
Lecture 1 – Combinatorial Testing
AAA705: Software Testing and Quality Assurance

Jihyeok Park

2024 Spring

AAA705 @ Korea University Lecture 1 – Combinatorial Testing March 6, 2024 1 / 51

Black-box Testing

Test
Inputs

Test
OutputsSoftware

• Black-box testing views the software as a black-box without
knowing its internal structure.

• It is also known as functional testing or behavioral testing.

• Test data are derived from the specification of the software.

• In general, exhaustive testing is not feasible. It means that we
cannot guarantee that the software is free of defects.

• We need to pick a good set of test cases to maximize the chance of
finding software errors.

AAA705 @ Korea University Lecture 1 – Combinatorial Testing March 6, 2024 2 / 51

Black-box Testing

Test
Inputs

Test
OutputsSoftware

• Black-box testing views the software as a black-box without
knowing its internal structure.

• It is also known as functional testing or behavioral testing.

• Test data are derived from the specification of the software.

• In general, exhaustive testing is not feasible. It means that we
cannot guarantee that the software is free of defects.

• We need to pick a good set of test cases to maximize the chance of
finding software errors.

AAA705 @ Korea University Lecture 1 – Combinatorial Testing March 6, 2024 2 / 51

Black-box Testing

Test
Inputs

Test
OutputsSoftware

• Black-box testing views the software as a black-box without
knowing its internal structure.

• It is also known as functional testing or behavioral testing.

• Test data are derived from the specification of the software.

• In general, exhaustive testing is not feasible. It means that we
cannot guarantee that the software is free of defects.

• We need to pick a good set of test cases to maximize the chance of
finding software errors.

AAA705 @ Korea University Lecture 1 – Combinatorial Testing March 6, 2024 2 / 51

Black-box Testing

Test
Inputs

Test
OutputsSoftware

• Black-box testing views the software as a black-box without
knowing its internal structure.

• It is also known as functional testing or behavioral testing.

• Test data are derived from the specification of the software.

• In general, exhaustive testing is not feasible. It means that we
cannot guarantee that the software is free of defects.

• We need to pick a good set of test cases to maximize the chance of
finding software errors.

AAA705 @ Korea University Lecture 1 – Combinatorial Testing March 6, 2024 2 / 51

Black-box Testing

Test
Inputs

Test
OutputsSoftware

• Black-box testing views the software as a black-box without
knowing its internal structure.

• It is also known as functional testing or behavioral testing.

• Test data are derived from the specification of the software.

• In general, exhaustive testing is not feasible. It means that we
cannot guarantee that the software is free of defects.

• We need to pick a good set of test cases to maximize the chance of
finding software errors.

AAA705 @ Korea University Lecture 1 – Combinatorial Testing March 6, 2024 2 / 51

Contents

1. Equivalence Partitioning (EP)

2. Boundary Value Analysis (BVA)

3. Category Partition Method (CPM)

4. Combinatorial Testing (CT)
Covering Array (CA)
Fault Detection Effectiveness
Greedy Algorithm – IPOG Strategy
Greedy vs. Meta-heuristic

AAA705 @ Korea University Lecture 1 – Combinatorial Testing March 6, 2024 3 / 51

Contents

1. Equivalence Partitioning (EP)

2. Boundary Value Analysis (BVA)

3. Category Partition Method (CPM)

4. Combinatorial Testing (CT)
Covering Array (CA)
Fault Detection Effectiveness
Greedy Algorithm – IPOG Strategy
Greedy vs. Meta-heuristic

AAA705 @ Korea University Lecture 1 – Combinatorial Testing March 6, 2024 4 / 51

Equivalence Partitioning (EP)

A

B

C

D

• Equivalence partitioning is a black-box testing technique that
divides the input domain of a program into equivalence classes.

• The technique is based on the observation that the program should
behave the same way for all members of an equivalence class.

AAA705 @ Korea University Lecture 1 – Combinatorial Testing March 6, 2024 5 / 51

Equivalence Partitioning (EP)

A

B

C

D

• Equivalence partitioning is a black-box testing technique that
divides the input domain of a program into equivalence classes.

• The technique is based on the observation that the program should
behave the same way for all members of an equivalence class.

AAA705 @ Korea University Lecture 1 – Combinatorial Testing March 6, 2024 5 / 51

Equivalence Partitioning (EP)

A

B

C

D

• If one test case in an equivalence class reveals an error, it is likely that
other test cases in the same equivalence class will also reveal the
same error.

• The idea is to reduce the number of test cases by selecting one test
case from each equivalence class.

• Then, how to define the equivalence classes?

AAA705 @ Korea University Lecture 1 – Combinatorial Testing March 6, 2024 6 / 51

Equivalence Partitioning (EP)

A

B

C

D

• If one test case in an equivalence class reveals an error, it is likely that
other test cases in the same equivalence class will also reveal the
same error.

• The idea is to reduce the number of test cases by selecting one test
case from each equivalence class.

• Then, how to define the equivalence classes?

AAA705 @ Korea University Lecture 1 – Combinatorial Testing March 6, 2024 6 / 51

Equivalence Partitioning (EP)

A

B

C

D

• If one test case in an equivalence class reveals an error, it is likely that
other test cases in the same equivalence class will also reveal the
same error.

• The idea is to reduce the number of test cases by selecting one test
case from each equivalence class.

• Then, how to define the equivalence classes?

AAA705 @ Korea University Lecture 1 – Combinatorial Testing March 6, 2024 6 / 51

Equivalence Partitioning (EP)

E

U

• One possible way to define the equivalence classes is to divide the
input domain into expected and unexpected inputs.

• Expected (E) or legal inputs
• Unexpected (U) or illegal inputs

• We can further divide the expected inputs into smaller equivalence
classes.

AAA705 @ Korea University Lecture 1 – Combinatorial Testing March 6, 2024 7 / 51

Equivalence Partitioning (EP)

E

U

• One possible way to define the equivalence classes is to divide the
input domain into expected and unexpected inputs.

• Expected (E) or legal inputs
• Unexpected (U) or illegal inputs

• We can further divide the expected inputs into smaller equivalence
classes.

AAA705 @ Korea University Lecture 1 – Combinatorial Testing March 6, 2024 7 / 51

Equivalence Partitioning (EP)

Example

Consider a program that takes a password as input. The length of the
password must be between 6 and 20 characters.

• We can divide the input domain into two equivalence classes:
• E = { a password p | 6 ≤ |p| ≤ 20}
• U = { a password p | |p| < 6 ∨ |p| > 20}

• We can divide it more finely:
• E1 = { a password p | 6 ≤ |p| ≤ 10} for weak passwords
• E2 = { a password p | 11 ≤ |p| ≤ 15} for medium-strength passwords
• E3 = { a password p | 16 ≤ |p| ≤ 20} for strong passwords
• U1 = { a password p | |p| < 6} for too short passwords
• U2 = { a password p | |p| > 20} for too long passwords

• We can select one test case from each equivalence class.

I = {p1, p2, p3, p4, p5}

such that |p1| = 7, |p2| = 13, |p3| = 18, |p4| = 3, |p5| = 40

AAA705 @ Korea University Lecture 1 – Combinatorial Testing March 6, 2024 8 / 51

Equivalence Partitioning (EP)

Example

Consider a program that takes a password as input. The length of the
password must be between 6 and 20 characters.

• We can divide the input domain into two equivalence classes:
• E = { a password p | 6 ≤ |p| ≤ 20}
• U = { a password p | |p| < 6 ∨ |p| > 20}

• We can divide it more finely:
• E1 = { a password p | 6 ≤ |p| ≤ 10} for weak passwords
• E2 = { a password p | 11 ≤ |p| ≤ 15} for medium-strength passwords
• E3 = { a password p | 16 ≤ |p| ≤ 20} for strong passwords
• U1 = { a password p | |p| < 6} for too short passwords
• U2 = { a password p | |p| > 20} for too long passwords

• We can select one test case from each equivalence class.

I = {p1, p2, p3, p4, p5}

such that |p1| = 7, |p2| = 13, |p3| = 18, |p4| = 3, |p5| = 40

AAA705 @ Korea University Lecture 1 – Combinatorial Testing March 6, 2024 8 / 51

Equivalence Partitioning (EP)

Example

Consider a program that takes a password as input. The length of the
password must be between 6 and 20 characters.

• We can divide the input domain into two equivalence classes:
• E = { a password p | 6 ≤ |p| ≤ 20}
• U = { a password p | |p| < 6 ∨ |p| > 20}

• We can divide it more finely:
• E1 = { a password p | 6 ≤ |p| ≤ 10} for weak passwords
• E2 = { a password p | 11 ≤ |p| ≤ 15} for medium-strength passwords
• E3 = { a password p | 16 ≤ |p| ≤ 20} for strong passwords
• U1 = { a password p | |p| < 6} for too short passwords
• U2 = { a password p | |p| > 20} for too long passwords

• We can select one test case from each equivalence class.

I = {p1, p2, p3, p4, p5}

such that |p1| = 7, |p2| = 13, |p3| = 18, |p4| = 3, |p5| = 40

AAA705 @ Korea University Lecture 1 – Combinatorial Testing March 6, 2024 8 / 51

Equivalence Partitioning (EP)

• There are many ways to partition the input domain.

• Even from the same equivalence classes, we can choose different
test cases.

• Effectiveness may depend on the tester’s experience and intuition.

Partition testing can be better, worse, or the same as random
testing, depending on how the partitioning is done.1

1[TSE’91] E. J. Weyuker and B. Jeng, “Analyzing partition testing strategies”
AAA705 @ Korea University Lecture 1 – Combinatorial Testing March 6, 2024 9 / 51

Equivalence Partitioning (EP)

• There are many ways to partition the input domain.

• Even from the same equivalence classes, we can choose different
test cases.

• Effectiveness may depend on the tester’s experience and intuition.

Partition testing can be better, worse, or the same as random
testing, depending on how the partitioning is done.1

1[TSE’91] E. J. Weyuker and B. Jeng, “Analyzing partition testing strategies”
AAA705 @ Korea University Lecture 1 – Combinatorial Testing March 6, 2024 9 / 51

Equivalence Partitioning (EP)

• There are many ways to partition the input domain.

• Even from the same equivalence classes, we can choose different
test cases.

• Effectiveness may depend on the tester’s experience and intuition.

Partition testing can be better, worse, or the same as random
testing, depending on how the partitioning is done.1

1[TSE’91] E. J. Weyuker and B. Jeng, “Analyzing partition testing strategies”
AAA705 @ Korea University Lecture 1 – Combinatorial Testing March 6, 2024 9 / 51

Equivalence Partitioning (EP)

• There are many ways to partition the input domain.

• Even from the same equivalence classes, we can choose different
test cases.

• Effectiveness may depend on the tester’s experience and intuition.

Partition testing can be better, worse, or the same as random
testing, depending on how the partitioning is done.1

1[TSE’91] E. J. Weyuker and B. Jeng, “Analyzing partition testing strategies”
AAA705 @ Korea University Lecture 1 – Combinatorial Testing March 6, 2024 9 / 51

Contents

1. Equivalence Partitioning (EP)

2. Boundary Value Analysis (BVA)

3. Category Partition Method (CPM)

4. Combinatorial Testing (CT)
Covering Array (CA)
Fault Detection Effectiveness
Greedy Algorithm – IPOG Strategy
Greedy vs. Meta-heuristic

AAA705 @ Korea University Lecture 1 – Combinatorial Testing March 6, 2024 10 / 51

Off-by-one Errors

• Logic errors often occur at the boundaries of the input domain.

• They usually occur due to off-by-one errors caused by
misunderstanding the boundary conditions.

• It is simple but actually very common.

AAA705 @ Korea University Lecture 1 – Combinatorial Testing March 6, 2024 11 / 51

Off-by-one Errors

• Logic errors often occur at the boundaries of the input domain.

• They usually occur due to off-by-one errors caused by
misunderstanding the boundary conditions.

• It is simple but actually very common.

AAA705 @ Korea University Lecture 1 – Combinatorial Testing March 6, 2024 11 / 51

Off-by-one Errors

• Logic errors often occur at the boundaries of the input domain.

• They usually occur due to off-by-one errors caused by
misunderstanding the boundary conditions.

• It is simple but actually very common.

AAA705 @ Korea University Lecture 1 – Combinatorial Testing March 6, 2024 11 / 51

Off-by-one Errors – Looping Over Arrays

for (let i = 0; i < 10; i++) {

/* body of the loop */

}

CORRECT

for (let i = 1; i < 10; i++) {

/* body of the loop */

}

INCORRECT

for (let i = 0; i <= 10; i++) {

/* body of the loop */

}

INCORRECT

for (let i = 0; i < 11; i++) {

/* body of the loop */

}

INCORRECT

AAA705 @ Korea University Lecture 1 – Combinatorial Testing March 6, 2024 12 / 51

Off-by-one Errors – Fencepost error

If you build a straight fence 15 meters long with posts spaced 3
meters apart, how many posts do you need?

15 / 3 = 5 posts?

No, you need 6 posts!

1 2 3 4 5

1 2 3 4 5 6

linspace(a, b, n) in MATLAB is a linear interpolation function that
generates a row vector of n points instead of n intervals between a and b.

linspace(0, 10, 5) == [0, 2.5, 5, 7.5, 10]

!= [0, 2, 4, 6, 8, 10]

AAA705 @ Korea University Lecture 1 – Combinatorial Testing March 6, 2024 13 / 51

Off-by-one Errors – Fencepost error

If you build a straight fence 15 meters long with posts spaced 3
meters apart, how many posts do you need?

15 / 3 = 5 posts? No, you need 6 posts!

1 2 3 4 5

1 2 3 4 5 6

linspace(a, b, n) in MATLAB is a linear interpolation function that
generates a row vector of n points instead of n intervals between a and b.

linspace(0, 10, 5) == [0, 2.5, 5, 7.5, 10]

!= [0, 2, 4, 6, 8, 10]

AAA705 @ Korea University Lecture 1 – Combinatorial Testing March 6, 2024 13 / 51

Off-by-one Errors – Fencepost error

If you build a straight fence 15 meters long with posts spaced 3
meters apart, how many posts do you need?

15 / 3 = 5 posts? No, you need 6 posts!

1 2 3 4 5

1 2 3 4 5 6

linspace(a, b, n) in MATLAB is a linear interpolation function that
generates a row vector of n points instead of n intervals between a and b.

linspace(0, 10, 5) == [0, 2.5, 5, 7.5, 10]

!= [0, 2, 4, 6, 8, 10]

AAA705 @ Korea University Lecture 1 – Combinatorial Testing March 6, 2024 13 / 51

Off-by-one Errors – Fencepost error

If you build a straight fence 15 meters long with posts spaced 3
meters apart, how many posts do you need?

15 / 3 = 5 posts? No, you need 6 posts!

1 2 3 4 5

1 2 3 4 5 6

linspace(a, b, n) in MATLAB is a linear interpolation function that
generates a row vector of n points instead of n intervals between a and b.

linspace(0, 10, 5) == [0, 2.5, 5, 7.5, 10]

!= [0, 2, 4, 6, 8, 10]

AAA705 @ Korea University Lecture 1 – Combinatorial Testing March 6, 2024 13 / 51

Off-by-one Errors – strncat in C

void foo (char *s)

{

char buf[15];

memset(buf, 0, sizeof(buf));

// Final parameter should be: sizeof(buf)-1

strncat(buf, s, sizeof(buf));

}

• Off-by-one errors are common in using the C library because it is not
consistent with respect to whether one needs to subtract 1 byte.

• For example, we need to subtract 1 byte from the length of the buffer
in strncat but not in fgets or strncpy.

• So, the programmer has to remember for which functions they need
to subtract 1.

AAA705 @ Korea University Lecture 1 – Combinatorial Testing March 6, 2024 14 / 51

Off-by-one Errors – strncat in C

void foo (char *s)

{

char buf[15];

memset(buf, 0, sizeof(buf));

// Final parameter should be: sizeof(buf)-1

strncat(buf, s, sizeof(buf));

}

• Off-by-one errors are common in using the C library because it is not
consistent with respect to whether one needs to subtract 1 byte.

• For example, we need to subtract 1 byte from the length of the buffer
in strncat but not in fgets or strncpy.

• So, the programmer has to remember for which functions they need
to subtract 1.

AAA705 @ Korea University Lecture 1 – Combinatorial Testing March 6, 2024 14 / 51

Off-by-one Errors – strncat in C

void foo (char *s)

{

char buf[15];

memset(buf, 0, sizeof(buf));

// Final parameter should be: sizeof(buf)-1

strncat(buf, s, sizeof(buf));

}

• Off-by-one errors are common in using the C library because it is not
consistent with respect to whether one needs to subtract 1 byte.

• For example, we need to subtract 1 byte from the length of the buffer
in strncat but not in fgets or strncpy.

• So, the programmer has to remember for which functions they need
to subtract 1.

AAA705 @ Korea University Lecture 1 – Combinatorial Testing March 6, 2024 14 / 51

Boundary Value Analysis (BVA)

Equivalence Partitioning (EP)
Boundary Value Analysis (BVA)

• Boundary value analysis is a black-box testing technique that
focuses on the boundaries of the input domain.

• The idea is to select test cases at the boundaries of the equivalence
classes.

• The technique is based on the observation that the program is more
likely to fail at the boundaries of the input domain.

• It is usually used in combination with equivalence partitioning.

AAA705 @ Korea University Lecture 1 – Combinatorial Testing March 6, 2024 15 / 51

Boundary Value Analysis (BVA)

Equivalence Partitioning (EP)
Boundary Value Analysis (BVA)

• Boundary value analysis is a black-box testing technique that
focuses on the boundaries of the input domain.

• The idea is to select test cases at the boundaries of the equivalence
classes.

• The technique is based on the observation that the program is more
likely to fail at the boundaries of the input domain.

• It is usually used in combination with equivalence partitioning.

AAA705 @ Korea University Lecture 1 – Combinatorial Testing March 6, 2024 15 / 51

Boundary Value Analysis (BVA)

Equivalence Partitioning (EP)
Boundary Value Analysis (BVA)

• Boundary value analysis is a black-box testing technique that
focuses on the boundaries of the input domain.

• The idea is to select test cases at the boundaries of the equivalence
classes.

• The technique is based on the observation that the program is more
likely to fail at the boundaries of the input domain.

• It is usually used in combination with equivalence partitioning.

AAA705 @ Korea University Lecture 1 – Combinatorial Testing March 6, 2024 15 / 51

Boundary Value Analysis (BVA)

Equivalence Partitioning (EP)
Boundary Value Analysis (BVA)

• Boundary value analysis is a black-box testing technique that
focuses on the boundaries of the input domain.

• The idea is to select test cases at the boundaries of the equivalence
classes.

• The technique is based on the observation that the program is more
likely to fail at the boundaries of the input domain.

• It is usually used in combination with equivalence partitioning.

AAA705 @ Korea University Lecture 1 – Combinatorial Testing March 6, 2024 15 / 51

Boundary Value Analysis (BVA)

Example

Consider a program that takes a password as input. The length of the
password must be between 6 and 20 characters.

• Consider the equivalence classes:
• E1 = { a password p | 6 ≤ |p| ≤ 10} for weak passwords
• E2 = { a password p | 11 ≤ |p| ≤ 15} for medium-strength passwords
• E3 = { a password p | 16 ≤ |p| ≤ 20} for strong passwords
• U1 = { a password p | |p| < 6} for too short passwords
• U2 = { a password p | |p| > 20} for too long passwords

• We can select test cases at the boundaries of the equivalence classes.

I = {p1, p2, p3, p4, p5, p6, p7, p8}

such that

|p1| = 5 |p2| = 6 |p3| = 10 |p4| = 11
|p5| = 15 |p6| = 16 |p7| = 20 |p8| = 21

AAA705 @ Korea University Lecture 1 – Combinatorial Testing March 6, 2024 16 / 51

Boundary Value Analysis (BVA)

Example

Consider a program that takes a password as input. The length of the
password must be between 6 and 20 characters.

• Consider the equivalence classes:
• E1 = { a password p | 6 ≤ |p| ≤ 10} for weak passwords
• E2 = { a password p | 11 ≤ |p| ≤ 15} for medium-strength passwords
• E3 = { a password p | 16 ≤ |p| ≤ 20} for strong passwords
• U1 = { a password p | |p| < 6} for too short passwords
• U2 = { a password p | |p| > 20} for too long passwords

• We can select test cases at the boundaries of the equivalence classes.

I = {p1, p2, p3, p4, p5, p6, p7, p8}

such that

|p1| = 5 |p2| = 6 |p3| = 10 |p4| = 11
|p5| = 15 |p6| = 16 |p7| = 20 |p8| = 21

AAA705 @ Korea University Lecture 1 – Combinatorial Testing March 6, 2024 16 / 51

Contents

1. Equivalence Partitioning (EP)

2. Boundary Value Analysis (BVA)

3. Category Partition Method (CPM)

4. Combinatorial Testing (CT)
Covering Array (CA)
Fault Detection Effectiveness
Greedy Algorithm – IPOG Strategy
Greedy vs. Meta-heuristic

AAA705 @ Korea University Lecture 1 – Combinatorial Testing March 6, 2024 17 / 51

Category Partition Method (CPM)

• Most programs behave differently when they receive different
parameters or are executed under different environments.

• Category partition method (CPM) is a black-box testing technique
that systematically generates test cases by considering the
combinations of the categories of the input domain.

1 Analyze specification

2 Identify parameters and environments

3 Identify categories for each parameter and environment

4 Partition categories into equivalence classes

5 Identify constraints

6 Generate test cases

AAA705 @ Korea University Lecture 1 – Combinatorial Testing March 6, 2024 18 / 51

Category Partition Method (CPM)

• Most programs behave differently when they receive different
parameters or are executed under different environments.

• Category partition method (CPM) is a black-box testing technique
that systematically generates test cases by considering the
combinations of the categories of the input domain.

1 Analyze specification

2 Identify parameters and environments

3 Identify categories for each parameter and environment

4 Partition categories into equivalence classes

5 Identify constraints

6 Generate test cases

AAA705 @ Korea University Lecture 1 – Combinatorial Testing March 6, 2024 18 / 51

Category Partition Method (CPM)

Example

Unix command grep searches for files in a directory hierarchy with the
following syntax:

grep <pattern> <filename>

For example,

• grep park myfile displays all lines in myfile that contain the word
“park”.

• grep "hello world" myfile displays all lines in myfile that
contain the phrase “hello world”.

• grep " said \"hello " myfile displays all lines in myfile that
contain the phrase “ said "hello ”.

Perform category partition method for the grep command.

AAA705 @ Korea University Lecture 1 – Combinatorial Testing March 6, 2024 19 / 51

Category Partition Method (CPM)

1 Analyze specification

2 Identify parameters and environments

• Parameters – (1) <pattern> and (2) <filename>

• The <pattern> is a pattern to search for.

• To include spaces in the pattern, it must be enclosed in quotes (").

• To include a quotation mark in the pattern, it must be escaped with a
backslash (\").

• . . .

• Environments – (3) file contents

• . . .

AAA705 @ Korea University Lecture 1 – Combinatorial Testing March 6, 2024 20 / 51

Category Partition Method (CPM)

3 Identify categories for each parameter and environment

1 Parameter – <pattern>

• Size

• Quotation marks

• Embedded spaces

• Embedded quotation marks

2 Parameter – <filename>

• Validity

3 Environment – file contents

• Number of occurrences of the pattern

• Number of occurrences of the pattern in a line

AAA705 @ Korea University Lecture 1 – Combinatorial Testing March 6, 2024 21 / 51

Category Partition Method (CPM)

4 Partition categories into equivalence classes

1 Parameter – <pattern>

• Size – 0 / 1 / ≥ 2

• Quotation marks – quoted (Q) / unquoted (U) / improper (I)

• Embedded spaces – none (N) / single (S) / multiple (M)

• Embedded quotation marks – none (N) / single (S) / multiple (M)

2 Parameter – <filename>

• Validity – exists (E) / not exists (N) / omitted (O)

3 Environment – file contents

• Number of occurrences of the pattern – 0 / 1 / ≥ 2

• Number of occurrences of the pattern in a line – 0 / 1 / ≥ 2

AAA705 @ Korea University Lecture 1 – Combinatorial Testing March 6, 2024 22 / 51

Category Partition Method (CPM)

How many combinations of the partitioned categories?

3× 3× 3× 3× 3× 3× 3 = 2, 187

5 Identify constraints

• For example, no embedded space for unquoted pattern.

unquoted (U) ⇒⇐ single (S) for embedded spaces
unquoted (U) ⇒⇐ multiple (M) for embedded spaces

6 Generate test cases

• Pick one test case from each combination satisfying the constraints.

Size Q Space Emb. Q Valid Occur Occur

0 Q N N E 0 0

1 U S S N 1 1

≥ 2 I M M O ≥ 2 ≥ 2

grep "hello world" myfile # `myfile` is an empty file

AAA705 @ Korea University Lecture 1 – Combinatorial Testing March 6, 2024 23 / 51

Category Partition Method (CPM)

How many combinations of the partitioned categories?

3× 3× 3× 3× 3× 3× 3 = 2, 187

5 Identify constraints

• For example, no embedded space for unquoted pattern.

unquoted (U) ⇒⇐ single (S) for embedded spaces
unquoted (U) ⇒⇐ multiple (M) for embedded spaces

6 Generate test cases

• Pick one test case from each combination satisfying the constraints.

Size Q Space Emb. Q Valid Occur Occur

0 Q N N E 0 0

1 U S S N 1 1

≥ 2 I M M O ≥ 2 ≥ 2

grep "hello world" myfile # `myfile` is an empty file

AAA705 @ Korea University Lecture 1 – Combinatorial Testing March 6, 2024 23 / 51

Category Partition Method (CPM)

How many combinations of the partitioned categories?

3× 3× 3× 3× 3× 3× 3 = 2, 187

5 Identify constraints

• For example, no embedded space for unquoted pattern.

unquoted (U) ⇒⇐ single (S) for embedded spaces
unquoted (U) ⇒⇐ multiple (M) for embedded spaces

6 Generate test cases

• Pick one test case from each combination satisfying the constraints.

Size Q Space Emb. Q Valid Occur Occur

0 Q N N E 0 0

1 U S S N 1 1

≥ 2 I M M O ≥ 2 ≥ 2

grep "hello world" myfile # `myfile` is an empty file

AAA705 @ Korea University Lecture 1 – Combinatorial Testing March 6, 2024 23 / 51

Contents

1. Equivalence Partitioning (EP)

2. Boundary Value Analysis (BVA)

3. Category Partition Method (CPM)

4. Combinatorial Testing (CT)
Covering Array (CA)
Fault Detection Effectiveness
Greedy Algorithm – IPOG Strategy
Greedy vs. Meta-heuristic

AAA705 @ Korea University Lecture 1 – Combinatorial Testing March 6, 2024 24 / 51

Combinatorial Testing (CT)

• Testing all combinations is still too expensive because of the
combinatorial explosion!

• For example, we need 1,799,736,525 test cases required for the
following airport system:

Airline Destination Departure Date Return Date

79 171 365 365

• Combinatorial testing (CT) or combinatorial interaction testing
(CIT) constructs test cases by considering the interactions between
the parameters.

AAA705 @ Korea University Lecture 1 – Combinatorial Testing March 6, 2024 25 / 51

Combinatorial Testing (CT)

• Testing all combinations is still too expensive because of the
combinatorial explosion!

• For example, we need 1,799,736,525 test cases required for the
following airport system:

Airline Destination Departure Date Return Date

79 171 365 365

• Combinatorial testing (CT) or combinatorial interaction testing
(CIT) constructs test cases by considering the interactions between
the parameters.

AAA705 @ Korea University Lecture 1 – Combinatorial Testing March 6, 2024 25 / 51

Combinatorial Testing (CT)

• Testing all combinations is still too expensive because of the
combinatorial explosion!

• For example, we need 1,799,736,525 test cases required for the
following airport system:

Airline Destination Departure Date Return Date

79 171 365 365

• Combinatorial testing (CT) or combinatorial interaction testing
(CIT) constructs test cases by considering the interactions between
the parameters.

AAA705 @ Korea University Lecture 1 – Combinatorial Testing March 6, 2024 25 / 51

Covering Array (CA)

Definition (Interaction)

For k parameters with v values each, a t-way interaction is a
combination of values for t parameters.

Definition (Covering Array (CA))

A covering array A = CA(N; t, k, v) is a N × k matrix such that every
field is an element from the set [0, v − 1], and every t-way interaction is
covered at least once by a row of A.

A B C

0 0 0

1 1 1

⇒

CA(N = 4; t = 2, k = 3, v = 2)

A B C

0 0 0

0 1 1

1 0 1

1 1 0

AAA705 @ Korea University Lecture 1 – Combinatorial Testing March 6, 2024 26 / 51

Covering Array (CA)

Definition (Interaction)

For k parameters with v values each, a t-way interaction is a
combination of values for t parameters.

Definition (Covering Array (CA))

A covering array A = CA(N; t, k, v) is a N × k matrix such that every
field is an element from the set [0, v − 1], and every t-way interaction is
covered at least once by a row of A.

A B C

0 0 0

1 1 1

⇒

CA(N = 4; t = 2, k = 3, v = 2)

A B C

0 0 0

0 1 1

1 0 1

1 1 0

AAA705 @ Korea University Lecture 1 – Combinatorial Testing March 6, 2024 26 / 51

Covering Array (CA)

Definition (Interaction)

For k parameters with v values each, a t-way interaction is a
combination of values for t parameters.

Definition (Covering Array (CA))

A covering array A = CA(N; t, k, v) is a N × k matrix such that every
field is an element from the set [0, v − 1], and every t-way interaction is
covered at least once by a row of A.

A B C

0 0 0

1 1 1

⇒

CA(N = 4; t = 2, k = 3, v = 2)

A B C

0 0 0

0 1 1

1 0 1

1 1 0

AAA705 @ Korea University Lecture 1 – Combinatorial Testing March 6, 2024 26 / 51

Mixed Covering Array (MCA)

Definition (Mixed Covering Array (MCA))

A mixed covering array A = CA(N; t, k, v = (v1, v2, . . . , vk)) is a N × k
matrix such that every field in the i-th column is an element from the set
[0, vi − 1], and every t-way interaction is covered at least once by a row of
A.

A B C

0 0 0

1 1 1

2

⇒

CA(N = 6; t = 2, k = 3, v = (2, 2, 3))

A B C

0 0 0

0 1 1

1 0 2

1 1 0

1 0 1

0 1 2

AAA705 @ Korea University Lecture 1 – Combinatorial Testing March 6, 2024 27 / 51

Mixed Covering Array (MCA)

Definition (Mixed Covering Array (MCA))

A mixed covering array A = CA(N; t, k, v = (v1, v2, . . . , vk)) is a N × k
matrix such that every field in the i-th column is an element from the set
[0, vi − 1], and every t-way interaction is covered at least once by a row of
A.

A B C

0 0 0

1 1 1

2

⇒

CA(N = 6; t = 2, k = 3, v = (2, 2, 3))

A B C

0 0 0

0 1 1

1 0 2

1 1 0

1 0 1

0 1 2

AAA705 @ Korea University Lecture 1 – Combinatorial Testing March 6, 2024 27 / 51

Constraint Mixed Covering Array (CMCA)

Definition (Constrinat Mixed Covering Array (CMCA))

A mixed covering array A = CA(N; t, k, v = (v1, v2, . . . , vk),P) is a
N × k matrix such that every field in the i-th column is an element from
the set [0, vi − 1], and every valid t-way interaction is covered at least
once by a row of A. We say that a t-way interaction is valid if it satisfies
the predicate P.

A B C

0 0 0

1 1 1

2

P(x , y) = x + y > 0

⇒

CA(N = 5; t = 2, k = 3, v = (2, 2, 3),P)

A B C

0 1 1

1 0 2

1 1 0

1 0 1

0 1 2

AAA705 @ Korea University Lecture 1 – Combinatorial Testing March 6, 2024 28 / 51

Constraint Mixed Covering Array (CMCA)

Definition (Constrinat Mixed Covering Array (CMCA))

A mixed covering array A = CA(N; t, k, v = (v1, v2, . . . , vk),P) is a
N × k matrix such that every field in the i-th column is an element from
the set [0, vi − 1], and every valid t-way interaction is covered at least
once by a row of A. We say that a t-way interaction is valid if it satisfies
the predicate P.

A B C

0 0 0

1 1 1

2

P(x , y) = x + y > 0

⇒

CA(N = 5; t = 2, k = 3, v = (2, 2, 3),P)

A B C

0 1 1

1 0 2

1 1 0

1 0 1

0 1 2

AAA705 @ Korea University Lecture 1 – Combinatorial Testing March 6, 2024 28 / 51

Combinatorial Testing (CT)

Definition (Combinatorial Testing (CT))

Combinatorial testing with a strength t produces a test suite from a
covering array CA(N; t, k , v) for a system with k parameters, each with

Definition (Pairwise Testing)

Pairwise testing is a special case of combinatorial testing with t = 2.

Pairwise testing produces 5 test cases for the following system:

A B C

0 0 0

1 1 1

2

P(x , y) = x + y > 0

⇒

CA(N = 5; t = 2, k = 3, v = (2, 2, 3),P)

A B C

0 1 1

1 0 2

1 1 0

1 0 1

0 1 2

AAA705 @ Korea University Lecture 1 – Combinatorial Testing March 6, 2024 29 / 51

Combinatorial Testing (CT)

Definition (Combinatorial Testing (CT))

Combinatorial testing with a strength t produces a test suite from a
covering array CA(N; t, k , v) for a system with k parameters, each with

Definition (Pairwise Testing)

Pairwise testing is a special case of combinatorial testing with t = 2.

Pairwise testing produces 5 test cases for the following system:

A B C

0 0 0

1 1 1

2

P(x , y) = x + y > 0

⇒

CA(N = 5; t = 2, k = 3, v = (2, 2, 3),P)

A B C

0 1 1

1 0 2

1 1 0

1 0 1

0 1 2

AAA705 @ Korea University Lecture 1 – Combinatorial Testing March 6, 2024 29 / 51

Combinatorial Testing (CT)

Definition (Combinatorial Testing (CT))

Combinatorial testing with a strength t produces a test suite from a
covering array CA(N; t, k , v) for a system with k parameters, each with

Definition (Pairwise Testing)

Pairwise testing is a special case of combinatorial testing with t = 2.

Pairwise testing produces 5 test cases for the following system:

A B C

0 0 0

1 1 1

2

P(x , y) = x + y > 0

⇒

CA(N = 5; t = 2, k = 3, v = (2, 2, 3),P)

A B C

0 1 1

1 0 2

1 1 0

1 0 1

0 1 2

AAA705 @ Korea University Lecture 1 – Combinatorial Testing March 6, 2024 29 / 51

Combinatorial Testing (CT)

Definition (Combinatorial Testing (CT))

Combinatorial testing with a strength t produces a test suite from a
covering array CA(N; t, k , v) for a system with k parameters, each with

Definition (Pairwise Testing)

Pairwise testing is a special case of combinatorial testing with t = 2.

Pairwise testing produces 5 test cases for the following system:

A B C

0 0 0

1 1 1

2

P(x , y) = x + y > 0

⇒

CA(N = 5; t = 2, k = 3, v = (2, 2, 3),P)

A B C

0 1 1

1 0 2

1 1 0

1 0 1

0 1 2

AAA705 @ Korea University Lecture 1 – Combinatorial Testing March 6, 2024 30 / 51

Combinatorial Testing (CT)

Definition (Combinatorial Testing (CT))

Combinatorial testing with a strength t produces a test suite from a
covering array CA(N; t, k , v) for a system with k parameters, each with

Definition (Pairwise Testing)

Pairwise testing is a special case of combinatorial testing with t = 2.

Pairwise testing produces 5 test cases for the following system:

A B C

0 0 0

1 1 1

2

P(x , y) = x + y > 0

⇒

CA(N = 5; t = 2, k = 3, v = (2, 2, 3),P)

A B C

0 1 1

1 0 2

1 1 0

1 0 1

0 1 2

AAA705 @ Korea University Lecture 1 – Combinatorial Testing March 6, 2024 30 / 51

Combinatorial Testing (CT)

Definition (Combinatorial Testing (CT))

Combinatorial testing with a strength t produces a test suite from a
covering array CA(N; t, k , v) for a system with k parameters, each with

Definition (Pairwise Testing)

Pairwise testing is a special case of combinatorial testing with t = 2.

Pairwise testing produces 5 test cases for the following system:

A B C

0 0 0

1 1 1

2

P(x , y) = x + y > 0

⇒

CA(N = 5; t = 2, k = 3, v = (2, 2, 3),P)

A B C

0 1 1

1 0 2

1 1 0

1 0 1

0 1 2

AAA705 @ Korea University Lecture 1 – Combinatorial Testing March 6, 2024 30 / 51

Fault Detection Effectiveness

• Pairwise testing is a good trade-off between test effort and test
effectiveness.

• For a system with 20 parameters each with 15 values, pairwise testing
only requires 412 tests, whereas exhaustive testing requires
1520 = 3.5× 1025 tests.

• Is higher strength always better for fault detection?

• It depends on the target program, but we can analyze the general
trend against a set of known faults.

• Pairwise testing discovers at least 53% of the known faults.

• 6-way testing discovers 100% of the known faults.

AAA705 @ Korea University Lecture 1 – Combinatorial Testing March 6, 2024 31 / 51

Fault Detection Effectiveness

• Pairwise testing is a good trade-off between test effort and test
effectiveness.

• For a system with 20 parameters each with 15 values, pairwise testing
only requires 412 tests, whereas exhaustive testing requires
1520 = 3.5× 1025 tests.

• Is higher strength always better for fault detection?

• It depends on the target program, but we can analyze the general
trend against a set of known faults.

• Pairwise testing discovers at least 53% of the known faults.

• 6-way testing discovers 100% of the known faults.

AAA705 @ Korea University Lecture 1 – Combinatorial Testing March 6, 2024 31 / 51

Fault Detection Effectiveness

• Pairwise testing is a good trade-off between test effort and test
effectiveness.

• For a system with 20 parameters each with 15 values, pairwise testing
only requires 412 tests, whereas exhaustive testing requires
1520 = 3.5× 1025 tests.

• Is higher strength always better for fault detection?

• It depends on the target program, but we can analyze the general
trend against a set of known faults.

• Pairwise testing discovers at least 53% of the known faults.

• 6-way testing discovers 100% of the known faults.

AAA705 @ Korea University Lecture 1 – Combinatorial Testing March 6, 2024 31 / 51

Fault Detection EffectivenessWait, there’s more

• Number of factors involved in failures is small
• No failure involving more than 6 variables has been seen

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6

Cumulative proportion of faults for t = 1..6

FDA Browser Server DBMS NW Sec

MySQL MySQL2 Apache2 DSCS NeoKylin

“Combinatorial Methods in Software Testing” by Rick Kuhn, NIST,
2019.AAA705 @ Korea University Lecture 1 – Combinatorial Testing March 6, 2024 32 / 51

https://csrc.nist.gov/CSRC/media/Projects/cyber-supply-chain-risk-management/documents/SSCA/Fall_2019/WedAM2.2_kuhn.pdf

Greedy Algorithm – IPOG Strategy

• The problem of generating a minimum covering array is
NP-complete.

• It can be reduced to the vertex cover problem.

• Let’s learn a polynomial time greedy algorithm called IPOG
(In-Parameter-Order-General)2 that generates a covering array
with a strength t. It is not optimal but practical.

2[ECBS’07] LEI, Yu, et al. “IPOG: A general strategy for t-way software testing.
AAA705 @ Korea University Lecture 1 – Combinatorial Testing March 6, 2024 33 / 51

Greedy Algorithm – IPOG Strategy

• The problem of generating a minimum covering array is
NP-complete.

• It can be reduced to the vertex cover problem.

• Let’s learn a polynomial time greedy algorithm called IPOG
(In-Parameter-Order-General)2 that generates a covering array
with a strength t. It is not optimal but practical.

2[ECBS’07] LEI, Yu, et al. “IPOG: A general strategy for t-way software testing.
AAA705 @ Korea University Lecture 1 – Combinatorial Testing March 6, 2024 33 / 51

Greedy Algorithm – IPOG Strategy

1 Initialize test set ts to be an empty set.

2 Parameters are P1, P2, . . ., Pk .

3 Add a test into ts for all interactions of the first t parameters.

4 for (i = t + 1; i ≤ n; i++) (Horizontal Growth)
1 Let π be the set of t-way interactions involving parameter Pi and

t − 1 parameters among the first i − 1 parameters.
2 for (test γ = (v1, v2, · · · , vi−1) ∈ ts)

1 Choose a value vi of Pi

2 Replace γ with γ′ = (v1, v2, · · · , vi−1, vi) such that γ′ covers the most
number of interactions in π.

3 Remove from π the interaction covered by γ′.

5 for (interaction α ∈ π) (Vertical Growth)
1 if (∃ a test covers α) Remove α from π.
2 else if (possible) Change an existing test
3 else Add a new test to cover α and Remove it from π.

AAA705 @ Korea University Lecture 1 – Combinatorial Testing March 6, 2024 34 / 51

Greedy Algorithm – IPOG Strategy

1 Initialize test set ts to be an empty set.

2 Parameters are P1, P2, . . ., Pk .

3 Add a test into ts for all interactions of the first t parameters.

AAA705 @ Korea University Lecture 1 – Combinatorial Testing March 6, 2024 35 / 51

Greedy Algorithm – IPOG Strategy

Example

We want to pairwise testing for the following system:

P1 P2 P3

0 0 0

1 1 1

2

Adding all combinations of values between the first 2 parameters:

ts =

P1 P2

0 0

0 1

1 0

1 1

AAA705 @ Korea University Lecture 1 – Combinatorial Testing March 6, 2024 36 / 51

Greedy Algorithm – IPOG Strategy

1 Initialize test set ts to be an empty set.

2 Parameters are P1, P2, . . ., Pk .

3 Add a test into ts for all interactions of the first t parameters.

4 for (i = t + 1; i ≤ n; i++) (Horizontal Growth)
1 Let π be the set of t-way interactions involving parameter Pi and

t − 1 parameters among the first i − 1 parameters.

AAA705 @ Korea University Lecture 1 – Combinatorial Testing March 6, 2024 37 / 51

Greedy Algorithm – IPOG Strategy

Set π as pairs to cover involving P3:

π =

P1 P2 P3

0 0

0 0

0 1

0 1

0 2

0 2

1 0

1 0

1 1

1 1

1 2

1 2

AAA705 @ Korea University Lecture 1 – Combinatorial Testing March 6, 2024 38 / 51

Greedy Algorithm – IPOG Strategy

1 Initialize test set ts to be an empty set.

2 Parameters are P1, P2, . . ., Pk .

3 Add a test into ts for all interactions of the first t parameters.

4 for (i = t + 1; i ≤ n; i++) (Horizontal Growth)
1 Let π be the set of t-way interactions involving parameter Pi and

t − 1 parameters among the first i − 1 parameters.
2 for (test γ = (v1, v2, · · · , vi−1) ∈ ts)

1 Choose a value vi of Pi

2 Replace γ with γ′ = (v1, v2, · · · , vi−1, vi) such that γ′ covers the most
number of interactions in π.

3 Remove from π the interaction covered by γ′.

AAA705 @ Korea University Lecture 1 – Combinatorial Testing March 6, 2024 39 / 51

Greedy Algorithm – IPOG Strategy

Adding values for P3 in ts:

ts =

P1 P2 P3

0 0

0 1

1 0

1 1

π =

P1 P2 P3

0 0

0 0

0 1

0 1

0 2

0 2

1 0

1 0

1 1

1 1

1 2

1 2

AAA705 @ Korea University Lecture 1 – Combinatorial Testing March 6, 2024 40 / 51

Greedy Algorithm – IPOG Strategy

Adding values for P3 in ts:

ts =

P1 P2 P3

0 0 0

0 1

1 0

1 1

π =

P1 P2 P3

0 0

0 0

0 1

0 1

0 2

0 2

1 0

1 0

1 1

1 1

1 2

1 2

AAA705 @ Korea University Lecture 1 – Combinatorial Testing March 6, 2024 41 / 51

Greedy Algorithm – IPOG Strategy

Adding values for P3 in ts:

ts =

P1 P2 P3

0 0 0

0 1 1

1 0

1 1

π =

P1 P2 P3

0 0

0 0

0 1

0 1

0 2

0 2

1 0

1 0

1 1

1 1

1 2

1 2

AAA705 @ Korea University Lecture 1 – Combinatorial Testing March 6, 2024 42 / 51

Greedy Algorithm – IPOG Strategy

Adding values for P3 in ts:

ts =

P1 P2 P3

0 0 0

0 1 1

1 0 1

1 1

π =

P1 P2 P3

0 0

0 0

0 1

0 1

0 2

0 2

1 0

1 0

1 1

1 1

1 2

1 2

AAA705 @ Korea University Lecture 1 – Combinatorial Testing March 6, 2024 43 / 51

Greedy Algorithm – IPOG Strategy

Adding values for P3 in ts:

ts =

P1 P2 P3

0 0 0

0 1 1

1 0 1

1 1 0

π =

P1 P2 P3

0 0

0 0

0 1

0 1

0 2

0 2

1 0

1 0

1 1

1 1

1 2

1 2

AAA705 @ Korea University Lecture 1 – Combinatorial Testing March 6, 2024 44 / 51

Greedy Algorithm – IPOG Strategy

1 Initialize test set ts to be an empty set.

2 Parameters are P1, P2, . . ., Pk .

3 Add a test into ts for all interactions of the first t parameters.

4 for (i = t + 1; i ≤ n; i++) (Horizontal Growth)
1 Let π be the set of t-way interactions involving parameter Pi and

t − 1 parameters among the first i − 1 parameters.
2 for (test γ = (v1, v2, · · · , vi−1) ∈ ts)

1 Choose a value vi of Pi

2 Replace γ with γ′ = (v1, v2, · · · , vi−1, vi) such that γ′ covers the most
number of interactions in π.

3 Remove from π the interaction covered by γ′.

5 for (interaction α ∈ π) (Vertical Growth)
1 if (∃ a test covers α) Remove α from π.
2 else if (possible) Change an existing test
3 else Add a new test to cover α and Remove it from π.

AAA705 @ Korea University Lecture 1 – Combinatorial Testing March 6, 2024 45 / 51

Greedy Algorithm – IPOG Strategy

Extending ts:

ts =

P1 P2 P3

0 0 0

0 1 1

1 0 1

1 1 0

π =

P1 P2 P3

0 0

0 0

0 1

0 1

0 2

0 2

1 0

1 0

1 1

1 1

1 2

1 2

AAA705 @ Korea University Lecture 1 – Combinatorial Testing March 6, 2024 46 / 51

Greedy Algorithm – IPOG Strategy

Extending ts:

ts =

P1 P2 P3

0 0 0

0 1 1

1 0 1

1 1 0

0 0 2

π =

P1 P2 P3

0 0

0 0

0 1

0 1

0 2

0 2

1 0

1 0

1 1

1 1

1 2

1 2

AAA705 @ Korea University Lecture 1 – Combinatorial Testing March 6, 2024 47 / 51

Greedy Algorithm – IPOG Strategy

Extending ts:

ts =

P1 P2 P3

0 0 0

0 1 1

1 0 1

1 1 0

0 0 2

1 1 2

π =

P1 P2 P3

0 0

0 0

0 1

0 1

0 2

0 2

1 0

1 0

1 1

1 1

1 2

1 2

AAA705 @ Korea University Lecture 1 – Combinatorial Testing March 6, 2024 48 / 51

Greedy vs. Meta-heuristic

• Simulated Annealing, a type of local search algorithm, has been
proven to be effective against CIT.3

• The followings are size and time comparisons between the greedy
algorithm and the meta-heuristic algorithm (average of 50 runs).

Size comparison

Subject Greedy Meta-heuristic

SPIN-S 27 19
SPIN-V 42 36
GCC 24 21

Apache 42 32
Bugzilla 21 16

Time (sec.) comparison

Subject Greedy Meta-heuristic

SPIN-S 0.2 8.6
SPIN-V 11.3 102.1
GCC 204 1902.0

Apache 76.4 109.1
Bugzilla 1.9 9.1

3[SBSE’09] B. J. Garvin et al. “An improved meta-heuristic search for constrained
interaction testing.”

AAA705 @ Korea University Lecture 1 – Combinatorial Testing March 6, 2024 49 / 51

Greedy vs. Meta-heuristic

• Simulated Annealing, a type of local search algorithm, has been
proven to be effective against CIT.3

• The followings are size and time comparisons between the greedy
algorithm and the meta-heuristic algorithm (average of 50 runs).

Size comparison

Subject Greedy Meta-heuristic

SPIN-S 27 19
SPIN-V 42 36
GCC 24 21

Apache 42 32
Bugzilla 21 16

Time (sec.) comparison

Subject Greedy Meta-heuristic

SPIN-S 0.2 8.6
SPIN-V 11.3 102.1
GCC 204 1902.0

Apache 76.4 109.1
Bugzilla 1.9 9.1

3[SBSE’09] B. J. Garvin et al. “An improved meta-heuristic search for constrained
interaction testing.”

AAA705 @ Korea University Lecture 1 – Combinatorial Testing March 6, 2024 49 / 51

Greedy vs. Meta-heuristic

• Simulated Annealing, a type of local search algorithm, has been
proven to be effective against CIT.3

• The followings are size and time comparisons between the greedy
algorithm and the meta-heuristic algorithm (average of 50 runs).

Size comparison

Subject Greedy Meta-heuristic

SPIN-S 27 19
SPIN-V 42 36
GCC 24 21

Apache 42 32
Bugzilla 21 16

Time (sec.) comparison

Subject Greedy Meta-heuristic

SPIN-S 0.2 8.6
SPIN-V 11.3 102.1
GCC 204 1902.0

Apache 76.4 109.1
Bugzilla 1.9 9.1

3[SBSE’09] B. J. Garvin et al. “An improved meta-heuristic search for constrained
interaction testing.”

AAA705 @ Korea University Lecture 1 – Combinatorial Testing March 6, 2024 49 / 51

Summary

1. Equivalence Partitioning (EP)

2. Boundary Value Analysis (BVA)

3. Category Partition Method (CPM)

4. Combinatorial Testing (CT)
Covering Array (CA)
Fault Detection Effectiveness
Greedy Algorithm – IPOG Strategy
Greedy vs. Meta-heuristic

AAA705 @ Korea University Lecture 1 – Combinatorial Testing March 6, 2024 50 / 51

Next Lecture

• Random Testing

Jihyeok Park
jihyeok park@korea.ac.kr

https://plrg.korea.ac.kr

AAA705 @ Korea University Lecture 1 – Combinatorial Testing March 6, 2024 51 / 51

https://plrg.korea.ac.kr

	Equivalence Partitioning (EP)
	Boundary Value Analysis (BVA)
	Category Partition Method (CPM)
	Combinatorial Testing (CT)
	Covering Array (CA)
	Fault Detection Effectiveness
	Greedy Algorithm – IPOG Strategy
	Greedy vs. Meta-heuristic

