Lecture 10 — Fault Localization

AAATO05: Software Testing and Quality Assurance

Jihyeok Park

7VPLRG

2024 Spring

AAAT705 @ Korea University Lecture 10 — Fault Localization April 8, 2024

Recall ’VNPLRG

® Regression Testing

® Regression Fault

Test Suite Minimization

Test Case Selection

Test Case Prioritization

® Regression Testing in Practice

AAAT705 @ Korea University Lecture 10 — Fault Localization April 8, 2024 2/62

Fault Localization ’VNPLRG

It doesn't work... why?

® \We found a bug by running a test

= .

e Before fixing the bug, we need to
know where it is.

It works... why? . . .
¢ Fault Localization is the process of

identifying the location of a fault in

\ the code.

AAAT705 @ Korea University Lecture 10 — Fault Localization April 8, 2024 3/62

Fault Localization ’VNPLRG
There are several basic manual approaches to fault localization:
¢ Logging — Inserting print statements to trace the program execution.
® Assertions — Inserting assertions to check the program state.

® Breakpoints — Using a debugger to pause the program execution and
inspect the state.

® Profiling — Profiling the execution speed and memory usage of the
program typically to find performance and memory usage bugs.

AAAT705 @ Korea University Lecture 10 — Fault Localization April 8, 2024

Contents ’VNPLRG

1. Delta Debugging (DD)
Recursive Delta Debugging — ddmin
Hierarchical Delta Debugging
Probabilistic Delta Debugging (ProbDD)
Delta Debugging for Program Debloating

2. Information Retrieval based Fault Localization (IRFL)
Vector Space Model (VSM)
Tf-Idf
Cleansing Bug Reports and Source Code
VSM and Similarity
3. Spectrum-based Fault Localization (SBFL)
Genetic Algorithm for SBFL
Theoretical Analysis
Method-level Aggregation
Hybrid SBFL

4. Mutation-based Fault Localization (MBFL)

AAAT705 @ Korea University Lecture 10 — Fault Localization April 8, 2024

Contents ’VNPLRG

1. Delta Debugging (DD)
Recursive Delta Debugging — ddmin
Hierarchical Delta Debugging
Probabilistic Delta Debugging (ProbDD)
Delta Debugging for Program Debloating

AAAT705 @ Korea University Lecture 10 — Fault Localization April 8, 2024

Motivation NPLRG

Following HTML code caused Firefox to crash. What is the actual cause?

<td align=left valign=top>

<SELECT NAME="op sys" MULTIPLE SIZE=7>

<OPTION VALUE="A11">All <OPTION VALUE="Windows 3.1">Windows 3.1

<OPTION ="Windows 95">Windows 95 <OPTION VALUE="Windows 98">Windows 98

<OPTION Windows ME">Windows ME <OPTION VALUE="Windows 2000">Windows 2000

<OPTION Windows NT">Windows NT <OPTION VALUE="Mac System 7">Mac System 7

<OPTION VALUE="Mac System 7.5">Mac System 7.5 <OPTION VALUE="Mac System 7.6.1">Mac System 7.6.1
<OPTION VALUE="Mac System 8.0">Mac System 8.0 <OPTION VALUE="Mac System 8.5">Mac System 8.5
<OPTION VALUE="Mac System 8.6">Mac System 8.6 <OPTION VALUE="Mac System 9.x">Mac System 9.x
<0PTION VALUE="Mac0S X">Mac0S X <OPTION VALUE="Linux">Linux

<OPTION VALUE="BSDI">BSDI <OPTION VALUE="FreeBSD">FreeBSD

<OPTION VALUE="NetBSD">NetBSD <OPTION VALUE="OpenBSD">OpenBSD

<OPTION VALUE="AIX">AIX <OPTION VALUE="Be0S">Be(S

<OPTION VALUE="HP-UX">HP-UX <OPTION VALUE="IRIX">IRIX

<OPTION Neutrino">Neutrino <OPTION VALUE="OpenVMS">OpenVMS
<OPTION 0S/2">08/2 <OPTION VALUE="O0SF/1">0SF/1
<OPTION Solaris">Solaris <OPTION VALUE="Sun0S">Sun0S

<OPTION other">other</SELECT></td> <td align=left valign=top>

<SELECT NAME="priority" MULTIPLE SIZE=7>

<OPTION --">-- <OPTION VALUE="P1">P1

<OPTION P2">P2 <OPTION VALUE="P3">P3

<OPTION VALUE="P4">P4 <OPTION VALUE="P5">P5</SELECT> </td> <td align=left valign=top>
<SELECT NAME="bug severity" MULTIPLE SIZE=7> <OPTION VALUE="blocker">blocker

<OPTION VALUE="critical">critical <OPTION VALUE="major">major <OPTION VALUE="normal'">normal
<0PTION VALUE="minor">minor <OPTION VALUE="trivial">trivial

<OPTION VALUE="enhancement">enhancement </ SELECT>

</tr> </table>

AAAT705 @ Korea University Lecture 10 — Fault Localization April 8, 2024 7/62

Delta Debugging (DD) ’VPLRG

® Not all parts of the test case are necessary to cause the failure.

® The core idea of delta debugging (DD) is to simplify the test case
that causes the failure to keep only the necessary parts by
removing unnecessary parts.

® The simplified test case has the following benefits:

® Ease of communication — A simplified test case is easier to
communicate.

® Easier debugging — A smaller test case result in smaller states and
shorter executions.

® |dentify duplicates — Simplified test cases subsume several duplicates.

AAAT705 @ Korea University Lecture 10 — Fault Localization April 8, 2024

Delta Debugging 7NPLRG

Basic approach of delta debugging is just binary search:

HEEEEEEEEEEEEEEN X
HEEEREEEN 7/
HEEEEEEEN X
HEEN X

] 4

HE X

L] X

AAAT705 @ Korea University Lecture 10 — Fault Localization April 8, 2024

Delta Debugging 7NPLRG

However, what if the failure is caused by a combination of multiple parts?

HENEEEEEEEEEEEEEN X
HENEEEEEN v
ENEEEEEN 4

AAAT705 @ Korea University Lecture 10 — Fault Localization April 8, 2024

Recursive Delta Debugging — ddmin VPLRG
Recursively split the test into smaller parts and perform DD on each part.

Algorithm Recursive Delta Debugging — ddmin
Input: A test case t that causes a failure
Output: A minimal test case that still causes the failure t/

1: function DDMIN(t)

2 L < the list of elements in t

3 n+2

4 while n > |L| do

5: (c1,...,¢n) < split L into n chunks

6 if 3i € [1, n]. test(L\ ¢;) = X then

7 (Lyn) < (L\ ¢;,n—1)

8 else if Possible to split ¢; into two chunks ¢/ and ¢/’ then
9: (L,yn) + {c1,¢fy...,ch,cl),2n)
10: else
11: break
12: return a test case t’ that corresponds to L

A. Zeller and R. Hildebrandt. Simplifying and isolating failure-inducing input.
IEEE Transactions on Software Engineering, 28(2):183-200, Feb. 2002

AAAT705 @ Korea University Lecture 10 — Fault Localization April 8, 2024 11/62

Recursive Delta Debugging — ddmin 'V PLRG

HENEEEEEEENEEEEEN X
EEREENERN /
EEEEENER v
HEEEEEEEEEEEN X
EEREEEEN /

HENEN HEEN /
HEEEEEEEE

X
v
X
X
X

AAAT705 @ Korea University Lecture 10 — Fault Localization April 8, 2024

Hierarchical Delta Debugging (HDD) 'V PLRG

e What if the test case is highly structured?

® For example, if our target software is a JavaScript interpreter, test
cases are JavaScript programs following the JavaScript grammar.

e |f we delete a part of the program regardless of the grammar, the
resulting program most likely will be an invalid program.

¢ Hierarchical Delta Debugging (HDD) is a variant of DD that
takes the structure of the test case into account. It recursively goes
into deeper nested structures instead of just splitting the test case
into chunks.

® G. Misherghi and Z. Su. HDD: Hierarchical delta debugging. In
Proceedings of the 28th International Conference on Software
Engineering, ICSE '06, pages 142-151, New York, NY, USA, 2006.
ACM.

AAAT705 @ Korea University Lecture 10 — Fault Localization April 8, 2024 13 /62

Hierarchical Delta Debugging (HDD)

First, we can consider the function-level structure of the test case.

’VNPLRG

double mult(double z[], int n)

int copy(double to[], double
{

int n= (count+7)/8;
switch (count%8) do {

case 0: xto++ = xfrom++;
: *tot++ = *from++;

case 7 =

case 6: *to++ = xfrom++;
case 5: *to++ = xfrom++;
case 4: xto++ = *from++;
case 3: xto++ = *xfrom++;
case 2: xto++ = *xfrom++;
case 1: *to++ = *xfrom++;

while (--n > 0);
return (int)mult(to,2);

[}

from[], int count)

{
int i;
int j;
for (j= 0; j< n; j++) {
i= i+j+1;
z[il=z[i]*(z[0]+0);

return z[n];
}
int main(int argc, char *argv([])
{

double x[20], y[20];

double *px= Xx;

while (px < x + 20)

px++ = (px-x)(20+1.0);
return copy(y,x,20);

AAAT705 @ Korea University

Lecture 10 — Fault Localization April 8, 20

Hierarchical Delta Debugging (HDD) 'V PLRG

Then, let's consider the statement-level structure of the test case.

double mult(double z[], int n)
{
int i;
int j;
for (j= 0; j< m; j++) {
i= i+j+1;
z[1]=z[i]*(z[0]+0) ;
}

return z[n];

AAAT705 @ Korea University Lecture 10 — Fault Localization April 8, 2024

Hierarchical Delta Debugging (HDD) 'V PLRG

Then, let's consider the expression-level structure of the test case.

double mult(double z[], int n)
{
int i;
int j;
for (j= 0; j< n; j++) {
i= i+j+1;
z[i]=z[i]*(z[0]+0) ;
}
}

AAAT705 @ Korea University Lecture 10 — Fault Localization April 8, 2024

Hierarchical Delta Debugging (HDD) 'V PLRG

The final result of HDD is as follows:

double mult(double z[], int n)
{
int i;
int j;
for (;;) {
i= i+j+1;
z[i]=z[i]*(z[0]+0);
}
}

AAAT705 @ Korea University Lecture 10 — Fault Localization April 8, 2024

Probabilistic Delta Debugging (ProbDD) 'V PLRG

® The fixed way to split the test case may be not the best way to find
the minimal test case.

® Then, let's consider a probabilistic way to split the test case.

¢ Probabilistic Delta Debugging (ProbDD) is a variant of DD that
randomly selects the sequential parts to select the next part and
updates the probabilistic model based on the previous results.

® G. Wang, R. Shen, J. Chen, Y Xiong, and L Zhang. Probabilistic delta
debugging. In Proceedings of the 2021 Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering, ESEC/FSE 2021.

AAAT705 @ Korea University Lecture 10 — Fault Localization April 8, 2024

7VNPLRG

Probabilistic Delta Debugging (ProbDD)
sl s2 s3 s4 s5 s6 s7 s8
0.2500 | 0.2500 | 0.2500 | 0.2500 | 0.2500 | 0.2500 | 0.2500 | 0.2500
1 sl s2 s3 s4 s5 s6 s7 s8 F
0.3657 | 0.3657 | 0.3657 | 0.2500 | 0.2500 | 0.2500 | 0.2500 | 0.3657 | |
2| sl 2 s3 s4 s5 $6 s7 8 |[T|
0.3657 | 0.3657 | 0.3657 0 0 0 0 0.3657
3 sl s2 s3 s4 s5 s6 s7 s8 F
0.6119 | 0.3657 | 0.3657 0 0 0 0 0.6119 | |
4 sl s2 s3 s4 s5 s6 s7 s8 | F |
0.6119 | 0.6119 | 0.6119 0 0 0 0 0.6119
5 st 52 s3 s4 s5 56 s7 s8 [T|
0.6119 0 0.6119 0 0 0 0 0.6119
6| sl s2 s3 s4 s5 56 s7 s8 | F |
0.6119 0 1 0 0 0 0 0.6119
7 s1 2 s3 s4 s5 6 s7 8 | T|
0 0 1 0 0 0 0 0.6119
8 sl s2 s3 s4 s5 s6 s7 s8 F
0 0 1 0 0 0 0 1 []
AAAT705 @ Korea University Lecture 10 — Fault Localization April 8, 2024

19/62

Delta Debugging for Program Debloating ’VPLRG

® \We can utilize DD technique to debloat a program.
® K. Heo, W. Lee, P. Pashakhanloo, and M. Naik. Effective Program
Debloating via Reinforcement Learning. In proceedings of the 2018
Conference on Computer and Communications Security, CCS 2018.

Checker w.r.t.

— P &S
:" o (P..Y/N)
<P17?> v

Program P \ — l

'ﬁ Reduced ,
? ! -~ ‘ Program P
Spec S Trimmer o .-\ <o Learner
d o
Statistical
Model

AAAT705 @ Korea University Lecture 10 — Fault Localization April 8, 2024

Delta Debugging for Program Debloating ’VPLRG

Let’s consider the following program:

int £1() { return 0; }
int £2() { return 1; }
int £3() { return 1; }
int £f4() { return 1; }
int £5() { return 1; }
int £6() { return 1; }

int f7() { return 1; }

int main() { return f1(); }

AAAT705 @ Korea University Lecture 10 — Fault Localization April 8, 2024

Delta Debugging for Program Debloating "V PLRG

[0 [e o] wle]w®] 7 [mn] v
1 x
2 B | n x
3 3 | 4 | f5 | f6 | f7 | man| X
sl [® 5 | 6 | f7 | main] X
st | r | B | u 7 | main | X
6Lt | | B x
> o T c I
8 3 v
ol s [u | 5]| v
10 B | 4 | 5 | 6 x
M o [B [# | 5] 1 x
12 1 | r 3 4 5 | f6 X
1B[n [] B8] @u]n6]| 6 x
1w 1 N s [| 5 | 6 x
s e [3 [@ | 5] 1 v
o [B | 4 | 5 | 1 v

AAAT705 @ Korea University Lecture 10 — Fault Localization April 8, 2024

Delta Debugging for Program Debloating "V PLRG

1
2

3
4
5
6
7
8
9

-

[}

[][]«

5 | 6 | 7 |main

x x X R %x N R x x x S

AAAT705 @ Korea University Lecture 10 — Fault Localization

OO

Iteration 1 Iteration 2

[en] [on]

A

Iteration 3 Iteration 6

April 8, 2024

Delta Debugging in Practice 7V PLRG

® DD.py — a Python implementation of Delta Debugging

e Lithium — a Python implementation of a Hierarchical Delta
Debugging

® C-Reduce - a tool that reduces source files written in C/C++ using
the Delta algorithms

AAAT705 @ Korea University Lecture 10 — Fault Localization April 8, 2024

Contents ’VNPLRG

2. Information Retrieval based Fault Localization (IRFL)
Vector Space Model (VSM)
Tf-Idf
Cleansing Bug Reports and Source Code
VSM and Similarity

AAAT705 @ Korea University Lecture 10 — Fault Localization April 8, 2024

Motivation

Can we utilize information in the bug report for fault localization?

For example, this is a real bug report for Firefox:

EQ sugila a B Browse € Advanced Search 5 NewAccount Logn Forgot Password

Bug 1001903 -

thorstenr 42 (Reporter) -
Description « 5 years ago

User Agent: Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:28.8) Gecko/20100101 Firefox/28.0 (Beta/Release)
Build ID: 2014410211200

Steps to reproduce:
1. create a folder in the bookmarks-toolbar and fill it with some bookmarks (one is enough)

2. opening the folder per mouse-leftclick works flawlessly but per touch-click it just opens for a fraction of a second and is
inmediately collapsed again

(Tested with installed ubuntu 14.04 and untouched live version on t44s with touchscreen)

Actual results:

Bookmarks-folders is immediateky closed again if opened per touchscreen

Expected results:

It should just open the folder and show the contents

https://bugzilla.mozilla.org/show_bug.cgi?id=1001903

AAAT05 @ Korea Universi Lecture 10 — Fault Localization

https://bugzilla.mozilla.org/show_bug.cgi?id=1001903

Motivation ’VNPLRG

e After creating a folder in the bookmark toolbar and a bookmark
inside the folder, mouse left-click successfully opens the folder but
touch-click fails to open it: it opens but immediately closes itself.

e While we do not know the internal structure of the Firefox source
code, we can guess which parts of the code are most likely to be
related to the fault.

AAAT705 @ Korea University Lecture 10 — Fault Localization April 8, 2024

Information Retrieval (IR) based Fault Localization VPLRG

¢ Information Retrieval (IR) techniques help a user to quickly obtain
resources relevant to an information need, from a large collection of
information resources.

Google

¢ Fault localization can be thought of as finding a resource (a
program element) that is relevant to an information need (the
reported symptoms of the failure), from a large collection of
information resources (the entire system).

® The bug report becomes our query.
® The entire source code becomes our collection of documents.

® Fault localization is to find the source code that matches the bug
report the best.

AAAT705 @ Korea University Lecture 10 — Fault Localization April 8, 2024

Vector Space Model (VSM) VPLRG

® There are many ways to represent queries and documents in IR.

¢ Vector Space Model (VSM) is one of the most popular ways to
represent queries and documents as vectors in a high-dimensional
space.

® |t allows us to calculate the similarity between the query and the
documents easily.

AAAT705 @ Korea University Lecture 10 — Fault Localization April 8, 2024

Vector Space Model (VSM) "M PLRG

First, define the vocabulary, a set of meaningful terms of the system.

Given a vocabulary with N terms, we represent both the query and
the documents as vectors:

dj = (Wl,j, W2 jye-es WNJ) for document j
q =(wiq,Wag,...,wWnq) forquery

The dimensionality of these vectors is equal to the number of terms
in the vocabulary.

If the term w, appears in the document d; and the query g, then
wy; and w4 are non-zero, otherwise, they are zero.

There are many ways to set the non-zero values. Let's study tf-idf.

AAAT705 @ Korea University Lecture 10 — Fault Localization April 8, 2024

Tf-Idf ’VNPLRG

¢ Term-Frequency Inverse Document Frequency (Tf-1df) is a
numerical statistic that reflects how important a term is to a
document in a collection or corpus.

® Term Frequency (tf), tf(t,d), is the number of times the term t
appears in the document d divided by the total number of terms in

the document d.
fr.d

|d|

where f; 4 is the number of times t appears in d

tf(t,d) =

¢ Inverse Document Frequency (idf), idf(t, D), is the logarithm of
the ratio of the total number of documents in the corpus D to the
number of documents containing the term t.

_ B |D|
idf (t, D) = log ({d eD|te d}|>

AAAT705 @ Korea University Lecture 10 — Fault Localization April 8, 2024 31/62

Tf-Idf ’VNPLRG

¢ Term-Frequency Inverse Document Frequency (Tf-1df) is just a
product of the term frequency and the inverse document
frequency.

Tf-Idf(t, d, D) = tf(t,d) x idf(t, D)
® A higher Tf-Idf(t, d, D) value means that the term t occupies a

higher proportion in the document d and is less common in the
corpus D.

® A lower Tf-1df(t, d, D) value means that the term t occupies a lower

proportion in the document d and is more common in the corpus
D.

AAAT705 @ Korea University Lecture 10 — Fault Localization April 8, 2024 32/62

Cleansing Bug Reports 7NPLRG

® \We follow the standard text cleansing process used in many IR and
machine learning applications.

® Tokenization — Break down the bug report to a list of tokens.

1

® Remove punctuation — For example, “file's” becomes “file".
® Case normalization — For example, “File” becomes “file".

® Stop word filtering — some words are extremely common in English

w_n u "

(e.g., “a", “an", “the") and best to be removed. Such words are called
stop words.

”

® Stemming — For example, “running” becomes “run”.

® There are many widely used libraries that will perform these tasks.

AAAT705 @ Korea University Lecture 10 — Fault Localization April 8, 2024 33/62

Cleansing Source Code ’VPLRG

® Similarly, we need to do the cleansing process for the source code.

® In source code, reserved keywords can be considered as stop words.
¢ In addition, we need to apply additional normalization for identifiers:

® CamelCase normalization — For example, “getFileName” becomes
“get”, “file”, and "name".

® SnakeCase normalization — For example, “get_file_name"” becomes
“get”, "“file”, and “name”.

AAAT705 @ Korea University Lecture 10 — Fault Localization April 8, 2024

VSM and Similarity ’VPLRG

e After cleansing, using a predefined vocabulary, we can calculate the
Tf-1df values for each term t (word) and each document d; (source
code file) or the query g (bug report).

® Then, we can represent the bug report and the source code as
vectors in a high-dimensional space.

® The similarity between the bug report and the source code can be
calculated using the cosine similarity:

dj - Niwij xw
COS(dj7 q) = i~ 4 _ 21,1 i.j iq

. o N N
Idillxlial S0 w2 /3 wl,

® Finally, we can select the source code file that has the highest cosine
similarity to the bug report as the fault location.

AAAT705 @ Korea University Lecture 10 — Fault Localization April 8, 2024

Strengths and Weaknesses ’NPLRG

e Strengths

® Simple and easy to implement.

® |Intuitive and easy to understand.

e Weaknesses

® Requires a high-quality and detailed bug report.

® Suffers from the inherent limit to the accuracy because the
document to be matched (i.e., the unit of localization) needs to be of
certain size (otherwise lexical similarity becomes more random).

AAAT705 @ Korea University Lecture 10 — Fault Localization April 8, 2024

Contents ’VNPLRG

3. Spectrum-based Fault Localization (SBFL)
Genetic Algorithm for SBFL
Theoretical Analysis
Method-level Aggregation
Hybrid SBFL

AAAT705 @ Korea University Lecture 10 — Fault Localization April 8, 2024

Motivation ’VNPLRG

® |ntuition — If a program has a faulty line, a test case that executes
the faulty line is more likely to fail than a test case that does not
execute the faulty line.

® [t means that we want to utilize statistical information about the
program’s execution to localize the fault.

® \We need to reflect this intuition to a computable form to automate
the fault localization process.

AAAT705 @ Korea University Lecture 10 — Fault Localization April 8, 2024

Spectrum-based Fault Localization (SBFL) ’MPLRG

Program Spectrum Ranking

/\/ e — ——2

/ ep+mnpy+1

Test Suite

Risk Evaluation Formula

AAAT705 @ Korea University Lecture 10 — Fault Localization April 8, 2024 39/62

Spectrum-based Fault Localization (SBFL) ’MPLRG

® Program Spectrum — for each structural unit (e.g., statement,
branch, predicate), summarize the test result and coverage into a
tuple of the following four numbers:

® e, — # test cases that execute the unit e and pass.
® ¢ — F test cases that execute the unit e and fail.
® n, — # test cases that do not execute the unit e and pass.

® nf — # test cases that do not execute the unit e and fail.

AAAT705 @ Korea University Lecture 10 — Fault Localization April 8, 2024

Tarantula (2001) ’NPLRG

The following is the initial formula for SBFL called Tarantula:

ef
ef—l—nf
ef' ep
Ef+nf ep+np

Tarantula(e) =

The following part represents the how many test cases are associated
with the unit e among the failing test cases:

€r
er + nf

On the other hand, the following part represents the how many test cases
are associated with the unit e among the passing test cases:

_%
€ + np

AAAT705 @ Korea University Lecture 10 — Fault Localization April 8, 2024 41/62

Tarantula (2001) "M PLRG

While it originally was meant as a visualization technique, it has been
widely used as a fault localization technique.

() Default i Summary (> Passes (Fails) Mixed ® Shaded Summary H———— |ine: 3754
resel _JUlI AT TR

Passed: 5 [26
Failed: 29

AAAT705 @ Korea University Lecture 10 — Fault Localization April 8, 2024 42 /62

Diverse Risk Evaluation Formulae

While over 30 formulae have been proposed, none of them is universally
superior to others and no best formula for all types of faults.

’VNPLRG

Name Formula ‘ Name Formula Name Formula
-1 ifnp>0 p .
ERlq {n,, ahise ER1p Cf “epin,+l ep ifep<2
e, b‘f _ .
ER5, et ER5, e Wong3 ef—h,h=12+0.1(ep—2) if 2<ep<10
ER5, {nlx 1f“ef<1' GP, s+ TR T z.stoﬁol(ep—lo) ifep>10
° otherwise ’ Ochiai2 p
Ochiai ey GP3 Ie2~yep] \/(e_f+e,,)éfnf+n;,)(ef+nP)(eP+nf)
ef 1 Zoltar -
Jaccard o e GPi3 eﬂHm) o repeny+ mm)Zn, >
AMPLE |%-%| GPyy P e~
Fnp—ey— -
Hamann % Tarantula ﬁ
. eptny eptnp
. Ef Ef
Dice orey Ty RusselRao ey
ert+np . 2e,
M1 e, SgrensenDice Zefre,Tny
€r : °f
M2 eptnp+2ng+2e, Kulezynskil np+e,
Hamming er+n, Kulczynski2 %(e,iifn,*' e,ifep)
2ep—ng—ep . . ef+ny
Goodman Tertnpre, SimpleMatching W
. . p
Euclid fer+np RogersTanimoto TRy I 2,
2er+2np
Wong1 er Sokal W
Wong2 ef—ep Anderberg s

AAAT705 @ Korea University

Lecture 10 — Fault Localization

April 8, 2024

Genetic Algorithm for SBFL ’VPLRG

AMPLE
Jaccard
Tarantula
Wong1
Wong2
Wong3

(]
by [s) =
Q o [$]
o O O

® |et's apply the Genetic
Algorithm (GA) to
optimize the formula for
SBFL.
e 30 formulae are generated.
® Green — GP outperforms
the other.
® Orange — GP exactly
matches the other.
® Red — the other
outperforms GP.

—30 GP Runs—

4 Unix tools w/ 92 faults: 20 for training, 72 for evaluation.

AAAT705 @ Korea University Lecture 10 — Fault Localization April 8, 2024

Genetic Algorithm for SBFL ’VPLRG

AMPLE

(]
by [s) =
Q o [$]
o O O

—30 GP Runs—

Jaccard

Tarantula

Wong1
Wong2
Wong3

¢ GP completely
outperforms Ochiai,
Tarantula, Wong 1, and
Wong 2.

¢ GP mostly outperforms
AMPLE.

® Opl, Jaccard, and Wong 3
are tough to beat.

e Op2 is very good but it is
not impossible to do
better.

4 Unix tools w/ 92 faults: 20 for training, 72 for evaluation.

AAAT705 @ Korea University

Lecture 10 — Fault Localization April 8, 2024

Genetic Algorithm for SBFL

’VNPLRG

ID ‘ Refined Formula H ID ‘ Refined Formula
3
GPO1| ef(np +ep(1+ (/EF)) GP16 2/6; +ny,
ertny | my :
GPO02| 2(ef + /Mp) + /& GP17| T T —er et
GP03 e} — /el GP18| ¢} +2n,
GP04 ‘017?"1 — eyl GP19| efy/lep —ef+np —nyl
(es+np) ey
G0 | et v ertmmym || GF20) 2er + 53
GPO06 | esn, GP21| y/es ++/ef +ny
GPOT7| 2e7(1+es+) + (L+V2)ym, ||GP22| ¢} +ef+/my
GPO8| ¢(2¢, + 2¢f + 3n,) GP23 | \/Ej(e]f + 2 + /iy +ny +mp)
GP09 :fi? +n, +ep+ 6’} GP24| ey + /nyp
/ 1 np
GP10 ‘(’,f—al GP25 ef+,/np+ m"!‘m
GP11| ef(ef + /myp) GP26| 2¢5+.,/m,
npy/(npng—ey)

GP12| /e, +ef+n, — /6, GP27| =
GP13| ef(1+ 5) GP28 | ef(es + /My + 1)
GP14| e + iy GP29 | e7(2¢3 +ep +ny)+ L 2NIET
GP15| ef +/ns + /np GP30 \eff%l

AAAT705 @ Korea University

Lecture 10 — Fault Localization

Theoretical Analysis 7NPLRG

e Given a test suite and a formula R, a program P consists of n
elements (s1, %, ..., 5n)-

® The set of elements can be divided into three subsets:

® SR — set of elements ranked higher than the faulty element s;.

SE={si|1<i<nAR(s) > R(sf)}

® SR — set of elements tied to the faulty element s;.

SF={si|1<i<nAR(s)=R(s)}

e SR — set of elements ranked lower than the faulty element s;.

SR={si|1<i<nAR(s) < R(sf)}

AAAT705 @ Korea University Lecture 10 — Fault Localization April 8, 2024 47 /62

Theoretical Analysis 7NPLRG

¢ Formula R; dominates formula R; (i.e., Ry — R») if, for each
element s;, Ry gives a better ranking comparison result with the
faulty element sf than R».

SRR C SR ASR Cc sk

® Formula R; equivalent to formula R; (i.e., Ry = Ry) if they give the
same ranking comparison result with the faulty element s¢.

SRt =R p sft = gFe p gF = SR

® |t means that Ry = R, if and only if Ry — R» and R — Ry.

AAAT705 @ Korea University Lecture 10 — Fault Localization April 8, 2024

Method-level Aggregation 7VPLRG

® The util method is called by the

public void testMe(int a) { testMe method.
util(); . .
if (@ % 3==0) { ® If we target functions as the unit of
... // faulty code localization, the util method
} else { might be tied to the testMe
} method having the faulty code.
} ¢ Method-level aggregation is a
public void util() { technique to aggregate the
} statement- or branch-level ranks to

the method level to get a more
accurate fault localization result.

J. Sohn and S. Yoo. FLUCCS: Using Code and Change Metrics to Improve Fault
Localization. In Proceedings of the 2017 International Symposium on Software Testing
and Analysis, ISSTA 2017.

AAAT705 @ Korea University Lecture 10 — Fault Localization April 8, 2024

Hybrid SBFL ’NPLRG

® People are realising that a single formula is strongly limited.
® Hybridization
® Use multiple formulae at the same time.

® Use SBFL formulae with some additional input features.

e As we accept more diverse input, fault localization become a learning
problem, instead of design-a-technique problem.

AAAT705 @ Korea University Lecture 10 — Fault Localization April 8, 2024

Hybrid SBFL rNPLRG

e Xuan & Monperrus (ICSME 2014)

® Simultaneously use 25 SBFL formulae, using the weighted sum
method.

® Use a learning-to-rank technique to train the raking model (i.e., to
optimize the weights that yield best ranks for training set faults)

® Le et al. (ISSTA 2016)

® |n addition to 35 SBFL formulae, Savant use invariant differences.

® Use Daikon to infer method invariants twice: with passing tests, and
with failing test.

® For the faulty method, two sets of invariant will tend to be more
different.

AAAT705 @ Korea University Lecture 10 — Fault Localization April 8, 2024

Hybrid SBFL rNPLRG

J. Sohn and S. Yoo. FLUCCS: Using Code and Change Metrics to Improve
Fault Localization. In Proceedings of the 2017 International Symposium on
Software Testing and Analysis, ISSTA 2017.

Repository SBFL Scores Deployment Debugging

Ranking Models ‘

Method

+ ‘ Spectrum Data ‘
C-I;esse‘s : " | Ranking
I_ = [Formue | [wehts]
Source T
Code
[=
Faults

Code/Change Metrics Training

+

¢ Code and Change Metrics Features
® Age — how long has the given element existed in the code?

® Churn - how frequently has the given element been changed?
® Complexity — how complex is the given element?

AAAT705 @ Korea University Lecture 10 — Fault Localization April 8, 2024 52 /62

Strengths and Weaknesses ’NPLRG

e Strengths
® Only requires what is already there: coverage and test results.
® Relatively intuitive.

¢ Weaknesses

® Single formulae are usually limited.
® Does not work against omission faults

® Does not work well against multiple faults.

AAAT705 @ Korea University Lecture 10 — Fault Localization April 8, 2024

Contents ’VNPLRG

4. Mutation-based Fault Localization (MBFL)

AAAT705 @ Korea University Lecture 10 — Fault Localization April 8, 2024

Mutation-based Fault Localization (MBFL) ’MPLRG

e Mutation testing is a technique to evaluate the quality of a test
suite by generating mutants of the program and checking whether
the test suite can kill the mutants.

® Can we use mutants for fault localization?

¢ What would happen if we mutate a program having a known fault?

AAAT705 @ Korea University Lecture 10 — Fault Localization April 8, 2024

Mutation-based Fault Localization (MBFL) ’MPLRG

Consider a faulty program P.

Let ms be a mutant of P that mutates the faulty statement
and m. be a mutant of P that mutates a correct statement.

Conjecture 1: failing tests are more likely to pass on my than m..

Conjecture 2: passing tests are more likely to fail on m. than my.

AAAT705 @ Korea University Lecture 10 — Fault Localization April 8, 2024

’VNPLRG
S. Moon, Y. Kim, M. Kim, and S. Yoo. Ask the Mutants: Mutating Faulty Programs for

Fault Localization. International Conference on Software Testing, Verification, and
Validation, ICST 2014. (MUSE — MUtation-baSEd fault localization technique)

Mutation-based Fault Localization (MBFL)

o () Npul . Ipp(®) 1 ful
HE) = e 2 < >

méemut(s) ‘fP‘ ’pP‘

AAAT705 @ Korea University

Lecture 10 — Fault Localization

April 8, 2024

Mutation-based Fault Localization (MBFL) ’MPLRG

S. Moon, Y. Kim, M. Kim, and S. Yoo. Ask the Mutants: Mutating Faulty Programs for
Fault Localization. International Conference on Software Testing, Verification, and
Validation, ICST 2014. (MUSE — MUtation-baSEd fault localization technique)

Proportion of test
cases that mutant m
turns from fail to pass

1 [T IR CT A
M= Gl 2 0T [

AAAT705 @ Korea University

Lecture 10 — Fault Localization

April 8, 2024

Mutation-based Fault Localization (MBFL) ’MPLRG

S. Moon, Y. Kim, M. Kim, and S. Yoo. Ask the Mutants: Mutating Faulty Programs for
Fault Localization. International Conference on Software Testing, Verification, and
Validation, ICST 2014. (MUSE — MUtation-baSEd fault localization technique)

Proportion of test
cases that mutant m
turns from fail to pass

_ 1 () pml] - |Ipp(s) 0 il
“(S)Wmut(s)\me%t(S) el YT e

Proportion of test
cases that mutant m
turns from pass to fail

AAAT705 @ Korea University

Lecture 10 — Fault Localization

April 8, 2024

Mutation-based Fault Localization (MBFL) ’MPLRG

S. Moon, Y. Kim, M. Kim, and S. Yoo. Ask the Mutants: Mutating Faulty Programs for
Fault Localization. International Conference on Software Testing, Verification, and
Validation, ICST 2014. (MUSE — MUtation-baSEd fault localization technique)

Proportion of test
cases that mutant m
turns from fail to pass

1 |[/P(s) N pm| [pp(s) N Sl
O N N (SAGIREL] By LSRR
mut(s)] | 2= N 1f] pr
Proportion of test

Proportion of test
cases that mutant m cases that mutant m
turns from pass to fail turns from pass to fail
where « is the balancing factor:

o 2p |mut(P)| - |pp|
|mut(P)| - |fp| p2f

AAAT705 @ Korea University

Lecture 10 — Fault Localization

April 8, 2024

Summary ’VPLRG

1. Delta Debugging (DD)
Recursive Delta Debugging — ddmin
Hierarchical Delta Debugging
Probabilistic Delta Debugging (ProbDD)
Delta Debugging for Program Debloating

2. Information Retrieval based Fault Localization (IRFL)
Vector Space Model (VSM)
Tf-Idf
Cleansing Bug Reports and Source Code
VSM and Similarity
3. Spectrum-based Fault Localization (SBFL)
Genetic Algorithm for SBFL
Theoretical Analysis
Method-level Aggregation
Hybrid SBFL

4. Mutation-based Fault Localization (MBFL)

AAAT705 @ Korea University Lecture 10 — Fault Localization April 8, 2024

Next Lecture

® Testing Oracles

AAAT705 @ Korea University

’VNPLRG

Jihyeok Park
jihyeok _park@korea.ac.kr
https://plrg.korea.ac.kr

Lecture 10 — Fault Localization April 8, 2024

https://plrg.korea.ac.kr

	Delta Debugging (DD)
	Recursive Delta Debugging – [language=Scala, basicstyle=]!ddmin!
	Hierarchical Delta Debugging
	Probabilistic Delta Debugging (ProbDD)
	Delta Debugging for Program Debloating

	Information Retrieval based Fault Localization (IRFL)
	Vector Space Model (VSM)
	Tf-Idf
	Cleansing Bug Reports and Source Code
	VSM and Similarity

	Spectrum-based Fault Localization (SBFL)
	Genetic Algorithm for SBFL
	Theoretical Analysis
	Method-level Aggregation
	Hybrid SBFL

	Mutation-based Fault Localization (MBFL)

