
Lecture 10 – Fault Localization
AAA705: Software Testing and Quality Assurance

Jihyeok Park

2024 Spring

AAA705 @ Korea University Lecture 10 – Fault Localization April 8, 2024 1 / 62

Recall
• Regression Testing

• Regression Fault

• Test Suite Minimization

• Test Case Selection

• Test Case Prioritization

• Regression Testing in Practice

AAA705 @ Korea University Lecture 10 – Fault Localization April 8, 2024 2 / 62

Fault Localization

• We found a bug by running a test
suite!

• Before fixing the bug, we need to
know where it is.

• Fault Localization is the process of
identifying the location of a fault in
the code.

AAA705 @ Korea University Lecture 10 – Fault Localization April 8, 2024 3 / 62

Fault Localization

There are several basic manual approaches to fault localization:

• Logging – Inserting print statements to trace the program execution.

• Assertions – Inserting assertions to check the program state.

• Breakpoints – Using a debugger to pause the program execution and
inspect the state.

• Profiling – Profiling the execution speed and memory usage of the
program typically to find performance and memory usage bugs.

AAA705 @ Korea University Lecture 10 – Fault Localization April 8, 2024 4 / 62

Contents
1. Delta Debugging (DD)

Recursive Delta Debugging – ddmin
Hierarchical Delta Debugging
Probabilistic Delta Debugging (ProbDD)
Delta Debugging for Program Debloating

2. Information Retrieval based Fault Localization (IRFL)
Vector Space Model (VSM)
Tf-Idf
Cleansing Bug Reports and Source Code
VSM and Similarity

3. Spectrum-based Fault Localization (SBFL)
Genetic Algorithm for SBFL
Theoretical Analysis
Method-level Aggregation
Hybrid SBFL

4. Mutation-based Fault Localization (MBFL)
AAA705 @ Korea University Lecture 10 – Fault Localization April 8, 2024 5 / 62

Contents
1. Delta Debugging (DD)

Recursive Delta Debugging – ddmin
Hierarchical Delta Debugging
Probabilistic Delta Debugging (ProbDD)
Delta Debugging for Program Debloating

2. Information Retrieval based Fault Localization (IRFL)
Vector Space Model (VSM)
Tf-Idf
Cleansing Bug Reports and Source Code
VSM and Similarity

3. Spectrum-based Fault Localization (SBFL)
Genetic Algorithm for SBFL
Theoretical Analysis
Method-level Aggregation
Hybrid SBFL

4. Mutation-based Fault Localization (MBFL)
AAA705 @ Korea University Lecture 10 – Fault Localization April 8, 2024 6 / 62

Motivation
Following HTML code caused Firefox to crash. What is the actual cause?
<td align=left valign=top>
<SELECT NAME="op sys" MULTIPLE SIZE=7>
<OPTION VALUE="All">All <OPTION VALUE="Windows 3.1">Windows 3.1
<OPTION VALUE="Windows 95">Windows 95 <OPTION VALUE="Windows 98">Windows 98
<OPTION VALUE="Windows ME">Windows ME <OPTION VALUE="Windows 2000">Windows 2000
<OPTION VALUE="Windows NT">Windows NT <OPTION VALUE="Mac System 7">Mac System 7
<OPTION VALUE="Mac System 7.5">Mac System 7.5 <OPTION VALUE="Mac System 7.6.1">Mac System 7.6.1
<OPTION VALUE="Mac System 8.0">Mac System 8.0 <OPTION VALUE="Mac System 8.5">Mac System 8.5
<OPTION VALUE="Mac System 8.6">Mac System 8.6 <OPTION VALUE="Mac System 9.x">Mac System 9.x
<OPTION VALUE="MacOS X">MacOS X <OPTION VALUE="Linux">Linux
<OPTION VALUE="BSDI">BSDI <OPTION VALUE="FreeBSD">FreeBSD
<OPTION VALUE="NetBSD">NetBSD <OPTION VALUE="OpenBSD">OpenBSD
<OPTION VALUE="AIX">AIX <OPTION VALUE="BeOS">BeOS
<OPTION VALUE="HP-UX">HP-UX <OPTION VALUE="IRIX">IRIX
<OPTION VALUE="Neutrino">Neutrino <OPTION VALUE="OpenVMS">OpenVMS
<OPTION VALUE="OS/2">OS/2 <OPTION VALUE="OSF/1">OSF/1
<OPTION VALUE="Solaris">Solaris <OPTION VALUE="SunOS">SunOS
<OPTION VALUE="other">other</SELECT></td> <td align=left valign=top>
<SELECT NAME="priority" MULTIPLE SIZE=7>
<OPTION VALUE="--">-- <OPTION VALUE="P1">P1
<OPTION VALUE="P2">P2 <OPTION VALUE="P3">P3
<OPTION VALUE="P4">P4 <OPTION VALUE="P5">P5</SELECT> </td> <td align=left valign=top>
<SELECT NAME="bug severity" MULTIPLE SIZE=7> <OPTION VALUE="blocker">blocker
<OPTION VALUE="critical">critical <OPTION VALUE="major">major <OPTION VALUE="normal">normal
<OPTION VALUE="minor">minor <OPTION VALUE="trivial">trivial
<OPTION VALUE="enhancement">enhancement </ SELECT>
</tr> </table>

AAA705 @ Korea University Lecture 10 – Fault Localization April 8, 2024 7 / 62

Delta Debugging (DD)

• Not all parts of the test case are necessary to cause the failure.

• The core idea of delta debugging (DD) is to simplify the test case
that causes the failure to keep only the necessary parts by
removing unnecessary parts.

• The simplified test case has the following benefits:

• Ease of communication – A simplified test case is easier to
communicate.

• Easier debugging – A smaller test case result in smaller states and
shorter executions.

• Identify duplicates – Simplified test cases subsume several duplicates.

AAA705 @ Korea University Lecture 10 – Fault Localization April 8, 2024 8 / 62

Delta Debugging
Basic approach of delta debugging is just binary search:

✗

✓

✗

✗

✓

✗

✗

AAA705 @ Korea University Lecture 10 – Fault Localization April 8, 2024 9 / 62

Delta Debugging
However, what if the failure is caused by a combination of multiple parts?

✗

✓

✓

AAA705 @ Korea University Lecture 10 – Fault Localization April 8, 2024 10 / 62

Recursive Delta Debugging – ddmin
Recursively split the test into smaller parts and perform DD on each part.
Algorithm Recursive Delta Debugging – ddmin
Input: A test case t that causes a failure
Output: A minimal test case that still causes the failure t ′

1: function ddmin(t)
2: L← the list of elements in t
3: n← 2
4: while n ≥ |L| do
5: ⟨c1, . . . , cn⟩ ← split L into n chunks
6: if ∃i ∈ [1, n]. test(L \ ci) = ✗ then
7: ⟨L, n⟩ ← ⟨L \ ci , n − 1⟩
8: else if Possible to split ci into two chunks c ′

i and c ′′
i then

9: ⟨L, n⟩ ← ⟨⟨c ′
1, c ′′

1 , . . . , c ′
n, c ′′

n ⟩, 2n⟩
10: else
11: break
12: return a test case t ′ that corresponds to L

A. Zeller and R. Hildebrandt. Simplifying and isolating failure-inducing input.
IEEE Transactions on Software Engineering, 28(2):183–200, Feb. 2002

AAA705 @ Korea University Lecture 10 – Fault Localization April 8, 2024 11 / 62

Recursive Delta Debugging – ddmin

✗
✓
✓
✗
✓
✓
✗
✓
✗
✗

...
✗

AAA705 @ Korea University Lecture 10 – Fault Localization April 8, 2024 12 / 62

Hierarchical Delta Debugging (HDD)
• What if the test case is highly structured?

• For example, if our target software is a JavaScript interpreter, test
cases are JavaScript programs following the JavaScript grammar.

• If we delete a part of the program regardless of the grammar, the
resulting program most likely will be an invalid program.

• Hierarchical Delta Debugging (HDD) is a variant of DD that
takes the structure of the test case into account. It recursively goes
into deeper nested structures instead of just splitting the test case
into chunks.

• G. Misherghi and Z. Su. HDD: Hierarchical delta debugging. In
Proceedings of the 28th International Conference on Software
Engineering, ICSE ’06, pages 142–151, New York, NY, USA, 2006.
ACM.

AAA705 @ Korea University Lecture 10 – Fault Localization April 8, 2024 13 / 62

Hierarchical Delta Debugging (HDD)
First, we can consider the function-level structure of the test case.

int copy(double to[], double from[], int count)
{

int n= (count+7)/8;
switch (count%8) do {

case 0: *to++ = *from++;
case 7: *to++ = *from++;
case 6: *to++ = *from++;
case 5: *to++ = *from++;
case 4: *to++ = *from++;
case 3: *to++ = *from++;
case 2: *to++ = *from++;
case 1: *to++ = *from++;

} while (--n > 0);
return (int)mult(to,2);

}

double mult(double z[], int n)
{

int i;
int j;
for (j= 0; j< n; j++) {

i= i+j+1;
z[i]=z[i]*(z[0]+0);

}
return z[n];

}
int main(int argc, char *argv[])
{

double x[20], y[20];
double *px= x;
while (px < x + 20)

px++ = (px-x)(20+1.0);
return copy(y,x,20);

}

AAA705 @ Korea University Lecture 10 – Fault Localization April 8, 2024 14 / 62

Hierarchical Delta Debugging (HDD)
Then, let’s consider the statement-level structure of the test case.

double mult(double z[], int n)
{

int i;
int j;
for (j= 0; j< n; j++) {

i= i+j+1;
z[i]=z[i]*(z[0]+0);

}
return z[n];

}

AAA705 @ Korea University Lecture 10 – Fault Localization April 8, 2024 15 / 62

Hierarchical Delta Debugging (HDD)
Then, let’s consider the expression-level structure of the test case.

double mult(double z[], int n)
{

int i;
int j;
for (j= 0; j< n; j++) {

i= i+j+1;
z[i]=z[i]*(z[0]+0);

}
}

AAA705 @ Korea University Lecture 10 – Fault Localization April 8, 2024 16 / 62

Hierarchical Delta Debugging (HDD)
The final result of HDD is as follows:

double mult(double z[], int n)
{

int i;
int j;
for (;;) {

i= i+j+1;
z[i]=z[i]*(z[0]+0);

}
}

AAA705 @ Korea University Lecture 10 – Fault Localization April 8, 2024 17 / 62

Probabilistic Delta Debugging (ProbDD)

• The fixed way to split the test case may be not the best way to find
the minimal test case.

• Then, let’s consider a probabilistic way to split the test case.

• Probabilistic Delta Debugging (ProbDD) is a variant of DD that
randomly selects the sequential parts to select the next part and
updates the probabilistic model based on the previous results.

• G. Wang, R. Shen, J. Chen, Y Xiong, and L Zhang. Probabilistic delta
debugging. In Proceedings of the 2021 Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering, ESEC/FSE 2021.

AAA705 @ Korea University Lecture 10 – Fault Localization April 8, 2024 18 / 62

Probabilistic Delta Debugging (ProbDD)

Probabilistic Delta Debugging ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

3.3 Select a Subsequence for Testing
We first define the gain of a test and then discuss how to maximize
the expected gain.

3.3.1 The Gain of a Test. As we can see from the previous section,
when 𝑋 passes the test, the probabilities of the elements excluded
from 𝑋 would be set to zero, i.e., these elements should not be
selected again for testing. As a result, each passed test excludes
some elements from the final result. To measure how many elements
a test can exclude, we define the gain of a test on subsequence 𝑋
as the number of elements excluded if the test passes, and zero
otherwise.

𝑔𝑎𝑖𝑛(𝑋 ,𝑋𝑇) =
{ |𝑒𝑥 (𝑋 ,𝑋𝑇) | 𝜙 (𝑋) = 𝑇

0 𝜙 (𝑋) = 𝐹

Here𝑋𝑇 denotes the last subsequence passing the test function, and
𝑒𝑥 (𝑋 ,𝑋𝑇) denotes the set of elements newly excluded when the test
of 𝑋 passes, i.e., 𝑒𝑥 (𝑋 ,𝑋𝑇)𝑖 = 1 iff 𝑥𝑖 = 0 and 𝑝𝑖 > 0. To simplify
presentation, we would omit the parameter 𝑋𝑇 if no confusion
would be caused, i.e., we would write 𝑔𝑎𝑖𝑛(𝑋) for 𝑔𝑎𝑖𝑛(𝑋 ,𝑋𝑇) and
𝑒𝑥 (𝑋) for 𝑒𝑥 (𝑋 ,𝑋𝑇).

Based on the probabilistic model ⟨𝑝1, 𝑝2, . . . , 𝑝𝑛⟩, we can calcu-
late the expected gain of a test.

E[𝑔𝑎𝑖𝑛(𝑋)] = |𝑒𝑥 (𝑋) | 𝑃𝑟 (𝜙 (𝑋) = 𝑇) = |𝑒𝑥 (𝑋) | Π𝑖 (1 − 𝑝𝑖)1−𝑥𝑖

Therefore, the goal of selecting a subsequence for a test is to
select a subsequence 𝑋 that maximizes E[𝑔𝑎𝑖𝑛(𝑋)].
3.3.2 Maximizing the Expected Gain. Please note that simply se-
lecting the subsequence that has the maximum probability to be
equal to 𝑋 ∗ does not necessarily lead to the maximum expected
gain because the probability for it to pass the test function may be
low.

To understand how to maximize the expected gain, let us first
consider a simple situation where all probabilities 𝑝𝑖 are equal.
In this case, any subsequence of the same size leads to the same
expected gain. Figure 2 shows the relation between E[𝑔𝑎𝑖𝑛(𝑋)]
and |𝑒𝑥 (𝑋) | when any 𝑝𝑖 is 0.1. As we can see from the figure,
when we remove more elements, the expected gain first increases
and then decreases, with the maximum at the inflection. This is
because E[𝑔𝑎𝑖𝑛(𝑋)] is the product of two components, |𝑒𝑥 (𝑋) |
and Π𝑖 (1 − 𝑝𝑖)1−𝑥𝑖 . The first one monotonously increases, but the
rate of increase gradually decreases. The second one monotonously
decreases, but the rate of decrease remains the same. Therefore,
there must be a point at which the rate of decrease surpasses the
rate of increase, which maximizes the expected gain.

Now let us consider the case where the probabilities are different.
The first component, |𝑒𝑥 (𝑋) |, is not affected by this change. The
second component, Π𝑖 (1 − 𝑝𝑖)1−𝑥𝑖 , may lead to different values
for different subsequences of the same length. To select the subse-
quence with the maximum value, we need to exclude the elements
whose probabilities of being in 𝑋 ∗ are the lowest.

Based on the above analysis, we use the following procedure to
find a subsequence that has the maximum expected gain. Remember
𝑋𝑇 is the last subsequence that passes the test function.

(1) Sort the elements in 𝑋𝑇 ascending by their probabilities 𝑝𝑖 .

0 5 10 15 20 25 30 35 40

|ex(X)|

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

E
[g
ai
n(
X
)]

Figure 2: The relation between E[𝑔𝑎𝑖𝑛(𝑋)] and |𝑒𝑥 (𝑋) |
(2) Exclude the elements one by one from𝑋𝑇 based on the above

order until the expected gain begins to decrease.
(3) Return the subsequence with the highest expected gain.
Let 𝑋 be the subsequence returned from the above procedure.

The following theorem shows that 𝑋 has the maximum expected
gain.

Theorem 3.5. E[𝑔𝑎𝑖𝑛(𝑋)] ≥ E[𝑔𝑎𝑖𝑛(𝑋)] for any 𝑋 ⊆ 𝑋𝑇 .

Proof. Use 𝑆 (𝑘) to denote the subsequence obtained after re-
moving 𝑘 elements in step (2). First, we prove ∀𝑋 ⊆ 𝑋𝑇 , the subse-
quence 𝑆 (|𝑒𝑥 (𝑋) |) which excludes the same number of elements as
𝑋 but selects elements in order of increasing probability cannot have
a worse expected gain. Second, we show the subsequence returned
by the algorithm has the highest expected gain among 𝑆 (𝑘) where
1 ≤ 𝑘 ≤ |𝑋𝑇 |. As a result 𝐸 [𝑔𝑎𝑖𝑛(𝑋)] ≥ 𝐸 [𝑔𝑎𝑖𝑛(𝑆 (|𝑒𝑥 (𝑋) |))] ≥
𝐸 [𝑔𝑎𝑖𝑛(𝑋)] . The details can be found in Appendix. !

s1 s2 s3 s4 s5 s6 s7 s8
0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500

1 s1 s2 s3 s4 s5 s6 s7 s8 F
0.3657 0.3657 0.3657 0.2500 0.2500 0.2500 0.2500 0.3657

2 s1 s2 s3 s4 s5 s6 s7 s8 T
0.3657 0.3657 0.3657 0 0 0 0 0.3657

3 s1 s2 s3 s4 s5 s6 s7 s8 F
0.6119 0.3657 0.3657 0 0 0 0 0.6119

4 s1 s2 s3 s4 s5 s6 s7 s8 F
0.6119 0.6119 0.6119 0 0 0 0 0.6119

5 s1 s2 s3 s4 s5 s6 s7 s8 T
0.6119 0 0.6119 0 0 0 0 0.6119

6 s1 s2 s3 s4 s5 s6 s7 s8 F
0.6119 0 1 0 0 0 0 0.6119

7 s1 s2 s3 s4 s5 s6 s7 s8 T
0 0 1 0 0 0 0 0.6119

8 s1 s2 s3 s4 s5 s6 s7 s8 F
0 0 1 0 0 0 0 1

Figure 3: Iterations of our algorithm

3.4 Revisiting the Motivating Example
Figure 3 shows a possible testing sequence of ProbDD for the mo-
tivating example. In Figure 3, each odd row represents each test,
and the selected elements are shown in cells with darker colors.
The last cell of each odd row shows the result of each test. Each
even row represents the probability of each element after a test.
The changes are shown in cells with darker colors.

885

AAA705 @ Korea University Lecture 10 – Fault Localization April 8, 2024 19 / 62

Delta Debugging for Program Debloating
• We can utilize DD technique to debloat a program.

• K. Heo, W. Lee, P. Pashakhanloo, and M. Naik. Effective Program
Debloating via Reinforcement Learning. In proceedings of the 2018
Conference on Computer and Communications Security, CCS 2018.

In this paper, we present a software debloating system named
C����� that satis�es the above criteria. As depicted in Figure 1,
C����� takes a program P to be minimized and a property test
function S that checks if a candidate program satis�es or violates
the property. The output is a minimized version P 0 of the program
that satis�es the property.

C����� provides a formal guarantee on the minimality of the gen-
erated program, called 1-minimality [45], which has been shown to
su�ce in the literature on program reduction [32, 36, 37]. The prop-
erty test function can be expensive to invoke; for instance, it may
involve compiling the candidate program and running it on a test
suite. The 1-minimality guarantee admits minimization algorithms
that in the worst case invoke the property test function a qua-
dratic number of times in the size of the input program. However,
even with this lesser guarantee than global minimality—which has
worst-case exponential behavior—it is challenging to scale to large
programs. C����� overcomes this problem by avoiding generating
a large number of syntactically or semantically invalid candidate
programs during its search.

C����� guarantees that the minimized program is correct with
respect to the given property and is therefore robust. It avoids
program transformations that could mangle the program or break
its naturalness [24]. Finally, it treats both the program and the
property as black-boxes, enabling it to be applicable to a wide
range of di�erent kinds of programs and speci�cations.

On the other hand, state-of-the-art program reduction tools such
as C�R����� [36] and P����� [37] do not satisfy all of the above
criteria. Like C�����, both of these tools take a program to be
minimized and an arbitrary property test function, and return a
minimized version of the program. While C�R����� satis�es the
same minimality and correctness criteria as C�����, however, it
sacri�ces e�ciency, naturalness, and generality. C�R����� is tightly
coupled with hand-crafted program transformation rules that are
tailored to C/C++. Since the rules are myopic, C�R����� generates
a signi�cant number of syntactically invalid candidates during its
search for a minimal version of the given program. Moreover, the
tool often generates unnatural code (see Section 5).

P����� also sacri�ces e�ciency and generality. Its reduction pro-
cess is syntax-guided, which enables it to overcome a limitation of
C�R����� by avoiding generating syntactically invalid programs
during its search. However, the tool still su�ers from limited scalabil-
ity by generating a large number of semantically invalid programs
during its search. The algorithm is unaware of semantic dependen-
cies between program elements (e.g., def-use relations of variables).
As a result, it often generates programs with semantic errors, such
as uninitialized variables. Also, the grammar-aware reduction can
be overly conservative in each reduction step and thereby less e�-
cient than C�R�����. Lastly, P����� is not applicable when even
correct parsing is not feasible (e.g., for binary programs).

Our main technical insight to overcome the above limitations
of existing program reduction techniques is to accelerate program
reduction via reinforcement learning [38]. From repeated trial and
error, C����� builds and re�nes a statistical model that determines
the likelihood of each candidate program’s passing the property test.
The model e�ectively captures semantic dependencies between pro-
gram elements and guides the search towards a desirable minimal
program. The learning method employed by C����� is agnostic

Program

Learner

Statistical
Model

Spec

Reduced

Checker w.r.t.
&

Trimmer

�Pi, Y/N�
<latexit sha1_base64="qeEadSyTmwh0DjfaSI/3MTRRFqc=">AAACAXicbVBNS8NAEN3Ur1q/ol4EL4tF8CAxEUGPBS+epIL9kCaUzXbSLm42YXcjlFAv/hUvHhTx6r/w5r9xm/agrQ8GHu/NMDMvTDlT2nW/rdLC4tLySnm1sra+sbllb+80VZJJCg2a8ES2Q6KAMwENzTSHdiqBxCGHVnh/OfZbDyAVS8StHqYQxKQvWMQo0Ubq2ns+J6LPAde77BjfnVxjXxZC1666jlsAzxNvSqpoinrX/vJ7Cc1iEJpyolTHc1Md5ERqRjmMKn6mICX0nvShY6ggMaggLz4Y4UOj9HCUSFNC40L9PZGTWKlhHJrOmOiBmvXG4n9eJ9PRRZAzkWYaBJ0sijKOdYLHceAek0A1HxpCqGTmVkwHRBKqTWgVE4I3+/I8aZ46nut4N2fVmjONo4z20QE6Qh46RzV0heqogSh6RM/oFb1ZT9aL9W59TFpL1nRmF/2B9fkDoYyVpQ==</latexit><latexit sha1_base64="qeEadSyTmwh0DjfaSI/3MTRRFqc=">AAACAXicbVBNS8NAEN3Ur1q/ol4EL4tF8CAxEUGPBS+epIL9kCaUzXbSLm42YXcjlFAv/hUvHhTx6r/w5r9xm/agrQ8GHu/NMDMvTDlT2nW/rdLC4tLySnm1sra+sbllb+80VZJJCg2a8ES2Q6KAMwENzTSHdiqBxCGHVnh/OfZbDyAVS8StHqYQxKQvWMQo0Ubq2ns+J6LPAde77BjfnVxjXxZC1666jlsAzxNvSqpoinrX/vJ7Cc1iEJpyolTHc1Md5ERqRjmMKn6mICX0nvShY6ggMaggLz4Y4UOj9HCUSFNC40L9PZGTWKlhHJrOmOiBmvXG4n9eJ9PRRZAzkWYaBJ0sijKOdYLHceAek0A1HxpCqGTmVkwHRBKqTWgVE4I3+/I8aZ46nut4N2fVmjONo4z20QE6Qh46RzV0heqogSh6RM/oFb1ZT9aL9W59TFpL1nRmF/2B9fkDoYyVpQ==</latexit><latexit sha1_base64="qeEadSyTmwh0DjfaSI/3MTRRFqc=">AAACAXicbVBNS8NAEN3Ur1q/ol4EL4tF8CAxEUGPBS+epIL9kCaUzXbSLm42YXcjlFAv/hUvHhTx6r/w5r9xm/agrQ8GHu/NMDMvTDlT2nW/rdLC4tLySnm1sra+sbllb+80VZJJCg2a8ES2Q6KAMwENzTSHdiqBxCGHVnh/OfZbDyAVS8StHqYQxKQvWMQo0Ubq2ns+J6LPAde77BjfnVxjXxZC1666jlsAzxNvSqpoinrX/vJ7Cc1iEJpyolTHc1Md5ERqRjmMKn6mICX0nvShY6ggMaggLz4Y4UOj9HCUSFNC40L9PZGTWKlhHJrOmOiBmvXG4n9eJ9PRRZAzkWYaBJ0sijKOdYLHceAek0A1HxpCqGTmVkwHRBKqTWgVE4I3+/I8aZ46nut4N2fVmjONo4z20QE6Qh46RzV0heqogSh6RM/oFb1ZT9aL9W59TFpL1nRmF/2B9fkDoYyVpQ==</latexit><latexit sha1_base64="qeEadSyTmwh0DjfaSI/3MTRRFqc=">AAACAXicbVBNS8NAEN3Ur1q/ol4EL4tF8CAxEUGPBS+epIL9kCaUzXbSLm42YXcjlFAv/hUvHhTx6r/w5r9xm/agrQ8GHu/NMDMvTDlT2nW/rdLC4tLySnm1sra+sbllb+80VZJJCg2a8ES2Q6KAMwENzTSHdiqBxCGHVnh/OfZbDyAVS8StHqYQxKQvWMQo0Ubq2ns+J6LPAde77BjfnVxjXxZC1666jlsAzxNvSqpoinrX/vJ7Cc1iEJpyolTHc1Md5ERqRjmMKn6mICX0nvShY6ggMaggLz4Y4UOj9HCUSFNC40L9PZGTWKlhHJrOmOiBmvXG4n9eJ9PRRZAzkWYaBJ0sijKOdYLHceAek0A1HxpCqGTmVkwHRBKqTWgVE4I3+/I8aZ46nut4N2fVmjONo4z20QE6Qh46RzV0heqogSh6RM/oFb1ZT9aL9W59TFpL1nRmF/2B9fkDoYyVpQ==</latexit>

P
<latexit sha1_base64="94NP9F/GewP/gckWWLLVYv/Fvdw=">AAAB6HicbVDLSsNAFL2pr1pfVZduBovgQkoigi4Lbly2YB/QBplMb9qxk0mYmQgl9AvcuFDErZ/kzr9x0mahrQcGDuecy9x7gkRwbVz32ymtrW9sbpW3Kzu7e/sH1cOjjo5TxbDNYhGrXkA1Ci6xbbgR2EsU0igQ2A0mt7nffUKleSzvzTRBP6IjyUPOqLFSq/lQrbl1dw6ySryC1KCAzX8NhjFLI5SGCap133MT42dUGc4EziqDVGNC2YSOsG+ppBFqP5svOiNnVhmSMFb2SUPm6u+JjEZaT6PAJiNqxnrZy8X/vH5qwhs/4zJJDUq2+ChMBTExya8mQ66QGTG1hDLF7a6EjamizNhuKrYEb/nkVdK5rHtu3Wtd1RoXRR1lOIFTOAcPrqEBd9CENjBAeIZXeHMenRfn3flYREtOMXMMf+B8/gCi+4y+</latexit><latexit sha1_base64="94NP9F/GewP/gckWWLLVYv/Fvdw=">AAAB6HicbVDLSsNAFL2pr1pfVZduBovgQkoigi4Lbly2YB/QBplMb9qxk0mYmQgl9AvcuFDErZ/kzr9x0mahrQcGDuecy9x7gkRwbVz32ymtrW9sbpW3Kzu7e/sH1cOjjo5TxbDNYhGrXkA1Ci6xbbgR2EsU0igQ2A0mt7nffUKleSzvzTRBP6IjyUPOqLFSq/lQrbl1dw6ySryC1KCAzX8NhjFLI5SGCap133MT42dUGc4EziqDVGNC2YSOsG+ppBFqP5svOiNnVhmSMFb2SUPm6u+JjEZaT6PAJiNqxnrZy8X/vH5qwhs/4zJJDUq2+ChMBTExya8mQ66QGTG1hDLF7a6EjamizNhuKrYEb/nkVdK5rHtu3Wtd1RoXRR1lOIFTOAcPrqEBd9CENjBAeIZXeHMenRfn3flYREtOMXMMf+B8/gCi+4y+</latexit><latexit sha1_base64="94NP9F/GewP/gckWWLLVYv/Fvdw=">AAAB6HicbVDLSsNAFL2pr1pfVZduBovgQkoigi4Lbly2YB/QBplMb9qxk0mYmQgl9AvcuFDErZ/kzr9x0mahrQcGDuecy9x7gkRwbVz32ymtrW9sbpW3Kzu7e/sH1cOjjo5TxbDNYhGrXkA1Ci6xbbgR2EsU0igQ2A0mt7nffUKleSzvzTRBP6IjyUPOqLFSq/lQrbl1dw6ySryC1KCAzX8NhjFLI5SGCap133MT42dUGc4EziqDVGNC2YSOsG+ppBFqP5svOiNnVhmSMFb2SUPm6u+JjEZaT6PAJiNqxnrZy8X/vH5qwhs/4zJJDUq2+ChMBTExya8mQ66QGTG1hDLF7a6EjamizNhuKrYEb/nkVdK5rHtu3Wtd1RoXRR1lOIFTOAcPrqEBd9CENjBAeIZXeHMenRfn3flYREtOMXMMf+B8/gCi+4y+</latexit><latexit sha1_base64="94NP9F/GewP/gckWWLLVYv/Fvdw=">AAAB6HicbVDLSsNAFL2pr1pfVZduBovgQkoigi4Lbly2YB/QBplMb9qxk0mYmQgl9AvcuFDErZ/kzr9x0mahrQcGDuecy9x7gkRwbVz32ymtrW9sbpW3Kzu7e/sH1cOjjo5TxbDNYhGrXkA1Ci6xbbgR2EsU0igQ2A0mt7nffUKleSzvzTRBP6IjyUPOqLFSq/lQrbl1dw6ySryC1KCAzX8NhjFLI5SGCap133MT42dUGc4EziqDVGNC2YSOsG+ppBFqP5svOiNnVhmSMFb2SUPm6u+JjEZaT6PAJiNqxnrZy8X/vH5qwhs/4zJJDUq2+ChMBTExya8mQ66QGTG1hDLF7a6EjamizNhuKrYEb/nkVdK5rHtu3Wtd1RoXRR1lOIFTOAcPrqEBd9CENjBAeIZXeHMenRfn3flYREtOMXMMf+B8/gCi+4y+</latexit>

S
<latexit sha1_base64="Y2tc5smNXk7yLozq2MUnoalRNb8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBg5REBD0WvHhs0X5AG8pmO2nXbjZhdyOU0F/gxYMiXv1J3vw3btsctPXBwOO9GWbmBYng2rjut1NYW9/Y3Cpul3Z29/YPyodHLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2Mb2d++wmV5rF8MJME/YgOJQ85o8ZKjft+ueJW3TnIKvFyUoEc9X75qzeIWRqhNExQrbuemxg/o8pwJnBa6qUaE8rGdIhdSyWNUPvZ/NApObPKgISxsiUNmau/JzIaaT2JAtsZUTPSy95M/M/rpia88TMuk9SgZItFYSqIicnsazLgCpkRE0soU9zeStiIKsqMzaZkQ/CWX14lrcuq51a9xlWldpHHUYQTOIVz8OAaanAHdWgCA4RneIU359F5cd6dj0VrwclnjuEPnM8fp4eMwQ==</latexit><latexit sha1_base64="Y2tc5smNXk7yLozq2MUnoalRNb8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBg5REBD0WvHhs0X5AG8pmO2nXbjZhdyOU0F/gxYMiXv1J3vw3btsctPXBwOO9GWbmBYng2rjut1NYW9/Y3Cpul3Z29/YPyodHLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2Mb2d++wmV5rF8MJME/YgOJQ85o8ZKjft+ueJW3TnIKvFyUoEc9X75qzeIWRqhNExQrbuemxg/o8pwJnBa6qUaE8rGdIhdSyWNUPvZ/NApObPKgISxsiUNmau/JzIaaT2JAtsZUTPSy95M/M/rpia88TMuk9SgZItFYSqIicnsazLgCpkRE0soU9zeStiIKsqMzaZkQ/CWX14lrcuq51a9xlWldpHHUYQTOIVz8OAaanAHdWgCA4RneIU359F5cd6dj0VrwclnjuEPnM8fp4eMwQ==</latexit><latexit sha1_base64="Y2tc5smNXk7yLozq2MUnoalRNb8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBg5REBD0WvHhs0X5AG8pmO2nXbjZhdyOU0F/gxYMiXv1J3vw3btsctPXBwOO9GWbmBYng2rjut1NYW9/Y3Cpul3Z29/YPyodHLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2Mb2d++wmV5rF8MJME/YgOJQ85o8ZKjft+ueJW3TnIKvFyUoEc9X75qzeIWRqhNExQrbuemxg/o8pwJnBa6qUaE8rGdIhdSyWNUPvZ/NApObPKgISxsiUNmau/JzIaaT2JAtsZUTPSy95M/M/rpia88TMuk9SgZItFYSqIicnsazLgCpkRE0soU9zeStiIKsqMzaZkQ/CWX14lrcuq51a9xlWldpHHUYQTOIVz8OAaanAHdWgCA4RneIU359F5cd6dj0VrwclnjuEPnM8fp4eMwQ==</latexit><latexit sha1_base64="Y2tc5smNXk7yLozq2MUnoalRNb8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBg5REBD0WvHhs0X5AG8pmO2nXbjZhdyOU0F/gxYMiXv1J3vw3btsctPXBwOO9GWbmBYng2rjut1NYW9/Y3Cpul3Z29/YPyodHLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2Mb2d++wmV5rF8MJME/YgOJQ85o8ZKjft+ueJW3TnIKvFyUoEc9X75qzeIWRqhNExQrbuemxg/o8pwJnBa6qUaE8rGdIhdSyWNUPvZ/NApObPKgISxsiUNmau/JzIaaT2JAtsZUTPSy95M/M/rpia88TMuk9SgZItFYSqIicnsazLgCpkRE0soU9zeStiIKsqMzaZkQ/CWX14lrcuq51a9xlWldpHHUYQTOIVz8OAaanAHdWgCA4RneIU359F5cd6dj0VrwclnjuEPnM8fp4eMwQ==</latexit>

P
<latexit sha1_base64="94NP9F/GewP/gckWWLLVYv/Fvdw=">AAAB6HicbVDLSsNAFL2pr1pfVZduBovgQkoigi4Lbly2YB/QBplMb9qxk0mYmQgl9AvcuFDErZ/kzr9x0mahrQcGDuecy9x7gkRwbVz32ymtrW9sbpW3Kzu7e/sH1cOjjo5TxbDNYhGrXkA1Ci6xbbgR2EsU0igQ2A0mt7nffUKleSzvzTRBP6IjyUPOqLFSq/lQrbl1dw6ySryC1KCAzX8NhjFLI5SGCap133MT42dUGc4EziqDVGNC2YSOsG+ppBFqP5svOiNnVhmSMFb2SUPm6u+JjEZaT6PAJiNqxnrZy8X/vH5qwhs/4zJJDUq2+ChMBTExya8mQ66QGTG1hDLF7a6EjamizNhuKrYEb/nkVdK5rHtu3Wtd1RoXRR1lOIFTOAcPrqEBd9CENjBAeIZXeHMenRfn3flYREtOMXMMf+B8/gCi+4y+</latexit><latexit sha1_base64="94NP9F/GewP/gckWWLLVYv/Fvdw=">AAAB6HicbVDLSsNAFL2pr1pfVZduBovgQkoigi4Lbly2YB/QBplMb9qxk0mYmQgl9AvcuFDErZ/kzr9x0mahrQcGDuecy9x7gkRwbVz32ymtrW9sbpW3Kzu7e/sH1cOjjo5TxbDNYhGrXkA1Ci6xbbgR2EsU0igQ2A0mt7nffUKleSzvzTRBP6IjyUPOqLFSq/lQrbl1dw6ySryC1KCAzX8NhjFLI5SGCap133MT42dUGc4EziqDVGNC2YSOsG+ppBFqP5svOiNnVhmSMFb2SUPm6u+JjEZaT6PAJiNqxnrZy8X/vH5qwhs/4zJJDUq2+ChMBTExya8mQ66QGTG1hDLF7a6EjamizNhuKrYEb/nkVdK5rHtu3Wtd1RoXRR1lOIFTOAcPrqEBd9CENjBAeIZXeHMenRfn3flYREtOMXMMf+B8/gCi+4y+</latexit><latexit sha1_base64="94NP9F/GewP/gckWWLLVYv/Fvdw=">AAAB6HicbVDLSsNAFL2pr1pfVZduBovgQkoigi4Lbly2YB/QBplMb9qxk0mYmQgl9AvcuFDErZ/kzr9x0mahrQcGDuecy9x7gkRwbVz32ymtrW9sbpW3Kzu7e/sH1cOjjo5TxbDNYhGrXkA1Ci6xbbgR2EsU0igQ2A0mt7nffUKleSzvzTRBP6IjyUPOqLFSq/lQrbl1dw6ySryC1KCAzX8NhjFLI5SGCap133MT42dUGc4EziqDVGNC2YSOsG+ppBFqP5svOiNnVhmSMFb2SUPm6u+JjEZaT6PAJiNqxnrZy8X/vH5qwhs/4zJJDUq2+ChMBTExya8mQ66QGTG1hDLF7a6EjamizNhuKrYEb/nkVdK5rHtu3Wtd1RoXRR1lOIFTOAcPrqEBd9CENjBAeIZXeHMenRfn3flYREtOMXMMf+B8/gCi+4y+</latexit><latexit sha1_base64="94NP9F/GewP/gckWWLLVYv/Fvdw=">AAAB6HicbVDLSsNAFL2pr1pfVZduBovgQkoigi4Lbly2YB/QBplMb9qxk0mYmQgl9AvcuFDErZ/kzr9x0mahrQcGDuecy9x7gkRwbVz32ymtrW9sbpW3Kzu7e/sH1cOjjo5TxbDNYhGrXkA1Ci6xbbgR2EsU0igQ2A0mt7nffUKleSzvzTRBP6IjyUPOqLFSq/lQrbl1dw6ySryC1KCAzX8NhjFLI5SGCap133MT42dUGc4EziqDVGNC2YSOsG+ppBFqP5svOiNnVhmSMFb2SUPm6u+JjEZaT6PAJiNqxnrZy8X/vH5qwhs/4zJJDUq2+ChMBTExya8mQ66QGTG1hDLF7a6EjamizNhuKrYEb/nkVdK5rHtu3Wtd1RoXRR1lOIFTOAcPrqEBd9CENjBAeIZXeHMenRfn3flYREtOMXMMf+B8/gCi+4y+</latexit>

S
<latexit sha1_base64="Y2tc5smNXk7yLozq2MUnoalRNb8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBg5REBD0WvHhs0X5AG8pmO2nXbjZhdyOU0F/gxYMiXv1J3vw3btsctPXBwOO9GWbmBYng2rjut1NYW9/Y3Cpul3Z29/YPyodHLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2Mb2d++wmV5rF8MJME/YgOJQ85o8ZKjft+ueJW3TnIKvFyUoEc9X75qzeIWRqhNExQrbuemxg/o8pwJnBa6qUaE8rGdIhdSyWNUPvZ/NApObPKgISxsiUNmau/JzIaaT2JAtsZUTPSy95M/M/rpia88TMuk9SgZItFYSqIicnsazLgCpkRE0soU9zeStiIKsqMzaZkQ/CWX14lrcuq51a9xlWldpHHUYQTOIVz8OAaanAHdWgCA4RneIU359F5cd6dj0VrwclnjuEPnM8fp4eMwQ==</latexit><latexit sha1_base64="Y2tc5smNXk7yLozq2MUnoalRNb8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBg5REBD0WvHhs0X5AG8pmO2nXbjZhdyOU0F/gxYMiXv1J3vw3btsctPXBwOO9GWbmBYng2rjut1NYW9/Y3Cpul3Z29/YPyodHLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2Mb2d++wmV5rF8MJME/YgOJQ85o8ZKjft+ueJW3TnIKvFyUoEc9X75qzeIWRqhNExQrbuemxg/o8pwJnBa6qUaE8rGdIhdSyWNUPvZ/NApObPKgISxsiUNmau/JzIaaT2JAtsZUTPSy95M/M/rpia88TMuk9SgZItFYSqIicnsazLgCpkRE0soU9zeStiIKsqMzaZkQ/CWX14lrcuq51a9xlWldpHHUYQTOIVz8OAaanAHdWgCA4RneIU359F5cd6dj0VrwclnjuEPnM8fp4eMwQ==</latexit><latexit sha1_base64="Y2tc5smNXk7yLozq2MUnoalRNb8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBg5REBD0WvHhs0X5AG8pmO2nXbjZhdyOU0F/gxYMiXv1J3vw3btsctPXBwOO9GWbmBYng2rjut1NYW9/Y3Cpul3Z29/YPyodHLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2Mb2d++wmV5rF8MJME/YgOJQ85o8ZKjft+ueJW3TnIKvFyUoEc9X75qzeIWRqhNExQrbuemxg/o8pwJnBa6qUaE8rGdIhdSyWNUPvZ/NApObPKgISxsiUNmau/JzIaaT2JAtsZUTPSy95M/M/rpia88TMuk9SgZItFYSqIicnsazLgCpkRE0soU9zeStiIKsqMzaZkQ/CWX14lrcuq51a9xlWldpHHUYQTOIVz8OAaanAHdWgCA4RneIU359F5cd6dj0VrwclnjuEPnM8fp4eMwQ==</latexit><latexit sha1_base64="Y2tc5smNXk7yLozq2MUnoalRNb8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBg5REBD0WvHhs0X5AG8pmO2nXbjZhdyOU0F/gxYMiXv1J3vw3btsctPXBwOO9GWbmBYng2rjut1NYW9/Y3Cpul3Z29/YPyodHLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2Mb2d++wmV5rF8MJME/YgOJQ85o8ZKjft+ueJW3TnIKvFyUoEc9X75qzeIWRqhNExQrbuemxg/o8pwJnBa6qUaE8rGdIhdSyWNUPvZ/NApObPKgISxsiUNmau/JzIaaT2JAtsZUTPSy95M/M/rpia88TMuk9SgZItFYSqIicnsazLgCpkRE0soU9zeStiIKsqMzaZkQ/CWX14lrcuq51a9xlWldpHHUYQTOIVz8OAaanAHdWgCA4RneIU359F5cd6dj0VrwclnjuEPnM8fp4eMwQ==</latexit>

�Pi, ?�
<latexit sha1_base64="13u2w1MHJnhKPanXOIa7hnFDhXA=">AAAB/3icbVBNS8NAEN3Ur1q/ooIXL4tF8CAhEUFvFrx4rGBroQlhs520SzebsLsRSu3Bv+LFgyJe/Rve/Ddu0xy09cHA2/dm2JkXZZwp7brfVmVpeWV1rbpe29jc2t6xd/faKs0lhRZNeSo7EVHAmYCWZppDJ5NAkojDfTS8nvr3DyAVS8WdHmUQJKQvWMwo0UYK7QOfE9HngJshO8VX2JfFM7TrruMWwIvEK0kdlWiG9pffS2megNCUE6W6npvpYEykZpTDpObnCjJCh6QPXUMFSUAF42L/CT42Sg/HqTQlNC7U3xNjkig1SiLTmRA9UPPeVPzP6+Y6vgzGTGS5BkFnH8U5xzrF0zBwj0mgmo8MIVQysyumAyIJ1SaymgnBmz95kbTPHM91vNvzesMp46iiQ3SETpCHLlAD3aAmaiGKHtEzekVv1pP1Yr1bH7PWilXO7KM/sD5/AGQGlPo=</latexit><latexit sha1_base64="13u2w1MHJnhKPanXOIa7hnFDhXA=">AAAB/3icbVBNS8NAEN3Ur1q/ooIXL4tF8CAhEUFvFrx4rGBroQlhs520SzebsLsRSu3Bv+LFgyJe/Rve/Ddu0xy09cHA2/dm2JkXZZwp7brfVmVpeWV1rbpe29jc2t6xd/faKs0lhRZNeSo7EVHAmYCWZppDJ5NAkojDfTS8nvr3DyAVS8WdHmUQJKQvWMwo0UYK7QOfE9HngJshO8VX2JfFM7TrruMWwIvEK0kdlWiG9pffS2megNCUE6W6npvpYEykZpTDpObnCjJCh6QPXUMFSUAF42L/CT42Sg/HqTQlNC7U3xNjkig1SiLTmRA9UPPeVPzP6+Y6vgzGTGS5BkFnH8U5xzrF0zBwj0mgmo8MIVQysyumAyIJ1SaymgnBmz95kbTPHM91vNvzesMp46iiQ3SETpCHLlAD3aAmaiGKHtEzekVv1pP1Yr1bH7PWilXO7KM/sD5/AGQGlPo=</latexit><latexit sha1_base64="13u2w1MHJnhKPanXOIa7hnFDhXA=">AAAB/3icbVBNS8NAEN3Ur1q/ooIXL4tF8CAhEUFvFrx4rGBroQlhs520SzebsLsRSu3Bv+LFgyJe/Rve/Ddu0xy09cHA2/dm2JkXZZwp7brfVmVpeWV1rbpe29jc2t6xd/faKs0lhRZNeSo7EVHAmYCWZppDJ5NAkojDfTS8nvr3DyAVS8WdHmUQJKQvWMwo0UYK7QOfE9HngJshO8VX2JfFM7TrruMWwIvEK0kdlWiG9pffS2megNCUE6W6npvpYEykZpTDpObnCjJCh6QPXUMFSUAF42L/CT42Sg/HqTQlNC7U3xNjkig1SiLTmRA9UPPeVPzP6+Y6vgzGTGS5BkFnH8U5xzrF0zBwj0mgmo8MIVQysyumAyIJ1SaymgnBmz95kbTPHM91vNvzesMp46iiQ3SETpCHLlAD3aAmaiGKHtEzekVv1pP1Yr1bH7PWilXO7KM/sD5/AGQGlPo=</latexit><latexit sha1_base64="13u2w1MHJnhKPanXOIa7hnFDhXA=">AAAB/3icbVBNS8NAEN3Ur1q/ooIXL4tF8CAhEUFvFrx4rGBroQlhs520SzebsLsRSu3Bv+LFgyJe/Rve/Ddu0xy09cHA2/dm2JkXZZwp7brfVmVpeWV1rbpe29jc2t6xd/faKs0lhRZNeSo7EVHAmYCWZppDJ5NAkojDfTS8nvr3DyAVS8WdHmUQJKQvWMwo0UYK7QOfE9HngJshO8VX2JfFM7TrruMWwIvEK0kdlWiG9pffS2megNCUE6W6npvpYEykZpTDpObnCjJCh6QPXUMFSUAF42L/CT42Sg/HqTQlNC7U3xNjkig1SiLTmRA9UPPeVPzP6+Y6vgzGTGS5BkFnH8U5xzrF0zBwj0mgmo8MIVQysyumAyIJ1SaymgnBmz95kbTPHM91vNvzesMp46iiQ3SETpCHLlAD3aAmaiGKHtEzekVv1pP1Yr1bH7PWilXO7KM/sD5/AGQGlPo=</latexit>

P �
<latexit sha1_base64="CjSsigLkDAxavLJv3DQI4Utgdm0=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbRU0hE0GPBi8cq9gPaUDbbSbt0swm7G6GE/gMvHhTx6j/y5r9x2+agrQ8GHu/NMDMvTAXXxvO+ndLa+sbmVnm7srO7t39QPTxq6SRTDJssEYnqhFSj4BKbhhuBnVQhjUOB7XB8O/PbT6g0T+SjmaQYxHQoecQZNVZ6aJz3qzXP9eYgq8QvSA0KNPrVr94gYVmM0jBBte76XmqCnCrDmcBppZdpTCkb0yF2LZU0Rh3k80un5MwqAxIlypY0ZK7+nshprPUkDm1nTM1IL3sz8T+vm5noJsi5TDODki0WRZkgJiGzt8mAK2RGTCyhTHF7K2EjqigzNpyKDcFffnmVtC5d33P9+6ta3S3iKMMJnMIF+HANdbiDBjSBQQTP8Apvzth5cd6dj0VrySlmjuEPnM8fA/SM8Q==</latexit><latexit sha1_base64="CjSsigLkDAxavLJv3DQI4Utgdm0=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbRU0hE0GPBi8cq9gPaUDbbSbt0swm7G6GE/gMvHhTx6j/y5r9x2+agrQ8GHu/NMDMvTAXXxvO+ndLa+sbmVnm7srO7t39QPTxq6SRTDJssEYnqhFSj4BKbhhuBnVQhjUOB7XB8O/PbT6g0T+SjmaQYxHQoecQZNVZ6aJz3qzXP9eYgq8QvSA0KNPrVr94gYVmM0jBBte76XmqCnCrDmcBppZdpTCkb0yF2LZU0Rh3k80un5MwqAxIlypY0ZK7+nshprPUkDm1nTM1IL3sz8T+vm5noJsi5TDODki0WRZkgJiGzt8mAK2RGTCyhTHF7K2EjqigzNpyKDcFffnmVtC5d33P9+6ta3S3iKMMJnMIF+HANdbiDBjSBQQTP8Apvzth5cd6dj0VrySlmjuEPnM8fA/SM8Q==</latexit><latexit sha1_base64="CjSsigLkDAxavLJv3DQI4Utgdm0=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbRU0hE0GPBi8cq9gPaUDbbSbt0swm7G6GE/gMvHhTx6j/y5r9x2+agrQ8GHu/NMDMvTAXXxvO+ndLa+sbmVnm7srO7t39QPTxq6SRTDJssEYnqhFSj4BKbhhuBnVQhjUOB7XB8O/PbT6g0T+SjmaQYxHQoecQZNVZ6aJz3qzXP9eYgq8QvSA0KNPrVr94gYVmM0jBBte76XmqCnCrDmcBppZdpTCkb0yF2LZU0Rh3k80un5MwqAxIlypY0ZK7+nshprPUkDm1nTM1IL3sz8T+vm5noJsi5TDODki0WRZkgJiGzt8mAK2RGTCyhTHF7K2EjqigzNpyKDcFffnmVtC5d33P9+6ta3S3iKMMJnMIF+HANdbiDBjSBQQTP8Apvzth5cd6dj0VrySlmjuEPnM8fA/SM8Q==</latexit><latexit sha1_base64="CjSsigLkDAxavLJv3DQI4Utgdm0=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbRU0hE0GPBi8cq9gPaUDbbSbt0swm7G6GE/gMvHhTx6j/y5r9x2+agrQ8GHu/NMDMvTAXXxvO+ndLa+sbmVnm7srO7t39QPTxq6SRTDJssEYnqhFSj4BKbhhuBnVQhjUOB7XB8O/PbT6g0T+SjmaQYxHQoecQZNVZ6aJz3qzXP9eYgq8QvSA0KNPrVr94gYVmM0jBBte76XmqCnCrDmcBppZdpTCkb0yF2LZU0Rh3k80un5MwqAxIlypY0ZK7+nshprPUkDm1nTM1IL3sz8T+vm5noJsi5TDODki0WRZkgJiGzt8mAK2RGTCyhTHF7K2EjqigzNpyKDcFffnmVtC5d33P9+6ta3S3iKMMJnMIF+HANdbiDBjSBQQTP8Apvzth5cd6dj0VrySlmjuEPnM8fA/SM8Q==</latexit>

Program

Figure 1: Overview of the C����� system.

of the targeted programming language and speci�cation since the
models are learned from simple vector representations of tried
candidate programs and their property test results.

We evaluate C����� on a suite of 10 widely used UNIX utility
programs each comprising 13-90 KLOC of C source code. C�����
e�ciently converges to the desired minimal programs and outper-
forms existing program reduction tools. Compared to C�R�����
and P�����, which time out on 6 programs and 2 programs respec-
tively in 12 hours, C����� achieves up to 7.1x and 3.7x speedup and
�nishes on all programs. It successfully trims out 6 known vulnera-
bilities (CVEs) in 10 programs and eliminates 66.2% of the available
gadgets on average. The robustness of the debloated programs is
further validated by running a state-of-the-art fuzzer AFL [1] for
three days. Furthermore, we also manually analyze the source code
of the generated program to con�rm that any removed functionality
is as intended, and that desirable software engineering practices
such as modularity and locality are preserved.

In summary, this paper makes the following contributions.
• We propose a practical system C����� to reduce the size and com-

plexity of software. It aims to remove unwanted functionalities
from existing programs to reduce their attack surfaces.

• We propose a general reinforcement learning framework for e�-
cient and scalable program reduction. Our algorithm is agnostic
of the targeted programming language and speci�cation.

• We evaluate C����� using a set of widely used UNIX utility pro-
grams. Our experiments demonstrate that it enables removing
existing known vulnerabilities and reducing attack surfaces with-
out introducing any new bugs.

2 MOTIVATING EXAMPLE
We illustrate how C����� enables programmers to customize and
debloat programs using the example of a UNIX utility called tar.
Suppose we want to obtain a simpli�ed version of tar to target
embedded platforms. There exists such a version of tar in a UNIX
utility package for embedded Linux called BusyBox [3]. The origi-
nal tar provides 97 command-line options, whereas its lightweight
counterpart in BusyBox only provides 8 options. We demonstrate
how to automatically obtain a program that has the same function-
ality as the BusyBox version by providing a simple and high-level

AAA705 @ Korea University Lecture 10 – Fault Localization April 8, 2024 20 / 62

Delta Debugging for Program Debloating
Let’s consider the following program:

int f1() { return 0; }

int f2() { return 1; }

int f3() { return 1; }

int f4() { return 1; }

int f5() { return 1; }

int f6() { return 1; }

int f7() { return 1; }

int main() { return f1(); }

AAA705 @ Korea University Lecture 10 – Fault Localization April 8, 2024 21 / 62

Delta Debugging for Program Debloating
Algorithm 1 Delta Debugging
Input: A program P
Input: A property test function O
Output: A minimal program P 0 such that O(P 0) = T

1: L A list representation of P
2: n 2
3: repeat
4: hu1, . . . , un i split L into n partitions
5: if 9i . O(ui) = T then
6: hL, n i hui , 2i
7: else if 9i . O(L \ ui) = T then
8: hL, n i hL \ ui , n � 1i
9: else

10: hL, n i hL, 2n i
11: end if
12: until n |L |
13: return P 0 corresponding to L

1 int f1 () { return 0; }
2 int f2 () { return 1; }
3 int f3 () { return 1; }
4 int f4 () { return 1; }
5 int f5 () { return 1; }
6 int f6 () { return 1; }
7 int f7 () { return 1; }
8 int main () { return f1(); }

Figure 5: Example program.

their complements satisfy the property, DD tries to split each parti-
tion into halves. If each partition cannot be split (line 12), it returns
the program P 0 corresponding to the list of remaining elements
L (line 13). Otherwise, it resumes the main loop by splitting each
remaining partition into halves (line 10). The worst-case complexity
of this algorithm is O(|P |2).

We next illustrate the DD algorithm on an example which we
use in the rest of the paper as the running example.

Example 3.1. Consider the following simple C code in Figure 5.
Suppose the desired property is a process termination with 0, and
we are reducing the program with the granularity of function def-
initions. Therefore, the bare minimum is the program that only
contains function f1 and main. Although the minimal solution can
be obtained through a simple static analysis, we depict how the
DD algorithm works presuming a general setting where such an
analysis may not be available.

Figure 6 depicts iterations of the algorithm. In the �rst two it-
erations, the algorithm tries two partitions (n = 2), each of which
comprises the �rst four and the last four lines, respectively. Since
both partitions fail to preserve the property, the algorithm increases
the granularity by setting n = 4, and tries the four partitions, all
of which fail (iterations 3–6). The algorithm then tries comple-
ments of the four partitions. In the 8th iteration, the algorithm
�nds a complement that preserves the property. By decrementing
n by 1, the algorithm maintains the current granularity and tries
n = 3 subsets of the current candidate. Since all of the three subsets

Figure 6: DD iterations.

(hf1, f2i, hf5, f6i, hf7, maini) were already tried, they are skipped.
Then it tries their complements, and another smaller program is
found in the 9th iteration. By decrementing n by 1 again, the al-
gorithm maintains the current granularity and tries n = 2 subsets
of the current candidate. Again, all of the two subsets (and their
complements) were already tried and failed. Now the algorithm
doubles the granularity (n 2 ⇥ 2) and tries four subsets (itera-
tions 10–13), all of which fail. Proceeding to their complements, in
the 15th iteration, another correct complement is found. Now it
tries n = 3 subsets and their complements of the program, and the
minimal solution is found in the last iteration.

3.3 Reinforcement Learning
Markov Decision Process. Markov decision process (MDP) is a

framework for sequential decision making problems [38]. An agent
is the learner and decision maker who interacts with the so called
environment. The agent gets a reward from the environment de-
pending on actions at each state. Formally, a MDP comprises the
following components:
• A set of states S whose initial state is denoted as s0 2 S.
• A set of actions A and functionA : S ! 2A specifying available

actions at each state.
• The transition model T : S ⇥ A ! Pr(S) where T (s 0 | s,a)

denotes the probability of transition to state s 0 from state s taking
action a.

• The reward function R : S ! Rwhere R(s) denotes the expected
reward at a state to s .

Solving MDP is to �nd a policy � : S ! A that speci�es a desirable
action that an agent takes in a given state. Usually, we are interested
in �nding an optimal policy �⇤ de�ned for each state s 2 S as
follows:

�⇤(s) = arg max
a2A(s)

’
s 0

T (s 0 | s,a)V ⇤(s 0)

where V ⇤(s) is the expected sum of rewards if the agent executes
an optimal policy starting in state s , which is recursively de�ned

AAA705 @ Korea University Lecture 10 – Fault Localization April 8, 2024 22 / 62

Delta Debugging for Program Debloating

(a) Iterations of our algorithm.

f4

1 0

main

f4

1 0

Y N
Y

Y N

N

main

f2

1 0

Y

Y N

N

main

f1

1 0

Y

Y N

N

(b) Decision trees learned after 1st, 2nd, 3rd, and 6th iterations, re-
spectively.

Figure 7: Running Example. After 6 iterations, the desirable
decision tree is learned. The minimal program is found in
10 iterations.

• Transition function: The transition functionT is de�ned as follows
(where s = hL,ni, hu1, · · · ,uni are n partitions of L, and a = s 0):

T (s 0 | s,a) =
8>>>><
>>>>:

1 (s 0 = hui , 2i,O(ui) = T)
1 (s 0 = hL \ ui ,n � 1i,O(L \ ui) = T)
1 (s 0 = hL, 2ni,öi . O(ui) = T _ O(L \ ui) = T)
0 (otherwise)

In other words, a state transition occurs only when either a next
candidate program exhibits the desired property (the �rst two
cases) or more granularity in dividing programs is necessary
since none of them are desirable (the third case).

• Reward function: The reward function R is de�ned as follows:

R(hL,ni) =
⇢

1 (L is 1-minimal)
0 (otherwise)

A reward is given at state hL,ni i� L is a 1-minimal program.
Checking 1-minimality of L requires the test function O to guar-
antee that any variant derived from L by removing a single ele-
ment does not pass the property test while L does.
Intuitively, the goal of the MDP described above is to �nd a

1-minimal solution with the smallest number of transitions. Un-
fortunately, solving the MDP (i.e., learning the optimal policy) is
impractical. It requires a large number of invocations to the transi-
tion function T and reward function R de�ned using O that incurs
nontrivial computation cost.

To address this issue, we learn a sub-optimal policy using the
model-based reinforcement learning method [38]. We simultane-
ously learn a probabilistic model M : P ! [0, 1] that returns a
probability of a given candidate program’s passing the property
test function and derive a policy from the model. We will denote
T̂ and R̂ as approximations of T and R, respectively, and they are
de�ned using M instead of O. The function T̂ is de�ned as follows
(where s = hL,ni, hu1, · · · ,uni are n partitions of L, and a = s 0):

T̂ (s 0 | s,a) =
8>>>><
>>>>:

M(ui) / Ks,a (s0 = hui , 2i)
M(L \ ui) / Ks,a (s0 = hL \ ui , n � 1i)� Œ
hL0,n0i2A(s)\s0

1 �M(L0)� / Ks,a (s0 = hL, 2n i, 2n |L |)
0 (s0 = hL, 2n i, 2n > |L |)

where Ks,a is a normalization factor to make T̂ a probability distri-
bution. In the �rst two cases, the transition probability is de�ned
as the probability of a target subset or its complement’s passing the
property test. The other two cases are for increasing granularity.
Recall that we increase the granularity only when none of the next
candidates pass the property test. We compute the probability of
such a case as the probability of all the next candidate programs
failing the property test under the model M. However, we may
be in a situation where the model misguides us to carelessly in-
crease the granularity until the algorithm terminates and return
a non-minimal program. To prevent such cases, the probability of
increasing the granularity is 0 if the current granularity is the �nest
one, which is described in the last case of the above de�nition. By
doing so, the algorithm will try all the subsets and complements
before it terminates, guaranteeing 1-minimality.

The function R̂ is de�ned as follows:

R̂(hL,ni) =
÷

1i |L |

⇣
1 �M(L \ ui)

⌘

where hu1, · · · ,u |L |i are |L| partitions of L. In other words, R̂(hL,ni)
is the probability of L’s being 1-minimal under the model M.

Putting it all together, given approximated functions T̂ and R̂,
our goal is to learn the following optimal policy:

�̂ (s) = arg max
a2A(s)

’
s 0

T̂ (s 0 | s,a)V̂ (s 0) (1)

where V̂ is the expected sum of rewards under the policy �̂ :

V̂ (s) = R̂(s) + �
’
s 0

T̂ (s 0 | s, �̂ (s))V̂ (s 0) (0 � < 1). (2)

V̂ can be computed via dynamic programming. Based on the policy,
an optimal action is chosen. State transitions and rewards caused
from the action will be used to re�ne the appoximations, which
will be used to also improve the policy again. In our evaluation,
we determined that � = 0 yields the best performance (i.e., the
computation of V̂ only evaluates the immediate rewards).

4.3 Statistical Models
We describe how to learn the aforementioned model. Our goal is to
use the model to predict a probability of O(P) for a given program
P . We learn the model from data collected during the program
debloating process.

(a) Iterations of our algorithm.

f4

1 0

main

f4

1 0

Y N
Y

Y N

N

main

f2

1 0

Y

Y N

N

main

f1

1 0

Y

Y N

N

(b) Decision trees learned after 1st, 2nd, 3rd, and 6th iterations, re-
spectively.

Figure 7: Running Example. After 6 iterations, the desirable
decision tree is learned. The minimal program is found in
10 iterations.

• Transition function: The transition functionT is de�ned as follows
(where s = hL,ni, hu1, · · · ,uni are n partitions of L, and a = s 0):

T (s 0 | s,a) =
8>>>><
>>>>:

1 (s 0 = hui , 2i,O(ui) = T)
1 (s 0 = hL \ ui ,n � 1i,O(L \ ui) = T)
1 (s 0 = hL, 2ni,öi . O(ui) = T _ O(L \ ui) = T)
0 (otherwise)

In other words, a state transition occurs only when either a next
candidate program exhibits the desired property (the �rst two
cases) or more granularity in dividing programs is necessary
since none of them are desirable (the third case).

• Reward function: The reward function R is de�ned as follows:

R(hL,ni) =
⇢

1 (L is 1-minimal)
0 (otherwise)

A reward is given at state hL,ni i� L is a 1-minimal program.
Checking 1-minimality of L requires the test function O to guar-
antee that any variant derived from L by removing a single ele-
ment does not pass the property test while L does.
Intuitively, the goal of the MDP described above is to �nd a

1-minimal solution with the smallest number of transitions. Un-
fortunately, solving the MDP (i.e., learning the optimal policy) is
impractical. It requires a large number of invocations to the transi-
tion function T and reward function R de�ned using O that incurs
nontrivial computation cost.

To address this issue, we learn a sub-optimal policy using the
model-based reinforcement learning method [38]. We simultane-
ously learn a probabilistic model M : P ! [0, 1] that returns a
probability of a given candidate program’s passing the property
test function and derive a policy from the model. We will denote
T̂ and R̂ as approximations of T and R, respectively, and they are
de�ned using M instead of O. The function T̂ is de�ned as follows
(where s = hL,ni, hu1, · · · ,uni are n partitions of L, and a = s 0):

T̂ (s 0 | s,a) =
8>>>><
>>>>:

M(ui) / Ks,a (s0 = hui , 2i)
M(L \ ui) / Ks,a (s0 = hL \ ui , n � 1i)� Œ
hL0,n0i2A(s)\s0

1 �M(L0)� / Ks,a (s0 = hL, 2n i, 2n |L |)
0 (s0 = hL, 2n i, 2n > |L |)

where Ks,a is a normalization factor to make T̂ a probability distri-
bution. In the �rst two cases, the transition probability is de�ned
as the probability of a target subset or its complement’s passing the
property test. The other two cases are for increasing granularity.
Recall that we increase the granularity only when none of the next
candidates pass the property test. We compute the probability of
such a case as the probability of all the next candidate programs
failing the property test under the model M. However, we may
be in a situation where the model misguides us to carelessly in-
crease the granularity until the algorithm terminates and return
a non-minimal program. To prevent such cases, the probability of
increasing the granularity is 0 if the current granularity is the �nest
one, which is described in the last case of the above de�nition. By
doing so, the algorithm will try all the subsets and complements
before it terminates, guaranteeing 1-minimality.

The function R̂ is de�ned as follows:

R̂(hL,ni) =
÷

1i |L |

⇣
1 �M(L \ ui)

⌘

where hu1, · · · ,u |L |i are |L| partitions of L. In other words, R̂(hL,ni)
is the probability of L’s being 1-minimal under the model M.

Putting it all together, given approximated functions T̂ and R̂,
our goal is to learn the following optimal policy:

�̂ (s) = arg max
a2A(s)

’
s 0

T̂ (s 0 | s,a)V̂ (s 0) (1)

where V̂ is the expected sum of rewards under the policy �̂ :

V̂ (s) = R̂(s) + �
’
s 0

T̂ (s 0 | s, �̂ (s))V̂ (s 0) (0 � < 1). (2)

V̂ can be computed via dynamic programming. Based on the policy,
an optimal action is chosen. State transitions and rewards caused
from the action will be used to re�ne the appoximations, which
will be used to also improve the policy again. In our evaluation,
we determined that � = 0 yields the best performance (i.e., the
computation of V̂ only evaluates the immediate rewards).

4.3 Statistical Models
We describe how to learn the aforementioned model. Our goal is to
use the model to predict a probability of O(P) for a given program
P . We learn the model from data collected during the program
debloating process.

Iteration 1

(a) Iterations of our algorithm.

f4

1 0

main

f4

1 0

Y N
Y

Y N

N

main

f2

1 0

Y

Y N

N

main

f1

1 0

Y

Y N

N

(b) Decision trees learned after 1st, 2nd, 3rd, and 6th iterations, re-
spectively.

Figure 7: Running Example. After 6 iterations, the desirable
decision tree is learned. The minimal program is found in
10 iterations.

• Transition function: The transition functionT is de�ned as follows
(where s = hL,ni, hu1, · · · ,uni are n partitions of L, and a = s 0):

T (s 0 | s,a) =
8>>>><
>>>>:

1 (s 0 = hui , 2i,O(ui) = T)
1 (s 0 = hL \ ui ,n � 1i,O(L \ ui) = T)
1 (s 0 = hL, 2ni,öi . O(ui) = T _ O(L \ ui) = T)
0 (otherwise)

In other words, a state transition occurs only when either a next
candidate program exhibits the desired property (the �rst two
cases) or more granularity in dividing programs is necessary
since none of them are desirable (the third case).

• Reward function: The reward function R is de�ned as follows:

R(hL,ni) =
⇢

1 (L is 1-minimal)
0 (otherwise)

A reward is given at state hL,ni i� L is a 1-minimal program.
Checking 1-minimality of L requires the test function O to guar-
antee that any variant derived from L by removing a single ele-
ment does not pass the property test while L does.
Intuitively, the goal of the MDP described above is to �nd a

1-minimal solution with the smallest number of transitions. Un-
fortunately, solving the MDP (i.e., learning the optimal policy) is
impractical. It requires a large number of invocations to the transi-
tion function T and reward function R de�ned using O that incurs
nontrivial computation cost.

To address this issue, we learn a sub-optimal policy using the
model-based reinforcement learning method [38]. We simultane-
ously learn a probabilistic model M : P ! [0, 1] that returns a
probability of a given candidate program’s passing the property
test function and derive a policy from the model. We will denote
T̂ and R̂ as approximations of T and R, respectively, and they are
de�ned using M instead of O. The function T̂ is de�ned as follows
(where s = hL,ni, hu1, · · · ,uni are n partitions of L, and a = s 0):

T̂ (s 0 | s,a) =
8>>>><
>>>>:

M(ui) / Ks,a (s0 = hui , 2i)
M(L \ ui) / Ks,a (s0 = hL \ ui , n � 1i)� Œ
hL0,n0i2A(s)\s0

1 �M(L0)� / Ks,a (s0 = hL, 2n i, 2n |L |)
0 (s0 = hL, 2n i, 2n > |L |)

where Ks,a is a normalization factor to make T̂ a probability distri-
bution. In the �rst two cases, the transition probability is de�ned
as the probability of a target subset or its complement’s passing the
property test. The other two cases are for increasing granularity.
Recall that we increase the granularity only when none of the next
candidates pass the property test. We compute the probability of
such a case as the probability of all the next candidate programs
failing the property test under the model M. However, we may
be in a situation where the model misguides us to carelessly in-
crease the granularity until the algorithm terminates and return
a non-minimal program. To prevent such cases, the probability of
increasing the granularity is 0 if the current granularity is the �nest
one, which is described in the last case of the above de�nition. By
doing so, the algorithm will try all the subsets and complements
before it terminates, guaranteeing 1-minimality.

The function R̂ is de�ned as follows:

R̂(hL,ni) =
÷

1i |L |

⇣
1 �M(L \ ui)

⌘

where hu1, · · · ,u |L |i are |L| partitions of L. In other words, R̂(hL,ni)
is the probability of L’s being 1-minimal under the model M.

Putting it all together, given approximated functions T̂ and R̂,
our goal is to learn the following optimal policy:

�̂ (s) = arg max
a2A(s)

’
s 0

T̂ (s 0 | s,a)V̂ (s 0) (1)

where V̂ is the expected sum of rewards under the policy �̂ :

V̂ (s) = R̂(s) + �
’
s 0

T̂ (s 0 | s, �̂ (s))V̂ (s 0) (0 � < 1). (2)

V̂ can be computed via dynamic programming. Based on the policy,
an optimal action is chosen. State transitions and rewards caused
from the action will be used to re�ne the appoximations, which
will be used to also improve the policy again. In our evaluation,
we determined that � = 0 yields the best performance (i.e., the
computation of V̂ only evaluates the immediate rewards).

4.3 Statistical Models
We describe how to learn the aforementioned model. Our goal is to
use the model to predict a probability of O(P) for a given program
P . We learn the model from data collected during the program
debloating process.

Iteration 2(a) Iterations of our algorithm.

f4

1 0

main

f4

1 0

Y N
Y

Y N

N

main

f2

1 0

Y

Y N

N

main

f1

1 0

Y

Y N

N

(b) Decision trees learned after 1st, 2nd, 3rd, and 6th iterations, re-
spectively.

Figure 7: Running Example. After 6 iterations, the desirable
decision tree is learned. The minimal program is found in
10 iterations.

• Transition function: The transition functionT is de�ned as follows
(where s = hL,ni, hu1, · · · ,uni are n partitions of L, and a = s 0):

T (s 0 | s,a) =
8>>>><
>>>>:

1 (s 0 = hui , 2i,O(ui) = T)
1 (s 0 = hL \ ui ,n � 1i,O(L \ ui) = T)
1 (s 0 = hL, 2ni,öi . O(ui) = T _ O(L \ ui) = T)
0 (otherwise)

In other words, a state transition occurs only when either a next
candidate program exhibits the desired property (the �rst two
cases) or more granularity in dividing programs is necessary
since none of them are desirable (the third case).

• Reward function: The reward function R is de�ned as follows:

R(hL,ni) =
⇢

1 (L is 1-minimal)
0 (otherwise)

A reward is given at state hL,ni i� L is a 1-minimal program.
Checking 1-minimality of L requires the test function O to guar-
antee that any variant derived from L by removing a single ele-
ment does not pass the property test while L does.
Intuitively, the goal of the MDP described above is to �nd a

1-minimal solution with the smallest number of transitions. Un-
fortunately, solving the MDP (i.e., learning the optimal policy) is
impractical. It requires a large number of invocations to the transi-
tion function T and reward function R de�ned using O that incurs
nontrivial computation cost.

To address this issue, we learn a sub-optimal policy using the
model-based reinforcement learning method [38]. We simultane-
ously learn a probabilistic model M : P ! [0, 1] that returns a
probability of a given candidate program’s passing the property
test function and derive a policy from the model. We will denote
T̂ and R̂ as approximations of T and R, respectively, and they are
de�ned using M instead of O. The function T̂ is de�ned as follows
(where s = hL,ni, hu1, · · · ,uni are n partitions of L, and a = s 0):

T̂ (s 0 | s,a) =
8>>>><
>>>>:

M(ui) / Ks,a (s0 = hui , 2i)
M(L \ ui) / Ks,a (s0 = hL \ ui , n � 1i)� Œ
hL0,n0i2A(s)\s0

1 �M(L0)� / Ks,a (s0 = hL, 2n i, 2n |L |)
0 (s0 = hL, 2n i, 2n > |L |)

where Ks,a is a normalization factor to make T̂ a probability distri-
bution. In the �rst two cases, the transition probability is de�ned
as the probability of a target subset or its complement’s passing the
property test. The other two cases are for increasing granularity.
Recall that we increase the granularity only when none of the next
candidates pass the property test. We compute the probability of
such a case as the probability of all the next candidate programs
failing the property test under the model M. However, we may
be in a situation where the model misguides us to carelessly in-
crease the granularity until the algorithm terminates and return
a non-minimal program. To prevent such cases, the probability of
increasing the granularity is 0 if the current granularity is the �nest
one, which is described in the last case of the above de�nition. By
doing so, the algorithm will try all the subsets and complements
before it terminates, guaranteeing 1-minimality.

The function R̂ is de�ned as follows:

R̂(hL,ni) =
÷

1i |L |

⇣
1 �M(L \ ui)

⌘

where hu1, · · · ,u |L |i are |L| partitions of L. In other words, R̂(hL,ni)
is the probability of L’s being 1-minimal under the model M.

Putting it all together, given approximated functions T̂ and R̂,
our goal is to learn the following optimal policy:

�̂ (s) = arg max
a2A(s)

’
s 0

T̂ (s 0 | s,a)V̂ (s 0) (1)

where V̂ is the expected sum of rewards under the policy �̂ :

V̂ (s) = R̂(s) + �
’
s 0

T̂ (s 0 | s, �̂ (s))V̂ (s 0) (0 � < 1). (2)

V̂ can be computed via dynamic programming. Based on the policy,
an optimal action is chosen. State transitions and rewards caused
from the action will be used to re�ne the appoximations, which
will be used to also improve the policy again. In our evaluation,
we determined that � = 0 yields the best performance (i.e., the
computation of V̂ only evaluates the immediate rewards).

4.3 Statistical Models
We describe how to learn the aforementioned model. Our goal is to
use the model to predict a probability of O(P) for a given program
P . We learn the model from data collected during the program
debloating process.

Iteration 3

(a) Iterations of our algorithm.

f4

1 0

main

f4

1 0

Y N
Y

Y N

N

main

f2

1 0

Y

Y N

N

main

f1

1 0

Y

Y N

N

(b) Decision trees learned after 1st, 2nd, 3rd, and 6th iterations, re-
spectively.

Figure 7: Running Example. After 6 iterations, the desirable
decision tree is learned. The minimal program is found in
10 iterations.

• Transition function: The transition functionT is de�ned as follows
(where s = hL,ni, hu1, · · · ,uni are n partitions of L, and a = s 0):

T (s 0 | s,a) =
8>>>><
>>>>:

1 (s 0 = hui , 2i,O(ui) = T)
1 (s 0 = hL \ ui ,n � 1i,O(L \ ui) = T)
1 (s 0 = hL, 2ni,öi . O(ui) = T _ O(L \ ui) = T)
0 (otherwise)

In other words, a state transition occurs only when either a next
candidate program exhibits the desired property (the �rst two
cases) or more granularity in dividing programs is necessary
since none of them are desirable (the third case).

• Reward function: The reward function R is de�ned as follows:

R(hL,ni) =
⇢

1 (L is 1-minimal)
0 (otherwise)

A reward is given at state hL,ni i� L is a 1-minimal program.
Checking 1-minimality of L requires the test function O to guar-
antee that any variant derived from L by removing a single ele-
ment does not pass the property test while L does.
Intuitively, the goal of the MDP described above is to �nd a

1-minimal solution with the smallest number of transitions. Un-
fortunately, solving the MDP (i.e., learning the optimal policy) is
impractical. It requires a large number of invocations to the transi-
tion function T and reward function R de�ned using O that incurs
nontrivial computation cost.

To address this issue, we learn a sub-optimal policy using the
model-based reinforcement learning method [38]. We simultane-
ously learn a probabilistic model M : P ! [0, 1] that returns a
probability of a given candidate program’s passing the property
test function and derive a policy from the model. We will denote
T̂ and R̂ as approximations of T and R, respectively, and they are
de�ned using M instead of O. The function T̂ is de�ned as follows
(where s = hL,ni, hu1, · · · ,uni are n partitions of L, and a = s 0):

T̂ (s 0 | s,a) =
8>>>><
>>>>:

M(ui) / Ks,a (s0 = hui , 2i)
M(L \ ui) / Ks,a (s0 = hL \ ui , n � 1i)� Œ
hL0,n0i2A(s)\s0

1 �M(L0)� / Ks,a (s0 = hL, 2n i, 2n |L |)
0 (s0 = hL, 2n i, 2n > |L |)

where Ks,a is a normalization factor to make T̂ a probability distri-
bution. In the �rst two cases, the transition probability is de�ned
as the probability of a target subset or its complement’s passing the
property test. The other two cases are for increasing granularity.
Recall that we increase the granularity only when none of the next
candidates pass the property test. We compute the probability of
such a case as the probability of all the next candidate programs
failing the property test under the model M. However, we may
be in a situation where the model misguides us to carelessly in-
crease the granularity until the algorithm terminates and return
a non-minimal program. To prevent such cases, the probability of
increasing the granularity is 0 if the current granularity is the �nest
one, which is described in the last case of the above de�nition. By
doing so, the algorithm will try all the subsets and complements
before it terminates, guaranteeing 1-minimality.

The function R̂ is de�ned as follows:

R̂(hL,ni) =
÷

1i |L |

⇣
1 �M(L \ ui)

⌘

where hu1, · · · ,u |L |i are |L| partitions of L. In other words, R̂(hL,ni)
is the probability of L’s being 1-minimal under the model M.

Putting it all together, given approximated functions T̂ and R̂,
our goal is to learn the following optimal policy:

�̂ (s) = arg max
a2A(s)

’
s 0

T̂ (s 0 | s,a)V̂ (s 0) (1)

where V̂ is the expected sum of rewards under the policy �̂ :

V̂ (s) = R̂(s) + �
’
s 0

T̂ (s 0 | s, �̂ (s))V̂ (s 0) (0 � < 1). (2)

V̂ can be computed via dynamic programming. Based on the policy,
an optimal action is chosen. State transitions and rewards caused
from the action will be used to re�ne the appoximations, which
will be used to also improve the policy again. In our evaluation,
we determined that � = 0 yields the best performance (i.e., the
computation of V̂ only evaluates the immediate rewards).

4.3 Statistical Models
We describe how to learn the aforementioned model. Our goal is to
use the model to predict a probability of O(P) for a given program
P . We learn the model from data collected during the program
debloating process.

Iteration 6

AAA705 @ Korea University Lecture 10 – Fault Localization April 8, 2024 23 / 62

Delta Debugging in Practice

• DD.py – a Python implementation of Delta Debugging

• Lithium – a Python implementation of a Hierarchical Delta
Debugging

• C-Reduce – a tool that reduces source files written in C/C++ using
the Delta algorithms

AAA705 @ Korea University Lecture 10 – Fault Localization April 8, 2024 24 / 62

Contents
1. Delta Debugging (DD)

Recursive Delta Debugging – ddmin
Hierarchical Delta Debugging
Probabilistic Delta Debugging (ProbDD)
Delta Debugging for Program Debloating

2. Information Retrieval based Fault Localization (IRFL)
Vector Space Model (VSM)
Tf-Idf
Cleansing Bug Reports and Source Code
VSM and Similarity

3. Spectrum-based Fault Localization (SBFL)
Genetic Algorithm for SBFL
Theoretical Analysis
Method-level Aggregation
Hybrid SBFL

4. Mutation-based Fault Localization (MBFL)
AAA705 @ Korea University Lecture 10 – Fault Localization April 8, 2024 25 / 62

Motivation
Can we utilize information in the bug report for fault localization?

For example, this is a real bug report for Firefox:

Let’s have a look at a real
bug report

https://bugzilla.mozilla.org/show_bug.cgi?id=1001903
https://bugzilla.mozilla.org/show_bug.cgi?id=1001903

AAA705 @ Korea University Lecture 10 – Fault Localization April 8, 2024 26 / 62

https://bugzilla.mozilla.org/show_bug.cgi?id=1001903

Motivation

• After creating a folder in the bookmark toolbar and a bookmark
inside the folder, mouse left-click successfully opens the folder but
touch-click fails to open it: it opens but immediately closes itself.

• While we do not know the internal structure of the Firefox source
code, we can guess which parts of the code are most likely to be
related to the fault.

AAA705 @ Korea University Lecture 10 – Fault Localization April 8, 2024 27 / 62

Information Retrieval (IR) based Fault Localization
• Information Retrieval (IR) techniques help a user to quickly obtain

resources relevant to an information need, from a large collection of
information resources.

• Fault localization can be thought of as finding a resource (a
program element) that is relevant to an information need (the
reported symptoms of the failure), from a large collection of
information resources (the entire system).
• The bug report becomes our query.
• The entire source code becomes our collection of documents.
• Fault localization is to find the source code that matches the bug

report the best.

AAA705 @ Korea University Lecture 10 – Fault Localization April 8, 2024 28 / 62

Vector Space Model (VSM)

• There are many ways to represent queries and documents in IR.

• Vector Space Model (VSM) is one of the most popular ways to
represent queries and documents as vectors in a high-dimensional
space.

• It allows us to calculate the similarity between the query and the
documents easily.

AAA705 @ Korea University Lecture 10 – Fault Localization April 8, 2024 29 / 62

Vector Space Model (VSM)
• First, define the vocabulary, a set of meaningful terms of the system.

• Given a vocabulary with N terms, we represent both the query and
the documents as vectors:

dj = (w1,j , w2,j , . . . , wN,j) for document j
q = (w1,q, w2,q, . . . , wN,q) for query

• The dimensionality of these vectors is equal to the number of terms
in the vocabulary.

• If the term w2 appears in the document dj and the query q, then
w2,j and w2,q are non-zero, otherwise, they are zero.

• There are many ways to set the non-zero values. Let’s study tf-idf.

AAA705 @ Korea University Lecture 10 – Fault Localization April 8, 2024 30 / 62

Tf-Idf
• Term-Frequency Inverse Document Frequency (Tf-Idf) is a

numerical statistic that reflects how important a term is to a
document in a collection or corpus.
• Term Frequency (tf), tf (t, d), is the number of times the term t

appears in the document d divided by the total number of terms in
the document d .

tf (t, d) = ft,d
|d |

where ft,d is the number of times t appears in d
• Inverse Document Frequency (idf), idf (t, D), is the logarithm of

the ratio of the total number of documents in the corpus D to the
number of documents containing the term t.

idf (t, D) = log
(|D|
|{d ∈ D | t ∈ d}|

)

AAA705 @ Korea University Lecture 10 – Fault Localization April 8, 2024 31 / 62

Tf-Idf

• Term-Frequency Inverse Document Frequency (Tf-Idf) is just a
product of the term frequency and the inverse document
frequency.

Tf-Idf(t, d , D) = tf (t, d)× idf (t, D)

• A higher Tf-Idf(t, d, D) value means that the term t occupies a
higher proportion in the document d and is less common in the
corpus D.

• A lower Tf-Idf(t, d, D) value means that the term t occupies a lower
proportion in the document d and is more common in the corpus
D.

AAA705 @ Korea University Lecture 10 – Fault Localization April 8, 2024 32 / 62

Cleansing Bug Reports

• We follow the standard text cleansing process used in many IR and
machine learning applications.

• Tokenization – Break down the bug report to a list of tokens.

• Remove punctuation – For example, “file’s” becomes “file”.

• Case normalization – For example, “File” becomes “file”.

• Stop word filtering – some words are extremely common in English
(e.g., “a”, “an”, “the”) and best to be removed. Such words are called
stop words.

• Stemming – For example, “running” becomes “run”.

• There are many widely used libraries that will perform these tasks.

AAA705 @ Korea University Lecture 10 – Fault Localization April 8, 2024 33 / 62

Cleansing Source Code

• Similarly, we need to do the cleansing process for the source code.

• In source code, reserved keywords can be considered as stop words.

• In addition, we need to apply additional normalization for identifiers:

• CamelCase normalization – For example, “getFileName” becomes
“get”, “file”, and “name”.

• SnakeCase normalization – For example, “get file name” becomes
“get”, “file”, and “name”.

AAA705 @ Korea University Lecture 10 – Fault Localization April 8, 2024 34 / 62

VSM and Similarity
• After cleansing, using a predefined vocabulary, we can calculate the

Tf-Idf values for each term t (word) and each document dj (source
code file) or the query q (bug report).

• Then, we can represent the bug report and the source code as
vectors in a high-dimensional space.

• The similarity between the bug report and the source code can be
calculated using the cosine similarity:

cos(dj , q) = dj · q
∥dj∥ × ∥q∥

=
∑N

i=1 wi ,j × wi ,q√∑N
i=1 w2

i ,j ×
√∑N

i=1 w2
i ,q

• Finally, we can select the source code file that has the highest cosine
similarity to the bug report as the fault location.

AAA705 @ Korea University Lecture 10 – Fault Localization April 8, 2024 35 / 62

Strengths and Weaknesses

• Strengths

• Simple and easy to implement.

• Intuitive and easy to understand.

• Weaknesses

• Requires a high-quality and detailed bug report.

• Suffers from the inherent limit to the accuracy because the
document to be matched (i.e., the unit of localization) needs to be of
certain size (otherwise lexical similarity becomes more random).

AAA705 @ Korea University Lecture 10 – Fault Localization April 8, 2024 36 / 62

Contents
1. Delta Debugging (DD)

Recursive Delta Debugging – ddmin
Hierarchical Delta Debugging
Probabilistic Delta Debugging (ProbDD)
Delta Debugging for Program Debloating

2. Information Retrieval based Fault Localization (IRFL)
Vector Space Model (VSM)
Tf-Idf
Cleansing Bug Reports and Source Code
VSM and Similarity

3. Spectrum-based Fault Localization (SBFL)
Genetic Algorithm for SBFL
Theoretical Analysis
Method-level Aggregation
Hybrid SBFL

4. Mutation-based Fault Localization (MBFL)
AAA705 @ Korea University Lecture 10 – Fault Localization April 8, 2024 37 / 62

Motivation

• Intuition – If a program has a faulty line, a test case that executes
the faulty line is more likely to fail than a test case that does not
execute the faulty line.

• It means that we want to utilize statistical information about the
program’s execution to localize the fault.

• We need to reflect this intuition to a computable form to automate
the fault localization process.

AAA705 @ Korea University Lecture 10 – Fault Localization April 8, 2024 38 / 62

Spectrum-based Fault Localization (SBFL)

Program Spectrum

Test Suite

<latexit sha1_base64="oqc571UY9sukKT8P3T5cuk9wFnE=">AAACMHicbVBNS8NAEN3Ur1q/oh49uFgEQSyJiHoUvXisYKtgS9hsJ7p0swm7E6GGHP013kT/i57Eqz/Bk9uPg7Y+2OHx3swO88JUCoOe9+6UpqZnZufK85WFxaXlFXd1rWmSTHNo8EQm+jpkBqRQ0ECBEq5TDSwOJVyF3bO+f3UP2ohEXWIvhXbMbpWIBGdopcDdhCCie7QVacZzCNKiX+guVYPqF4Fb9WreAHSS+CNSJSPUA/e71Ul4FoNCLpkxN76XYjtnGgWXUFRamYGU8S67hRtLFYvBtPPBIQXdtkqHRom2TyEdqL8nchYb04tD2xkzvDPjXl/81zMYM93TnbH9GB23c6HSDEHx4fookxQT2s+KdoQGjrJnCeNa2Asov2M2KbSJ/vkfRfehqNiw/PFoJklzv+Yf1g4vDqonp6PYymSDbJEd4pMjckLOSZ00CCeP5Im8kFfn2XlzPpzPYWvJGc2skz9wvn4AtYepLQ==</latexit>

ef � ep

ep + np + 1

Risk Evaluation Formula

Ranking

AAA705 @ Korea University Lecture 10 – Fault Localization April 8, 2024 39 / 62

Spectrum-based Fault Localization (SBFL)

• Program Spectrum – for each structural unit (e.g., statement,
branch, predicate), summarize the test result and coverage into a
tuple of the following four numbers:

• ep – # test cases that execute the unit e and pass.

• ef – # test cases that execute the unit e and fail.

• np – # test cases that do not execute the unit e and pass.

• nf – # test cases that do not execute the unit e and fail.

AAA705 @ Korea University Lecture 10 – Fault Localization April 8, 2024 40 / 62

Tarantula (2001)
The following is the initial formula for SBFL called Tarantula:

Tarantula(e) =

ef
ef +nfef

ef +nf
+ ep

ep+np

The following part represents the how many test cases are associated
with the unit e among the failing test cases:

ef
ef + nf

On the other hand, the following part represents the how many test cases
are associated with the unit e among the passing test cases:

ep
ep + np

AAA705 @ Korea University Lecture 10 – Fault Localization April 8, 2024 41 / 62

Tarantula (2001)
While it originally was meant as a visualization technique, it has been
widely used as a fault localization technique.

Tarantula (Jones & Harrold,
2001)

• Originally meant as a
visualization technique, later
the poster child of SBFL.

Figure 1: An screen snapshot of the Tarantula system in Shaded Summary mode.

lines executed in both passed and failed test cases. In each of these modes, the brightness for each line is set
to the percentage of test cases that execute the respective statement for that mode.

The final mode, Shaded Summary, is the most informative and complex mapping. It renders all executed
statements on a spectrum from red to green. The hue of a line is determined by the percentage of the
number of failed test cases executing statement s to the total number of failed test cases in the test suite
T and the percentage of the number passed test cases executing s to the number of passed test cases in T .
These percentages are used to gauge the point in the hue spectrum from red to green for which to color s.
The brightness is determined by the greater of the two percentages, assuming brightness is measured on a 0
to 100 scale. Specifically, the color of the line for a statement s that is executed by at least one test case is
determined by the following equations.

hue(s) = low hue (red) + %passed(s)
%passed(s)+%failed(s) ∗ hue range

bright(s) = max(% passed(s),% failed(s))

For example, for a test suite of 100 test cases, a statement s that is executed by 15 of 20 failed test cases
and 40 of 80 passed test cases, and a hue range of 0 (red) to 100 (green), the hue and brightness are 40 and
75, respectively.

The long, thin rectangular region located above and to the right of the code view area shows graphically
the results of the entire test suite. A small rectangle is drawn for each test case from left-to-right and is
color coded to its outcome—green for success and red for failure. This lets the viewer, at a glance, see the

AAA705 @ Korea University Lecture 10 – Fault Localization April 8, 2024 42 / 62

Diverse Risk Evaluation Formulae
While over 30 formulae have been proposed, none of them is universally
superior to others and no best formula for all types of faults.

Conference’17, July 2017, Washington, DC, USA

fault localisation: defect prediction can be interpreted as aiming
to localise faults a priori (i.e. before testing and actual detection),
whereas fault localisation simply does so post hoc.

We empirically evaluate FLUCCS using 210 real world faults from
Defects4J repository [19]. The method level localisation results
obtained by FLUCCS have been compared to those from existing
SBFL baselines, FLUCCS with different learning mechanism, as
well as FLUCCS without the additional source code metric features.
FLUCCS with Genetic Programming convincingly outperforms
all the other approaches, placing the faulty method at the top of
the ranking for 106 faults out of 210. The final result shows that
source code metrics that are relatively easy to collect may effectively
augment existing SBFL techniques for higher accuracy.

The technical contribution of this paper can be summarised as
follows:

• We present FLUCCS, a fault localisation technique that
learns to rank program elements using Genetic Program-
ming, existing SBFL techniques, and source code metrics1.

• We empirically evaluate FLUCCS using 210 real world
faults from Defects4J. FLUCCS ranks 50% of the stud-
ied faults at the top, and about 82% of the studied faults
within the top 5 of the ranking.

• We introduce a new way of computing method level SBFL
scores called method level aggregation. Empirical evalua-
tion of this technique applied to existing state-of-the-art
SBFL formulæ shows that formulæ with method level ag-
gregation can rank about 42% more faults at the top.

• We show that simple source code metrics can effectively
augment existing SBFL techniques for more accurate locali-
sation, prompting further study of the connection between
defect prediction and fault localisation.

The rest of the paper is organised as follows: Section 2 formu-
lates fault localisation as a learning to rank problem and introduces
the features FLUCCS uses. Section 3 describes the learning algo-
rithms that we use in the paper. Section 4 presents the set-up for
the empirical evaluation, the results of which are discussed in Sec-
tion 5. Section 6 discusses the potential threats to validity. Section 7
presents the related work and Section 8 concludes.

2 FEATURES USED BY FLUCCS
Figure 1 shows the overall architecture of FLUCCS. FLUCCS ex-
tracts two sets of features from a source code repository. The first is
a set of SBFL scores using different SBFL formulæ: this requires test
execution on source code instrumented for structural coverage. The
second is a set of code and change metrics: this requires lightweight
static analysis and version mining. In training phase, these features,
along with locations of known faults, are fed into learning algo-
rithms, which produce ranking models that rank the faulty method
as high as possible. In deployment phase, these learnt models take
the features from source code with unknown faults, and produce
rankings of methods according to their likelihood of being faulty.
In this section, we describe the features used by FLUCCS, as well
as how these features are extracted and processed.

1FLUCCS and the data used for the empirical evaluation are made available at http:
//Redacted.For.Double.Blind.Review

2.1 SBFL Scores
SBFL formulæ take program spectrum data as input and return
risk scores (also known as suspiciousness scores). For a structural
program element (such as a statement or a method), the spectrum
data consists of four variables that are aggregated from test cover-
age and pass/fail results: (ep , ef ,np ,nf): ep and ef represent the
number of passing and failing test cases that execute the given
structural element, respectively. Similarly, np and nf represent the
number of passing that failing test cases that do not execute the
given structural element. SBFL formulæ tend to assign higher risk
scores to elements wigh higher ef and np values, which suggest
executing those elements tend to result in failing test executions,
while not executing them tend to result in passing test executions.

Table 1: SBFL formulæ used by FLUCCS as features

Name Formula Name Formula

ER1a
⎧⎪⎨⎪⎩
−1 if nf >0
np otherwise

ER1b ef − ep
ep+np+1

ER5a ef − ef
ep+np+1 ER5b

ef
ef +nf +ep+np

ER5c
⎧⎪⎨⎪⎩

0 if ef <F
1 otherwise

GP2 2(ef +
√

ep+np)+
√ep

Ochiai ef
(ef +nf) (ef +ep) GP3

√
|e2

f −
√ep |

Jaccard ef
ef +nf +ep

GP13 ef (1+ 1
2ep+ef

)

AMPLE | ef
F −

ep
P | GP19 ef

√
|ep−ef +F−P |

Hamann ef +np−ep−nf
P+F Tarantula

ef
ef +nf

ef
ef +nf

+
ep

ep+np

Dice 2ef
ef +ep+nf

RusselRao ef
ep+ef +np+nf

M1 ef +np
nf +ep

SørensenDice 2ef
2ef +ep+nf

M2 ef
ef +np+2nf +2ep

Kulczynski1 ef
nf +ep

Hamming ef +np Kulczynski2 1
2 (

ef
ef +nf

+
ef

ef +ep
)

Goodman 2ef −nf −ep
2ef +nf +ep

SimpleMatching ef +np
ep+ef +np+nf

Euclid √
ef +np RogersTanimoto ef +np

ef +np+2nf +2ep

Wong1 ef Sokal 2ef +2np
2e f +2np+nf +ep

Wong2 ef −ep Anderberg ef
ef +2ep+2nf

Wong3 ef −h,h=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ep if ep≤2
2+0.1(ep−2) if 2<ep≤10
2.8+0.01(ep−10) if ep>10

Ochiai2 ef np√
(ef +ep) (nf +np) (ef +np) (ep+nf)

Zoltar ef

ef +ep+nf +
10000nf ep

ef

FLUCCS uses 33 SBFL formulæ to generate score metrics, which
are listed in Table 1 We include both the state-of-the-art human
generated SBFL formulæ and GP evolved SBFL formulæ. Of these,
25 formulæ have been used in combination with each other in
previous work [3, 40], while eleven formulæ have been proven to
be maximal [39].

Conference’17, July 2017, Washington, DC, USA

fault localisation: defect prediction can be interpreted as aiming
to localise faults a priori (i.e. before testing and actual detection),
whereas fault localisation simply does so post hoc.

We empirically evaluate FLUCCS using 210 real world faults from
Defects4J repository [19]. The method level localisation results
obtained by FLUCCS have been compared to those from existing
SBFL baselines, FLUCCS with different learning mechanism, as
well as FLUCCS without the additional source code metric features.
FLUCCS with Genetic Programming convincingly outperforms
all the other approaches, placing the faulty method at the top of
the ranking for 106 faults out of 210. The final result shows that
source code metrics that are relatively easy to collect may effectively
augment existing SBFL techniques for higher accuracy.

The technical contribution of this paper can be summarised as
follows:

• We present FLUCCS, a fault localisation technique that
learns to rank program elements using Genetic Program-
ming, existing SBFL techniques, and source code metrics1.

• We empirically evaluate FLUCCS using 210 real world
faults from Defects4J. FLUCCS ranks 50% of the stud-
ied faults at the top, and about 82% of the studied faults
within the top 5 of the ranking.

• We introduce a new way of computing method level SBFL
scores called method level aggregation. Empirical evalua-
tion of this technique applied to existing state-of-the-art
SBFL formulæ shows that formulæ with method level ag-
gregation can rank about 42% more faults at the top.

• We show that simple source code metrics can effectively
augment existing SBFL techniques for more accurate locali-
sation, prompting further study of the connection between
defect prediction and fault localisation.

The rest of the paper is organised as follows: Section 2 formu-
lates fault localisation as a learning to rank problem and introduces
the features FLUCCS uses. Section 3 describes the learning algo-
rithms that we use in the paper. Section 4 presents the set-up for
the empirical evaluation, the results of which are discussed in Sec-
tion 5. Section 6 discusses the potential threats to validity. Section 7
presents the related work and Section 8 concludes.

2 FEATURES USED BY FLUCCS
Figure 1 shows the overall architecture of FLUCCS. FLUCCS ex-
tracts two sets of features from a source code repository. The first is
a set of SBFL scores using different SBFL formulæ: this requires test
execution on source code instrumented for structural coverage. The
second is a set of code and change metrics: this requires lightweight
static analysis and version mining. In training phase, these features,
along with locations of known faults, are fed into learning algo-
rithms, which produce ranking models that rank the faulty method
as high as possible. In deployment phase, these learnt models take
the features from source code with unknown faults, and produce
rankings of methods according to their likelihood of being faulty.
In this section, we describe the features used by FLUCCS, as well
as how these features are extracted and processed.

1FLUCCS and the data used for the empirical evaluation are made available at http:
//Redacted.For.Double.Blind.Review

2.1 SBFL Scores
SBFL formulæ take program spectrum data as input and return
risk scores (also known as suspiciousness scores). For a structural
program element (such as a statement or a method), the spectrum
data consists of four variables that are aggregated from test cover-
age and pass/fail results: (ep , ef ,np ,nf): ep and ef represent the
number of passing and failing test cases that execute the given
structural element, respectively. Similarly, np and nf represent the
number of passing that failing test cases that do not execute the
given structural element. SBFL formulæ tend to assign higher risk
scores to elements wigh higher ef and np values, which suggest
executing those elements tend to result in failing test executions,
while not executing them tend to result in passing test executions.

Table 1: SBFL formulæ used by FLUCCS as features

Name Formula Name Formula

ER1a
⎧⎪⎨⎪⎩
−1 if nf >0
np otherwise

ER1b ef − ep
ep+np+1

ER5a ef − ef
ep+np+1 ER5b

ef
ef +nf +ep+np

ER5c
⎧⎪⎨⎪⎩

0 if ef <F
1 otherwise

GP2 2(ef +
√

ep+np)+
√ep

Ochiai ef
(ef +nf) (ef +ep) GP3

√
|e2

f −
√ep |

Jaccard ef
ef +nf +ep

GP13 ef (1+ 1
2ep+ef

)

AMPLE | ef
F −

ep
P | GP19 ef

√
|ep−ef +F−P |

Hamann ef +np−ep−nf
P+F Tarantula

ef
ef +nf

ef
ef +nf

+
ep

ep+np

Dice 2ef
ef +ep+nf

RusselRao ef
ep+ef +np+nf

M1 ef +np
nf +ep

SørensenDice 2ef
2ef +ep+nf

M2 ef
ef +np+2nf +2ep

Kulczynski1 ef
nf +ep

Hamming ef +np Kulczynski2 1
2 (

ef
ef +nf

+
ef

ef +ep
)

Goodman 2ef −nf −ep
2ef +nf +ep

SimpleMatching ef +np
ep+ef +np+nf

Euclid √
ef +np RogersTanimoto ef +np

ef +np+2nf +2ep

Wong1 ef Sokal 2ef +2np
2e f +2np+nf +ep

Wong2 ef −ep Anderberg ef
ef +2ep+2nf

Wong3 ef −h,h=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ep if ep≤2
2+0.1(ep−2) if 2<ep≤10
2.8+0.01(ep−10) if ep>10

Ochiai2 ef np√
(ef +ep) (nf +np) (ef +np) (ep+nf)

Zoltar ef

ef +ep+nf +
10000nf ep

ef

FLUCCS uses 33 SBFL formulæ to generate score metrics, which
are listed in Table 1 We include both the state-of-the-art human
generated SBFL formulæ and GP evolved SBFL formulæ. Of these,
25 formulæ have been used in combination with each other in
previous work [3, 40], while eleven formulæ have been proven to
be maximal [39].

Conference’17, July 2017, Washington, DC, USA

fault localisation: defect prediction can be interpreted as aiming
to localise faults a priori (i.e. before testing and actual detection),
whereas fault localisation simply does so post hoc.

We empirically evaluate FLUCCS using 210 real world faults from
Defects4J repository [19]. The method level localisation results
obtained by FLUCCS have been compared to those from existing
SBFL baselines, FLUCCS with different learning mechanism, as
well as FLUCCS without the additional source code metric features.
FLUCCS with Genetic Programming convincingly outperforms
all the other approaches, placing the faulty method at the top of
the ranking for 106 faults out of 210. The final result shows that
source code metrics that are relatively easy to collect may effectively
augment existing SBFL techniques for higher accuracy.

The technical contribution of this paper can be summarised as
follows:

• We present FLUCCS, a fault localisation technique that
learns to rank program elements using Genetic Program-
ming, existing SBFL techniques, and source code metrics1.

• We empirically evaluate FLUCCS using 210 real world
faults from Defects4J. FLUCCS ranks 50% of the stud-
ied faults at the top, and about 82% of the studied faults
within the top 5 of the ranking.

• We introduce a new way of computing method level SBFL
scores called method level aggregation. Empirical evalua-
tion of this technique applied to existing state-of-the-art
SBFL formulæ shows that formulæ with method level ag-
gregation can rank about 42% more faults at the top.

• We show that simple source code metrics can effectively
augment existing SBFL techniques for more accurate locali-
sation, prompting further study of the connection between
defect prediction and fault localisation.

The rest of the paper is organised as follows: Section 2 formu-
lates fault localisation as a learning to rank problem and introduces
the features FLUCCS uses. Section 3 describes the learning algo-
rithms that we use in the paper. Section 4 presents the set-up for
the empirical evaluation, the results of which are discussed in Sec-
tion 5. Section 6 discusses the potential threats to validity. Section 7
presents the related work and Section 8 concludes.

2 FEATURES USED BY FLUCCS
Figure 1 shows the overall architecture of FLUCCS. FLUCCS ex-
tracts two sets of features from a source code repository. The first is
a set of SBFL scores using different SBFL formulæ: this requires test
execution on source code instrumented for structural coverage. The
second is a set of code and change metrics: this requires lightweight
static analysis and version mining. In training phase, these features,
along with locations of known faults, are fed into learning algo-
rithms, which produce ranking models that rank the faulty method
as high as possible. In deployment phase, these learnt models take
the features from source code with unknown faults, and produce
rankings of methods according to their likelihood of being faulty.
In this section, we describe the features used by FLUCCS, as well
as how these features are extracted and processed.

1FLUCCS and the data used for the empirical evaluation are made available at http:
//Redacted.For.Double.Blind.Review

2.1 SBFL Scores
SBFL formulæ take program spectrum data as input and return
risk scores (also known as suspiciousness scores). For a structural
program element (such as a statement or a method), the spectrum
data consists of four variables that are aggregated from test cover-
age and pass/fail results: (ep , ef ,np ,nf): ep and ef represent the
number of passing and failing test cases that execute the given
structural element, respectively. Similarly, np and nf represent the
number of passing that failing test cases that do not execute the
given structural element. SBFL formulæ tend to assign higher risk
scores to elements wigh higher ef and np values, which suggest
executing those elements tend to result in failing test executions,
while not executing them tend to result in passing test executions.

Table 1: SBFL formulæ used by FLUCCS as features

Name Formula Name Formula

ER1a
⎧⎪⎨⎪⎩
−1 if nf >0
np otherwise

ER1b ef − ep
ep+np+1

ER5a ef − ef
ep+np+1 ER5b

ef
ef +nf +ep+np

ER5c
⎧⎪⎨⎪⎩

0 if ef <F
1 otherwise

GP2 2(ef +
√

ep+np)+
√ep

Ochiai ef
(ef +nf) (ef +ep) GP3

√
|e2

f −
√ep |

Jaccard ef
ef +nf +ep

GP13 ef (1+ 1
2ep+ef

)

AMPLE | ef
F −

ep
P | GP19 ef

√
|ep−ef +F−P |

Hamann ef +np−ep−nf
P+F Tarantula

ef
ef +nf

ef
ef +nf

+
ep

ep+np

Dice 2ef
ef +ep+nf

RusselRao ef
ep+ef +np+nf

M1 ef +np
nf +ep

SørensenDice 2ef
2ef +ep+nf

M2 ef
ef +np+2nf +2ep

Kulczynski1 ef
nf +ep

Hamming ef +np Kulczynski2 1
2 (

ef
ef +nf

+
ef

ef +ep
)

Goodman 2ef −nf −ep
2ef +nf +ep

SimpleMatching ef +np
ep+ef +np+nf

Euclid √
ef +np RogersTanimoto ef +np

ef +np+2nf +2ep

Wong1 ef Sokal 2ef +2np
2e f +2np+nf +ep

Wong2 ef −ep Anderberg ef
ef +2ep+2nf

Wong3 ef −h,h=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ep if ep≤2
2+0.1(ep−2) if 2<ep≤10
2.8+0.01(ep−10) if ep>10

Ochiai2 ef np√
(ef +ep) (nf +np) (ef +np) (ep+nf)

Zoltar ef

ef +ep+nf +
10000nf ep

ef

FLUCCS uses 33 SBFL formulæ to generate score metrics, which
are listed in Table 1 We include both the state-of-the-art human
generated SBFL formulæ and GP evolved SBFL formulæ. Of these,
25 formulæ have been used in combination with each other in
previous work [3, 40], while eleven formulæ have been proven to
be maximal [39].

Conference’17, July 2017, Washington, DC, USA

fault localisation: defect prediction can be interpreted as aiming
to localise faults a priori (i.e. before testing and actual detection),
whereas fault localisation simply does so post hoc.

We empirically evaluate FLUCCS using 210 real world faults from
Defects4J repository [19]. The method level localisation results
obtained by FLUCCS have been compared to those from existing
SBFL baselines, FLUCCS with different learning mechanism, as
well as FLUCCS without the additional source code metric features.
FLUCCS with Genetic Programming convincingly outperforms
all the other approaches, placing the faulty method at the top of
the ranking for 106 faults out of 210. The final result shows that
source code metrics that are relatively easy to collect may effectively
augment existing SBFL techniques for higher accuracy.

The technical contribution of this paper can be summarised as
follows:

• We present FLUCCS, a fault localisation technique that
learns to rank program elements using Genetic Program-
ming, existing SBFL techniques, and source code metrics1.

• We empirically evaluate FLUCCS using 210 real world
faults from Defects4J. FLUCCS ranks 50% of the stud-
ied faults at the top, and about 82% of the studied faults
within the top 5 of the ranking.

• We introduce a new way of computing method level SBFL
scores called method level aggregation. Empirical evalua-
tion of this technique applied to existing state-of-the-art
SBFL formulæ shows that formulæ with method level ag-
gregation can rank about 42% more faults at the top.

• We show that simple source code metrics can effectively
augment existing SBFL techniques for more accurate locali-
sation, prompting further study of the connection between
defect prediction and fault localisation.

The rest of the paper is organised as follows: Section 2 formu-
lates fault localisation as a learning to rank problem and introduces
the features FLUCCS uses. Section 3 describes the learning algo-
rithms that we use in the paper. Section 4 presents the set-up for
the empirical evaluation, the results of which are discussed in Sec-
tion 5. Section 6 discusses the potential threats to validity. Section 7
presents the related work and Section 8 concludes.

2 FEATURES USED BY FLUCCS
Figure 1 shows the overall architecture of FLUCCS. FLUCCS ex-
tracts two sets of features from a source code repository. The first is
a set of SBFL scores using different SBFL formulæ: this requires test
execution on source code instrumented for structural coverage. The
second is a set of code and change metrics: this requires lightweight
static analysis and version mining. In training phase, these features,
along with locations of known faults, are fed into learning algo-
rithms, which produce ranking models that rank the faulty method
as high as possible. In deployment phase, these learnt models take
the features from source code with unknown faults, and produce
rankings of methods according to their likelihood of being faulty.
In this section, we describe the features used by FLUCCS, as well
as how these features are extracted and processed.

1FLUCCS and the data used for the empirical evaluation are made available at http:
//Redacted.For.Double.Blind.Review

2.1 SBFL Scores
SBFL formulæ take program spectrum data as input and return
risk scores (also known as suspiciousness scores). For a structural
program element (such as a statement or a method), the spectrum
data consists of four variables that are aggregated from test cover-
age and pass/fail results: (ep , ef ,np ,nf): ep and ef represent the
number of passing and failing test cases that execute the given
structural element, respectively. Similarly, np and nf represent the
number of passing that failing test cases that do not execute the
given structural element. SBFL formulæ tend to assign higher risk
scores to elements wigh higher ef and np values, which suggest
executing those elements tend to result in failing test executions,
while not executing them tend to result in passing test executions.

Table 1: SBFL formulæ used by FLUCCS as features

Name Formula Name Formula

ER1a
⎧⎪⎨⎪⎩
−1 if nf >0
np otherwise

ER1b ef − ep
ep+np+1

ER5a ef − ef
ep+np+1 ER5b

ef
ef +nf +ep+np

ER5c
⎧⎪⎨⎪⎩

0 if ef <F
1 otherwise

GP2 2(ef +
√

ep+np)+
√ep

Ochiai ef
(ef +nf) (ef +ep) GP3

√
|e2

f −
√ep |

Jaccard ef
ef +nf +ep

GP13 ef (1+ 1
2ep+ef

)

AMPLE | ef
F −

ep
P | GP19 ef

√
|ep−ef +F−P |

Hamann ef +np−ep−nf
P+F Tarantula

ef
ef +nf

ef
ef +nf

+
ep

ep+np

Dice 2ef
ef +ep+nf

RusselRao ef
ep+ef +np+nf

M1 ef +np
nf +ep

SørensenDice 2ef
2ef +ep+nf

M2 ef
ef +np+2nf +2ep

Kulczynski1 ef
nf +ep

Hamming ef +np Kulczynski2 1
2 (

ef
ef +nf

+
ef

ef +ep
)

Goodman 2ef −nf −ep
2ef +nf +ep

SimpleMatching ef +np
ep+ef +np+nf

Euclid √
ef +np RogersTanimoto ef +np

ef +np+2nf +2ep

Wong1 ef Sokal 2ef +2np
2e f +2np+nf +ep

Wong2 ef −ep Anderberg ef
ef +2ep+2nf

Wong3 ef −h,h=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ep if ep≤2
2+0.1(ep−2) if 2<ep≤10
2.8+0.01(ep−10) if ep>10

Ochiai2 ef np√
(ef +ep) (nf +np) (ef +np) (ep+nf)

Zoltar ef

ef +ep+nf +
10000nf ep

ef

FLUCCS uses 33 SBFL formulæ to generate score metrics, which
are listed in Table 1 We include both the state-of-the-art human
generated SBFL formulæ and GP evolved SBFL formulæ. Of these,
25 formulæ have been used in combination with each other in
previous work [3, 40], while eleven formulæ have been proven to
be maximal [39].

Conference’17, July 2017, Washington, DC, USA

fault localisation: defect prediction can be interpreted as aiming
to localise faults a priori (i.e. before testing and actual detection),
whereas fault localisation simply does so post hoc.

We empirically evaluate FLUCCS using 210 real world faults from
Defects4J repository [19]. The method level localisation results
obtained by FLUCCS have been compared to those from existing
SBFL baselines, FLUCCS with different learning mechanism, as
well as FLUCCS without the additional source code metric features.
FLUCCS with Genetic Programming convincingly outperforms
all the other approaches, placing the faulty method at the top of
the ranking for 106 faults out of 210. The final result shows that
source code metrics that are relatively easy to collect may effectively
augment existing SBFL techniques for higher accuracy.

The technical contribution of this paper can be summarised as
follows:

• We present FLUCCS, a fault localisation technique that
learns to rank program elements using Genetic Program-
ming, existing SBFL techniques, and source code metrics1.

• We empirically evaluate FLUCCS using 210 real world
faults from Defects4J. FLUCCS ranks 50% of the stud-
ied faults at the top, and about 82% of the studied faults
within the top 5 of the ranking.

• We introduce a new way of computing method level SBFL
scores called method level aggregation. Empirical evalua-
tion of this technique applied to existing state-of-the-art
SBFL formulæ shows that formulæ with method level ag-
gregation can rank about 42% more faults at the top.

• We show that simple source code metrics can effectively
augment existing SBFL techniques for more accurate locali-
sation, prompting further study of the connection between
defect prediction and fault localisation.

The rest of the paper is organised as follows: Section 2 formu-
lates fault localisation as a learning to rank problem and introduces
the features FLUCCS uses. Section 3 describes the learning algo-
rithms that we use in the paper. Section 4 presents the set-up for
the empirical evaluation, the results of which are discussed in Sec-
tion 5. Section 6 discusses the potential threats to validity. Section 7
presents the related work and Section 8 concludes.

2 FEATURES USED BY FLUCCS
Figure 1 shows the overall architecture of FLUCCS. FLUCCS ex-
tracts two sets of features from a source code repository. The first is
a set of SBFL scores using different SBFL formulæ: this requires test
execution on source code instrumented for structural coverage. The
second is a set of code and change metrics: this requires lightweight
static analysis and version mining. In training phase, these features,
along with locations of known faults, are fed into learning algo-
rithms, which produce ranking models that rank the faulty method
as high as possible. In deployment phase, these learnt models take
the features from source code with unknown faults, and produce
rankings of methods according to their likelihood of being faulty.
In this section, we describe the features used by FLUCCS, as well
as how these features are extracted and processed.

1FLUCCS and the data used for the empirical evaluation are made available at http:
//Redacted.For.Double.Blind.Review

2.1 SBFL Scores
SBFL formulæ take program spectrum data as input and return
risk scores (also known as suspiciousness scores). For a structural
program element (such as a statement or a method), the spectrum
data consists of four variables that are aggregated from test cover-
age and pass/fail results: (ep , ef ,np ,nf): ep and ef represent the
number of passing and failing test cases that execute the given
structural element, respectively. Similarly, np and nf represent the
number of passing that failing test cases that do not execute the
given structural element. SBFL formulæ tend to assign higher risk
scores to elements wigh higher ef and np values, which suggest
executing those elements tend to result in failing test executions,
while not executing them tend to result in passing test executions.

Table 1: SBFL formulæ used by FLUCCS as features

Name Formula Name Formula

ER1a
⎧⎪⎨⎪⎩
−1 if nf >0
np otherwise

ER1b ef − ep
ep+np+1

ER5a ef − ef
ep+np+1 ER5b

ef
ef +nf +ep+np

ER5c
⎧⎪⎨⎪⎩

0 if ef <F
1 otherwise

GP2 2(ef +
√

ep+np)+
√ep

Ochiai ef
(ef +nf) (ef +ep) GP3

√
|e2

f −
√ep |

Jaccard ef
ef +nf +ep

GP13 ef (1+ 1
2ep+ef

)

AMPLE | ef
F −

ep
P | GP19 ef

√
|ep−ef +F−P |

Hamann ef +np−ep−nf
P+F Tarantula

ef
ef +nf

ef
ef +nf

+
ep

ep+np

Dice 2ef
ef +ep+nf

RusselRao ef
ep+ef +np+nf

M1 ef +np
nf +ep

SørensenDice 2ef
2ef +ep+nf

M2 ef
ef +np+2nf +2ep

Kulczynski1 ef
nf +ep

Hamming ef +np Kulczynski2 1
2 (

ef
ef +nf

+
ef

ef +ep
)

Goodman 2ef −nf −ep
2ef +nf +ep

SimpleMatching ef +np
ep+ef +np+nf

Euclid √
ef +np RogersTanimoto ef +np

ef +np+2nf +2ep

Wong1 ef Sokal 2ef +2np
2e f +2np+nf +ep

Wong2 ef −ep Anderberg ef
ef +2ep+2nf

Wong3 ef −h,h=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ep if ep≤2
2+0.1(ep−2) if 2<ep≤10
2.8+0.01(ep−10) if ep>10

Ochiai2 ef np√
(ef +ep) (nf +np) (ef +np) (ep+nf)

Zoltar ef

ef +ep+nf +
10000nf ep

ef

FLUCCS uses 33 SBFL formulæ to generate score metrics, which
are listed in Table 1 We include both the state-of-the-art human
generated SBFL formulæ and GP evolved SBFL formulæ. Of these,
25 formulæ have been used in combination with each other in
previous work [3, 40], while eleven formulæ have been proven to
be maximal [39].

AAA705 @ Korea University Lecture 10 – Fault Localization April 8, 2024 43 / 62

Genetic Algorithm for SBFL

• Green: GP outperforms the other.

• Orange: GP exactly matches the other.

• Red: The other outperforms GP.

Table 5. Comparison of mean Expense for 72 faults in evaluation sets. Rows in bold
correspond to GP-results that perform as well as or better than any human-designed
formulæ.

ID GP Op1 Op2 Ochiai AMPLE Jacc’d Tarant. Wong1 Wong2 Wong3

GP01 5.73 9.20 5.30 32.66 10.96 6.10 15.06 22.24 17.10 6.63
GP02 12.04 9.67 5.72 32.60 11.91 6.63 14.92 23.45 19.49 8.92
GP03 14.46 11.35 6.11 29.99 12.18 6.99 15.68 23.55 18.55 8.85
GP04 7.80 9.70 4.46 30.98 8.83 5.03 13.88 22.62 14.64 6.33
GP05 9.35 11.04 5.80 29.95 10.63 6.42 14.46 23.15 18.54 8.53
GP06 12.15 11.11 5.87 28.02 12.51 6.79 15.35 23.12 16.70 7.01
GP07 8.93 11.18 5.94 29.53 12.19 6.85 14.81 23.88 19.74 8.68
GP08 6.32 10.23 6.34 30.91 11.67 7.04 16.21 23.54 19.94 9.05
GP09 9.66 10.58 5.33 31.56 11.40 6.17 14.06 22.58 18.31 8.20
GP10 6.31 11.55 6.31 29.83 12.51 7.16 15.79 22.99 19.74 8.56

GP11 5.83 11.07 5.83 33.52 12.12 6.69 16.77 22.05 18.16 6.96
GP12 12.09 8.84 6.23 32.15 11.65 7.02 16.65 22.91 19.42 9.09
GP13 5.11 9.05 5.11 31.67 10.27 5.90 15.92 22.03 17.00 6.69
GP14 9.91 8.52 5.91 31.69 11.10 6.55 15.88 23.15 18.10 8.65
GP15 5.62 9.54 5.59 33.02 10.23 6.19 15.16 23.85 17.17 8.44
GP16 6.79 8.32 5.71 30.52 10.74 6.41 14.60 23.06 18.36 8.42
GP17 7.67 11.46 6.22 33.62 12.06 6.98 16.85 22.44 17.94 8.59
GP18 9.42 10.78 5.54 34.17 11.46 6.33 15.45 22.17 17.46 8.14
GP19 6.42 9.01 5.11 31.28 10.18 5.78 15.03 22.84 15.26 7.79
GP20 5.69 10.93 5.69 29.34 10.88 6.38 15.23 23.41 19.30 8.42

GP21 10.17 10.13 6.24 29.82 10.86 6.89 15.70 23.01 19.85 9.43
GP22 7.58 8.50 5.91 28.06 10.46 6.60 13.67 23.25 18.60 8.63
GP23 6.14 10.76 5.52 30.86 10.57 6.16 14.69 21.77 16.90 7.25
GP24 9.18 10.15 6.21 28.74 12.53 7.10 15.76 23.41 20.16 8.35
GP25 9.34 10.19 6.29 32.56 12.36 7.18 17.59 22.63 20.19 9.48
GP26 6.38 11.62 6.38 32.83 12.27 7.25 18.28 23.77 16.18 7.69
GP27 9.75 8.53 5.89 33.28 12.01 6.85 16.42 22.99 19.23 7.81
GP28 5.56 9.18 5.25 30.02 11.18 6.15 13.52 22.86 17.17 6.85
GP29 7.16 10.12 6.17 34.17 12.83 7.14 17.00 22.94 20.18 8.88
GP30 10.68 9.10 5.14 30.02 10.17 5.78 14.49 22.79 17.09 8.34

of one sample X over another sample Y : the value of A is the probability that a
single subject taken randomly from group X has higher/lower value than another
single case randomly taken from group Y . For A(X > Y), the value of A closer
to 1 represents a higher probability of X > Y , 0 a higher probability of X < Y ,
and 0.5 no e↵ect (i.e., X = Y).

However, the statistical interpretation of the results should be treated with
caution. There is no guarantee that the studied programs and faults are represen-
tative of all possible programs and faults and, therefore, it is not clear whether
they are legitimate samples of the entire group. On the other hand, if the cost
of designing risk evaluation formulæ is significantly reduced by the use of GP,
the possibility of project-specific formalæ should not be entirely ruled out.

5 Results and Analysis

5.1 E↵ectiveness

Table 5 contains the mean Expense values for all 30 GP-evolved formulæ and
human-designed formulæ in Table 73. Each row reports the mean Expense values

3 The complete results for individual faults are available from: http://www.cs.ucl.
ac.uk/staff/s.yoo/evolving-sbfl.html.

Results

4 Unix tools w/ 92 faults: 20 for training, 72 for evaluation.

O
p1

O
p2 O
ch

ia
i

AM
PL

E

Ja
cc

ar
d

Ta
ra

nt
ul

a

W
on

g1

W
on

g2

W
on

g3

⟵
30

 G
P

Ru
ns

⟶

• Let’s apply the Genetic
Algorithm (GA) to
optimize the formula for
SBFL.
• 30 formulae are generated.

• Green – GP outperforms
the other.

• Orange – GP exactly
matches the other.

• Red – the other
outperforms GP.

AAA705 @ Korea University Lecture 10 – Fault Localization April 8, 2024 44 / 62

Genetic Algorithm for SBFL

• Green: GP outperforms the other.

• Orange: GP exactly matches the other.

• Red: The other outperforms GP.

Table 5. Comparison of mean Expense for 72 faults in evaluation sets. Rows in bold
correspond to GP-results that perform as well as or better than any human-designed
formulæ.

ID GP Op1 Op2 Ochiai AMPLE Jacc’d Tarant. Wong1 Wong2 Wong3

GP01 5.73 9.20 5.30 32.66 10.96 6.10 15.06 22.24 17.10 6.63
GP02 12.04 9.67 5.72 32.60 11.91 6.63 14.92 23.45 19.49 8.92
GP03 14.46 11.35 6.11 29.99 12.18 6.99 15.68 23.55 18.55 8.85
GP04 7.80 9.70 4.46 30.98 8.83 5.03 13.88 22.62 14.64 6.33
GP05 9.35 11.04 5.80 29.95 10.63 6.42 14.46 23.15 18.54 8.53
GP06 12.15 11.11 5.87 28.02 12.51 6.79 15.35 23.12 16.70 7.01
GP07 8.93 11.18 5.94 29.53 12.19 6.85 14.81 23.88 19.74 8.68
GP08 6.32 10.23 6.34 30.91 11.67 7.04 16.21 23.54 19.94 9.05
GP09 9.66 10.58 5.33 31.56 11.40 6.17 14.06 22.58 18.31 8.20
GP10 6.31 11.55 6.31 29.83 12.51 7.16 15.79 22.99 19.74 8.56

GP11 5.83 11.07 5.83 33.52 12.12 6.69 16.77 22.05 18.16 6.96
GP12 12.09 8.84 6.23 32.15 11.65 7.02 16.65 22.91 19.42 9.09
GP13 5.11 9.05 5.11 31.67 10.27 5.90 15.92 22.03 17.00 6.69
GP14 9.91 8.52 5.91 31.69 11.10 6.55 15.88 23.15 18.10 8.65
GP15 5.62 9.54 5.59 33.02 10.23 6.19 15.16 23.85 17.17 8.44
GP16 6.79 8.32 5.71 30.52 10.74 6.41 14.60 23.06 18.36 8.42
GP17 7.67 11.46 6.22 33.62 12.06 6.98 16.85 22.44 17.94 8.59
GP18 9.42 10.78 5.54 34.17 11.46 6.33 15.45 22.17 17.46 8.14
GP19 6.42 9.01 5.11 31.28 10.18 5.78 15.03 22.84 15.26 7.79
GP20 5.69 10.93 5.69 29.34 10.88 6.38 15.23 23.41 19.30 8.42

GP21 10.17 10.13 6.24 29.82 10.86 6.89 15.70 23.01 19.85 9.43
GP22 7.58 8.50 5.91 28.06 10.46 6.60 13.67 23.25 18.60 8.63
GP23 6.14 10.76 5.52 30.86 10.57 6.16 14.69 21.77 16.90 7.25
GP24 9.18 10.15 6.21 28.74 12.53 7.10 15.76 23.41 20.16 8.35
GP25 9.34 10.19 6.29 32.56 12.36 7.18 17.59 22.63 20.19 9.48
GP26 6.38 11.62 6.38 32.83 12.27 7.25 18.28 23.77 16.18 7.69
GP27 9.75 8.53 5.89 33.28 12.01 6.85 16.42 22.99 19.23 7.81
GP28 5.56 9.18 5.25 30.02 11.18 6.15 13.52 22.86 17.17 6.85
GP29 7.16 10.12 6.17 34.17 12.83 7.14 17.00 22.94 20.18 8.88
GP30 10.68 9.10 5.14 30.02 10.17 5.78 14.49 22.79 17.09 8.34

of one sample X over another sample Y : the value of A is the probability that a
single subject taken randomly from group X has higher/lower value than another
single case randomly taken from group Y . For A(X > Y), the value of A closer
to 1 represents a higher probability of X > Y , 0 a higher probability of X < Y ,
and 0.5 no e↵ect (i.e., X = Y).

However, the statistical interpretation of the results should be treated with
caution. There is no guarantee that the studied programs and faults are represen-
tative of all possible programs and faults and, therefore, it is not clear whether
they are legitimate samples of the entire group. On the other hand, if the cost
of designing risk evaluation formulæ is significantly reduced by the use of GP,
the possibility of project-specific formalæ should not be entirely ruled out.

5 Results and Analysis

5.1 E↵ectiveness

Table 5 contains the mean Expense values for all 30 GP-evolved formulæ and
human-designed formulæ in Table 73. Each row reports the mean Expense values

3 The complete results for individual faults are available from: http://www.cs.ucl.
ac.uk/staff/s.yoo/evolving-sbfl.html.

Results

4 Unix tools w/ 92 faults: 20 for training, 72 for evaluation.

O
p1

O
p2 O
ch

ia
i

AM
PL

E

Ja
cc

ar
d

Ta
ra

nt
ul

a

W
on

g1

W
on

g2

W
on

g3

⟵
30

 G
P

Ru
ns

⟶

• GP completely
outperforms Ochiai,
Tarantula, Wong 1, and
Wong 2.
• GP mostly outperforms

AMPLE.
• Op1, Jaccard, and Wong 3

are tough to beat.
• Op2 is very good but it is

not impossible to do
better.

AAA705 @ Korea University Lecture 10 – Fault Localization April 8, 2024 45 / 62

Genetic Algorithm for SBFL

Evolved Formulæ
Table 7. GP-evolved risk evaluation formulæ. Trivial bloats, such as nf � nf , were
removed.

ID Refined Formula ID Refined Formula

GP01 ef (np + ef (1 +
p

ef)) GP16

q
e

3
2

f + np

GP02 2(ef +
p

np) +
p

ep GP17
2ef +nf

ef�np
+

npp
ef

� ef � e2
f

GP03
q

|e2
f �p

ep| GP18 e3
f + 2np

GP04
q

| np

ep�np
� ef | GP19 ef

p
|ep � ef + nf � np|

GP05
(ef +np)

p
ef

(ef +ep)(npnf +
p

ep)(ep+np)
p

|ep�np|
GP20 2(ef +

np

ep+np
)

GP06 efnp GP21
p

ef +
p

ef + np

GP07 2ef (1 + ef + 1
2np

) + (1 +
p

2)
p

np GP22 e2
f + ef +

p
np

GP08 e2
f (2ep + 2ef + 3np) GP23

p
ef (e2

f +
np

ef
+

p
np + nf + np)

GP09
ef

p
np

np+np
+ np + ef + e3

f GP24 ef +
p

np

GP10
q

|ef � 1
np

| GP25 e2
f +

p
np +

p
efp

|ep�np|
+

np

(ef�np)

GP11 e2
f (e2

f +
p

np) GP26 2e2
f +

p
np

GP12
p

ep + ef + np �p
ep GP27

np

p
(npnf�ef)

ef +npnf

GP13 ef (1 + 1
2ep+ef

) GP28 ef (ef +
p

np + 1)

GP14 ef +
p

np GP29 ef (2e2
f +ef +np)+

(ef�np)
p

npef

ep�np

GP15 ef +
p

nf +
p

np GP30
q

|ef � nf�np

ef +nf
|

All existing metrics have been designed by human; this paper present the first
GP-based approach to the design of risk evaluation formulæ, reformulating it
as a predictive modelling based on GP. Machine learning techniques have been
also applied to fault localisation work, but the aim was to classify failing tests
together rather than to identify the location of the fault directly [23].

Although SBFL originally started as a debugging aid for human develop-
ers, the technique is increasingly used to enable other automated Search-Based
Software Engineering (SBSE) techniques. Goues et al. use SBFL to identify the
parts of a program that needs to be automatically patched [7]. Yoo et al. use
SBFL to measure the Shannon entropy of fault locality, so that the test suite
can be prioritised for faster fault localisation [25]. GP may be able to help these
techniques by evolving SBFL techniques with a specific set of characteristics,
improving the synergy between predictive modelling and SBSE even further [9].

Other approaches towards fault localisation include slicing [2], consideration
of test similarity [3, 8], delta debugging [27, 28], and causal inference [4]. While
this paper only concerns the spectra-based approach, the positive results sug-
gest that GP may be successfully employed to evolve a wider range of fault
localisation techniques.

7 Conclusion

This paper reports the first application of Genetic Programming to evolving
risk evaluation formulæ for Spectra-Based Fault Localisation. We use a simple
tree-based GP to evolve risk evaluation formulæ that take program spectra ele-
ments as terminals. Empirical evaluation based on 92 di↵erent faults from four
Unix utilities shows three important findings. First, GP-evolved formulæ can
outperform widely studied human-designed formulæ by up to 5.9 times. Second,

AAA705 @ Korea University Lecture 10 – Fault Localization April 8, 2024 46 / 62

Theoretical Analysis
• Given a test suite and a formula R, a program P consists of n

elements (s1, s2, . . . , sn).
• The set of elements can be divided into three subsets:

• SR
B – set of elements ranked higher than the faulty element sf .

SR
B = {si | 1 ≤ i ≤ n ∧ R(si) > R(sf)}

• SR
F – set of elements tied to the faulty element sf .

SR
F = {si | 1 ≤ i ≤ n ∧ R(si) = R(sf)}

• SR
A – set of elements ranked lower than the faulty element sf .

SR
A = {si | 1 ≤ i ≤ n ∧ R(si) < R(sf)}

AAA705 @ Korea University Lecture 10 – Fault Localization April 8, 2024 47 / 62

Theoretical Analysis

• Formula R1 dominates formula R2 (i.e., R1 → R2) if, for each
element si , R1 gives a better ranking comparison result with the
faulty element sf than R2.

SR1
B ⊆ SR2

B ∧ SR2
A ⊆ SR1

A

• Formula R1 equivalent to formula R2 (i.e., R1 ≡ R2) if they give the
same ranking comparison result with the faulty element sf .

SR1
B = SR2

B ∧ SR1
F = SR2

F ∧ SR1
A = SR2

A

• It means that R1 ≡ R2 if and only if R1 → R2 and R2 → R1.

AAA705 @ Korea University Lecture 10 – Fault Localization April 8, 2024 48 / 62

Method-level Aggregation

public void testMe(int a) {
util();
if (a % 3 == 0) {

... // faulty code
} else {

...
}

}
public void util() {

...
}

• The util method is called by the
testMe method.

• If we target functions as the unit of
localization, the util method
might be tied to the testMe
method having the faulty code.

• Method-level aggregation is a
technique to aggregate the
statement- or branch-level ranks to
the method level to get a more
accurate fault localization result.

J. Sohn and S. Yoo. FLUCCS: Using Code and Change Metrics to Improve Fault
Localization. In Proceedings of the 2017 International Symposium on Software Testing
and Analysis, ISSTA 2017.

AAA705 @ Korea University Lecture 10 – Fault Localization April 8, 2024 49 / 62

Hybrid SBFL

• People are realising that a single formula is strongly limited.

• Hybridization

• Use multiple formulae at the same time.

• Use SBFL formulae with some additional input features.

• As we accept more diverse input, fault localization become a learning
problem, instead of design-a-technique problem.

AAA705 @ Korea University Lecture 10 – Fault Localization April 8, 2024 50 / 62

Hybrid SBFL

• Xuan & Monperrus (ICSME 2014)

• Simultaneously use 25 SBFL formulae, using the weighted sum
method.

• Use a learning-to-rank technique to train the raking model (i.e., to
optimize the weights that yield best ranks for training set faults)

• Le et al. (ISSTA 2016)

• In addition to 35 SBFL formulae, Savant use invariant differences.

• Use Daikon to infer method invariants twice: with passing tests, and
with failing test.

• For the faulty method, two sets of invariant will tend to be more
different.

AAA705 @ Korea University Lecture 10 – Fault Localization April 8, 2024 51 / 62

Hybrid SBFL
J. Sohn and S. Yoo. FLUCCS: Using Code and Change Metrics to Improve
Fault Localization. In Proceedings of the 2017 International Symposium on
Software Testing and Analysis, ISSTA 2017.FLUCCS: Using Code and Change Metrics to Improve Fault Localization ISSTA’17, July 2017, Santa Barbara, CA, USA

Repository !"#$%!&'()* Debugging

Source
CodeSource

CodeSource
Code

Test
Cases

!+)&,(-.%/0,0+
1230 4&5606 70&&0(8...

9'8):950;<)%=),(6&*

>)(*6';%?6*,'(@

A<) 95-(; !6B)...

Known
FaultsKnown

FaultsKnown
Faults

/)+C'@.);,

20;D6;<%='8)C*

E(06;6;<

$)0(;6;<%AC<'(6,5.*

FG !>=

#'(.-C! H)6<5,*

Method
Ranking

Figure 1: Overall Architecture of FLUCCS

Table 1: SBFL formulæ used by FLUCCS as features

Name Formula Name Formula

ER1a
⎧⎪⎨⎪⎩
−1 if nf >0
np otherwise

ER1b ef − ep
ep+np+1

ER5a ef − ef
ep+np+1 ER5b

ef
ef +nf +ep+np

ER5c
⎧⎪⎨⎪⎩

0 if ef <F
1 otherwise

GP2 2(ef +
√np)+

√ep

Ochiai ef√
(ef +nf) (ef +ep)

GP3
√
|e2

f −
√ep |

Jaccard ef
ef +nf +ep

GP13 ef (1+ 1
2ep+ef

)

AMPLE | ef
F −

ep
P | GP19 ef

√
|ep−ef +nf −np |

Hamann ef +np−ep−nf
P+F Tarantula

ef
ef +nf

ef
ef +nf

+
ep

ep+np

Dice 2ef
ef +ep+nf

RusselRao ef
ep+ef +np+nf

M1 ef +np
nf +ep

SørensenDice 2ef
2ef +ep+nf

M2 ef
ef +np+2nf +2ep

Kulczynski1 ef
nf +ep

Hamming ef +np Kulczynski2 1
2 (

ef
ef +nf

+
ef

ef +ep
)

Goodman 2ef −nf −ep
2ef +nf +ep

SimpleMatching ef +np
ep+ef +np+nf

Euclid √
ef +np RogersTanimoto ef +np

ef +np+2nf +2ep

Wong1 ef Sokal 2ef +2np
2e f +2np+nf +ep

Wong2 ef −ep Anderberg ef
ef +2ep+2nf

Wong3 ef −h,h=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ep if ep≤2
2+0.1(ep−2) if 2<ep≤10
2.8+0.001(ep−10) if ep>10

Ochiai2 ef np√
(ef +ep) (nf +np) (ef +nf) (ep+np)

Zoltar ef

ef +ep+nf +
10000nf ep

ef

2.2.3 Complexity Metrics. Code complexity and its impact on
defect proneness has been widely studied [7]. Various types of code
complexity metrics have been suggested in the literature, out of
which we select the following, cheap to measure, metrics:

• Number of formal arguments: this indirectly reflects the
internal complexity of the given method, as well as, the
degree of external coupling.

• Number of local variables: this indirectly reflects the inter-
nal complexity.

• Size: this has been used by much of the defect prediction
work in the literature as a surrogate for code complexity [7,
14, 23]. We use both LoC (Lines of Code) and the number
of compiled Java Bytecode instructions.

We do acknowledge that code complexity is difficult concept to
measure: we deliberately chose metrics that can be simply and di-
rectly measured from the source code. Future study will investigate
more sophisticated complexity metrics.

2.3 Method Level Aggregation of SBFL Scores
Although FLUCCS performs method level localization, it does not
use method coverage to calculate the SBFL score features. Instead,
we calculate SBFL scores for statements and aggregate them up to
the method level by taking the highest score among those from
statements that consist the method under consideration. While this
adds to the cost of localization (instrumentation for the statement
coverage is more expensive than one for the method coverage), this
has clear benefits.

Consider the code snippet in Figure 2, which is executed with
three test cases: a = 1, 2, 3. Let us also assume that there exist
two other test cases that do not execute this method. In total, there
are five test cases: three execute testMe and one of them fails.

Method testMe is covered by three test cases: its spectrum tuple
(ep ,ef ,np ,nf) is (2,1,2,0), resulting in Ochiai score of 1√

1(1+2)
=

0.578 and Jaccard score of 1
1+0+2 = 0.333. The method util and its

line 12 share the same spectrum tuple as well as scores, making
it impossible to differentiate util and testMe. However, for line 4,
the spectrum tuple (ep ,ef ,np ,nf) becomes (0,1,4,0), resulting in
both Ochiai and Jaccard score of 1.0, placing testMe above util .

In general, there are two drawbacks in using method coverage
to calculate SBFL scores. First, methods on a single call chain can
share the same spectrum tuple values, resulting in tied SBFL scores.
Second, if there exist test cases that execute only the non-faulty
parts of an actually faulty method, they will increase the ep value
at the method level. This is undesirable, because with most of the
practically effective SBFL formulæ, higher ep values tend to decrease
the suspiciousness. Our Method Level Aggregation approach is
designed to overcome these two weaknesses.

2.4 Call Graph Propagation
While a newly created fault may be directly committed into a code
repository, a regression fault can be caused at an unchanged loca-
tion, different from the latest change that is, in itself, completely

275

• Code and Change Metrics Features

• Age – how long has the given element existed in the code?
• Churn – how frequently has the given element been changed?
• Complexity – how complex is the given element?

AAA705 @ Korea University Lecture 10 – Fault Localization April 8, 2024 52 / 62

Strengths and Weaknesses

• Strengths

• Only requires what is already there: coverage and test results.

• Relatively intuitive.

• Weaknesses

• Single formulae are usually limited.

• Does not work against omission faults

• Does not work well against multiple faults.

AAA705 @ Korea University Lecture 10 – Fault Localization April 8, 2024 53 / 62

Contents
1. Delta Debugging (DD)

Recursive Delta Debugging – ddmin
Hierarchical Delta Debugging
Probabilistic Delta Debugging (ProbDD)
Delta Debugging for Program Debloating

2. Information Retrieval based Fault Localization (IRFL)
Vector Space Model (VSM)
Tf-Idf
Cleansing Bug Reports and Source Code
VSM and Similarity

3. Spectrum-based Fault Localization (SBFL)
Genetic Algorithm for SBFL
Theoretical Analysis
Method-level Aggregation
Hybrid SBFL

4. Mutation-based Fault Localization (MBFL)
AAA705 @ Korea University Lecture 10 – Fault Localization April 8, 2024 54 / 62

Mutation-based Fault Localization (MBFL)

• Mutation testing is a technique to evaluate the quality of a test
suite by generating mutants of the program and checking whether
the test suite can kill the mutants.

• Can we use mutants for fault localization?

• What would happen if we mutate a program having a known fault?

AAA705 @ Korea University Lecture 10 – Fault Localization April 8, 2024 55 / 62

Mutation-based Fault Localization (MBFL)

• Consider a faulty program P.

• Let mf be a mutant of P that mutates the faulty statement
and mc be a mutant of P that mutates a correct statement.

• Conjecture 1: failing tests are more likely to pass on mf than mc .

• Conjecture 2: passing tests are more likely to fail on mc than mf .

AAA705 @ Korea University Lecture 10 – Fault Localization April 8, 2024 56 / 62

Mutation-based Fault Localization (MBFL)
S. Moon, Y. Kim, M. Kim, and S. Yoo. Ask the Mutants: Mutating Faulty Programs for
Fault Localization. International Conference on Software Testing, Verification, and
Validation, ICST 2014. (MUSE – MUtation-baSEd fault localization technique)

<latexit sha1_base64="zJ2dMg2EQrghN8PffBz3K6vHLpU=">AAAC3nicbVFNj9MwEHXC11K+Chy5WFRI3QNVA2jZC9IKLhyLRHcX1VFwHKe1ajuWPVlUrFy5Ia78KX4Af4UTThOJbpeRLD29N29G85wbKRxMp7+j+Nr1GzdvHdwe3Ll77/6D4cNHp66qLeNzVsnKnufUcSk0n4MAyc+N5VTlkp/l63etfnbBrROV/ggbw1NFl1qUglEIVDb8RTT/wiqlqC480ZVVzSJJPZHBBH6UNMS2qBkQVY/dIX6DSWkp80nTdXtVQ+CbBhNXq8wrTITGPYmJ5CWMO0fXXmazdgxh1GCTqab5x4cZzzGh0qxo0IsK8K7R7BjLHaPZGokVyxUcZsPRdDLdFr4Kkh6MUF+zbPiHFBWrFdfAJHVukUwNpJ5aEEzycHXtuKFsTZd8EaCmirvUb2Nv8LPAFLisbHga8JbddXiqnNuoPHQqCiu3r7XkfzUHitqNLfb2Q3mceqFNDVyzbn1ZSwwVbn8WF8JyBnITAGVWhAswW9GQIIT/vzQfxPprMwhhJfvRXAWnLybJ0eTow6vRyds+tgP0BD1FY5Sg1+gEvUczNEcsehl9ivKIxZ/jb/H3+EfXGke95zG6VPHPv0zt6dQ=</latexit>

µ(s) =
1

|mut(s)|
X

m2mut(s)

✓ |fP (s) \ pm|
|fP | � ↵ · |pP (s) \ fm|

|pP |

◆

AAA705 @ Korea University Lecture 10 – Fault Localization April 8, 2024 57 / 62

Mutation-based Fault Localization (MBFL)
S. Moon, Y. Kim, M. Kim, and S. Yoo. Ask the Mutants: Mutating Faulty Programs for
Fault Localization. International Conference on Software Testing, Verification, and
Validation, ICST 2014. (MUSE – MUtation-baSEd fault localization technique)

<latexit sha1_base64="zJ2dMg2EQrghN8PffBz3K6vHLpU=">AAAC3nicbVFNj9MwEHXC11K+Chy5WFRI3QNVA2jZC9IKLhyLRHcX1VFwHKe1ajuWPVlUrFy5Ia78KX4Af4UTThOJbpeRLD29N29G85wbKRxMp7+j+Nr1GzdvHdwe3Ll77/6D4cNHp66qLeNzVsnKnufUcSk0n4MAyc+N5VTlkp/l63etfnbBrROV/ggbw1NFl1qUglEIVDb8RTT/wiqlqC480ZVVzSJJPZHBBH6UNMS2qBkQVY/dIX6DSWkp80nTdXtVQ+CbBhNXq8wrTITGPYmJ5CWMO0fXXmazdgxh1GCTqab5x4cZzzGh0qxo0IsK8K7R7BjLHaPZGokVyxUcZsPRdDLdFr4Kkh6MUF+zbPiHFBWrFdfAJHVukUwNpJ5aEEzycHXtuKFsTZd8EaCmirvUb2Nv8LPAFLisbHga8JbddXiqnNuoPHQqCiu3r7XkfzUHitqNLfb2Q3mceqFNDVyzbn1ZSwwVbn8WF8JyBnITAGVWhAswW9GQIIT/vzQfxPprMwhhJfvRXAWnLybJ0eTow6vRyds+tgP0BD1FY5Sg1+gEvUczNEcsehl9ivKIxZ/jb/H3+EfXGke95zG6VPHPv0zt6dQ=</latexit>

µ(s) =
1

|mut(s)|
X

m2mut(s)

✓ |fP (s) \ pm|
|fP | � ↵ · |pP (s) \ fm|

|pP |

◆

Proportion of test
cases that mutant m

turns from fail to pass

AAA705 @ Korea University Lecture 10 – Fault Localization April 8, 2024 58 / 62

Mutation-based Fault Localization (MBFL)
S. Moon, Y. Kim, M. Kim, and S. Yoo. Ask the Mutants: Mutating Faulty Programs for
Fault Localization. International Conference on Software Testing, Verification, and
Validation, ICST 2014. (MUSE – MUtation-baSEd fault localization technique)

<latexit sha1_base64="zJ2dMg2EQrghN8PffBz3K6vHLpU=">AAAC3nicbVFNj9MwEHXC11K+Chy5WFRI3QNVA2jZC9IKLhyLRHcX1VFwHKe1ajuWPVlUrFy5Ia78KX4Af4UTThOJbpeRLD29N29G85wbKRxMp7+j+Nr1GzdvHdwe3Ll77/6D4cNHp66qLeNzVsnKnufUcSk0n4MAyc+N5VTlkp/l63etfnbBrROV/ggbw1NFl1qUglEIVDb8RTT/wiqlqC480ZVVzSJJPZHBBH6UNMS2qBkQVY/dIX6DSWkp80nTdXtVQ+CbBhNXq8wrTITGPYmJ5CWMO0fXXmazdgxh1GCTqab5x4cZzzGh0qxo0IsK8K7R7BjLHaPZGokVyxUcZsPRdDLdFr4Kkh6MUF+zbPiHFBWrFdfAJHVukUwNpJ5aEEzycHXtuKFsTZd8EaCmirvUb2Nv8LPAFLisbHga8JbddXiqnNuoPHQqCiu3r7XkfzUHitqNLfb2Q3mceqFNDVyzbn1ZSwwVbn8WF8JyBnITAGVWhAswW9GQIIT/vzQfxPprMwhhJfvRXAWnLybJ0eTow6vRyds+tgP0BD1FY5Sg1+gEvUczNEcsehl9ivKIxZ/jb/H3+EfXGke95zG6VPHPv0zt6dQ=</latexit>

µ(s) =
1

|mut(s)|
X

m2mut(s)

✓ |fP (s) \ pm|
|fP | � ↵ · |pP (s) \ fm|

|pP |

◆

Proportion of test
cases that mutant m

turns from fail to pass

Proportion of test
cases that mutant m

turns from pass to fail

AAA705 @ Korea University Lecture 10 – Fault Localization April 8, 2024 59 / 62

Mutation-based Fault Localization (MBFL)
S. Moon, Y. Kim, M. Kim, and S. Yoo. Ask the Mutants: Mutating Faulty Programs for
Fault Localization. International Conference on Software Testing, Verification, and
Validation, ICST 2014. (MUSE – MUtation-baSEd fault localization technique)

<latexit sha1_base64="zJ2dMg2EQrghN8PffBz3K6vHLpU=">AAAC3nicbVFNj9MwEHXC11K+Chy5WFRI3QNVA2jZC9IKLhyLRHcX1VFwHKe1ajuWPVlUrFy5Ia78KX4Af4UTThOJbpeRLD29N29G85wbKRxMp7+j+Nr1GzdvHdwe3Ll77/6D4cNHp66qLeNzVsnKnufUcSk0n4MAyc+N5VTlkp/l63etfnbBrROV/ggbw1NFl1qUglEIVDb8RTT/wiqlqC480ZVVzSJJPZHBBH6UNMS2qBkQVY/dIX6DSWkp80nTdXtVQ+CbBhNXq8wrTITGPYmJ5CWMO0fXXmazdgxh1GCTqab5x4cZzzGh0qxo0IsK8K7R7BjLHaPZGokVyxUcZsPRdDLdFr4Kkh6MUF+zbPiHFBWrFdfAJHVukUwNpJ5aEEzycHXtuKFsTZd8EaCmirvUb2Nv8LPAFLisbHga8JbddXiqnNuoPHQqCiu3r7XkfzUHitqNLfb2Q3mceqFNDVyzbn1ZSwwVbn8WF8JyBnITAGVWhAswW9GQIIT/vzQfxPprMwhhJfvRXAWnLybJ0eTow6vRyds+tgP0BD1FY5Sg1+gEvUczNEcsehl9ivKIxZ/jb/H3+EfXGke95zG6VPHPv0zt6dQ=</latexit>

µ(s) =
1

|mut(s)|
X

m2mut(s)

✓ |fP (s) \ pm|
|fP | � ↵ · |pP (s) \ fm|

|pP |

◆

Proportion of test
cases that mutant m

turns from fail to pass

Proportion of test
cases that mutant m

turns from pass to fail

Proportion of test
cases that mutant m

turns from pass to fail

where α is the balancing factor:

α = f 2p
|mut(P)| · |fP |

· |mut(P)| · |pP |
p2f

AAA705 @ Korea University Lecture 10 – Fault Localization April 8, 2024 60 / 62

Summary
1. Delta Debugging (DD)

Recursive Delta Debugging – ddmin
Hierarchical Delta Debugging
Probabilistic Delta Debugging (ProbDD)
Delta Debugging for Program Debloating

2. Information Retrieval based Fault Localization (IRFL)
Vector Space Model (VSM)
Tf-Idf
Cleansing Bug Reports and Source Code
VSM and Similarity

3. Spectrum-based Fault Localization (SBFL)
Genetic Algorithm for SBFL
Theoretical Analysis
Method-level Aggregation
Hybrid SBFL

4. Mutation-based Fault Localization (MBFL)
AAA705 @ Korea University Lecture 10 – Fault Localization April 8, 2024 61 / 62

Next Lecture
• Testing Oracles

Jihyeok Park
jihyeok park@korea.ac.kr

https://plrg.korea.ac.kr

AAA705 @ Korea University Lecture 10 – Fault Localization April 8, 2024 62 / 62

https://plrg.korea.ac.kr

	Delta Debugging (DD)
	Recursive Delta Debugging – [language=Scala, basicstyle=]!ddmin!
	Hierarchical Delta Debugging
	Probabilistic Delta Debugging (ProbDD)
	Delta Debugging for Program Debloating

	Information Retrieval based Fault Localization (IRFL)
	Vector Space Model (VSM)
	Tf-Idf
	Cleansing Bug Reports and Source Code
	VSM and Similarity

	Spectrum-based Fault Localization (SBFL)
	Genetic Algorithm for SBFL
	Theoretical Analysis
	Method-level Aggregation
	Hybrid SBFL

	Mutation-based Fault Localization (MBFL)

