).

ApplyStrOrNumBinOp (lval, opText, rval)
…
5. If Type(lnum) is different from Type(rnum),

throw a TypeError exception.
…

39

Motivating Example 1 with Node Coverage

1

Evaluation of AddExpr : AddExpr - MulExpr

1. Return ? EvalStrOrNumBinExpr (AddExpr, -, MulExpr).

SUB
feat

Same TRs

1
cover

1
cover

1 + 2n
Program P1

JS
TypeError

1 - 2n
Program P2

JS
TypeError

Node Coverage

TR = Node

/ 57
Abstract Algorithms in ECMA-262 (ES13, 2022), JavaScript Language Specification

Evaluation of AddExpr : AddExpr + MulExpr

1. Return ? EvalStrOrNumBinExpr (AddExpr, +, MulExpr).

ADD
feat

EvalStrOrNumBinExpr (lval, opText, rval)
…
5. Return ? ApplyStrOrNumBinOp (lval, opText, rval).

ApplyStrOrNumBinOp (lval, opText, rval)
…
5. If Type(lnum) is different from Type(rnum),

throw a TypeError exception.
…

39

Motivating Example 1 with Node Coverage

1

Evaluation of AddExpr : AddExpr - MulExpr

1. Return ? EvalStrOrNumBinExpr (AddExpr, -, MulExpr).

SUB
feat

Same TRs

1
cover

1
cover

Cannot
Distinguish
P1 and P2

1 + 2n
Program P1

JS
TypeError

1 - 2n
Program P2

JS
TypeError

Node Coverage

TR = Node

/ 5740

Feature-Sensitive (FS) Coverage
1 + 2n

Program P1

JS
TypeError

1 - 2n
Program P2

JS
TypeError

/ 5740

Feature-Sensitive (FS) Coverage
1 + 2n

Program P1

JS
TypeError

1 - 2n
Program P2

JS
TypeError

FS Coverage

TR = (Feature, given TR)
• Feature-Sensitive (FS) coverage criterion divides 

the given TRs with the innermost enclosing language features

/ 5740

Feature-Sensitive (FS) Coverage

Evaluation of AddExpr : AddExpr + MulExpr

1. Return ? EvalStrOrNumBinExpr (AddExpr, +, MulExpr).

Evaluation of AddExpr : AddExpr - MulExpr

1. Return ? EvalStrOrNumBinExpr (AddExpr, -, MulExpr).

ADD
feat

SUB
feat

1 + 2n
Program P1

JS
TypeError

1 - 2n
Program P2

JS
TypeError

FS Coverage

TR = (Feature, given TR)
• Feature-Sensitive (FS) coverage criterion divides 

the given TRs with the innermost enclosing language features

/ 5740

Feature-Sensitive (FS) Coverage

Evaluation of AddExpr : AddExpr + MulExpr

1. Return ? EvalStrOrNumBinExpr (AddExpr, +, MulExpr).

Evaluation of AddExpr : AddExpr - MulExpr

1. Return ? EvalStrOrNumBinExpr (AddExpr, -, MulExpr).

ADD
feat

SUB
feat

FS Node Coverage

TR = (Feature, Node)

1 + 2n
Program P1

JS
TypeError

1 - 2n
Program P2

JS
TypeError

FS Coverage

TR = (Feature, given TR)
• Feature-Sensitive (FS) coverage criterion divides 

the given TRs with the innermost enclosing language features

/ 5740

Feature-Sensitive (FS) Coverage

Evaluation of AddExpr : AddExpr + MulExpr

1. Return ? EvalStrOrNumBinExpr (AddExpr, +, MulExpr).

Evaluation of AddExpr : AddExpr - MulExpr

1. Return ? EvalStrOrNumBinExpr (AddExpr, -, MulExpr).

ADD
feat

SUB
feat

(ADD,)1
coverFS Node Coverage

TR = (Feature, Node)

1 + 2n
Program P1

JS
TypeError

1 - 2n
Program P2

JS
TypeError

FS Coverage

TR = (Feature, given TR)
• Feature-Sensitive (FS) coverage criterion divides 

the given TRs with the innermost enclosing language features

/ 5740

Feature-Sensitive (FS) Coverage

Evaluation of AddExpr : AddExpr + MulExpr

1. Return ? EvalStrOrNumBinExpr (AddExpr, +, MulExpr).

Evaluation of AddExpr : AddExpr - MulExpr

1. Return ? EvalStrOrNumBinExpr (AddExpr, -, MulExpr).

ADD
feat

SUB
feat

(ADD,)1
coverFS Node Coverage

TR = (Feature, Node)

1 + 2n
Program P1

JS
TypeError

1 - 2n
Program P2

JS
TypeError (SUB,)1

cover

FS Coverage

TR = (Feature, given TR)
• Feature-Sensitive (FS) coverage criterion divides 

the given TRs with the innermost enclosing language features

/ 5740

Feature-Sensitive (FS) Coverage

Evaluation of AddExpr : AddExpr + MulExpr

1. Return ? EvalStrOrNumBinExpr (AddExpr, +, MulExpr).

Evaluation of AddExpr : AddExpr - MulExpr

1. Return ? EvalStrOrNumBinExpr (AddExpr, -, MulExpr).

ADD
feat

SUB
feat

Different TRs

(ADD,)1
coverFS Node Coverage

TR = (Feature, Node)

1 + 2n
Program P1

JS
TypeError

1 - 2n
Program P2

JS
TypeError (SUB,)1

cover

FS Coverage

TR = (Feature, given TR)
• Feature-Sensitive (FS) coverage criterion divides 

the given TRs with the innermost enclosing language features

/ 5740

Feature-Sensitive (FS) Coverage

Evaluation of AddExpr : AddExpr + MulExpr

1. Return ? EvalStrOrNumBinExpr (AddExpr, +, MulExpr).

Evaluation of AddExpr : AddExpr - MulExpr

1. Return ? EvalStrOrNumBinExpr (AddExpr, -, MulExpr).

ADD
feat

SUB
feat

Different TRs

(ADD,)1
coverFS Node Coverage

TR = (Feature, Node)

Can
Distinguish
P1 and P21 + 2n

Program P1

JS
TypeError

1 - 2n
Program P2

JS
TypeError (SUB,)1

cover

FS Coverage

TR = (Feature, given TR)
• Feature-Sensitive (FS) coverage criterion divides 

the given TRs with the innermost enclosing language features

/ 57

• 𝑘-Feature-Sensitive (𝑘-FS) coverage criterion divides the given 
TRs with at most 𝑘-innermost enclosing language features

41

𝑘-Feature-Sensitive (𝑘-FS) Coverage

𝑘-FS Coverage

TR = (Feature≤𝑘, given TR)

42 - (1 + 2n)
Program P3

JS
TypeError

Evaluation of AddExpr : AddExpr + MulExpr

1. Return ? EvalStrOrNumBinExpr (AddExpr, +, MulExpr).

Evaluation of AddExpr : AddExpr - MulExpr

1. Return ? EvalStrOrNumBinExpr (AddExpr, -, MulExpr).

ADD
feat

SUB
feat

/ 57

• 𝑘-Feature-Sensitive (𝑘-FS) coverage criterion divides the given 
TRs with at most 𝑘-innermost enclosing language features

41

𝑘-Feature-Sensitive (𝑘-FS) Coverage

𝑘-FS Coverage

TR = (Feature≤𝑘, given TR)

2-FS Node Coverage

TR = (Feature≤2, Node)
42 - (1 + 2n)

Program P3

JS
TypeError

Evaluation of AddExpr : AddExpr + MulExpr

1. Return ? EvalStrOrNumBinExpr (AddExpr, +, MulExpr).

Evaluation of AddExpr : AddExpr - MulExpr

1. Return ? EvalStrOrNumBinExpr (AddExpr, -, MulExpr).

ADD
feat

SUB
feat

/ 57

• 𝑘-Feature-Sensitive (𝑘-FS) coverage criterion divides the given 
TRs with at most 𝑘-innermost enclosing language features

41

𝑘-Feature-Sensitive (𝑘-FS) Coverage

𝑘-FS Coverage

TR = (Feature≤𝑘, given TR)

([SUB, ADD],)1
cover

2-FS Node Coverage

TR = (Feature≤2, Node)
42 - (1 + 2n)

Program P3

JS
TypeError

Evaluation of AddExpr : AddExpr + MulExpr

1. Return ? EvalStrOrNumBinExpr (AddExpr, +, MulExpr).

Evaluation of AddExpr : AddExpr - MulExpr

1. Return ? EvalStrOrNumBinExpr (AddExpr, -, MulExpr).

ADD
feat

SUB
feat

/ 5742

Motivating Example 2
Symbol() + 1

Program P4

JS
TypeError

/ 57Abstract Algorithms in ECMA-262 (ES13, 2022), JavaScript Language Specification

Evaluation of AddExpr : AddExpr + MulExpr

ADD
feat

42

Motivating Example 2
Symbol() + 1

Program P4

JS
TypeError

/ 57Abstract Algorithms in ECMA-262 (ES13, 2022), JavaScript Language Specification

Evaluation of AddExpr : AddExpr + MulExpr

ADD
feat

EvalStrOrNumBinExpr (lval, opText, rval)

42

Motivating Example 2
Symbol() + 1

Program P4

JS
TypeError

/ 57Abstract Algorithms in ECMA-262 (ES13, 2022), JavaScript Language Specification

Evaluation of AddExpr : AddExpr + MulExpr

ADD
feat

EvalStrOrNumBinExpr (lval, opText, rval)

ApplyStrOrNumBinOp (lval, opText, rval)
…
3. Let lnum be ? ToNumeric (lval).

4. Let rnum be ? ToNumeric (rval).
…

42

Motivating Example 2
Symbol() + 1

Program P4

JS
TypeError

/ 57Abstract Algorithms in ECMA-262 (ES13, 2022), JavaScript Language Specification

Evaluation of AddExpr : AddExpr + MulExpr

ADD
feat

EvalStrOrNumBinExpr (lval, opText, rval)

ApplyStrOrNumBinOp (lval, opText, rval)
…
3. Let lnum be ? ToNumeric (lval).

4. Let rnum be ? ToNumeric (rval).
…

42

Motivating Example 2
Symbol() + 1

Program P4

JS
TypeError

ToNumeric (value)
…
3. Return ? ToNumber (primValue).

/ 57Abstract Algorithms in ECMA-262 (ES13, 2022), JavaScript Language Specification

Evaluation of AddExpr : AddExpr + MulExpr

ADD
feat

EvalStrOrNumBinExpr (lval, opText, rval)

ApplyStrOrNumBinOp (lval, opText, rval)
…
3. Let lnum be ? ToNumeric (lval).

4. Let rnum be ? ToNumeric (rval).
…

42

Motivating Example 2
Symbol() + 1

Program P4

JS
TypeError

ToNumeric (value)
…
3. Return ? ToNumber (primValue).

ToNumber (argument)
…
6. If Type (argument) is Symbol,

throw a TypeError exception.
…

/ 57Abstract Algorithms in ECMA-262 (ES13, 2022), JavaScript Language Specification

Evaluation of AddExpr : AddExpr + MulExpr

ADD
feat

EvalStrOrNumBinExpr (lval, opText, rval)

ApplyStrOrNumBinOp (lval, opText, rval)
…
3. Let lnum be ? ToNumeric (lval).

4. Let rnum be ? ToNumeric (rval).
…

42

Motivating Example 2
Symbol() + 1

Program P4

JS
TypeError

ToNumeric (value)
…
3. Return ? ToNumber (primValue).

ToNumber (argument)
…
6. If Type (argument) is Symbol,

throw a TypeError exception.
… 2

/ 57Abstract Algorithms in ECMA-262 (ES13, 2022), JavaScript Language Specification

Evaluation of AddExpr : AddExpr + MulExpr

ADD
feat

EvalStrOrNumBinExpr (lval, opText, rval)

ApplyStrOrNumBinOp (lval, opText, rval)
…
3. Let lnum be ? ToNumeric (lval).

4. Let rnum be ? ToNumeric (rval).
…

42

Motivating Example 2
Symbol() + 1

Program P4

JS
TypeError1-FS Node Coverage

TR = (Feature, Node)

ToNumeric (value)
…
3. Return ? ToNumber (primValue).

ToNumber (argument)
…
6. If Type (argument) is Symbol,

throw a TypeError exception.
… 2

/ 57Abstract Algorithms in ECMA-262 (ES13, 2022), JavaScript Language Specification

Evaluation of AddExpr : AddExpr + MulExpr

ADD
feat

EvalStrOrNumBinExpr (lval, opText, rval)

ApplyStrOrNumBinOp (lval, opText, rval)
…
3. Let lnum be ? ToNumeric (lval).

4. Let rnum be ? ToNumeric (rval).
…

42

Motivating Example 2
Symbol() + 1

Program P4

JS
TypeError1-FS Node Coverage

TR = (Feature, Node)

(ADD,)2
cover

ToNumeric (value)
…
3. Return ? ToNumber (primValue).

ToNumber (argument)
…
6. If Type (argument) is Symbol,

throw a TypeError exception.
… 2

/ 57Abstract Algorithms in ECMA-262 (ES13, 2022), JavaScript Language Specification

Evaluation of AddExpr : AddExpr + MulExpr

ADD
feat

EvalStrOrNumBinExpr (lval, opText, rval)

ApplyStrOrNumBinOp (lval, opText, rval)
…
3. Let lnum be ? ToNumeric (lval).

4. Let rnum be ? ToNumeric (rval).
…

42

Motivating Example 2
Symbol() + 1

Program P4

JS
TypeError

1 + Symbol()
Program P5

JS
TypeError

1-FS Node Coverage

TR = (Feature, Node)

(ADD,)2
cover

ToNumeric (value)
…
3. Return ? ToNumber (primValue).

ToNumber (argument)
…
6. If Type (argument) is Symbol,

throw a TypeError exception.
… 2

/ 57Abstract Algorithms in ECMA-262 (ES13, 2022), JavaScript Language Specification

Evaluation of AddExpr : AddExpr + MulExpr

ADD
feat

EvalStrOrNumBinExpr (lval, opText, rval)

ApplyStrOrNumBinOp (lval, opText, rval)
…
3. Let lnum be ? ToNumeric (lval).

4. Let rnum be ? ToNumeric (rval).
…

42

Motivating Example 2
Symbol() + 1

Program P4

JS
TypeError

1 + Symbol()
Program P5

JS
TypeError

1-FS Node Coverage

TR = (Feature, Node)

(ADD,)2
cover

ToNumeric (value)
…
3. Return ? ToNumber (primValue).

ToNumber (argument)
…
6. If Type (argument) is Symbol,

throw a TypeError exception.
… 2

/ 57Abstract Algorithms in ECMA-262 (ES13, 2022), JavaScript Language Specification

Evaluation of AddExpr : AddExpr + MulExpr

ADD
feat

EvalStrOrNumBinExpr (lval, opText, rval)

ApplyStrOrNumBinOp (lval, opText, rval)
…
3. Let lnum be ? ToNumeric (lval).

4. Let rnum be ? ToNumeric (rval).
…

42

Motivating Example 2
Symbol() + 1

Program P4

JS
TypeError

1 + Symbol()
Program P5

JS
TypeError

1-FS Node Coverage

TR = (Feature, Node)

(ADD,)2
cover

(ADD,)2
cover

ToNumeric (value)
…
3. Return ? ToNumber (primValue).

ToNumber (argument)
…
6. If Type (argument) is Symbol,

throw a TypeError exception.
… 2

/ 57Abstract Algorithms in ECMA-262 (ES13, 2022), JavaScript Language Specification

Evaluation of AddExpr : AddExpr + MulExpr

ADD
feat

EvalStrOrNumBinExpr (lval, opText, rval)

ApplyStrOrNumBinOp (lval, opText, rval)
…
3. Let lnum be ? ToNumeric (lval).

4. Let rnum be ? ToNumeric (rval).
…

42

Motivating Example 2

Same TRs

Symbol() + 1
Program P4

JS
TypeError

1 + Symbol()
Program P5

JS
TypeError

1-FS Node Coverage

TR = (Feature, Node)

(ADD,)2
cover

(ADD,)2
cover

ToNumeric (value)
…
3. Return ? ToNumber (primValue).

ToNumber (argument)
…
6. If Type (argument) is Symbol,

throw a TypeError exception.
… 2

/ 57Abstract Algorithms in ECMA-262 (ES13, 2022), JavaScript Language Specification

Evaluation of AddExpr : AddExpr + MulExpr

ADD
feat

EvalStrOrNumBinExpr (lval, opText, rval)

ApplyStrOrNumBinOp (lval, opText, rval)
…
3. Let lnum be ? ToNumeric (lval).

4. Let rnum be ? ToNumeric (rval).
…

42

Motivating Example 2

Same TRs

Cannot
Distinguish
P4 and P5Symbol() + 1

Program P4

JS
TypeError

1 + Symbol()
Program P5

JS
TypeError

1-FS Node Coverage

TR = (Feature, Node)

(ADD,)2
cover

(ADD,)2
cover

ToNumeric (value)
…
3. Return ? ToNumber (primValue).

ToNumber (argument)
…
6. If Type (argument) is Symbol,

throw a TypeError exception.
… 2

/ 57Abstract Algorithms in ECMA-262 (ES13, 2022), JavaScript Language Specification

Evaluation of AddExpr : AddExpr + MulExpr

ADD
feat

EvalStrOrNumBinExpr (lval, opText, rval)

ApplyStrOrNumBinOp (lval, opText, rval)
…
3. Let lnum be ? ToNumeric (lval).

4. Let rnum be ? ToNumeric (rval).
…

42

Motivating Example 2

Same TRs

Cannot
Distinguish
P4 and P5Symbol() + 1

Program P4

JS
TypeError

1 + Symbol()
Program P5

JS
TypeError

1-FS Node Coverage

TR = (Feature, Node)

(ADD,)2
cover

(ADD,)2
cover

ToNumeric (value)
…
3. Return ? ToNumber (primValue).

ToNumber (argument)
…
6. If Type (argument) is Symbol,

throw a TypeError exception.
… 2

3

4

call

call

5

6

call

call

7 call

/ 57

• 𝑘-Feature-Call-Path-Sensitive (𝑘-FCPS) coverage 
criterion divides the 𝑘-FS TRs with the call-paths  
from the innermost enclosing language feature

43

𝑘-Feature-Call-Path-Sensitive (𝑘-FCPS) Coverage

𝑘-FCPS Coverage

TR = (Feature≤𝑘, Call-Path, given TR)

Symbol() + 1
Program P4

JS
TypeError

1 + Symbol()
Program P5

JS
TypeError

/ 57

• 𝑘-Feature-Call-Path-Sensitive (𝑘-FCPS) coverage 
criterion divides the 𝑘-FS TRs with the call-paths  
from the innermost enclosing language feature

43

𝑘-Feature-Call-Path-Sensitive (𝑘-FCPS) Coverage

𝑘-FCPS Coverage

TR = (Feature≤𝑘, Call-Path, given TR)

Symbol() + 1
Program P4

JS
TypeError

1 + Symbol()
Program P5

JS
TypeError

1-FCPS Node Coverage

TR = (Feature, 
Call-Path, Node)

/ 57

• 𝑘-Feature-Call-Path-Sensitive (𝑘-FCPS) coverage 
criterion divides the 𝑘-FS TRs with the call-paths  
from the innermost enclosing language feature

43

𝑘-Feature-Call-Path-Sensitive (𝑘-FCPS) Coverage

𝑘-FCPS Coverage

TR = (Feature≤𝑘, Call-Path, given TR)

Symbol() + 1
Program P4

JS
TypeError

1 + Symbol()
Program P5

JS
TypeError

1-FCPS Node Coverage

TR = (Feature, 
Call-Path, Node)

3 4 5 7ADD<latexit sha1_base64="SPti2hMefRxNKWNntZBVQBrDZAY=">AAACFXicbVDLSsNAFJ34rPVVdekmWARXJRFfy6IblxXsA9pQJpNJO3YeYeZGqKH/4E70X9yJW9f+iiunbRa29cCFwzn3zp17woQzA5737Swtr6yurRc2iptb2zu7pb39hlGpJrROFFe6FWJDOZO0Dgw4bSWaYhFy2gwHN2O/+Ui1YUrewzChgcA9yWJGMFip0SGRAtMtlb2KN4G7SPyclFGOWrf004kUSQWVQDg2pu17CQQZ1sAIp6NiJzU0wWSAe7RtqcSCmiCb/HbkHlslcmOlbUlwJ+rfiQwLY4YitJ0CQ9/Me2PxX8+AwHqoo7n9EF8FGZNJClSS6fo45S4odxyIGzFNCfChJZhoZi9wSR9rTMDGNvM+sMHTqGjD8uejWSSN04p/UTm/OytXr/PYCugQHaET5KNLVEW3qIbqiKAH9Ixe0Zvz4rw7H87ntHXJyWcO0Aycr18dwqBP</latexit>· · · 2call call call call

/ 57

(ADD, [3, 4, 5, 7],)2
cover

• 𝑘-Feature-Call-Path-Sensitive (𝑘-FCPS) coverage 
criterion divides the 𝑘-FS TRs with the call-paths  
from the innermost enclosing language feature

43

𝑘-Feature-Call-Path-Sensitive (𝑘-FCPS) Coverage

𝑘-FCPS Coverage

TR = (Feature≤𝑘, Call-Path, given TR)

Symbol() + 1
Program P4

JS
TypeError

1 + Symbol()
Program P5

JS
TypeError

1-FCPS Node Coverage

TR = (Feature, 
Call-Path, Node)

3 4 5 7ADD<latexit sha1_base64="SPti2hMefRxNKWNntZBVQBrDZAY=">AAACFXicbVDLSsNAFJ34rPVVdekmWARXJRFfy6IblxXsA9pQJpNJO3YeYeZGqKH/4E70X9yJW9f+iiunbRa29cCFwzn3zp17woQzA5737Swtr6yurRc2iptb2zu7pb39hlGpJrROFFe6FWJDOZO0Dgw4bSWaYhFy2gwHN2O/+Ui1YUrewzChgcA9yWJGMFip0SGRAtMtlb2KN4G7SPyclFGOWrf004kUSQWVQDg2pu17CQQZ1sAIp6NiJzU0wWSAe7RtqcSCmiCb/HbkHlslcmOlbUlwJ+rfiQwLY4YitJ0CQ9/Me2PxX8+AwHqoo7n9EF8FGZNJClSS6fo45S4odxyIGzFNCfChJZhoZi9wSR9rTMDGNvM+sMHTqGjD8uejWSSN04p/UTm/OytXr/PYCugQHaET5KNLVEW3qIbqiKAH9Ixe0Zvz4rw7H87ntHXJyWcO0Aycr18dwqBP</latexit>· · · 2call call call call

/ 57

(ADD, [3, 4, 5, 7],)2
cover

• 𝑘-Feature-Call-Path-Sensitive (𝑘-FCPS) coverage 
criterion divides the 𝑘-FS TRs with the call-paths  
from the innermost enclosing language feature

43

𝑘-Feature-Call-Path-Sensitive (𝑘-FCPS) Coverage

𝑘-FCPS Coverage

TR = (Feature≤𝑘, Call-Path, given TR)

Symbol() + 1
Program P4

JS
TypeError

1 + Symbol()
Program P5

JS
TypeError

1-FCPS Node Coverage

TR = (Feature, 
Call-Path, Node)

3 4 6 7ADD<latexit sha1_base64="SPti2hMefRxNKWNntZBVQBrDZAY=">AAACFXicbVDLSsNAFJ34rPVVdekmWARXJRFfy6IblxXsA9pQJpNJO3YeYeZGqKH/4E70X9yJW9f+iiunbRa29cCFwzn3zp17woQzA5737Swtr6yurRc2iptb2zu7pb39hlGpJrROFFe6FWJDOZO0Dgw4bSWaYhFy2gwHN2O/+Ui1YUrewzChgcA9yWJGMFip0SGRAtMtlb2KN4G7SPyclFGOWrf004kUSQWVQDg2pu17CQQZ1sAIp6NiJzU0wWSAe7RtqcSCmiCb/HbkHlslcmOlbUlwJ+rfiQwLY4YitJ0CQ9/Me2PxX8+AwHqoo7n9EF8FGZNJClSS6fo45S4odxyIGzFNCfChJZhoZi9wSR9rTMDGNvM+sMHTqGjD8uejWSSN04p/UTm/OytXr/PYCugQHaET5KNLVEW3qIbqiKAH9Ixe0Zvz4rw7H87ntHXJyWcO0Aycr18dwqBP</latexit>· · · 2call call call call

3 4 5 7ADD<latexit sha1_base64="SPti2hMefRxNKWNntZBVQBrDZAY=">AAACFXicbVDLSsNAFJ34rPVVdekmWARXJRFfy6IblxXsA9pQJpNJO3YeYeZGqKH/4E70X9yJW9f+iiunbRa29cCFwzn3zp17woQzA5737Swtr6yurRc2iptb2zu7pb39hlGpJrROFFe6FWJDOZO0Dgw4bSWaYhFy2gwHN2O/+Ui1YUrewzChgcA9yWJGMFip0SGRAtMtlb2KN4G7SPyclFGOWrf004kUSQWVQDg2pu17CQQZ1sAIp6NiJzU0wWSAe7RtqcSCmiCb/HbkHlslcmOlbUlwJ+rfiQwLY4YitJ0CQ9/Me2PxX8+AwHqoo7n9EF8FGZNJClSS6fo45S4odxyIGzFNCfChJZhoZi9wSR9rTMDGNvM+sMHTqGjD8uejWSSN04p/UTm/OytXr/PYCugQHaET5KNLVEW3qIbqiKAH9Ixe0Zvz4rw7H87ntHXJyWcO0Aycr18dwqBP</latexit>· · · 2call call call call

/ 57

(ADD, [3, 4, 5, 7],)2
cover

• 𝑘-Feature-Call-Path-Sensitive (𝑘-FCPS) coverage 
criterion divides the 𝑘-FS TRs with the call-paths  
from the innermost enclosing language feature

43

𝑘-Feature-Call-Path-Sensitive (𝑘-FCPS) Coverage

𝑘-FCPS Coverage

TR = (Feature≤𝑘, Call-Path, given TR)

Symbol() + 1
Program P4

JS
TypeError

1 + Symbol()
Program P5

JS
TypeError

1-FCPS Node Coverage

TR = (Feature, 
Call-Path, Node)

3 4 6 7ADD<latexit sha1_base64="SPti2hMefRxNKWNntZBVQBrDZAY=">AAACFXicbVDLSsNAFJ34rPVVdekmWARXJRFfy6IblxXsA9pQJpNJO3YeYeZGqKH/4E70X9yJW9f+iiunbRa29cCFwzn3zp17woQzA5737Swtr6yurRc2iptb2zu7pb39hlGpJrROFFe6FWJDOZO0Dgw4bSWaYhFy2gwHN2O/+Ui1YUrewzChgcA9yWJGMFip0SGRAtMtlb2KN4G7SPyclFGOWrf004kUSQWVQDg2pu17CQQZ1sAIp6NiJzU0wWSAe7RtqcSCmiCb/HbkHlslcmOlbUlwJ+rfiQwLY4YitJ0CQ9/Me2PxX8+AwHqoo7n9EF8FGZNJClSS6fo45S4odxyIGzFNCfChJZhoZi9wSR9rTMDGNvM+sMHTqGjD8uejWSSN04p/UTm/OytXr/PYCugQHaET5KNLVEW3qIbqiKAH9Ixe0Zvz4rw7H87ntHXJyWcO0Aycr18dwqBP</latexit>· · · 2call call call call

3 4 5 7ADD<latexit sha1_base64="SPti2hMefRxNKWNntZBVQBrDZAY=">AAACFXicbVDLSsNAFJ34rPVVdekmWARXJRFfy6IblxXsA9pQJpNJO3YeYeZGqKH/4E70X9yJW9f+iiunbRa29cCFwzn3zp17woQzA5737Swtr6yurRc2iptb2zu7pb39hlGpJrROFFe6FWJDOZO0Dgw4bSWaYhFy2gwHN2O/+Ui1YUrewzChgcA9yWJGMFip0SGRAtMtlb2KN4G7SPyclFGOWrf004kUSQWVQDg2pu17CQQZ1sAIp6NiJzU0wWSAe7RtqcSCmiCb/HbkHlslcmOlbUlwJ+rfiQwLY4YitJ0CQ9/Me2PxX8+AwHqoo7n9EF8FGZNJClSS6fo45S4odxyIGzFNCfChJZhoZi9wSR9rTMDGNvM+sMHTqGjD8uejWSSN04p/UTm/OytXr/PYCugQHaET5KNLVEW3qIbqiKAH9Ixe0Zvz4rw7H87ntHXJyWcO0Aycr18dwqBP</latexit>· · · 2call call call call
step 3

step 4

/ 57

(ADD, [3, 4, 5, 7],)2
cover

(ADD, [3, 4, 6, 7],)2
cover

• 𝑘-Feature-Call-Path-Sensitive (𝑘-FCPS) coverage 
criterion divides the 𝑘-FS TRs with the call-paths  
from the innermost enclosing language feature

43

𝑘-Feature-Call-Path-Sensitive (𝑘-FCPS) Coverage

𝑘-FCPS Coverage

TR = (Feature≤𝑘, Call-Path, given TR)

Symbol() + 1
Program P4

JS
TypeError

1 + Symbol()
Program P5

JS
TypeError

1-FCPS Node Coverage

TR = (Feature, 
Call-Path, Node)

3 4 6 7ADD<latexit sha1_base64="SPti2hMefRxNKWNntZBVQBrDZAY=">AAACFXicbVDLSsNAFJ34rPVVdekmWARXJRFfy6IblxXsA9pQJpNJO3YeYeZGqKH/4E70X9yJW9f+iiunbRa29cCFwzn3zp17woQzA5737Swtr6yurRc2iptb2zu7pb39hlGpJrROFFe6FWJDOZO0Dgw4bSWaYhFy2gwHN2O/+Ui1YUrewzChgcA9yWJGMFip0SGRAtMtlb2KN4G7SPyclFGOWrf004kUSQWVQDg2pu17CQQZ1sAIp6NiJzU0wWSAe7RtqcSCmiCb/HbkHlslcmOlbUlwJ+rfiQwLY4YitJ0CQ9/Me2PxX8+AwHqoo7n9EF8FGZNJClSS6fo45S4odxyIGzFNCfChJZhoZi9wSR9rTMDGNvM+sMHTqGjD8uejWSSN04p/UTm/OytXr/PYCugQHaET5KNLVEW3qIbqiKAH9Ixe0Zvz4rw7H87ntHXJyWcO0Aycr18dwqBP</latexit>· · · 2call call call call

3 4 5 7ADD<latexit sha1_base64="SPti2hMefRxNKWNntZBVQBrDZAY=">AAACFXicbVDLSsNAFJ34rPVVdekmWARXJRFfy6IblxXsA9pQJpNJO3YeYeZGqKH/4E70X9yJW9f+iiunbRa29cCFwzn3zp17woQzA5737Swtr6yurRc2iptb2zu7pb39hlGpJrROFFe6FWJDOZO0Dgw4bSWaYhFy2gwHN2O/+Ui1YUrewzChgcA9yWJGMFip0SGRAtMtlb2KN4G7SPyclFGOWrf004kUSQWVQDg2pu17CQQZ1sAIp6NiJzU0wWSAe7RtqcSCmiCb/HbkHlslcmOlbUlwJ+rfiQwLY4YitJ0CQ9/Me2PxX8+AwHqoo7n9EF8FGZNJClSS6fo45S4odxyIGzFNCfChJZhoZi9wSR9rTMDGNvM+sMHTqGjD8uejWSSN04p/UTm/OytXr/PYCugQHaET5KNLVEW3qIbqiKAH9Ixe0Zvz4rw7H87ntHXJyWcO0Aycr18dwqBP</latexit>· · · 2call call call call
step 3

step 4

/ 57

Different TRs

(ADD, [3, 4, 5, 7],)2
cover

(ADD, [3, 4, 6, 7],)2
cover

• 𝑘-Feature-Call-Path-Sensitive (𝑘-FCPS) coverage 
criterion divides the 𝑘-FS TRs with the call-paths  
from the innermost enclosing language feature

43

𝑘-Feature-Call-Path-Sensitive (𝑘-FCPS) Coverage

𝑘-FCPS Coverage

TR = (Feature≤𝑘, Call-Path, given TR)

Symbol() + 1
Program P4

JS
TypeError

1 + Symbol()
Program P5

JS
TypeError

1-FCPS Node Coverage

TR = (Feature, 
Call-Path, Node)

3 4 6 7ADD<latexit sha1_base64="SPti2hMefRxNKWNntZBVQBrDZAY=">AAACFXicbVDLSsNAFJ34rPVVdekmWARXJRFfy6IblxXsA9pQJpNJO3YeYeZGqKH/4E70X9yJW9f+iiunbRa29cCFwzn3zp17woQzA5737Swtr6yurRc2iptb2zu7pb39hlGpJrROFFe6FWJDOZO0Dgw4bSWaYhFy2gwHN2O/+Ui1YUrewzChgcA9yWJGMFip0SGRAtMtlb2KN4G7SPyclFGOWrf004kUSQWVQDg2pu17CQQZ1sAIp6NiJzU0wWSAe7RtqcSCmiCb/HbkHlslcmOlbUlwJ+rfiQwLY4YitJ0CQ9/Me2PxX8+AwHqoo7n9EF8FGZNJClSS6fo45S4odxyIGzFNCfChJZhoZi9wSR9rTMDGNvM+sMHTqGjD8uejWSSN04p/UTm/OytXr/PYCugQHaET5KNLVEW3qIbqiKAH9Ixe0Zvz4rw7H87ntHXJyWcO0Aycr18dwqBP</latexit>· · · 2call call call call

3 4 5 7ADD<latexit sha1_base64="SPti2hMefRxNKWNntZBVQBrDZAY=">AAACFXicbVDLSsNAFJ34rPVVdekmWARXJRFfy6IblxXsA9pQJpNJO3YeYeZGqKH/4E70X9yJW9f+iiunbRa29cCFwzn3zp17woQzA5737Swtr6yurRc2iptb2zu7pb39hlGpJrROFFe6FWJDOZO0Dgw4bSWaYhFy2gwHN2O/+Ui1YUrewzChgcA9yWJGMFip0SGRAtMtlb2KN4G7SPyclFGOWrf004kUSQWVQDg2pu17CQQZ1sAIp6NiJzU0wWSAe7RtqcSCmiCb/HbkHlslcmOlbUlwJ+rfiQwLY4YitJ0CQ9/Me2PxX8+AwHqoo7n9EF8FGZNJClSS6fo45S4odxyIGzFNCfChJZhoZi9wSR9rTMDGNvM+sMHTqGjD8uejWSSN04p/UTm/OytXr/PYCugQHaET5KNLVEW3qIbqiKAH9Ixe0Zvz4rw7H87ntHXJyWcO0Aycr18dwqBP</latexit>· · · 2call call call call
step 3

step 4

/ 57

Different TRs

(ADD, [3, 4, 5, 7],)2
cover

(ADD, [3, 4, 6, 7],)2
cover

• 𝑘-Feature-Call-Path-Sensitive (𝑘-FCPS) coverage 
criterion divides the 𝑘-FS TRs with the call-paths  
from the innermost enclosing language feature

43

𝑘-Feature-Call-Path-Sensitive (𝑘-FCPS) Coverage

𝑘-FCPS Coverage

TR = (Feature≤𝑘, Call-Path, given TR)

Can
Distinguish
P4 and P5

Symbol() + 1
Program P4

JS
TypeError

1 + Symbol()
Program P5

JS
TypeError

1-FCPS Node Coverage

TR = (Feature, 
Call-Path, Node)

3 4 6 7ADD<latexit sha1_base64="SPti2hMefRxNKWNntZBVQBrDZAY=">AAACFXicbVDLSsNAFJ34rPVVdekmWARXJRFfy6IblxXsA9pQJpNJO3YeYeZGqKH/4E70X9yJW9f+iiunbRa29cCFwzn3zp17woQzA5737Swtr6yurRc2iptb2zu7pb39hlGpJrROFFe6FWJDOZO0Dgw4bSWaYhFy2gwHN2O/+Ui1YUrewzChgcA9yWJGMFip0SGRAtMtlb2KN4G7SPyclFGOWrf004kUSQWVQDg2pu17CQQZ1sAIp6NiJzU0wWSAe7RtqcSCmiCb/HbkHlslcmOlbUlwJ+rfiQwLY4YitJ0CQ9/Me2PxX8+AwHqoo7n9EF8FGZNJClSS6fo45S4odxyIGzFNCfChJZhoZi9wSR9rTMDGNvM+sMHTqGjD8uejWSSN04p/UTm/OytXr/PYCugQHaET5KNLVEW3qIbqiKAH9Ixe0Zvz4rw7H87ntHXJyWcO0Aycr18dwqBP</latexit>· · · 2call call call call

3 4 5 7ADD<latexit sha1_base64="SPti2hMefRxNKWNntZBVQBrDZAY=">AAACFXicbVDLSsNAFJ34rPVVdekmWARXJRFfy6IblxXsA9pQJpNJO3YeYeZGqKH/4E70X9yJW9f+iiunbRa29cCFwzn3zp17woQzA5737Swtr6yurRc2iptb2zu7pb39hlGpJrROFFe6FWJDOZO0Dgw4bSWaYhFy2gwHN2O/+Ui1YUrewzChgcA9yWJGMFip0SGRAtMtlb2KN4G7SPyclFGOWrf004kUSQWVQDg2pu17CQQZ1sAIp6NiJzU0wWSAe7RtqcSCmiCb/HbkHlslcmOlbUlwJ+rfiQwLY4YitJ0CQ9/Me2PxX8+AwHqoo7n9EF8FGZNJClSS6fo45S4odxyIGzFNCfChJZhoZi9wSR9rTMDGNvM+sMHTqGjD8uejWSSN04p/UTm/OytXr/PYCugQHaET5KNLVEW3qIbqiKAH9Ixe0Zvz4rw7H87ntHXJyWcO0Aycr18dwqBP</latexit>· · · 2call call call call
step 3

step 4

/ 57

• Evaluation with ES2022 in 50 hours with 0-FS / 1-FS / 2-FS / 1-FCPS / 2-FCPS

44

EvaluationFeature-Sensitive Coverage for Conformance Testing 126:15

Table 1. Detected conformance bugs in JavaScript engines and transpilers

Kind Name Version Release
Detected Unique Bugs

New # Confirmed # Reported

Engine

V8 v10.8.121 2022.10.06 0 0 4
JSC v615.1.10 2022.10.26 15 15 24
GraalJS v22.2.0 2022.07.26 9 9 10
SpiderMonkey v107.0b4 2022.10.24 1 3 4

Total 25 27 42

Transpiler

Babel v7.19.1 2022.09.15 30 30 35
SWC v1.3.10 2022.10.21 27 27 41
Terser v5.15.1 2022.10.05 1 1 18
Obfuscator v4.0.0 2022.02.15 0 0 7

Total 58 58 101

Total 83 85 143

5 EVALUATION

This section evaluates feature-sensitive coverage criteria with the following research questions:

• RQ1 (Conformance Bug Detection): How many conformance bugs in JavaScript imple-
mentations are detected by synthesized conformance tests? (Section 5.1)

• RQ2 (Effectiveness of 𝑘-FS Coverage Criteria): Are higher 𝑘-FS coverage criteria more
effective than lower 𝑘-FS coverage criteria in detecting conformance bugs? (Section 5.2)

• RQ3 (Effectiveness of 𝑘-FCPS Coverage Criteria): Are 𝑘-FCPS coverage criteria more
effective than 𝑘-FS coverage criteria in detecting conformance bugs? (Section 5.3)

• RQ4 (Comparisonwith Test262):Can conformance tests synthesized by JESTfs complement
Test262, the official JavaScript conformance suite maintained manually? (Section 5.4)

We apply JESTfs to the latest language specification (ES13, 2022) [ECMA International 2022a],
which synthesized 237,981 conformance tests in 50 hours with five graph coverage criteria: 1) 0-FS,
2) 1-FS, 3) 2-FS, 4) 1-FCPS, and 5) 2-FCPS node-or-branch coverage. We performed our experiments
with five Ubuntu machines with a 4.0GHz Intel(R) Core(TM) i7-6700k and 32GB of RAM (Samsung
DDR4 2133MHz 8GB*4).
Using the synthesized JavaScript conformance tests, we check the conformance of eight main-

stream implementations listed in Table 1. We select them as evaluation targets because they support
all the language features in ES13. V8, JSC, and SpiderMonkey are JavaScript engines used in web
browsers, Google Chrome, Apple Safari, and Mozilla Firefox, respectively, and GraalJS is a JavaScript
engine by Oracle. Babel and SWC are transpilers that desugar new language features into old ones,
usually ES5.1 features, for legacy host environments. Terser is a code compressor that reduces
code size, and Obfuscator obfuscates code to make it hard to understand and reverse-engineering.
For the transpiler conformance check, we use V8 as the default engine to execute transpiled code
with assertions. If a test fails on V8, we use another engine that passes the test; if a test fails on all
engines, we do not use the test.

5.1 Conformance Bug Detection

Table 1 summarizes the conformance bugs detected by JESTfs in all the evaluation targets. We
manually inspected the failed conformance test cases, found 143 distinct conformance bugs, and
reported them to the corresponding developers. As a result, 85 out of 143 bugs were officially
confirmed, and 83 were newly discovered bugs. The other 47 reported bugs are still under review,
or developers have not yet responded. Among 143 detected bugs, 42 are engine bugs, and 101 are
transpiler bugs. We present two real-world bug examples.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 126. Publication date: June 2023.

/ 57

• Evaluation with ES2022 in 50 hours with 0-FS / 1-FS / 2-FS / 1-FCPS / 2-FCPS

44

EvaluationFeature-Sensitive Coverage for Conformance Testing 126:15

Table 1. Detected conformance bugs in JavaScript engines and transpilers

Kind Name Version Release
Detected Unique Bugs

New # Confirmed # Reported

Engine

V8 v10.8.121 2022.10.06 0 0 4
JSC v615.1.10 2022.10.26 15 15 24
GraalJS v22.2.0 2022.07.26 9 9 10
SpiderMonkey v107.0b4 2022.10.24 1 3 4

Total 25 27 42

Transpiler

Babel v7.19.1 2022.09.15 30 30 35
SWC v1.3.10 2022.10.21 27 27 41
Terser v5.15.1 2022.10.05 1 1 18
Obfuscator v4.0.0 2022.02.15 0 0 7

Total 58 58 101

Total 83 85 143

5 EVALUATION

This section evaluates feature-sensitive coverage criteria with the following research questions:

• RQ1 (Conformance Bug Detection): How many conformance bugs in JavaScript imple-
mentations are detected by synthesized conformance tests? (Section 5.1)

• RQ2 (Effectiveness of 𝑘-FS Coverage Criteria): Are higher 𝑘-FS coverage criteria more
effective than lower 𝑘-FS coverage criteria in detecting conformance bugs? (Section 5.2)

• RQ3 (Effectiveness of 𝑘-FCPS Coverage Criteria): Are 𝑘-FCPS coverage criteria more
effective than 𝑘-FS coverage criteria in detecting conformance bugs? (Section 5.3)

• RQ4 (Comparisonwith Test262):Can conformance tests synthesized by JESTfs complement
Test262, the official JavaScript conformance suite maintained manually? (Section 5.4)

We apply JESTfs to the latest language specification (ES13, 2022) [ECMA International 2022a],
which synthesized 237,981 conformance tests in 50 hours with five graph coverage criteria: 1) 0-FS,
2) 1-FS, 3) 2-FS, 4) 1-FCPS, and 5) 2-FCPS node-or-branch coverage. We performed our experiments
with five Ubuntu machines with a 4.0GHz Intel(R) Core(TM) i7-6700k and 32GB of RAM (Samsung
DDR4 2133MHz 8GB*4).
Using the synthesized JavaScript conformance tests, we check the conformance of eight main-

stream implementations listed in Table 1. We select them as evaluation targets because they support
all the language features in ES13. V8, JSC, and SpiderMonkey are JavaScript engines used in web
browsers, Google Chrome, Apple Safari, and Mozilla Firefox, respectively, and GraalJS is a JavaScript
engine by Oracle. Babel and SWC are transpilers that desugar new language features into old ones,
usually ES5.1 features, for legacy host environments. Terser is a code compressor that reduces
code size, and Obfuscator obfuscates code to make it hard to understand and reverse-engineering.
For the transpiler conformance check, we use V8 as the default engine to execute transpiled code
with assertions. If a test fails on V8, we use another engine that passes the test; if a test fails on all
engines, we do not use the test.

5.1 Conformance Bug Detection

Table 1 summarizes the conformance bugs detected by JESTfs in all the evaluation targets. We
manually inspected the failed conformance test cases, found 143 distinct conformance bugs, and
reported them to the corresponding developers. As a result, 85 out of 143 bugs were officially
confirmed, and 83 were newly discovered bugs. The other 47 reported bugs are still under review,
or developers have not yet responded. Among 143 detected bugs, 42 are engine bugs, and 101 are
transpiler bugs. We present two real-world bug examples.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 126. Publication date: June 2023.

/ 57

• Evaluation with ES2022 in 50 hours with 0-FS / 1-FS / 2-FS / 1-FCPS / 2-FCPS

44

EvaluationFeature-Sensitive Coverage for Conformance Testing 126:15

Table 1. Detected conformance bugs in JavaScript engines and transpilers

Kind Name Version Release
Detected Unique Bugs

New # Confirmed # Reported

Engine

V8 v10.8.121 2022.10.06 0 0 4
JSC v615.1.10 2022.10.26 15 15 24
GraalJS v22.2.0 2022.07.26 9 9 10
SpiderMonkey v107.0b4 2022.10.24 1 3 4

Total 25 27 42

Transpiler

Babel v7.19.1 2022.09.15 30 30 35
SWC v1.3.10 2022.10.21 27 27 41
Terser v5.15.1 2022.10.05 1 1 18
Obfuscator v4.0.0 2022.02.15 0 0 7

Total 58 58 101

Total 83 85 143

5 EVALUATION

This section evaluates feature-sensitive coverage criteria with the following research questions:

• RQ1 (Conformance Bug Detection): How many conformance bugs in JavaScript imple-
mentations are detected by synthesized conformance tests? (Section 5.1)

• RQ2 (Effectiveness of 𝑘-FS Coverage Criteria): Are higher 𝑘-FS coverage criteria more
effective than lower 𝑘-FS coverage criteria in detecting conformance bugs? (Section 5.2)

• RQ3 (Effectiveness of 𝑘-FCPS Coverage Criteria): Are 𝑘-FCPS coverage criteria more
effective than 𝑘-FS coverage criteria in detecting conformance bugs? (Section 5.3)

• RQ4 (Comparisonwith Test262):Can conformance tests synthesized by JESTfs complement
Test262, the official JavaScript conformance suite maintained manually? (Section 5.4)

We apply JESTfs to the latest language specification (ES13, 2022) [ECMA International 2022a],
which synthesized 237,981 conformance tests in 50 hours with five graph coverage criteria: 1) 0-FS,
2) 1-FS, 3) 2-FS, 4) 1-FCPS, and 5) 2-FCPS node-or-branch coverage. We performed our experiments
with five Ubuntu machines with a 4.0GHz Intel(R) Core(TM) i7-6700k and 32GB of RAM (Samsung
DDR4 2133MHz 8GB*4).
Using the synthesized JavaScript conformance tests, we check the conformance of eight main-

stream implementations listed in Table 1. We select them as evaluation targets because they support
all the language features in ES13. V8, JSC, and SpiderMonkey are JavaScript engines used in web
browsers, Google Chrome, Apple Safari, and Mozilla Firefox, respectively, and GraalJS is a JavaScript
engine by Oracle. Babel and SWC are transpilers that desugar new language features into old ones,
usually ES5.1 features, for legacy host environments. Terser is a code compressor that reduces
code size, and Obfuscator obfuscates code to make it hard to understand and reverse-engineering.
For the transpiler conformance check, we use V8 as the default engine to execute transpiled code
with assertions. If a test fails on V8, we use another engine that passes the test; if a test fails on all
engines, we do not use the test.

5.1 Conformance Bug Detection

Table 1 summarizes the conformance bugs detected by JESTfs in all the evaluation targets. We
manually inspected the failed conformance test cases, found 143 distinct conformance bugs, and
reported them to the corresponding developers. As a result, 85 out of 143 bugs were officially
confirmed, and 83 were newly discovered bugs. The other 47 reported bugs are still under review,
or developers have not yet responded. Among 143 detected bugs, 42 are engine bugs, and 101 are
transpiler bugs. We present two real-world bug examples.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 126. Publication date: June 2023.

/ 57

• Evaluation with ES2022 in 50 hours with 0-FS / 1-FS / 2-FS / 1-FCPS / 2-FCPS

44

EvaluationFeature-Sensitive Coverage for Conformance Testing 126:15

Table 1. Detected conformance bugs in JavaScript engines and transpilers

Kind Name Version Release
Detected Unique Bugs

New # Confirmed # Reported

Engine

V8 v10.8.121 2022.10.06 0 0 4
JSC v615.1.10 2022.10.26 15 15 24
GraalJS v22.2.0 2022.07.26 9 9 10
SpiderMonkey v107.0b4 2022.10.24 1 3 4

Total 25 27 42

Transpiler

Babel v7.19.1 2022.09.15 30 30 35
SWC v1.3.10 2022.10.21 27 27 41
Terser v5.15.1 2022.10.05 1 1 18
Obfuscator v4.0.0 2022.02.15 0 0 7

Total 58 58 101

Total 83 85 143

5 EVALUATION

This section evaluates feature-sensitive coverage criteria with the following research questions:

• RQ1 (Conformance Bug Detection): How many conformance bugs in JavaScript imple-
mentations are detected by synthesized conformance tests? (Section 5.1)

• RQ2 (Effectiveness of 𝑘-FS Coverage Criteria): Are higher 𝑘-FS coverage criteria more
effective than lower 𝑘-FS coverage criteria in detecting conformance bugs? (Section 5.2)

• RQ3 (Effectiveness of 𝑘-FCPS Coverage Criteria): Are 𝑘-FCPS coverage criteria more
effective than 𝑘-FS coverage criteria in detecting conformance bugs? (Section 5.3)

• RQ4 (Comparisonwith Test262):Can conformance tests synthesized by JESTfs complement
Test262, the official JavaScript conformance suite maintained manually? (Section 5.4)

We apply JESTfs to the latest language specification (ES13, 2022) [ECMA International 2022a],
which synthesized 237,981 conformance tests in 50 hours with five graph coverage criteria: 1) 0-FS,
2) 1-FS, 3) 2-FS, 4) 1-FCPS, and 5) 2-FCPS node-or-branch coverage. We performed our experiments
with five Ubuntu machines with a 4.0GHz Intel(R) Core(TM) i7-6700k and 32GB of RAM (Samsung
DDR4 2133MHz 8GB*4).
Using the synthesized JavaScript conformance tests, we check the conformance of eight main-

stream implementations listed in Table 1. We select them as evaluation targets because they support
all the language features in ES13. V8, JSC, and SpiderMonkey are JavaScript engines used in web
browsers, Google Chrome, Apple Safari, and Mozilla Firefox, respectively, and GraalJS is a JavaScript
engine by Oracle. Babel and SWC are transpilers that desugar new language features into old ones,
usually ES5.1 features, for legacy host environments. Terser is a code compressor that reduces
code size, and Obfuscator obfuscates code to make it hard to understand and reverse-engineering.
For the transpiler conformance check, we use V8 as the default engine to execute transpiled code
with assertions. If a test fails on V8, we use another engine that passes the test; if a test fails on all
engines, we do not use the test.

5.1 Conformance Bug Detection

Table 1 summarizes the conformance bugs detected by JESTfs in all the evaluation targets. We
manually inspected the failed conformance test cases, found 143 distinct conformance bugs, and
reported them to the corresponding developers. As a result, 85 out of 143 bugs were officially
confirmed, and 83 were newly discovered bugs. The other 47 reported bugs are still under review,
or developers have not yet responded. Among 143 detected bugs, 42 are engine bugs, and 101 are
transpiler bugs. We present two real-world bug examples.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 126. Publication date: June 2023.

/ 57

126:16 Jihyeok Park, Dongjun Youn, Kanguk Lee, and Sukyoung Ryu

Table 2. Comparison of synthesized conformance tests guided by five graph coverage criteria

Coverage Criteria⇠G
Covered :-F(CP)S-TR (k) # Syn. Test # Bug# Node # Branch # Total

0-FS node-or-branch (0-fs) 10.0 5.6 15.6 2,111 55
1-FS node-or-branch (1-fs) 79.3 45.7 125.0 6,766 83

1-FCPS node-or-branch (1-fcps) 179.7 97.6 277.3 9,092 87
2-FS node-or-branch (2-fs) 1,199.8 696.3 1,896.1 97,423 102

2-FCPS node-or-branch (2-fcps) 2,323.1 1,297.6 3,620.7 122,589 111

Order of Execution. JavaScript engines must follow the execution order of each language feature
described in the language speci�cation. However, we found a bug10 related to the execution order
of the delete operation that causes the execution of originally unreachable code in GraalJS. For
example, while the following code should return false, it throws an exception with �ERR� by
executing the originally unreachable code inside the arrow function in GraalJS:

false && delete (() => { throw �ERR�; })(); // Expected: false

In addition, we detected another bug11 related to the execution order of property reads in all
target engines. ECMA-262 may consider changing the semantics according to the one used in most
implementations.

Asynchronous Function / Generator. One of the complex language features in JavaScript is
asynchronous functions and generators introduced in ES6 (2015). We detected a bug12 in Spider-
Monkey that breaks the logic of asynchronous function calls. For example, the following code must
return a rejected Promise object because a non-iterable value undefined is assigned to an array
destructuring pattern [] in the async arrow function:

(async function ([]) {})(); // Expected: A rejected Promise object

However, it unexpectedly terminates with a TypeError exception in SpiderMonkey. A developer
of SpiderMonkey explained it as follows:

“The async-function spec was changed at some point [. . .]
this is also not covered by test262.”

5.2 E�ectiveness of :-FS Coverage Criteria
Table 2 shows the result of conformance test synthesis via JESTfs with �ve graph coverage criteria.
Note that 0-FS node-or-branch coverage criterion is the same with the node-or-branch coverage
criterion. To evaluate the e�ectiveness of :-FS coverage criteria, we compare the synthesized
conformance tests guided by di�erent :-FS node-or-branch coverage criteria (0-fs, 1-fs, and 2-fs in
Table 2). The second to the fourth columns denote the numbers of covered :-FS- or :-FCPS-TRs
for nodes (# Node), branches (# Branch), and both (# Total), respectively. The �fth and the sixth
columns denote the numbers of synthesized conformance tests (# Syn. Test) and detected distinct
bugs (# Bug), respectively.
The results show that higher :-FS coverage criteria are more e�ective than lower :-FS. On

average, 8.03 (125.0K / 15.6K) 1-FS-TRs exist per each 0-FS-TR, and 15.17 (1,896.1K / 125.0K) 2-FS-
TRs exist per each 1-FS-TR. It means that each node or branch is used in 8.03 di�erent language
features, and each language feature could be used in 15.17 other language features on average. For
a more detailed information, we draw a histogram of the number of covered 1-FS-TRs (or 2-FS-TRs)
10https://github.com/oracle/graaljs/issues/671
11https://github.com/tc39/ecma262/issues/2659
12https://bugzilla.mozilla.org/show_bug.cgi?id=1799288

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 126. Publication date: June 2023.

126:16 Jihyeok Park, Dongjun Youn, Kanguk Lee, and Sukyoung Ryu

Table 2. Comparison of synthesized conformance tests guided by five graph coverage criteria

Coverage Criteria⇠G
Covered :-F(CP)S-TR (k) # Syn. Test # Bug# Node # Branch # Total

0-FS node-or-branch (0-fs) 10.0 5.6 15.6 2,111 55
1-FS node-or-branch (1-fs) 79.3 45.7 125.0 6,766 83

1-FCPS node-or-branch (1-fcps) 179.7 97.6 277.3 9,092 87
2-FS node-or-branch (2-fs) 1,199.8 696.3 1,896.1 97,423 102

2-FCPS node-or-branch (2-fcps) 2,323.1 1,297.6 3,620.7 122,589 111

Order of Execution. JavaScript engines must follow the execution order of each language feature
described in the language speci�cation. However, we found a bug10 related to the execution order
of the delete operation that causes the execution of originally unreachable code in GraalJS. For
example, while the following code should return false, it throws an exception with �ERR� by
executing the originally unreachable code inside the arrow function in GraalJS:

false && delete (() => { throw �ERR�; })(); // Expected: false

In addition, we detected another bug11 related to the execution order of property reads in all
target engines. ECMA-262 may consider changing the semantics according to the one used in most
implementations.

Asynchronous Function / Generator. One of the complex language features in JavaScript is
asynchronous functions and generators introduced in ES6 (2015). We detected a bug12 in Spider-
Monkey that breaks the logic of asynchronous function calls. For example, the following code must
return a rejected Promise object because a non-iterable value undefined is assigned to an array
destructuring pattern [] in the async arrow function:

(async function ([]) {})(); // Expected: A rejected Promise object

However, it unexpectedly terminates with a TypeError exception in SpiderMonkey. A developer
of SpiderMonkey explained it as follows:

“The async-function spec was changed at some point [. . .]
this is also not covered by test262.”

5.2 E�ectiveness of :-FS Coverage Criteria
Table 2 shows the result of conformance test synthesis via JESTfs with �ve graph coverage criteria.
Note that 0-FS node-or-branch coverage criterion is the same with the node-or-branch coverage
criterion. To evaluate the e�ectiveness of :-FS coverage criteria, we compare the synthesized
conformance tests guided by di�erent :-FS node-or-branch coverage criteria (0-fs, 1-fs, and 2-fs in
Table 2). The second to the fourth columns denote the numbers of covered :-FS- or :-FCPS-TRs
for nodes (# Node), branches (# Branch), and both (# Total), respectively. The �fth and the sixth
columns denote the numbers of synthesized conformance tests (# Syn. Test) and detected distinct
bugs (# Bug), respectively.
The results show that higher :-FS coverage criteria are more e�ective than lower :-FS. On

average, 8.03 (125.0K / 15.6K) 1-FS-TRs exist per each 0-FS-TR, and 15.17 (1,896.1K / 125.0K) 2-FS-
TRs exist per each 1-FS-TR. It means that each node or branch is used in 8.03 di�erent language
features, and each language feature could be used in 15.17 other language features on average. For
a more detailed information, we draw a histogram of the number of covered 1-FS-TRs (or 2-FS-TRs)
10https://github.com/oracle/graaljs/issues/671
11https://github.com/tc39/ecma262/issues/2659
12https://bugzilla.mozilla.org/show_bug.cgi?id=1799288

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 126. Publication date: June 2023.

45

Effectiveness of 𝑘-FS / 𝑘-FCPS Coverage Criteria

/ 57

126:16 Jihyeok Park, Dongjun Youn, Kanguk Lee, and Sukyoung Ryu

Table 2. Comparison of synthesized conformance tests guided by five graph coverage criteria

Coverage Criteria⇠G
Covered :-F(CP)S-TR (k) # Syn. Test # Bug# Node # Branch # Total

0-FS node-or-branch (0-fs) 10.0 5.6 15.6 2,111 55
1-FS node-or-branch (1-fs) 79.3 45.7 125.0 6,766 83

1-FCPS node-or-branch (1-fcps) 179.7 97.6 277.3 9,092 87
2-FS node-or-branch (2-fs) 1,199.8 696.3 1,896.1 97,423 102

2-FCPS node-or-branch (2-fcps) 2,323.1 1,297.6 3,620.7 122,589 111

Order of Execution. JavaScript engines must follow the execution order of each language feature
described in the language speci�cation. However, we found a bug10 related to the execution order
of the delete operation that causes the execution of originally unreachable code in GraalJS. For
example, while the following code should return false, it throws an exception with �ERR� by
executing the originally unreachable code inside the arrow function in GraalJS:

false && delete (() => { throw �ERR�; })(); // Expected: false

In addition, we detected another bug11 related to the execution order of property reads in all
target engines. ECMA-262 may consider changing the semantics according to the one used in most
implementations.

Asynchronous Function / Generator. One of the complex language features in JavaScript is
asynchronous functions and generators introduced in ES6 (2015). We detected a bug12 in Spider-
Monkey that breaks the logic of asynchronous function calls. For example, the following code must
return a rejected Promise object because a non-iterable value undefined is assigned to an array
destructuring pattern [] in the async arrow function:

(async function ([]) {})(); // Expected: A rejected Promise object

However, it unexpectedly terminates with a TypeError exception in SpiderMonkey. A developer
of SpiderMonkey explained it as follows:

“The async-function spec was changed at some point [. . .]
this is also not covered by test262.”

5.2 E�ectiveness of :-FS Coverage Criteria
Table 2 shows the result of conformance test synthesis via JESTfs with �ve graph coverage criteria.
Note that 0-FS node-or-branch coverage criterion is the same with the node-or-branch coverage
criterion. To evaluate the e�ectiveness of :-FS coverage criteria, we compare the synthesized
conformance tests guided by di�erent :-FS node-or-branch coverage criteria (0-fs, 1-fs, and 2-fs in
Table 2). The second to the fourth columns denote the numbers of covered :-FS- or :-FCPS-TRs
for nodes (# Node), branches (# Branch), and both (# Total), respectively. The �fth and the sixth
columns denote the numbers of synthesized conformance tests (# Syn. Test) and detected distinct
bugs (# Bug), respectively.
The results show that higher :-FS coverage criteria are more e�ective than lower :-FS. On

average, 8.03 (125.0K / 15.6K) 1-FS-TRs exist per each 0-FS-TR, and 15.17 (1,896.1K / 125.0K) 2-FS-
TRs exist per each 1-FS-TR. It means that each node or branch is used in 8.03 di�erent language
features, and each language feature could be used in 15.17 other language features on average. For
a more detailed information, we draw a histogram of the number of covered 1-FS-TRs (or 2-FS-TRs)
10https://github.com/oracle/graaljs/issues/671
11https://github.com/tc39/ecma262/issues/2659
12https://bugzilla.mozilla.org/show_bug.cgi?id=1799288

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 126. Publication date: June 2023.

126:16 Jihyeok Park, Dongjun Youn, Kanguk Lee, and Sukyoung Ryu

Table 2. Comparison of synthesized conformance tests guided by five graph coverage criteria

Coverage Criteria⇠G
Covered :-F(CP)S-TR (k) # Syn. Test # Bug# Node # Branch # Total

0-FS node-or-branch (0-fs) 10.0 5.6 15.6 2,111 55
1-FS node-or-branch (1-fs) 79.3 45.7 125.0 6,766 83

1-FCPS node-or-branch (1-fcps) 179.7 97.6 277.3 9,092 87
2-FS node-or-branch (2-fs) 1,199.8 696.3 1,896.1 97,423 102

2-FCPS node-or-branch (2-fcps) 2,323.1 1,297.6 3,620.7 122,589 111

Order of Execution. JavaScript engines must follow the execution order of each language feature
described in the language speci�cation. However, we found a bug10 related to the execution order
of the delete operation that causes the execution of originally unreachable code in GraalJS. For
example, while the following code should return false, it throws an exception with �ERR� by
executing the originally unreachable code inside the arrow function in GraalJS:

false && delete (() => { throw �ERR�; })(); // Expected: false

In addition, we detected another bug11 related to the execution order of property reads in all
target engines. ECMA-262 may consider changing the semantics according to the one used in most
implementations.

Asynchronous Function / Generator. One of the complex language features in JavaScript is
asynchronous functions and generators introduced in ES6 (2015). We detected a bug12 in Spider-
Monkey that breaks the logic of asynchronous function calls. For example, the following code must
return a rejected Promise object because a non-iterable value undefined is assigned to an array
destructuring pattern [] in the async arrow function:

(async function ([]) {})(); // Expected: A rejected Promise object

However, it unexpectedly terminates with a TypeError exception in SpiderMonkey. A developer
of SpiderMonkey explained it as follows:

“The async-function spec was changed at some point [. . .]
this is also not covered by test262.”

5.2 E�ectiveness of :-FS Coverage Criteria
Table 2 shows the result of conformance test synthesis via JESTfs with �ve graph coverage criteria.
Note that 0-FS node-or-branch coverage criterion is the same with the node-or-branch coverage
criterion. To evaluate the e�ectiveness of :-FS coverage criteria, we compare the synthesized
conformance tests guided by di�erent :-FS node-or-branch coverage criteria (0-fs, 1-fs, and 2-fs in
Table 2). The second to the fourth columns denote the numbers of covered :-FS- or :-FCPS-TRs
for nodes (# Node), branches (# Branch), and both (# Total), respectively. The �fth and the sixth
columns denote the numbers of synthesized conformance tests (# Syn. Test) and detected distinct
bugs (# Bug), respectively.
The results show that higher :-FS coverage criteria are more e�ective than lower :-FS. On

average, 8.03 (125.0K / 15.6K) 1-FS-TRs exist per each 0-FS-TR, and 15.17 (1,896.1K / 125.0K) 2-FS-
TRs exist per each 1-FS-TR. It means that each node or branch is used in 8.03 di�erent language
features, and each language feature could be used in 15.17 other language features on average. For
a more detailed information, we draw a histogram of the number of covered 1-FS-TRs (or 2-FS-TRs)
10https://github.com/oracle/graaljs/issues/671
11https://github.com/tc39/ecma262/issues/2659
12https://bugzilla.mozilla.org/show_bug.cgi?id=1799288

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 126. Publication date: June 2023.

45

Effectiveness of 𝑘-FS / 𝑘-FCPS Coverage Criteria

+28

/ 57

126:16 Jihyeok Park, Dongjun Youn, Kanguk Lee, and Sukyoung Ryu

Table 2. Comparison of synthesized conformance tests guided by five graph coverage criteria

Coverage Criteria⇠G
Covered :-F(CP)S-TR (k) # Syn. Test # Bug# Node # Branch # Total

0-FS node-or-branch (0-fs) 10.0 5.6 15.6 2,111 55
1-FS node-or-branch (1-fs) 79.3 45.7 125.0 6,766 83

1-FCPS node-or-branch (1-fcps) 179.7 97.6 277.3 9,092 87
2-FS node-or-branch (2-fs) 1,199.8 696.3 1,896.1 97,423 102

2-FCPS node-or-branch (2-fcps) 2,323.1 1,297.6 3,620.7 122,589 111

Order of Execution. JavaScript engines must follow the execution order of each language feature
described in the language speci�cation. However, we found a bug10 related to the execution order
of the delete operation that causes the execution of originally unreachable code in GraalJS. For
example, while the following code should return false, it throws an exception with �ERR� by
executing the originally unreachable code inside the arrow function in GraalJS:

false && delete (() => { throw �ERR�; })(); // Expected: false

In addition, we detected another bug11 related to the execution order of property reads in all
target engines. ECMA-262 may consider changing the semantics according to the one used in most
implementations.

Asynchronous Function / Generator. One of the complex language features in JavaScript is
asynchronous functions and generators introduced in ES6 (2015). We detected a bug12 in Spider-
Monkey that breaks the logic of asynchronous function calls. For example, the following code must
return a rejected Promise object because a non-iterable value undefined is assigned to an array
destructuring pattern [] in the async arrow function:

(async function ([]) {})(); // Expected: A rejected Promise object

However, it unexpectedly terminates with a TypeError exception in SpiderMonkey. A developer
of SpiderMonkey explained it as follows:

“The async-function spec was changed at some point [. . .]
this is also not covered by test262.”

5.2 E�ectiveness of :-FS Coverage Criteria
Table 2 shows the result of conformance test synthesis via JESTfs with �ve graph coverage criteria.
Note that 0-FS node-or-branch coverage criterion is the same with the node-or-branch coverage
criterion. To evaluate the e�ectiveness of :-FS coverage criteria, we compare the synthesized
conformance tests guided by di�erent :-FS node-or-branch coverage criteria (0-fs, 1-fs, and 2-fs in
Table 2). The second to the fourth columns denote the numbers of covered :-FS- or :-FCPS-TRs
for nodes (# Node), branches (# Branch), and both (# Total), respectively. The �fth and the sixth
columns denote the numbers of synthesized conformance tests (# Syn. Test) and detected distinct
bugs (# Bug), respectively.
The results show that higher :-FS coverage criteria are more e�ective than lower :-FS. On

average, 8.03 (125.0K / 15.6K) 1-FS-TRs exist per each 0-FS-TR, and 15.17 (1,896.1K / 125.0K) 2-FS-
TRs exist per each 1-FS-TR. It means that each node or branch is used in 8.03 di�erent language
features, and each language feature could be used in 15.17 other language features on average. For
a more detailed information, we draw a histogram of the number of covered 1-FS-TRs (or 2-FS-TRs)
10https://github.com/oracle/graaljs/issues/671
11https://github.com/tc39/ecma262/issues/2659
12https://bugzilla.mozilla.org/show_bug.cgi?id=1799288

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 126. Publication date: June 2023.

126:16 Jihyeok Park, Dongjun Youn, Kanguk Lee, and Sukyoung Ryu

Table 2. Comparison of synthesized conformance tests guided by five graph coverage criteria

Coverage Criteria⇠G
Covered :-F(CP)S-TR (k) # Syn. Test # Bug# Node # Branch # Total

0-FS node-or-branch (0-fs) 10.0 5.6 15.6 2,111 55
1-FS node-or-branch (1-fs) 79.3 45.7 125.0 6,766 83

1-FCPS node-or-branch (1-fcps) 179.7 97.6 277.3 9,092 87
2-FS node-or-branch (2-fs) 1,199.8 696.3 1,896.1 97,423 102

2-FCPS node-or-branch (2-fcps) 2,323.1 1,297.6 3,620.7 122,589 111

Order of Execution. JavaScript engines must follow the execution order of each language feature
described in the language speci�cation. However, we found a bug10 related to the execution order
of the delete operation that causes the execution of originally unreachable code in GraalJS. For
example, while the following code should return false, it throws an exception with �ERR� by
executing the originally unreachable code inside the arrow function in GraalJS:

false && delete (() => { throw �ERR�; })(); // Expected: false

In addition, we detected another bug11 related to the execution order of property reads in all
target engines. ECMA-262 may consider changing the semantics according to the one used in most
implementations.

Asynchronous Function / Generator. One of the complex language features in JavaScript is
asynchronous functions and generators introduced in ES6 (2015). We detected a bug12 in Spider-
Monkey that breaks the logic of asynchronous function calls. For example, the following code must
return a rejected Promise object because a non-iterable value undefined is assigned to an array
destructuring pattern [] in the async arrow function:

(async function ([]) {})(); // Expected: A rejected Promise object

However, it unexpectedly terminates with a TypeError exception in SpiderMonkey. A developer
of SpiderMonkey explained it as follows:

“The async-function spec was changed at some point [. . .]
this is also not covered by test262.”

5.2 E�ectiveness of :-FS Coverage Criteria
Table 2 shows the result of conformance test synthesis via JESTfs with �ve graph coverage criteria.
Note that 0-FS node-or-branch coverage criterion is the same with the node-or-branch coverage
criterion. To evaluate the e�ectiveness of :-FS coverage criteria, we compare the synthesized
conformance tests guided by di�erent :-FS node-or-branch coverage criteria (0-fs, 1-fs, and 2-fs in
Table 2). The second to the fourth columns denote the numbers of covered :-FS- or :-FCPS-TRs
for nodes (# Node), branches (# Branch), and both (# Total), respectively. The �fth and the sixth
columns denote the numbers of synthesized conformance tests (# Syn. Test) and detected distinct
bugs (# Bug), respectively.
The results show that higher :-FS coverage criteria are more e�ective than lower :-FS. On

average, 8.03 (125.0K / 15.6K) 1-FS-TRs exist per each 0-FS-TR, and 15.17 (1,896.1K / 125.0K) 2-FS-
TRs exist per each 1-FS-TR. It means that each node or branch is used in 8.03 di�erent language
features, and each language feature could be used in 15.17 other language features on average. For
a more detailed information, we draw a histogram of the number of covered 1-FS-TRs (or 2-FS-TRs)
10https://github.com/oracle/graaljs/issues/671
11https://github.com/tc39/ecma262/issues/2659
12https://bugzilla.mozilla.org/show_bug.cgi?id=1799288

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 126. Publication date: June 2023.

45

Effectiveness of 𝑘-FS / 𝑘-FCPS Coverage Criteria

+28

+19

/ 57

126:16 Jihyeok Park, Dongjun Youn, Kanguk Lee, and Sukyoung Ryu

Table 2. Comparison of synthesized conformance tests guided by five graph coverage criteria

Coverage Criteria⇠G
Covered :-F(CP)S-TR (k) # Syn. Test # Bug# Node # Branch # Total

0-FS node-or-branch (0-fs) 10.0 5.6 15.6 2,111 55
1-FS node-or-branch (1-fs) 79.3 45.7 125.0 6,766 83

1-FCPS node-or-branch (1-fcps) 179.7 97.6 277.3 9,092 87
2-FS node-or-branch (2-fs) 1,199.8 696.3 1,896.1 97,423 102

2-FCPS node-or-branch (2-fcps) 2,323.1 1,297.6 3,620.7 122,589 111

Order of Execution. JavaScript engines must follow the execution order of each language feature
described in the language speci�cation. However, we found a bug10 related to the execution order
of the delete operation that causes the execution of originally unreachable code in GraalJS. For
example, while the following code should return false, it throws an exception with �ERR� by
executing the originally unreachable code inside the arrow function in GraalJS:

false && delete (() => { throw �ERR�; })(); // Expected: false

In addition, we detected another bug11 related to the execution order of property reads in all
target engines. ECMA-262 may consider changing the semantics according to the one used in most
implementations.

Asynchronous Function / Generator. One of the complex language features in JavaScript is
asynchronous functions and generators introduced in ES6 (2015). We detected a bug12 in Spider-
Monkey that breaks the logic of asynchronous function calls. For example, the following code must
return a rejected Promise object because a non-iterable value undefined is assigned to an array
destructuring pattern [] in the async arrow function:

(async function ([]) {})(); // Expected: A rejected Promise object

However, it unexpectedly terminates with a TypeError exception in SpiderMonkey. A developer
of SpiderMonkey explained it as follows:

“The async-function spec was changed at some point [. . .]
this is also not covered by test262.”

5.2 E�ectiveness of :-FS Coverage Criteria
Table 2 shows the result of conformance test synthesis via JESTfs with �ve graph coverage criteria.
Note that 0-FS node-or-branch coverage criterion is the same with the node-or-branch coverage
criterion. To evaluate the e�ectiveness of :-FS coverage criteria, we compare the synthesized
conformance tests guided by di�erent :-FS node-or-branch coverage criteria (0-fs, 1-fs, and 2-fs in
Table 2). The second to the fourth columns denote the numbers of covered :-FS- or :-FCPS-TRs
for nodes (# Node), branches (# Branch), and both (# Total), respectively. The �fth and the sixth
columns denote the numbers of synthesized conformance tests (# Syn. Test) and detected distinct
bugs (# Bug), respectively.
The results show that higher :-FS coverage criteria are more e�ective than lower :-FS. On

average, 8.03 (125.0K / 15.6K) 1-FS-TRs exist per each 0-FS-TR, and 15.17 (1,896.1K / 125.0K) 2-FS-
TRs exist per each 1-FS-TR. It means that each node or branch is used in 8.03 di�erent language
features, and each language feature could be used in 15.17 other language features on average. For
a more detailed information, we draw a histogram of the number of covered 1-FS-TRs (or 2-FS-TRs)
10https://github.com/oracle/graaljs/issues/671
11https://github.com/tc39/ecma262/issues/2659
12https://bugzilla.mozilla.org/show_bug.cgi?id=1799288

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 126. Publication date: June 2023.

126:16 Jihyeok Park, Dongjun Youn, Kanguk Lee, and Sukyoung Ryu

Table 2. Comparison of synthesized conformance tests guided by five graph coverage criteria

Coverage Criteria⇠G
Covered :-F(CP)S-TR (k) # Syn. Test # Bug# Node # Branch # Total

0-FS node-or-branch (0-fs) 10.0 5.6 15.6 2,111 55
1-FS node-or-branch (1-fs) 79.3 45.7 125.0 6,766 83

1-FCPS node-or-branch (1-fcps) 179.7 97.6 277.3 9,092 87
2-FS node-or-branch (2-fs) 1,199.8 696.3 1,896.1 97,423 102

2-FCPS node-or-branch (2-fcps) 2,323.1 1,297.6 3,620.7 122,589 111

Order of Execution. JavaScript engines must follow the execution order of each language feature
described in the language speci�cation. However, we found a bug10 related to the execution order
of the delete operation that causes the execution of originally unreachable code in GraalJS. For
example, while the following code should return false, it throws an exception with �ERR� by
executing the originally unreachable code inside the arrow function in GraalJS:

false && delete (() => { throw �ERR�; })(); // Expected: false

In addition, we detected another bug11 related to the execution order of property reads in all
target engines. ECMA-262 may consider changing the semantics according to the one used in most
implementations.

Asynchronous Function / Generator. One of the complex language features in JavaScript is
asynchronous functions and generators introduced in ES6 (2015). We detected a bug12 in Spider-
Monkey that breaks the logic of asynchronous function calls. For example, the following code must
return a rejected Promise object because a non-iterable value undefined is assigned to an array
destructuring pattern [] in the async arrow function:

(async function ([]) {})(); // Expected: A rejected Promise object

However, it unexpectedly terminates with a TypeError exception in SpiderMonkey. A developer
of SpiderMonkey explained it as follows:

“The async-function spec was changed at some point [. . .]
this is also not covered by test262.”

5.2 E�ectiveness of :-FS Coverage Criteria
Table 2 shows the result of conformance test synthesis via JESTfs with �ve graph coverage criteria.
Note that 0-FS node-or-branch coverage criterion is the same with the node-or-branch coverage
criterion. To evaluate the e�ectiveness of :-FS coverage criteria, we compare the synthesized
conformance tests guided by di�erent :-FS node-or-branch coverage criteria (0-fs, 1-fs, and 2-fs in
Table 2). The second to the fourth columns denote the numbers of covered :-FS- or :-FCPS-TRs
for nodes (# Node), branches (# Branch), and both (# Total), respectively. The �fth and the sixth
columns denote the numbers of synthesized conformance tests (# Syn. Test) and detected distinct
bugs (# Bug), respectively.
The results show that higher :-FS coverage criteria are more e�ective than lower :-FS. On

average, 8.03 (125.0K / 15.6K) 1-FS-TRs exist per each 0-FS-TR, and 15.17 (1,896.1K / 125.0K) 2-FS-
TRs exist per each 1-FS-TR. It means that each node or branch is used in 8.03 di�erent language
features, and each language feature could be used in 15.17 other language features on average. For
a more detailed information, we draw a histogram of the number of covered 1-FS-TRs (or 2-FS-TRs)
10https://github.com/oracle/graaljs/issues/671
11https://github.com/tc39/ecma262/issues/2659
12https://bugzilla.mozilla.org/show_bug.cgi?id=1799288

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 126. Publication date: June 2023.

45

Effectiveness of 𝑘-FS / 𝑘-FCPS Coverage Criteria

+28
+4

+9
+19

/ 5746

ECMA-262
(JS Spec.) JISET JSAVER

JEST

JSTAR

Mechanized
Specification

Mechanized Spec.
Extraction

Conformance
Test Synthesis

Specification
Type Errors

Conformance
Tests

Static
Analyzer

JavaScript
Engines

ASE 2020

ICSE 2021

Derivation of
Static Analyzer

FSE 2022

FS/FCPS-
Coverage

Feature-Sensitive
Coverage

PLDI 2023

Specification
Type Analysis

ASE 2021
[FSE 2022] J. Park et al., “Automatically Deriving JavaScript Static Analyzers from Specifications using Meta-level Static Analysis”

/ 5747

Meta-Level Static Analysis

ECMA-262
(JS Spec.)

JS Program
P1

How to perform static analysis on JavaScript programs 
using language specification?

/ 5747

Meta-Level Static Analysis

Mechanized
Specification

automatic 
extraction

ECMA-262
(JS Spec.)

JS Program
P1

How to perform static analysis on JavaScript programs 
using language specification?

/ 5747

Meta-Level Static Analysis

JS Interpreter 
written in IRES

Mechanized
Specification

automatic 
extraction

ECMA-262
(JS Spec.)

JS Program
P1

How to perform static analysis on JavaScript programs 
using language specification?

/ 5747

Meta-Level Static Analysis

Analysis
Result of Spec.

IRES
Analyzer

JS Interpreter 
written in IRES

Mechanized
Specification

automatic 
extraction

ECMA-262
(JS Spec.)

JS Program
P1

How to perform static analysis on JavaScript programs 
using language specification?

/ 5747

Meta-Level Static Analysis

Analysis
Result of Spec.

IRES
Analyzer

JS Interpreter 
written in IRES

Mechanized
Specification

automatic 
extraction

ECMA-262
(JS Spec.)

initial state 
restriction

IRES
Analyzer

Analysis
Result of P1

JS Program
P1

How to perform static analysis on JavaScript programs 
using language specification?

/ 57

Meta-level Static Analysis

47

Meta-Level Static Analysis

Analysis
Result of Spec.

IRES
Analyzer

JS Interpreter 
written in IRES

Mechanized
Specification

automatic 
extraction

ECMA-262
(JS Spec.)

initial state 
restriction

IRES
Analyzer

Analysis
Result of P1

JS Program
P1

How to perform static analysis on JavaScript programs 
using language specification?

/ 5748

Meta-Level Static Analysis

IRES

JavaScript

x ||= y
JS Program P1

/ 5748

Meta-Level Static Analysis

IRES

JavaScript

· · ·<latexit sha1_base64="Kef69hW4e/raBfVz+DaK6/NBFbQ=">AAACHXicbVDJSgNBEK1xjXFL9OhlMAiewowKeozLwYsQITFCJkhPp2Ka9Cx01whxmI/wqge/xpt4Ff/GnnEObg8aHu9VdVU9P5ZCk+N8WDOzc/MLi5Wl6vLK6tp6rb5xpaNEcezySEbq2mcapQixS4IkXscKWeBL7PmT09zv3aHSIgo7NI1xELDbUIwEZ2SknseHEenqTa3hNJ0C9l/ilqQBJdo3dQu8YcSTAEPikmndd52YBilTJLjErOolGmPGJ+wW+4aGLEA9SIt9M3vHKEN7FCnzQrIL9XtHygKtp4FvKgNGY/3by8X/vH5Co6NBKsI4IQz516BRIm2K7Px4eygUcpJTQxhXwuxq8zFTjJOJqOqdoblF4YX591jGY+YjpV4+Jb7nWdpxs7QgQZYKykxm7u+E/pKrvaa739y7PGi0Tsr0KrAF27ALLhxCC86hDV3gMIEHeIQn69l6sV6tt6/SGavs2YQfsN4/AabGomA=</latexit> · · ·<latexit sha1_base64="Kef69hW4e/raBfVz+DaK6/NBFbQ=">AAACHXicbVDJSgNBEK1xjXFL9OhlMAiewowKeozLwYsQITFCJkhPp2Ka9Cx01whxmI/wqge/xpt4Ff/GnnEObg8aHu9VdVU9P5ZCk+N8WDOzc/MLi5Wl6vLK6tp6rb5xpaNEcezySEbq2mcapQixS4IkXscKWeBL7PmT09zv3aHSIgo7NI1xELDbUIwEZ2SknseHEenqTa3hNJ0C9l/ilqQBJdo3dQu8YcSTAEPikmndd52YBilTJLjErOolGmPGJ+wW+4aGLEA9SIt9M3vHKEN7FCnzQrIL9XtHygKtp4FvKgNGY/3by8X/vH5Co6NBKsI4IQz516BRIm2K7Px4eygUcpJTQxhXwuxq8zFTjJOJqOqdoblF4YX591jGY+YjpV4+Jb7nWdpxs7QgQZYKykxm7u+E/pKrvaa739y7PGi0Tsr0KrAF27ALLhxCC86hDV3gMIEHeIQn69l6sV6tt6/SGavs2YQfsN4/AabGomA=</latexit>

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Automatically Deriving JavaScript Static Analyzers from Language Specifications ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

function error(e) { throw e; }

const n = ...; // [0, 99]

n |> x => x + 1 // [1, 100]

|> x => x * 2 // [2, 200]

|> x => x + 1n; // TypeError

|> error (42);

of representative techniques to increase the precision of JavaScript
static analysis for loops. It discriminates contexts using a stack of
loop contexts containing loop iterations. We de�ne it under view-
based analysis sensitivity and implement it in JSAVER to increase
the precision of IRES static analysis. Moreover, we also de�ne and
implement the loop sensitivity for JavaScript using the loop sensitiv-
ity for IRES. Therefore, our tool discriminates contexts for explicit
loops, such as for-in or for-of, and even implicit loops, such as the
length property assignment of arrays.

6 EVALUATION
• AdditiveExpression
• Identi�erReference
• Identi�er
• AssignmentExpression
• LeftHandSideExpression
• ArrowFunction

• RQ1: Coverage) How much does JSAVER cover JavaScript
language features in the latest ECMAScript (ES12, 2021)?

• RQ2: Adaptability) Could JSAVER adapt a new language
features not yet introduced in ES12?

• RQ3: Expressiveness) What kinds of abstract sensitivities
and abstract domains JSAVER can support?

• RQ4: Performance) Could JSAVER analyze JavaScript pro-
grams in a durable time?

TODO

7 RELATEDWORK
TODO

• JavaScript Static Analyzers [9, 10, 14, 27]
• JavaScript Static Analysis Techniques [1, 12, 13, 15, 18–21,
30, 34–36]

• Partial Evaluation? (maybe no - * SE conf.)

7.1 JavaScript Mechanized Speci�cation
A speci�cation is mechanized if and only if it is both formalized
and executable. For JavaScript, researchers have proposed various
mechanized speci�cation in their own approaches. In 2010, Guha
et al. [8] presented �JS, the �rst mechanized speci�cation for a core
calculus of ES3 semantics by desugaring most of syntax into �JS, an
extended standard lambda calculus. Thus, the shape of �JS seman-
tics is quite di�erent with original algorithm steps. In mid 2010s,
researchers tried to de�ne mechanized speci�cation for the ES5
and 5.1 semantics having a similar shape of semantics with original
algorithm steps as much as possible. Bodin et al. [2] de�ned JSCert,
a semantics of a small subset of ES5, using Coq and extracts a refer-
ence interpreter JSRef. Park et al. [22] de�ned an entire semantics
of ES5, KJS, using the K [29], which is a framework for de�ning
language semantics. Fragoso Santos et al. [7] presented JaVerT, a

JavaScript veri�cation toolchain, including a JavaScript semantics
de�ned in their own Intermediate language, JSIL.

However, the fundamental problem of their approaches is that
they are manually de�ned thus they are labor-intensive and error-
prone. Due to such limitation, there is no existing mechanized
speci�cation for full semantics of ES6 or later versions. Therefore,
most of existing JavaScript static analyzers only focus on ES5.1
features or rarely support ES6 features even though already six
more versions from ES7 to ES12 are released since 2015.

Moreover, Park et al. [23] successfully showed that JISET is useful
tomechanically handle recent versions of ECMAScript by extending
JISET to perform N+1-version di�erential testing of both JavaScript
engines and ES11 (2020).

8 CONCLUSION
TODO

REFERENCES
[1] Roberto Amadini, Alexander Jordan, Graeme Gange, François Gauthier, Peter

Schachte, Harald Søndergaard, Peter J Stuckey, and Chenyi Zhang. 2017. Com-
bining String Abstract Domains for JavaScript Analysis: An Evaluation. In Pro-
ceedings of the 23rd International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS). https://doi.org/10.1007/978-3-
662-54577-5_3

[2] Martin Bodin, Arthur Charguéraud, Daniele Filaretti, Philippa Gardner, Sergio
Ma�eis, Daiva Naudziuniene, Alan Schmitt, and Gareth Smith. 2014. A Trusted
Mechanised JavaScript Speci�cation. Proceedings of the 41st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming (POPL) 49, 1 (2014), 87–100.
https://doi.org/10.1145/2535838.2535876

[3] David R. Chase, Mark Wegman, and F. Kenneth Zadeck. 1990. Analysis of
Pointers and Structures. In Proceedings of the ACM SIGPLAN 1990 Conference on
Programming Language Design and Implementation (PLDI) (PLDI ’90). Association
for Computing Machinery, New York, NY, USA, 296–310. https://doi.org/10.
1145/93542.93585

[4] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Uni�ed
Lattice Model for Static Analysis of Programs by Construction or Approximation
of Fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming languages (POPL). https://doi.org/10.1145/512950.
512973

[5] Patrick Cousot and Radhia Cousot. 1977. Static Determination of Dynamic
Properties of Generalized Type Unions. In Proceedings of an ACM Conference on
Language Design for Reliable Software. Association for Computing Machinery,
New York, NY, USA, 77–94. https://doi.org/10.1145/800022.808314

[6] Patrick Cousot and Radhia Cousot. 1992. Abstract Interpretation Frameworks.
Journal of Logic and Computation (JLC) 2, 4 (1992), 511–547. https://doi.org/10.
1093/logcom/2.4.511

[7] José Fragoso Santos, Petar Maksimović, Daiva Naudži = unienė, Thomas Wood,
and Philippa Gardner. 2017. JaVerT: JavaScript Veri�cation Toolchain. Proceedings
of the 44th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
(POPL) 2, POPL (2017), 1–33. https://doi.org/10.1145/3158138

[8] Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. 2010. The essence
of JavaScript. In Proceedings of the 24th European Conference on Object-Oriented
Programming (ECOOP). Springer, 126–150. https://doi.org/10.1007/978-3-642-
14107-2_7

[9] Simon Holm Jensen, Anders Møller, and Peter Thiemann. 2009. Type Analysis for
JavaScript. In Proceedings of the 16th International Symposium on Static Analysis
(SAS). https://doi.org/10.1007/978-3-642-03237-0_17

[10] Vineeth Kashyap, Kyle Dewey, Ethan A. Kuefner, John Wagner, Kevin Gib-
bons, John Sarracino, Ben Wiedermann, and Ben Hardekopf. 2014. JSAI: A
Static Analysis Platform for JavaScript. In Proceedings of the 22nd ACM SIG-
SOFT International Symposium on Foundations of Software Engineering (FSE).
https://doi.org/10.1145/2635868.2635904

[11] Se-Won Kim, Xavier Rival, and Sukyoung Ryu. 2018. A Theoretical Foundation
of Sensitivity in an Abstract Interpretation Framework. ACM Transactions on
Programming Languages and Systems (TOPLAS) 40, 3, Article 13 (2018), 44 pages.
https://doi.org/10.1145/3230624

[12] Yoonseok Ko, Xavier Rival, and Sukyoung Ryu. 2017. Weakly Sensitive Analysis
for Unbounded Iteration over JavaScript Objects. In Proceedings of the 15th Asian
Symposium on Programming Languages and Systems (APLAS). https://doi.org/10.
1007/978-3-319-71237-6_8

7

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

(a) Evaluation algorithm for logical OR assignments.

1 syntax def AssignmentExpression [8]. Evaluation(

2 this , LeftHandSideExpression , AssignmentExpression

3) { /* entry */

4 let lref = (LeftHandSideExpression.Evaluation)

5 let lval = [? (GetValue lref)]

6 let lbool = [! (ToBoolean lval)] /* #1 */

7 if (= lbool true) /* #2 */ return lval else { /* #3 */ }

8 if (&& (IsAnonymousFunctionDefinition AssignmentExpression)

9 (LeftHandSideExpression.IsIdentifierRef)) { /* #4 */

10 let rval = (AssignmentExpression.NamedEvaluation

11 lref.ReferencedName)

12 } else { /* #5 */

13 let rref = (AssignmentExpression.Evaluation)

14 let rval = [? (GetValue rref)]

15 } /* #6 */

16 [? (PutValue lref rval)]

17 return rval

18 } /* exit */

(b) The extracted IRES function.

Figure 1: Evaluation algorithm for the eighth alternative of AssignmentExpression in ES12 and the extracted IRES function.

To alleviate this problem, we propose a novel technique called
meta-level static analysis to automatically derive a JavaScript static
analyzer from any version of ECMAScript. The main idea of the
meta-level static analysis is to indirectly analyze a target language
program by performing static analysis for a language speci�ca-
tion of the target language written in a speci�cation language with
the program as the initial input. Thus, it can signi�cantly reduce
the burden to manually design and implement static analyzers by
automatically deriving them from given language speci�cations.
Moreover, it even guarantees the soundness of derived static analyz-
ers for the target language by constructing sound abstract semantics
for the speci�cation language.

For the expressiveness of a meta-level static analysis, we also
present ways to con�gure analysis sensitivities and abstract do-
mains for a target language. Con�guring them is a typical way
to manage analysis precision and performance. First, we present
the AST sensitivity in a meta-level static analysis to express analy-
sis sensitivities for a target language such as �ow-sensitivity and
k-callsite-sensitivity (Section 4.2). Second, we present a way to
con�gure abstract domains for structures and values in a target
language (Section 4.3).

To actualize our approach for JavaScript, we present JSAVER,
JavaScript Static Analyzers via ECMAScript Representations. First,
we utilize JISET [26] to extract a mechanized speci�cation written
in an intermediate representation, IRES, from a given ECMAScript.
Thus, target and speci�cation languages are JavaScript and IRES,
respectively, for the meta-level static analysis in JSAVER. In addition,
we implement several analysis techniques to improve the perfor-
mance and precision of derived static analyzers (Section 5). We
evaluated JSAVER by deriving a JavaScript static analyzer from the
latest ECMAScript, ES12, and using the o�cial conformance tests,
Test2622.

Our contributions are as follows:
• We propose a novel concept called meta-level static analysis,
which automatically derives a static analyzer for a target

2https://github.com/tc39/test262

let f = Math.floor(Math.random () * 100);

// f: [0, 99]

f ||= x => x;

// f: [1, 99] or { name: �f�, ... }

let x = f.name;

// f: [1, 99] or { name: �f�, ... }, x: undefined or �f�

Figure 2: A running JavaScript program with a logical OR
assignment newly introduced in ES12.

language from its language speci�cation written in a speci�-
cation language.

• We actualize meta-level static analysis for JavaScript as a tool
called JSAVER. It is the �rst tool that automatically derives a
JavaScript static analyzer from any version of ECMAScript.

• We derive a static analyzer from the latest ECMAScript, ES12,
to evaluate JSAVER. The synthesized static analyzer success-
fully analyzes all applicable 18,556 o�cial conformance tests.
Moreover, we demonstrate the adaptability and expressive-
ness of JSAVER with several case studies.

2 BACKGROUND
In this section, we explain the detail of ECMAScript, the o�cial
speci�cation of JavaScript. We then introduce JISET and how it
extracts a mechanized speci�cation from it. Since our work is to
perform meta-level static analysis for JavaScript using extracted
mechanized speci�cations, it is essential to understand how EC-
MAScript describes JavaScript semantics and how JISET extracts a
mechanized speci�cation from it.

For the detailed explanation, we explain a new language feature
introduced in ES12 called logical OR assignments (Figure 1) and
use a JavaScript program (Figure 2) as a running example. It �rst
de�nes a variable f with a random integer from 0 to 99. Then, it
uses a logical OR assignment to update f with an arrow function
whose name is �f� only if f has 0 because 0 represents false but
other integers represent true. Finally, it de�nes a variable x with
f.name and its value is undefined if f has an integer or �f� otherwise.

2

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Automatically Deriving JavaScript Static Analyzers from Language Specifications ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

function error(e) { throw e; }

const n = ...; // [0, 99]

n |> x => x + 1 // [1, 100]

|> x => x * 2 // [2, 200]

|> x => x + 1n; // TypeError

|> error (42);

of representative techniques to increase the precision of JavaScript
static analysis for loops. It discriminates contexts using a stack of
loop contexts containing loop iterations. We de�ne it under view-
based analysis sensitivity and implement it in JSAVER to increase
the precision of IRES static analysis. Moreover, we also de�ne and
implement the loop sensitivity for JavaScript using the loop sensitiv-
ity for IRES. Therefore, our tool discriminates contexts for explicit
loops, such as for-in or for-of, and even implicit loops, such as the
length property assignment of arrays.

6 EVALUATION
• AdditiveExpression
• Identi�erReference
• Identi�er
• AssignmentExpression
• LeftHandSideExpression
• ArrowFunction

• RQ1: Coverage) How much does JSAVER cover JavaScript
language features in the latest ECMAScript (ES12, 2021)?

• RQ2: Adaptability) Could JSAVER adapt a new language
features not yet introduced in ES12?

• RQ3: Expressiveness) What kinds of abstract sensitivities
and abstract domains JSAVER can support?

• RQ4: Performance) Could JSAVER analyze JavaScript pro-
grams in a durable time?

TODO

7 RELATEDWORK
TODO

• JavaScript Static Analyzers [9, 10, 14, 27]
• JavaScript Static Analysis Techniques [1, 12, 13, 15, 18–21,
30, 34–36]

• Partial Evaluation? (maybe no - * SE conf.)

7.1 JavaScript Mechanized Speci�cation
A speci�cation is mechanized if and only if it is both formalized
and executable. For JavaScript, researchers have proposed various
mechanized speci�cation in their own approaches. In 2010, Guha
et al. [8] presented �JS, the �rst mechanized speci�cation for a core
calculus of ES3 semantics by desugaring most of syntax into �JS, an
extended standard lambda calculus. Thus, the shape of �JS seman-
tics is quite di�erent with original algorithm steps. In mid 2010s,
researchers tried to de�ne mechanized speci�cation for the ES5
and 5.1 semantics having a similar shape of semantics with original
algorithm steps as much as possible. Bodin et al. [2] de�ned JSCert,
a semantics of a small subset of ES5, using Coq and extracts a refer-
ence interpreter JSRef. Park et al. [22] de�ned an entire semantics
of ES5, KJS, using the K [29], which is a framework for de�ning
language semantics. Fragoso Santos et al. [7] presented JaVerT, a

JavaScript veri�cation toolchain, including a JavaScript semantics
de�ned in their own Intermediate language, JSIL.

However, the fundamental problem of their approaches is that
they are manually de�ned thus they are labor-intensive and error-
prone. Due to such limitation, there is no existing mechanized
speci�cation for full semantics of ES6 or later versions. Therefore,
most of existing JavaScript static analyzers only focus on ES5.1
features or rarely support ES6 features even though already six
more versions from ES7 to ES12 are released since 2015.

Moreover, Park et al. [23] successfully showed that JISET is useful
tomechanically handle recent versions of ECMAScript by extending
JISET to perform N+1-version di�erential testing of both JavaScript
engines and ES11 (2020).

8 CONCLUSION
TODO

REFERENCES
[1] Roberto Amadini, Alexander Jordan, Graeme Gange, François Gauthier, Peter

Schachte, Harald Søndergaard, Peter J Stuckey, and Chenyi Zhang. 2017. Com-
bining String Abstract Domains for JavaScript Analysis: An Evaluation. In Pro-
ceedings of the 23rd International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS). https://doi.org/10.1007/978-3-
662-54577-5_3

[2] Martin Bodin, Arthur Charguéraud, Daniele Filaretti, Philippa Gardner, Sergio
Ma�eis, Daiva Naudziuniene, Alan Schmitt, and Gareth Smith. 2014. A Trusted
Mechanised JavaScript Speci�cation. Proceedings of the 41st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming (POPL) 49, 1 (2014), 87–100.
https://doi.org/10.1145/2535838.2535876

[3] David R. Chase, Mark Wegman, and F. Kenneth Zadeck. 1990. Analysis of
Pointers and Structures. In Proceedings of the ACM SIGPLAN 1990 Conference on
Programming Language Design and Implementation (PLDI) (PLDI ’90). Association
for Computing Machinery, New York, NY, USA, 296–310. https://doi.org/10.
1145/93542.93585

[4] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Uni�ed
Lattice Model for Static Analysis of Programs by Construction or Approximation
of Fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming languages (POPL). https://doi.org/10.1145/512950.
512973

[5] Patrick Cousot and Radhia Cousot. 1977. Static Determination of Dynamic
Properties of Generalized Type Unions. In Proceedings of an ACM Conference on
Language Design for Reliable Software. Association for Computing Machinery,
New York, NY, USA, 77–94. https://doi.org/10.1145/800022.808314

[6] Patrick Cousot and Radhia Cousot. 1992. Abstract Interpretation Frameworks.
Journal of Logic and Computation (JLC) 2, 4 (1992), 511–547. https://doi.org/10.
1093/logcom/2.4.511

[7] José Fragoso Santos, Petar Maksimović, Daiva Naudži = unienė, Thomas Wood,
and Philippa Gardner. 2017. JaVerT: JavaScript Veri�cation Toolchain. Proceedings
of the 44th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
(POPL) 2, POPL (2017), 1–33. https://doi.org/10.1145/3158138

[8] Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. 2010. The essence
of JavaScript. In Proceedings of the 24th European Conference on Object-Oriented
Programming (ECOOP). Springer, 126–150. https://doi.org/10.1007/978-3-642-
14107-2_7

[9] Simon Holm Jensen, Anders Møller, and Peter Thiemann. 2009. Type Analysis for
JavaScript. In Proceedings of the 16th International Symposium on Static Analysis
(SAS). https://doi.org/10.1007/978-3-642-03237-0_17

[10] Vineeth Kashyap, Kyle Dewey, Ethan A. Kuefner, John Wagner, Kevin Gib-
bons, John Sarracino, Ben Wiedermann, and Ben Hardekopf. 2014. JSAI: A
Static Analysis Platform for JavaScript. In Proceedings of the 22nd ACM SIG-
SOFT International Symposium on Foundations of Software Engineering (FSE).
https://doi.org/10.1145/2635868.2635904

[11] Se-Won Kim, Xavier Rival, and Sukyoung Ryu. 2018. A Theoretical Foundation
of Sensitivity in an Abstract Interpretation Framework. ACM Transactions on
Programming Languages and Systems (TOPLAS) 40, 3, Article 13 (2018), 44 pages.
https://doi.org/10.1145/3230624

[12] Yoonseok Ko, Xavier Rival, and Sukyoung Ryu. 2017. Weakly Sensitive Analysis
for Unbounded Iteration over JavaScript Objects. In Proceedings of the 15th Asian
Symposium on Programming Languages and Systems (APLAS). https://doi.org/10.
1007/978-3-319-71237-6_8

7

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Automatically Deriving JavaScript Static Analyzers from Language Specifications ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

function error(e) { throw e; }

const n = ...; // [0, 99]

n |> x => x + 1 // [1, 100]

|> x => x * 2 // [2, 200]

|> x => x + 1n; // TypeError

|> error (42);

of representative techniques to increase the precision of JavaScript
static analysis for loops. It discriminates contexts using a stack of
loop contexts containing loop iterations. We de�ne it under view-
based analysis sensitivity and implement it in JSAVER to increase
the precision of IRES static analysis. Moreover, we also de�ne and
implement the loop sensitivity for JavaScript using the loop sensitiv-
ity for IRES. Therefore, our tool discriminates contexts for explicit
loops, such as for-in or for-of, and even implicit loops, such as the
length property assignment of arrays.

6 EVALUATION
• AdditiveExpression
• Identi�erReference
• Identi�er
• AssignmentExpression
• LeftHandSideExpression
• ArrowFunction

• RQ1: Coverage) How much does JSAVER cover JavaScript
language features in the latest ECMAScript (ES12, 2021)?

• RQ2: Adaptability) Could JSAVER adapt a new language
features not yet introduced in ES12?

• RQ3: Expressiveness) What kinds of abstract sensitivities
and abstract domains JSAVER can support?

• RQ4: Performance) Could JSAVER analyze JavaScript pro-
grams in a durable time?

TODO

7 RELATEDWORK
TODO

• JavaScript Static Analyzers [9, 10, 14, 27]
• JavaScript Static Analysis Techniques [1, 12, 13, 15, 18–21,
30, 34–36]

• Partial Evaluation? (maybe no - * SE conf.)

7.1 JavaScript Mechanized Speci�cation
A speci�cation is mechanized if and only if it is both formalized
and executable. For JavaScript, researchers have proposed various
mechanized speci�cation in their own approaches. In 2010, Guha
et al. [8] presented �JS, the �rst mechanized speci�cation for a core
calculus of ES3 semantics by desugaring most of syntax into �JS, an
extended standard lambda calculus. Thus, the shape of �JS seman-
tics is quite di�erent with original algorithm steps. In mid 2010s,
researchers tried to de�ne mechanized speci�cation for the ES5
and 5.1 semantics having a similar shape of semantics with original
algorithm steps as much as possible. Bodin et al. [2] de�ned JSCert,
a semantics of a small subset of ES5, using Coq and extracts a refer-
ence interpreter JSRef. Park et al. [22] de�ned an entire semantics
of ES5, KJS, using the K [29], which is a framework for de�ning
language semantics. Fragoso Santos et al. [7] presented JaVerT, a

JavaScript veri�cation toolchain, including a JavaScript semantics
de�ned in their own Intermediate language, JSIL.

However, the fundamental problem of their approaches is that
they are manually de�ned thus they are labor-intensive and error-
prone. Due to such limitation, there is no existing mechanized
speci�cation for full semantics of ES6 or later versions. Therefore,
most of existing JavaScript static analyzers only focus on ES5.1
features or rarely support ES6 features even though already six
more versions from ES7 to ES12 are released since 2015.

Moreover, Park et al. [23] successfully showed that JISET is useful
tomechanically handle recent versions of ECMAScript by extending
JISET to perform N+1-version di�erential testing of both JavaScript
engines and ES11 (2020).

8 CONCLUSION
TODO

REFERENCES
[1] Roberto Amadini, Alexander Jordan, Graeme Gange, François Gauthier, Peter

Schachte, Harald Søndergaard, Peter J Stuckey, and Chenyi Zhang. 2017. Com-
bining String Abstract Domains for JavaScript Analysis: An Evaluation. In Pro-
ceedings of the 23rd International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS). https://doi.org/10.1007/978-3-
662-54577-5_3

[2] Martin Bodin, Arthur Charguéraud, Daniele Filaretti, Philippa Gardner, Sergio
Ma�eis, Daiva Naudziuniene, Alan Schmitt, and Gareth Smith. 2014. A Trusted
Mechanised JavaScript Speci�cation. Proceedings of the 41st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming (POPL) 49, 1 (2014), 87–100.
https://doi.org/10.1145/2535838.2535876

[3] David R. Chase, Mark Wegman, and F. Kenneth Zadeck. 1990. Analysis of
Pointers and Structures. In Proceedings of the ACM SIGPLAN 1990 Conference on
Programming Language Design and Implementation (PLDI) (PLDI ’90). Association
for Computing Machinery, New York, NY, USA, 296–310. https://doi.org/10.
1145/93542.93585

[4] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Uni�ed
Lattice Model for Static Analysis of Programs by Construction or Approximation
of Fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming languages (POPL). https://doi.org/10.1145/512950.
512973

[5] Patrick Cousot and Radhia Cousot. 1977. Static Determination of Dynamic
Properties of Generalized Type Unions. In Proceedings of an ACM Conference on
Language Design for Reliable Software. Association for Computing Machinery,
New York, NY, USA, 77–94. https://doi.org/10.1145/800022.808314

[6] Patrick Cousot and Radhia Cousot. 1992. Abstract Interpretation Frameworks.
Journal of Logic and Computation (JLC) 2, 4 (1992), 511–547. https://doi.org/10.
1093/logcom/2.4.511

[7] José Fragoso Santos, Petar Maksimović, Daiva Naudži = unienė, Thomas Wood,
and Philippa Gardner. 2017. JaVerT: JavaScript Veri�cation Toolchain. Proceedings
of the 44th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
(POPL) 2, POPL (2017), 1–33. https://doi.org/10.1145/3158138

[8] Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. 2010. The essence
of JavaScript. In Proceedings of the 24th European Conference on Object-Oriented
Programming (ECOOP). Springer, 126–150. https://doi.org/10.1007/978-3-642-
14107-2_7

[9] Simon Holm Jensen, Anders Møller, and Peter Thiemann. 2009. Type Analysis for
JavaScript. In Proceedings of the 16th International Symposium on Static Analysis
(SAS). https://doi.org/10.1007/978-3-642-03237-0_17

[10] Vineeth Kashyap, Kyle Dewey, Ethan A. Kuefner, John Wagner, Kevin Gib-
bons, John Sarracino, Ben Wiedermann, and Ben Hardekopf. 2014. JSAI: A
Static Analysis Platform for JavaScript. In Proceedings of the 22nd ACM SIG-
SOFT International Symposium on Foundations of Software Engineering (FSE).
https://doi.org/10.1145/2635868.2635904

[11] Se-Won Kim, Xavier Rival, and Sukyoung Ryu. 2018. A Theoretical Foundation
of Sensitivity in an Abstract Interpretation Framework. ACM Transactions on
Programming Languages and Systems (TOPLAS) 40, 3, Article 13 (2018), 44 pages.
https://doi.org/10.1145/3230624

[12] Yoonseok Ko, Xavier Rival, and Sukyoung Ryu. 2017. Weakly Sensitive Analysis
for Unbounded Iteration over JavaScript Objects. In Proceedings of the 15th Asian
Symposium on Programming Languages and Systems (APLAS). https://doi.org/10.
1007/978-3-319-71237-6_8

7

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Automatically Deriving JavaScript Static Analyzers from Language Specifications ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

function error(e) { throw e; }

const n = ...; // [0, 99]

n |> x => x + 1 // [1, 100]

|> x => x * 2 // [2, 200]

|> x => x + 1n; // TypeError

|> error (42);

of representative techniques to increase the precision of JavaScript
static analysis for loops. It discriminates contexts using a stack of
loop contexts containing loop iterations. We de�ne it under view-
based analysis sensitivity and implement it in JSAVER to increase
the precision of IRES static analysis. Moreover, we also de�ne and
implement the loop sensitivity for JavaScript using the loop sensitiv-
ity for IRES. Therefore, our tool discriminates contexts for explicit
loops, such as for-in or for-of, and even implicit loops, such as the
length property assignment of arrays.

6 EVALUATION
• AdditiveExpression
• Identi�erReference
• Identi�er
• AssignmentExpression
• LeftHandSideExpression
• ArrowFunction

• RQ1: Coverage) How much does JSAVER cover JavaScript
language features in the latest ECMAScript (ES12, 2021)?

• RQ2: Adaptability) Could JSAVER adapt a new language
features not yet introduced in ES12?

• RQ3: Expressiveness) What kinds of abstract sensitivities
and abstract domains JSAVER can support?

• RQ4: Performance) Could JSAVER analyze JavaScript pro-
grams in a durable time?

TODO

7 RELATEDWORK
TODO

• JavaScript Static Analyzers [9, 10, 14, 27]
• JavaScript Static Analysis Techniques [1, 12, 13, 15, 18–21,
30, 34–36]

• Partial Evaluation? (maybe no - * SE conf.)

7.1 JavaScript Mechanized Speci�cation
A speci�cation is mechanized if and only if it is both formalized
and executable. For JavaScript, researchers have proposed various
mechanized speci�cation in their own approaches. In 2010, Guha
et al. [8] presented �JS, the �rst mechanized speci�cation for a core
calculus of ES3 semantics by desugaring most of syntax into �JS, an
extended standard lambda calculus. Thus, the shape of �JS seman-
tics is quite di�erent with original algorithm steps. In mid 2010s,
researchers tried to de�ne mechanized speci�cation for the ES5
and 5.1 semantics having a similar shape of semantics with original
algorithm steps as much as possible. Bodin et al. [2] de�ned JSCert,
a semantics of a small subset of ES5, using Coq and extracts a refer-
ence interpreter JSRef. Park et al. [22] de�ned an entire semantics
of ES5, KJS, using the K [29], which is a framework for de�ning
language semantics. Fragoso Santos et al. [7] presented JaVerT, a

JavaScript veri�cation toolchain, including a JavaScript semantics
de�ned in their own Intermediate language, JSIL.

However, the fundamental problem of their approaches is that
they are manually de�ned thus they are labor-intensive and error-
prone. Due to such limitation, there is no existing mechanized
speci�cation for full semantics of ES6 or later versions. Therefore,
most of existing JavaScript static analyzers only focus on ES5.1
features or rarely support ES6 features even though already six
more versions from ES7 to ES12 are released since 2015.

Moreover, Park et al. [23] successfully showed that JISET is useful
tomechanically handle recent versions of ECMAScript by extending
JISET to perform N+1-version di�erential testing of both JavaScript
engines and ES11 (2020).

8 CONCLUSION
TODO

REFERENCES
[1] Roberto Amadini, Alexander Jordan, Graeme Gange, François Gauthier, Peter

Schachte, Harald Søndergaard, Peter J Stuckey, and Chenyi Zhang. 2017. Com-
bining String Abstract Domains for JavaScript Analysis: An Evaluation. In Pro-
ceedings of the 23rd International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS). https://doi.org/10.1007/978-3-
662-54577-5_3

[2] Martin Bodin, Arthur Charguéraud, Daniele Filaretti, Philippa Gardner, Sergio
Ma�eis, Daiva Naudziuniene, Alan Schmitt, and Gareth Smith. 2014. A Trusted
Mechanised JavaScript Speci�cation. Proceedings of the 41st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming (POPL) 49, 1 (2014), 87–100.
https://doi.org/10.1145/2535838.2535876

[3] David R. Chase, Mark Wegman, and F. Kenneth Zadeck. 1990. Analysis of
Pointers and Structures. In Proceedings of the ACM SIGPLAN 1990 Conference on
Programming Language Design and Implementation (PLDI) (PLDI ’90). Association
for Computing Machinery, New York, NY, USA, 296–310. https://doi.org/10.
1145/93542.93585

[4] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Uni�ed
Lattice Model for Static Analysis of Programs by Construction or Approximation
of Fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming languages (POPL). https://doi.org/10.1145/512950.
512973

[5] Patrick Cousot and Radhia Cousot. 1977. Static Determination of Dynamic
Properties of Generalized Type Unions. In Proceedings of an ACM Conference on
Language Design for Reliable Software. Association for Computing Machinery,
New York, NY, USA, 77–94. https://doi.org/10.1145/800022.808314

[6] Patrick Cousot and Radhia Cousot. 1992. Abstract Interpretation Frameworks.
Journal of Logic and Computation (JLC) 2, 4 (1992), 511–547. https://doi.org/10.
1093/logcom/2.4.511

[7] José Fragoso Santos, Petar Maksimović, Daiva Naudži = unienė, Thomas Wood,
and Philippa Gardner. 2017. JaVerT: JavaScript Veri�cation Toolchain. Proceedings
of the 44th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
(POPL) 2, POPL (2017), 1–33. https://doi.org/10.1145/3158138

[8] Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. 2010. The essence
of JavaScript. In Proceedings of the 24th European Conference on Object-Oriented
Programming (ECOOP). Springer, 126–150. https://doi.org/10.1007/978-3-642-
14107-2_7

[9] Simon Holm Jensen, Anders Møller, and Peter Thiemann. 2009. Type Analysis for
JavaScript. In Proceedings of the 16th International Symposium on Static Analysis
(SAS). https://doi.org/10.1007/978-3-642-03237-0_17

[10] Vineeth Kashyap, Kyle Dewey, Ethan A. Kuefner, John Wagner, Kevin Gib-
bons, John Sarracino, Ben Wiedermann, and Ben Hardekopf. 2014. JSAI: A
Static Analysis Platform for JavaScript. In Proceedings of the 22nd ACM SIG-
SOFT International Symposium on Foundations of Software Engineering (FSE).
https://doi.org/10.1145/2635868.2635904

[11] Se-Won Kim, Xavier Rival, and Sukyoung Ryu. 2018. A Theoretical Foundation
of Sensitivity in an Abstract Interpretation Framework. ACM Transactions on
Programming Languages and Systems (TOPLAS) 40, 3, Article 13 (2018), 44 pages.
https://doi.org/10.1145/3230624

[12] Yoonseok Ko, Xavier Rival, and Sukyoung Ryu. 2017. Weakly Sensitive Analysis
for Unbounded Iteration over JavaScript Objects. In Proceedings of the 15th Asian
Symposium on Programming Languages and Systems (APLAS). https://doi.org/10.
1007/978-3-319-71237-6_8

7

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

(a) Evaluation algorithm for logical OR assignments.

1 syntax def AssignmentExpression [8]. Evaluation(

2 this , LeftHandSideExpression , AssignmentExpression

3) { /* entry */

4 let lref = (LeftHandSideExpression.Evaluation)

5 let lval = [? (GetValue lref)]

6 let lbool = [! (ToBoolean lval)] /* #1 */

7 if (= lbool true) /* #2 */ return lval else { /* #3 */ }

8 if (&& (IsAnonymousFunctionDefinition AssignmentExpression)

9 (LeftHandSideExpression.IsIdentifierRef)) { /* #4 */

10 let rval = (AssignmentExpression.NamedEvaluation

11 lref.ReferencedName)

12 } else { /* #5 */

13 let rref = (AssignmentExpression.Evaluation)

14 let rval = [? (GetValue rref)]

15 } /* #6 */

16 [? (PutValue lref rval)]

17 return rval

18 } /* exit */

(b) The extracted IRES function.

Figure 1: Evaluation algorithm for the eighth alternative of AssignmentExpression in ES12 and the extracted IRES function.

To alleviate this problem, we propose a novel technique called
meta-level static analysis to automatically derive a JavaScript static
analyzer from any version of ECMAScript. The main idea of the
meta-level static analysis is to indirectly analyze a target language
program by performing static analysis for a language speci�ca-
tion of the target language written in a speci�cation language with
the program as the initial input. Thus, it can signi�cantly reduce
the burden to manually design and implement static analyzers by
automatically deriving them from given language speci�cations.
Moreover, it even guarantees the soundness of derived static analyz-
ers for the target language by constructing sound abstract semantics
for the speci�cation language.

For the expressiveness of a meta-level static analysis, we also
present ways to con�gure analysis sensitivities and abstract do-
mains for a target language. Con�guring them is a typical way
to manage analysis precision and performance. First, we present
the AST sensitivity in a meta-level static analysis to express analy-
sis sensitivities for a target language such as �ow-sensitivity and
k-callsite-sensitivity (Section 4.2). Second, we present a way to
con�gure abstract domains for structures and values in a target
language (Section 4.3).

To actualize our approach for JavaScript, we present JSAVER,
JavaScript Static Analyzers via ECMAScript Representations. First,
we utilize JISET [26] to extract a mechanized speci�cation written
in an intermediate representation, IRES, from a given ECMAScript.
Thus, target and speci�cation languages are JavaScript and IRES,
respectively, for the meta-level static analysis in JSAVER. In addition,
we implement several analysis techniques to improve the perfor-
mance and precision of derived static analyzers (Section 5). We
evaluated JSAVER by deriving a JavaScript static analyzer from the
latest ECMAScript, ES12, and using the o�cial conformance tests,
Test2622.

Our contributions are as follows:
• We propose a novel concept called meta-level static analysis,
which automatically derives a static analyzer for a target

2https://github.com/tc39/test262

let f = Math.floor(Math.random () * 100);

// f: [0, 99]

f ||= x => x;

// f: [1, 99] or { name: �f�, ... }

let x = f.name;

// f: [1, 99] or { name: �f�, ... }, x: undefined or �f�

Figure 2: A running JavaScript program with a logical OR
assignment newly introduced in ES12.

language from its language speci�cation written in a speci�-
cation language.

• We actualize meta-level static analysis for JavaScript as a tool
called JSAVER. It is the �rst tool that automatically derives a
JavaScript static analyzer from any version of ECMAScript.

• We derive a static analyzer from the latest ECMAScript, ES12,
to evaluate JSAVER. The synthesized static analyzer success-
fully analyzes all applicable 18,556 o�cial conformance tests.
Moreover, we demonstrate the adaptability and expressive-
ness of JSAVER with several case studies.

2 BACKGROUND
In this section, we explain the detail of ECMAScript, the o�cial
speci�cation of JavaScript. We then introduce JISET and how it
extracts a mechanized speci�cation from it. Since our work is to
perform meta-level static analysis for JavaScript using extracted
mechanized speci�cations, it is essential to understand how EC-
MAScript describes JavaScript semantics and how JISET extracts a
mechanized speci�cation from it.

For the detailed explanation, we explain a new language feature
introduced in ES12 called logical OR assignments (Figure 1) and
use a JavaScript program (Figure 2) as a running example. It �rst
de�nes a variable f with a random integer from 0 to 99. Then, it
uses a logical OR assignment to update f with an arrow function
whose name is �f� only if f has 0 because 0 represents false but
other integers represent true. Finally, it de�nes a variable x with
f.name and its value is undefined if f has an integer or �f� otherwise.

2

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Automatically Deriving JavaScript Static Analyzers from Language Specifications ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

otherwise, a normal function. An instruction i is a primitive value
assignment, an operation between values, a internal �eld access, a
external �eld access, a record allocations, a function call, or a return
instruction.

States � 2 S = H ⇥ C
Heaps h 2 H = A �n��!R
Contexts c 2 C = L ⇥ (X �n��!V) ⇥ C?
Values � 2 V = Vp] A] T] F
Records r 2 R = (Vstr

�n��!V) ⇥ (Vstr
�n��!V)

States S consists of heaps H and contexts C. A heap h 2 H is a
�nite mapping from addresses to records. Each record allocation
instruction x = {} creates a unique address a 2 A di�erent with
existing addresses. A context c 2 C is a triple of 1) the program
point, 2) a local environment which is a �nite mapping from vari-
ables to values, and 3) an optional calling context. A value � 2 V
is a primitive value, an address, an AST, or a function. A record
r 2 R consists of two �nite mappings from strings to values. The
left mapping represents internal �elds accessible by internal �eld
accesses x = x[x]. On the other hand, the right one represents ex-
ternal �elds, such as variables in JavaScript environment records or
properties in JavaScript objects, and they are accessible by a exter-
nal �eld access x = x[x]ext. We formulate the concrete semantics
of a program P as a transition system ({, S�) where{✓ S⇥ S is a
transition relation between concrete states and S� is a set of initial
states.

For a meta-level static analysis, we de�ne its abstract semantics
in the abstract interpretation framework [4, 6]. Since our analysis
supports view-based analysis sensitivities [11, 24], the abstract
domain is de�ned as a mapping from views to abstract states, D# =
� ! D#, with a view abstraction � : � ! P(S) which represents
the meaning of each view � 2 �. Then, we de�ne abstract states as
follows:

Abstract States � # 2 D# = H# ⇥ C#

Abstract Heaps h# 2 H# = A# �n��!(R# ⇥ R#
ext

)
Abstract Addresses a# 2 A# = L
Abstract Contexts c# 2 C# = X �n��!V#

An abstract heaph# 2 H# is a �nitemapping from abstract addresses
A
to pairs of abstract internal records R# and abstract external

records R#
ext

. Each abstract address a# 2 A# is de�ned with the
allocation-site abstraction [3] that partitions concrete addresses A
based on their allocation sites L. An abstract context c# 2 C# is a
�nite mapping from variables to abstract values. Shapes of abstract
values V#, abstract internal (or external) records R# (or R#

ext
) are

parametric thus we can freely con�gure them.

4.2 Analysis Sensitivities
In a meta-level static analysis, analysis sensitivities of the target
language (JavaScript) are di�erent with them of the speci�cation
language (IRES). For example, we explain what happens during anal-
ysis of the following JavaScript program with the �ow-sensitivity
for IRES:

let x = 1, y = 2;

x + y; // 3

(a) Evaluation algorithm for identi�er references.

1 syntax def IdentifierReference [0]. Evaluation(

2 this , Identifier

3) {

4 return [? (ResolveBinding (Identifier.StringValue))

5 }

(b) The extracted IRES function.

(c) Parsing result of x + y (bottom) and the initial local environment
(top) of the IRES function.

Figure 7: An example of the di�erence between analysis sen-
sitivities of target and speci�cation language.

Figure 7 describes (a) the Evaluation algorithm of identi�er refer-
ences, (b) its extracted IRES function, and (c) the parsing result of
x + y and the initial local environment of the IRES function. Since
the �ow-sensitivity merges states based on the program points,
contexts for the evaluation of both identi�er references x and y are
merged. Thus, the IRES variable Identifier points to their ASTs
as described in Figure 7. Due to the imprecise merge of contexts,
StringValue of Identifier returns �x� and �y�, and ResolveBinding
with them returns both 1 and 2. Finally, the analysis result of x + y

becomes { 2, 3, 4 }.

Flow Sensitivity. To resolve this problem, we present an AST sen-
sitivity for the speci�cation language to represent �ow-sensitivity
of the target language. It is a variant of object sensitivity [17, 33]
which uses abstract addresses A# of receiver objects as views. How-
ever, unlike the object sensitivity, the AST sensitivity utilizes ASTs
T stored in the parameter this only for syntax-directed functions:

� flow(t 2 T) = {� = (_, c) 2 S | syntax-ctxt(c) = c 0 ^ c 0(this) = t}
where syntax-ctxt(c) denotes the top-most context whose function
is syntax-directed and c 0(this) denotes a lookup of the variable
this in the mapping in the context c 0. We de�ne the �ow sensitivity
for the target language using the AST sensitivity and it successfully
divides contexts for the evaluation of JavaScript identi�ers x and y

in the above example using their ASTs even though their program
points are same.

Callsite Sensitivity. We also formally de�ne the callsite sensitiv-
ity [31, 32] for the target language by extending AST sensitivity
for speci�c normal IRES functions. The original callsite sensitivity
discriminates calling contexts based on their top most callsites. In
ECMAScript, all explicit and even implicit JavaScript function calls

5

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Automatically Deriving JavaScript Static Analyzers from Language Specifications ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

function error(e) { throw e; }

const n = ...; // [0, 99]

n |> x => x + 1 // [1, 100]

|> x => x * 2 // [2, 200]

|> x => x + 1n; // TypeError

|> error (42);

of representative techniques to increase the precision of JavaScript
static analysis for loops. It discriminates contexts using a stack of
loop contexts containing loop iterations. We de�ne it under view-
based analysis sensitivity and implement it in JSAVER to increase
the precision of IRES static analysis. Moreover, we also de�ne and
implement the loop sensitivity for JavaScript using the loop sensitiv-
ity for IRES. Therefore, our tool discriminates contexts for explicit
loops, such as for-in or for-of, and even implicit loops, such as the
length property assignment of arrays.

6 EVALUATION
• AdditiveExpression
• Identi�erReference
• Identi�er
• AssignmentExpression
• LeftHandSideExpression
• ArrowFunction

• RQ1: Coverage) How much does JSAVER cover JavaScript
language features in the latest ECMAScript (ES12, 2021)?

• RQ2: Adaptability) Could JSAVER adapt a new language
features not yet introduced in ES12?

• RQ3: Expressiveness) What kinds of abstract sensitivities
and abstract domains JSAVER can support?

• RQ4: Performance) Could JSAVER analyze JavaScript pro-
grams in a durable time?

TODO

7 RELATEDWORK
TODO

• JavaScript Static Analyzers [9, 10, 14, 27]
• JavaScript Static Analysis Techniques [1, 12, 13, 15, 18–21,
30, 34–36]

• Partial Evaluation? (maybe no - * SE conf.)

7.1 JavaScript Mechanized Speci�cation
A speci�cation is mechanized if and only if it is both formalized
and executable. For JavaScript, researchers have proposed various
mechanized speci�cation in their own approaches. In 2010, Guha
et al. [8] presented �JS, the �rst mechanized speci�cation for a core
calculus of ES3 semantics by desugaring most of syntax into �JS, an
extended standard lambda calculus. Thus, the shape of �JS seman-
tics is quite di�erent with original algorithm steps. In mid 2010s,
researchers tried to de�ne mechanized speci�cation for the ES5
and 5.1 semantics having a similar shape of semantics with original
algorithm steps as much as possible. Bodin et al. [2] de�ned JSCert,
a semantics of a small subset of ES5, using Coq and extracts a refer-
ence interpreter JSRef. Park et al. [22] de�ned an entire semantics
of ES5, KJS, using the K [29], which is a framework for de�ning
language semantics. Fragoso Santos et al. [7] presented JaVerT, a

JavaScript veri�cation toolchain, including a JavaScript semantics
de�ned in their own Intermediate language, JSIL.

However, the fundamental problem of their approaches is that
they are manually de�ned thus they are labor-intensive and error-
prone. Due to such limitation, there is no existing mechanized
speci�cation for full semantics of ES6 or later versions. Therefore,
most of existing JavaScript static analyzers only focus on ES5.1
features or rarely support ES6 features even though already six
more versions from ES7 to ES12 are released since 2015.

Moreover, Park et al. [23] successfully showed that JISET is useful
tomechanically handle recent versions of ECMAScript by extending
JISET to perform N+1-version di�erential testing of both JavaScript
engines and ES11 (2020).

8 CONCLUSION
TODO

REFERENCES
[1] Roberto Amadini, Alexander Jordan, Graeme Gange, François Gauthier, Peter

Schachte, Harald Søndergaard, Peter J Stuckey, and Chenyi Zhang. 2017. Com-
bining String Abstract Domains for JavaScript Analysis: An Evaluation. In Pro-
ceedings of the 23rd International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS). https://doi.org/10.1007/978-3-
662-54577-5_3

[2] Martin Bodin, Arthur Charguéraud, Daniele Filaretti, Philippa Gardner, Sergio
Ma�eis, Daiva Naudziuniene, Alan Schmitt, and Gareth Smith. 2014. A Trusted
Mechanised JavaScript Speci�cation. Proceedings of the 41st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming (POPL) 49, 1 (2014), 87–100.
https://doi.org/10.1145/2535838.2535876

[3] David R. Chase, Mark Wegman, and F. Kenneth Zadeck. 1990. Analysis of
Pointers and Structures. In Proceedings of the ACM SIGPLAN 1990 Conference on
Programming Language Design and Implementation (PLDI) (PLDI ’90). Association
for Computing Machinery, New York, NY, USA, 296–310. https://doi.org/10.
1145/93542.93585

[4] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Uni�ed
Lattice Model for Static Analysis of Programs by Construction or Approximation
of Fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming languages (POPL). https://doi.org/10.1145/512950.
512973

[5] Patrick Cousot and Radhia Cousot. 1977. Static Determination of Dynamic
Properties of Generalized Type Unions. In Proceedings of an ACM Conference on
Language Design for Reliable Software. Association for Computing Machinery,
New York, NY, USA, 77–94. https://doi.org/10.1145/800022.808314

[6] Patrick Cousot and Radhia Cousot. 1992. Abstract Interpretation Frameworks.
Journal of Logic and Computation (JLC) 2, 4 (1992), 511–547. https://doi.org/10.
1093/logcom/2.4.511

[7] José Fragoso Santos, Petar Maksimović, Daiva Naudži = unienė, Thomas Wood,
and Philippa Gardner. 2017. JaVerT: JavaScript Veri�cation Toolchain. Proceedings
of the 44th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
(POPL) 2, POPL (2017), 1–33. https://doi.org/10.1145/3158138

[8] Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. 2010. The essence
of JavaScript. In Proceedings of the 24th European Conference on Object-Oriented
Programming (ECOOP). Springer, 126–150. https://doi.org/10.1007/978-3-642-
14107-2_7

[9] Simon Holm Jensen, Anders Møller, and Peter Thiemann. 2009. Type Analysis for
JavaScript. In Proceedings of the 16th International Symposium on Static Analysis
(SAS). https://doi.org/10.1007/978-3-642-03237-0_17

[10] Vineeth Kashyap, Kyle Dewey, Ethan A. Kuefner, John Wagner, Kevin Gib-
bons, John Sarracino, Ben Wiedermann, and Ben Hardekopf. 2014. JSAI: A
Static Analysis Platform for JavaScript. In Proceedings of the 22nd ACM SIG-
SOFT International Symposium on Foundations of Software Engineering (FSE).
https://doi.org/10.1145/2635868.2635904

[11] Se-Won Kim, Xavier Rival, and Sukyoung Ryu. 2018. A Theoretical Foundation
of Sensitivity in an Abstract Interpretation Framework. ACM Transactions on
Programming Languages and Systems (TOPLAS) 40, 3, Article 13 (2018), 44 pages.
https://doi.org/10.1145/3230624

[12] Yoonseok Ko, Xavier Rival, and Sukyoung Ryu. 2017. Weakly Sensitive Analysis
for Unbounded Iteration over JavaScript Objects. In Proceedings of the 15th Asian
Symposium on Programming Languages and Systems (APLAS). https://doi.org/10.
1007/978-3-319-71237-6_8

7

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

(a) Evaluation algorithm for identi�er references

1 syntax def IdentifierReference [0]. Evaluation(
2 this , Identifier
3) {
4 return [? (ResolveBinding (Identifier.StringValue))]
5 }

(b) Extracted IRES function for identi�er references

(c) Result of x + y via a mechanized speci�cation

Figure 7: Analysis sensitivities of the target language
(JavaScript) and the speci�cation language (IRES)

divides contexts for the evaluation of JavaScript identi�ers x and y

in the above example using their ASTs even though their program
points in IRES are the same.

Callsite Sensitivity. We also formally de�ne the callsite sensitiv-
ity [37, 38] for the target language by extending the AST sensitivity
for speci�c normal IRES functions. The original callsite sensitivity
discriminates calling contexts using their top most callsites. In EC-
MAScript, all explicit and even implicit JavaScript function calls
invoke normal IRES functions Call and Construct. Thus, we de�ne
the callsite sensitivity for the target language by extending the AST
sensitivity with two normal IRES functions:

� cfa(t 2 T) = {� = (_, c) 2 S |
syntax-ctxt � js-call-ctxt(c) = c 0 ^ c 0(this) = t}

where js-call-ctxt(c) denotes the top-most context whose function is
Call or Construct and f �� denotes a function composition. Moreover,
we extend it to the k-callsite sensitivity by recursively taking ASTs
representing callsites of the target language:

�k -cfa(t 2 Tk) = {� = (_, c) 2 S |
t = [t1, · · · , tn] ^ n  k^
(ö(syntax-ctxt � js-call-ctxt)n+1(c) _ n = k)^
81  i  n.
((syntax-ctxt � js-call-ctxt)i (c) = ci ^ ci (this) = ti)}

Using this callsite sensitivity for the target language, the meta-
level static analyzer could discriminate not only explicit JavaScript
function calls (e.g. f()) but also implicit JavaScript function calls,
including getters/setters, user-de�ned implicit conversions, and
implicit function calls in built-in libraries.

5 IMPLEMENTATION
We developed a prototype implementation called JSAVER, which per-
forms a meta-level static analysis for JavaScript with ECMAScript.
The tool is an extension of JISET4 and it is an open-source project5.
In this section, we describe the challenges in implementing a meta-
level static analyzer and present our solutions for them.

Layered Abstract States. Unlike traditional JavaScript static anal-
yses, a meta-level static analysis for JavaScript should track analysis
results not only for the target language JavaScript but also for the
speci�cation language IRES. Thus, the sizes of abstract states are
much larger than those of the other JavaScript static analyzers. We
implement layered abstract states to maintain only updated analysis
results compared to the initial abstract state. It signi�cantly reduces
the time to perform the join (t), meet (u), and partial order (v)
operations by considering only the updated parts in abstract states.

Closures and Continuations. The speci�cation language IRES for
ECMAScript contains more complex language features than its
simpli�ed version presented in Section 4.1, such as symbols, lists,
and list operations. Among them, the two most complex features
are closures with captured variables and �rst-class continuations be-
cause they introduce new kinds of control �ows. ECMAScript uses
closures to de�ne implicit and explicit JavaScript iterators and uses
continuations for iterators, generators, and asynchronous features
such as async, await, and the Proxy object. Therefore, we de�ne and
implement abstract closures and abstract continuations; an abstract
closure is a pair of a function and a mapping from captured vari-
ables to their abstract values, and an abstract continuation consists
of a program point, a view for analysis sensitivity, parameters, and
an abstract context.

Abstract Counting. Properties of JavaScript objects could be dy-
namically added, modi�ed, or deleted and even accessible by �rst-
class property names. Thus, in JavaScript static analysis, performing
strong updates rather than weak updates for object properties as
many as possible is important for precise analysis results. Since
records of IRES are even more dynamic than JavaScript objects, it is
also important to increase analysis precision. Therefore, we imple-
ment abstract counting [19] to increase chances to perform strong
updates for �elds of records. It checks how many times records in
the same allocation site have been allocated and performs strong
updates only for singleton records with singleton �eld values.

Loop Sensitivity. Similar to function calls, loops are also typical
merging points in static analysis. A loop sensitivity [24] is one of the
representative techniques to increase the precision of JavaScript
static analysis for loops. It discriminates contexts using a stack
of loop contexts containing loop iterations. We de�ne it under
the view-based analysis sensitivity and implement it in JSAVER to
increase the precision of IRES static analysis. Moreover, we also
de�ne and implement the loop sensitivity for JavaScript using the
loop sensitivity for IRES. Therefore, JSAVER discriminates contexts
for explicit loops such as for-in and for-of and even implicit loops
such as the assignment of arguments or the length property of
arrays.

4https://github.com/kaist-plrg/jiset
5The URL of the tool is anonymized due to a double-blind review process.

6

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

(a) Evaluation algorithm for identi�er references

1 syntax def IdentifierReference [0]. Evaluation(
2 this , Identifier
3) {
4 return [? (ResolveBinding (Identifier.StringValue))]
5 }

(b) Extracted IRES function for identi�er references

(c) Result of x + y via a mechanized speci�cation

Figure 7: Analysis sensitivities of the target language
(JavaScript) and the speci�cation language (IRES)

divides contexts for the evaluation of JavaScript identi�ers x and y

in the above example using their ASTs even though their program
points in IRES are the same.

Callsite Sensitivity. We also formally de�ne the callsite sensitiv-
ity [37, 38] for the target language by extending the AST sensitivity
for speci�c normal IRES functions. The original callsite sensitivity
discriminates calling contexts using their top most callsites. In EC-
MAScript, all explicit and even implicit JavaScript function calls
invoke normal IRES functions Call and Construct. Thus, we de�ne
the callsite sensitivity for the target language by extending the AST
sensitivity with two normal IRES functions:

� cfa(t 2 T) = {� = (_, c) 2 S |
syntax-ctxt � js-call-ctxt(c) = c 0 ^ c 0(this) = t}

where js-call-ctxt(c) denotes the top-most context whose function is
Call or Construct and f �� denotes a function composition. Moreover,
we extend it to the k-callsite sensitivity by recursively taking ASTs
representing callsites of the target language:

�k -cfa(t 2 Tk) = {� = (_, c) 2 S |
t = [t1, · · · , tn] ^ n  k^
(ö(syntax-ctxt � js-call-ctxt)n+1(c) _ n = k)^
81  i  n.
((syntax-ctxt � js-call-ctxt)i (c) = ci ^ ci (this) = ti)}

Using this callsite sensitivity for the target language, the meta-
level static analyzer could discriminate not only explicit JavaScript
function calls (e.g. f()) but also implicit JavaScript function calls,
including getters/setters, user-de�ned implicit conversions, and
implicit function calls in built-in libraries.

5 IMPLEMENTATION
We developed a prototype implementation called JSAVER, which per-
forms a meta-level static analysis for JavaScript with ECMAScript.
The tool is an extension of JISET4 and it is an open-source project5.
In this section, we describe the challenges in implementing a meta-
level static analyzer and present our solutions for them.

Layered Abstract States. Unlike traditional JavaScript static anal-
yses, a meta-level static analysis for JavaScript should track analysis
results not only for the target language JavaScript but also for the
speci�cation language IRES. Thus, the sizes of abstract states are
much larger than those of the other JavaScript static analyzers. We
implement layered abstract states to maintain only updated analysis
results compared to the initial abstract state. It signi�cantly reduces
the time to perform the join (t), meet (u), and partial order (v)
operations by considering only the updated parts in abstract states.

Closures and Continuations. The speci�cation language IRES for
ECMAScript contains more complex language features than its
simpli�ed version presented in Section 4.1, such as symbols, lists,
and list operations. Among them, the two most complex features
are closures with captured variables and �rst-class continuations be-
cause they introduce new kinds of control �ows. ECMAScript uses
closures to de�ne implicit and explicit JavaScript iterators and uses
continuations for iterators, generators, and asynchronous features
such as async, await, and the Proxy object. Therefore, we de�ne and
implement abstract closures and abstract continuations; an abstract
closure is a pair of a function and a mapping from captured vari-
ables to their abstract values, and an abstract continuation consists
of a program point, a view for analysis sensitivity, parameters, and
an abstract context.

Abstract Counting. Properties of JavaScript objects could be dy-
namically added, modi�ed, or deleted and even accessible by �rst-
class property names. Thus, in JavaScript static analysis, performing
strong updates rather than weak updates for object properties as
many as possible is important for precise analysis results. Since
records of IRES are even more dynamic than JavaScript objects, it is
also important to increase analysis precision. Therefore, we imple-
ment abstract counting [19] to increase chances to perform strong
updates for �elds of records. It checks how many times records in
the same allocation site have been allocated and performs strong
updates only for singleton records with singleton �eld values.

Loop Sensitivity. Similar to function calls, loops are also typical
merging points in static analysis. A loop sensitivity [24] is one of the
representative techniques to increase the precision of JavaScript
static analysis for loops. It discriminates contexts using a stack
of loop contexts containing loop iterations. We de�ne it under
the view-based analysis sensitivity and implement it in JSAVER to
increase the precision of IRES static analysis. Moreover, we also
de�ne and implement the loop sensitivity for JavaScript using the
loop sensitivity for IRES. Therefore, JSAVER discriminates contexts
for explicit loops such as for-in and for-of and even implicit loops
such as the assignment of arguments or the length property of
arrays.

4https://github.com/kaist-plrg/jiset
5The URL of the tool is anonymized due to a double-blind review process.

6

parsex ||= y
JS Program P1

/ 5748

Meta-Level Static Analysis

IRES

JavaScript

· · ·<latexit sha1_base64="Kef69hW4e/raBfVz+DaK6/NBFbQ=">AAACHXicbVDJSgNBEK1xjXFL9OhlMAiewowKeozLwYsQITFCJkhPp2Ka9Cx01whxmI/wqge/xpt4Ff/GnnEObg8aHu9VdVU9P5ZCk+N8WDOzc/MLi5Wl6vLK6tp6rb5xpaNEcezySEbq2mcapQixS4IkXscKWeBL7PmT09zv3aHSIgo7NI1xELDbUIwEZ2SknseHEenqTa3hNJ0C9l/ilqQBJdo3dQu8YcSTAEPikmndd52YBilTJLjErOolGmPGJ+wW+4aGLEA9SIt9M3vHKEN7FCnzQrIL9XtHygKtp4FvKgNGY/3by8X/vH5Co6NBKsI4IQz516BRIm2K7Px4eygUcpJTQxhXwuxq8zFTjJOJqOqdoblF4YX591jGY+YjpV4+Jb7nWdpxs7QgQZYKykxm7u+E/pKrvaa739y7PGi0Tsr0KrAF27ALLhxCC86hDV3gMIEHeIQn69l6sV6tt6/SGavs2YQfsN4/AabGomA=</latexit> · · ·<latexit sha1_base64="Kef69hW4e/raBfVz+DaK6/NBFbQ=">AAACHXicbVDJSgNBEK1xjXFL9OhlMAiewowKeozLwYsQITFCJkhPp2Ka9Cx01whxmI/wqge/xpt4Ff/GnnEObg8aHu9VdVU9P5ZCk+N8WDOzc/MLi5Wl6vLK6tp6rb5xpaNEcezySEbq2mcapQixS4IkXscKWeBL7PmT09zv3aHSIgo7NI1xELDbUIwEZ2SknseHEenqTa3hNJ0C9l/ilqQBJdo3dQu8YcSTAEPikmndd52YBilTJLjErOolGmPGJ+wW+4aGLEA9SIt9M3vHKEN7FCnzQrIL9XtHygKtp4FvKgNGY/3by8X/vH5Co6NBKsI4IQz516BRIm2K7Px4eygUcpJTQxhXwuxq8zFTjJOJqOqdoblF4YX591jGY+YjpV4+Jb7nWdpxs7QgQZYKykxm7u+E/pKrvaa739y7PGi0Tsr0KrAF27ALLhxCC86hDV3gMIEHeIQn69l6sV6tt6/SGavs2YQfsN4/AabGomA=</latexit>

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Automatically Deriving JavaScript Static Analyzers from Language Specifications ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

function error(e) { throw e; }

const n = ...; // [0, 99]

n |> x => x + 1 // [1, 100]

|> x => x * 2 // [2, 200]

|> x => x + 1n; // TypeError

|> error (42);

of representative techniques to increase the precision of JavaScript
static analysis for loops. It discriminates contexts using a stack of
loop contexts containing loop iterations. We de�ne it under view-
based analysis sensitivity and implement it in JSAVER to increase
the precision of IRES static analysis. Moreover, we also de�ne and
implement the loop sensitivity for JavaScript using the loop sensitiv-
ity for IRES. Therefore, our tool discriminates contexts for explicit
loops, such as for-in or for-of, and even implicit loops, such as the
length property assignment of arrays.

6 EVALUATION
• AdditiveExpression
• Identi�erReference
• Identi�er
• AssignmentExpression
• LeftHandSideExpression
• ArrowFunction

• RQ1: Coverage) How much does JSAVER cover JavaScript
language features in the latest ECMAScript (ES12, 2021)?

• RQ2: Adaptability) Could JSAVER adapt a new language
features not yet introduced in ES12?

• RQ3: Expressiveness) What kinds of abstract sensitivities
and abstract domains JSAVER can support?

• RQ4: Performance) Could JSAVER analyze JavaScript pro-
grams in a durable time?

TODO

7 RELATEDWORK
TODO

• JavaScript Static Analyzers [9, 10, 14, 27]
• JavaScript Static Analysis Techniques [1, 12, 13, 15, 18–21,
30, 34–36]

• Partial Evaluation? (maybe no - * SE conf.)

7.1 JavaScript Mechanized Speci�cation
A speci�cation is mechanized if and only if it is both formalized
and executable. For JavaScript, researchers have proposed various
mechanized speci�cation in their own approaches. In 2010, Guha
et al. [8] presented �JS, the �rst mechanized speci�cation for a core
calculus of ES3 semantics by desugaring most of syntax into �JS, an
extended standard lambda calculus. Thus, the shape of �JS seman-
tics is quite di�erent with original algorithm steps. In mid 2010s,
researchers tried to de�ne mechanized speci�cation for the ES5
and 5.1 semantics having a similar shape of semantics with original
algorithm steps as much as possible. Bodin et al. [2] de�ned JSCert,
a semantics of a small subset of ES5, using Coq and extracts a refer-
ence interpreter JSRef. Park et al. [22] de�ned an entire semantics
of ES5, KJS, using the K [29], which is a framework for de�ning
language semantics. Fragoso Santos et al. [7] presented JaVerT, a

JavaScript veri�cation toolchain, including a JavaScript semantics
de�ned in their own Intermediate language, JSIL.

However, the fundamental problem of their approaches is that
they are manually de�ned thus they are labor-intensive and error-
prone. Due to such limitation, there is no existing mechanized
speci�cation for full semantics of ES6 or later versions. Therefore,
most of existing JavaScript static analyzers only focus on ES5.1
features or rarely support ES6 features even though already six
more versions from ES7 to ES12 are released since 2015.

Moreover, Park et al. [23] successfully showed that JISET is useful
tomechanically handle recent versions of ECMAScript by extending
JISET to perform N+1-version di�erential testing of both JavaScript
engines and ES11 (2020).

8 CONCLUSION
TODO

REFERENCES
[1] Roberto Amadini, Alexander Jordan, Graeme Gange, François Gauthier, Peter

Schachte, Harald Søndergaard, Peter J Stuckey, and Chenyi Zhang. 2017. Com-
bining String Abstract Domains for JavaScript Analysis: An Evaluation. In Pro-
ceedings of the 23rd International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS). https://doi.org/10.1007/978-3-
662-54577-5_3

[2] Martin Bodin, Arthur Charguéraud, Daniele Filaretti, Philippa Gardner, Sergio
Ma�eis, Daiva Naudziuniene, Alan Schmitt, and Gareth Smith. 2014. A Trusted
Mechanised JavaScript Speci�cation. Proceedings of the 41st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming (POPL) 49, 1 (2014), 87–100.
https://doi.org/10.1145/2535838.2535876

[3] David R. Chase, Mark Wegman, and F. Kenneth Zadeck. 1990. Analysis of
Pointers and Structures. In Proceedings of the ACM SIGPLAN 1990 Conference on
Programming Language Design and Implementation (PLDI) (PLDI ’90). Association
for Computing Machinery, New York, NY, USA, 296–310. https://doi.org/10.
1145/93542.93585

[4] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Uni�ed
Lattice Model for Static Analysis of Programs by Construction or Approximation
of Fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming languages (POPL). https://doi.org/10.1145/512950.
512973

[5] Patrick Cousot and Radhia Cousot. 1977. Static Determination of Dynamic
Properties of Generalized Type Unions. In Proceedings of an ACM Conference on
Language Design for Reliable Software. Association for Computing Machinery,
New York, NY, USA, 77–94. https://doi.org/10.1145/800022.808314

[6] Patrick Cousot and Radhia Cousot. 1992. Abstract Interpretation Frameworks.
Journal of Logic and Computation (JLC) 2, 4 (1992), 511–547. https://doi.org/10.
1093/logcom/2.4.511

[7] José Fragoso Santos, Petar Maksimović, Daiva Naudži = unienė, Thomas Wood,
and Philippa Gardner. 2017. JaVerT: JavaScript Veri�cation Toolchain. Proceedings
of the 44th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
(POPL) 2, POPL (2017), 1–33. https://doi.org/10.1145/3158138

[8] Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. 2010. The essence
of JavaScript. In Proceedings of the 24th European Conference on Object-Oriented
Programming (ECOOP). Springer, 126–150. https://doi.org/10.1007/978-3-642-
14107-2_7

[9] Simon Holm Jensen, Anders Møller, and Peter Thiemann. 2009. Type Analysis for
JavaScript. In Proceedings of the 16th International Symposium on Static Analysis
(SAS). https://doi.org/10.1007/978-3-642-03237-0_17

[10] Vineeth Kashyap, Kyle Dewey, Ethan A. Kuefner, John Wagner, Kevin Gib-
bons, John Sarracino, Ben Wiedermann, and Ben Hardekopf. 2014. JSAI: A
Static Analysis Platform for JavaScript. In Proceedings of the 22nd ACM SIG-
SOFT International Symposium on Foundations of Software Engineering (FSE).
https://doi.org/10.1145/2635868.2635904

[11] Se-Won Kim, Xavier Rival, and Sukyoung Ryu. 2018. A Theoretical Foundation
of Sensitivity in an Abstract Interpretation Framework. ACM Transactions on
Programming Languages and Systems (TOPLAS) 40, 3, Article 13 (2018), 44 pages.
https://doi.org/10.1145/3230624

[12] Yoonseok Ko, Xavier Rival, and Sukyoung Ryu. 2017. Weakly Sensitive Analysis
for Unbounded Iteration over JavaScript Objects. In Proceedings of the 15th Asian
Symposium on Programming Languages and Systems (APLAS). https://doi.org/10.
1007/978-3-319-71237-6_8

7

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

(a) Evaluation algorithm for logical OR assignments.

1 syntax def AssignmentExpression [8]. Evaluation(

2 this , LeftHandSideExpression , AssignmentExpression

3) { /* entry */

4 let lref = (LeftHandSideExpression.Evaluation)

5 let lval = [? (GetValue lref)]

6 let lbool = [! (ToBoolean lval)] /* #1 */

7 if (= lbool true) /* #2 */ return lval else { /* #3 */ }

8 if (&& (IsAnonymousFunctionDefinition AssignmentExpression)

9 (LeftHandSideExpression.IsIdentifierRef)) { /* #4 */

10 let rval = (AssignmentExpression.NamedEvaluation

11 lref.ReferencedName)

12 } else { /* #5 */

13 let rref = (AssignmentExpression.Evaluation)

14 let rval = [? (GetValue rref)]

15 } /* #6 */

16 [? (PutValue lref rval)]

17 return rval

18 } /* exit */

(b) The extracted IRES function.

Figure 1: Evaluation algorithm for the eighth alternative of AssignmentExpression in ES12 and the extracted IRES function.

To alleviate this problem, we propose a novel technique called
meta-level static analysis to automatically derive a JavaScript static
analyzer from any version of ECMAScript. The main idea of the
meta-level static analysis is to indirectly analyze a target language
program by performing static analysis for a language speci�ca-
tion of the target language written in a speci�cation language with
the program as the initial input. Thus, it can signi�cantly reduce
the burden to manually design and implement static analyzers by
automatically deriving them from given language speci�cations.
Moreover, it even guarantees the soundness of derived static analyz-
ers for the target language by constructing sound abstract semantics
for the speci�cation language.

For the expressiveness of a meta-level static analysis, we also
present ways to con�gure analysis sensitivities and abstract do-
mains for a target language. Con�guring them is a typical way
to manage analysis precision and performance. First, we present
the AST sensitivity in a meta-level static analysis to express analy-
sis sensitivities for a target language such as �ow-sensitivity and
k-callsite-sensitivity (Section 4.2). Second, we present a way to
con�gure abstract domains for structures and values in a target
language (Section 4.3).

To actualize our approach for JavaScript, we present JSAVER,
JavaScript Static Analyzers via ECMAScript Representations. First,
we utilize JISET [26] to extract a mechanized speci�cation written
in an intermediate representation, IRES, from a given ECMAScript.
Thus, target and speci�cation languages are JavaScript and IRES,
respectively, for the meta-level static analysis in JSAVER. In addition,
we implement several analysis techniques to improve the perfor-
mance and precision of derived static analyzers (Section 5). We
evaluated JSAVER by deriving a JavaScript static analyzer from the
latest ECMAScript, ES12, and using the o�cial conformance tests,
Test2622.

Our contributions are as follows:
• We propose a novel concept called meta-level static analysis,
which automatically derives a static analyzer for a target

2https://github.com/tc39/test262

let f = Math.floor(Math.random () * 100);

// f: [0, 99]

f ||= x => x;

// f: [1, 99] or { name: �f�, ... }

let x = f.name;

// f: [1, 99] or { name: �f�, ... }, x: undefined or �f�

Figure 2: A running JavaScript program with a logical OR
assignment newly introduced in ES12.

language from its language speci�cation written in a speci�-
cation language.

• We actualize meta-level static analysis for JavaScript as a tool
called JSAVER. It is the �rst tool that automatically derives a
JavaScript static analyzer from any version of ECMAScript.

• We derive a static analyzer from the latest ECMAScript, ES12,
to evaluate JSAVER. The synthesized static analyzer success-
fully analyzes all applicable 18,556 o�cial conformance tests.
Moreover, we demonstrate the adaptability and expressive-
ness of JSAVER with several case studies.

2 BACKGROUND
In this section, we explain the detail of ECMAScript, the o�cial
speci�cation of JavaScript. We then introduce JISET and how it
extracts a mechanized speci�cation from it. Since our work is to
perform meta-level static analysis for JavaScript using extracted
mechanized speci�cations, it is essential to understand how EC-
MAScript describes JavaScript semantics and how JISET extracts a
mechanized speci�cation from it.

For the detailed explanation, we explain a new language feature
introduced in ES12 called logical OR assignments (Figure 1) and
use a JavaScript program (Figure 2) as a running example. It �rst
de�nes a variable f with a random integer from 0 to 99. Then, it
uses a logical OR assignment to update f with an arrow function
whose name is �f� only if f has 0 because 0 represents false but
other integers represent true. Finally, it de�nes a variable x with
f.name and its value is undefined if f has an integer or �f� otherwise.

2

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Automatically Deriving JavaScript Static Analyzers from Language Specifications ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

function error(e) { throw e; }

const n = ...; // [0, 99]

n |> x => x + 1 // [1, 100]

|> x => x * 2 // [2, 200]

|> x => x + 1n; // TypeError

|> error (42);

of representative techniques to increase the precision of JavaScript
static analysis for loops. It discriminates contexts using a stack of
loop contexts containing loop iterations. We de�ne it under view-
based analysis sensitivity and implement it in JSAVER to increase
the precision of IRES static analysis. Moreover, we also de�ne and
implement the loop sensitivity for JavaScript using the loop sensitiv-
ity for IRES. Therefore, our tool discriminates contexts for explicit
loops, such as for-in or for-of, and even implicit loops, such as the
length property assignment of arrays.

6 EVALUATION
• AdditiveExpression
• Identi�erReference
• Identi�er
• AssignmentExpression
• LeftHandSideExpression
• ArrowFunction

• RQ1: Coverage) How much does JSAVER cover JavaScript
language features in the latest ECMAScript (ES12, 2021)?

• RQ2: Adaptability) Could JSAVER adapt a new language
features not yet introduced in ES12?

• RQ3: Expressiveness) What kinds of abstract sensitivities
and abstract domains JSAVER can support?

• RQ4: Performance) Could JSAVER analyze JavaScript pro-
grams in a durable time?

TODO

7 RELATEDWORK
TODO

• JavaScript Static Analyzers [9, 10, 14, 27]
• JavaScript Static Analysis Techniques [1, 12, 13, 15, 18–21,
30, 34–36]

• Partial Evaluation? (maybe no - * SE conf.)

7.1 JavaScript Mechanized Speci�cation
A speci�cation is mechanized if and only if it is both formalized
and executable. For JavaScript, researchers have proposed various
mechanized speci�cation in their own approaches. In 2010, Guha
et al. [8] presented �JS, the �rst mechanized speci�cation for a core
calculus of ES3 semantics by desugaring most of syntax into �JS, an
extended standard lambda calculus. Thus, the shape of �JS seman-
tics is quite di�erent with original algorithm steps. In mid 2010s,
researchers tried to de�ne mechanized speci�cation for the ES5
and 5.1 semantics having a similar shape of semantics with original
algorithm steps as much as possible. Bodin et al. [2] de�ned JSCert,
a semantics of a small subset of ES5, using Coq and extracts a refer-
ence interpreter JSRef. Park et al. [22] de�ned an entire semantics
of ES5, KJS, using the K [29], which is a framework for de�ning
language semantics. Fragoso Santos et al. [7] presented JaVerT, a

JavaScript veri�cation toolchain, including a JavaScript semantics
de�ned in their own Intermediate language, JSIL.

However, the fundamental problem of their approaches is that
they are manually de�ned thus they are labor-intensive and error-
prone. Due to such limitation, there is no existing mechanized
speci�cation for full semantics of ES6 or later versions. Therefore,
most of existing JavaScript static analyzers only focus on ES5.1
features or rarely support ES6 features even though already six
more versions from ES7 to ES12 are released since 2015.

Moreover, Park et al. [23] successfully showed that JISET is useful
tomechanically handle recent versions of ECMAScript by extending
JISET to perform N+1-version di�erential testing of both JavaScript
engines and ES11 (2020).

8 CONCLUSION
TODO

REFERENCES
[1] Roberto Amadini, Alexander Jordan, Graeme Gange, François Gauthier, Peter

Schachte, Harald Søndergaard, Peter J Stuckey, and Chenyi Zhang. 2017. Com-
bining String Abstract Domains for JavaScript Analysis: An Evaluation. In Pro-
ceedings of the 23rd International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS). https://doi.org/10.1007/978-3-
662-54577-5_3

[2] Martin Bodin, Arthur Charguéraud, Daniele Filaretti, Philippa Gardner, Sergio
Ma�eis, Daiva Naudziuniene, Alan Schmitt, and Gareth Smith. 2014. A Trusted
Mechanised JavaScript Speci�cation. Proceedings of the 41st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming (POPL) 49, 1 (2014), 87–100.
https://doi.org/10.1145/2535838.2535876

[3] David R. Chase, Mark Wegman, and F. Kenneth Zadeck. 1990. Analysis of
Pointers and Structures. In Proceedings of the ACM SIGPLAN 1990 Conference on
Programming Language Design and Implementation (PLDI) (PLDI ’90). Association
for Computing Machinery, New York, NY, USA, 296–310. https://doi.org/10.
1145/93542.93585

[4] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Uni�ed
Lattice Model for Static Analysis of Programs by Construction or Approximation
of Fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming languages (POPL). https://doi.org/10.1145/512950.
512973

[5] Patrick Cousot and Radhia Cousot. 1977. Static Determination of Dynamic
Properties of Generalized Type Unions. In Proceedings of an ACM Conference on
Language Design for Reliable Software. Association for Computing Machinery,
New York, NY, USA, 77–94. https://doi.org/10.1145/800022.808314

[6] Patrick Cousot and Radhia Cousot. 1992. Abstract Interpretation Frameworks.
Journal of Logic and Computation (JLC) 2, 4 (1992), 511–547. https://doi.org/10.
1093/logcom/2.4.511

[7] José Fragoso Santos, Petar Maksimović, Daiva Naudži = unienė, Thomas Wood,
and Philippa Gardner. 2017. JaVerT: JavaScript Veri�cation Toolchain. Proceedings
of the 44th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
(POPL) 2, POPL (2017), 1–33. https://doi.org/10.1145/3158138

[8] Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. 2010. The essence
of JavaScript. In Proceedings of the 24th European Conference on Object-Oriented
Programming (ECOOP). Springer, 126–150. https://doi.org/10.1007/978-3-642-
14107-2_7

[9] Simon Holm Jensen, Anders Møller, and Peter Thiemann. 2009. Type Analysis for
JavaScript. In Proceedings of the 16th International Symposium on Static Analysis
(SAS). https://doi.org/10.1007/978-3-642-03237-0_17

[10] Vineeth Kashyap, Kyle Dewey, Ethan A. Kuefner, John Wagner, Kevin Gib-
bons, John Sarracino, Ben Wiedermann, and Ben Hardekopf. 2014. JSAI: A
Static Analysis Platform for JavaScript. In Proceedings of the 22nd ACM SIG-
SOFT International Symposium on Foundations of Software Engineering (FSE).
https://doi.org/10.1145/2635868.2635904

[11] Se-Won Kim, Xavier Rival, and Sukyoung Ryu. 2018. A Theoretical Foundation
of Sensitivity in an Abstract Interpretation Framework. ACM Transactions on
Programming Languages and Systems (TOPLAS) 40, 3, Article 13 (2018), 44 pages.
https://doi.org/10.1145/3230624

[12] Yoonseok Ko, Xavier Rival, and Sukyoung Ryu. 2017. Weakly Sensitive Analysis
for Unbounded Iteration over JavaScript Objects. In Proceedings of the 15th Asian
Symposium on Programming Languages and Systems (APLAS). https://doi.org/10.
1007/978-3-319-71237-6_8

7

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Automatically Deriving JavaScript Static Analyzers from Language Specifications ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

function error(e) { throw e; }

const n = ...; // [0, 99]

n |> x => x + 1 // [1, 100]

|> x => x * 2 // [2, 200]

|> x => x + 1n; // TypeError

|> error (42);

of representative techniques to increase the precision of JavaScript
static analysis for loops. It discriminates contexts using a stack of
loop contexts containing loop iterations. We de�ne it under view-
based analysis sensitivity and implement it in JSAVER to increase
the precision of IRES static analysis. Moreover, we also de�ne and
implement the loop sensitivity for JavaScript using the loop sensitiv-
ity for IRES. Therefore, our tool discriminates contexts for explicit
loops, such as for-in or for-of, and even implicit loops, such as the
length property assignment of arrays.

6 EVALUATION
• AdditiveExpression
• Identi�erReference
• Identi�er
• AssignmentExpression
• LeftHandSideExpression
• ArrowFunction

• RQ1: Coverage) How much does JSAVER cover JavaScript
language features in the latest ECMAScript (ES12, 2021)?

• RQ2: Adaptability) Could JSAVER adapt a new language
features not yet introduced in ES12?

• RQ3: Expressiveness) What kinds of abstract sensitivities
and abstract domains JSAVER can support?

• RQ4: Performance) Could JSAVER analyze JavaScript pro-
grams in a durable time?

TODO

7 RELATEDWORK
TODO

• JavaScript Static Analyzers [9, 10, 14, 27]
• JavaScript Static Analysis Techniques [1, 12, 13, 15, 18–21,
30, 34–36]

• Partial Evaluation? (maybe no - * SE conf.)

7.1 JavaScript Mechanized Speci�cation
A speci�cation is mechanized if and only if it is both formalized
and executable. For JavaScript, researchers have proposed various
mechanized speci�cation in their own approaches. In 2010, Guha
et al. [8] presented �JS, the �rst mechanized speci�cation for a core
calculus of ES3 semantics by desugaring most of syntax into �JS, an
extended standard lambda calculus. Thus, the shape of �JS seman-
tics is quite di�erent with original algorithm steps. In mid 2010s,
researchers tried to de�ne mechanized speci�cation for the ES5
and 5.1 semantics having a similar shape of semantics with original
algorithm steps as much as possible. Bodin et al. [2] de�ned JSCert,
a semantics of a small subset of ES5, using Coq and extracts a refer-
ence interpreter JSRef. Park et al. [22] de�ned an entire semantics
of ES5, KJS, using the K [29], which is a framework for de�ning
language semantics. Fragoso Santos et al. [7] presented JaVerT, a

JavaScript veri�cation toolchain, including a JavaScript semantics
de�ned in their own Intermediate language, JSIL.

However, the fundamental problem of their approaches is that
they are manually de�ned thus they are labor-intensive and error-
prone. Due to such limitation, there is no existing mechanized
speci�cation for full semantics of ES6 or later versions. Therefore,
most of existing JavaScript static analyzers only focus on ES5.1
features or rarely support ES6 features even though already six
more versions from ES7 to ES12 are released since 2015.

Moreover, Park et al. [23] successfully showed that JISET is useful
tomechanically handle recent versions of ECMAScript by extending
JISET to perform N+1-version di�erential testing of both JavaScript
engines and ES11 (2020).

8 CONCLUSION
TODO

REFERENCES
[1] Roberto Amadini, Alexander Jordan, Graeme Gange, François Gauthier, Peter

Schachte, Harald Søndergaard, Peter J Stuckey, and Chenyi Zhang. 2017. Com-
bining String Abstract Domains for JavaScript Analysis: An Evaluation. In Pro-
ceedings of the 23rd International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS). https://doi.org/10.1007/978-3-
662-54577-5_3

[2] Martin Bodin, Arthur Charguéraud, Daniele Filaretti, Philippa Gardner, Sergio
Ma�eis, Daiva Naudziuniene, Alan Schmitt, and Gareth Smith. 2014. A Trusted
Mechanised JavaScript Speci�cation. Proceedings of the 41st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming (POPL) 49, 1 (2014), 87–100.
https://doi.org/10.1145/2535838.2535876

[3] David R. Chase, Mark Wegman, and F. Kenneth Zadeck. 1990. Analysis of
Pointers and Structures. In Proceedings of the ACM SIGPLAN 1990 Conference on
Programming Language Design and Implementation (PLDI) (PLDI ’90). Association
for Computing Machinery, New York, NY, USA, 296–310. https://doi.org/10.
1145/93542.93585

[4] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Uni�ed
Lattice Model for Static Analysis of Programs by Construction or Approximation
of Fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming languages (POPL). https://doi.org/10.1145/512950.
512973

[5] Patrick Cousot and Radhia Cousot. 1977. Static Determination of Dynamic
Properties of Generalized Type Unions. In Proceedings of an ACM Conference on
Language Design for Reliable Software. Association for Computing Machinery,
New York, NY, USA, 77–94. https://doi.org/10.1145/800022.808314

[6] Patrick Cousot and Radhia Cousot. 1992. Abstract Interpretation Frameworks.
Journal of Logic and Computation (JLC) 2, 4 (1992), 511–547. https://doi.org/10.
1093/logcom/2.4.511

[7] José Fragoso Santos, Petar Maksimović, Daiva Naudži = unienė, Thomas Wood,
and Philippa Gardner. 2017. JaVerT: JavaScript Veri�cation Toolchain. Proceedings
of the 44th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
(POPL) 2, POPL (2017), 1–33. https://doi.org/10.1145/3158138

[8] Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. 2010. The essence
of JavaScript. In Proceedings of the 24th European Conference on Object-Oriented
Programming (ECOOP). Springer, 126–150. https://doi.org/10.1007/978-3-642-
14107-2_7

[9] Simon Holm Jensen, Anders Møller, and Peter Thiemann. 2009. Type Analysis for
JavaScript. In Proceedings of the 16th International Symposium on Static Analysis
(SAS). https://doi.org/10.1007/978-3-642-03237-0_17

[10] Vineeth Kashyap, Kyle Dewey, Ethan A. Kuefner, John Wagner, Kevin Gib-
bons, John Sarracino, Ben Wiedermann, and Ben Hardekopf. 2014. JSAI: A
Static Analysis Platform for JavaScript. In Proceedings of the 22nd ACM SIG-
SOFT International Symposium on Foundations of Software Engineering (FSE).
https://doi.org/10.1145/2635868.2635904

[11] Se-Won Kim, Xavier Rival, and Sukyoung Ryu. 2018. A Theoretical Foundation
of Sensitivity in an Abstract Interpretation Framework. ACM Transactions on
Programming Languages and Systems (TOPLAS) 40, 3, Article 13 (2018), 44 pages.
https://doi.org/10.1145/3230624

[12] Yoonseok Ko, Xavier Rival, and Sukyoung Ryu. 2017. Weakly Sensitive Analysis
for Unbounded Iteration over JavaScript Objects. In Proceedings of the 15th Asian
Symposium on Programming Languages and Systems (APLAS). https://doi.org/10.
1007/978-3-319-71237-6_8

7

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Automatically Deriving JavaScript Static Analyzers from Language Specifications ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

function error(e) { throw e; }

const n = ...; // [0, 99]

n |> x => x + 1 // [1, 100]

|> x => x * 2 // [2, 200]

|> x => x + 1n; // TypeError

|> error (42);

of representative techniques to increase the precision of JavaScript
static analysis for loops. It discriminates contexts using a stack of
loop contexts containing loop iterations. We de�ne it under view-
based analysis sensitivity and implement it in JSAVER to increase
the precision of IRES static analysis. Moreover, we also de�ne and
implement the loop sensitivity for JavaScript using the loop sensitiv-
ity for IRES. Therefore, our tool discriminates contexts for explicit
loops, such as for-in or for-of, and even implicit loops, such as the
length property assignment of arrays.

6 EVALUATION
• AdditiveExpression
• Identi�erReference
• Identi�er
• AssignmentExpression
• LeftHandSideExpression
• ArrowFunction

• RQ1: Coverage) How much does JSAVER cover JavaScript
language features in the latest ECMAScript (ES12, 2021)?

• RQ2: Adaptability) Could JSAVER adapt a new language
features not yet introduced in ES12?

• RQ3: Expressiveness) What kinds of abstract sensitivities
and abstract domains JSAVER can support?

• RQ4: Performance) Could JSAVER analyze JavaScript pro-
grams in a durable time?

TODO

7 RELATEDWORK
TODO

• JavaScript Static Analyzers [9, 10, 14, 27]
• JavaScript Static Analysis Techniques [1, 12, 13, 15, 18–21,
30, 34–36]

• Partial Evaluation? (maybe no - * SE conf.)

7.1 JavaScript Mechanized Speci�cation
A speci�cation is mechanized if and only if it is both formalized
and executable. For JavaScript, researchers have proposed various
mechanized speci�cation in their own approaches. In 2010, Guha
et al. [8] presented �JS, the �rst mechanized speci�cation for a core
calculus of ES3 semantics by desugaring most of syntax into �JS, an
extended standard lambda calculus. Thus, the shape of �JS seman-
tics is quite di�erent with original algorithm steps. In mid 2010s,
researchers tried to de�ne mechanized speci�cation for the ES5
and 5.1 semantics having a similar shape of semantics with original
algorithm steps as much as possible. Bodin et al. [2] de�ned JSCert,
a semantics of a small subset of ES5, using Coq and extracts a refer-
ence interpreter JSRef. Park et al. [22] de�ned an entire semantics
of ES5, KJS, using the K [29], which is a framework for de�ning
language semantics. Fragoso Santos et al. [7] presented JaVerT, a

JavaScript veri�cation toolchain, including a JavaScript semantics
de�ned in their own Intermediate language, JSIL.

However, the fundamental problem of their approaches is that
they are manually de�ned thus they are labor-intensive and error-
prone. Due to such limitation, there is no existing mechanized
speci�cation for full semantics of ES6 or later versions. Therefore,
most of existing JavaScript static analyzers only focus on ES5.1
features or rarely support ES6 features even though already six
more versions from ES7 to ES12 are released since 2015.

Moreover, Park et al. [23] successfully showed that JISET is useful
tomechanically handle recent versions of ECMAScript by extending
JISET to perform N+1-version di�erential testing of both JavaScript
engines and ES11 (2020).

8 CONCLUSION
TODO

REFERENCES
[1] Roberto Amadini, Alexander Jordan, Graeme Gange, François Gauthier, Peter

Schachte, Harald Søndergaard, Peter J Stuckey, and Chenyi Zhang. 2017. Com-
bining String Abstract Domains for JavaScript Analysis: An Evaluation. In Pro-
ceedings of the 23rd International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS). https://doi.org/10.1007/978-3-
662-54577-5_3

[2] Martin Bodin, Arthur Charguéraud, Daniele Filaretti, Philippa Gardner, Sergio
Ma�eis, Daiva Naudziuniene, Alan Schmitt, and Gareth Smith. 2014. A Trusted
Mechanised JavaScript Speci�cation. Proceedings of the 41st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming (POPL) 49, 1 (2014), 87–100.
https://doi.org/10.1145/2535838.2535876

[3] David R. Chase, Mark Wegman, and F. Kenneth Zadeck. 1990. Analysis of
Pointers and Structures. In Proceedings of the ACM SIGPLAN 1990 Conference on
Programming Language Design and Implementation (PLDI) (PLDI ’90). Association
for Computing Machinery, New York, NY, USA, 296–310. https://doi.org/10.
1145/93542.93585

[4] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Uni�ed
Lattice Model for Static Analysis of Programs by Construction or Approximation
of Fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming languages (POPL). https://doi.org/10.1145/512950.
512973

[5] Patrick Cousot and Radhia Cousot. 1977. Static Determination of Dynamic
Properties of Generalized Type Unions. In Proceedings of an ACM Conference on
Language Design for Reliable Software. Association for Computing Machinery,
New York, NY, USA, 77–94. https://doi.org/10.1145/800022.808314

[6] Patrick Cousot and Radhia Cousot. 1992. Abstract Interpretation Frameworks.
Journal of Logic and Computation (JLC) 2, 4 (1992), 511–547. https://doi.org/10.
1093/logcom/2.4.511

[7] José Fragoso Santos, Petar Maksimović, Daiva Naudži = unienė, Thomas Wood,
and Philippa Gardner. 2017. JaVerT: JavaScript Veri�cation Toolchain. Proceedings
of the 44th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
(POPL) 2, POPL (2017), 1–33. https://doi.org/10.1145/3158138

[8] Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. 2010. The essence
of JavaScript. In Proceedings of the 24th European Conference on Object-Oriented
Programming (ECOOP). Springer, 126–150. https://doi.org/10.1007/978-3-642-
14107-2_7

[9] Simon Holm Jensen, Anders Møller, and Peter Thiemann. 2009. Type Analysis for
JavaScript. In Proceedings of the 16th International Symposium on Static Analysis
(SAS). https://doi.org/10.1007/978-3-642-03237-0_17

[10] Vineeth Kashyap, Kyle Dewey, Ethan A. Kuefner, John Wagner, Kevin Gib-
bons, John Sarracino, Ben Wiedermann, and Ben Hardekopf. 2014. JSAI: A
Static Analysis Platform for JavaScript. In Proceedings of the 22nd ACM SIG-
SOFT International Symposium on Foundations of Software Engineering (FSE).
https://doi.org/10.1145/2635868.2635904

[11] Se-Won Kim, Xavier Rival, and Sukyoung Ryu. 2018. A Theoretical Foundation
of Sensitivity in an Abstract Interpretation Framework. ACM Transactions on
Programming Languages and Systems (TOPLAS) 40, 3, Article 13 (2018), 44 pages.
https://doi.org/10.1145/3230624

[12] Yoonseok Ko, Xavier Rival, and Sukyoung Ryu. 2017. Weakly Sensitive Analysis
for Unbounded Iteration over JavaScript Objects. In Proceedings of the 15th Asian
Symposium on Programming Languages and Systems (APLAS). https://doi.org/10.
1007/978-3-319-71237-6_8

7

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

(a) Evaluation algorithm for logical OR assignments.

1 syntax def AssignmentExpression [8]. Evaluation(

2 this , LeftHandSideExpression , AssignmentExpression

3) { /* entry */

4 let lref = (LeftHandSideExpression.Evaluation)

5 let lval = [? (GetValue lref)]

6 let lbool = [! (ToBoolean lval)] /* #1 */

7 if (= lbool true) /* #2 */ return lval else { /* #3 */ }

8 if (&& (IsAnonymousFunctionDefinition AssignmentExpression)

9 (LeftHandSideExpression.IsIdentifierRef)) { /* #4 */

10 let rval = (AssignmentExpression.NamedEvaluation

11 lref.ReferencedName)

12 } else { /* #5 */

13 let rref = (AssignmentExpression.Evaluation)

14 let rval = [? (GetValue rref)]

15 } /* #6 */

16 [? (PutValue lref rval)]

17 return rval

18 } /* exit */

(b) The extracted IRES function.

Figure 1: Evaluation algorithm for the eighth alternative of AssignmentExpression in ES12 and the extracted IRES function.

To alleviate this problem, we propose a novel technique called
meta-level static analysis to automatically derive a JavaScript static
analyzer from any version of ECMAScript. The main idea of the
meta-level static analysis is to indirectly analyze a target language
program by performing static analysis for a language speci�ca-
tion of the target language written in a speci�cation language with
the program as the initial input. Thus, it can signi�cantly reduce
the burden to manually design and implement static analyzers by
automatically deriving them from given language speci�cations.
Moreover, it even guarantees the soundness of derived static analyz-
ers for the target language by constructing sound abstract semantics
for the speci�cation language.

For the expressiveness of a meta-level static analysis, we also
present ways to con�gure analysis sensitivities and abstract do-
mains for a target language. Con�guring them is a typical way
to manage analysis precision and performance. First, we present
the AST sensitivity in a meta-level static analysis to express analy-
sis sensitivities for a target language such as �ow-sensitivity and
k-callsite-sensitivity (Section 4.2). Second, we present a way to
con�gure abstract domains for structures and values in a target
language (Section 4.3).

To actualize our approach for JavaScript, we present JSAVER,
JavaScript Static Analyzers via ECMAScript Representations. First,
we utilize JISET [26] to extract a mechanized speci�cation written
in an intermediate representation, IRES, from a given ECMAScript.
Thus, target and speci�cation languages are JavaScript and IRES,
respectively, for the meta-level static analysis in JSAVER. In addition,
we implement several analysis techniques to improve the perfor-
mance and precision of derived static analyzers (Section 5). We
evaluated JSAVER by deriving a JavaScript static analyzer from the
latest ECMAScript, ES12, and using the o�cial conformance tests,
Test2622.

Our contributions are as follows:
• We propose a novel concept called meta-level static analysis,
which automatically derives a static analyzer for a target

2https://github.com/tc39/test262

let f = Math.floor(Math.random () * 100);

// f: [0, 99]

f ||= x => x;

// f: [1, 99] or { name: �f�, ... }

let x = f.name;

// f: [1, 99] or { name: �f�, ... }, x: undefined or �f�

Figure 2: A running JavaScript program with a logical OR
assignment newly introduced in ES12.

language from its language speci�cation written in a speci�-
cation language.

• We actualize meta-level static analysis for JavaScript as a tool
called JSAVER. It is the �rst tool that automatically derives a
JavaScript static analyzer from any version of ECMAScript.

• We derive a static analyzer from the latest ECMAScript, ES12,
to evaluate JSAVER. The synthesized static analyzer success-
fully analyzes all applicable 18,556 o�cial conformance tests.
Moreover, we demonstrate the adaptability and expressive-
ness of JSAVER with several case studies.

2 BACKGROUND
In this section, we explain the detail of ECMAScript, the o�cial
speci�cation of JavaScript. We then introduce JISET and how it
extracts a mechanized speci�cation from it. Since our work is to
perform meta-level static analysis for JavaScript using extracted
mechanized speci�cations, it is essential to understand how EC-
MAScript describes JavaScript semantics and how JISET extracts a
mechanized speci�cation from it.

For the detailed explanation, we explain a new language feature
introduced in ES12 called logical OR assignments (Figure 1) and
use a JavaScript program (Figure 2) as a running example. It �rst
de�nes a variable f with a random integer from 0 to 99. Then, it
uses a logical OR assignment to update f with an arrow function
whose name is �f� only if f has 0 because 0 represents false but
other integers represent true. Finally, it de�nes a variable x with
f.name and its value is undefined if f has an integer or �f� otherwise.

2

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Automatically Deriving JavaScript Static Analyzers from Language Specifications ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

otherwise, a normal function. An instruction i is a primitive value
assignment, an operation between values, a internal �eld access, a
external �eld access, a record allocations, a function call, or a return
instruction.

States � 2 S = H ⇥ C
Heaps h 2 H = A �n��!R
Contexts c 2 C = L ⇥ (X �n��!V) ⇥ C?
Values � 2 V = Vp] A] T] F
Records r 2 R = (Vstr

�n��!V) ⇥ (Vstr
�n��!V)

States S consists of heaps H and contexts C. A heap h 2 H is a
�nite mapping from addresses to records. Each record allocation
instruction x = {} creates a unique address a 2 A di�erent with
existing addresses. A context c 2 C is a triple of 1) the program
point, 2) a local environment which is a �nite mapping from vari-
ables to values, and 3) an optional calling context. A value � 2 V
is a primitive value, an address, an AST, or a function. A record
r 2 R consists of two �nite mappings from strings to values. The
left mapping represents internal �elds accessible by internal �eld
accesses x = x[x]. On the other hand, the right one represents ex-
ternal �elds, such as variables in JavaScript environment records or
properties in JavaScript objects, and they are accessible by a exter-
nal �eld access x = x[x]ext. We formulate the concrete semantics
of a program P as a transition system ({, S�) where{✓ S⇥ S is a
transition relation between concrete states and S� is a set of initial
states.

For a meta-level static analysis, we de�ne its abstract semantics
in the abstract interpretation framework [4, 6]. Since our analysis
supports view-based analysis sensitivities [11, 24], the abstract
domain is de�ned as a mapping from views to abstract states, D# =
� ! D#, with a view abstraction � : � ! P(S) which represents
the meaning of each view � 2 �. Then, we de�ne abstract states as
follows:

Abstract States � # 2 D# = H# ⇥ C#

Abstract Heaps h# 2 H# = A# �n��!(R# ⇥ R#
ext

)
Abstract Addresses a# 2 A# = L
Abstract Contexts c# 2 C# = X �n��!V#

An abstract heaph# 2 H# is a �nitemapping from abstract addresses
A
to pairs of abstract internal records R# and abstract external

records R#
ext

. Each abstract address a# 2 A# is de�ned with the
allocation-site abstraction [3] that partitions concrete addresses A
based on their allocation sites L. An abstract context c# 2 C# is a
�nite mapping from variables to abstract values. Shapes of abstract
values V#, abstract internal (or external) records R# (or R#

ext
) are

parametric thus we can freely con�gure them.

4.2 Analysis Sensitivities
In a meta-level static analysis, analysis sensitivities of the target
language (JavaScript) are di�erent with them of the speci�cation
language (IRES). For example, we explain what happens during anal-
ysis of the following JavaScript program with the �ow-sensitivity
for IRES:

let x = 1, y = 2;

x + y; // 3

(a) Evaluation algorithm for identi�er references.

1 syntax def IdentifierReference [0]. Evaluation(

2 this , Identifier

3) {

4 return [? (ResolveBinding (Identifier.StringValue))

5 }

(b) The extracted IRES function.

(c) Parsing result of x + y (bottom) and the initial local environment
(top) of the IRES function.

Figure 7: An example of the di�erence between analysis sen-
sitivities of target and speci�cation language.

Figure 7 describes (a) the Evaluation algorithm of identi�er refer-
ences, (b) its extracted IRES function, and (c) the parsing result of
x + y and the initial local environment of the IRES function. Since
the �ow-sensitivity merges states based on the program points,
contexts for the evaluation of both identi�er references x and y are
merged. Thus, the IRES variable Identifier points to their ASTs
as described in Figure 7. Due to the imprecise merge of contexts,
StringValue of Identifier returns �x� and �y�, and ResolveBinding
with them returns both 1 and 2. Finally, the analysis result of x + y

becomes { 2, 3, 4 }.

Flow Sensitivity. To resolve this problem, we present an AST sen-
sitivity for the speci�cation language to represent �ow-sensitivity
of the target language. It is a variant of object sensitivity [17, 33]
which uses abstract addresses A# of receiver objects as views. How-
ever, unlike the object sensitivity, the AST sensitivity utilizes ASTs
T stored in the parameter this only for syntax-directed functions:

� flow(t 2 T) = {� = (_, c) 2 S | syntax-ctxt(c) = c 0 ^ c 0(this) = t}
where syntax-ctxt(c) denotes the top-most context whose function
is syntax-directed and c 0(this) denotes a lookup of the variable
this in the mapping in the context c 0. We de�ne the �ow sensitivity
for the target language using the AST sensitivity and it successfully
divides contexts for the evaluation of JavaScript identi�ers x and y

in the above example using their ASTs even though their program
points are same.

Callsite Sensitivity. We also formally de�ne the callsite sensitiv-
ity [31, 32] for the target language by extending AST sensitivity
for speci�c normal IRES functions. The original callsite sensitivity
discriminates calling contexts based on their top most callsites. In
ECMAScript, all explicit and even implicit JavaScript function calls

5

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Automatically Deriving JavaScript Static Analyzers from Language Specifications ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

function error(e) { throw e; }

const n = ...; // [0, 99]

n |> x => x + 1 // [1, 100]

|> x => x * 2 // [2, 200]

|> x => x + 1n; // TypeError

|> error (42);

of representative techniques to increase the precision of JavaScript
static analysis for loops. It discriminates contexts using a stack of
loop contexts containing loop iterations. We de�ne it under view-
based analysis sensitivity and implement it in JSAVER to increase
the precision of IRES static analysis. Moreover, we also de�ne and
implement the loop sensitivity for JavaScript using the loop sensitiv-
ity for IRES. Therefore, our tool discriminates contexts for explicit
loops, such as for-in or for-of, and even implicit loops, such as the
length property assignment of arrays.

6 EVALUATION
• AdditiveExpression
• Identi�erReference
• Identi�er
• AssignmentExpression
• LeftHandSideExpression
• ArrowFunction

• RQ1: Coverage) How much does JSAVER cover JavaScript
language features in the latest ECMAScript (ES12, 2021)?

• RQ2: Adaptability) Could JSAVER adapt a new language
features not yet introduced in ES12?

• RQ3: Expressiveness) What kinds of abstract sensitivities
and abstract domains JSAVER can support?

• RQ4: Performance) Could JSAVER analyze JavaScript pro-
grams in a durable time?

TODO

7 RELATEDWORK
TODO

• JavaScript Static Analyzers [9, 10, 14, 27]
• JavaScript Static Analysis Techniques [1, 12, 13, 15, 18–21,
30, 34–36]

• Partial Evaluation? (maybe no - * SE conf.)

7.1 JavaScript Mechanized Speci�cation
A speci�cation is mechanized if and only if it is both formalized
and executable. For JavaScript, researchers have proposed various
mechanized speci�cation in their own approaches. In 2010, Guha
et al. [8] presented �JS, the �rst mechanized speci�cation for a core
calculus of ES3 semantics by desugaring most of syntax into �JS, an
extended standard lambda calculus. Thus, the shape of �JS seman-
tics is quite di�erent with original algorithm steps. In mid 2010s,
researchers tried to de�ne mechanized speci�cation for the ES5
and 5.1 semantics having a similar shape of semantics with original
algorithm steps as much as possible. Bodin et al. [2] de�ned JSCert,
a semantics of a small subset of ES5, using Coq and extracts a refer-
ence interpreter JSRef. Park et al. [22] de�ned an entire semantics
of ES5, KJS, using the K [29], which is a framework for de�ning
language semantics. Fragoso Santos et al. [7] presented JaVerT, a

JavaScript veri�cation toolchain, including a JavaScript semantics
de�ned in their own Intermediate language, JSIL.

However, the fundamental problem of their approaches is that
they are manually de�ned thus they are labor-intensive and error-
prone. Due to such limitation, there is no existing mechanized
speci�cation for full semantics of ES6 or later versions. Therefore,
most of existing JavaScript static analyzers only focus on ES5.1
features or rarely support ES6 features even though already six
more versions from ES7 to ES12 are released since 2015.

Moreover, Park et al. [23] successfully showed that JISET is useful
tomechanically handle recent versions of ECMAScript by extending
JISET to perform N+1-version di�erential testing of both JavaScript
engines and ES11 (2020).

8 CONCLUSION
TODO

REFERENCES
[1] Roberto Amadini, Alexander Jordan, Graeme Gange, François Gauthier, Peter

Schachte, Harald Søndergaard, Peter J Stuckey, and Chenyi Zhang. 2017. Com-
bining String Abstract Domains for JavaScript Analysis: An Evaluation. In Pro-
ceedings of the 23rd International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS). https://doi.org/10.1007/978-3-
662-54577-5_3

[2] Martin Bodin, Arthur Charguéraud, Daniele Filaretti, Philippa Gardner, Sergio
Ma�eis, Daiva Naudziuniene, Alan Schmitt, and Gareth Smith. 2014. A Trusted
Mechanised JavaScript Speci�cation. Proceedings of the 41st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming (POPL) 49, 1 (2014), 87–100.
https://doi.org/10.1145/2535838.2535876

[3] David R. Chase, Mark Wegman, and F. Kenneth Zadeck. 1990. Analysis of
Pointers and Structures. In Proceedings of the ACM SIGPLAN 1990 Conference on
Programming Language Design and Implementation (PLDI) (PLDI ’90). Association
for Computing Machinery, New York, NY, USA, 296–310. https://doi.org/10.
1145/93542.93585

[4] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Uni�ed
Lattice Model for Static Analysis of Programs by Construction or Approximation
of Fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming languages (POPL). https://doi.org/10.1145/512950.
512973

[5] Patrick Cousot and Radhia Cousot. 1977. Static Determination of Dynamic
Properties of Generalized Type Unions. In Proceedings of an ACM Conference on
Language Design for Reliable Software. Association for Computing Machinery,
New York, NY, USA, 77–94. https://doi.org/10.1145/800022.808314

[6] Patrick Cousot and Radhia Cousot. 1992. Abstract Interpretation Frameworks.
Journal of Logic and Computation (JLC) 2, 4 (1992), 511–547. https://doi.org/10.
1093/logcom/2.4.511

[7] José Fragoso Santos, Petar Maksimović, Daiva Naudži = unienė, Thomas Wood,
and Philippa Gardner. 2017. JaVerT: JavaScript Veri�cation Toolchain. Proceedings
of the 44th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
(POPL) 2, POPL (2017), 1–33. https://doi.org/10.1145/3158138

[8] Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. 2010. The essence
of JavaScript. In Proceedings of the 24th European Conference on Object-Oriented
Programming (ECOOP). Springer, 126–150. https://doi.org/10.1007/978-3-642-
14107-2_7

[9] Simon Holm Jensen, Anders Møller, and Peter Thiemann. 2009. Type Analysis for
JavaScript. In Proceedings of the 16th International Symposium on Static Analysis
(SAS). https://doi.org/10.1007/978-3-642-03237-0_17

[10] Vineeth Kashyap, Kyle Dewey, Ethan A. Kuefner, John Wagner, Kevin Gib-
bons, John Sarracino, Ben Wiedermann, and Ben Hardekopf. 2014. JSAI: A
Static Analysis Platform for JavaScript. In Proceedings of the 22nd ACM SIG-
SOFT International Symposium on Foundations of Software Engineering (FSE).
https://doi.org/10.1145/2635868.2635904

[11] Se-Won Kim, Xavier Rival, and Sukyoung Ryu. 2018. A Theoretical Foundation
of Sensitivity in an Abstract Interpretation Framework. ACM Transactions on
Programming Languages and Systems (TOPLAS) 40, 3, Article 13 (2018), 44 pages.
https://doi.org/10.1145/3230624

[12] Yoonseok Ko, Xavier Rival, and Sukyoung Ryu. 2017. Weakly Sensitive Analysis
for Unbounded Iteration over JavaScript Objects. In Proceedings of the 15th Asian
Symposium on Programming Languages and Systems (APLAS). https://doi.org/10.
1007/978-3-319-71237-6_8

7

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

(a) Evaluation algorithm for identi�er references

1 syntax def IdentifierReference [0]. Evaluation(
2 this , Identifier
3) {
4 return [? (ResolveBinding (Identifier.StringValue))]
5 }

(b) Extracted IRES function for identi�er references

(c) Result of x + y via a mechanized speci�cation

Figure 7: Analysis sensitivities of the target language
(JavaScript) and the speci�cation language (IRES)

divides contexts for the evaluation of JavaScript identi�ers x and y

in the above example using their ASTs even though their program
points in IRES are the same.

Callsite Sensitivity. We also formally de�ne the callsite sensitiv-
ity [37, 38] for the target language by extending the AST sensitivity
for speci�c normal IRES functions. The original callsite sensitivity
discriminates calling contexts using their top most callsites. In EC-
MAScript, all explicit and even implicit JavaScript function calls
invoke normal IRES functions Call and Construct. Thus, we de�ne
the callsite sensitivity for the target language by extending the AST
sensitivity with two normal IRES functions:

� cfa(t 2 T) = {� = (_, c) 2 S |
syntax-ctxt � js-call-ctxt(c) = c 0 ^ c 0(this) = t}

where js-call-ctxt(c) denotes the top-most context whose function is
Call or Construct and f �� denotes a function composition. Moreover,
we extend it to the k-callsite sensitivity by recursively taking ASTs
representing callsites of the target language:

�k -cfa(t 2 Tk) = {� = (_, c) 2 S |
t = [t1, · · · , tn] ^ n  k^
(ö(syntax-ctxt � js-call-ctxt)n+1(c) _ n = k)^
81  i  n.
((syntax-ctxt � js-call-ctxt)i (c) = ci ^ ci (this) = ti)}

Using this callsite sensitivity for the target language, the meta-
level static analyzer could discriminate not only explicit JavaScript
function calls (e.g. f()) but also implicit JavaScript function calls,
including getters/setters, user-de�ned implicit conversions, and
implicit function calls in built-in libraries.

5 IMPLEMENTATION
We developed a prototype implementation called JSAVER, which per-
forms a meta-level static analysis for JavaScript with ECMAScript.
The tool is an extension of JISET4 and it is an open-source project5.
In this section, we describe the challenges in implementing a meta-
level static analyzer and present our solutions for them.

Layered Abstract States. Unlike traditional JavaScript static anal-
yses, a meta-level static analysis for JavaScript should track analysis
results not only for the target language JavaScript but also for the
speci�cation language IRES. Thus, the sizes of abstract states are
much larger than those of the other JavaScript static analyzers. We
implement layered abstract states to maintain only updated analysis
results compared to the initial abstract state. It signi�cantly reduces
the time to perform the join (t), meet (u), and partial order (v)
operations by considering only the updated parts in abstract states.

Closures and Continuations. The speci�cation language IRES for
ECMAScript contains more complex language features than its
simpli�ed version presented in Section 4.1, such as symbols, lists,
and list operations. Among them, the two most complex features
are closures with captured variables and �rst-class continuations be-
cause they introduce new kinds of control �ows. ECMAScript uses
closures to de�ne implicit and explicit JavaScript iterators and uses
continuations for iterators, generators, and asynchronous features
such as async, await, and the Proxy object. Therefore, we de�ne and
implement abstract closures and abstract continuations; an abstract
closure is a pair of a function and a mapping from captured vari-
ables to their abstract values, and an abstract continuation consists
of a program point, a view for analysis sensitivity, parameters, and
an abstract context.

Abstract Counting. Properties of JavaScript objects could be dy-
namically added, modi�ed, or deleted and even accessible by �rst-
class property names. Thus, in JavaScript static analysis, performing
strong updates rather than weak updates for object properties as
many as possible is important for precise analysis results. Since
records of IRES are even more dynamic than JavaScript objects, it is
also important to increase analysis precision. Therefore, we imple-
ment abstract counting [19] to increase chances to perform strong
updates for �elds of records. It checks how many times records in
the same allocation site have been allocated and performs strong
updates only for singleton records with singleton �eld values.

Loop Sensitivity. Similar to function calls, loops are also typical
merging points in static analysis. A loop sensitivity [24] is one of the
representative techniques to increase the precision of JavaScript
static analysis for loops. It discriminates contexts using a stack
of loop contexts containing loop iterations. We de�ne it under
the view-based analysis sensitivity and implement it in JSAVER to
increase the precision of IRES static analysis. Moreover, we also
de�ne and implement the loop sensitivity for JavaScript using the
loop sensitivity for IRES. Therefore, JSAVER discriminates contexts
for explicit loops such as for-in and for-of and even implicit loops
such as the assignment of arguments or the length property of
arrays.

4https://github.com/kaist-plrg/jiset
5The URL of the tool is anonymized due to a double-blind review process.

6

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

(a) Evaluation algorithm for identi�er references

1 syntax def IdentifierReference [0]. Evaluation(
2 this , Identifier
3) {
4 return [? (ResolveBinding (Identifier.StringValue))]
5 }

(b) Extracted IRES function for identi�er references

(c) Result of x + y via a mechanized speci�cation

Figure 7: Analysis sensitivities of the target language
(JavaScript) and the speci�cation language (IRES)

divides contexts for the evaluation of JavaScript identi�ers x and y

in the above example using their ASTs even though their program
points in IRES are the same.

Callsite Sensitivity. We also formally de�ne the callsite sensitiv-
ity [37, 38] for the target language by extending the AST sensitivity
for speci�c normal IRES functions. The original callsite sensitivity
discriminates calling contexts using their top most callsites. In EC-
MAScript, all explicit and even implicit JavaScript function calls
invoke normal IRES functions Call and Construct. Thus, we de�ne
the callsite sensitivity for the target language by extending the AST
sensitivity with two normal IRES functions:

� cfa(t 2 T) = {� = (_, c) 2 S |
syntax-ctxt � js-call-ctxt(c) = c 0 ^ c 0(this) = t}

where js-call-ctxt(c) denotes the top-most context whose function is
Call or Construct and f �� denotes a function composition. Moreover,
we extend it to the k-callsite sensitivity by recursively taking ASTs
representing callsites of the target language:

�k -cfa(t 2 Tk) = {� = (_, c) 2 S |
t = [t1, · · · , tn] ^ n  k^
(ö(syntax-ctxt � js-call-ctxt)n+1(c) _ n = k)^
81  i  n.
((syntax-ctxt � js-call-ctxt)i (c) = ci ^ ci (this) = ti)}

Using this callsite sensitivity for the target language, the meta-
level static analyzer could discriminate not only explicit JavaScript
function calls (e.g. f()) but also implicit JavaScript function calls,
including getters/setters, user-de�ned implicit conversions, and
implicit function calls in built-in libraries.

5 IMPLEMENTATION
We developed a prototype implementation called JSAVER, which per-
forms a meta-level static analysis for JavaScript with ECMAScript.
The tool is an extension of JISET4 and it is an open-source project5.
In this section, we describe the challenges in implementing a meta-
level static analyzer and present our solutions for them.

Layered Abstract States. Unlike traditional JavaScript static anal-
yses, a meta-level static analysis for JavaScript should track analysis
results not only for the target language JavaScript but also for the
speci�cation language IRES. Thus, the sizes of abstract states are
much larger than those of the other JavaScript static analyzers. We
implement layered abstract states to maintain only updated analysis
results compared to the initial abstract state. It signi�cantly reduces
the time to perform the join (t), meet (u), and partial order (v)
operations by considering only the updated parts in abstract states.

Closures and Continuations. The speci�cation language IRES for
ECMAScript contains more complex language features than its
simpli�ed version presented in Section 4.1, such as symbols, lists,
and list operations. Among them, the two most complex features
are closures with captured variables and �rst-class continuations be-
cause they introduce new kinds of control �ows. ECMAScript uses
closures to de�ne implicit and explicit JavaScript iterators and uses
continuations for iterators, generators, and asynchronous features
such as async, await, and the Proxy object. Therefore, we de�ne and
implement abstract closures and abstract continuations; an abstract
closure is a pair of a function and a mapping from captured vari-
ables to their abstract values, and an abstract continuation consists
of a program point, a view for analysis sensitivity, parameters, and
an abstract context.

Abstract Counting. Properties of JavaScript objects could be dy-
namically added, modi�ed, or deleted and even accessible by �rst-
class property names. Thus, in JavaScript static analysis, performing
strong updates rather than weak updates for object properties as
many as possible is important for precise analysis results. Since
records of IRES are even more dynamic than JavaScript objects, it is
also important to increase analysis precision. Therefore, we imple-
ment abstract counting [19] to increase chances to perform strong
updates for �elds of records. It checks how many times records in
the same allocation site have been allocated and performs strong
updates only for singleton records with singleton �eld values.

Loop Sensitivity. Similar to function calls, loops are also typical
merging points in static analysis. A loop sensitivity [24] is one of the
representative techniques to increase the precision of JavaScript
static analysis for loops. It discriminates contexts using a stack
of loop contexts containing loop iterations. We de�ne it under
the view-based analysis sensitivity and implement it in JSAVER to
increase the precision of IRES static analysis. Moreover, we also
de�ne and implement the loop sensitivity for JavaScript using the
loop sensitivity for IRES. Therefore, JSAVER discriminates contexts
for explicit loops such as for-in and for-of and even implicit loops
such as the assignment of arguments or the length property of
arrays.

4https://github.com/kaist-plrg/jiset
5The URL of the tool is anonymized due to a double-blind review process.

6

parsex ||= y
JS Program P1

/ 5748

Meta-Level Static Analysis

IRES

JavaScript

· · ·<latexit sha1_base64="Kef69hW4e/raBfVz+DaK6/NBFbQ=">AAACHXicbVDJSgNBEK1xjXFL9OhlMAiewowKeozLwYsQITFCJkhPp2Ka9Cx01whxmI/wqge/xpt4Ff/GnnEObg8aHu9VdVU9P5ZCk+N8WDOzc/MLi5Wl6vLK6tp6rb5xpaNEcezySEbq2mcapQixS4IkXscKWeBL7PmT09zv3aHSIgo7NI1xELDbUIwEZ2SknseHEenqTa3hNJ0C9l/ilqQBJdo3dQu8YcSTAEPikmndd52YBilTJLjErOolGmPGJ+wW+4aGLEA9SIt9M3vHKEN7FCnzQrIL9XtHygKtp4FvKgNGY/3by8X/vH5Co6NBKsI4IQz516BRIm2K7Px4eygUcpJTQxhXwuxq8zFTjJOJqOqdoblF4YX591jGY+YjpV4+Jb7nWdpxs7QgQZYKykxm7u+E/pKrvaa739y7PGi0Tsr0KrAF27ALLhxCC86hDV3gMIEHeIQn69l6sV6tt6/SGavs2YQfsN4/AabGomA=</latexit> · · ·<latexit sha1_base64="Kef69hW4e/raBfVz+DaK6/NBFbQ=">AAACHXicbVDJSgNBEK1xjXFL9OhlMAiewowKeozLwYsQITFCJkhPp2Ka9Cx01whxmI/wqge/xpt4Ff/GnnEObg8aHu9VdVU9P5ZCk+N8WDOzc/MLi5Wl6vLK6tp6rb5xpaNEcezySEbq2mcapQixS4IkXscKWeBL7PmT09zv3aHSIgo7NI1xELDbUIwEZ2SknseHEenqTa3hNJ0C9l/ilqQBJdo3dQu8YcSTAEPikmndd52YBilTJLjErOolGmPGJ+wW+4aGLEA9SIt9M3vHKEN7FCnzQrIL9XtHygKtp4FvKgNGY/3by8X/vH5Co6NBKsI4IQz516BRIm2K7Px4eygUcpJTQxhXwuxq8zFTjJOJqOqdoblF4YX591jGY+YjpV4+Jb7nWdpxs7QgQZYKykxm7u+E/pKrvaa739y7PGi0Tsr0KrAF27ALLhxCC86hDV3gMIEHeIQn69l6sV6tt6/SGavs2YQfsN4/AabGomA=</latexit>

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Automatically Deriving JavaScript Static Analyzers from Language Specifications ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

function error(e) { throw e; }

const n = ...; // [0, 99]

n |> x => x + 1 // [1, 100]

|> x => x * 2 // [2, 200]

|> x => x + 1n; // TypeError

|> error (42);

of representative techniques to increase the precision of JavaScript
static analysis for loops. It discriminates contexts using a stack of
loop contexts containing loop iterations. We de�ne it under view-
based analysis sensitivity and implement it in JSAVER to increase
the precision of IRES static analysis. Moreover, we also de�ne and
implement the loop sensitivity for JavaScript using the loop sensitiv-
ity for IRES. Therefore, our tool discriminates contexts for explicit
loops, such as for-in or for-of, and even implicit loops, such as the
length property assignment of arrays.

6 EVALUATION
• AdditiveExpression
• Identi�erReference
• Identi�er
• AssignmentExpression
• LeftHandSideExpression
• ArrowFunction

• RQ1: Coverage) How much does JSAVER cover JavaScript
language features in the latest ECMAScript (ES12, 2021)?

• RQ2: Adaptability) Could JSAVER adapt a new language
features not yet introduced in ES12?

• RQ3: Expressiveness) What kinds of abstract sensitivities
and abstract domains JSAVER can support?

• RQ4: Performance) Could JSAVER analyze JavaScript pro-
grams in a durable time?

TODO

7 RELATEDWORK
TODO

• JavaScript Static Analyzers [9, 10, 14, 27]
• JavaScript Static Analysis Techniques [1, 12, 13, 15, 18–21,
30, 34–36]

• Partial Evaluation? (maybe no - * SE conf.)

7.1 JavaScript Mechanized Speci�cation
A speci�cation is mechanized if and only if it is both formalized
and executable. For JavaScript, researchers have proposed various
mechanized speci�cation in their own approaches. In 2010, Guha
et al. [8] presented �JS, the �rst mechanized speci�cation for a core
calculus of ES3 semantics by desugaring most of syntax into �JS, an
extended standard lambda calculus. Thus, the shape of �JS seman-
tics is quite di�erent with original algorithm steps. In mid 2010s,
researchers tried to de�ne mechanized speci�cation for the ES5
and 5.1 semantics having a similar shape of semantics with original
algorithm steps as much as possible. Bodin et al. [2] de�ned JSCert,
a semantics of a small subset of ES5, using Coq and extracts a refer-
ence interpreter JSRef. Park et al. [22] de�ned an entire semantics
of ES5, KJS, using the K [29], which is a framework for de�ning
language semantics. Fragoso Santos et al. [7] presented JaVerT, a

JavaScript veri�cation toolchain, including a JavaScript semantics
de�ned in their own Intermediate language, JSIL.

However, the fundamental problem of their approaches is that
they are manually de�ned thus they are labor-intensive and error-
prone. Due to such limitation, there is no existing mechanized
speci�cation for full semantics of ES6 or later versions. Therefore,
most of existing JavaScript static analyzers only focus on ES5.1
features or rarely support ES6 features even though already six
more versions from ES7 to ES12 are released since 2015.

Moreover, Park et al. [23] successfully showed that JISET is useful
tomechanically handle recent versions of ECMAScript by extending
JISET to perform N+1-version di�erential testing of both JavaScript
engines and ES11 (2020).

8 CONCLUSION
TODO

REFERENCES
[1] Roberto Amadini, Alexander Jordan, Graeme Gange, François Gauthier, Peter

Schachte, Harald Søndergaard, Peter J Stuckey, and Chenyi Zhang. 2017. Com-
bining String Abstract Domains for JavaScript Analysis: An Evaluation. In Pro-
ceedings of the 23rd International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS). https://doi.org/10.1007/978-3-
662-54577-5_3

[2] Martin Bodin, Arthur Charguéraud, Daniele Filaretti, Philippa Gardner, Sergio
Ma�eis, Daiva Naudziuniene, Alan Schmitt, and Gareth Smith. 2014. A Trusted
Mechanised JavaScript Speci�cation. Proceedings of the 41st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming (POPL) 49, 1 (2014), 87–100.
https://doi.org/10.1145/2535838.2535876

[3] David R. Chase, Mark Wegman, and F. Kenneth Zadeck. 1990. Analysis of
Pointers and Structures. In Proceedings of the ACM SIGPLAN 1990 Conference on
Programming Language Design and Implementation (PLDI) (PLDI ’90). Association
for Computing Machinery, New York, NY, USA, 296–310. https://doi.org/10.
1145/93542.93585

[4] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Uni�ed
Lattice Model for Static Analysis of Programs by Construction or Approximation
of Fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming languages (POPL). https://doi.org/10.1145/512950.
512973

[5] Patrick Cousot and Radhia Cousot. 1977. Static Determination of Dynamic
Properties of Generalized Type Unions. In Proceedings of an ACM Conference on
Language Design for Reliable Software. Association for Computing Machinery,
New York, NY, USA, 77–94. https://doi.org/10.1145/800022.808314

[6] Patrick Cousot and Radhia Cousot. 1992. Abstract Interpretation Frameworks.
Journal of Logic and Computation (JLC) 2, 4 (1992), 511–547. https://doi.org/10.
1093/logcom/2.4.511

[7] José Fragoso Santos, Petar Maksimović, Daiva Naudži = unienė, Thomas Wood,
and Philippa Gardner. 2017. JaVerT: JavaScript Veri�cation Toolchain. Proceedings
of the 44th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
(POPL) 2, POPL (2017), 1–33. https://doi.org/10.1145/3158138

[8] Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. 2010. The essence
of JavaScript. In Proceedings of the 24th European Conference on Object-Oriented
Programming (ECOOP). Springer, 126–150. https://doi.org/10.1007/978-3-642-
14107-2_7

[9] Simon Holm Jensen, Anders Møller, and Peter Thiemann. 2009. Type Analysis for
JavaScript. In Proceedings of the 16th International Symposium on Static Analysis
(SAS). https://doi.org/10.1007/978-3-642-03237-0_17

[10] Vineeth Kashyap, Kyle Dewey, Ethan A. Kuefner, John Wagner, Kevin Gib-
bons, John Sarracino, Ben Wiedermann, and Ben Hardekopf. 2014. JSAI: A
Static Analysis Platform for JavaScript. In Proceedings of the 22nd ACM SIG-
SOFT International Symposium on Foundations of Software Engineering (FSE).
https://doi.org/10.1145/2635868.2635904

[11] Se-Won Kim, Xavier Rival, and Sukyoung Ryu. 2018. A Theoretical Foundation
of Sensitivity in an Abstract Interpretation Framework. ACM Transactions on
Programming Languages and Systems (TOPLAS) 40, 3, Article 13 (2018), 44 pages.
https://doi.org/10.1145/3230624

[12] Yoonseok Ko, Xavier Rival, and Sukyoung Ryu. 2017. Weakly Sensitive Analysis
for Unbounded Iteration over JavaScript Objects. In Proceedings of the 15th Asian
Symposium on Programming Languages and Systems (APLAS). https://doi.org/10.
1007/978-3-319-71237-6_8

7

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

(a) Evaluation algorithm for logical OR assignments.

1 syntax def AssignmentExpression [8]. Evaluation(

2 this , LeftHandSideExpression , AssignmentExpression

3) { /* entry */

4 let lref = (LeftHandSideExpression.Evaluation)

5 let lval = [? (GetValue lref)]

6 let lbool = [! (ToBoolean lval)] /* #1 */

7 if (= lbool true) /* #2 */ return lval else { /* #3 */ }

8 if (&& (IsAnonymousFunctionDefinition AssignmentExpression)

9 (LeftHandSideExpression.IsIdentifierRef)) { /* #4 */

10 let rval = (AssignmentExpression.NamedEvaluation

11 lref.ReferencedName)

12 } else { /* #5 */

13 let rref = (AssignmentExpression.Evaluation)

14 let rval = [? (GetValue rref)]

15 } /* #6 */

16 [? (PutValue lref rval)]

17 return rval

18 } /* exit */

(b) The extracted IRES function.

Figure 1: Evaluation algorithm for the eighth alternative of AssignmentExpression in ES12 and the extracted IRES function.

To alleviate this problem, we propose a novel technique called
meta-level static analysis to automatically derive a JavaScript static
analyzer from any version of ECMAScript. The main idea of the
meta-level static analysis is to indirectly analyze a target language
program by performing static analysis for a language speci�ca-
tion of the target language written in a speci�cation language with
the program as the initial input. Thus, it can signi�cantly reduce
the burden to manually design and implement static analyzers by
automatically deriving them from given language speci�cations.
Moreover, it even guarantees the soundness of derived static analyz-
ers for the target language by constructing sound abstract semantics
for the speci�cation language.

For the expressiveness of a meta-level static analysis, we also
present ways to con�gure analysis sensitivities and abstract do-
mains for a target language. Con�guring them is a typical way
to manage analysis precision and performance. First, we present
the AST sensitivity in a meta-level static analysis to express analy-
sis sensitivities for a target language such as �ow-sensitivity and
k-callsite-sensitivity (Section 4.2). Second, we present a way to
con�gure abstract domains for structures and values in a target
language (Section 4.3).

To actualize our approach for JavaScript, we present JSAVER,
JavaScript Static Analyzers via ECMAScript Representations. First,
we utilize JISET [26] to extract a mechanized speci�cation written
in an intermediate representation, IRES, from a given ECMAScript.
Thus, target and speci�cation languages are JavaScript and IRES,
respectively, for the meta-level static analysis in JSAVER. In addition,
we implement several analysis techniques to improve the perfor-
mance and precision of derived static analyzers (Section 5). We
evaluated JSAVER by deriving a JavaScript static analyzer from the
latest ECMAScript, ES12, and using the o�cial conformance tests,
Test2622.

Our contributions are as follows:
• We propose a novel concept called meta-level static analysis,
which automatically derives a static analyzer for a target

2https://github.com/tc39/test262

let f = Math.floor(Math.random () * 100);

// f: [0, 99]

f ||= x => x;

// f: [1, 99] or { name: �f�, ... }

let x = f.name;

// f: [1, 99] or { name: �f�, ... }, x: undefined or �f�

Figure 2: A running JavaScript program with a logical OR
assignment newly introduced in ES12.

language from its language speci�cation written in a speci�-
cation language.

• We actualize meta-level static analysis for JavaScript as a tool
called JSAVER. It is the �rst tool that automatically derives a
JavaScript static analyzer from any version of ECMAScript.

• We derive a static analyzer from the latest ECMAScript, ES12,
to evaluate JSAVER. The synthesized static analyzer success-
fully analyzes all applicable 18,556 o�cial conformance tests.
Moreover, we demonstrate the adaptability and expressive-
ness of JSAVER with several case studies.

2 BACKGROUND
In this section, we explain the detail of ECMAScript, the o�cial
speci�cation of JavaScript. We then introduce JISET and how it
extracts a mechanized speci�cation from it. Since our work is to
perform meta-level static analysis for JavaScript using extracted
mechanized speci�cations, it is essential to understand how EC-
MAScript describes JavaScript semantics and how JISET extracts a
mechanized speci�cation from it.

For the detailed explanation, we explain a new language feature
introduced in ES12 called logical OR assignments (Figure 1) and
use a JavaScript program (Figure 2) as a running example. It �rst
de�nes a variable f with a random integer from 0 to 99. Then, it
uses a logical OR assignment to update f with an arrow function
whose name is �f� only if f has 0 because 0 represents false but
other integers represent true. Finally, it de�nes a variable x with
f.name and its value is undefined if f has an integer or �f� otherwise.

2

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Automatically Deriving JavaScript Static Analyzers from Language Specifications ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

function error(e) { throw e; }

const n = ...; // [0, 99]

n |> x => x + 1 // [1, 100]

|> x => x * 2 // [2, 200]

|> x => x + 1n; // TypeError

|> error (42);

of representative techniques to increase the precision of JavaScript
static analysis for loops. It discriminates contexts using a stack of
loop contexts containing loop iterations. We de�ne it under view-
based analysis sensitivity and implement it in JSAVER to increase
the precision of IRES static analysis. Moreover, we also de�ne and
implement the loop sensitivity for JavaScript using the loop sensitiv-
ity for IRES. Therefore, our tool discriminates contexts for explicit
loops, such as for-in or for-of, and even implicit loops, such as the
length property assignment of arrays.

6 EVALUATION
• AdditiveExpression
• Identi�erReference
• Identi�er
• AssignmentExpression
• LeftHandSideExpression
• ArrowFunction

• RQ1: Coverage) How much does JSAVER cover JavaScript
language features in the latest ECMAScript (ES12, 2021)?

• RQ2: Adaptability) Could JSAVER adapt a new language
features not yet introduced in ES12?

• RQ3: Expressiveness) What kinds of abstract sensitivities
and abstract domains JSAVER can support?

• RQ4: Performance) Could JSAVER analyze JavaScript pro-
grams in a durable time?

TODO

7 RELATEDWORK
TODO

• JavaScript Static Analyzers [9, 10, 14, 27]
• JavaScript Static Analysis Techniques [1, 12, 13, 15, 18–21,
30, 34–36]

• Partial Evaluation? (maybe no - * SE conf.)

7.1 JavaScript Mechanized Speci�cation
A speci�cation is mechanized if and only if it is both formalized
and executable. For JavaScript, researchers have proposed various
mechanized speci�cation in their own approaches. In 2010, Guha
et al. [8] presented �JS, the �rst mechanized speci�cation for a core
calculus of ES3 semantics by desugaring most of syntax into �JS, an
extended standard lambda calculus. Thus, the shape of �JS seman-
tics is quite di�erent with original algorithm steps. In mid 2010s,
researchers tried to de�ne mechanized speci�cation for the ES5
and 5.1 semantics having a similar shape of semantics with original
algorithm steps as much as possible. Bodin et al. [2] de�ned JSCert,
a semantics of a small subset of ES5, using Coq and extracts a refer-
ence interpreter JSRef. Park et al. [22] de�ned an entire semantics
of ES5, KJS, using the K [29], which is a framework for de�ning
language semantics. Fragoso Santos et al. [7] presented JaVerT, a

JavaScript veri�cation toolchain, including a JavaScript semantics
de�ned in their own Intermediate language, JSIL.

However, the fundamental problem of their approaches is that
they are manually de�ned thus they are labor-intensive and error-
prone. Due to such limitation, there is no existing mechanized
speci�cation for full semantics of ES6 or later versions. Therefore,
most of existing JavaScript static analyzers only focus on ES5.1
features or rarely support ES6 features even though already six
more versions from ES7 to ES12 are released since 2015.

Moreover, Park et al. [23] successfully showed that JISET is useful
tomechanically handle recent versions of ECMAScript by extending
JISET to perform N+1-version di�erential testing of both JavaScript
engines and ES11 (2020).

8 CONCLUSION
TODO

REFERENCES
[1] Roberto Amadini, Alexander Jordan, Graeme Gange, François Gauthier, Peter

Schachte, Harald Søndergaard, Peter J Stuckey, and Chenyi Zhang. 2017. Com-
bining String Abstract Domains for JavaScript Analysis: An Evaluation. In Pro-
ceedings of the 23rd International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS). https://doi.org/10.1007/978-3-
662-54577-5_3

[2] Martin Bodin, Arthur Charguéraud, Daniele Filaretti, Philippa Gardner, Sergio
Ma�eis, Daiva Naudziuniene, Alan Schmitt, and Gareth Smith. 2014. A Trusted
Mechanised JavaScript Speci�cation. Proceedings of the 41st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming (POPL) 49, 1 (2014), 87–100.
https://doi.org/10.1145/2535838.2535876

[3] David R. Chase, Mark Wegman, and F. Kenneth Zadeck. 1990. Analysis of
Pointers and Structures. In Proceedings of the ACM SIGPLAN 1990 Conference on
Programming Language Design and Implementation (PLDI) (PLDI ’90). Association
for Computing Machinery, New York, NY, USA, 296–310. https://doi.org/10.
1145/93542.93585

[4] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Uni�ed
Lattice Model for Static Analysis of Programs by Construction or Approximation
of Fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming languages (POPL). https://doi.org/10.1145/512950.
512973

[5] Patrick Cousot and Radhia Cousot. 1977. Static Determination of Dynamic
Properties of Generalized Type Unions. In Proceedings of an ACM Conference on
Language Design for Reliable Software. Association for Computing Machinery,
New York, NY, USA, 77–94. https://doi.org/10.1145/800022.808314

[6] Patrick Cousot and Radhia Cousot. 1992. Abstract Interpretation Frameworks.
Journal of Logic and Computation (JLC) 2, 4 (1992), 511–547. https://doi.org/10.
1093/logcom/2.4.511

[7] José Fragoso Santos, Petar Maksimović, Daiva Naudži = unienė, Thomas Wood,
and Philippa Gardner. 2017. JaVerT: JavaScript Veri�cation Toolchain. Proceedings
of the 44th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
(POPL) 2, POPL (2017), 1–33. https://doi.org/10.1145/3158138

[8] Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. 2010. The essence
of JavaScript. In Proceedings of the 24th European Conference on Object-Oriented
Programming (ECOOP). Springer, 126–150. https://doi.org/10.1007/978-3-642-
14107-2_7

[9] Simon Holm Jensen, Anders Møller, and Peter Thiemann. 2009. Type Analysis for
JavaScript. In Proceedings of the 16th International Symposium on Static Analysis
(SAS). https://doi.org/10.1007/978-3-642-03237-0_17

[10] Vineeth Kashyap, Kyle Dewey, Ethan A. Kuefner, John Wagner, Kevin Gib-
bons, John Sarracino, Ben Wiedermann, and Ben Hardekopf. 2014. JSAI: A
Static Analysis Platform for JavaScript. In Proceedings of the 22nd ACM SIG-
SOFT International Symposium on Foundations of Software Engineering (FSE).
https://doi.org/10.1145/2635868.2635904

[11] Se-Won Kim, Xavier Rival, and Sukyoung Ryu. 2018. A Theoretical Foundation
of Sensitivity in an Abstract Interpretation Framework. ACM Transactions on
Programming Languages and Systems (TOPLAS) 40, 3, Article 13 (2018), 44 pages.
https://doi.org/10.1145/3230624

[12] Yoonseok Ko, Xavier Rival, and Sukyoung Ryu. 2017. Weakly Sensitive Analysis
for Unbounded Iteration over JavaScript Objects. In Proceedings of the 15th Asian
Symposium on Programming Languages and Systems (APLAS). https://doi.org/10.
1007/978-3-319-71237-6_8

7

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Automatically Deriving JavaScript Static Analyzers from Language Specifications ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

function error(e) { throw e; }

const n = ...; // [0, 99]

n |> x => x + 1 // [1, 100]

|> x => x * 2 // [2, 200]

|> x => x + 1n; // TypeError

|> error (42);

of representative techniques to increase the precision of JavaScript
static analysis for loops. It discriminates contexts using a stack of
loop contexts containing loop iterations. We de�ne it under view-
based analysis sensitivity and implement it in JSAVER to increase
the precision of IRES static analysis. Moreover, we also de�ne and
implement the loop sensitivity for JavaScript using the loop sensitiv-
ity for IRES. Therefore, our tool discriminates contexts for explicit
loops, such as for-in or for-of, and even implicit loops, such as the
length property assignment of arrays.

6 EVALUATION
• AdditiveExpression
• Identi�erReference
• Identi�er
• AssignmentExpression
• LeftHandSideExpression
• ArrowFunction

• RQ1: Coverage) How much does JSAVER cover JavaScript
language features in the latest ECMAScript (ES12, 2021)?

• RQ2: Adaptability) Could JSAVER adapt a new language
features not yet introduced in ES12?

• RQ3: Expressiveness) What kinds of abstract sensitivities
and abstract domains JSAVER can support?

• RQ4: Performance) Could JSAVER analyze JavaScript pro-
grams in a durable time?

TODO

7 RELATEDWORK
TODO

• JavaScript Static Analyzers [9, 10, 14, 27]
• JavaScript Static Analysis Techniques [1, 12, 13, 15, 18–21,
30, 34–36]

• Partial Evaluation? (maybe no - * SE conf.)

7.1 JavaScript Mechanized Speci�cation
A speci�cation is mechanized if and only if it is both formalized
and executable. For JavaScript, researchers have proposed various
mechanized speci�cation in their own approaches. In 2010, Guha
et al. [8] presented �JS, the �rst mechanized speci�cation for a core
calculus of ES3 semantics by desugaring most of syntax into �JS, an
extended standard lambda calculus. Thus, the shape of �JS seman-
tics is quite di�erent with original algorithm steps. In mid 2010s,
researchers tried to de�ne mechanized speci�cation for the ES5
and 5.1 semantics having a similar shape of semantics with original
algorithm steps as much as possible. Bodin et al. [2] de�ned JSCert,
a semantics of a small subset of ES5, using Coq and extracts a refer-
ence interpreter JSRef. Park et al. [22] de�ned an entire semantics
of ES5, KJS, using the K [29], which is a framework for de�ning
language semantics. Fragoso Santos et al. [7] presented JaVerT, a

JavaScript veri�cation toolchain, including a JavaScript semantics
de�ned in their own Intermediate language, JSIL.

However, the fundamental problem of their approaches is that
they are manually de�ned thus they are labor-intensive and error-
prone. Due to such limitation, there is no existing mechanized
speci�cation for full semantics of ES6 or later versions. Therefore,
most of existing JavaScript static analyzers only focus on ES5.1
features or rarely support ES6 features even though already six
more versions from ES7 to ES12 are released since 2015.

Moreover, Park et al. [23] successfully showed that JISET is useful
tomechanically handle recent versions of ECMAScript by extending
JISET to perform N+1-version di�erential testing of both JavaScript
engines and ES11 (2020).

8 CONCLUSION
TODO

REFERENCES
[1] Roberto Amadini, Alexander Jordan, Graeme Gange, François Gauthier, Peter

Schachte, Harald Søndergaard, Peter J Stuckey, and Chenyi Zhang. 2017. Com-
bining String Abstract Domains for JavaScript Analysis: An Evaluation. In Pro-
ceedings of the 23rd International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS). https://doi.org/10.1007/978-3-
662-54577-5_3

[2] Martin Bodin, Arthur Charguéraud, Daniele Filaretti, Philippa Gardner, Sergio
Ma�eis, Daiva Naudziuniene, Alan Schmitt, and Gareth Smith. 2014. A Trusted
Mechanised JavaScript Speci�cation. Proceedings of the 41st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming (POPL) 49, 1 (2014), 87–100.
https://doi.org/10.1145/2535838.2535876

[3] David R. Chase, Mark Wegman, and F. Kenneth Zadeck. 1990. Analysis of
Pointers and Structures. In Proceedings of the ACM SIGPLAN 1990 Conference on
Programming Language Design and Implementation (PLDI) (PLDI ’90). Association
for Computing Machinery, New York, NY, USA, 296–310. https://doi.org/10.
1145/93542.93585

[4] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Uni�ed
Lattice Model for Static Analysis of Programs by Construction or Approximation
of Fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming languages (POPL). https://doi.org/10.1145/512950.
512973

[5] Patrick Cousot and Radhia Cousot. 1977. Static Determination of Dynamic
Properties of Generalized Type Unions. In Proceedings of an ACM Conference on
Language Design for Reliable Software. Association for Computing Machinery,
New York, NY, USA, 77–94. https://doi.org/10.1145/800022.808314

[6] Patrick Cousot and Radhia Cousot. 1992. Abstract Interpretation Frameworks.
Journal of Logic and Computation (JLC) 2, 4 (1992), 511–547. https://doi.org/10.
1093/logcom/2.4.511

[7] José Fragoso Santos, Petar Maksimović, Daiva Naudži = unienė, Thomas Wood,
and Philippa Gardner. 2017. JaVerT: JavaScript Veri�cation Toolchain. Proceedings
of the 44th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
(POPL) 2, POPL (2017), 1–33. https://doi.org/10.1145/3158138

[8] Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. 2010. The essence
of JavaScript. In Proceedings of the 24th European Conference on Object-Oriented
Programming (ECOOP). Springer, 126–150. https://doi.org/10.1007/978-3-642-
14107-2_7

[9] Simon Holm Jensen, Anders Møller, and Peter Thiemann. 2009. Type Analysis for
JavaScript. In Proceedings of the 16th International Symposium on Static Analysis
(SAS). https://doi.org/10.1007/978-3-642-03237-0_17

[10] Vineeth Kashyap, Kyle Dewey, Ethan A. Kuefner, John Wagner, Kevin Gib-
bons, John Sarracino, Ben Wiedermann, and Ben Hardekopf. 2014. JSAI: A
Static Analysis Platform for JavaScript. In Proceedings of the 22nd ACM SIG-
SOFT International Symposium on Foundations of Software Engineering (FSE).
https://doi.org/10.1145/2635868.2635904

[11] Se-Won Kim, Xavier Rival, and Sukyoung Ryu. 2018. A Theoretical Foundation
of Sensitivity in an Abstract Interpretation Framework. ACM Transactions on
Programming Languages and Systems (TOPLAS) 40, 3, Article 13 (2018), 44 pages.
https://doi.org/10.1145/3230624

[12] Yoonseok Ko, Xavier Rival, and Sukyoung Ryu. 2017. Weakly Sensitive Analysis
for Unbounded Iteration over JavaScript Objects. In Proceedings of the 15th Asian
Symposium on Programming Languages and Systems (APLAS). https://doi.org/10.
1007/978-3-319-71237-6_8

7

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Automatically Deriving JavaScript Static Analyzers from Language Specifications ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

function error(e) { throw e; }

const n = ...; // [0, 99]

n |> x => x + 1 // [1, 100]

|> x => x * 2 // [2, 200]

|> x => x + 1n; // TypeError

|> error (42);

of representative techniques to increase the precision of JavaScript
static analysis for loops. It discriminates contexts using a stack of
loop contexts containing loop iterations. We de�ne it under view-
based analysis sensitivity and implement it in JSAVER to increase
the precision of IRES static analysis. Moreover, we also de�ne and
implement the loop sensitivity for JavaScript using the loop sensitiv-
ity for IRES. Therefore, our tool discriminates contexts for explicit
loops, such as for-in or for-of, and even implicit loops, such as the
length property assignment of arrays.

6 EVALUATION
• AdditiveExpression
• Identi�erReference
• Identi�er
• AssignmentExpression
• LeftHandSideExpression
• ArrowFunction

• RQ1: Coverage) How much does JSAVER cover JavaScript
language features in the latest ECMAScript (ES12, 2021)?

• RQ2: Adaptability) Could JSAVER adapt a new language
features not yet introduced in ES12?

• RQ3: Expressiveness) What kinds of abstract sensitivities
and abstract domains JSAVER can support?

• RQ4: Performance) Could JSAVER analyze JavaScript pro-
grams in a durable time?

TODO

7 RELATEDWORK
TODO

• JavaScript Static Analyzers [9, 10, 14, 27]
• JavaScript Static Analysis Techniques [1, 12, 13, 15, 18–21,
30, 34–36]

• Partial Evaluation? (maybe no - * SE conf.)

7.1 JavaScript Mechanized Speci�cation
A speci�cation is mechanized if and only if it is both formalized
and executable. For JavaScript, researchers have proposed various
mechanized speci�cation in their own approaches. In 2010, Guha
et al. [8] presented �JS, the �rst mechanized speci�cation for a core
calculus of ES3 semantics by desugaring most of syntax into �JS, an
extended standard lambda calculus. Thus, the shape of �JS seman-
tics is quite di�erent with original algorithm steps. In mid 2010s,
researchers tried to de�ne mechanized speci�cation for the ES5
and 5.1 semantics having a similar shape of semantics with original
algorithm steps as much as possible. Bodin et al. [2] de�ned JSCert,
a semantics of a small subset of ES5, using Coq and extracts a refer-
ence interpreter JSRef. Park et al. [22] de�ned an entire semantics
of ES5, KJS, using the K [29], which is a framework for de�ning
language semantics. Fragoso Santos et al. [7] presented JaVerT, a

JavaScript veri�cation toolchain, including a JavaScript semantics
de�ned in their own Intermediate language, JSIL.

However, the fundamental problem of their approaches is that
they are manually de�ned thus they are labor-intensive and error-
prone. Due to such limitation, there is no existing mechanized
speci�cation for full semantics of ES6 or later versions. Therefore,
most of existing JavaScript static analyzers only focus on ES5.1
features or rarely support ES6 features even though already six
more versions from ES7 to ES12 are released since 2015.

Moreover, Park et al. [23] successfully showed that JISET is useful
tomechanically handle recent versions of ECMAScript by extending
JISET to perform N+1-version di�erential testing of both JavaScript
engines and ES11 (2020).

8 CONCLUSION
TODO

REFERENCES
[1] Roberto Amadini, Alexander Jordan, Graeme Gange, François Gauthier, Peter

Schachte, Harald Søndergaard, Peter J Stuckey, and Chenyi Zhang. 2017. Com-
bining String Abstract Domains for JavaScript Analysis: An Evaluation. In Pro-
ceedings of the 23rd International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS). https://doi.org/10.1007/978-3-
662-54577-5_3

[2] Martin Bodin, Arthur Charguéraud, Daniele Filaretti, Philippa Gardner, Sergio
Ma�eis, Daiva Naudziuniene, Alan Schmitt, and Gareth Smith. 2014. A Trusted
Mechanised JavaScript Speci�cation. Proceedings of the 41st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming (POPL) 49, 1 (2014), 87–100.
https://doi.org/10.1145/2535838.2535876

[3] David R. Chase, Mark Wegman, and F. Kenneth Zadeck. 1990. Analysis of
Pointers and Structures. In Proceedings of the ACM SIGPLAN 1990 Conference on
Programming Language Design and Implementation (PLDI) (PLDI ’90). Association
for Computing Machinery, New York, NY, USA, 296–310. https://doi.org/10.
1145/93542.93585

[4] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Uni�ed
Lattice Model for Static Analysis of Programs by Construction or Approximation
of Fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming languages (POPL). https://doi.org/10.1145/512950.
512973

[5] Patrick Cousot and Radhia Cousot. 1977. Static Determination of Dynamic
Properties of Generalized Type Unions. In Proceedings of an ACM Conference on
Language Design for Reliable Software. Association for Computing Machinery,
New York, NY, USA, 77–94. https://doi.org/10.1145/800022.808314

[6] Patrick Cousot and Radhia Cousot. 1992. Abstract Interpretation Frameworks.
Journal of Logic and Computation (JLC) 2, 4 (1992), 511–547. https://doi.org/10.
1093/logcom/2.4.511

[7] José Fragoso Santos, Petar Maksimović, Daiva Naudži = unienė, Thomas Wood,
and Philippa Gardner. 2017. JaVerT: JavaScript Veri�cation Toolchain. Proceedings
of the 44th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
(POPL) 2, POPL (2017), 1–33. https://doi.org/10.1145/3158138

[8] Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. 2010. The essence
of JavaScript. In Proceedings of the 24th European Conference on Object-Oriented
Programming (ECOOP). Springer, 126–150. https://doi.org/10.1007/978-3-642-
14107-2_7

[9] Simon Holm Jensen, Anders Møller, and Peter Thiemann. 2009. Type Analysis for
JavaScript. In Proceedings of the 16th International Symposium on Static Analysis
(SAS). https://doi.org/10.1007/978-3-642-03237-0_17

[10] Vineeth Kashyap, Kyle Dewey, Ethan A. Kuefner, John Wagner, Kevin Gib-
bons, John Sarracino, Ben Wiedermann, and Ben Hardekopf. 2014. JSAI: A
Static Analysis Platform for JavaScript. In Proceedings of the 22nd ACM SIG-
SOFT International Symposium on Foundations of Software Engineering (FSE).
https://doi.org/10.1145/2635868.2635904

[11] Se-Won Kim, Xavier Rival, and Sukyoung Ryu. 2018. A Theoretical Foundation
of Sensitivity in an Abstract Interpretation Framework. ACM Transactions on
Programming Languages and Systems (TOPLAS) 40, 3, Article 13 (2018), 44 pages.
https://doi.org/10.1145/3230624

[12] Yoonseok Ko, Xavier Rival, and Sukyoung Ryu. 2017. Weakly Sensitive Analysis
for Unbounded Iteration over JavaScript Objects. In Proceedings of the 15th Asian
Symposium on Programming Languages and Systems (APLAS). https://doi.org/10.
1007/978-3-319-71237-6_8

7

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

(a) Evaluation algorithm for logical OR assignments.

1 syntax def AssignmentExpression [8]. Evaluation(

2 this , LeftHandSideExpression , AssignmentExpression

3) { /* entry */

4 let lref = (LeftHandSideExpression.Evaluation)

5 let lval = [? (GetValue lref)]

6 let lbool = [! (ToBoolean lval)] /* #1 */

7 if (= lbool true) /* #2 */ return lval else { /* #3 */ }

8 if (&& (IsAnonymousFunctionDefinition AssignmentExpression)

9 (LeftHandSideExpression.IsIdentifierRef)) { /* #4 */

10 let rval = (AssignmentExpression.NamedEvaluation

11 lref.ReferencedName)

12 } else { /* #5 */

13 let rref = (AssignmentExpression.Evaluation)

14 let rval = [? (GetValue rref)]

15 } /* #6 */

16 [? (PutValue lref rval)]

17 return rval

18 } /* exit */

(b) The extracted IRES function.

Figure 1: Evaluation algorithm for the eighth alternative of AssignmentExpression in ES12 and the extracted IRES function.

To alleviate this problem, we propose a novel technique called
meta-level static analysis to automatically derive a JavaScript static
analyzer from any version of ECMAScript. The main idea of the
meta-level static analysis is to indirectly analyze a target language
program by performing static analysis for a language speci�ca-
tion of the target language written in a speci�cation language with
the program as the initial input. Thus, it can signi�cantly reduce
the burden to manually design and implement static analyzers by
automatically deriving them from given language speci�cations.
Moreover, it even guarantees the soundness of derived static analyz-
ers for the target language by constructing sound abstract semantics
for the speci�cation language.

For the expressiveness of a meta-level static analysis, we also
present ways to con�gure analysis sensitivities and abstract do-
mains for a target language. Con�guring them is a typical way
to manage analysis precision and performance. First, we present
the AST sensitivity in a meta-level static analysis to express analy-
sis sensitivities for a target language such as �ow-sensitivity and
k-callsite-sensitivity (Section 4.2). Second, we present a way to
con�gure abstract domains for structures and values in a target
language (Section 4.3).

To actualize our approach for JavaScript, we present JSAVER,
JavaScript Static Analyzers via ECMAScript Representations. First,
we utilize JISET [26] to extract a mechanized speci�cation written
in an intermediate representation, IRES, from a given ECMAScript.
Thus, target and speci�cation languages are JavaScript and IRES,
respectively, for the meta-level static analysis in JSAVER. In addition,
we implement several analysis techniques to improve the perfor-
mance and precision of derived static analyzers (Section 5). We
evaluated JSAVER by deriving a JavaScript static analyzer from the
latest ECMAScript, ES12, and using the o�cial conformance tests,
Test2622.

Our contributions are as follows:
• We propose a novel concept called meta-level static analysis,
which automatically derives a static analyzer for a target

2https://github.com/tc39/test262

let f = Math.floor(Math.random () * 100);

// f: [0, 99]

f ||= x => x;

// f: [1, 99] or { name: �f�, ... }

let x = f.name;

// f: [1, 99] or { name: �f�, ... }, x: undefined or �f�

Figure 2: A running JavaScript program with a logical OR
assignment newly introduced in ES12.

language from its language speci�cation written in a speci�-
cation language.

• We actualize meta-level static analysis for JavaScript as a tool
called JSAVER. It is the �rst tool that automatically derives a
JavaScript static analyzer from any version of ECMAScript.

• We derive a static analyzer from the latest ECMAScript, ES12,
to evaluate JSAVER. The synthesized static analyzer success-
fully analyzes all applicable 18,556 o�cial conformance tests.
Moreover, we demonstrate the adaptability and expressive-
ness of JSAVER with several case studies.

2 BACKGROUND
In this section, we explain the detail of ECMAScript, the o�cial
speci�cation of JavaScript. We then introduce JISET and how it
extracts a mechanized speci�cation from it. Since our work is to
perform meta-level static analysis for JavaScript using extracted
mechanized speci�cations, it is essential to understand how EC-
MAScript describes JavaScript semantics and how JISET extracts a
mechanized speci�cation from it.

For the detailed explanation, we explain a new language feature
introduced in ES12 called logical OR assignments (Figure 1) and
use a JavaScript program (Figure 2) as a running example. It �rst
de�nes a variable f with a random integer from 0 to 99. Then, it
uses a logical OR assignment to update f with an arrow function
whose name is �f� only if f has 0 because 0 represents false but
other integers represent true. Finally, it de�nes a variable x with
f.name and its value is undefined if f has an integer or �f� otherwise.

2

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Automatically Deriving JavaScript Static Analyzers from Language Specifications ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

otherwise, a normal function. An instruction i is a primitive value
assignment, an operation between values, a internal �eld access, a
external �eld access, a record allocations, a function call, or a return
instruction.

States � 2 S = H ⇥ C
Heaps h 2 H = A �n��!R
Contexts c 2 C = L ⇥ (X �n��!V) ⇥ C?
Values � 2 V = Vp] A] T] F
Records r 2 R = (Vstr

�n��!V) ⇥ (Vstr
�n��!V)

States S consists of heaps H and contexts C. A heap h 2 H is a
�nite mapping from addresses to records. Each record allocation
instruction x = {} creates a unique address a 2 A di�erent with
existing addresses. A context c 2 C is a triple of 1) the program
point, 2) a local environment which is a �nite mapping from vari-
ables to values, and 3) an optional calling context. A value � 2 V
is a primitive value, an address, an AST, or a function. A record
r 2 R consists of two �nite mappings from strings to values. The
left mapping represents internal �elds accessible by internal �eld
accesses x = x[x]. On the other hand, the right one represents ex-
ternal �elds, such as variables in JavaScript environment records or
properties in JavaScript objects, and they are accessible by a exter-
nal �eld access x = x[x]ext. We formulate the concrete semantics
of a program P as a transition system ({, S�) where{✓ S⇥ S is a
transition relation between concrete states and S� is a set of initial
states.

For a meta-level static analysis, we de�ne its abstract semantics
in the abstract interpretation framework [4, 6]. Since our analysis
supports view-based analysis sensitivities [11, 24], the abstract
domain is de�ned as a mapping from views to abstract states, D# =
� ! D#, with a view abstraction � : � ! P(S) which represents
the meaning of each view � 2 �. Then, we de�ne abstract states as
follows:

Abstract States � # 2 D# = H# ⇥ C#

Abstract Heaps h# 2 H# = A# �n��!(R# ⇥ R#
ext

)
Abstract Addresses a# 2 A# = L
Abstract Contexts c# 2 C# = X �n��!V#

An abstract heaph# 2 H# is a �nitemapping from abstract addresses
A
to pairs of abstract internal records R# and abstract external

records R#
ext

. Each abstract address a# 2 A# is de�ned with the
allocation-site abstraction [3] that partitions concrete addresses A
based on their allocation sites L. An abstract context c# 2 C# is a
�nite mapping from variables to abstract values. Shapes of abstract
values V#, abstract internal (or external) records R# (or R#

ext
) are

parametric thus we can freely con�gure them.

4.2 Analysis Sensitivities
In a meta-level static analysis, analysis sensitivities of the target
language (JavaScript) are di�erent with them of the speci�cation
language (IRES). For example, we explain what happens during anal-
ysis of the following JavaScript program with the �ow-sensitivity
for IRES:

let x = 1, y = 2;

x + y; // 3

(a) Evaluation algorithm for identi�er references.

1 syntax def IdentifierReference [0]. Evaluation(

2 this , Identifier

3) {

4 return [? (ResolveBinding (Identifier.StringValue))

5 }

(b) The extracted IRES function.

(c) Parsing result of x + y (bottom) and the initial local environment
(top) of the IRES function.

Figure 7: An example of the di�erence between analysis sen-
sitivities of target and speci�cation language.

Figure 7 describes (a) the Evaluation algorithm of identi�er refer-
ences, (b) its extracted IRES function, and (c) the parsing result of
x + y and the initial local environment of the IRES function. Since
the �ow-sensitivity merges states based on the program points,
contexts for the evaluation of both identi�er references x and y are
merged. Thus, the IRES variable Identifier points to their ASTs
as described in Figure 7. Due to the imprecise merge of contexts,
StringValue of Identifier returns �x� and �y�, and ResolveBinding
with them returns both 1 and 2. Finally, the analysis result of x + y

becomes { 2, 3, 4 }.

Flow Sensitivity. To resolve this problem, we present an AST sen-
sitivity for the speci�cation language to represent �ow-sensitivity
of the target language. It is a variant of object sensitivity [17, 33]
which uses abstract addresses A# of receiver objects as views. How-
ever, unlike the object sensitivity, the AST sensitivity utilizes ASTs
T stored in the parameter this only for syntax-directed functions:

� flow(t 2 T) = {� = (_, c) 2 S | syntax-ctxt(c) = c 0 ^ c 0(this) = t}
where syntax-ctxt(c) denotes the top-most context whose function
is syntax-directed and c 0(this) denotes a lookup of the variable
this in the mapping in the context c 0. We de�ne the �ow sensitivity
for the target language using the AST sensitivity and it successfully
divides contexts for the evaluation of JavaScript identi�ers x and y

in the above example using their ASTs even though their program
points are same.

Callsite Sensitivity. We also formally de�ne the callsite sensitiv-
ity [31, 32] for the target language by extending AST sensitivity
for speci�c normal IRES functions. The original callsite sensitivity
discriminates calling contexts based on their top most callsites. In
ECMAScript, all explicit and even implicit JavaScript function calls

5

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Automatically Deriving JavaScript Static Analyzers from Language Specifications ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

function error(e) { throw e; }

const n = ...; // [0, 99]

n |> x => x + 1 // [1, 100]

|> x => x * 2 // [2, 200]

|> x => x + 1n; // TypeError

|> error (42);

of representative techniques to increase the precision of JavaScript
static analysis for loops. It discriminates contexts using a stack of
loop contexts containing loop iterations. We de�ne it under view-
based analysis sensitivity and implement it in JSAVER to increase
the precision of IRES static analysis. Moreover, we also de�ne and
implement the loop sensitivity for JavaScript using the loop sensitiv-
ity for IRES. Therefore, our tool discriminates contexts for explicit
loops, such as for-in or for-of, and even implicit loops, such as the
length property assignment of arrays.

6 EVALUATION
• AdditiveExpression
• Identi�erReference
• Identi�er
• AssignmentExpression
• LeftHandSideExpression
• ArrowFunction

• RQ1: Coverage) How much does JSAVER cover JavaScript
language features in the latest ECMAScript (ES12, 2021)?

• RQ2: Adaptability) Could JSAVER adapt a new language
features not yet introduced in ES12?

• RQ3: Expressiveness) What kinds of abstract sensitivities
and abstract domains JSAVER can support?

• RQ4: Performance) Could JSAVER analyze JavaScript pro-
grams in a durable time?

TODO

7 RELATEDWORK
TODO

• JavaScript Static Analyzers [9, 10, 14, 27]
• JavaScript Static Analysis Techniques [1, 12, 13, 15, 18–21,
30, 34–36]

• Partial Evaluation? (maybe no - * SE conf.)

7.1 JavaScript Mechanized Speci�cation
A speci�cation is mechanized if and only if it is both formalized
and executable. For JavaScript, researchers have proposed various
mechanized speci�cation in their own approaches. In 2010, Guha
et al. [8] presented �JS, the �rst mechanized speci�cation for a core
calculus of ES3 semantics by desugaring most of syntax into �JS, an
extended standard lambda calculus. Thus, the shape of �JS seman-
tics is quite di�erent with original algorithm steps. In mid 2010s,
researchers tried to de�ne mechanized speci�cation for the ES5
and 5.1 semantics having a similar shape of semantics with original
algorithm steps as much as possible. Bodin et al. [2] de�ned JSCert,
a semantics of a small subset of ES5, using Coq and extracts a refer-
ence interpreter JSRef. Park et al. [22] de�ned an entire semantics
of ES5, KJS, using the K [29], which is a framework for de�ning
language semantics. Fragoso Santos et al. [7] presented JaVerT, a

JavaScript veri�cation toolchain, including a JavaScript semantics
de�ned in their own Intermediate language, JSIL.

However, the fundamental problem of their approaches is that
they are manually de�ned thus they are labor-intensive and error-
prone. Due to such limitation, there is no existing mechanized
speci�cation for full semantics of ES6 or later versions. Therefore,
most of existing JavaScript static analyzers only focus on ES5.1
features or rarely support ES6 features even though already six
more versions from ES7 to ES12 are released since 2015.

Moreover, Park et al. [23] successfully showed that JISET is useful
tomechanically handle recent versions of ECMAScript by extending
JISET to perform N+1-version di�erential testing of both JavaScript
engines and ES11 (2020).

8 CONCLUSION
TODO

REFERENCES
[1] Roberto Amadini, Alexander Jordan, Graeme Gange, François Gauthier, Peter

Schachte, Harald Søndergaard, Peter J Stuckey, and Chenyi Zhang. 2017. Com-
bining String Abstract Domains for JavaScript Analysis: An Evaluation. In Pro-
ceedings of the 23rd International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS). https://doi.org/10.1007/978-3-
662-54577-5_3

[2] Martin Bodin, Arthur Charguéraud, Daniele Filaretti, Philippa Gardner, Sergio
Ma�eis, Daiva Naudziuniene, Alan Schmitt, and Gareth Smith. 2014. A Trusted
Mechanised JavaScript Speci�cation. Proceedings of the 41st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming (POPL) 49, 1 (2014), 87–100.
https://doi.org/10.1145/2535838.2535876

[3] David R. Chase, Mark Wegman, and F. Kenneth Zadeck. 1990. Analysis of
Pointers and Structures. In Proceedings of the ACM SIGPLAN 1990 Conference on
Programming Language Design and Implementation (PLDI) (PLDI ’90). Association
for Computing Machinery, New York, NY, USA, 296–310. https://doi.org/10.
1145/93542.93585

[4] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Uni�ed
Lattice Model for Static Analysis of Programs by Construction or Approximation
of Fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming languages (POPL). https://doi.org/10.1145/512950.
512973

[5] Patrick Cousot and Radhia Cousot. 1977. Static Determination of Dynamic
Properties of Generalized Type Unions. In Proceedings of an ACM Conference on
Language Design for Reliable Software. Association for Computing Machinery,
New York, NY, USA, 77–94. https://doi.org/10.1145/800022.808314

[6] Patrick Cousot and Radhia Cousot. 1992. Abstract Interpretation Frameworks.
Journal of Logic and Computation (JLC) 2, 4 (1992), 511–547. https://doi.org/10.
1093/logcom/2.4.511

[7] José Fragoso Santos, Petar Maksimović, Daiva Naudži = unienė, Thomas Wood,
and Philippa Gardner. 2017. JaVerT: JavaScript Veri�cation Toolchain. Proceedings
of the 44th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
(POPL) 2, POPL (2017), 1–33. https://doi.org/10.1145/3158138

[8] Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. 2010. The essence
of JavaScript. In Proceedings of the 24th European Conference on Object-Oriented
Programming (ECOOP). Springer, 126–150. https://doi.org/10.1007/978-3-642-
14107-2_7

[9] Simon Holm Jensen, Anders Møller, and Peter Thiemann. 2009. Type Analysis for
JavaScript. In Proceedings of the 16th International Symposium on Static Analysis
(SAS). https://doi.org/10.1007/978-3-642-03237-0_17

[10] Vineeth Kashyap, Kyle Dewey, Ethan A. Kuefner, John Wagner, Kevin Gib-
bons, John Sarracino, Ben Wiedermann, and Ben Hardekopf. 2014. JSAI: A
Static Analysis Platform for JavaScript. In Proceedings of the 22nd ACM SIG-
SOFT International Symposium on Foundations of Software Engineering (FSE).
https://doi.org/10.1145/2635868.2635904

[11] Se-Won Kim, Xavier Rival, and Sukyoung Ryu. 2018. A Theoretical Foundation
of Sensitivity in an Abstract Interpretation Framework. ACM Transactions on
Programming Languages and Systems (TOPLAS) 40, 3, Article 13 (2018), 44 pages.
https://doi.org/10.1145/3230624

[12] Yoonseok Ko, Xavier Rival, and Sukyoung Ryu. 2017. Weakly Sensitive Analysis
for Unbounded Iteration over JavaScript Objects. In Proceedings of the 15th Asian
Symposium on Programming Languages and Systems (APLAS). https://doi.org/10.
1007/978-3-319-71237-6_8

7

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

(a) Evaluation algorithm for identi�er references

1 syntax def IdentifierReference [0]. Evaluation(
2 this , Identifier
3) {
4 return [? (ResolveBinding (Identifier.StringValue))]
5 }

(b) Extracted IRES function for identi�er references

(c) Result of x + y via a mechanized speci�cation

Figure 7: Analysis sensitivities of the target language
(JavaScript) and the speci�cation language (IRES)

divides contexts for the evaluation of JavaScript identi�ers x and y

in the above example using their ASTs even though their program
points in IRES are the same.

Callsite Sensitivity. We also formally de�ne the callsite sensitiv-
ity [37, 38] for the target language by extending the AST sensitivity
for speci�c normal IRES functions. The original callsite sensitivity
discriminates calling contexts using their top most callsites. In EC-
MAScript, all explicit and even implicit JavaScript function calls
invoke normal IRES functions Call and Construct. Thus, we de�ne
the callsite sensitivity for the target language by extending the AST
sensitivity with two normal IRES functions:

� cfa(t 2 T) = {� = (_, c) 2 S |
syntax-ctxt � js-call-ctxt(c) = c 0 ^ c 0(this) = t}

where js-call-ctxt(c) denotes the top-most context whose function is
Call or Construct and f �� denotes a function composition. Moreover,
we extend it to the k-callsite sensitivity by recursively taking ASTs
representing callsites of the target language:

�k -cfa(t 2 Tk) = {� = (_, c) 2 S |
t = [t1, · · · , tn] ^ n  k^
(ö(syntax-ctxt � js-call-ctxt)n+1(c) _ n = k)^
81  i  n.
((syntax-ctxt � js-call-ctxt)i (c) = ci ^ ci (this) = ti)}

Using this callsite sensitivity for the target language, the meta-
level static analyzer could discriminate not only explicit JavaScript
function calls (e.g. f()) but also implicit JavaScript function calls,
including getters/setters, user-de�ned implicit conversions, and
implicit function calls in built-in libraries.

5 IMPLEMENTATION
We developed a prototype implementation called JSAVER, which per-
forms a meta-level static analysis for JavaScript with ECMAScript.
The tool is an extension of JISET4 and it is an open-source project5.
In this section, we describe the challenges in implementing a meta-
level static analyzer and present our solutions for them.

Layered Abstract States. Unlike traditional JavaScript static anal-
yses, a meta-level static analysis for JavaScript should track analysis
results not only for the target language JavaScript but also for the
speci�cation language IRES. Thus, the sizes of abstract states are
much larger than those of the other JavaScript static analyzers. We
implement layered abstract states to maintain only updated analysis
results compared to the initial abstract state. It signi�cantly reduces
the time to perform the join (t), meet (u), and partial order (v)
operations by considering only the updated parts in abstract states.

Closures and Continuations. The speci�cation language IRES for
ECMAScript contains more complex language features than its
simpli�ed version presented in Section 4.1, such as symbols, lists,
and list operations. Among them, the two most complex features
are closures with captured variables and �rst-class continuations be-
cause they introduce new kinds of control �ows. ECMAScript uses
closures to de�ne implicit and explicit JavaScript iterators and uses
continuations for iterators, generators, and asynchronous features
such as async, await, and the Proxy object. Therefore, we de�ne and
implement abstract closures and abstract continuations; an abstract
closure is a pair of a function and a mapping from captured vari-
ables to their abstract values, and an abstract continuation consists
of a program point, a view for analysis sensitivity, parameters, and
an abstract context.

Abstract Counting. Properties of JavaScript objects could be dy-
namically added, modi�ed, or deleted and even accessible by �rst-
class property names. Thus, in JavaScript static analysis, performing
strong updates rather than weak updates for object properties as
many as possible is important for precise analysis results. Since
records of IRES are even more dynamic than JavaScript objects, it is
also important to increase analysis precision. Therefore, we imple-
ment abstract counting [19] to increase chances to perform strong
updates for �elds of records. It checks how many times records in
the same allocation site have been allocated and performs strong
updates only for singleton records with singleton �eld values.

Loop Sensitivity. Similar to function calls, loops are also typical
merging points in static analysis. A loop sensitivity [24] is one of the
representative techniques to increase the precision of JavaScript
static analysis for loops. It discriminates contexts using a stack
of loop contexts containing loop iterations. We de�ne it under
the view-based analysis sensitivity and implement it in JSAVER to
increase the precision of IRES static analysis. Moreover, we also
de�ne and implement the loop sensitivity for JavaScript using the
loop sensitivity for IRES. Therefore, JSAVER discriminates contexts
for explicit loops such as for-in and for-of and even implicit loops
such as the assignment of arguments or the length property of
arrays.

4https://github.com/kaist-plrg/jiset
5The URL of the tool is anonymized due to a double-blind review process.

6

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

(a) Evaluation algorithm for identi�er references

1 syntax def IdentifierReference [0]. Evaluation(
2 this , Identifier
3) {
4 return [? (ResolveBinding (Identifier.StringValue))]
5 }

(b) Extracted IRES function for identi�er references

(c) Result of x + y via a mechanized speci�cation

Figure 7: Analysis sensitivities of the target language
(JavaScript) and the speci�cation language (IRES)

divides contexts for the evaluation of JavaScript identi�ers x and y

in the above example using their ASTs even though their program
points in IRES are the same.

Callsite Sensitivity. We also formally de�ne the callsite sensitiv-
ity [37, 38] for the target language by extending the AST sensitivity
for speci�c normal IRES functions. The original callsite sensitivity
discriminates calling contexts using their top most callsites. In EC-
MAScript, all explicit and even implicit JavaScript function calls
invoke normal IRES functions Call and Construct. Thus, we de�ne
the callsite sensitivity for the target language by extending the AST
sensitivity with two normal IRES functions:

� cfa(t 2 T) = {� = (_, c) 2 S |
syntax-ctxt � js-call-ctxt(c) = c 0 ^ c 0(this) = t}

where js-call-ctxt(c) denotes the top-most context whose function is
Call or Construct and f �� denotes a function composition. Moreover,
we extend it to the k-callsite sensitivity by recursively taking ASTs
representing callsites of the target language:

�k -cfa(t 2 Tk) = {� = (_, c) 2 S |
t = [t1, · · · , tn] ^ n  k^
(ö(syntax-ctxt � js-call-ctxt)n+1(c) _ n = k)^
81  i  n.
((syntax-ctxt � js-call-ctxt)i (c) = ci ^ ci (this) = ti)}

Using this callsite sensitivity for the target language, the meta-
level static analyzer could discriminate not only explicit JavaScript
function calls (e.g. f()) but also implicit JavaScript function calls,
including getters/setters, user-de�ned implicit conversions, and
implicit function calls in built-in libraries.

5 IMPLEMENTATION
We developed a prototype implementation called JSAVER, which per-
forms a meta-level static analysis for JavaScript with ECMAScript.
The tool is an extension of JISET4 and it is an open-source project5.
In this section, we describe the challenges in implementing a meta-
level static analyzer and present our solutions for them.

Layered Abstract States. Unlike traditional JavaScript static anal-
yses, a meta-level static analysis for JavaScript should track analysis
results not only for the target language JavaScript but also for the
speci�cation language IRES. Thus, the sizes of abstract states are
much larger than those of the other JavaScript static analyzers. We
implement layered abstract states to maintain only updated analysis
results compared to the initial abstract state. It signi�cantly reduces
the time to perform the join (t), meet (u), and partial order (v)
operations by considering only the updated parts in abstract states.

Closures and Continuations. The speci�cation language IRES for
ECMAScript contains more complex language features than its
simpli�ed version presented in Section 4.1, such as symbols, lists,
and list operations. Among them, the two most complex features
are closures with captured variables and �rst-class continuations be-
cause they introduce new kinds of control �ows. ECMAScript uses
closures to de�ne implicit and explicit JavaScript iterators and uses
continuations for iterators, generators, and asynchronous features
such as async, await, and the Proxy object. Therefore, we de�ne and
implement abstract closures and abstract continuations; an abstract
closure is a pair of a function and a mapping from captured vari-
ables to their abstract values, and an abstract continuation consists
of a program point, a view for analysis sensitivity, parameters, and
an abstract context.

Abstract Counting. Properties of JavaScript objects could be dy-
namically added, modi�ed, or deleted and even accessible by �rst-
class property names. Thus, in JavaScript static analysis, performing
strong updates rather than weak updates for object properties as
many as possible is important for precise analysis results. Since
records of IRES are even more dynamic than JavaScript objects, it is
also important to increase analysis precision. Therefore, we imple-
ment abstract counting [19] to increase chances to perform strong
updates for �elds of records. It checks how many times records in
the same allocation site have been allocated and performs strong
updates only for singleton records with singleton �eld values.

Loop Sensitivity. Similar to function calls, loops are also typical
merging points in static analysis. A loop sensitivity [24] is one of the
representative techniques to increase the precision of JavaScript
static analysis for loops. It discriminates contexts using a stack
of loop contexts containing loop iterations. We de�ne it under
the view-based analysis sensitivity and implement it in JSAVER to
increase the precision of IRES static analysis. Moreover, we also
de�ne and implement the loop sensitivity for JavaScript using the
loop sensitivity for IRES. Therefore, JSAVER discriminates contexts
for explicit loops such as for-in and for-of and even implicit loops
such as the assignment of arguments or the length property of
arrays.

4https://github.com/kaist-plrg/jiset
5The URL of the tool is anonymized due to a double-blind review process.

6

parsex ||= y
JS Program P1

/ 5749

AST Sensitivity

IRES

JavaScript

· · ·<latexit sha1_base64="Kef69hW4e/raBfVz+DaK6/NBFbQ=">AAACHXicbVDJSgNBEK1xjXFL9OhlMAiewowKeozLwYsQITFCJkhPp2Ka9Cx01whxmI/wqge/xpt4Ff/GnnEObg8aHu9VdVU9P5ZCk+N8WDOzc/MLi5Wl6vLK6tp6rb5xpaNEcezySEbq2mcapQixS4IkXscKWeBL7PmT09zv3aHSIgo7NI1xELDbUIwEZ2SknseHEenqTa3hNJ0C9l/ilqQBJdo3dQu8YcSTAEPikmndd52YBilTJLjErOolGmPGJ+wW+4aGLEA9SIt9M3vHKEN7FCnzQrIL9XtHygKtp4FvKgNGY/3by8X/vH5Co6NBKsI4IQz516BRIm2K7Px4eygUcpJTQxhXwuxq8zFTjJOJqOqdoblF4YX591jGY+YjpV4+Jb7nWdpxs7QgQZYKykxm7u+E/pKrvaa739y7PGi0Tsr0KrAF27ALLhxCC86hDV3gMIEHeIQn69l6sV6tt6/SGavs2YQfsN4/AabGomA=</latexit> · · ·<latexit sha1_base64="Kef69hW4e/raBfVz+DaK6/NBFbQ=">AAACHXicbVDJSgNBEK1xjXFL9OhlMAiewowKeozLwYsQITFCJkhPp2Ka9Cx01whxmI/wqge/xpt4Ff/GnnEObg8aHu9VdVU9P5ZCk+N8WDOzc/MLi5Wl6vLK6tp6rb5xpaNEcezySEbq2mcapQixS4IkXscKWeBL7PmT09zv3aHSIgo7NI1xELDbUIwEZ2SknseHEenqTa3hNJ0C9l/ilqQBJdo3dQu8YcSTAEPikmndd52YBilTJLjErOolGmPGJ+wW+4aGLEA9SIt9M3vHKEN7FCnzQrIL9XtHygKtp4FvKgNGY/3by8X/vH5Co6NBKsI4IQz516BRIm2K7Px4eygUcpJTQxhXwuxq8zFTjJOJqOqdoblF4YX591jGY+YjpV4+Jb7nWdpxs7QgQZYKykxm7u+E/pKrvaa739y7PGi0Tsr0KrAF27ALLhxCC86hDV3gMIEHeIQn69l6sV6tt6/SGavs2YQfsN4/AabGomA=</latexit>

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Automatically Deriving JavaScript Static Analyzers from Language Specifications ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

function error(e) { throw e; }

const n = ...; // [0, 99]

n |> x => x + 1 // [1, 100]

|> x => x * 2 // [2, 200]

|> x => x + 1n; // TypeError

|> error (42);

of representative techniques to increase the precision of JavaScript
static analysis for loops. It discriminates contexts using a stack of
loop contexts containing loop iterations. We de�ne it under view-
based analysis sensitivity and implement it in JSAVER to increase
the precision of IRES static analysis. Moreover, we also de�ne and
implement the loop sensitivity for JavaScript using the loop sensitiv-
ity for IRES. Therefore, our tool discriminates contexts for explicit
loops, such as for-in or for-of, and even implicit loops, such as the
length property assignment of arrays.

6 EVALUATION
• AdditiveExpression
• Identi�erReference
• Identi�er
• AssignmentExpression
• LeftHandSideExpression
• ArrowFunction

• RQ1: Coverage) How much does JSAVER cover JavaScript
language features in the latest ECMAScript (ES12, 2021)?

• RQ2: Adaptability) Could JSAVER adapt a new language
features not yet introduced in ES12?

• RQ3: Expressiveness) What kinds of abstract sensitivities
and abstract domains JSAVER can support?

• RQ4: Performance) Could JSAVER analyze JavaScript pro-
grams in a durable time?

TODO

7 RELATEDWORK
TODO

• JavaScript Static Analyzers [9, 10, 14, 27]
• JavaScript Static Analysis Techniques [1, 12, 13, 15, 18–21,
30, 34–36]

• Partial Evaluation? (maybe no - * SE conf.)

7.1 JavaScript Mechanized Speci�cation
A speci�cation is mechanized if and only if it is both formalized
and executable. For JavaScript, researchers have proposed various
mechanized speci�cation in their own approaches. In 2010, Guha
et al. [8] presented �JS, the �rst mechanized speci�cation for a core
calculus of ES3 semantics by desugaring most of syntax into �JS, an
extended standard lambda calculus. Thus, the shape of �JS seman-
tics is quite di�erent with original algorithm steps. In mid 2010s,
researchers tried to de�ne mechanized speci�cation for the ES5
and 5.1 semantics having a similar shape of semantics with original
algorithm steps as much as possible. Bodin et al. [2] de�ned JSCert,
a semantics of a small subset of ES5, using Coq and extracts a refer-
ence interpreter JSRef. Park et al. [22] de�ned an entire semantics
of ES5, KJS, using the K [29], which is a framework for de�ning
language semantics. Fragoso Santos et al. [7] presented JaVerT, a

JavaScript veri�cation toolchain, including a JavaScript semantics
de�ned in their own Intermediate language, JSIL.

However, the fundamental problem of their approaches is that
they are manually de�ned thus they are labor-intensive and error-
prone. Due to such limitation, there is no existing mechanized
speci�cation for full semantics of ES6 or later versions. Therefore,
most of existing JavaScript static analyzers only focus on ES5.1
features or rarely support ES6 features even though already six
more versions from ES7 to ES12 are released since 2015.

Moreover, Park et al. [23] successfully showed that JISET is useful
tomechanically handle recent versions of ECMAScript by extending
JISET to perform N+1-version di�erential testing of both JavaScript
engines and ES11 (2020).

8 CONCLUSION
TODO

REFERENCES
[1] Roberto Amadini, Alexander Jordan, Graeme Gange, François Gauthier, Peter

Schachte, Harald Søndergaard, Peter J Stuckey, and Chenyi Zhang. 2017. Com-
bining String Abstract Domains for JavaScript Analysis: An Evaluation. In Pro-
ceedings of the 23rd International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS). https://doi.org/10.1007/978-3-
662-54577-5_3

[2] Martin Bodin, Arthur Charguéraud, Daniele Filaretti, Philippa Gardner, Sergio
Ma�eis, Daiva Naudziuniene, Alan Schmitt, and Gareth Smith. 2014. A Trusted
Mechanised JavaScript Speci�cation. Proceedings of the 41st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming (POPL) 49, 1 (2014), 87–100.
https://doi.org/10.1145/2535838.2535876

[3] David R. Chase, Mark Wegman, and F. Kenneth Zadeck. 1990. Analysis of
Pointers and Structures. In Proceedings of the ACM SIGPLAN 1990 Conference on
Programming Language Design and Implementation (PLDI) (PLDI ’90). Association
for Computing Machinery, New York, NY, USA, 296–310. https://doi.org/10.
1145/93542.93585

[4] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Uni�ed
Lattice Model for Static Analysis of Programs by Construction or Approximation
of Fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming languages (POPL). https://doi.org/10.1145/512950.
512973

[5] Patrick Cousot and Radhia Cousot. 1977. Static Determination of Dynamic
Properties of Generalized Type Unions. In Proceedings of an ACM Conference on
Language Design for Reliable Software. Association for Computing Machinery,
New York, NY, USA, 77–94. https://doi.org/10.1145/800022.808314

[6] Patrick Cousot and Radhia Cousot. 1992. Abstract Interpretation Frameworks.
Journal of Logic and Computation (JLC) 2, 4 (1992), 511–547. https://doi.org/10.
1093/logcom/2.4.511

[7] José Fragoso Santos, Petar Maksimović, Daiva Naudži = unienė, Thomas Wood,
and Philippa Gardner. 2017. JaVerT: JavaScript Veri�cation Toolchain. Proceedings
of the 44th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
(POPL) 2, POPL (2017), 1–33. https://doi.org/10.1145/3158138

[8] Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. 2010. The essence
of JavaScript. In Proceedings of the 24th European Conference on Object-Oriented
Programming (ECOOP). Springer, 126–150. https://doi.org/10.1007/978-3-642-
14107-2_7

[9] Simon Holm Jensen, Anders Møller, and Peter Thiemann. 2009. Type Analysis for
JavaScript. In Proceedings of the 16th International Symposium on Static Analysis
(SAS). https://doi.org/10.1007/978-3-642-03237-0_17

[10] Vineeth Kashyap, Kyle Dewey, Ethan A. Kuefner, John Wagner, Kevin Gib-
bons, John Sarracino, Ben Wiedermann, and Ben Hardekopf. 2014. JSAI: A
Static Analysis Platform for JavaScript. In Proceedings of the 22nd ACM SIG-
SOFT International Symposium on Foundations of Software Engineering (FSE).
https://doi.org/10.1145/2635868.2635904

[11] Se-Won Kim, Xavier Rival, and Sukyoung Ryu. 2018. A Theoretical Foundation
of Sensitivity in an Abstract Interpretation Framework. ACM Transactions on
Programming Languages and Systems (TOPLAS) 40, 3, Article 13 (2018), 44 pages.
https://doi.org/10.1145/3230624

[12] Yoonseok Ko, Xavier Rival, and Sukyoung Ryu. 2017. Weakly Sensitive Analysis
for Unbounded Iteration over JavaScript Objects. In Proceedings of the 15th Asian
Symposium on Programming Languages and Systems (APLAS). https://doi.org/10.
1007/978-3-319-71237-6_8

7

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

(a) Evaluation algorithm for logical OR assignments.

1 syntax def AssignmentExpression [8]. Evaluation(

2 this , LeftHandSideExpression , AssignmentExpression

3) { /* entry */

4 let lref = (LeftHandSideExpression.Evaluation)

5 let lval = [? (GetValue lref)]

6 let lbool = [! (ToBoolean lval)] /* #1 */

7 if (= lbool true) /* #2 */ return lval else { /* #3 */ }

8 if (&& (IsAnonymousFunctionDefinition AssignmentExpression)

9 (LeftHandSideExpression.IsIdentifierRef)) { /* #4 */

10 let rval = (AssignmentExpression.NamedEvaluation

11 lref.ReferencedName)

12 } else { /* #5 */

13 let rref = (AssignmentExpression.Evaluation)

14 let rval = [? (GetValue rref)]

15 } /* #6 */

16 [? (PutValue lref rval)]

17 return rval

18 } /* exit */

(b) The extracted IRES function.

Figure 1: Evaluation algorithm for the eighth alternative of AssignmentExpression in ES12 and the extracted IRES function.

To alleviate this problem, we propose a novel technique called
meta-level static analysis to automatically derive a JavaScript static
analyzer from any version of ECMAScript. The main idea of the
meta-level static analysis is to indirectly analyze a target language
program by performing static analysis for a language speci�ca-
tion of the target language written in a speci�cation language with
the program as the initial input. Thus, it can signi�cantly reduce
the burden to manually design and implement static analyzers by
automatically deriving them from given language speci�cations.
Moreover, it even guarantees the soundness of derived static analyz-
ers for the target language by constructing sound abstract semantics
for the speci�cation language.

For the expressiveness of a meta-level static analysis, we also
present ways to con�gure analysis sensitivities and abstract do-
mains for a target language. Con�guring them is a typical way
to manage analysis precision and performance. First, we present
the AST sensitivity in a meta-level static analysis to express analy-
sis sensitivities for a target language such as �ow-sensitivity and
k-callsite-sensitivity (Section 4.2). Second, we present a way to
con�gure abstract domains for structures and values in a target
language (Section 4.3).

To actualize our approach for JavaScript, we present JSAVER,
JavaScript Static Analyzers via ECMAScript Representations. First,
we utilize JISET [26] to extract a mechanized speci�cation written
in an intermediate representation, IRES, from a given ECMAScript.
Thus, target and speci�cation languages are JavaScript and IRES,
respectively, for the meta-level static analysis in JSAVER. In addition,
we implement several analysis techniques to improve the perfor-
mance and precision of derived static analyzers (Section 5). We
evaluated JSAVER by deriving a JavaScript static analyzer from the
latest ECMAScript, ES12, and using the o�cial conformance tests,
Test2622.

Our contributions are as follows:
• We propose a novel concept called meta-level static analysis,
which automatically derives a static analyzer for a target

2https://github.com/tc39/test262

let f = Math.floor(Math.random () * 100);

// f: [0, 99]

f ||= x => x;

// f: [1, 99] or { name: �f�, ... }

let x = f.name;

// f: [1, 99] or { name: �f�, ... }, x: undefined or �f�

Figure 2: A running JavaScript program with a logical OR
assignment newly introduced in ES12.

language from its language speci�cation written in a speci�-
cation language.

• We actualize meta-level static analysis for JavaScript as a tool
called JSAVER. It is the �rst tool that automatically derives a
JavaScript static analyzer from any version of ECMAScript.

• We derive a static analyzer from the latest ECMAScript, ES12,
to evaluate JSAVER. The synthesized static analyzer success-
fully analyzes all applicable 18,556 o�cial conformance tests.
Moreover, we demonstrate the adaptability and expressive-
ness of JSAVER with several case studies.

2 BACKGROUND
In this section, we explain the detail of ECMAScript, the o�cial
speci�cation of JavaScript. We then introduce JISET and how it
extracts a mechanized speci�cation from it. Since our work is to
perform meta-level static analysis for JavaScript using extracted
mechanized speci�cations, it is essential to understand how EC-
MAScript describes JavaScript semantics and how JISET extracts a
mechanized speci�cation from it.

For the detailed explanation, we explain a new language feature
introduced in ES12 called logical OR assignments (Figure 1) and
use a JavaScript program (Figure 2) as a running example. It �rst
de�nes a variable f with a random integer from 0 to 99. Then, it
uses a logical OR assignment to update f with an arrow function
whose name is �f� only if f has 0 because 0 represents false but
other integers represent true. Finally, it de�nes a variable x with
f.name and its value is undefined if f has an integer or �f� otherwise.

2

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Automatically Deriving JavaScript Static Analyzers from Language Specifications ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

function error(e) { throw e; }

const n = ...; // [0, 99]

n |> x => x + 1 // [1, 100]

|> x => x * 2 // [2, 200]

|> x => x + 1n; // TypeError

|> error (42);

of representative techniques to increase the precision of JavaScript
static analysis for loops. It discriminates contexts using a stack of
loop contexts containing loop iterations. We de�ne it under view-
based analysis sensitivity and implement it in JSAVER to increase
the precision of IRES static analysis. Moreover, we also de�ne and
implement the loop sensitivity for JavaScript using the loop sensitiv-
ity for IRES. Therefore, our tool discriminates contexts for explicit
loops, such as for-in or for-of, and even implicit loops, such as the
length property assignment of arrays.

6 EVALUATION
• AdditiveExpression
• Identi�erReference
• Identi�er
• AssignmentExpression
• LeftHandSideExpression
• ArrowFunction

• RQ1: Coverage) How much does JSAVER cover JavaScript
language features in the latest ECMAScript (ES12, 2021)?

• RQ2: Adaptability) Could JSAVER adapt a new language
features not yet introduced in ES12?

• RQ3: Expressiveness) What kinds of abstract sensitivities
and abstract domains JSAVER can support?

• RQ4: Performance) Could JSAVER analyze JavaScript pro-
grams in a durable time?

TODO

7 RELATEDWORK
TODO

• JavaScript Static Analyzers [9, 10, 14, 27]
• JavaScript Static Analysis Techniques [1, 12, 13, 15, 18–21,
30, 34–36]

• Partial Evaluation? (maybe no - * SE conf.)

7.1 JavaScript Mechanized Speci�cation
A speci�cation is mechanized if and only if it is both formalized
and executable. For JavaScript, researchers have proposed various
mechanized speci�cation in their own approaches. In 2010, Guha
et al. [8] presented �JS, the �rst mechanized speci�cation for a core
calculus of ES3 semantics by desugaring most of syntax into �JS, an
extended standard lambda calculus. Thus, the shape of �JS seman-
tics is quite di�erent with original algorithm steps. In mid 2010s,
researchers tried to de�ne mechanized speci�cation for the ES5
and 5.1 semantics having a similar shape of semantics with original
algorithm steps as much as possible. Bodin et al. [2] de�ned JSCert,
a semantics of a small subset of ES5, using Coq and extracts a refer-
ence interpreter JSRef. Park et al. [22] de�ned an entire semantics
of ES5, KJS, using the K [29], which is a framework for de�ning
language semantics. Fragoso Santos et al. [7] presented JaVerT, a

JavaScript veri�cation toolchain, including a JavaScript semantics
de�ned in their own Intermediate language, JSIL.

However, the fundamental problem of their approaches is that
they are manually de�ned thus they are labor-intensive and error-
prone. Due to such limitation, there is no existing mechanized
speci�cation for full semantics of ES6 or later versions. Therefore,
most of existing JavaScript static analyzers only focus on ES5.1
features or rarely support ES6 features even though already six
more versions from ES7 to ES12 are released since 2015.

Moreover, Park et al. [23] successfully showed that JISET is useful
tomechanically handle recent versions of ECMAScript by extending
JISET to perform N+1-version di�erential testing of both JavaScript
engines and ES11 (2020).

8 CONCLUSION
TODO

REFERENCES
[1] Roberto Amadini, Alexander Jordan, Graeme Gange, François Gauthier, Peter

Schachte, Harald Søndergaard, Peter J Stuckey, and Chenyi Zhang. 2017. Com-
bining String Abstract Domains for JavaScript Analysis: An Evaluation. In Pro-
ceedings of the 23rd International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS). https://doi.org/10.1007/978-3-
662-54577-5_3

[2] Martin Bodin, Arthur Charguéraud, Daniele Filaretti, Philippa Gardner, Sergio
Ma�eis, Daiva Naudziuniene, Alan Schmitt, and Gareth Smith. 2014. A Trusted
Mechanised JavaScript Speci�cation. Proceedings of the 41st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming (POPL) 49, 1 (2014), 87–100.
https://doi.org/10.1145/2535838.2535876

[3] David R. Chase, Mark Wegman, and F. Kenneth Zadeck. 1990. Analysis of
Pointers and Structures. In Proceedings of the ACM SIGPLAN 1990 Conference on
Programming Language Design and Implementation (PLDI) (PLDI ’90). Association
for Computing Machinery, New York, NY, USA, 296–310. https://doi.org/10.
1145/93542.93585

[4] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Uni�ed
Lattice Model for Static Analysis of Programs by Construction or Approximation
of Fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming languages (POPL). https://doi.org/10.1145/512950.
512973

[5] Patrick Cousot and Radhia Cousot. 1977. Static Determination of Dynamic
Properties of Generalized Type Unions. In Proceedings of an ACM Conference on
Language Design for Reliable Software. Association for Computing Machinery,
New York, NY, USA, 77–94. https://doi.org/10.1145/800022.808314

[6] Patrick Cousot and Radhia Cousot. 1992. Abstract Interpretation Frameworks.
Journal of Logic and Computation (JLC) 2, 4 (1992), 511–547. https://doi.org/10.
1093/logcom/2.4.511

[7] José Fragoso Santos, Petar Maksimović, Daiva Naudži = unienė, Thomas Wood,
and Philippa Gardner. 2017. JaVerT: JavaScript Veri�cation Toolchain. Proceedings
of the 44th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
(POPL) 2, POPL (2017), 1–33. https://doi.org/10.1145/3158138

[8] Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. 2010. The essence
of JavaScript. In Proceedings of the 24th European Conference on Object-Oriented
Programming (ECOOP). Springer, 126–150. https://doi.org/10.1007/978-3-642-
14107-2_7

[9] Simon Holm Jensen, Anders Møller, and Peter Thiemann. 2009. Type Analysis for
JavaScript. In Proceedings of the 16th International Symposium on Static Analysis
(SAS). https://doi.org/10.1007/978-3-642-03237-0_17

[10] Vineeth Kashyap, Kyle Dewey, Ethan A. Kuefner, John Wagner, Kevin Gib-
bons, John Sarracino, Ben Wiedermann, and Ben Hardekopf. 2014. JSAI: A
Static Analysis Platform for JavaScript. In Proceedings of the 22nd ACM SIG-
SOFT International Symposium on Foundations of Software Engineering (FSE).
https://doi.org/10.1145/2635868.2635904

[11] Se-Won Kim, Xavier Rival, and Sukyoung Ryu. 2018. A Theoretical Foundation
of Sensitivity in an Abstract Interpretation Framework. ACM Transactions on
Programming Languages and Systems (TOPLAS) 40, 3, Article 13 (2018), 44 pages.
https://doi.org/10.1145/3230624

[12] Yoonseok Ko, Xavier Rival, and Sukyoung Ryu. 2017. Weakly Sensitive Analysis
for Unbounded Iteration over JavaScript Objects. In Proceedings of the 15th Asian
Symposium on Programming Languages and Systems (APLAS). https://doi.org/10.
1007/978-3-319-71237-6_8

7

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Automatically Deriving JavaScript Static Analyzers from Language Specifications ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

function error(e) { throw e; }

const n = ...; // [0, 99]

n |> x => x + 1 // [1, 100]

|> x => x * 2 // [2, 200]

|> x => x + 1n; // TypeError

|> error (42);

of representative techniques to increase the precision of JavaScript
static analysis for loops. It discriminates contexts using a stack of
loop contexts containing loop iterations. We de�ne it under view-
based analysis sensitivity and implement it in JSAVER to increase
the precision of IRES static analysis. Moreover, we also de�ne and
implement the loop sensitivity for JavaScript using the loop sensitiv-
ity for IRES. Therefore, our tool discriminates contexts for explicit
loops, such as for-in or for-of, and even implicit loops, such as the
length property assignment of arrays.

6 EVALUATION
• AdditiveExpression
• Identi�erReference
• Identi�er
• AssignmentExpression
• LeftHandSideExpression
• ArrowFunction

• RQ1: Coverage) How much does JSAVER cover JavaScript
language features in the latest ECMAScript (ES12, 2021)?

• RQ2: Adaptability) Could JSAVER adapt a new language
features not yet introduced in ES12?

• RQ3: Expressiveness) What kinds of abstract sensitivities
and abstract domains JSAVER can support?

• RQ4: Performance) Could JSAVER analyze JavaScript pro-
grams in a durable time?

TODO

7 RELATEDWORK
TODO

• JavaScript Static Analyzers [9, 10, 14, 27]
• JavaScript Static Analysis Techniques [1, 12, 13, 15, 18–21,
30, 34–36]

• Partial Evaluation? (maybe no - * SE conf.)

7.1 JavaScript Mechanized Speci�cation
A speci�cation is mechanized if and only if it is both formalized
and executable. For JavaScript, researchers have proposed various
mechanized speci�cation in their own approaches. In 2010, Guha
et al. [8] presented �JS, the �rst mechanized speci�cation for a core
calculus of ES3 semantics by desugaring most of syntax into �JS, an
extended standard lambda calculus. Thus, the shape of �JS seman-
tics is quite di�erent with original algorithm steps. In mid 2010s,
researchers tried to de�ne mechanized speci�cation for the ES5
and 5.1 semantics having a similar shape of semantics with original
algorithm steps as much as possible. Bodin et al. [2] de�ned JSCert,
a semantics of a small subset of ES5, using Coq and extracts a refer-
ence interpreter JSRef. Park et al. [22] de�ned an entire semantics
of ES5, KJS, using the K [29], which is a framework for de�ning
language semantics. Fragoso Santos et al. [7] presented JaVerT, a

JavaScript veri�cation toolchain, including a JavaScript semantics
de�ned in their own Intermediate language, JSIL.

However, the fundamental problem of their approaches is that
they are manually de�ned thus they are labor-intensive and error-
prone. Due to such limitation, there is no existing mechanized
speci�cation for full semantics of ES6 or later versions. Therefore,
most of existing JavaScript static analyzers only focus on ES5.1
features or rarely support ES6 features even though already six
more versions from ES7 to ES12 are released since 2015.

Moreover, Park et al. [23] successfully showed that JISET is useful
tomechanically handle recent versions of ECMAScript by extending
JISET to perform N+1-version di�erential testing of both JavaScript
engines and ES11 (2020).

8 CONCLUSION
TODO

REFERENCES
[1] Roberto Amadini, Alexander Jordan, Graeme Gange, François Gauthier, Peter

Schachte, Harald Søndergaard, Peter J Stuckey, and Chenyi Zhang. 2017. Com-
bining String Abstract Domains for JavaScript Analysis: An Evaluation. In Pro-
ceedings of the 23rd International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS). https://doi.org/10.1007/978-3-
662-54577-5_3

[2] Martin Bodin, Arthur Charguéraud, Daniele Filaretti, Philippa Gardner, Sergio
Ma�eis, Daiva Naudziuniene, Alan Schmitt, and Gareth Smith. 2014. A Trusted
Mechanised JavaScript Speci�cation. Proceedings of the 41st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming (POPL) 49, 1 (2014), 87–100.
https://doi.org/10.1145/2535838.2535876

[3] David R. Chase, Mark Wegman, and F. Kenneth Zadeck. 1990. Analysis of
Pointers and Structures. In Proceedings of the ACM SIGPLAN 1990 Conference on
Programming Language Design and Implementation (PLDI) (PLDI ’90). Association
for Computing Machinery, New York, NY, USA, 296–310. https://doi.org/10.
1145/93542.93585

[4] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Uni�ed
Lattice Model for Static Analysis of Programs by Construction or Approximation
of Fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming languages (POPL). https://doi.org/10.1145/512950.
512973

[5] Patrick Cousot and Radhia Cousot. 1977. Static Determination of Dynamic
Properties of Generalized Type Unions. In Proceedings of an ACM Conference on
Language Design for Reliable Software. Association for Computing Machinery,
New York, NY, USA, 77–94. https://doi.org/10.1145/800022.808314

[6] Patrick Cousot and Radhia Cousot. 1992. Abstract Interpretation Frameworks.
Journal of Logic and Computation (JLC) 2, 4 (1992), 511–547. https://doi.org/10.
1093/logcom/2.4.511

[7] José Fragoso Santos, Petar Maksimović, Daiva Naudži = unienė, Thomas Wood,
and Philippa Gardner. 2017. JaVerT: JavaScript Veri�cation Toolchain. Proceedings
of the 44th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
(POPL) 2, POPL (2017), 1–33. https://doi.org/10.1145/3158138

[8] Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. 2010. The essence
of JavaScript. In Proceedings of the 24th European Conference on Object-Oriented
Programming (ECOOP). Springer, 126–150. https://doi.org/10.1007/978-3-642-
14107-2_7

[9] Simon Holm Jensen, Anders Møller, and Peter Thiemann. 2009. Type Analysis for
JavaScript. In Proceedings of the 16th International Symposium on Static Analysis
(SAS). https://doi.org/10.1007/978-3-642-03237-0_17

[10] Vineeth Kashyap, Kyle Dewey, Ethan A. Kuefner, John Wagner, Kevin Gib-
bons, John Sarracino, Ben Wiedermann, and Ben Hardekopf. 2014. JSAI: A
Static Analysis Platform for JavaScript. In Proceedings of the 22nd ACM SIG-
SOFT International Symposium on Foundations of Software Engineering (FSE).
https://doi.org/10.1145/2635868.2635904

[11] Se-Won Kim, Xavier Rival, and Sukyoung Ryu. 2018. A Theoretical Foundation
of Sensitivity in an Abstract Interpretation Framework. ACM Transactions on
Programming Languages and Systems (TOPLAS) 40, 3, Article 13 (2018), 44 pages.
https://doi.org/10.1145/3230624

[12] Yoonseok Ko, Xavier Rival, and Sukyoung Ryu. 2017. Weakly Sensitive Analysis
for Unbounded Iteration over JavaScript Objects. In Proceedings of the 15th Asian
Symposium on Programming Languages and Systems (APLAS). https://doi.org/10.
1007/978-3-319-71237-6_8

7

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Automatically Deriving JavaScript Static Analyzers from Language Specifications ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

function error(e) { throw e; }

const n = ...; // [0, 99]

n |> x => x + 1 // [1, 100]

|> x => x * 2 // [2, 200]

|> x => x + 1n; // TypeError

|> error (42);

of representative techniques to increase the precision of JavaScript
static analysis for loops. It discriminates contexts using a stack of
loop contexts containing loop iterations. We de�ne it under view-
based analysis sensitivity and implement it in JSAVER to increase
the precision of IRES static analysis. Moreover, we also de�ne and
implement the loop sensitivity for JavaScript using the loop sensitiv-
ity for IRES. Therefore, our tool discriminates contexts for explicit
loops, such as for-in or for-of, and even implicit loops, such as the
length property assignment of arrays.

6 EVALUATION
• AdditiveExpression
• Identi�erReference
• Identi�er
• AssignmentExpression
• LeftHandSideExpression
• ArrowFunction

• RQ1: Coverage) How much does JSAVER cover JavaScript
language features in the latest ECMAScript (ES12, 2021)?

• RQ2: Adaptability) Could JSAVER adapt a new language
features not yet introduced in ES12?

• RQ3: Expressiveness) What kinds of abstract sensitivities
and abstract domains JSAVER can support?

• RQ4: Performance) Could JSAVER analyze JavaScript pro-
grams in a durable time?

TODO

7 RELATEDWORK
TODO

• JavaScript Static Analyzers [9, 10, 14, 27]
• JavaScript Static Analysis Techniques [1, 12, 13, 15, 18–21,
30, 34–36]

• Partial Evaluation? (maybe no - * SE conf.)

7.1 JavaScript Mechanized Speci�cation
A speci�cation is mechanized if and only if it is both formalized
and executable. For JavaScript, researchers have proposed various
mechanized speci�cation in their own approaches. In 2010, Guha
et al. [8] presented �JS, the �rst mechanized speci�cation for a core
calculus of ES3 semantics by desugaring most of syntax into �JS, an
extended standard lambda calculus. Thus, the shape of �JS seman-
tics is quite di�erent with original algorithm steps. In mid 2010s,
researchers tried to de�ne mechanized speci�cation for the ES5
and 5.1 semantics having a similar shape of semantics with original
algorithm steps as much as possible. Bodin et al. [2] de�ned JSCert,
a semantics of a small subset of ES5, using Coq and extracts a refer-
ence interpreter JSRef. Park et al. [22] de�ned an entire semantics
of ES5, KJS, using the K [29], which is a framework for de�ning
language semantics. Fragoso Santos et al. [7] presented JaVerT, a

JavaScript veri�cation toolchain, including a JavaScript semantics
de�ned in their own Intermediate language, JSIL.

However, the fundamental problem of their approaches is that
they are manually de�ned thus they are labor-intensive and error-
prone. Due to such limitation, there is no existing mechanized
speci�cation for full semantics of ES6 or later versions. Therefore,
most of existing JavaScript static analyzers only focus on ES5.1
features or rarely support ES6 features even though already six
more versions from ES7 to ES12 are released since 2015.

Moreover, Park et al. [23] successfully showed that JISET is useful
tomechanically handle recent versions of ECMAScript by extending
JISET to perform N+1-version di�erential testing of both JavaScript
engines and ES11 (2020).

8 CONCLUSION
TODO

REFERENCES
[1] Roberto Amadini, Alexander Jordan, Graeme Gange, François Gauthier, Peter

Schachte, Harald Søndergaard, Peter J Stuckey, and Chenyi Zhang. 2017. Com-
bining String Abstract Domains for JavaScript Analysis: An Evaluation. In Pro-
ceedings of the 23rd International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS). https://doi.org/10.1007/978-3-
662-54577-5_3

[2] Martin Bodin, Arthur Charguéraud, Daniele Filaretti, Philippa Gardner, Sergio
Ma�eis, Daiva Naudziuniene, Alan Schmitt, and Gareth Smith. 2014. A Trusted
Mechanised JavaScript Speci�cation. Proceedings of the 41st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming (POPL) 49, 1 (2014), 87–100.
https://doi.org/10.1145/2535838.2535876

[3] David R. Chase, Mark Wegman, and F. Kenneth Zadeck. 1990. Analysis of
Pointers and Structures. In Proceedings of the ACM SIGPLAN 1990 Conference on
Programming Language Design and Implementation (PLDI) (PLDI ’90). Association
for Computing Machinery, New York, NY, USA, 296–310. https://doi.org/10.
1145/93542.93585

[4] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Uni�ed
Lattice Model for Static Analysis of Programs by Construction or Approximation
of Fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming languages (POPL). https://doi.org/10.1145/512950.
512973

[5] Patrick Cousot and Radhia Cousot. 1977. Static Determination of Dynamic
Properties of Generalized Type Unions. In Proceedings of an ACM Conference on
Language Design for Reliable Software. Association for Computing Machinery,
New York, NY, USA, 77–94. https://doi.org/10.1145/800022.808314

[6] Patrick Cousot and Radhia Cousot. 1992. Abstract Interpretation Frameworks.
Journal of Logic and Computation (JLC) 2, 4 (1992), 511–547. https://doi.org/10.
1093/logcom/2.4.511

[7] José Fragoso Santos, Petar Maksimović, Daiva Naudži = unienė, Thomas Wood,
and Philippa Gardner. 2017. JaVerT: JavaScript Veri�cation Toolchain. Proceedings
of the 44th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
(POPL) 2, POPL (2017), 1–33. https://doi.org/10.1145/3158138

[8] Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. 2010. The essence
of JavaScript. In Proceedings of the 24th European Conference on Object-Oriented
Programming (ECOOP). Springer, 126–150. https://doi.org/10.1007/978-3-642-
14107-2_7

[9] Simon Holm Jensen, Anders Møller, and Peter Thiemann. 2009. Type Analysis for
JavaScript. In Proceedings of the 16th International Symposium on Static Analysis
(SAS). https://doi.org/10.1007/978-3-642-03237-0_17

[10] Vineeth Kashyap, Kyle Dewey, Ethan A. Kuefner, John Wagner, Kevin Gib-
bons, John Sarracino, Ben Wiedermann, and Ben Hardekopf. 2014. JSAI: A
Static Analysis Platform for JavaScript. In Proceedings of the 22nd ACM SIG-
SOFT International Symposium on Foundations of Software Engineering (FSE).
https://doi.org/10.1145/2635868.2635904

[11] Se-Won Kim, Xavier Rival, and Sukyoung Ryu. 2018. A Theoretical Foundation
of Sensitivity in an Abstract Interpretation Framework. ACM Transactions on
Programming Languages and Systems (TOPLAS) 40, 3, Article 13 (2018), 44 pages.
https://doi.org/10.1145/3230624

[12] Yoonseok Ko, Xavier Rival, and Sukyoung Ryu. 2017. Weakly Sensitive Analysis
for Unbounded Iteration over JavaScript Objects. In Proceedings of the 15th Asian
Symposium on Programming Languages and Systems (APLAS). https://doi.org/10.
1007/978-3-319-71237-6_8

7

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

(a) Evaluation algorithm for logical OR assignments.

1 syntax def AssignmentExpression [8]. Evaluation(

2 this , LeftHandSideExpression , AssignmentExpression

3) { /* entry */

4 let lref = (LeftHandSideExpression.Evaluation)

5 let lval = [? (GetValue lref)]

6 let lbool = [! (ToBoolean lval)] /* #1 */

7 if (= lbool true) /* #2 */ return lval else { /* #3 */ }

8 if (&& (IsAnonymousFunctionDefinition AssignmentExpression)

9 (LeftHandSideExpression.IsIdentifierRef)) { /* #4 */

10 let rval = (AssignmentExpression.NamedEvaluation

11 lref.ReferencedName)

12 } else { /* #5 */

13 let rref = (AssignmentExpression.Evaluation)

14 let rval = [? (GetValue rref)]

15 } /* #6 */

16 [? (PutValue lref rval)]

17 return rval

18 } /* exit */

(b) The extracted IRES function.

Figure 1: Evaluation algorithm for the eighth alternative of AssignmentExpression in ES12 and the extracted IRES function.

To alleviate this problem, we propose a novel technique called
meta-level static analysis to automatically derive a JavaScript static
analyzer from any version of ECMAScript. The main idea of the
meta-level static analysis is to indirectly analyze a target language
program by performing static analysis for a language speci�ca-
tion of the target language written in a speci�cation language with
the program as the initial input. Thus, it can signi�cantly reduce
the burden to manually design and implement static analyzers by
automatically deriving them from given language speci�cations.
Moreover, it even guarantees the soundness of derived static analyz-
ers for the target language by constructing sound abstract semantics
for the speci�cation language.

For the expressiveness of a meta-level static analysis, we also
present ways to con�gure analysis sensitivities and abstract do-
mains for a target language. Con�guring them is a typical way
to manage analysis precision and performance. First, we present
the AST sensitivity in a meta-level static analysis to express analy-
sis sensitivities for a target language such as �ow-sensitivity and
k-callsite-sensitivity (Section 4.2). Second, we present a way to
con�gure abstract domains for structures and values in a target
language (Section 4.3).

To actualize our approach for JavaScript, we present JSAVER,
JavaScript Static Analyzers via ECMAScript Representations. First,
we utilize JISET [26] to extract a mechanized speci�cation written
in an intermediate representation, IRES, from a given ECMAScript.
Thus, target and speci�cation languages are JavaScript and IRES,
respectively, for the meta-level static analysis in JSAVER. In addition,
we implement several analysis techniques to improve the perfor-
mance and precision of derived static analyzers (Section 5). We
evaluated JSAVER by deriving a JavaScript static analyzer from the
latest ECMAScript, ES12, and using the o�cial conformance tests,
Test2622.

Our contributions are as follows:
• We propose a novel concept called meta-level static analysis,
which automatically derives a static analyzer for a target

2https://github.com/tc39/test262

let f = Math.floor(Math.random () * 100);

// f: [0, 99]

f ||= x => x;

// f: [1, 99] or { name: �f�, ... }

let x = f.name;

// f: [1, 99] or { name: �f�, ... }, x: undefined or �f�

Figure 2: A running JavaScript program with a logical OR
assignment newly introduced in ES12.

language from its language speci�cation written in a speci�-
cation language.

• We actualize meta-level static analysis for JavaScript as a tool
called JSAVER. It is the �rst tool that automatically derives a
JavaScript static analyzer from any version of ECMAScript.

• We derive a static analyzer from the latest ECMAScript, ES12,
to evaluate JSAVER. The synthesized static analyzer success-
fully analyzes all applicable 18,556 o�cial conformance tests.
Moreover, we demonstrate the adaptability and expressive-
ness of JSAVER with several case studies.

2 BACKGROUND
In this section, we explain the detail of ECMAScript, the o�cial
speci�cation of JavaScript. We then introduce JISET and how it
extracts a mechanized speci�cation from it. Since our work is to
perform meta-level static analysis for JavaScript using extracted
mechanized speci�cations, it is essential to understand how EC-
MAScript describes JavaScript semantics and how JISET extracts a
mechanized speci�cation from it.

For the detailed explanation, we explain a new language feature
introduced in ES12 called logical OR assignments (Figure 1) and
use a JavaScript program (Figure 2) as a running example. It �rst
de�nes a variable f with a random integer from 0 to 99. Then, it
uses a logical OR assignment to update f with an arrow function
whose name is �f� only if f has 0 because 0 represents false but
other integers represent true. Finally, it de�nes a variable x with
f.name and its value is undefined if f has an integer or �f� otherwise.

2

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Automatically Deriving JavaScript Static Analyzers from Language Specifications ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

otherwise, a normal function. An instruction i is a primitive value
assignment, an operation between values, a internal �eld access, a
external �eld access, a record allocations, a function call, or a return
instruction.

States � 2 S = H ⇥ C
Heaps h 2 H = A �n��!R
Contexts c 2 C = L ⇥ (X �n��!V) ⇥ C?
Values � 2 V = Vp] A] T] F
Records r 2 R = (Vstr

�n��!V) ⇥ (Vstr
�n��!V)

States S consists of heaps H and contexts C. A heap h 2 H is a
�nite mapping from addresses to records. Each record allocation
instruction x = {} creates a unique address a 2 A di�erent with
existing addresses. A context c 2 C is a triple of 1) the program
point, 2) a local environment which is a �nite mapping from vari-
ables to values, and 3) an optional calling context. A value � 2 V
is a primitive value, an address, an AST, or a function. A record
r 2 R consists of two �nite mappings from strings to values. The
left mapping represents internal �elds accessible by internal �eld
accesses x = x[x]. On the other hand, the right one represents ex-
ternal �elds, such as variables in JavaScript environment records or
properties in JavaScript objects, and they are accessible by a exter-
nal �eld access x = x[x]ext. We formulate the concrete semantics
of a program P as a transition system ({, S�) where{✓ S⇥ S is a
transition relation between concrete states and S� is a set of initial
states.

For a meta-level static analysis, we de�ne its abstract semantics
in the abstract interpretation framework [4, 6]. Since our analysis
supports view-based analysis sensitivities [11, 24], the abstract
domain is de�ned as a mapping from views to abstract states, D# =
� ! D#, with a view abstraction � : � ! P(S) which represents
the meaning of each view � 2 �. Then, we de�ne abstract states as
follows:

Abstract States � # 2 D# = H# ⇥ C#

Abstract Heaps h# 2 H# = A# �n��!(R# ⇥ R#
ext

)
Abstract Addresses a# 2 A# = L
Abstract Contexts c# 2 C# = X �n��!V#

An abstract heaph# 2 H# is a �nitemapping from abstract addresses
A
to pairs of abstract internal records R# and abstract external

records R#
ext

. Each abstract address a# 2 A# is de�ned with the
allocation-site abstraction [3] that partitions concrete addresses A
based on their allocation sites L. An abstract context c# 2 C# is a
�nite mapping from variables to abstract values. Shapes of abstract
values V#, abstract internal (or external) records R# (or R#

ext
) are

parametric thus we can freely con�gure them.

4.2 Analysis Sensitivities
In a meta-level static analysis, analysis sensitivities of the target
language (JavaScript) are di�erent with them of the speci�cation
language (IRES). For example, we explain what happens during anal-
ysis of the following JavaScript program with the �ow-sensitivity
for IRES:

let x = 1, y = 2;

x + y; // 3

(a) Evaluation algorithm for identi�er references.

1 syntax def IdentifierReference [0]. Evaluation(

2 this , Identifier

3) {

4 return [? (ResolveBinding (Identifier.StringValue))

5 }

(b) The extracted IRES function.

(c) Parsing result of x + y (bottom) and the initial local environment
(top) of the IRES function.

Figure 7: An example of the di�erence between analysis sen-
sitivities of target and speci�cation language.

Figure 7 describes (a) the Evaluation algorithm of identi�er refer-
ences, (b) its extracted IRES function, and (c) the parsing result of
x + y and the initial local environment of the IRES function. Since
the �ow-sensitivity merges states based on the program points,
contexts for the evaluation of both identi�er references x and y are
merged. Thus, the IRES variable Identifier points to their ASTs
as described in Figure 7. Due to the imprecise merge of contexts,
StringValue of Identifier returns �x� and �y�, and ResolveBinding
with them returns both 1 and 2. Finally, the analysis result of x + y

becomes { 2, 3, 4 }.

Flow Sensitivity. To resolve this problem, we present an AST sen-
sitivity for the speci�cation language to represent �ow-sensitivity
of the target language. It is a variant of object sensitivity [17, 33]
which uses abstract addresses A# of receiver objects as views. How-
ever, unlike the object sensitivity, the AST sensitivity utilizes ASTs
T stored in the parameter this only for syntax-directed functions:

� flow(t 2 T) = {� = (_, c) 2 S | syntax-ctxt(c) = c 0 ^ c 0(this) = t}
where syntax-ctxt(c) denotes the top-most context whose function
is syntax-directed and c 0(this) denotes a lookup of the variable
this in the mapping in the context c 0. We de�ne the �ow sensitivity
for the target language using the AST sensitivity and it successfully
divides contexts for the evaluation of JavaScript identi�ers x and y

in the above example using their ASTs even though their program
points are same.

Callsite Sensitivity. We also formally de�ne the callsite sensitiv-
ity [31, 32] for the target language by extending AST sensitivity
for speci�c normal IRES functions. The original callsite sensitivity
discriminates calling contexts based on their top most callsites. In
ECMAScript, all explicit and even implicit JavaScript function calls

5

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Automatically Deriving JavaScript Static Analyzers from Language Specifications ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

function error(e) { throw e; }

const n = ...; // [0, 99]

n |> x => x + 1 // [1, 100]

|> x => x * 2 // [2, 200]

|> x => x + 1n; // TypeError

|> error (42);

of representative techniques to increase the precision of JavaScript
static analysis for loops. It discriminates contexts using a stack of
loop contexts containing loop iterations. We de�ne it under view-
based analysis sensitivity and implement it in JSAVER to increase
the precision of IRES static analysis. Moreover, we also de�ne and
implement the loop sensitivity for JavaScript using the loop sensitiv-
ity for IRES. Therefore, our tool discriminates contexts for explicit
loops, such as for-in or for-of, and even implicit loops, such as the
length property assignment of arrays.

6 EVALUATION
• AdditiveExpression
• Identi�erReference
• Identi�er
• AssignmentExpression
• LeftHandSideExpression
• ArrowFunction

• RQ1: Coverage) How much does JSAVER cover JavaScript
language features in the latest ECMAScript (ES12, 2021)?

• RQ2: Adaptability) Could JSAVER adapt a new language
features not yet introduced in ES12?

• RQ3: Expressiveness) What kinds of abstract sensitivities
and abstract domains JSAVER can support?

• RQ4: Performance) Could JSAVER analyze JavaScript pro-
grams in a durable time?

TODO

7 RELATEDWORK
TODO

• JavaScript Static Analyzers [9, 10, 14, 27]
• JavaScript Static Analysis Techniques [1, 12, 13, 15, 18–21,
30, 34–36]

• Partial Evaluation? (maybe no - * SE conf.)

7.1 JavaScript Mechanized Speci�cation
A speci�cation is mechanized if and only if it is both formalized
and executable. For JavaScript, researchers have proposed various
mechanized speci�cation in their own approaches. In 2010, Guha
et al. [8] presented �JS, the �rst mechanized speci�cation for a core
calculus of ES3 semantics by desugaring most of syntax into �JS, an
extended standard lambda calculus. Thus, the shape of �JS seman-
tics is quite di�erent with original algorithm steps. In mid 2010s,
researchers tried to de�ne mechanized speci�cation for the ES5
and 5.1 semantics having a similar shape of semantics with original
algorithm steps as much as possible. Bodin et al. [2] de�ned JSCert,
a semantics of a small subset of ES5, using Coq and extracts a refer-
ence interpreter JSRef. Park et al. [22] de�ned an entire semantics
of ES5, KJS, using the K [29], which is a framework for de�ning
language semantics. Fragoso Santos et al. [7] presented JaVerT, a

JavaScript veri�cation toolchain, including a JavaScript semantics
de�ned in their own Intermediate language, JSIL.

However, the fundamental problem of their approaches is that
they are manually de�ned thus they are labor-intensive and error-
prone. Due to such limitation, there is no existing mechanized
speci�cation for full semantics of ES6 or later versions. Therefore,
most of existing JavaScript static analyzers only focus on ES5.1
features or rarely support ES6 features even though already six
more versions from ES7 to ES12 are released since 2015.

Moreover, Park et al. [23] successfully showed that JISET is useful
tomechanically handle recent versions of ECMAScript by extending
JISET to perform N+1-version di�erential testing of both JavaScript
engines and ES11 (2020).

8 CONCLUSION
TODO

REFERENCES
[1] Roberto Amadini, Alexander Jordan, Graeme Gange, François Gauthier, Peter

Schachte, Harald Søndergaard, Peter J Stuckey, and Chenyi Zhang. 2017. Com-
bining String Abstract Domains for JavaScript Analysis: An Evaluation. In Pro-
ceedings of the 23rd International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS). https://doi.org/10.1007/978-3-
662-54577-5_3

[2] Martin Bodin, Arthur Charguéraud, Daniele Filaretti, Philippa Gardner, Sergio
Ma�eis, Daiva Naudziuniene, Alan Schmitt, and Gareth Smith. 2014. A Trusted
Mechanised JavaScript Speci�cation. Proceedings of the 41st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming (POPL) 49, 1 (2014), 87–100.
https://doi.org/10.1145/2535838.2535876

[3] David R. Chase, Mark Wegman, and F. Kenneth Zadeck. 1990. Analysis of
Pointers and Structures. In Proceedings of the ACM SIGPLAN 1990 Conference on
Programming Language Design and Implementation (PLDI) (PLDI ’90). Association
for Computing Machinery, New York, NY, USA, 296–310. https://doi.org/10.
1145/93542.93585

[4] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Uni�ed
Lattice Model for Static Analysis of Programs by Construction or Approximation
of Fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming languages (POPL). https://doi.org/10.1145/512950.
512973

[5] Patrick Cousot and Radhia Cousot. 1977. Static Determination of Dynamic
Properties of Generalized Type Unions. In Proceedings of an ACM Conference on
Language Design for Reliable Software. Association for Computing Machinery,
New York, NY, USA, 77–94. https://doi.org/10.1145/800022.808314

[6] Patrick Cousot and Radhia Cousot. 1992. Abstract Interpretation Frameworks.
Journal of Logic and Computation (JLC) 2, 4 (1992), 511–547. https://doi.org/10.
1093/logcom/2.4.511

[7] José Fragoso Santos, Petar Maksimović, Daiva Naudži = unienė, Thomas Wood,
and Philippa Gardner. 2017. JaVerT: JavaScript Veri�cation Toolchain. Proceedings
of the 44th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
(POPL) 2, POPL (2017), 1–33. https://doi.org/10.1145/3158138

[8] Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. 2010. The essence
of JavaScript. In Proceedings of the 24th European Conference on Object-Oriented
Programming (ECOOP). Springer, 126–150. https://doi.org/10.1007/978-3-642-
14107-2_7

[9] Simon Holm Jensen, Anders Møller, and Peter Thiemann. 2009. Type Analysis for
JavaScript. In Proceedings of the 16th International Symposium on Static Analysis
(SAS). https://doi.org/10.1007/978-3-642-03237-0_17

[10] Vineeth Kashyap, Kyle Dewey, Ethan A. Kuefner, John Wagner, Kevin Gib-
bons, John Sarracino, Ben Wiedermann, and Ben Hardekopf. 2014. JSAI: A
Static Analysis Platform for JavaScript. In Proceedings of the 22nd ACM SIG-
SOFT International Symposium on Foundations of Software Engineering (FSE).
https://doi.org/10.1145/2635868.2635904

[11] Se-Won Kim, Xavier Rival, and Sukyoung Ryu. 2018. A Theoretical Foundation
of Sensitivity in an Abstract Interpretation Framework. ACM Transactions on
Programming Languages and Systems (TOPLAS) 40, 3, Article 13 (2018), 44 pages.
https://doi.org/10.1145/3230624

[12] Yoonseok Ko, Xavier Rival, and Sukyoung Ryu. 2017. Weakly Sensitive Analysis
for Unbounded Iteration over JavaScript Objects. In Proceedings of the 15th Asian
Symposium on Programming Languages and Systems (APLAS). https://doi.org/10.
1007/978-3-319-71237-6_8

7

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

(a) Evaluation algorithm for identi�er references

1 syntax def IdentifierReference [0]. Evaluation(
2 this , Identifier
3) {
4 return [? (ResolveBinding (Identifier.StringValue))]
5 }

(b) Extracted IRES function for identi�er references

(c) Result of x + y via a mechanized speci�cation

Figure 7: Analysis sensitivities of the target language
(JavaScript) and the speci�cation language (IRES)

divides contexts for the evaluation of JavaScript identi�ers x and y

in the above example using their ASTs even though their program
points in IRES are the same.

Callsite Sensitivity. We also formally de�ne the callsite sensitiv-
ity [37, 38] for the target language by extending the AST sensitivity
for speci�c normal IRES functions. The original callsite sensitivity
discriminates calling contexts using their top most callsites. In EC-
MAScript, all explicit and even implicit JavaScript function calls
invoke normal IRES functions Call and Construct. Thus, we de�ne
the callsite sensitivity for the target language by extending the AST
sensitivity with two normal IRES functions:

� cfa(t 2 T) = {� = (_, c) 2 S |
syntax-ctxt � js-call-ctxt(c) = c 0 ^ c 0(this) = t}

where js-call-ctxt(c) denotes the top-most context whose function is
Call or Construct and f �� denotes a function composition. Moreover,
we extend it to the k-callsite sensitivity by recursively taking ASTs
representing callsites of the target language:

�k -cfa(t 2 Tk) = {� = (_, c) 2 S |
t = [t1, · · · , tn] ^ n  k^
(ö(syntax-ctxt � js-call-ctxt)n+1(c) _ n = k)^
81  i  n.
((syntax-ctxt � js-call-ctxt)i (c) = ci ^ ci (this) = ti)}

Using this callsite sensitivity for the target language, the meta-
level static analyzer could discriminate not only explicit JavaScript
function calls (e.g. f()) but also implicit JavaScript function calls,
including getters/setters, user-de�ned implicit conversions, and
implicit function calls in built-in libraries.

5 IMPLEMENTATION
We developed a prototype implementation called JSAVER, which per-
forms a meta-level static analysis for JavaScript with ECMAScript.
The tool is an extension of JISET4 and it is an open-source project5.
In this section, we describe the challenges in implementing a meta-
level static analyzer and present our solutions for them.

Layered Abstract States. Unlike traditional JavaScript static anal-
yses, a meta-level static analysis for JavaScript should track analysis
results not only for the target language JavaScript but also for the
speci�cation language IRES. Thus, the sizes of abstract states are
much larger than those of the other JavaScript static analyzers. We
implement layered abstract states to maintain only updated analysis
results compared to the initial abstract state. It signi�cantly reduces
the time to perform the join (t), meet (u), and partial order (v)
operations by considering only the updated parts in abstract states.

Closures and Continuations. The speci�cation language IRES for
ECMAScript contains more complex language features than its
simpli�ed version presented in Section 4.1, such as symbols, lists,
and list operations. Among them, the two most complex features
are closures with captured variables and �rst-class continuations be-
cause they introduce new kinds of control �ows. ECMAScript uses
closures to de�ne implicit and explicit JavaScript iterators and uses
continuations for iterators, generators, and asynchronous features
such as async, await, and the Proxy object. Therefore, we de�ne and
implement abstract closures and abstract continuations; an abstract
closure is a pair of a function and a mapping from captured vari-
ables to their abstract values, and an abstract continuation consists
of a program point, a view for analysis sensitivity, parameters, and
an abstract context.

Abstract Counting. Properties of JavaScript objects could be dy-
namically added, modi�ed, or deleted and even accessible by �rst-
class property names. Thus, in JavaScript static analysis, performing
strong updates rather than weak updates for object properties as
many as possible is important for precise analysis results. Since
records of IRES are even more dynamic than JavaScript objects, it is
also important to increase analysis precision. Therefore, we imple-
ment abstract counting [19] to increase chances to perform strong
updates for �elds of records. It checks how many times records in
the same allocation site have been allocated and performs strong
updates only for singleton records with singleton �eld values.

Loop Sensitivity. Similar to function calls, loops are also typical
merging points in static analysis. A loop sensitivity [24] is one of the
representative techniques to increase the precision of JavaScript
static analysis for loops. It discriminates contexts using a stack
of loop contexts containing loop iterations. We de�ne it under
the view-based analysis sensitivity and implement it in JSAVER to
increase the precision of IRES static analysis. Moreover, we also
de�ne and implement the loop sensitivity for JavaScript using the
loop sensitivity for IRES. Therefore, JSAVER discriminates contexts
for explicit loops such as for-in and for-of and even implicit loops
such as the assignment of arguments or the length property of
arrays.

4https://github.com/kaist-plrg/jiset
5The URL of the tool is anonymized due to a double-blind review process.

6

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

(a) Evaluation algorithm for identi�er references

1 syntax def IdentifierReference [0]. Evaluation(
2 this , Identifier
3) {
4 return [? (ResolveBinding (Identifier.StringValue))]
5 }

(b) Extracted IRES function for identi�er references

(c) Result of x + y via a mechanized speci�cation

Figure 7: Analysis sensitivities of the target language
(JavaScript) and the speci�cation language (IRES)

divides contexts for the evaluation of JavaScript identi�ers x and y

in the above example using their ASTs even though their program
points in IRES are the same.

Callsite Sensitivity. We also formally de�ne the callsite sensitiv-
ity [37, 38] for the target language by extending the AST sensitivity
for speci�c normal IRES functions. The original callsite sensitivity
discriminates calling contexts using their top most callsites. In EC-
MAScript, all explicit and even implicit JavaScript function calls
invoke normal IRES functions Call and Construct. Thus, we de�ne
the callsite sensitivity for the target language by extending the AST
sensitivity with two normal IRES functions:

� cfa(t 2 T) = {� = (_, c) 2 S |
syntax-ctxt � js-call-ctxt(c) = c 0 ^ c 0(this) = t}

where js-call-ctxt(c) denotes the top-most context whose function is
Call or Construct and f �� denotes a function composition. Moreover,
we extend it to the k-callsite sensitivity by recursively taking ASTs
representing callsites of the target language:

�k -cfa(t 2 Tk) = {� = (_, c) 2 S |
t = [t1, · · · , tn] ^ n  k^
(ö(syntax-ctxt � js-call-ctxt)n+1(c) _ n = k)^
81  i  n.
((syntax-ctxt � js-call-ctxt)i (c) = ci ^ ci (this) = ti)}

Using this callsite sensitivity for the target language, the meta-
level static analyzer could discriminate not only explicit JavaScript
function calls (e.g. f()) but also implicit JavaScript function calls,
including getters/setters, user-de�ned implicit conversions, and
implicit function calls in built-in libraries.

5 IMPLEMENTATION
We developed a prototype implementation called JSAVER, which per-
forms a meta-level static analysis for JavaScript with ECMAScript.
The tool is an extension of JISET4 and it is an open-source project5.
In this section, we describe the challenges in implementing a meta-
level static analyzer and present our solutions for them.

Layered Abstract States. Unlike traditional JavaScript static anal-
yses, a meta-level static analysis for JavaScript should track analysis
results not only for the target language JavaScript but also for the
speci�cation language IRES. Thus, the sizes of abstract states are
much larger than those of the other JavaScript static analyzers. We
implement layered abstract states to maintain only updated analysis
results compared to the initial abstract state. It signi�cantly reduces
the time to perform the join (t), meet (u), and partial order (v)
operations by considering only the updated parts in abstract states.

Closures and Continuations. The speci�cation language IRES for
ECMAScript contains more complex language features than its
simpli�ed version presented in Section 4.1, such as symbols, lists,
and list operations. Among them, the two most complex features
are closures with captured variables and �rst-class continuations be-
cause they introduce new kinds of control �ows. ECMAScript uses
closures to de�ne implicit and explicit JavaScript iterators and uses
continuations for iterators, generators, and asynchronous features
such as async, await, and the Proxy object. Therefore, we de�ne and
implement abstract closures and abstract continuations; an abstract
closure is a pair of a function and a mapping from captured vari-
ables to their abstract values, and an abstract continuation consists
of a program point, a view for analysis sensitivity, parameters, and
an abstract context.

Abstract Counting. Properties of JavaScript objects could be dy-
namically added, modi�ed, or deleted and even accessible by �rst-
class property names. Thus, in JavaScript static analysis, performing
strong updates rather than weak updates for object properties as
many as possible is important for precise analysis results. Since
records of IRES are even more dynamic than JavaScript objects, it is
also important to increase analysis precision. Therefore, we imple-
ment abstract counting [19] to increase chances to perform strong
updates for �elds of records. It checks how many times records in
the same allocation site have been allocated and performs strong
updates only for singleton records with singleton �eld values.

Loop Sensitivity. Similar to function calls, loops are also typical
merging points in static analysis. A loop sensitivity [24] is one of the
representative techniques to increase the precision of JavaScript
static analysis for loops. It discriminates contexts using a stack
of loop contexts containing loop iterations. We de�ne it under
the view-based analysis sensitivity and implement it in JSAVER to
increase the precision of IRES static analysis. Moreover, we also
de�ne and implement the loop sensitivity for JavaScript using the
loop sensitivity for IRES. Therefore, JSAVER discriminates contexts
for explicit loops such as for-in and for-of and even implicit loops
such as the assignment of arguments or the length property of
arrays.

4https://github.com/kaist-plrg/jiset
5The URL of the tool is anonymized due to a double-blind review process.

6

parsex ||= y
581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

(a) Evaluation algorithm for identi�er references

1 syntax def IdentifierReference [0]
2 .Evaluation(
3 this , Identifier
4) {
5 return [?
6 (ResolveBinding
7 (Identifier.StringValue))]
8 }

(b) Extracted IRES function for identi�er references

(c) Result of x + y via a mechanized speci�cation

Figure 7: Analysis sensitivities of the target language
(JavaScript) and the speci�cation language (IRES)

divides contexts for the evaluation of JavaScript identi�ers x and y

in the above example using their ASTs even though their program
points in IRES are the same.

Callsite Sensitivity. We also formally de�ne the callsite sensitiv-
ity [37, 38] for the target language by extending the AST sensitivity
for speci�c normal IRES functions. The original callsite sensitivity
discriminates calling contexts using their top most callsites. In EC-
MAScript, all explicit and even implicit JavaScript function calls
invoke normal IRES functions Call and Construct. Thus, we de�ne
the callsite sensitivity for the target language by extending the AST
sensitivity with two normal IRES functions:

� cfa(t 2 T) = {� = (_, c) 2 S |
syntax-ctxt � js-call-ctxt(c) = c 0 ^ c 0(this) = t}

where js-call-ctxt(c) denotes the top-most context whose function is
Call or Construct and f �� denotes a function composition. Moreover,
we extend it to the k-callsite sensitivity by recursively taking ASTs
representing callsites of the target language:

�k -cfa(t 2 Tk) = {� = (_, c) 2 S |
t = [t1, · · · , tn] ^ n  k^
(ö(syntax-ctxt � js-call-ctxt)n+1(c) _ n = k)^
81  i  n.
((syntax-ctxt � js-call-ctxt)i (c) = ci ^ ci (this) = ti)}

Using this callsite sensitivity for the target language, the meta-
level static analyzer could discriminate not only explicit JavaScript
function calls (e.g. f()) but also implicit JavaScript function calls,

including getters/setters, user-de�ned implicit conversions, and
implicit function calls in built-in libraries.

5 IMPLEMENTATION
We developed a prototype implementation called JSAVER, which per-
forms a meta-level static analysis for JavaScript with ECMAScript.
The tool is an extension of JISET4 and it is an open-source project5.
In this section, we describe the challenges in implementing a meta-
level static analyzer and present our solutions for them.

Layered Abstract States. Unlike traditional JavaScript static anal-
yses, a meta-level static analysis for JavaScript should track analysis
results not only for the target language JavaScript but also for the
speci�cation language IRES. Thus, the sizes of abstract states are
much larger than those of the other JavaScript static analyzers. We
implement layered abstract states to maintain only updated analysis
results compared to the initial abstract state. It signi�cantly reduces
the time to perform the join (t), meet (u), and partial order (v)
operations by considering only the updated parts in abstract states.

Closures and Continuations. The speci�cation language IRES for
ECMAScript contains more complex language features than its
simpli�ed version presented in Section 4.1, such as symbols, lists,
and list operations. Among them, the two most complex features
are closures with captured variables and �rst-class continuations be-
cause they introduce new kinds of control �ows. ECMAScript uses
closures to de�ne implicit and explicit JavaScript iterators and uses
continuations for iterators, generators, and asynchronous features
such as async, await, and the Proxy object. Therefore, we de�ne and
implement abstract closures and abstract continuations; an abstract
closure is a pair of a function and a mapping from captured vari-
ables to their abstract values, and an abstract continuation consists
of a program point, a view for analysis sensitivity, parameters, and
an abstract context.

Abstract Counting. Properties of JavaScript objects could be dy-
namically added, modi�ed, or deleted and even accessible by �rst-
class property names. Thus, in JavaScript static analysis, performing
strong updates rather than weak updates for object properties as
many as possible is important for precise analysis results. Since
records of IRES are even more dynamic than JavaScript objects, it is
also important to increase analysis precision. Therefore, we imple-
ment abstract counting [19] to increase chances to perform strong
updates for �elds of records. It checks how many times records in
the same allocation site have been allocated and performs strong
updates only for singleton records with singleton �eld values.

Loop Sensitivity. Similar to function calls, loops are also typical
merging points in static analysis. A loop sensitivity [24] is one of the
representative techniques to increase the precision of JavaScript
static analysis for loops. It discriminates contexts using a stack
of loop contexts containing loop iterations. We de�ne it under
the view-based analysis sensitivity and implement it in JSAVER to
increase the precision of IRES static analysis. Moreover, we also
de�ne and implement the loop sensitivity for JavaScript using the
loop sensitivity for IRES. Therefore, JSAVER discriminates contexts

4https://github.com/kaist-plrg/jiset
5The URL of the tool is anonymized due to a double-blind review process.

6

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

(a) Evaluation algorithm for identi�er references

1 syntax def IdentifierReference [0]
2 .Evaluation(
3 this , Identifier
4) {
5 return [?
6 (ResolveBinding
7 (Identifier.StringValue))]
8 }

(b) Extracted IRES function for identi�er references

(c) Result of x + y via a mechanized speci�cation

Figure 7: Analysis sensitivities of the target language
(JavaScript) and the speci�cation language (IRES)

divides contexts for the evaluation of JavaScript identi�ers x and y

in the above example using their ASTs even though their program
points in IRES are the same.

Callsite Sensitivity. We also formally de�ne the callsite sensitiv-
ity [37, 38] for the target language by extending the AST sensitivity
for speci�c normal IRES functions. The original callsite sensitivity
discriminates calling contexts using their top most callsites. In EC-
MAScript, all explicit and even implicit JavaScript function calls
invoke normal IRES functions Call and Construct. Thus, we de�ne
the callsite sensitivity for the target language by extending the AST
sensitivity with two normal IRES functions:

� cfa(t 2 T) = {� = (_, c) 2 S |
syntax-ctxt � js-call-ctxt(c) = c 0 ^ c 0(this) = t}

where js-call-ctxt(c) denotes the top-most context whose function is
Call or Construct and f �� denotes a function composition. Moreover,
we extend it to the k-callsite sensitivity by recursively taking ASTs
representing callsites of the target language:

�k -cfa(t 2 Tk) = {� = (_, c) 2 S |
t = [t1, · · · , tn] ^ n  k^
(ö(syntax-ctxt � js-call-ctxt)n+1(c) _ n = k)^
81  i  n.
((syntax-ctxt � js-call-ctxt)i (c) = ci ^ ci (this) = ti)}

Using this callsite sensitivity for the target language, the meta-
level static analyzer could discriminate not only explicit JavaScript
function calls (e.g. f()) but also implicit JavaScript function calls,

including getters/setters, user-de�ned implicit conversions, and
implicit function calls in built-in libraries.

5 IMPLEMENTATION
We developed a prototype implementation called JSAVER, which per-
forms a meta-level static analysis for JavaScript with ECMAScript.
The tool is an extension of JISET4 and it is an open-source project5.
In this section, we describe the challenges in implementing a meta-
level static analyzer and present our solutions for them.

Layered Abstract States. Unlike traditional JavaScript static anal-
yses, a meta-level static analysis for JavaScript should track analysis
results not only for the target language JavaScript but also for the
speci�cation language IRES. Thus, the sizes of abstract states are
much larger than those of the other JavaScript static analyzers. We
implement layered abstract states to maintain only updated analysis
results compared to the initial abstract state. It signi�cantly reduces
the time to perform the join (t), meet (u), and partial order (v)
operations by considering only the updated parts in abstract states.

Closures and Continuations. The speci�cation language IRES for
ECMAScript contains more complex language features than its
simpli�ed version presented in Section 4.1, such as symbols, lists,
and list operations. Among them, the two most complex features
are closures with captured variables and �rst-class continuations be-
cause they introduce new kinds of control �ows. ECMAScript uses
closures to de�ne implicit and explicit JavaScript iterators and uses
continuations for iterators, generators, and asynchronous features
such as async, await, and the Proxy object. Therefore, we de�ne and
implement abstract closures and abstract continuations; an abstract
closure is a pair of a function and a mapping from captured vari-
ables to their abstract values, and an abstract continuation consists
of a program point, a view for analysis sensitivity, parameters, and
an abstract context.

Abstract Counting. Properties of JavaScript objects could be dy-
namically added, modi�ed, or deleted and even accessible by �rst-
class property names. Thus, in JavaScript static analysis, performing
strong updates rather than weak updates for object properties as
many as possible is important for precise analysis results. Since
records of IRES are even more dynamic than JavaScript objects, it is
also important to increase analysis precision. Therefore, we imple-
ment abstract counting [19] to increase chances to perform strong
updates for �elds of records. It checks how many times records in
the same allocation site have been allocated and performs strong
updates only for singleton records with singleton �eld values.

Loop Sensitivity. Similar to function calls, loops are also typical
merging points in static analysis. A loop sensitivity [24] is one of the
representative techniques to increase the precision of JavaScript
static analysis for loops. It discriminates contexts using a stack
of loop contexts containing loop iterations. We de�ne it under
the view-based analysis sensitivity and implement it in JSAVER to
increase the precision of IRES static analysis. Moreover, we also
de�ne and implement the loop sensitivity for JavaScript using the
loop sensitivity for IRES. Therefore, JSAVER discriminates contexts

4https://github.com/kaist-plrg/jiset
5The URL of the tool is anonymized due to a double-blind review process.

6

JS Program P1

/ 5750

AST Sensitivity

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

(a) Evaluation algorithm for identi�er references

1 syntax def IdentifierReference [0]
2 .Evaluation(
3 this , Identifier
4) {
5 return [?
6 (ResolveBinding
7 (Identifier.StringValue))]
8 }

(b) Extracted IRES function for identi�er references

(c) Result of x + y via a mechanized speci�cation

Figure 7: Analysis sensitivities of the target language
(JavaScript) and the speci�cation language (IRES)

divides contexts for the evaluation of JavaScript identi�ers x and y

in the above example using their ASTs even though their program
points in IRES are the same.

Callsite Sensitivity. We also formally de�ne the callsite sensitiv-
ity [37, 38] for the target language by extending the AST sensitivity
for speci�c normal IRES functions. The original callsite sensitivity
discriminates calling contexts using their top most callsites. In EC-
MAScript, all explicit and even implicit JavaScript function calls
invoke normal IRES functions Call and Construct. Thus, we de�ne
the callsite sensitivity for the target language by extending the AST
sensitivity with two normal IRES functions:

� cfa(t 2 T) = {� = (_, c) 2 S |
syntax-ctxt � js-call-ctxt(c) = c 0 ^ c 0(this) = t}

where js-call-ctxt(c) denotes the top-most context whose function is
Call or Construct and f �� denotes a function composition. Moreover,
we extend it to the k-callsite sensitivity by recursively taking ASTs
representing callsites of the target language:

�k -cfa(t 2 Tk) = {� = (_, c) 2 S |
t = [t1, · · · , tn] ^ n  k^
(ö(syntax-ctxt � js-call-ctxt)n+1(c) _ n = k)^
81  i  n.
((syntax-ctxt � js-call-ctxt)i (c) = ci ^ ci (this) = ti)}

Using this callsite sensitivity for the target language, the meta-
level static analyzer could discriminate not only explicit JavaScript
function calls (e.g. f()) but also implicit JavaScript function calls,

including getters/setters, user-de�ned implicit conversions, and
implicit function calls in built-in libraries.

5 IMPLEMENTATION
We developed a prototype implementation called JSAVER, which per-
forms a meta-level static analysis for JavaScript with ECMAScript.
The tool is an extension of JISET4 and it is an open-source project5.
In this section, we describe the challenges in implementing a meta-
level static analyzer and present our solutions for them.

Layered Abstract States. Unlike traditional JavaScript static anal-
yses, a meta-level static analysis for JavaScript should track analysis
results not only for the target language JavaScript but also for the
speci�cation language IRES. Thus, the sizes of abstract states are
much larger than those of the other JavaScript static analyzers. We
implement layered abstract states to maintain only updated analysis
results compared to the initial abstract state. It signi�cantly reduces
the time to perform the join (t), meet (u), and partial order (v)
operations by considering only the updated parts in abstract states.

Closures and Continuations. The speci�cation language IRES for
ECMAScript contains more complex language features than its
simpli�ed version presented in Section 4.1, such as symbols, lists,
and list operations. Among them, the two most complex features
are closures with captured variables and �rst-class continuations be-
cause they introduce new kinds of control �ows. ECMAScript uses
closures to de�ne implicit and explicit JavaScript iterators and uses
continuations for iterators, generators, and asynchronous features
such as async, await, and the Proxy object. Therefore, we de�ne and
implement abstract closures and abstract continuations; an abstract
closure is a pair of a function and a mapping from captured vari-
ables to their abstract values, and an abstract continuation consists
of a program point, a view for analysis sensitivity, parameters, and
an abstract context.

Abstract Counting. Properties of JavaScript objects could be dy-
namically added, modi�ed, or deleted and even accessible by �rst-
class property names. Thus, in JavaScript static analysis, performing
strong updates rather than weak updates for object properties as
many as possible is important for precise analysis results. Since
records of IRES are even more dynamic than JavaScript objects, it is
also important to increase analysis precision. Therefore, we imple-
ment abstract counting [19] to increase chances to perform strong
updates for �elds of records. It checks how many times records in
the same allocation site have been allocated and performs strong
updates only for singleton records with singleton �eld values.

Loop Sensitivity. Similar to function calls, loops are also typical
merging points in static analysis. A loop sensitivity [24] is one of the
representative techniques to increase the precision of JavaScript
static analysis for loops. It discriminates contexts using a stack
of loop contexts containing loop iterations. We de�ne it under
the view-based analysis sensitivity and implement it in JSAVER to
increase the precision of IRES static analysis. Moreover, we also
de�ne and implement the loop sensitivity for JavaScript using the
loop sensitivity for IRES. Therefore, JSAVER discriminates contexts

4https://github.com/kaist-plrg/jiset
5The URL of the tool is anonymized due to a double-blind review process.

6

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

(a) Evaluation algorithm for identi�er references

1 syntax def IdentifierReference [0]
2 .Evaluation(
3 this , Identifier
4) {
5 return [?
6 (ResolveBinding
7 (Identifier.StringValue))]
8 }

(b) Extracted IRES function for identi�er references

(c) Result of x + y via a mechanized speci�cation

Figure 7: Analysis sensitivities of the target language
(JavaScript) and the speci�cation language (IRES)

divides contexts for the evaluation of JavaScript identi�ers x and y

in the above example using their ASTs even though their program
points in IRES are the same.

Callsite Sensitivity. We also formally de�ne the callsite sensitiv-
ity [37, 38] for the target language by extending the AST sensitivity
for speci�c normal IRES functions. The original callsite sensitivity
discriminates calling contexts using their top most callsites. In EC-
MAScript, all explicit and even implicit JavaScript function calls
invoke normal IRES functions Call and Construct. Thus, we de�ne
the callsite sensitivity for the target language by extending the AST
sensitivity with two normal IRES functions:

� cfa(t 2 T) = {� = (_, c) 2 S |
syntax-ctxt � js-call-ctxt(c) = c 0 ^ c 0(this) = t}

where js-call-ctxt(c) denotes the top-most context whose function is
Call or Construct and f �� denotes a function composition. Moreover,
we extend it to the k-callsite sensitivity by recursively taking ASTs
representing callsites of the target language:

�k -cfa(t 2 Tk) = {� = (_, c) 2 S |
t = [t1, · · · , tn] ^ n  k^
(ö(syntax-ctxt � js-call-ctxt)n+1(c) _ n = k)^
81  i  n.
((syntax-ctxt � js-call-ctxt)i (c) = ci ^ ci (this) = ti)}

Using this callsite sensitivity for the target language, the meta-
level static analyzer could discriminate not only explicit JavaScript
function calls (e.g. f()) but also implicit JavaScript function calls,

including getters/setters, user-de�ned implicit conversions, and
implicit function calls in built-in libraries.

5 IMPLEMENTATION
We developed a prototype implementation called JSAVER, which per-
forms a meta-level static analysis for JavaScript with ECMAScript.
The tool is an extension of JISET4 and it is an open-source project5.
In this section, we describe the challenges in implementing a meta-
level static analyzer and present our solutions for them.

Layered Abstract States. Unlike traditional JavaScript static anal-
yses, a meta-level static analysis for JavaScript should track analysis
results not only for the target language JavaScript but also for the
speci�cation language IRES. Thus, the sizes of abstract states are
much larger than those of the other JavaScript static analyzers. We
implement layered abstract states to maintain only updated analysis
results compared to the initial abstract state. It signi�cantly reduces
the time to perform the join (t), meet (u), and partial order (v)
operations by considering only the updated parts in abstract states.

Closures and Continuations. The speci�cation language IRES for
ECMAScript contains more complex language features than its
simpli�ed version presented in Section 4.1, such as symbols, lists,
and list operations. Among them, the two most complex features
are closures with captured variables and �rst-class continuations be-
cause they introduce new kinds of control �ows. ECMAScript uses
closures to de�ne implicit and explicit JavaScript iterators and uses
continuations for iterators, generators, and asynchronous features
such as async, await, and the Proxy object. Therefore, we de�ne and
implement abstract closures and abstract continuations; an abstract
closure is a pair of a function and a mapping from captured vari-
ables to their abstract values, and an abstract continuation consists
of a program point, a view for analysis sensitivity, parameters, and
an abstract context.

Abstract Counting. Properties of JavaScript objects could be dy-
namically added, modi�ed, or deleted and even accessible by �rst-
class property names. Thus, in JavaScript static analysis, performing
strong updates rather than weak updates for object properties as
many as possible is important for precise analysis results. Since
records of IRES are even more dynamic than JavaScript objects, it is
also important to increase analysis precision. Therefore, we imple-
ment abstract counting [19] to increase chances to perform strong
updates for �elds of records. It checks how many times records in
the same allocation site have been allocated and performs strong
updates only for singleton records with singleton �eld values.

Loop Sensitivity. Similar to function calls, loops are also typical
merging points in static analysis. A loop sensitivity [24] is one of the
representative techniques to increase the precision of JavaScript
static analysis for loops. It discriminates contexts using a stack
of loop contexts containing loop iterations. We de�ne it under
the view-based analysis sensitivity and implement it in JSAVER to
increase the precision of IRES static analysis. Moreover, we also
de�ne and implement the loop sensitivity for JavaScript using the
loop sensitivity for IRES. Therefore, JSAVER discriminates contexts

4https://github.com/kaist-plrg/jiset
5The URL of the tool is anonymized due to a double-blind review process.

6

IRES

JavaScript

· · ·<latexit sha1_base64="Kef69hW4e/raBfVz+DaK6/NBFbQ=">AAACHXicbVDJSgNBEK1xjXFL9OhlMAiewowKeozLwYsQITFCJkhPp2Ka9Cx01whxmI/wqge/xpt4Ff/GnnEObg8aHu9VdVU9P5ZCk+N8WDOzc/MLi5Wl6vLK6tp6rb5xpaNEcezySEbq2mcapQixS4IkXscKWeBL7PmT09zv3aHSIgo7NI1xELDbUIwEZ2SknseHEenqTa3hNJ0C9l/ilqQBJdo3dQu8YcSTAEPikmndd52YBilTJLjErOolGmPGJ+wW+4aGLEA9SIt9M3vHKEN7FCnzQrIL9XtHygKtp4FvKgNGY/3by8X/vH5Co6NBKsI4IQz516BRIm2K7Px4eygUcpJTQxhXwuxq8zFTjJOJqOqdoblF4YX591jGY+YjpV4+Jb7nWdpxs7QgQZYKykxm7u+E/pKrvaa739y7PGi0Tsr0KrAF27ALLhxCC86hDV3gMIEHeIQn69l6sV6tt6/SGavs2YQfsN4/AabGomA=</latexit> · · ·<latexit sha1_base64="Kef69hW4e/raBfVz+DaK6/NBFbQ=">AAACHXicbVDJSgNBEK1xjXFL9OhlMAiewowKeozLwYsQITFCJkhPp2Ka9Cx01whxmI/wqge/xpt4Ff/GnnEObg8aHu9VdVU9P5ZCk+N8WDOzc/MLi5Wl6vLK6tp6rb5xpaNEcezySEbq2mcapQixS4IkXscKWeBL7PmT09zv3aHSIgo7NI1xELDbUIwEZ2SknseHEenqTa3hNJ0C9l/ilqQBJdo3dQu8YcSTAEPikmndd52YBilTJLjErOolGmPGJ+wW+4aGLEA9SIt9M3vHKEN7FCnzQrIL9XtHygKtp4FvKgNGY/3by8X/vH5Co6NBKsI4IQz516BRIm2K7Px4eygUcpJTQxhXwuxq8zFTjJOJqOqdoblF4YX591jGY+YjpV4+Jb7nWdpxs7QgQZYKykxm7u+E/pKrvaa739y7PGi0Tsr0KrAF27ALLhxCC86hDV3gMIEHeIQn69l6sV6tt6/SGavs2YQfsN4/AabGomA=</latexit>

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Automatically Deriving JavaScript Static Analyzers from Language Specifications ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

function error(e) { throw e; }

const n = ...; // [0, 99]

n |> x => x + 1 // [1, 100]

|> x => x * 2 // [2, 200]

|> x => x + 1n; // TypeError

|> error (42);

of representative techniques to increase the precision of JavaScript
static analysis for loops. It discriminates contexts using a stack of
loop contexts containing loop iterations. We de�ne it under view-
based analysis sensitivity and implement it in JSAVER to increase
the precision of IRES static analysis. Moreover, we also de�ne and
implement the loop sensitivity for JavaScript using the loop sensitiv-
ity for IRES. Therefore, our tool discriminates contexts for explicit
loops, such as for-in or for-of, and even implicit loops, such as the
length property assignment of arrays.

6 EVALUATION
• AdditiveExpression
• Identi�erReference
• Identi�er
• AssignmentExpression
• LeftHandSideExpression
• ArrowFunction

• RQ1: Coverage) How much does JSAVER cover JavaScript
language features in the latest ECMAScript (ES12, 2021)?

• RQ2: Adaptability) Could JSAVER adapt a new language
features not yet introduced in ES12?

• RQ3: Expressiveness) What kinds of abstract sensitivities
and abstract domains JSAVER can support?

• RQ4: Performance) Could JSAVER analyze JavaScript pro-
grams in a durable time?

TODO

7 RELATEDWORK
TODO

• JavaScript Static Analyzers [9, 10, 14, 27]
• JavaScript Static Analysis Techniques [1, 12, 13, 15, 18–21,
30, 34–36]

• Partial Evaluation? (maybe no - * SE conf.)

7.1 JavaScript Mechanized Speci�cation
A speci�cation is mechanized if and only if it is both formalized
and executable. For JavaScript, researchers have proposed various
mechanized speci�cation in their own approaches. In 2010, Guha
et al. [8] presented �JS, the �rst mechanized speci�cation for a core
calculus of ES3 semantics by desugaring most of syntax into �JS, an
extended standard lambda calculus. Thus, the shape of �JS seman-
tics is quite di�erent with original algorithm steps. In mid 2010s,
researchers tried to de�ne mechanized speci�cation for the ES5
and 5.1 semantics having a similar shape of semantics with original
algorithm steps as much as possible. Bodin et al. [2] de�ned JSCert,
a semantics of a small subset of ES5, using Coq and extracts a refer-
ence interpreter JSRef. Park et al. [22] de�ned an entire semantics
of ES5, KJS, using the K [29], which is a framework for de�ning
language semantics. Fragoso Santos et al. [7] presented JaVerT, a

JavaScript veri�cation toolchain, including a JavaScript semantics
de�ned in their own Intermediate language, JSIL.

However, the fundamental problem of their approaches is that
they are manually de�ned thus they are labor-intensive and error-
prone. Due to such limitation, there is no existing mechanized
speci�cation for full semantics of ES6 or later versions. Therefore,
most of existing JavaScript static analyzers only focus on ES5.1
features or rarely support ES6 features even though already six
more versions from ES7 to ES12 are released since 2015.

Moreover, Park et al. [23] successfully showed that JISET is useful
tomechanically handle recent versions of ECMAScript by extending
JISET to perform N+1-version di�erential testing of both JavaScript
engines and ES11 (2020).

8 CONCLUSION
TODO

REFERENCES
[1] Roberto Amadini, Alexander Jordan, Graeme Gange, François Gauthier, Peter

Schachte, Harald Søndergaard, Peter J Stuckey, and Chenyi Zhang. 2017. Com-
bining String Abstract Domains for JavaScript Analysis: An Evaluation. In Pro-
ceedings of the 23rd International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS). https://doi.org/10.1007/978-3-
662-54577-5_3

[2] Martin Bodin, Arthur Charguéraud, Daniele Filaretti, Philippa Gardner, Sergio
Ma�eis, Daiva Naudziuniene, Alan Schmitt, and Gareth Smith. 2014. A Trusted
Mechanised JavaScript Speci�cation. Proceedings of the 41st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming (POPL) 49, 1 (2014), 87–100.
https://doi.org/10.1145/2535838.2535876

[3] David R. Chase, Mark Wegman, and F. Kenneth Zadeck. 1990. Analysis of
Pointers and Structures. In Proceedings of the ACM SIGPLAN 1990 Conference on
Programming Language Design and Implementation (PLDI) (PLDI ’90). Association
for Computing Machinery, New York, NY, USA, 296–310. https://doi.org/10.
1145/93542.93585

[4] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Uni�ed
Lattice Model for Static Analysis of Programs by Construction or Approximation
of Fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming languages (POPL). https://doi.org/10.1145/512950.
512973

[5] Patrick Cousot and Radhia Cousot. 1977. Static Determination of Dynamic
Properties of Generalized Type Unions. In Proceedings of an ACM Conference on
Language Design for Reliable Software. Association for Computing Machinery,
New York, NY, USA, 77–94. https://doi.org/10.1145/800022.808314

[6] Patrick Cousot and Radhia Cousot. 1992. Abstract Interpretation Frameworks.
Journal of Logic and Computation (JLC) 2, 4 (1992), 511–547. https://doi.org/10.
1093/logcom/2.4.511

[7] José Fragoso Santos, Petar Maksimović, Daiva Naudži = unienė, Thomas Wood,
and Philippa Gardner. 2017. JaVerT: JavaScript Veri�cation Toolchain. Proceedings
of the 44th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
(POPL) 2, POPL (2017), 1–33. https://doi.org/10.1145/3158138

[8] Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. 2010. The essence
of JavaScript. In Proceedings of the 24th European Conference on Object-Oriented
Programming (ECOOP). Springer, 126–150. https://doi.org/10.1007/978-3-642-
14107-2_7

[9] Simon Holm Jensen, Anders Møller, and Peter Thiemann. 2009. Type Analysis for
JavaScript. In Proceedings of the 16th International Symposium on Static Analysis
(SAS). https://doi.org/10.1007/978-3-642-03237-0_17

[10] Vineeth Kashyap, Kyle Dewey, Ethan A. Kuefner, John Wagner, Kevin Gib-
bons, John Sarracino, Ben Wiedermann, and Ben Hardekopf. 2014. JSAI: A
Static Analysis Platform for JavaScript. In Proceedings of the 22nd ACM SIG-
SOFT International Symposium on Foundations of Software Engineering (FSE).
https://doi.org/10.1145/2635868.2635904

[11] Se-Won Kim, Xavier Rival, and Sukyoung Ryu. 2018. A Theoretical Foundation
of Sensitivity in an Abstract Interpretation Framework. ACM Transactions on
Programming Languages and Systems (TOPLAS) 40, 3, Article 13 (2018), 44 pages.
https://doi.org/10.1145/3230624

[12] Yoonseok Ko, Xavier Rival, and Sukyoung Ryu. 2017. Weakly Sensitive Analysis
for Unbounded Iteration over JavaScript Objects. In Proceedings of the 15th Asian
Symposium on Programming Languages and Systems (APLAS). https://doi.org/10.
1007/978-3-319-71237-6_8

7

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

(a) Evaluation algorithm for logical OR assignments.

1 syntax def AssignmentExpression [8]. Evaluation(

2 this , LeftHandSideExpression , AssignmentExpression

3) { /* entry */

4 let lref = (LeftHandSideExpression.Evaluation)

5 let lval = [? (GetValue lref)]

6 let lbool = [! (ToBoolean lval)] /* #1 */

7 if (= lbool true) /* #2 */ return lval else { /* #3 */ }

8 if (&& (IsAnonymousFunctionDefinition AssignmentExpression)

9 (LeftHandSideExpression.IsIdentifierRef)) { /* #4 */

10 let rval = (AssignmentExpression.NamedEvaluation

11 lref.ReferencedName)

12 } else { /* #5 */

13 let rref = (AssignmentExpression.Evaluation)

14 let rval = [? (GetValue rref)]

15 } /* #6 */

16 [? (PutValue lref rval)]

17 return rval

18 } /* exit */

(b) The extracted IRES function.

Figure 1: Evaluation algorithm for the eighth alternative of AssignmentExpression in ES12 and the extracted IRES function.

To alleviate this problem, we propose a novel technique called
meta-level static analysis to automatically derive a JavaScript static
analyzer from any version of ECMAScript. The main idea of the
meta-level static analysis is to indirectly analyze a target language
program by performing static analysis for a language speci�ca-
tion of the target language written in a speci�cation language with
the program as the initial input. Thus, it can signi�cantly reduce
the burden to manually design and implement static analyzers by
automatically deriving them from given language speci�cations.
Moreover, it even guarantees the soundness of derived static analyz-
ers for the target language by constructing sound abstract semantics
for the speci�cation language.

For the expressiveness of a meta-level static analysis, we also
present ways to con�gure analysis sensitivities and abstract do-
mains for a target language. Con�guring them is a typical way
to manage analysis precision and performance. First, we present
the AST sensitivity in a meta-level static analysis to express analy-
sis sensitivities for a target language such as �ow-sensitivity and
k-callsite-sensitivity (Section 4.2). Second, we present a way to
con�gure abstract domains for structures and values in a target
language (Section 4.3).

To actualize our approach for JavaScript, we present JSAVER,
JavaScript Static Analyzers via ECMAScript Representations. First,
we utilize JISET [26] to extract a mechanized speci�cation written
in an intermediate representation, IRES, from a given ECMAScript.
Thus, target and speci�cation languages are JavaScript and IRES,
respectively, for the meta-level static analysis in JSAVER. In addition,
we implement several analysis techniques to improve the perfor-
mance and precision of derived static analyzers (Section 5). We
evaluated JSAVER by deriving a JavaScript static analyzer from the
latest ECMAScript, ES12, and using the o�cial conformance tests,
Test2622.

Our contributions are as follows:
• We propose a novel concept called meta-level static analysis,
which automatically derives a static analyzer for a target

2https://github.com/tc39/test262

let f = Math.floor(Math.random () * 100);

// f: [0, 99]

f ||= x => x;

// f: [1, 99] or { name: �f�, ... }

let x = f.name;

// f: [1, 99] or { name: �f�, ... }, x: undefined or �f�

Figure 2: A running JavaScript program with a logical OR
assignment newly introduced in ES12.

language from its language speci�cation written in a speci�-
cation language.

• We actualize meta-level static analysis for JavaScript as a tool
called JSAVER. It is the �rst tool that automatically derives a
JavaScript static analyzer from any version of ECMAScript.

• We derive a static analyzer from the latest ECMAScript, ES12,
to evaluate JSAVER. The synthesized static analyzer success-
fully analyzes all applicable 18,556 o�cial conformance tests.
Moreover, we demonstrate the adaptability and expressive-
ness of JSAVER with several case studies.

2 BACKGROUND
In this section, we explain the detail of ECMAScript, the o�cial
speci�cation of JavaScript. We then introduce JISET and how it
extracts a mechanized speci�cation from it. Since our work is to
perform meta-level static analysis for JavaScript using extracted
mechanized speci�cations, it is essential to understand how EC-
MAScript describes JavaScript semantics and how JISET extracts a
mechanized speci�cation from it.

For the detailed explanation, we explain a new language feature
introduced in ES12 called logical OR assignments (Figure 1) and
use a JavaScript program (Figure 2) as a running example. It �rst
de�nes a variable f with a random integer from 0 to 99. Then, it
uses a logical OR assignment to update f with an arrow function
whose name is �f� only if f has 0 because 0 represents false but
other integers represent true. Finally, it de�nes a variable x with
f.name and its value is undefined if f has an integer or �f� otherwise.

2

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Automatically Deriving JavaScript Static Analyzers from Language Specifications ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

function error(e) { throw e; }

const n = ...; // [0, 99]

n |> x => x + 1 // [1, 100]

|> x => x * 2 // [2, 200]

|> x => x + 1n; // TypeError

|> error (42);

of representative techniques to increase the precision of JavaScript
static analysis for loops. It discriminates contexts using a stack of
loop contexts containing loop iterations. We de�ne it under view-
based analysis sensitivity and implement it in JSAVER to increase
the precision of IRES static analysis. Moreover, we also de�ne and
implement the loop sensitivity for JavaScript using the loop sensitiv-
ity for IRES. Therefore, our tool discriminates contexts for explicit
loops, such as for-in or for-of, and even implicit loops, such as the
length property assignment of arrays.

6 EVALUATION
• AdditiveExpression
• Identi�erReference
• Identi�er
• AssignmentExpression
• LeftHandSideExpression
• ArrowFunction

• RQ1: Coverage) How much does JSAVER cover JavaScript
language features in the latest ECMAScript (ES12, 2021)?

• RQ2: Adaptability) Could JSAVER adapt a new language
features not yet introduced in ES12?

• RQ3: Expressiveness) What kinds of abstract sensitivities
and abstract domains JSAVER can support?

• RQ4: Performance) Could JSAVER analyze JavaScript pro-
grams in a durable time?

TODO

7 RELATEDWORK
TODO

• JavaScript Static Analyzers [9, 10, 14, 27]
• JavaScript Static Analysis Techniques [1, 12, 13, 15, 18–21,
30, 34–36]

• Partial Evaluation? (maybe no - * SE conf.)

7.1 JavaScript Mechanized Speci�cation
A speci�cation is mechanized if and only if it is both formalized
and executable. For JavaScript, researchers have proposed various
mechanized speci�cation in their own approaches. In 2010, Guha
et al. [8] presented �JS, the �rst mechanized speci�cation for a core
calculus of ES3 semantics by desugaring most of syntax into �JS, an
extended standard lambda calculus. Thus, the shape of �JS seman-
tics is quite di�erent with original algorithm steps. In mid 2010s,
researchers tried to de�ne mechanized speci�cation for the ES5
and 5.1 semantics having a similar shape of semantics with original
algorithm steps as much as possible. Bodin et al. [2] de�ned JSCert,
a semantics of a small subset of ES5, using Coq and extracts a refer-
ence interpreter JSRef. Park et al. [22] de�ned an entire semantics
of ES5, KJS, using the K [29], which is a framework for de�ning
language semantics. Fragoso Santos et al. [7] presented JaVerT, a

JavaScript veri�cation toolchain, including a JavaScript semantics
de�ned in their own Intermediate language, JSIL.

However, the fundamental problem of their approaches is that
they are manually de�ned thus they are labor-intensive and error-
prone. Due to such limitation, there is no existing mechanized
speci�cation for full semantics of ES6 or later versions. Therefore,
most of existing JavaScript static analyzers only focus on ES5.1
features or rarely support ES6 features even though already six
more versions from ES7 to ES12 are released since 2015.

Moreover, Park et al. [23] successfully showed that JISET is useful
tomechanically handle recent versions of ECMAScript by extending
JISET to perform N+1-version di�erential testing of both JavaScript
engines and ES11 (2020).

8 CONCLUSION
TODO

REFERENCES
[1] Roberto Amadini, Alexander Jordan, Graeme Gange, François Gauthier, Peter

Schachte, Harald Søndergaard, Peter J Stuckey, and Chenyi Zhang. 2017. Com-
bining String Abstract Domains for JavaScript Analysis: An Evaluation. In Pro-
ceedings of the 23rd International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS). https://doi.org/10.1007/978-3-
662-54577-5_3

[2] Martin Bodin, Arthur Charguéraud, Daniele Filaretti, Philippa Gardner, Sergio
Ma�eis, Daiva Naudziuniene, Alan Schmitt, and Gareth Smith. 2014. A Trusted
Mechanised JavaScript Speci�cation. Proceedings of the 41st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming (POPL) 49, 1 (2014), 87–100.
https://doi.org/10.1145/2535838.2535876

[3] David R. Chase, Mark Wegman, and F. Kenneth Zadeck. 1990. Analysis of
Pointers and Structures. In Proceedings of the ACM SIGPLAN 1990 Conference on
Programming Language Design and Implementation (PLDI) (PLDI ’90). Association
for Computing Machinery, New York, NY, USA, 296–310. https://doi.org/10.
1145/93542.93585

[4] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Uni�ed
Lattice Model for Static Analysis of Programs by Construction or Approximation
of Fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming languages (POPL). https://doi.org/10.1145/512950.
512973

[5] Patrick Cousot and Radhia Cousot. 1977. Static Determination of Dynamic
Properties of Generalized Type Unions. In Proceedings of an ACM Conference on
Language Design for Reliable Software. Association for Computing Machinery,
New York, NY, USA, 77–94. https://doi.org/10.1145/800022.808314

[6] Patrick Cousot and Radhia Cousot. 1992. Abstract Interpretation Frameworks.
Journal of Logic and Computation (JLC) 2, 4 (1992), 511–547. https://doi.org/10.
1093/logcom/2.4.511

[7] José Fragoso Santos, Petar Maksimović, Daiva Naudži = unienė, Thomas Wood,
and Philippa Gardner. 2017. JaVerT: JavaScript Veri�cation Toolchain. Proceedings
of the 44th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
(POPL) 2, POPL (2017), 1–33. https://doi.org/10.1145/3158138

[8] Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. 2010. The essence
of JavaScript. In Proceedings of the 24th European Conference on Object-Oriented
Programming (ECOOP). Springer, 126–150. https://doi.org/10.1007/978-3-642-
14107-2_7

[9] Simon Holm Jensen, Anders Møller, and Peter Thiemann. 2009. Type Analysis for
JavaScript. In Proceedings of the 16th International Symposium on Static Analysis
(SAS). https://doi.org/10.1007/978-3-642-03237-0_17

[10] Vineeth Kashyap, Kyle Dewey, Ethan A. Kuefner, John Wagner, Kevin Gib-
bons, John Sarracino, Ben Wiedermann, and Ben Hardekopf. 2014. JSAI: A
Static Analysis Platform for JavaScript. In Proceedings of the 22nd ACM SIG-
SOFT International Symposium on Foundations of Software Engineering (FSE).
https://doi.org/10.1145/2635868.2635904

[11] Se-Won Kim, Xavier Rival, and Sukyoung Ryu. 2018. A Theoretical Foundation
of Sensitivity in an Abstract Interpretation Framework. ACM Transactions on
Programming Languages and Systems (TOPLAS) 40, 3, Article 13 (2018), 44 pages.
https://doi.org/10.1145/3230624

[12] Yoonseok Ko, Xavier Rival, and Sukyoung Ryu. 2017. Weakly Sensitive Analysis
for Unbounded Iteration over JavaScript Objects. In Proceedings of the 15th Asian
Symposium on Programming Languages and Systems (APLAS). https://doi.org/10.
1007/978-3-319-71237-6_8

7

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Automatically Deriving JavaScript Static Analyzers from Language Specifications ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

function error(e) { throw e; }

const n = ...; // [0, 99]

n |> x => x + 1 // [1, 100]

|> x => x * 2 // [2, 200]

|> x => x + 1n; // TypeError

|> error (42);

of representative techniques to increase the precision of JavaScript
static analysis for loops. It discriminates contexts using a stack of
loop contexts containing loop iterations. We de�ne it under view-
based analysis sensitivity and implement it in JSAVER to increase
the precision of IRES static analysis. Moreover, we also de�ne and
implement the loop sensitivity for JavaScript using the loop sensitiv-
ity for IRES. Therefore, our tool discriminates contexts for explicit
loops, such as for-in or for-of, and even implicit loops, such as the
length property assignment of arrays.

6 EVALUATION
• AdditiveExpression
• Identi�erReference
• Identi�er
• AssignmentExpression
• LeftHandSideExpression
• ArrowFunction

• RQ1: Coverage) How much does JSAVER cover JavaScript
language features in the latest ECMAScript (ES12, 2021)?

• RQ2: Adaptability) Could JSAVER adapt a new language
features not yet introduced in ES12?

• RQ3: Expressiveness) What kinds of abstract sensitivities
and abstract domains JSAVER can support?

• RQ4: Performance) Could JSAVER analyze JavaScript pro-
grams in a durable time?

TODO

7 RELATEDWORK
TODO

• JavaScript Static Analyzers [9, 10, 14, 27]
• JavaScript Static Analysis Techniques [1, 12, 13, 15, 18–21,
30, 34–36]

• Partial Evaluation? (maybe no - * SE conf.)

7.1 JavaScript Mechanized Speci�cation
A speci�cation is mechanized if and only if it is both formalized
and executable. For JavaScript, researchers have proposed various
mechanized speci�cation in their own approaches. In 2010, Guha
et al. [8] presented �JS, the �rst mechanized speci�cation for a core
calculus of ES3 semantics by desugaring most of syntax into �JS, an
extended standard lambda calculus. Thus, the shape of �JS seman-
tics is quite di�erent with original algorithm steps. In mid 2010s,
researchers tried to de�ne mechanized speci�cation for the ES5
and 5.1 semantics having a similar shape of semantics with original
algorithm steps as much as possible. Bodin et al. [2] de�ned JSCert,
a semantics of a small subset of ES5, using Coq and extracts a refer-
ence interpreter JSRef. Park et al. [22] de�ned an entire semantics
of ES5, KJS, using the K [29], which is a framework for de�ning
language semantics. Fragoso Santos et al. [7] presented JaVerT, a

JavaScript veri�cation toolchain, including a JavaScript semantics
de�ned in their own Intermediate language, JSIL.

However, the fundamental problem of their approaches is that
they are manually de�ned thus they are labor-intensive and error-
prone. Due to such limitation, there is no existing mechanized
speci�cation for full semantics of ES6 or later versions. Therefore,
most of existing JavaScript static analyzers only focus on ES5.1
features or rarely support ES6 features even though already six
more versions from ES7 to ES12 are released since 2015.

Moreover, Park et al. [23] successfully showed that JISET is useful
tomechanically handle recent versions of ECMAScript by extending
JISET to perform N+1-version di�erential testing of both JavaScript
engines and ES11 (2020).

8 CONCLUSION
TODO

REFERENCES
[1] Roberto Amadini, Alexander Jordan, Graeme Gange, François Gauthier, Peter

Schachte, Harald Søndergaard, Peter J Stuckey, and Chenyi Zhang. 2017. Com-
bining String Abstract Domains for JavaScript Analysis: An Evaluation. In Pro-
ceedings of the 23rd International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS). https://doi.org/10.1007/978-3-
662-54577-5_3

[2] Martin Bodin, Arthur Charguéraud, Daniele Filaretti, Philippa Gardner, Sergio
Ma�eis, Daiva Naudziuniene, Alan Schmitt, and Gareth Smith. 2014. A Trusted
Mechanised JavaScript Speci�cation. Proceedings of the 41st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming (POPL) 49, 1 (2014), 87–100.
https://doi.org/10.1145/2535838.2535876

[3] David R. Chase, Mark Wegman, and F. Kenneth Zadeck. 1990. Analysis of
Pointers and Structures. In Proceedings of the ACM SIGPLAN 1990 Conference on
Programming Language Design and Implementation (PLDI) (PLDI ’90). Association
for Computing Machinery, New York, NY, USA, 296–310. https://doi.org/10.
1145/93542.93585

[4] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Uni�ed
Lattice Model for Static Analysis of Programs by Construction or Approximation
of Fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming languages (POPL). https://doi.org/10.1145/512950.
512973

[5] Patrick Cousot and Radhia Cousot. 1977. Static Determination of Dynamic
Properties of Generalized Type Unions. In Proceedings of an ACM Conference on
Language Design for Reliable Software. Association for Computing Machinery,
New York, NY, USA, 77–94. https://doi.org/10.1145/800022.808314

[6] Patrick Cousot and Radhia Cousot. 1992. Abstract Interpretation Frameworks.
Journal of Logic and Computation (JLC) 2, 4 (1992), 511–547. https://doi.org/10.
1093/logcom/2.4.511

[7] José Fragoso Santos, Petar Maksimović, Daiva Naudži = unienė, Thomas Wood,
and Philippa Gardner. 2017. JaVerT: JavaScript Veri�cation Toolchain. Proceedings
of the 44th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
(POPL) 2, POPL (2017), 1–33. https://doi.org/10.1145/3158138

[8] Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. 2010. The essence
of JavaScript. In Proceedings of the 24th European Conference on Object-Oriented
Programming (ECOOP). Springer, 126–150. https://doi.org/10.1007/978-3-642-
14107-2_7

[9] Simon Holm Jensen, Anders Møller, and Peter Thiemann. 2009. Type Analysis for
JavaScript. In Proceedings of the 16th International Symposium on Static Analysis
(SAS). https://doi.org/10.1007/978-3-642-03237-0_17

[10] Vineeth Kashyap, Kyle Dewey, Ethan A. Kuefner, John Wagner, Kevin Gib-
bons, John Sarracino, Ben Wiedermann, and Ben Hardekopf. 2014. JSAI: A
Static Analysis Platform for JavaScript. In Proceedings of the 22nd ACM SIG-
SOFT International Symposium on Foundations of Software Engineering (FSE).
https://doi.org/10.1145/2635868.2635904

[11] Se-Won Kim, Xavier Rival, and Sukyoung Ryu. 2018. A Theoretical Foundation
of Sensitivity in an Abstract Interpretation Framework. ACM Transactions on
Programming Languages and Systems (TOPLAS) 40, 3, Article 13 (2018), 44 pages.
https://doi.org/10.1145/3230624

[12] Yoonseok Ko, Xavier Rival, and Sukyoung Ryu. 2017. Weakly Sensitive Analysis
for Unbounded Iteration over JavaScript Objects. In Proceedings of the 15th Asian
Symposium on Programming Languages and Systems (APLAS). https://doi.org/10.
1007/978-3-319-71237-6_8

7

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Automatically Deriving JavaScript Static Analyzers from Language Specifications ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

function error(e) { throw e; }

const n = ...; // [0, 99]

n |> x => x + 1 // [1, 100]

|> x => x * 2 // [2, 200]

|> x => x + 1n; // TypeError

|> error (42);

of representative techniques to increase the precision of JavaScript
static analysis for loops. It discriminates contexts using a stack of
loop contexts containing loop iterations. We de�ne it under view-
based analysis sensitivity and implement it in JSAVER to increase
the precision of IRES static analysis. Moreover, we also de�ne and
implement the loop sensitivity for JavaScript using the loop sensitiv-
ity for IRES. Therefore, our tool discriminates contexts for explicit
loops, such as for-in or for-of, and even implicit loops, such as the
length property assignment of arrays.

6 EVALUATION
• AdditiveExpression
• Identi�erReference
• Identi�er
• AssignmentExpression
• LeftHandSideExpression
• ArrowFunction

• RQ1: Coverage) How much does JSAVER cover JavaScript
language features in the latest ECMAScript (ES12, 2021)?

• RQ2: Adaptability) Could JSAVER adapt a new language
features not yet introduced in ES12?

• RQ3: Expressiveness) What kinds of abstract sensitivities
and abstract domains JSAVER can support?

• RQ4: Performance) Could JSAVER analyze JavaScript pro-
grams in a durable time?

TODO

7 RELATEDWORK
TODO

• JavaScript Static Analyzers [9, 10, 14, 27]
• JavaScript Static Analysis Techniques [1, 12, 13, 15, 18–21,
30, 34–36]

• Partial Evaluation? (maybe no - * SE conf.)

7.1 JavaScript Mechanized Speci�cation
A speci�cation is mechanized if and only if it is both formalized
and executable. For JavaScript, researchers have proposed various
mechanized speci�cation in their own approaches. In 2010, Guha
et al. [8] presented �JS, the �rst mechanized speci�cation for a core
calculus of ES3 semantics by desugaring most of syntax into �JS, an
extended standard lambda calculus. Thus, the shape of �JS seman-
tics is quite di�erent with original algorithm steps. In mid 2010s,
researchers tried to de�ne mechanized speci�cation for the ES5
and 5.1 semantics having a similar shape of semantics with original
algorithm steps as much as possible. Bodin et al. [2] de�ned JSCert,
a semantics of a small subset of ES5, using Coq and extracts a refer-
ence interpreter JSRef. Park et al. [22] de�ned an entire semantics
of ES5, KJS, using the K [29], which is a framework for de�ning
language semantics. Fragoso Santos et al. [7] presented JaVerT, a

JavaScript veri�cation toolchain, including a JavaScript semantics
de�ned in their own Intermediate language, JSIL.

However, the fundamental problem of their approaches is that
they are manually de�ned thus they are labor-intensive and error-
prone. Due to such limitation, there is no existing mechanized
speci�cation for full semantics of ES6 or later versions. Therefore,
most of existing JavaScript static analyzers only focus on ES5.1
features or rarely support ES6 features even though already six
more versions from ES7 to ES12 are released since 2015.

Moreover, Park et al. [23] successfully showed that JISET is useful
tomechanically handle recent versions of ECMAScript by extending
JISET to perform N+1-version di�erential testing of both JavaScript
engines and ES11 (2020).

8 CONCLUSION
TODO

REFERENCES
[1] Roberto Amadini, Alexander Jordan, Graeme Gange, François Gauthier, Peter

Schachte, Harald Søndergaard, Peter J Stuckey, and Chenyi Zhang. 2017. Com-
bining String Abstract Domains for JavaScript Analysis: An Evaluation. In Pro-
ceedings of the 23rd International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS). https://doi.org/10.1007/978-3-
662-54577-5_3

[2] Martin Bodin, Arthur Charguéraud, Daniele Filaretti, Philippa Gardner, Sergio
Ma�eis, Daiva Naudziuniene, Alan Schmitt, and Gareth Smith. 2014. A Trusted
Mechanised JavaScript Speci�cation. Proceedings of the 41st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming (POPL) 49, 1 (2014), 87–100.
https://doi.org/10.1145/2535838.2535876

[3] David R. Chase, Mark Wegman, and F. Kenneth Zadeck. 1990. Analysis of
Pointers and Structures. In Proceedings of the ACM SIGPLAN 1990 Conference on
Programming Language Design and Implementation (PLDI) (PLDI ’90). Association
for Computing Machinery, New York, NY, USA, 296–310. https://doi.org/10.
1145/93542.93585

[4] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Uni�ed
Lattice Model for Static Analysis of Programs by Construction or Approximation
of Fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming languages (POPL). https://doi.org/10.1145/512950.
512973

[5] Patrick Cousot and Radhia Cousot. 1977. Static Determination of Dynamic
Properties of Generalized Type Unions. In Proceedings of an ACM Conference on
Language Design for Reliable Software. Association for Computing Machinery,
New York, NY, USA, 77–94. https://doi.org/10.1145/800022.808314

[6] Patrick Cousot and Radhia Cousot. 1992. Abstract Interpretation Frameworks.
Journal of Logic and Computation (JLC) 2, 4 (1992), 511–547. https://doi.org/10.
1093/logcom/2.4.511

[7] José Fragoso Santos, Petar Maksimović, Daiva Naudži = unienė, Thomas Wood,
and Philippa Gardner. 2017. JaVerT: JavaScript Veri�cation Toolchain. Proceedings
of the 44th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
(POPL) 2, POPL (2017), 1–33. https://doi.org/10.1145/3158138

[8] Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. 2010. The essence
of JavaScript. In Proceedings of the 24th European Conference on Object-Oriented
Programming (ECOOP). Springer, 126–150. https://doi.org/10.1007/978-3-642-
14107-2_7

[9] Simon Holm Jensen, Anders Møller, and Peter Thiemann. 2009. Type Analysis for
JavaScript. In Proceedings of the 16th International Symposium on Static Analysis
(SAS). https://doi.org/10.1007/978-3-642-03237-0_17

[10] Vineeth Kashyap, Kyle Dewey, Ethan A. Kuefner, John Wagner, Kevin Gib-
bons, John Sarracino, Ben Wiedermann, and Ben Hardekopf. 2014. JSAI: A
Static Analysis Platform for JavaScript. In Proceedings of the 22nd ACM SIG-
SOFT International Symposium on Foundations of Software Engineering (FSE).
https://doi.org/10.1145/2635868.2635904

[11] Se-Won Kim, Xavier Rival, and Sukyoung Ryu. 2018. A Theoretical Foundation
of Sensitivity in an Abstract Interpretation Framework. ACM Transactions on
Programming Languages and Systems (TOPLAS) 40, 3, Article 13 (2018), 44 pages.
https://doi.org/10.1145/3230624

[12] Yoonseok Ko, Xavier Rival, and Sukyoung Ryu. 2017. Weakly Sensitive Analysis
for Unbounded Iteration over JavaScript Objects. In Proceedings of the 15th Asian
Symposium on Programming Languages and Systems (APLAS). https://doi.org/10.
1007/978-3-319-71237-6_8

7

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

(a) Evaluation algorithm for logical OR assignments.

1 syntax def AssignmentExpression [8]. Evaluation(

2 this , LeftHandSideExpression , AssignmentExpression

3) { /* entry */

4 let lref = (LeftHandSideExpression.Evaluation)

5 let lval = [? (GetValue lref)]

6 let lbool = [! (ToBoolean lval)] /* #1 */

7 if (= lbool true) /* #2 */ return lval else { /* #3 */ }

8 if (&& (IsAnonymousFunctionDefinition AssignmentExpression)

9 (LeftHandSideExpression.IsIdentifierRef)) { /* #4 */

10 let rval = (AssignmentExpression.NamedEvaluation

11 lref.ReferencedName)

12 } else { /* #5 */

13 let rref = (AssignmentExpression.Evaluation)

14 let rval = [? (GetValue rref)]

15 } /* #6 */

16 [? (PutValue lref rval)]

17 return rval

18 } /* exit */

(b) The extracted IRES function.

Figure 1: Evaluation algorithm for the eighth alternative of AssignmentExpression in ES12 and the extracted IRES function.

To alleviate this problem, we propose a novel technique called
meta-level static analysis to automatically derive a JavaScript static
analyzer from any version of ECMAScript. The main idea of the
meta-level static analysis is to indirectly analyze a target language
program by performing static analysis for a language speci�ca-
tion of the target language written in a speci�cation language with
the program as the initial input. Thus, it can signi�cantly reduce
the burden to manually design and implement static analyzers by
automatically deriving them from given language speci�cations.
Moreover, it even guarantees the soundness of derived static analyz-
ers for the target language by constructing sound abstract semantics
for the speci�cation language.

For the expressiveness of a meta-level static analysis, we also
present ways to con�gure analysis sensitivities and abstract do-
mains for a target language. Con�guring them is a typical way
to manage analysis precision and performance. First, we present
the AST sensitivity in a meta-level static analysis to express analy-
sis sensitivities for a target language such as �ow-sensitivity and
k-callsite-sensitivity (Section 4.2). Second, we present a way to
con�gure abstract domains for structures and values in a target
language (Section 4.3).

To actualize our approach for JavaScript, we present JSAVER,
JavaScript Static Analyzers via ECMAScript Representations. First,
we utilize JISET [26] to extract a mechanized speci�cation written
in an intermediate representation, IRES, from a given ECMAScript.
Thus, target and speci�cation languages are JavaScript and IRES,
respectively, for the meta-level static analysis in JSAVER. In addition,
we implement several analysis techniques to improve the perfor-
mance and precision of derived static analyzers (Section 5). We
evaluated JSAVER by deriving a JavaScript static analyzer from the
latest ECMAScript, ES12, and using the o�cial conformance tests,
Test2622.

Our contributions are as follows:
• We propose a novel concept called meta-level static analysis,
which automatically derives a static analyzer for a target

2https://github.com/tc39/test262

let f = Math.floor(Math.random () * 100);

// f: [0, 99]

f ||= x => x;

// f: [1, 99] or { name: �f�, ... }

let x = f.name;

// f: [1, 99] or { name: �f�, ... }, x: undefined or �f�

Figure 2: A running JavaScript program with a logical OR
assignment newly introduced in ES12.

language from its language speci�cation written in a speci�-
cation language.

• We actualize meta-level static analysis for JavaScript as a tool
called JSAVER. It is the �rst tool that automatically derives a
JavaScript static analyzer from any version of ECMAScript.

• We derive a static analyzer from the latest ECMAScript, ES12,
to evaluate JSAVER. The synthesized static analyzer success-
fully analyzes all applicable 18,556 o�cial conformance tests.
Moreover, we demonstrate the adaptability and expressive-
ness of JSAVER with several case studies.

2 BACKGROUND
In this section, we explain the detail of ECMAScript, the o�cial
speci�cation of JavaScript. We then introduce JISET and how it
extracts a mechanized speci�cation from it. Since our work is to
perform meta-level static analysis for JavaScript using extracted
mechanized speci�cations, it is essential to understand how EC-
MAScript describes JavaScript semantics and how JISET extracts a
mechanized speci�cation from it.

For the detailed explanation, we explain a new language feature
introduced in ES12 called logical OR assignments (Figure 1) and
use a JavaScript program (Figure 2) as a running example. It �rst
de�nes a variable f with a random integer from 0 to 99. Then, it
uses a logical OR assignment to update f with an arrow function
whose name is �f� only if f has 0 because 0 represents false but
other integers represent true. Finally, it de�nes a variable x with
f.name and its value is undefined if f has an integer or �f� otherwise.

2

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Automatically Deriving JavaScript Static Analyzers from Language Specifications ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

otherwise, a normal function. An instruction i is a primitive value
assignment, an operation between values, a internal �eld access, a
external �eld access, a record allocations, a function call, or a return
instruction.

States � 2 S = H ⇥ C
Heaps h 2 H = A �n��!R
Contexts c 2 C = L ⇥ (X �n��!V) ⇥ C?
Values � 2 V = Vp] A] T] F
Records r 2 R = (Vstr

�n��!V) ⇥ (Vstr
�n��!V)

States S consists of heaps H and contexts C. A heap h 2 H is a
�nite mapping from addresses to records. Each record allocation
instruction x = {} creates a unique address a 2 A di�erent with
existing addresses. A context c 2 C is a triple of 1) the program
point, 2) a local environment which is a �nite mapping from vari-
ables to values, and 3) an optional calling context. A value � 2 V
is a primitive value, an address, an AST, or a function. A record
r 2 R consists of two �nite mappings from strings to values. The
left mapping represents internal �elds accessible by internal �eld
accesses x = x[x]. On the other hand, the right one represents ex-
ternal �elds, such as variables in JavaScript environment records or
properties in JavaScript objects, and they are accessible by a exter-
nal �eld access x = x[x]ext. We formulate the concrete semantics
of a program P as a transition system ({, S�) where{✓ S⇥ S is a
transition relation between concrete states and S� is a set of initial
states.

For a meta-level static analysis, we de�ne its abstract semantics
in the abstract interpretation framework [4, 6]. Since our analysis
supports view-based analysis sensitivities [11, 24], the abstract
domain is de�ned as a mapping from views to abstract states, D# =
� ! D#, with a view abstraction � : � ! P(S) which represents
the meaning of each view � 2 �. Then, we de�ne abstract states as
follows:

Abstract States � # 2 D# = H# ⇥ C#

Abstract Heaps h# 2 H# = A# �n��!(R# ⇥ R#
ext

)
Abstract Addresses a# 2 A# = L
Abstract Contexts c# 2 C# = X �n��!V#

An abstract heaph# 2 H# is a �nitemapping from abstract addresses
A
to pairs of abstract internal records R# and abstract external

records R#
ext

. Each abstract address a# 2 A# is de�ned with the
allocation-site abstraction [3] that partitions concrete addresses A
based on their allocation sites L. An abstract context c# 2 C# is a
�nite mapping from variables to abstract values. Shapes of abstract
values V#, abstract internal (or external) records R# (or R#

ext
) are

parametric thus we can freely con�gure them.

4.2 Analysis Sensitivities
In a meta-level static analysis, analysis sensitivities of the target
language (JavaScript) are di�erent with them of the speci�cation
language (IRES). For example, we explain what happens during anal-
ysis of the following JavaScript program with the �ow-sensitivity
for IRES:

let x = 1, y = 2;

x + y; // 3

(a) Evaluation algorithm for identi�er references.

1 syntax def IdentifierReference [0]. Evaluation(

2 this , Identifier

3) {

4 return [? (ResolveBinding (Identifier.StringValue))

5 }

(b) The extracted IRES function.

(c) Parsing result of x + y (bottom) and the initial local environment
(top) of the IRES function.

Figure 7: An example of the di�erence between analysis sen-
sitivities of target and speci�cation language.

Figure 7 describes (a) the Evaluation algorithm of identi�er refer-
ences, (b) its extracted IRES function, and (c) the parsing result of
x + y and the initial local environment of the IRES function. Since
the �ow-sensitivity merges states based on the program points,
contexts for the evaluation of both identi�er references x and y are
merged. Thus, the IRES variable Identifier points to their ASTs
as described in Figure 7. Due to the imprecise merge of contexts,
StringValue of Identifier returns �x� and �y�, and ResolveBinding
with them returns both 1 and 2. Finally, the analysis result of x + y

becomes { 2, 3, 4 }.

Flow Sensitivity. To resolve this problem, we present an AST sen-
sitivity for the speci�cation language to represent �ow-sensitivity
of the target language. It is a variant of object sensitivity [17, 33]
which uses abstract addresses A# of receiver objects as views. How-
ever, unlike the object sensitivity, the AST sensitivity utilizes ASTs
T stored in the parameter this only for syntax-directed functions:

� flow(t 2 T) = {� = (_, c) 2 S | syntax-ctxt(c) = c 0 ^ c 0(this) = t}
where syntax-ctxt(c) denotes the top-most context whose function
is syntax-directed and c 0(this) denotes a lookup of the variable
this in the mapping in the context c 0. We de�ne the �ow sensitivity
for the target language using the AST sensitivity and it successfully
divides contexts for the evaluation of JavaScript identi�ers x and y

in the above example using their ASTs even though their program
points are same.

Callsite Sensitivity. We also formally de�ne the callsite sensitiv-
ity [31, 32] for the target language by extending AST sensitivity
for speci�c normal IRES functions. The original callsite sensitivity
discriminates calling contexts based on their top most callsites. In
ECMAScript, all explicit and even implicit JavaScript function calls

5

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Automatically Deriving JavaScript Static Analyzers from Language Specifications ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

function error(e) { throw e; }

const n = ...; // [0, 99]

n |> x => x + 1 // [1, 100]

|> x => x * 2 // [2, 200]

|> x => x + 1n; // TypeError

|> error (42);

of representative techniques to increase the precision of JavaScript
static analysis for loops. It discriminates contexts using a stack of
loop contexts containing loop iterations. We de�ne it under view-
based analysis sensitivity and implement it in JSAVER to increase
the precision of IRES static analysis. Moreover, we also de�ne and
implement the loop sensitivity for JavaScript using the loop sensitiv-
ity for IRES. Therefore, our tool discriminates contexts for explicit
loops, such as for-in or for-of, and even implicit loops, such as the
length property assignment of arrays.

6 EVALUATION
• AdditiveExpression
• Identi�erReference
• Identi�er
• AssignmentExpression
• LeftHandSideExpression
• ArrowFunction

• RQ1: Coverage) How much does JSAVER cover JavaScript
language features in the latest ECMAScript (ES12, 2021)?

• RQ2: Adaptability) Could JSAVER adapt a new language
features not yet introduced in ES12?

• RQ3: Expressiveness) What kinds of abstract sensitivities
and abstract domains JSAVER can support?

• RQ4: Performance) Could JSAVER analyze JavaScript pro-
grams in a durable time?

TODO

7 RELATEDWORK
TODO

• JavaScript Static Analyzers [9, 10, 14, 27]
• JavaScript Static Analysis Techniques [1, 12, 13, 15, 18–21,
30, 34–36]

• Partial Evaluation? (maybe no - * SE conf.)

7.1 JavaScript Mechanized Speci�cation
A speci�cation is mechanized if and only if it is both formalized
and executable. For JavaScript, researchers have proposed various
mechanized speci�cation in their own approaches. In 2010, Guha
et al. [8] presented �JS, the �rst mechanized speci�cation for a core
calculus of ES3 semantics by desugaring most of syntax into �JS, an
extended standard lambda calculus. Thus, the shape of �JS seman-
tics is quite di�erent with original algorithm steps. In mid 2010s,
researchers tried to de�ne mechanized speci�cation for the ES5
and 5.1 semantics having a similar shape of semantics with original
algorithm steps as much as possible. Bodin et al. [2] de�ned JSCert,
a semantics of a small subset of ES5, using Coq and extracts a refer-
ence interpreter JSRef. Park et al. [22] de�ned an entire semantics
of ES5, KJS, using the K [29], which is a framework for de�ning
language semantics. Fragoso Santos et al. [7] presented JaVerT, a

JavaScript veri�cation toolchain, including a JavaScript semantics
de�ned in their own Intermediate language, JSIL.

However, the fundamental problem of their approaches is that
they are manually de�ned thus they are labor-intensive and error-
prone. Due to such limitation, there is no existing mechanized
speci�cation for full semantics of ES6 or later versions. Therefore,
most of existing JavaScript static analyzers only focus on ES5.1
features or rarely support ES6 features even though already six
more versions from ES7 to ES12 are released since 2015.

Moreover, Park et al. [23] successfully showed that JISET is useful
tomechanically handle recent versions of ECMAScript by extending
JISET to perform N+1-version di�erential testing of both JavaScript
engines and ES11 (2020).

8 CONCLUSION
TODO

REFERENCES
[1] Roberto Amadini, Alexander Jordan, Graeme Gange, François Gauthier, Peter

Schachte, Harald Søndergaard, Peter J Stuckey, and Chenyi Zhang. 2017. Com-
bining String Abstract Domains for JavaScript Analysis: An Evaluation. In Pro-
ceedings of the 23rd International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS). https://doi.org/10.1007/978-3-
662-54577-5_3

[2] Martin Bodin, Arthur Charguéraud, Daniele Filaretti, Philippa Gardner, Sergio
Ma�eis, Daiva Naudziuniene, Alan Schmitt, and Gareth Smith. 2014. A Trusted
Mechanised JavaScript Speci�cation. Proceedings of the 41st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming (POPL) 49, 1 (2014), 87–100.
https://doi.org/10.1145/2535838.2535876

[3] David R. Chase, Mark Wegman, and F. Kenneth Zadeck. 1990. Analysis of
Pointers and Structures. In Proceedings of the ACM SIGPLAN 1990 Conference on
Programming Language Design and Implementation (PLDI) (PLDI ’90). Association
for Computing Machinery, New York, NY, USA, 296–310. https://doi.org/10.
1145/93542.93585

[4] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Uni�ed
Lattice Model for Static Analysis of Programs by Construction or Approximation
of Fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming languages (POPL). https://doi.org/10.1145/512950.
512973

[5] Patrick Cousot and Radhia Cousot. 1977. Static Determination of Dynamic
Properties of Generalized Type Unions. In Proceedings of an ACM Conference on
Language Design for Reliable Software. Association for Computing Machinery,
New York, NY, USA, 77–94. https://doi.org/10.1145/800022.808314

[6] Patrick Cousot and Radhia Cousot. 1992. Abstract Interpretation Frameworks.
Journal of Logic and Computation (JLC) 2, 4 (1992), 511–547. https://doi.org/10.
1093/logcom/2.4.511

[7] José Fragoso Santos, Petar Maksimović, Daiva Naudži = unienė, Thomas Wood,
and Philippa Gardner. 2017. JaVerT: JavaScript Veri�cation Toolchain. Proceedings
of the 44th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
(POPL) 2, POPL (2017), 1–33. https://doi.org/10.1145/3158138

[8] Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. 2010. The essence
of JavaScript. In Proceedings of the 24th European Conference on Object-Oriented
Programming (ECOOP). Springer, 126–150. https://doi.org/10.1007/978-3-642-
14107-2_7

[9] Simon Holm Jensen, Anders Møller, and Peter Thiemann. 2009. Type Analysis for
JavaScript. In Proceedings of the 16th International Symposium on Static Analysis
(SAS). https://doi.org/10.1007/978-3-642-03237-0_17

[10] Vineeth Kashyap, Kyle Dewey, Ethan A. Kuefner, John Wagner, Kevin Gib-
bons, John Sarracino, Ben Wiedermann, and Ben Hardekopf. 2014. JSAI: A
Static Analysis Platform for JavaScript. In Proceedings of the 22nd ACM SIG-
SOFT International Symposium on Foundations of Software Engineering (FSE).
https://doi.org/10.1145/2635868.2635904

[11] Se-Won Kim, Xavier Rival, and Sukyoung Ryu. 2018. A Theoretical Foundation
of Sensitivity in an Abstract Interpretation Framework. ACM Transactions on
Programming Languages and Systems (TOPLAS) 40, 3, Article 13 (2018), 44 pages.
https://doi.org/10.1145/3230624

[12] Yoonseok Ko, Xavier Rival, and Sukyoung Ryu. 2017. Weakly Sensitive Analysis
for Unbounded Iteration over JavaScript Objects. In Proceedings of the 15th Asian
Symposium on Programming Languages and Systems (APLAS). https://doi.org/10.
1007/978-3-319-71237-6_8

7

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

(a) Evaluation algorithm for identi�er references

1 syntax def IdentifierReference [0]. Evaluation(
2 this , Identifier
3) {
4 return [? (ResolveBinding (Identifier.StringValue))]
5 }

(b) Extracted IRES function for identi�er references

(c) Result of x + y via a mechanized speci�cation

Figure 7: Analysis sensitivities of the target language
(JavaScript) and the speci�cation language (IRES)

divides contexts for the evaluation of JavaScript identi�ers x and y

in the above example using their ASTs even though their program
points in IRES are the same.

Callsite Sensitivity. We also formally de�ne the callsite sensitiv-
ity [37, 38] for the target language by extending the AST sensitivity
for speci�c normal IRES functions. The original callsite sensitivity
discriminates calling contexts using their top most callsites. In EC-
MAScript, all explicit and even implicit JavaScript function calls
invoke normal IRES functions Call and Construct. Thus, we de�ne
the callsite sensitivity for the target language by extending the AST
sensitivity with two normal IRES functions:

� cfa(t 2 T) = {� = (_, c) 2 S |
syntax-ctxt � js-call-ctxt(c) = c 0 ^ c 0(this) = t}

where js-call-ctxt(c) denotes the top-most context whose function is
Call or Construct and f �� denotes a function composition. Moreover,
we extend it to the k-callsite sensitivity by recursively taking ASTs
representing callsites of the target language:

�k -cfa(t 2 Tk) = {� = (_, c) 2 S |
t = [t1, · · · , tn] ^ n  k^
(ö(syntax-ctxt � js-call-ctxt)n+1(c) _ n = k)^
81  i  n.
((syntax-ctxt � js-call-ctxt)i (c) = ci ^ ci (this) = ti)}

Using this callsite sensitivity for the target language, the meta-
level static analyzer could discriminate not only explicit JavaScript
function calls (e.g. f()) but also implicit JavaScript function calls,
including getters/setters, user-de�ned implicit conversions, and
implicit function calls in built-in libraries.

5 IMPLEMENTATION
We developed a prototype implementation called JSAVER, which per-
forms a meta-level static analysis for JavaScript with ECMAScript.
The tool is an extension of JISET4 and it is an open-source project5.
In this section, we describe the challenges in implementing a meta-
level static analyzer and present our solutions for them.

Layered Abstract States. Unlike traditional JavaScript static anal-
yses, a meta-level static analysis for JavaScript should track analysis
results not only for the target language JavaScript but also for the
speci�cation language IRES. Thus, the sizes of abstract states are
much larger than those of the other JavaScript static analyzers. We
implement layered abstract states to maintain only updated analysis
results compared to the initial abstract state. It signi�cantly reduces
the time to perform the join (t), meet (u), and partial order (v)
operations by considering only the updated parts in abstract states.

Closures and Continuations. The speci�cation language IRES for
ECMAScript contains more complex language features than its
simpli�ed version presented in Section 4.1, such as symbols, lists,
and list operations. Among them, the two most complex features
are closures with captured variables and �rst-class continuations be-
cause they introduce new kinds of control �ows. ECMAScript uses
closures to de�ne implicit and explicit JavaScript iterators and uses
continuations for iterators, generators, and asynchronous features
such as async, await, and the Proxy object. Therefore, we de�ne and
implement abstract closures and abstract continuations; an abstract
closure is a pair of a function and a mapping from captured vari-
ables to their abstract values, and an abstract continuation consists
of a program point, a view for analysis sensitivity, parameters, and
an abstract context.

Abstract Counting. Properties of JavaScript objects could be dy-
namically added, modi�ed, or deleted and even accessible by �rst-
class property names. Thus, in JavaScript static analysis, performing
strong updates rather than weak updates for object properties as
many as possible is important for precise analysis results. Since
records of IRES are even more dynamic than JavaScript objects, it is
also important to increase analysis precision. Therefore, we imple-
ment abstract counting [19] to increase chances to perform strong
updates for �elds of records. It checks how many times records in
the same allocation site have been allocated and performs strong
updates only for singleton records with singleton �eld values.

Loop Sensitivity. Similar to function calls, loops are also typical
merging points in static analysis. A loop sensitivity [24] is one of the
representative techniques to increase the precision of JavaScript
static analysis for loops. It discriminates contexts using a stack
of loop contexts containing loop iterations. We de�ne it under
the view-based analysis sensitivity and implement it in JSAVER to
increase the precision of IRES static analysis. Moreover, we also
de�ne and implement the loop sensitivity for JavaScript using the
loop sensitivity for IRES. Therefore, JSAVER discriminates contexts
for explicit loops such as for-in and for-of and even implicit loops
such as the assignment of arguments or the length property of
arrays.

4https://github.com/kaist-plrg/jiset
5The URL of the tool is anonymized due to a double-blind review process.

6

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

(a) Evaluation algorithm for identi�er references

1 syntax def IdentifierReference [0]. Evaluation(
2 this , Identifier
3) {
4 return [? (ResolveBinding (Identifier.StringValue))]
5 }

(b) Extracted IRES function for identi�er references

(c) Result of x + y via a mechanized speci�cation

Figure 7: Analysis sensitivities of the target language
(JavaScript) and the speci�cation language (IRES)

divides contexts for the evaluation of JavaScript identi�ers x and y

in the above example using their ASTs even though their program
points in IRES are the same.

Callsite Sensitivity. We also formally de�ne the callsite sensitiv-
ity [37, 38] for the target language by extending the AST sensitivity
for speci�c normal IRES functions. The original callsite sensitivity
discriminates calling contexts using their top most callsites. In EC-
MAScript, all explicit and even implicit JavaScript function calls
invoke normal IRES functions Call and Construct. Thus, we de�ne
the callsite sensitivity for the target language by extending the AST
sensitivity with two normal IRES functions:

� cfa(t 2 T) = {� = (_, c) 2 S |
syntax-ctxt � js-call-ctxt(c) = c 0 ^ c 0(this) = t}

where js-call-ctxt(c) denotes the top-most context whose function is
Call or Construct and f �� denotes a function composition. Moreover,
we extend it to the k-callsite sensitivity by recursively taking ASTs
representing callsites of the target language:

�k -cfa(t 2 Tk) = {� = (_, c) 2 S |
t = [t1, · · · , tn] ^ n  k^
(ö(syntax-ctxt � js-call-ctxt)n+1(c) _ n = k)^
81  i  n.
((syntax-ctxt � js-call-ctxt)i (c) = ci ^ ci (this) = ti)}

Using this callsite sensitivity for the target language, the meta-
level static analyzer could discriminate not only explicit JavaScript
function calls (e.g. f()) but also implicit JavaScript function calls,
including getters/setters, user-de�ned implicit conversions, and
implicit function calls in built-in libraries.

5 IMPLEMENTATION
We developed a prototype implementation called JSAVER, which per-
forms a meta-level static analysis for JavaScript with ECMAScript.
The tool is an extension of JISET4 and it is an open-source project5.
In this section, we describe the challenges in implementing a meta-
level static analyzer and present our solutions for them.

Layered Abstract States. Unlike traditional JavaScript static anal-
yses, a meta-level static analysis for JavaScript should track analysis
results not only for the target language JavaScript but also for the
speci�cation language IRES. Thus, the sizes of abstract states are
much larger than those of the other JavaScript static analyzers. We
implement layered abstract states to maintain only updated analysis
results compared to the initial abstract state. It signi�cantly reduces
the time to perform the join (t), meet (u), and partial order (v)
operations by considering only the updated parts in abstract states.

Closures and Continuations. The speci�cation language IRES for
ECMAScript contains more complex language features than its
simpli�ed version presented in Section 4.1, such as symbols, lists,
and list operations. Among them, the two most complex features
are closures with captured variables and �rst-class continuations be-
cause they introduce new kinds of control �ows. ECMAScript uses
closures to de�ne implicit and explicit JavaScript iterators and uses
continuations for iterators, generators, and asynchronous features
such as async, await, and the Proxy object. Therefore, we de�ne and
implement abstract closures and abstract continuations; an abstract
closure is a pair of a function and a mapping from captured vari-
ables to their abstract values, and an abstract continuation consists
of a program point, a view for analysis sensitivity, parameters, and
an abstract context.

Abstract Counting. Properties of JavaScript objects could be dy-
namically added, modi�ed, or deleted and even accessible by �rst-
class property names. Thus, in JavaScript static analysis, performing
strong updates rather than weak updates for object properties as
many as possible is important for precise analysis results. Since
records of IRES are even more dynamic than JavaScript objects, it is
also important to increase analysis precision. Therefore, we imple-
ment abstract counting [19] to increase chances to perform strong
updates for �elds of records. It checks how many times records in
the same allocation site have been allocated and performs strong
updates only for singleton records with singleton �eld values.

Loop Sensitivity. Similar to function calls, loops are also typical
merging points in static analysis. A loop sensitivity [24] is one of the
representative techniques to increase the precision of JavaScript
static analysis for loops. It discriminates contexts using a stack
of loop contexts containing loop iterations. We de�ne it under
the view-based analysis sensitivity and implement it in JSAVER to
increase the precision of IRES static analysis. Moreover, we also
de�ne and implement the loop sensitivity for JavaScript using the
loop sensitivity for IRES. Therefore, JSAVER discriminates contexts
for explicit loops such as for-in and for-of and even implicit loops
such as the assignment of arguments or the length property of
arrays.

4https://github.com/kaist-plrg/jiset
5The URL of the tool is anonymized due to a double-blind review process.

6

parsex ||= y
581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

(a) Evaluation algorithm for identi�er references

1 syntax def IdentifierReference [0]
2 .Evaluation(
3 this , Identifier
4) {
5 return [?
6 (ResolveBinding
7 (Identifier.StringValue))]
8 }

(b) Extracted IRES function for identi�er references

(c) Result of x + y via a mechanized speci�cation

Figure 7: Analysis sensitivities of the target language
(JavaScript) and the speci�cation language (IRES)

divides contexts for the evaluation of JavaScript identi�ers x and y

in the above example using their ASTs even though their program
points in IRES are the same.

Callsite Sensitivity. We also formally de�ne the callsite sensitiv-
ity [37, 38] for the target language by extending the AST sensitivity
for speci�c normal IRES functions. The original callsite sensitivity
discriminates calling contexts using their top most callsites. In EC-
MAScript, all explicit and even implicit JavaScript function calls
invoke normal IRES functions Call and Construct. Thus, we de�ne
the callsite sensitivity for the target language by extending the AST
sensitivity with two normal IRES functions:

� cfa(t 2 T) = {� = (_, c) 2 S |
syntax-ctxt � js-call-ctxt(c) = c 0 ^ c 0(this) = t}

where js-call-ctxt(c) denotes the top-most context whose function is
Call or Construct and f �� denotes a function composition. Moreover,
we extend it to the k-callsite sensitivity by recursively taking ASTs
representing callsites of the target language:

�k -cfa(t 2 Tk) = {� = (_, c) 2 S |
t = [t1, · · · , tn] ^ n  k^
(ö(syntax-ctxt � js-call-ctxt)n+1(c) _ n = k)^
81  i  n.
((syntax-ctxt � js-call-ctxt)i (c) = ci ^ ci (this) = ti)}

Using this callsite sensitivity for the target language, the meta-
level static analyzer could discriminate not only explicit JavaScript
function calls (e.g. f()) but also implicit JavaScript function calls,

including getters/setters, user-de�ned implicit conversions, and
implicit function calls in built-in libraries.

5 IMPLEMENTATION
We developed a prototype implementation called JSAVER, which per-
forms a meta-level static analysis for JavaScript with ECMAScript.
The tool is an extension of JISET4 and it is an open-source project5.
In this section, we describe the challenges in implementing a meta-
level static analyzer and present our solutions for them.

Layered Abstract States. Unlike traditional JavaScript static anal-
yses, a meta-level static analysis for JavaScript should track analysis
results not only for the target language JavaScript but also for the
speci�cation language IRES. Thus, the sizes of abstract states are
much larger than those of the other JavaScript static analyzers. We
implement layered abstract states to maintain only updated analysis
results compared to the initial abstract state. It signi�cantly reduces
the time to perform the join (t), meet (u), and partial order (v)
operations by considering only the updated parts in abstract states.

Closures and Continuations. The speci�cation language IRES for
ECMAScript contains more complex language features than its
simpli�ed version presented in Section 4.1, such as symbols, lists,
and list operations. Among them, the two most complex features
are closures with captured variables and �rst-class continuations be-
cause they introduce new kinds of control �ows. ECMAScript uses
closures to de�ne implicit and explicit JavaScript iterators and uses
continuations for iterators, generators, and asynchronous features
such as async, await, and the Proxy object. Therefore, we de�ne and
implement abstract closures and abstract continuations; an abstract
closure is a pair of a function and a mapping from captured vari-
ables to their abstract values, and an abstract continuation consists
of a program point, a view for analysis sensitivity, parameters, and
an abstract context.

Abstract Counting. Properties of JavaScript objects could be dy-
namically added, modi�ed, or deleted and even accessible by �rst-
class property names. Thus, in JavaScript static analysis, performing
strong updates rather than weak updates for object properties as
many as possible is important for precise analysis results. Since
records of IRES are even more dynamic than JavaScript objects, it is
also important to increase analysis precision. Therefore, we imple-
ment abstract counting [19] to increase chances to perform strong
updates for �elds of records. It checks how many times records in
the same allocation site have been allocated and performs strong
updates only for singleton records with singleton �eld values.

Loop Sensitivity. Similar to function calls, loops are also typical
merging points in static analysis. A loop sensitivity [24] is one of the
representative techniques to increase the precision of JavaScript
static analysis for loops. It discriminates contexts using a stack
of loop contexts containing loop iterations. We de�ne it under
the view-based analysis sensitivity and implement it in JSAVER to
increase the precision of IRES static analysis. Moreover, we also
de�ne and implement the loop sensitivity for JavaScript using the
loop sensitivity for IRES. Therefore, JSAVER discriminates contexts

4https://github.com/kaist-plrg/jiset
5The URL of the tool is anonymized due to a double-blind review process.

6

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ICSE 2022, May 21–29, 2022, Pi�sburgh, PA, USA Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

(a) Evaluation algorithm for identi�er references

1 syntax def IdentifierReference [0]
2 .Evaluation(
3 this , Identifier
4) {
5 return [?
6 (ResolveBinding
7 (Identifier.StringValue))]
8 }

(b) Extracted IRES function for identi�er references

(c) Result of x + y via a mechanized speci�cation

Figure 7: Analysis sensitivities of the target language
(JavaScript) and the speci�cation language (IRES)

divides contexts for the evaluation of JavaScript identi�ers x and y

in the above example using their ASTs even though their program
points in IRES are the same.

Callsite Sensitivity. We also formally de�ne the callsite sensitiv-
ity [37, 38] for the target language by extending the AST sensitivity
for speci�c normal IRES functions. The original callsite sensitivity
discriminates calling contexts using their top most callsites. In EC-
MAScript, all explicit and even implicit JavaScript function calls
invoke normal IRES functions Call and Construct. Thus, we de�ne
the callsite sensitivity for the target language by extending the AST
sensitivity with two normal IRES functions:

� cfa(t 2 T) = {� = (_, c) 2 S |
syntax-ctxt � js-call-ctxt(c) = c 0 ^ c 0(this) = t}

where js-call-ctxt(c) denotes the top-most context whose function is
Call or Construct and f �� denotes a function composition. Moreover,
we extend it to the k-callsite sensitivity by recursively taking ASTs
representing callsites of the target language:

�k -cfa(t 2 Tk) = {� = (_, c) 2 S |
t = [t1, · · · , tn] ^ n  k^
(ö(syntax-ctxt � js-call-ctxt)n+1(c) _ n = k)^
81  i  n.
((syntax-ctxt � js-call-ctxt)i (c) = ci ^ ci (this) = ti)}

Using this callsite sensitivity for the target language, the meta-
level static analyzer could discriminate not only explicit JavaScript
function calls (e.g. f()) but also implicit JavaScript function calls,

including getters/setters, user-de�ned implicit conversions, and
implicit function calls in built-in libraries.

5 IMPLEMENTATION
We developed a prototype implementation called JSAVER, which per-
forms a meta-level static analysis for JavaScript with ECMAScript.
The tool is an extension of JISET4 and it is an open-source project5.
In this section, we describe the challenges in implementing a meta-
level static analyzer and present our solutions for them.

Layered Abstract States. Unlike traditional JavaScript static anal-
yses, a meta-level static analysis for JavaScript should track analysis
results not only for the target language JavaScript but also for the
speci�cation language IRES. Thus, the sizes of abstract states are
much larger than those of the other JavaScript static analyzers. We
implement layered abstract states to maintain only updated analysis
results compared to the initial abstract state. It signi�cantly reduces
the time to perform the join (t), meet (u), and partial order (v)
operations by considering only the updated parts in abstract states.

Closures and Continuations. The speci�cation language IRES for
ECMAScript contains more complex language features than its
simpli�ed version presented in Section 4.1, such as symbols, lists,
and list operations. Among them, the two most complex features
are closures with captured variables and �rst-class continuations be-
cause they introduce new kinds of control �ows. ECMAScript uses
closures to de�ne implicit and explicit JavaScript iterators and uses
continuations for iterators, generators, and asynchronous features
such as async, await, and the Proxy object. Therefore, we de�ne and
implement abstract closures and abstract continuations; an abstract
closure is a pair of a function and a mapping from captured vari-
ables to their abstract values, and an abstract continuation consists
of a program point, a view for analysis sensitivity, parameters, and
an abstract context.

Abstract Counting. Properties of JavaScript objects could be dy-
namically added, modi�ed, or deleted and even accessible by �rst-
class property names. Thus, in JavaScript static analysis, performing
strong updates rather than weak updates for object properties as
many as possible is important for precise analysis results. Since
records of IRES are even more dynamic than JavaScript objects, it is
also important to increase analysis precision. Therefore, we imple-
ment abstract counting [19] to increase chances to perform strong
updates for �elds of records. It checks how many times records in
the same allocation site have been allocated and performs strong
updates only for singleton records with singleton �eld values.

Loop Sensitivity. Similar to function calls, loops are also typical
merging points in static analysis. A loop sensitivity [24] is one of the
representative techniques to increase the precision of JavaScript
static analysis for loops. It discriminates contexts using a stack
of loop contexts containing loop iterations. We de�ne it under
the view-based analysis sensitivity and implement it in JSAVER to
increase the precision of IRES static analysis. Moreover, we also
de�ne and implement the loop sensitivity for JavaScript using the
loop sensitivity for IRES. Therefore, JSAVER discriminates contexts

4https://github.com/kaist-plrg/jiset
5The URL of the tool is anonymized due to a double-blind review process.

6

JS Program P1

/ 57

JavaScript AST Sensitivity in IRES

Flow-Sensitivity

k-Callsite-Sensitivity

51

AST Sensitivity

<latexit sha1_base64="oQOE2Drml3rtti6Mjf3zx8erneU=">AAACinicbVFRa9RAEN6kVutZ27M++rJ4CFfQIylSlSIU9cHHil5b6J5hstlct7e7CbuTagz5oT75P3xycxfBXh0Y+PabmW+Yb9NSSYdR9DMIN+5s3r23dX/wYPvhzu7w0d6pKyrLxZQXqrDnKTihpBFTlKjEeWkF6FSJs3TxvqufXQvrZGG+YF2KmYa5kbnkgJ5KhjXLhEL4ylB8R8Tmyr3IVfGtHWPC0gL36VvKGsqcnGvweMyS53SZKdiGt91jnzJpKNOAl2nafG49lBn9KwgO23Hf3amtdClrk+EomkTLoLdB3IMR6eMkGf5mWcErLQxyBc5dxFGJswYsSq5EO2CVEyXwBczFhYcGtHCzZmlRS595JqN5YX0apEv234kGtHO1Tn1nd4hbr3Xkf2sONdjaZmv7MX89a6QpKxSGr9bnlaJY0O4XaCat4KhqD4Bb6S+g/BIscPR/dUMf5eJHO/BmxevW3AanB5P4cHL46eXo+F1v2xZ5Qp6SMYnJK3JMPpITMiWc/Ao2g51gN9wOD8I34dGqNQz6mcfkRoQf/gDuyMVY</latexit>

�js-flow(t?) = {� = (, , c̄,) 2 S | ast(c̄) = t?}

<latexit sha1_base64="QbN9E/bao3JiinscCn2aJuvrycA=">AAADXnicbVJNbxMxEN1NoJRAaQoXJC4jUqREtFEWoYKEkCq4cOBQBGkrxelq1uukJl5vYs+ihtX+Kn5Nbwj+BSe8yYLStCNZfp6P98ZjR1MlLfV6l36tfuv2xp3Nu41797cebDd3Hh7bNDNc9HmqUnMaoRVKatEnSUqcTo3AJFLiJJq8L+Mn34SxMtVfaD4VwwTHWo4kR3KucMf/yCIxljpHY3Be5KpoALBYKMIzRuKCiPKvdn93srvPR1i0BxQGe8B4nJLdAwr1sANvgeXArBwn6HCbhS6hXBGanBfloQNMamAJ0nkU5Z8LB2UMjJVas1mG8b/NJSkxg4nbUMfQ1o6wPKQGVrrhdEHFWa6fB0W7Ull0EaXUqSpv4Gaj1KBSECw15HLTXWBv/pOjJdccl4Zf15OwKkahIyhKHSZ0XI0vbLZ63d7C4DoIKtDyKjsKm39YnPIsEZq4QmsHQW9KQ8dGkitRNFhmxRT5BMdi4KDGRNhhvnj2Ap45TwzuVm5pgoV3tSLHxNp5ErnMcvJ2PVY6b4xZStDMTbymT6PXw1zqaUZC86X8KFNAKZQ/C2JpBCc1dwC5ke4GwM/RICf3/67wk5x8LxpuWMH6aK6D4xfd4KB78Oll6/BdNbZN74n31Gt7gffKO/Q+eEde3+P+D//S/+X/rv2sb9S36tvL1Jpf1Tzyrlj98V9w2A88</latexit>

�js-k-cfa([t1, · · · , tn]) = {� = (, , c̄,) 2 S |
n  k ^ (n = k _ js-ctxtn+1(c̄) = ?)^
81  i  n. ast � js-ctxti(c̄) = ti}

/ 5752

JSAVER

Mechanized
Specification

JSAVER

(JavaScript Static Analyzer via ECMAScript Representation)

IRES
Functions

JavaScript
Parser

Abstract
Transfer Func.

Initial
Abstract State

Analysis
Intializer

Abstract
Syntax Tree

Analysis
Result

JavaScript
Programs

/ 5753

JSAVER - Soundness
ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Jihyeok Park, Seungmin An, and Sukyoung Ryu

(a) Analysis results of TAJS (b) Analysis results of SAFE (c) Analysis results of JSAES12

(d) Analysis results of TAJS with Babel (e) Analysis results of SAFE with Babel

Figure 8: Analysis results of TAJS and SAFE without and with Babel and JSAES12 for 18,556 applicable tests

(a) The analysis precision (b) The analysis performance

Figure 9: The analysis precision and performance for 3,878
tests soundly analyzable by all of five analyzers

On the other hand, the analysis speed of JSAES12 is slower than
that of TAJS and SAFE, and Figure 9(b) depicts them in violin
plots on a logarithmic scale. TAJS and SAFE took 139 ms and 181
ms, respectively, to analyze 3,878 test programs on average. Babel
increases their average analysis time to 169 ms and 199 ms, respec-
tively, because it transpiles all ES6+ features in test programs to
verbose ES5.1 features. However, JSAES12 took 357 ms on average to
analyze them because JSAVER derives precise abstract semantics for
all language features. On the contrary, TAJS and SAFE developers
often imprecisely or even unsoundly model the abstract semantics
of specific language features to increase the analysis speed. For ex-
ample, TAJS does not discriminate positive/negative infinity values
or positive/negative zeros to reduce the number of possible cases
in abstract values. Similarly, SAFE ignores the semantics of getters
and setters to analyze object property reads quickly.

Table 2: Definitions of three string abstract domains String
Set (SS𝑘), Character Inclusion (CI), and Prefix-Suffix (PS)

Domain Definition

SS𝑘

SS𝑘 = {⊤} ∪ {𝑆 ⊆ Σ
∗ | |𝑆 | ≤ 𝑘 }

𝛾 (𝑆) = 𝑆
𝑆 · 𝑆 ′ = {𝑠 · 𝑠′ | 𝑠 ∈ 𝑆 ∧ 𝑠′ ∈ 𝑆 ′ }

CI
CI = {⊥} ∪ { [𝐿,𝑈] | 𝐿,𝑈 ⊆ Σ ∧ 𝐿 ⊆ 𝑈 }
𝛾 ([𝐿,𝑈]) = {𝑤 ∈ Σ

∗ | 𝐿 ⊆ chars(𝑤) ⊆ 𝑈 }
[𝐿,𝑈] · [𝐿′,𝑈 ′] = [𝐿 ∪ 𝐿′,𝑈 ∪𝑈 ′]

PS
PS = {⊥} ∪ (Σ∗ × Σ

∗)
𝛾 (⟨𝑝, 𝑠 ⟩) = {𝑝 · 𝑤 | 𝑤 ∈ Σ

∗ } ∩ {𝑤 · 𝑠 | 𝑤 ∈ Σ
∗ }

⟨𝑝, 𝑠 ⟩ · ⟨𝑝′, 𝑠′ ⟩ = ⟨𝑝, 𝑠′ ⟩

1 let x = /* "a" or "b" */;

2 let y = `c${x}d`; // "cad" or "cbd"

3 let z = `${x}e${x}`; // "aea" or "beb"

Figure 10: A JavaScript program using template literals

6.3 Configurability
We demonstrate the configurability of JSAVER with several case

studies for abstract domains and analysis sensitivities. We discuss
how different abstract domains or analysis sensitivities affect anal-
ysis results of JSAES12 with examples.

6.3.1 Abstract Domains. As explained in Section 4.3, we can config-
ure abstract domains for JavaScript values by configuring those for
IRES values. In JavaScript static analysis, researchers have presented
diverse string domains to precisely analyze object property names.
Among them, we implemented three representative string abstract
domains [3]: the String Set (SS𝑘) domain, the Character Inclusion

1029

/ 5754

JSAVER - Precision vs Performance

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Jihyeok Park, Seungmin An, and Sukyoung Ryu

(a) Analysis results of TAJS (b) Analysis results of SAFE (c) Analysis results of JSAES12

(d) Analysis results of TAJS with Babel (e) Analysis results of SAFE with Babel

Figure 8: Analysis results of TAJS and SAFE without and with Babel and JSAES12 for 18,556 applicable tests

(a) The analysis precision (b) The analysis performance

Figure 9: The analysis precision and performance for 3,878
tests soundly analyzable by all of five analyzers

On the other hand, the analysis speed of JSAES12 is slower than
that of TAJS and SAFE, and Figure 9(b) depicts them in violin
plots on a logarithmic scale. TAJS and SAFE took 139 ms and 181
ms, respectively, to analyze 3,878 test programs on average. Babel
increases their average analysis time to 169 ms and 199 ms, respec-
tively, because it transpiles all ES6+ features in test programs to
verbose ES5.1 features. However, JSAES12 took 357 ms on average to
analyze them because JSAVER derives precise abstract semantics for
all language features. On the contrary, TAJS and SAFE developers
often imprecisely or even unsoundly model the abstract semantics
of specific language features to increase the analysis speed. For ex-
ample, TAJS does not discriminate positive/negative infinity values
or positive/negative zeros to reduce the number of possible cases
in abstract values. Similarly, SAFE ignores the semantics of getters
and setters to analyze object property reads quickly.

Table 2: Definitions of three string abstract domains String
Set (SS𝑘), Character Inclusion (CI), and Prefix-Suffix (PS)

Domain Definition

SS𝑘

SS𝑘 = {⊤} ∪ {𝑆 ⊆ Σ
∗ | |𝑆 | ≤ 𝑘 }

𝛾 (𝑆) = 𝑆
𝑆 · 𝑆 ′ = {𝑠 · 𝑠′ | 𝑠 ∈ 𝑆 ∧ 𝑠′ ∈ 𝑆 ′ }

CI
CI = {⊥} ∪ { [𝐿,𝑈] | 𝐿,𝑈 ⊆ Σ ∧ 𝐿 ⊆ 𝑈 }
𝛾 ([𝐿,𝑈]) = {𝑤 ∈ Σ

∗ | 𝐿 ⊆ chars(𝑤) ⊆ 𝑈 }
[𝐿,𝑈] · [𝐿′,𝑈 ′] = [𝐿 ∪ 𝐿′,𝑈 ∪𝑈 ′]

PS
PS = {⊥} ∪ (Σ∗ × Σ

∗)
𝛾 (⟨𝑝, 𝑠 ⟩) = {𝑝 · 𝑤 | 𝑤 ∈ Σ

∗ } ∩ {𝑤 · 𝑠 | 𝑤 ∈ Σ
∗ }

⟨𝑝, 𝑠 ⟩ · ⟨𝑝′, 𝑠′ ⟩ = ⟨𝑝, 𝑠′ ⟩

1 let x = /* "a" or "b" */;

2 let y = `c${x}d`; // "cad" or "cbd"

3 let z = `${x}e${x}`; // "aea" or "beb"

Figure 10: A JavaScript program using template literals

6.3 Configurability
We demonstrate the configurability of JSAVER with several case

studies for abstract domains and analysis sensitivities. We discuss
how different abstract domains or analysis sensitivities affect anal-
ysis results of JSAES12 with examples.

6.3.1 Abstract Domains. As explained in Section 4.3, we can config-
ure abstract domains for JavaScript values by configuring those for
IRES values. In JavaScript static analysis, researchers have presented
diverse string domains to precisely analyze object property names.
Among them, we implemented three representative string abstract
domains [3]: the String Set (SS𝑘) domain, the Character Inclusion

1029

/ 5755

JISET

JEST

Mechanized
Specification

Mechanized Spec.
Extraction

Conformance
Test Synthesis

Conformance
Tests

Static
Analyzer

JavaScript
Engines

ASE 2020

ICSE 2021

Derivation of
Static Analyzer

FSE 2022

Feature-Sensitive
Coverage

PLDI 2023

Specification
Type Analysis

ASE 2021

JSTARSpecification
Type Errors

ECMA-262
(JS Spec.)

FS/FCPS-
Coverage

JSAVER

/ 5755

JISET

JEST

Mechanized
Specification

Mechanized Spec.
Extraction

Conformance
Test Synthesis

Conformance
Tests

Static
Analyzer

JavaScript
Engines

ASE 2020

ICSE 2021

Derivation of
Static Analyzer

FSE 2022

Feature-Sensitive
Coverage

PLDI 2023

Specification
Type Analysis

ASE 2021

Automatic
Spec. Repair JSTARSpecification

Type Errors

ECMA-262
(JS Spec.)

FS/FCPS-
Coverage

JSAVER

/ 5755

JISET

JEST

Mechanized
Specification

Mechanized Spec.
Extraction

Conformance
Test Synthesis

Conformance
Tests

Static
Analyzer

JavaScript
Engines

ASE 2020

ICSE 2021

Derivation of
Static Analyzer

FSE 2022

Feature-Sensitive
Coverage

PLDI 2023

Specification
Type Analysis

ASE 2021

Advanced
Refinement

Automatic
Spec. Repair JSTARSpecification

Type Errors

ECMA-262
(JS Spec.)

FS/FCPS-
Coverage

JSAVER

/ 5755

JISET

JEST

Mechanized
Specification

Mechanized Spec.
Extraction

Conformance
Test Synthesis

Conformance
Tests

Static
Analyzer

JavaScript
Engines

ASE 2020

ICSE 2021

Derivation of
Static Analyzer

FSE 2022

Feature-Sensitive
Coverage

PLDI 2023

Specification
Type Analysis

ASE 2021

Advanced
Refinement

Automatic
Spec. Repair

Advanced
Coverage

JSTARSpecification
Type Errors

ECMA-262
(JS Spec.)

FS/FCPS-
Coverage

JSAVER

/ 5755

JISET

JEST

Mechanized
Specification

Mechanized Spec.
Extraction

Conformance
Test Synthesis

Conformance
Tests

Static
Analyzer

JavaScript
Engines

ASE 2020

ICSE 2021

Derivation of
Static Analyzer

FSE 2022

Feature-Sensitive
Coverage

PLDI 2023

Specification
Type Analysis

ASE 2021

Advanced
Refinement

Automatic
Spec. Repair

Advanced
Coverage

JSTARSpecification
Type Errors

ECMA-262
(JS Spec.)

FS/FCPS-
Coverage

JSAVER

Transpiler
Rules

/ 5755

JISET

JEST

Mechanized
Specification

Mechanized Spec.
Extraction

Conformance
Test Synthesis

Conformance
Tests

Static
Analyzer

JavaScript
Engines

ASE 2020

ICSE 2021

Derivation of
Static Analyzer

FSE 2022

Feature-Sensitive
Coverage

PLDI 2023

Specification
Type Analysis

ASE 2021

Advanced
Refinement

Automatic
Spec. Repair

Polyfill

Advanced
Coverage

JSTARSpecification
Type Errors

ECMA-262
(JS Spec.)

FS/FCPS-
Coverage

JSAVER

Transpiler
Rules

/ 5755

JISET

JEST

Mechanized
Specification

Mechanized Spec.
Extraction

Conformance
Test Synthesis

Conformance
Tests

Static
Analyzer

JavaScript
Engines

ASE 2020

ICSE 2021

Derivation of
Static Analyzer

FSE 2022

Feature-Sensitive
Coverage

PLDI 2023

Specification
Type Analysis

ASE 2021

Advanced
Refinement

Dataflow
Rules

Automatic
Spec. Repair

Polyfill

Advanced
Coverage

JSTARSpecification
Type Errors

ECMA-262
(JS Spec.)

FS/FCPS-
Coverage

JSAVER

Transpiler
Rules

/ 5756

Mechanized
Specification

/ 5756

Python

Java
Mechanized
Specification

/ 5756

P4
(packets)

QraphQL
(Query)

Qiskit
(Quantum)

WebAssembly

Python

Java
Mechanized
Specification

/ 5757

https://github.com/es-meta/esmeta

https://github.com/es-meta/esmeta

/ 5757

https://github.com/es-meta/esmeta

Official tool used in CI system of 
ECMA-262 and Test262

https://github.com/es-meta/esmeta

