PL4XGL: A Programming Language Approach to Explainable Graph Learning

- Minseok Jeon, Jihyeok Park, and Hakjoo Oh
 - KOREA UNIVERSITY WIVERSITY UNIVERSITY UNIVERSITY
 - PLDI 2024 @ Copenhagen, Denmark

Graph Machine Learning

Graph Machine Learning

Mainstream: Graph Neural Network (unexplainable AI)

Graph Machine Learning

Mainstream: Graph Neural Network (unexplainable AI)

Explainable Graph Machine Learning

Mainstream: Graph Neural Network (GNN) + post-hoc "explainers"

Explainable Graph Machine Learning

Mainstream: Graph Neural Network (GNN) + post-hoc "explainers"

Our Approach

PL4XGL: PL-based inherently explainable graph machine learning method

Our Approach

PL4XGL: PL-based inherently explainable graph machine learning method

Our model

Our model

Node Classification Example

Graph data

Our model

Node Classification Example

Node Classification Example

Our model

Our model

Our model

Our model

n1: (1,
$$\langle [-\infty, 0.5] \rangle \rightarrow \langle [-\infty, \infty] \rangle$$

n2: (2, $\langle [-\infty, \infty] \rangle \rightarrow \langle [-\infty, 0.5] \rangle$
n3: (1, $\langle [-\infty, 0.5] \rangle \rightarrow \langle [-\infty, 0.5] \rangle$
n4: (2, $\langle [-\infty, \infty] \rangle \rightarrow \langle [-\infty, 0.5] \rangle$

Our model

ining data
Top-down synthesis algorith
Bottom-up synthesis algorith
Learning objective:
Learn high-quality GDL program

$$n1: (1, ((-\infty, 0.5)) \rightarrow ((-\infty, 0.5)))$$

 $n2: (2, ((-\infty, 0)) \rightarrow ((-\infty, 0.5)))$
 $n3: (1, ((-\infty, 0.5)) \rightarrow ((-\infty, 0.5)))$
 $n4: (2, ((-\infty, 0)) \rightarrow ((-\infty, 0.5)))$

- Compared PL4XGL with
 - Representative GNNs : GCN, GAT, GIN, etc
 - State-of-the-art GNN explainer : SubgraphX*
- Research questions:
 - RQI) Classification accuracy
 - RQ2) Explainability
- Settings:

 - PL4XGL trained and evaluated using 64-core CPU

*Yuan et al. On explainability of graph neural networks via subgraph explorations. ICML 2021

Evaluation

GNNs and SubgraphX trained and evaluated using a GPU (RTX A6000)

RQI) Classification Accuracy

- Each dataset is split into 8:1:1 for training, validation, and evaluation
- PL4XGL achieved the best accuracy for 5 datasets
- PL4XGL did not scale for the largest dataset HIV (time budget = 48h)

	GCN	GAT	СневуNет	JKNet	GraphSage	GIN	DGCN	PL4XGL
MUTAG	80.0±0.0	89.0 ± 2.2	86.0 ± 4.1	68.0 ± 7.5	78.0 ± 4.4	91.0 ± 5.4	N/A	100.0±0.0
BBBP	83.6±1.4	82.3±1.6	84.6 ± 1.0	85.6±1.9	86.6 ± 0.9	86.2 ± 1.4	N/A	86.8±0.0
BACE	78.4±2.8	52.4 ± 3.3	78.9 ± 1.4	79.9±1.9	79.8 ± 0.8	80.9±0.4	N/A	80.9±0.0
HIV	96.4±0.0	96.4±0.0	96.8 ± 0.2	96.8 ± 0.1	96.9±0.2	96.8 ± 0.1	N/A	N/A
BA-Shapes	95.1±0.6	76.8 ± 2.3	97.1±0.0	94.3±0.0	97.1±0.0	92.0 ± 1.1	95.1±0.7	95.7±0.0
TREE-CYCLES	97.7±0.0	90.9±0.0	$100.0{\pm}0.0$	98.9±0.0	$100.0{\pm}0.0$	93.2 ± 0.0	99.2 ± 0.5	100.0±0.0
Wisconsin	64.0±0.0	49.6±3.1	86.4±3.9	64.8 ± 1.5	92.8±2.9	56.0 ± 0.0	96.0±0.0	88.0±0.0
TEXAS	67.7±5.3	50.0 ± 0.0	87.7 ± 2.1	68.8 ± 4.3	86.6 ± 2.6	50.0 ± 0.0	$86.6{\pm}2.6$	83.3±0.0
Cornell	58.9±2.6	61.1 ± 0.0	81.0 ± 6.5	61.1 ± 0.0	87.7 ± 2.1	61.1 ± 0.0	86.6 ± 2.6	88.8±0.0
Cora	85.6±0.3	86.4±1.8	86.5 ± 5.2	84.9±3.5	86.3 ± 3.2	86.7±0.0	83.2 ± 5.9	80.0 ± 0.0
Citeseer	75.2 ± 0.0	74.3 ± 0.7	79.1±0.9	73.7 ± 4.2	$75.9{\pm}2.3$	$75.2{\pm}0.0$	$71.3{\pm}6.0$	63.8 ± 0.0
Pubmed	82.8±1.1	84.7 ± 1.2	$\textbf{88.7{\pm}1.0}$	83.2 ± 0.4	$88.0{\pm}0.4$	86.1 ± 0.6	85.1 ± 0.6	81.4±0.0

RQI) Classification Accuracy

- Each dataset is split into 8:1:1 for training, validation, and evaluation
- PL4XG Molecule datasets (graph classification)
- PL4XGL and not scale for the largest dataset inv (time budget = 48h)

	GCN	GAT	СневуNет	JKNet	GraphSage	GIN	DGCN	PL4XGL			
MUTAG	80.0 ± 0.0	89.0±2.2	86.0±4.1	68.0 ± 7.5	$78.0{\pm}4.4$	91.0±5.4	N/A	100.0±0.0			
BBBP	83.6±1. 4	82.3±1.6	84.6 ± 1.0	85.6±1.9	86.6±0.9	86.2 ± 1.4	N/A	86.8±0.0			
BACE	78.4 ± 2.8	52.4 ± 3.3	78.9 ± 1.4	79.9±1.9	79.8 ± 0.8	$\textbf{80.9{\pm}0.4}$	N/A	80.9±0.0			
HIV	96.4±0.0	96.4±0.0	96.8 ± 0.2	96.8 ± 0.1	96.9±0.2	96.8 ± 0.1	N/A	NA			
BA-Shapes	95.1±0.6	76.8 ± 2.3									
TREE-CYCLES	97.7±0.0	90.9±0.0		PL4XGL shows the best accuracy							
Wisconsin	64.0±0.0	49.6±3.1									
TEXAS	67.7±5.3	50.0 ± 0.0									
Cornell	58.9±2.6	61.1 ± 0.0	81.0 ± 6.5	61.1 ± 0.0	87.7 ± 2.1	61.1 ± 0.0	86.6 ± 2.6	88.8±0.0			
Cora	85.6±0.3	86.4±1.8	86.5 ± 5.2	84.9 ± 3.5	86.3 ± 3.2	$86.7{\pm}0.0$	83.2 ± 5.9	80.0 ± 0.0			
Citeseer	75.2 ± 0.0	74.3 ± 0.7	79.1±0.9	73.7 ± 4.2	$75.9{\pm}2.3$	$75.2 {\pm} 0.0$	71.3 ± 6.0	63.8 ± 0.0			
Pubmed	82.8 ± 1.1	84.7 ± 1.2	$\textbf{88.7{\pm}1.0}$	83.2 ± 0.4	$88.0{\pm}0.4$	86.1 ± 0.6	85.1 ± 0.6	81.4±0.0			

RQI) Classification Accuracy

- Each dataset is split into 8:1:1 for training, validation, and evaluation
- PL4XGL achieved the best accuracy for 5 datasets
- PL4XGL did not scale for the largest dataset HIV (time budget = 48h)

	GCN	GAT	СневуNет	JKNet	GraphSage	GIN	DGCN	PL4XGL
MUTAG	80.0 ± 0.0	89.0 ± 2.2	86.0 ± 4.1	68.0 ± 7.5	78.0 ± 4.4	91.0 ± 5.4	N/A	100.0±0.0
BBBP	83.6±1.4	82.3±1.6	84.6 ± 1.0	85.6±1.9	86.6±0.9	86.2 ± 1.4	N/A	86.8±0.0
BACE	78.4 ± 2.8	52.4 ± 3.3	78.9 ± 1.4	79.9±1.9	79.8 ± 0.8	80.9±0.4	N/A	80.9±0.0
HIV	96.4±0.0	96.4±0.0	96.8 ± 0.2	96.8 ± 0.1	96.9±0.2	96.8 ± 0.1	N/A	N/A
 BA-Shapes	95.1±0.6	76.8 ± 2.3	97.1±0.0	94.3 ± 0.0	97.1±0.0	92.0 ± 1.1	95.1 ± 0.7	95.7 0.0

- PL4XGL failed its training in HIV dataset because of its training cost
 - HIV includes 41,127 (1,049,163 nodes)
 - Timeout = 2 day (48 hours)

PUBMED 82.8±1.1 84.7±1.2 88.7±1.0 83.2±0.4 88.0±0.4 86.1±0.6 85.1±0.6 81.4±0.0

The explanations are simple

RQ2) Explainability

BACE

RQ2) Explainability

Our approach provides correct & simple explanations

- Problem : Accurate and explainable graph learning
- Solution : A purely PL-based approach to XAI
 - Domain specific language design for defining AI models
 - Program synthesis for learning models from training data
- Result:
 - Accuracy can compete with GNNs
 - Better explainability than GNNs with post-hoc explainer

Summary

- Problem : Accurate and explainable graph learning
- Solution : A purely PL-based approach to XAI
 - Domain specific language design for defining AI models
 - Program synthesis for learning models from training data
- Result:
 - Accuracy can compete with GNNs
 - Better explainability than GNNs with post-hoc explainer

Conclusion: PL techniques are even useful for Al!

Summary

