
Lecture 0 – Introduction
AAA705: Software Testing and Quality Assurance

Jihyeok Park

2024 Spring

AAA705 @ Korea University Lecture 0 – Introduction March 4, 2024 1 / 38



Course Information

• Instructor: Jihyeok Park (박지혁)
• Position: Assistant Professor in CS, Korea University
• Expertise: Programming Languages, Software Analysis
• Office hours: 14:00–16:00, Tuesdays (appointment by e-mail)
• Office: 609A, Science Library Bldg
• Email: jihyeok park@korea.ac.kr

• Class: AAA705: Software Testing and Quality Assurance

• Lectures: 15:00–17:45, Mon. and Wed. @ 107 미래융합기술관

• Homepage: https://plrg.korea.ac.kr/courses/aaa705/

AAA705 @ Korea University Lecture 0 – Introduction March 4, 2024 2 / 38

https://plrg.korea.ac.kr/courses/aaa705/


Course Information

• Instructor: Jihyeok Park (박지혁)
• Position: Assistant Professor in CS, Korea University
• Expertise: Programming Languages, Software Analysis
• Office hours: 14:00–16:00, Tuesdays (appointment by e-mail)
• Office: 609A, Science Library Bldg
• Email: jihyeok park@korea.ac.kr

• Class: AAA705: Software Testing and Quality Assurance

• Lectures: 15:00–17:45, Mon. and Wed. @ 107 미래융합기술관

• Homepage: https://plrg.korea.ac.kr/courses/aaa705/

AAA705 @ Korea University Lecture 0 – Introduction March 4, 2024 2 / 38

https://plrg.korea.ac.kr/courses/aaa705/


Course Information

• Instructor: Jihyeok Park (박지혁)
• Position: Assistant Professor in CS, Korea University
• Expertise: Programming Languages, Software Analysis
• Office hours: 14:00–16:00, Tuesdays (appointment by e-mail)
• Office: 609A, Science Library Bldg
• Email: jihyeok park@korea.ac.kr

• Class: AAA705: Software Testing and Quality Assurance

• Lectures: 15:00–17:45, Mon. and Wed. @ 107 미래융합기술관

• Homepage: https://plrg.korea.ac.kr/courses/aaa705/

AAA705 @ Korea University Lecture 0 – Introduction March 4, 2024 2 / 38

https://plrg.korea.ac.kr/courses/aaa705/


Course Information

• Instructor: Jihyeok Park (박지혁)
• Position: Assistant Professor in CS, Korea University
• Expertise: Programming Languages, Software Analysis
• Office hours: 14:00–16:00, Tuesdays (appointment by e-mail)
• Office: 609A, Science Library Bldg
• Email: jihyeok park@korea.ac.kr

• Class: AAA705: Software Testing and Quality Assurance

• Lectures: 15:00–17:45, Mon. and Wed. @ 107 미래융합기술관

• Homepage: https://plrg.korea.ac.kr/courses/aaa705/

AAA705 @ Korea University Lecture 0 – Introduction March 4, 2024 2 / 38

https://plrg.korea.ac.kr/courses/aaa705/


Schedule

Weak Date Contents

1
03/04 Introduction
03/06 Combinatorial Testing

2
03/11 Random Testing
03/13 Coverage Criteria (1)

3
03/18 Coverage Criteria (2)
03/20 Search Based Software Testing (SBST)

4
03/25 Dynamic Symbolic Execution (DSE)
03/27 Mutation Testing

5
04/01 Regression Testing
04/03 Fault Localization

6 04/08 Metamorphic Testing

7
04/15 Differential Testing
04/17 Course Review

12
05/20 Project Presentation
05/22 Project Presentation

AAA705 @ Korea University Lecture 0 – Introduction March 4, 2024 3 / 38



Grading

• Homework Assignments: 40%

• 2 Programming Assignments:
• Homework 1: 20% (due on March 27)
• Homework 2: 20% (due on April 17)

• Submit your homework on Blackboard.

• Project: 50% (due on May 20)
• Personal project. No team project.
• Presentation on May 20 (Mon.) and May 22 (Wed.) 15:00 – 17:45

• Attendance: 10%

AAA705 @ Korea University Lecture 0 – Introduction March 4, 2024 4 / 38

https://kulms.korea.ac.kr/


Grading

• Homework Assignments: 40%

• 2 Programming Assignments:
• Homework 1: 20% (due on March 27)
• Homework 2: 20% (due on April 17)

• Submit your homework on Blackboard.

• Project: 50% (due on May 20)
• Personal project. No team project.
• Presentation on May 20 (Mon.) and May 22 (Wed.) 15:00 – 17:45

• Attendance: 10%

AAA705 @ Korea University Lecture 0 – Introduction March 4, 2024 4 / 38

https://kulms.korea.ac.kr/


Grading

• Homework Assignments: 40%

• 2 Programming Assignments:
• Homework 1: 20% (due on March 27)
• Homework 2: 20% (due on April 17)

• Submit your homework on Blackboard.

• Project: 50% (due on May 20)
• Personal project. No team project.
• Presentation on May 20 (Mon.) and May 22 (Wed.) 15:00 – 17:45

• Attendance: 10%

AAA705 @ Korea University Lecture 0 – Introduction March 4, 2024 4 / 38

https://kulms.korea.ac.kr/


Course Materials

• Self-contained lecture notes.

https://plrg.korea.ac.kr/courses/aaa705/

(Special thanks to Prof. Shin Yoo @ KAIST)

• Reference: we do not teach these books and these books do not
contain answers to this course.

• “Introduction to Software Testing (2nd Ed.)” by Paul Ammann
and Jeff Offutt.

• “Why Programs Fail (2nd Ed.)” by Andreas Zeller.

AAA705 @ Korea University Lecture 0 – Introduction March 4, 2024 5 / 38

https://plrg.korea.ac.kr/courses/aaa705/
https://coinse.github.io/members/shin.yoo/
https://cs.gmu.edu/~offutt/softwaretest/
https://www.whyprogramsfail.com/


Course Materials

• Self-contained lecture notes.

https://plrg.korea.ac.kr/courses/aaa705/

(Special thanks to Prof. Shin Yoo @ KAIST)

• Reference: we do not teach these books and these books do not
contain answers to this course.

• “Introduction to Software Testing (2nd Ed.)” by Paul Ammann
and Jeff Offutt.

• “Why Programs Fail (2nd Ed.)” by Andreas Zeller.

AAA705 @ Korea University Lecture 0 – Introduction March 4, 2024 5 / 38

https://plrg.korea.ac.kr/courses/aaa705/
https://coinse.github.io/members/shin.yoo/
https://cs.gmu.edu/~offutt/softwaretest/
https://www.whyprogramsfail.com/


Contents

1. Why Software Testing?

2. Terminologies in Software Testing
Types of Software Quality
Faults vs. Errors vs. Failures
More Terminologies

3. Software Testing Techniques

AAA705 @ Korea University Lecture 0 – Introduction March 4, 2024 6 / 38



Errors in Safety-Critical Software

Unexpected faults in safety-critical software cause serious problems:

Rocket Financial Airport Auto. Vehicle
(1996) (2012) (2020) (2023)

Then, how can we prevent such software faults?

Can we automatically check whether a program does not have any
software faults?

AAA705 @ Korea University Lecture 0 – Introduction March 4, 2024 7 / 38



Errors in Safety-Critical Software

Unexpected faults in safety-critical software cause serious problems:

Rocket Financial Airport Auto. Vehicle
(1996) (2012) (2020) (2023)

Then, how can we prevent such software faults?

Can we automatically check whether a program does not have any
software faults?

AAA705 @ Korea University Lecture 0 – Introduction March 4, 2024 7 / 38



Errors in Safety-Critical Software

Unexpected faults in safety-critical software cause serious problems:

Rocket Financial Airport Auto. Vehicle
(1996) (2012) (2020) (2023)

Then, how can we prevent such software faults?

Can we automatically check whether a program does not have any
software faults?

AAA705 @ Korea University Lecture 0 – Introduction March 4, 2024 7 / 38



Detecting Software Faults

How do we know whether a software is correct?

Empiricists – Francis Bacon

It is correct because I TESTED
several times but no error was found!

vs.

Rationalists – René Descartes

It is correct because I formally
PROVED that no error exists!

AAA705 @ Korea University Lecture 0 – Introduction March 4, 2024 8 / 38



Detecting Software Faults

How do we know whether a software is correct?

Empiricists – Francis Bacon

It is correct because I TESTED
several times but no error was found!

vs.

Rationalists – René Descartes

It is correct because I formally
PROVED that no error exists!

AAA705 @ Korea University Lecture 0 – Introduction March 4, 2024 8 / 38



Detecting Software Faults

We can use various analysis techniques to detect software faults.

Program Yes
Analyzer

Property No

An analyzer is a program that takes a program and a property as inputs
and determines whether the program satisfies the property.

We can categorize them into two groups:

• Dynamic analyzers analyze programs by executing them.

• Static analyzers analyze programs without executing them.

AAA705 @ Korea University Lecture 0 – Introduction March 4, 2024 9 / 38



Detecting Software Faults

We can use various analysis techniques to detect software faults.

Program Yes
Analyzer

Property No

An analyzer is a program that takes a program and a property as inputs
and determines whether the program satisfies the property.

We can categorize them into two groups:

• Dynamic analyzers analyze programs by executing them.

• Static analyzers analyze programs without executing them.

AAA705 @ Korea University Lecture 0 – Introduction March 4, 2024 9 / 38



Dynamic Analysis vs. Static Analysis

: Possible States : Error States : Static Analysis: Dynamic Analysis

P1 P2 P3

Dynamic Analysis Static Analysis
Software Testing Formal Verification

Empiricists Rationalists

Under-approximation Over-approximation

False Negatives (Missed Errors) False Positives (False Alarms)

AAA705 @ Korea University Lecture 0 – Introduction March 4, 2024 10 / 38



Dynamic Analysis vs. Static Analysis

: Possible States : Error States : Static Analysis: Dynamic Analysis

P1 P2 P3

Dynamic Analysis Static Analysis
Software Testing Formal Verification

Empiricists Rationalists

Under-approximation Over-approximation

False Negatives (Missed Errors) False Positives (False Alarms)

AAA705 @ Korea University Lecture 0 – Introduction March 4, 2024 11 / 38



Dynamic Analysis vs. Static Analysis

: Possible States : Error States : Static Analysis: Dynamic Analysis

True Positive 
(True Alarm)

P1 P2 P3

Dynamic Analysis Static Analysis
Software Testing Formal Verification

Empiricists Rationalists

Under-approximation Over-approximation

False Negatives (Missed Errors) False Positives (False Alarms)

AAA705 @ Korea University Lecture 0 – Introduction March 4, 2024 12 / 38



Dynamic Analysis vs. Static Analysis

: Possible States : Error States : Static Analysis: Dynamic Analysis

False Negative 
(Missing Error)

True Positive 
(True Alarm)

P1 P2 P3

Dynamic Analysis Static Analysis
Software Testing Formal Verification

Empiricists Rationalists

Under-approximation Over-approximation

False Negatives (Missed Errors) False Positives (False Alarms)

AAA705 @ Korea University Lecture 0 – Introduction March 4, 2024 13 / 38



Dynamic Analysis vs. Static Analysis

: Possible States : Error States : Static Analysis: Dynamic Analysis

False Negative 
(Missing Error)

True Positive 
(True Alarm)

P1 P2 P3

Dynamic Analysis Static Analysis
Software Testing Formal Verification

Empiricists Rationalists

Under-approximation Over-approximation

False Negatives (Missed Errors) False Positives (False Alarms)

AAA705 @ Korea University Lecture 0 – Introduction March 4, 2024 14 / 38



Dynamic Analysis vs. Static Analysis

: Possible States : Error States : Static Analysis: Dynamic Analysis

False Negative 
(Missing Error)

True Positive 
(True Alarm)

P1 P2 P3

Dynamic Analysis Static Analysis
Software Testing Formal Verification

Empiricists Rationalists

Under-approximation Over-approximation

False Negatives (Missed Errors) False Positives (False Alarms)

AAA705 @ Korea University Lecture 0 – Introduction March 4, 2024 15 / 38



Dynamic Analysis vs. Static Analysis

: Possible States : Error States : Static Analysis: Dynamic Analysis

False Positive 
(False Alarm)

False Negative 
(Missing Error)

True Positive 
(True Alarm)

P1 P2 P3

Dynamic Analysis Static Analysis
Software Testing Formal Verification

Empiricists Rationalists

Under-approximation Over-approximation

False Negatives (Missed Errors) False Positives (False Alarms)

AAA705 @ Korea University Lecture 0 – Introduction March 4, 2024 16 / 38



Dynamic Analysis vs. Static Analysis

: Possible States : Error States : Static Analysis: Dynamic Analysis

False Positive 
(False Alarm)

False Negative 
(Missing Error)

True Positive 
(True Alarm)

P1 P2 P3

Dynamic Analysis Static Analysis
Software Testing Formal Verification

Empiricists Rationalists

Under-approximation Over-approximation

False Negatives (Missed Errors) False Positives (False Alarms)

AAA705 @ Korea University Lecture 0 – Introduction March 4, 2024 17 / 38



Dynamic Analysis vs. Static Analysis

: Possible States : Error States : Static Analysis: Dynamic Analysis

False Positive 
(False Alarm)

False Negative 
(Missing Error)

True Positive 
(True Alarm)

Proof of 
Error-Free

P1 P2 P3

Dynamic Analysis Static Analysis
Software Testing Formal Verification

Empiricists Rationalists

Under-approximation Over-approximation

False Negatives (Missed Errors) False Positives (False Alarms)

AAA705 @ Korea University Lecture 0 – Introduction March 4, 2024 18 / 38



Why Software Testing?

• Imagine you have two choices when boarding a airplane:

• While an airplane A has never been proven to have any run-time
errors, it has been tested with a finite number of test flights.

• While an airplane B has been formally verified to have no run-time
errors, it has never been tested in the real world.

• Some people may choose A, while others may choose B.

• In addition, some properties only can be tested but not verified
(e.g., energy consumption, usability, etc.).

AAA705 @ Korea University Lecture 0 – Introduction March 4, 2024 19 / 38



Why Software Testing?

• Imagine you have two choices when boarding a airplane:

• While an airplane A has never been proven to have any run-time
errors, it has been tested with a finite number of test flights.

• While an airplane B has been formally verified to have no run-time
errors, it has never been tested in the real world.

• Some people may choose A, while others may choose B.

• In addition, some properties only can be tested but not verified
(e.g., energy consumption, usability, etc.).

AAA705 @ Korea University Lecture 0 – Introduction March 4, 2024 19 / 38



Why Software Testing?

• Imagine you have two choices when boarding a airplane:

• While an airplane A has never been proven to have any run-time
errors, it has been tested with a finite number of test flights.

• While an airplane B has been formally verified to have no run-time
errors, it has never been tested in the real world.

• Some people may choose A, while others may choose B.

• In addition, some properties only can be tested but not verified
(e.g., energy consumption, usability, etc.).

AAA705 @ Korea University Lecture 0 – Introduction March 4, 2024 19 / 38



Contents

1. Why Software Testing?

2. Terminologies in Software Testing
Types of Software Quality
Faults vs. Errors vs. Failures
More Terminologies

3. Software Testing Techniques

AAA705 @ Korea University Lecture 0 – Introduction March 4, 2024 20 / 38



Software Testing

Software testing is an investigation conducted
to provide stakeholders with information about the
quality of the product or service under test.

AAA705 @ Korea University Lecture 0 – Introduction March 4, 2024 21 / 38



Types of Software Quality: Dependability

The software should be dependable: correct, reliable, safe, and robust.

• Correctness: the software should exactly conform to its formal
specification.

• Reliability: the software should have a high probability of being
correct for period of time.

• Safety: the software should be no risk of any kind of hazard (loss of
life, injury, etc.).

• Robustness: the software should reasonably remain dependable
even if surrounding environment changes.

AAA705 @ Korea University Lecture 0 – Introduction March 4, 2024 22 / 38



Types of Software Quality: Dependability

The software should be dependable: correct, reliable, safe, and robust.

• Correctness: the software should exactly conform to its formal
specification.

• Reliability: the software should have a high probability of being
correct for period of time.

• Safety: the software should be no risk of any kind of hazard (loss of
life, injury, etc.).

• Robustness: the software should reasonably remain dependable
even if surrounding environment changes.

AAA705 @ Korea University Lecture 0 – Introduction March 4, 2024 22 / 38



Types of Software Quality: Dependability

The software should be dependable: correct, reliable, safe, and robust.

• Correctness: the software should exactly conform to its formal
specification.

• Reliability: the software should have a high probability of being
correct for period of time.

• Safety: the software should be no risk of any kind of hazard (loss of
life, injury, etc.).

• Robustness: the software should reasonably remain dependable
even if surrounding environment changes.

AAA705 @ Korea University Lecture 0 – Introduction March 4, 2024 22 / 38



Types of Software Quality: Dependability

The software should be dependable: correct, reliable, safe, and robust.

• Correctness: the software should exactly conform to its formal
specification.

• Reliability: the software should have a high probability of being
correct for period of time.

• Safety: the software should be no risk of any kind of hazard (loss of
life, injury, etc.).

• Robustness: the software should reasonably remain dependable
even if surrounding environment changes.

AAA705 @ Korea University Lecture 0 – Introduction March 4, 2024 22 / 38



Types of Software Quality: Dependability

The software should be dependable: correct, reliable, safe, and robust.

• Correctness: the software should exactly conform to its formal
specification.

• Reliability: the software should have a high probability of being
correct for period of time.

• Safety: the software should be no risk of any kind of hazard (loss of
life, injury, etc.).

• Robustness: the software should reasonably remain dependable
even if surrounding environment changes.

AAA705 @ Korea University Lecture 0 – Introduction March 4, 2024 22 / 38



Types of Software Quality: Performance

Apart from dependability, the software should meet certain performance
expectations.

• For example, execution time, network throughput, memory usage,
number of simultaneous users, etc.

• Hard to thoroughly test due to the heavy reliance on the execution
environment and usage patterns.

AAA705 @ Korea University Lecture 0 – Introduction March 4, 2024 23 / 38



Types of Software Quality: Performance

Apart from dependability, the software should meet certain performance
expectations.

• For example, execution time, network throughput, memory usage,
number of simultaneous users, etc.

• Hard to thoroughly test due to the heavy reliance on the execution
environment and usage patterns.

AAA705 @ Korea University Lecture 0 – Introduction March 4, 2024 23 / 38



Types of Software Quality: Performance

Apart from dependability, the software should meet certain performance
expectations.

• For example, execution time, network throughput, memory usage,
number of simultaneous users, etc.

• Hard to thoroughly test due to the heavy reliance on the execution
environment and usage patterns.

AAA705 @ Korea University Lecture 0 – Introduction March 4, 2024 23 / 38



Types of Software Quality: Usability

The software should be usable.

• In general, there is no universally accepted criterion for usability.

• Usability testing usually involves user studies, such as focus groups,
beta-testing, A/B testing, etc.

AAA705 @ Korea University Lecture 0 – Introduction March 4, 2024 24 / 38



Types of Software Quality: Usability

The software should be usable.

• In general, there is no universally accepted criterion for usability.

• Usability testing usually involves user studies, such as focus groups,
beta-testing, A/B testing, etc.

AAA705 @ Korea University Lecture 0 – Introduction March 4, 2024 24 / 38



Types of Software Quality: Usability

The software should be usable.

• In general, there is no universally accepted criterion for usability.

• Usability testing usually involves user studies, such as focus groups,
beta-testing, A/B testing, etc.

AAA705 @ Korea University Lecture 0 – Introduction March 4, 2024 24 / 38



Types of Software Quality: Ethics

The software should be ethical.

• Typically, this is applied to AI/ML based systems.

• [FSE’17] S. Galhotra, Y. Brun, and A. Meliou. “Fairness testing:
testing software for discrimination.”

• [ASE’18] S. Udeshi, P. Arora, and S. Chattopadhyay. “Automated
directed fairness testing.”

• [ICSE’20] P. Zhang, J. Wang, J. Sun, G. Dong, X. Wang, X. Wang,
J. S. Dong, and T. Dai. “White-box fairness testing through
adversarial sampling.”

AAA705 @ Korea University Lecture 0 – Introduction March 4, 2024 25 / 38



Types of Software Quality: Ethics

The software should be ethical.

• Typically, this is applied to AI/ML based systems.

• [FSE’17] S. Galhotra, Y. Brun, and A. Meliou. “Fairness testing:
testing software for discrimination.”

• [ASE’18] S. Udeshi, P. Arora, and S. Chattopadhyay. “Automated
directed fairness testing.”

• [ICSE’20] P. Zhang, J. Wang, J. Sun, G. Dong, X. Wang, X. Wang,
J. S. Dong, and T. Dai. “White-box fairness testing through
adversarial sampling.”

AAA705 @ Korea University Lecture 0 – Introduction March 4, 2024 25 / 38



Faults vs. Errors vs. Failures

The purpose of testing is to detect and remove faults, errors, and failures.

from IEEE Standard 729-1983, IEEE Standard Glossary of Software Engineering Terminology

Fault vs. Error vs. Failure

Fault Error Failure

Success

https://ieeexplore.ieee.org/document/7435207

From IEEE Standard 729-1983, IEEE Standard Glossary of
Software Engineering Terminology1

• Fault: an anomaly in the software that may lead to an error.

• Error: a runtime effect of executing a fault, which may cause a failure.

• Failure: a manifestation of an error external to the software.

1https://ieeexplore.ieee.org/document/7435207
AAA705 @ Korea University Lecture 0 – Introduction March 4, 2024 26 / 38

https://ieeexplore.ieee.org/document/7435207


Faults vs. Errors vs. Failures

We want to implement a JavaScript function that computes the sum of
elements in a given array.

function sum(arr) {

let result = 0;

for (let i = 0; i < arr.length; i++) {

// fault: `i` should be fixed to `arr[i]`
result += i;

}

return result;

}

It is a fault but not an error until the function is executed.

// the faulty statement is not reached at runtime (no error)

assert(sum([]) === 0);

AAA705 @ Korea University Lecture 0 – Introduction March 4, 2024 27 / 38



Faults vs. Errors vs. Failures

We want to implement a JavaScript function that computes the sum of
elements in a given array.

function sum(arr) {

let result = 0;

for (let i = 0; i < arr.length; i++) {

// fault: `i` should be fixed to `arr[i]`
result += i;

}

return result;

}

It is an error with the following input but not a failure because the
output is coincidentally correct.

// the faulty statement is reachable at runtime (error)

// the output is coincidentally correct (no failure)

assert(sum([4, -2, 1]) === 3);

AAA705 @ Korea University Lecture 0 – Introduction March 4, 2024 28 / 38



Faults vs. Errors vs. Failures

We want to implement a JavaScript function that computes the sum of
elements in a given array.

function sum(arr) {

let result = 0;

for (let i = 0; i < arr.length; i++) {

// fault: `i` should be fixed to `arr[i]`
result += i;

}

return result;

}

It is a failure with the following input because the output is incorrect.

// the output is incorrect (failure)

assert(sum([3, 7, 4]) === 14);

AAA705 @ Korea University Lecture 0 – Introduction March 4, 2024 29 / 38



More Terminologies

• Test Input: a set of inputs that are used to test a program.

• Test Oracle: a mechanism to determine whether the program
behaves correctly.

• Test Case: a pair of a test input and a test oracle.

• Test Suite: a set of test cases.

• Test Effectiveness: the ability of a test suite to detect faults or
achieve other testing objectives.

• Testing vs. Debugging: testing is the process of detecting faults,
while debugging is the process of fixing faults.

AAA705 @ Korea University Lecture 0 – Introduction March 4, 2024 30 / 38



More Terminologies

• Test Input: a set of inputs that are used to test a program.

• Test Oracle: a mechanism to determine whether the program
behaves correctly.

• Test Case: a pair of a test input and a test oracle.

• Test Suite: a set of test cases.

• Test Effectiveness: the ability of a test suite to detect faults or
achieve other testing objectives.

• Testing vs. Debugging: testing is the process of detecting faults,
while debugging is the process of fixing faults.

AAA705 @ Korea University Lecture 0 – Introduction March 4, 2024 30 / 38



More Terminologies

• Test Input: a set of inputs that are used to test a program.

• Test Oracle: a mechanism to determine whether the program
behaves correctly.

• Test Case: a pair of a test input and a test oracle.

• Test Suite: a set of test cases.

• Test Effectiveness: the ability of a test suite to detect faults or
achieve other testing objectives.

• Testing vs. Debugging: testing is the process of detecting faults,
while debugging is the process of fixing faults.

AAA705 @ Korea University Lecture 0 – Introduction March 4, 2024 30 / 38



More Terminologies

• Test Input: a set of inputs that are used to test a program.

• Test Oracle: a mechanism to determine whether the program
behaves correctly.

• Test Case: a pair of a test input and a test oracle.

• Test Suite: a set of test cases.

• Test Effectiveness: the ability of a test suite to detect faults or
achieve other testing objectives.

• Testing vs. Debugging: testing is the process of detecting faults,
while debugging is the process of fixing faults.

AAA705 @ Korea University Lecture 0 – Introduction March 4, 2024 30 / 38



More Terminologies

• Test Input: a set of inputs that are used to test a program.

• Test Oracle: a mechanism to determine whether the program
behaves correctly.

• Test Case: a pair of a test input and a test oracle.

• Test Suite: a set of test cases.

• Test Effectiveness: the ability of a test suite to detect faults or
achieve other testing objectives.

• Testing vs. Debugging: testing is the process of detecting faults,
while debugging is the process of fixing faults.

AAA705 @ Korea University Lecture 0 – Introduction March 4, 2024 30 / 38



More Terminologies

• Test Input: a set of inputs that are used to test a program.

• Test Oracle: a mechanism to determine whether the program
behaves correctly.

• Test Case: a pair of a test input and a test oracle.

• Test Suite: a set of test cases.

• Test Effectiveness: the ability of a test suite to detect faults or
achieve other testing objectives.

• Testing vs. Debugging: testing is the process of detecting faults,
while debugging is the process of fixing faults.

AAA705 @ Korea University Lecture 0 – Introduction March 4, 2024 30 / 38



Contents

1. Why Software Testing?

2. Terminologies in Software Testing
Types of Software Quality
Faults vs. Errors vs. Failures
More Terminologies

3. Software Testing Techniques

AAA705 @ Korea University Lecture 0 – Introduction March 4, 2024 31 / 38



Problem – Sampling the Input Space

• Exhaustive Testing: Can we test a program with all possible inputs?

In theory, Yes!

• However, it is infeasible for most programs.

• For example, consider a program that takes three 32-bit integers as
inputs and returns they can form a triangle and its type.

x

y z

• How many possible inputs are there?

232 × 232 × 232 = 296 ≈ 7.9× 1028

• Approximated number of stars in the universe: 1024

• Testing allows only a sampling of an enormous input space.
The difficulty lies in how to come up with effective sampling.

AAA705 @ Korea University Lecture 0 – Introduction March 4, 2024 32 / 38



Problem – Sampling the Input Space

• Exhaustive Testing: Can we test a program with all possible inputs?
In theory, Yes!

• However, it is infeasible for most programs.

• For example, consider a program that takes three 32-bit integers as
inputs and returns they can form a triangle and its type.

x

y z

• How many possible inputs are there?

232 × 232 × 232 = 296 ≈ 7.9× 1028

• Approximated number of stars in the universe: 1024

• Testing allows only a sampling of an enormous input space.
The difficulty lies in how to come up with effective sampling.

AAA705 @ Korea University Lecture 0 – Introduction March 4, 2024 32 / 38



Problem – Sampling the Input Space

• Exhaustive Testing: Can we test a program with all possible inputs?
In theory, Yes!

• However, it is infeasible for most programs.

• For example, consider a program that takes three 32-bit integers as
inputs and returns they can form a triangle and its type.

x

y z

• How many possible inputs are there?

232 × 232 × 232 = 296 ≈ 7.9× 1028

• Approximated number of stars in the universe: 1024

• Testing allows only a sampling of an enormous input space.
The difficulty lies in how to come up with effective sampling.

AAA705 @ Korea University Lecture 0 – Introduction March 4, 2024 32 / 38



Problem – Sampling the Input Space

• Exhaustive Testing: Can we test a program with all possible inputs?
In theory, Yes!

• However, it is infeasible for most programs.

• For example, consider a program that takes three 32-bit integers as
inputs and returns they can form a triangle and its type.

x

y z

• How many possible inputs are there?

232 × 232 × 232 = 296 ≈ 7.9× 1028

• Approximated number of stars in the universe: 1024

• Testing allows only a sampling of an enormous input space.
The difficulty lies in how to come up with effective sampling.

AAA705 @ Korea University Lecture 0 – Introduction March 4, 2024 32 / 38



Problem – Sampling the Input Space

• Exhaustive Testing: Can we test a program with all possible inputs?
In theory, Yes!

• However, it is infeasible for most programs.

• For example, consider a program that takes three 32-bit integers as
inputs and returns they can form a triangle and its type.

x

y z

• How many possible inputs are there?

232 × 232 × 232 = 296 ≈ 7.9× 1028

• Approximated number of stars in the universe: 1024

• Testing allows only a sampling of an enormous input space.
The difficulty lies in how to come up with effective sampling.

AAA705 @ Korea University Lecture 0 – Introduction March 4, 2024 32 / 38



Problem – Sampling the Input Space

• Exhaustive Testing: Can we test a program with all possible inputs?
In theory, Yes!

• However, it is infeasible for most programs.

• For example, consider a program that takes three 32-bit integers as
inputs and returns they can form a triangle and its type.

x

y z

• How many possible inputs are there?

232 × 232 × 232 = 296 ≈ 7.9× 1028

• Approximated number of stars in the universe: 1024

• Testing allows only a sampling of an enormous input space.
The difficulty lies in how to come up with effective sampling.

AAA705 @ Korea University Lecture 0 – Introduction March 4, 2024 32 / 38



Problem – Test Oracle

• For every test input, we need to know the expected behavior of the
program. (i.e., the oracle).

• How to define the oracle?

• Without an explicit oracle, we can only small subset of faults. (e.g.,
crash, unintended infinite loop, division by zero, etc.)

• We need to define or infer the oracle for testing.

AAA705 @ Korea University Lecture 0 – Introduction March 4, 2024 33 / 38



Problem – Test Oracle

• For every test input, we need to know the expected behavior of the
program. (i.e., the oracle).

• How to define the oracle?

• Without an explicit oracle, we can only small subset of faults. (e.g.,
crash, unintended infinite loop, division by zero, etc.)

• We need to define or infer the oracle for testing.

AAA705 @ Korea University Lecture 0 – Introduction March 4, 2024 33 / 38



Problem – Test Oracle

• For every test input, we need to know the expected behavior of the
program. (i.e., the oracle).

• How to define the oracle?

• Without an explicit oracle, we can only small subset of faults. (e.g.,
crash, unintended infinite loop, division by zero, etc.)

• We need to define or infer the oracle for testing.

AAA705 @ Korea University Lecture 0 – Introduction March 4, 2024 33 / 38



Problem – Test Oracle

• For every test input, we need to know the expected behavior of the
program. (i.e., the oracle).

• How to define the oracle?

• Without an explicit oracle, we can only small subset of faults. (e.g.,
crash, unintended infinite loop, division by zero, etc.)

• We need to define or infer the oracle for testing.

AAA705 @ Korea University Lecture 0 – Introduction March 4, 2024 33 / 38



Software Testing Techniques

• There is no fixed recipe for software testing.

• We need to understand the pros and cons of each testing technique.

• There are two major categories of testing techniques:

• Black-box Testing: testing without knowing the internal structure of
the program.

• White-box Testing: testing with the knowledge of the internal
structure of the program.

AAA705 @ Korea University Lecture 0 – Introduction March 4, 2024 34 / 38



Software Testing Techniques

• There is no fixed recipe for software testing.

• We need to understand the pros and cons of each testing technique.

• There are two major categories of testing techniques:

• Black-box Testing: testing without knowing the internal structure of
the program.

• White-box Testing: testing with the knowledge of the internal
structure of the program.

AAA705 @ Korea University Lecture 0 – Introduction March 4, 2024 34 / 38



Software Testing Techniques

• There is no fixed recipe for software testing.

• We need to understand the pros and cons of each testing technique.

• There are two major categories of testing techniques:

• Black-box Testing: testing without knowing the internal structure of
the program.

• White-box Testing: testing with the knowledge of the internal
structure of the program.

AAA705 @ Korea University Lecture 0 – Introduction March 4, 2024 34 / 38



Black-box Testing

• Combinatorial Testing
• Tester utilizes input specifications to generate test cases.

• Random Testing
• Tester randomly selects test cases from the input space.

• It can be used for white-box testing as well.

AAA705 @ Korea University Lecture 0 – Introduction March 4, 2024 35 / 38



White-box Testing

Sometimes called structural testing because it uses the internal
structure of the program to derive test cases.

• Coverage Criteria
• The adequacy of a test suite is measured in terms of the coverage of

the program’s internal structure.

• Search Based Software Testing (SBST)
• A technique that uses meta-heuristic search algorithms to

maximize/minimize a certain fitness function.

• Dynamic Symbolic Execution (DSE)
• A technique that systematically explores the input space using

symbolic execution with dynamic analysis.

AAA705 @ Korea University Lecture 0 – Introduction March 4, 2024 36 / 38



General Techniques

• Mutation Testing
• A technique that evaluates the quality of a test suite by introducing

artificial faults to the program.

• Regression Testing
• A technique that ensures that a change in the program does not

introduce new faults.

• Fault Localization
• A technique that identifies the location of a fault in the program.

• Metamorphic Testing
• A technique that tests a program using metamorphic relations.

• Differential Testing
• A technique that tests a program by comparing the outputs of

multiple implementations.

AAA705 @ Korea University Lecture 0 – Introduction March 4, 2024 37 / 38



Next Lecture

• Combinatorial Testing

Jihyeok Park
jihyeok park@korea.ac.kr

https://plrg.korea.ac.kr

AAA705 @ Korea University Lecture 0 – Introduction March 4, 2024 38 / 38

https://plrg.korea.ac.kr

	Why Software Testing?
	Terminologies in Software Testing
	Types of Software Quality
	Faults vs. Errors vs. Failures
	More Terminologies

	Software Testing Techniques

