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Recall
• Delta Debugging (DD)

• Recursive Delta Debugging – ddmin
• Hierarchical Delta Debugging
• Probabilistic Delta Debugging (ProbDD)
• Delta Debugging for Program Debloating

• Information Retrieval based Fault Localization (IRFL)

• Vector Space Model (VSM)
• Tf-Idf
• Cleansing Bug Reports and Source Code
• VSM and Similarity

• Spectrum-based Fault Localization (SBFL)

• Genetic Algorithm for SBFL
• Theoretical Analysis
• Method-level Aggregation
• Hybrid SBFL
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History of π

How to calculate the value of π?

• BC 2000, Babylonia – Just approximate it to 3 + 1/8 = 3.125

• BC 250, Archimedes – First calculation of π using polygons:

<latexit sha1_base64="jYSbBuzh1QPs+Dp2v5NnV9Aw0Hw="></latexit>
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History of π

• BC 250, Archimedes – First calculation of π using 96-gon:

223/71 = 3.140845 < π < 3.142857 = 22/7 (2 digits)
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History of π

• BC 250, Archimedes – First calculation of π using 96-gon:

223/71 = 3.140845 < π < 3.142857 = 22/7 (2 digits)

• AD 263, Liu Hui – First calculation of π using areas of 96-gon:

3.141024 < π < 3.142074 (3 digits)

• AD 480, Zu Chongzhi – Liu Hui’s method with 12288-gon:

3.1415926 < π < 3.1415927 (7 digits)

• AD 1400, Madhava of Sangamagrama – First calculation of π using
infinite series:

π

4 = 1 − 1
3 + 1

5 − 1
7 + · · · =

∞∑
n=0

(−1)n

2n + 1 (10 digits)
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History of π

• AD 1596, Ludolph van Ceulen – Calculation of π using 262-gon:

35 digits (by spending 25 years)

• AD 1706, William Jones – First use of the Greek letter π.
• AD 1775, Euler – Popularized the use of π by using it in his book.
• AD 1910, Srinivasa Ramanujan – Rapidly converging infinite series:

1
π

= 2
√

2
9801

∞∑
k=0

(4k)!(1103 + 26390k)
(k!)43964k

• AD 1995, Bailey, Borwein, and Plouffe (BBP) Formula is discovered:

π =
∞∑

k=0

[ 1
16k

( 4
8k + 1 − 2

8k + 4 − 1
8k + 5 − 1

8k + 6

)]

• AD 1997, Fabrice Bellard’s Formula (43% faster than BBP).
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History of π
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Computing π

• How to write a program that computes π?

• Then, how to test the program that actually computes π?

• Some programs do not have a test oracle to compare the output.

• We call such programs as non-testable programs.

• Then, how to test such non-testable programs?
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Types of Non-Testable Programs

• Type 1: Programs was written to determine the answer to a problem
we have not yet solved. (If we knew the oracle, we would not need the
program.)

• Type 2: Programs produce so much output that it is impractical to
verify all of it.

• Type 3: Programs for which the tester has a misconception.
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Types of Non-Testable Programs

From our point of view, type 1 programs are the most interesting.

• Type 1: Most scientific computation, certain branches of Artificial
Intelligence or Machine Learning, etc.

• What is the correct value of π?

• What is the correct result of the sin, cos, and tan functions?

• What is the correct way to play a video game, if you are applying
reinforcement learning?

• What is the correct way to classify an image, if you are applying deep
learning?

• What is the correct way to translate a sentence, if you are applying
machine translation?
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Implementing sin

• Let’s assume that you implemented the sin function.

• How to test the sin function?

• We can test it using the known values of the sin function.

• sin(0) = 0

• sin(π/2) = 1

• sin(π) = 0

• sin(3π/2) = −1

• sin(2π) = 0
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Implementing sin
However, a wrong implementation of the sin function can pass all of them:

1

-1
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2⇡

Let’s utilize a domain knowledge to test the sin function:
• sin(x) = sin(π − x)
• sin(x) = − sin(x + π)
• sin2(x) + sin2(x + π

2 ) = 1
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Metamorphic Relationship

Definition (Metamorphic Relationship)
A program p : X → Y has a metamorphic relationship f : X → X with
a relation R ⊆ Y × Y if and only if:

∀x ∈ X . (p(x), p ◦ f (x)) ∈ R

For example, the sin function has the following metamorphic relationships:

f Relationship R

f (x) = π − x sin(x) = sin(π − x)

f (x) = x + π sin(x) = − sin(x + π)

f (x) = x + π
2 sin2(x) + sin2(x + π

2 ) = 1
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Metamorphic Testing

• Metamorphic Testing is a testing technique that is based on the
metamorphic relationships of the program.

• However, manual identification of metamorphic relationships is labor
intensive and error-prone.

• Can we automatically learn metamorphic relationships?
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Examples: SMT Solvers
D. Winterer, C. Zhang, and Z. Su. Validating SMT Solvers via Semantic
Fusion, PLDI 2020.

PLDI ’20, June 15–20, 2020, London, UK Dominik Winterer, Chengyu Zhang, and Zhendong Su

�1 = x > 0 ^ x > 1
�2 = � < 0 ^ � < 1
�concat = (x > 0 ^ x > 1) ^ ( � < 0 ^ � < 1)
�fused = (x > 0 ^ z � � > 1) ^ ( z � x < 0 ^ � < 1)

Figure 1. Semantic Fusion on two satis�able formulas�1 and
�2. Variable z realizes the fusion function z = x + �. Shaded:
randomly chosen occurrences of x and � to be replaced by
variable inversion terms: z � � for x and z � x for �.

� = z � x . From these two equations, we obtain two inver-
sion functions rx (�, z) = z � � and r� (x, z) = z � x . Next, we
replace the highlighted occurrences of x and � by the cor-
responding inversion functions rx (�, z) and r� (x, z), which
results in formula �fused . By construction, the formula �fused
is also satis�able. We feed �fused to the SMT solver under
test and observe the result. If the result is unsat, we have
detected a (soundness) bug in the SMT solver under test.

Bug Hunting with YinYang. We have engineered a prac-
tical realization of Semantic Fusion, which we call YinYang.
During only four months of testing, we have used YinYang
to �nd and report 57 bugs in the default arithmetic and string
solvers of Z3 and CVC4. Out of these, 45 were con�rmed and
41 were �xed by the developers. We have found 29 bugs that
expose soundness issues, the most critical type of bugs in
SMT solvers. YinYang found 24 such soundness bugs in Z3
in multiple logics. It found more than 2/3 of all soundness
bugs in the nonlinear logic in Z3 since 2015, and around 1/3
of all soundness bugs in its string logics. In CVC4, YinYang
detected 5 soundness bugs; 4 were labeled “major” by the
CVC4 developers — there were only 9 other such bugs in
CVC4’s bug tracker. To the best of our knowledge, none of
the previous approaches has ever found a soundness bug in
CVC4. The SMT solver developers appreciated our testing
e�ort and bug reports, and speci�cally commented "great
�nd!", "excellent �nd!", "nice catch!", etc.

Main Contributions.
• We introduce Semantic Fusion, a novel, general, prin-

cipled methodology for stress-testing SMT solvers;
• Based on the Semantic Fusion methodology, we design

and develop the �rst highly e�ective tool, YinYang, for
SMT solver validation — the tool is customizable and
conveniently supports various SMT theories;

• We conduct a four-month extensive testing of Z3 and
CVC4 using YinYang to demonstrate its e�ectiveness —
we have found and reported a total of 57 bugs with 45
con�rmed and 41 �xed in their default arithmetic and
string solvers, the largest and most successful testing
campaign against modern SMT solvers; and

• We present several in-depth evaluations to understand
YinYang’s e�ectiveness in terms of improved code cov-
erage and with respect to a survey of the historic bugs
in the SMT solvers Z3 and CVC4.

; phi1

(declare-fun x () Int)

(declare-fun w () Bool)

(assert (= x (- 1)))

(assert (= w (= x (- 1))))

(assert w)

; phi2

(declare-fun y () Int)

(declare-fun v () Bool)

(assert (= v (not (= y (- 1)))))

(assert (ite v false (= y (- 1))))

Figure 2. Formulas�1 and�2 in the SMT-LIB format. Shaded:
variables to be replaced by inversion function terms.

Paper Organization. The rest of the paper is structured
as follows. Section 2 illustrates the high-level idea behind
Semantic Fusion via two examples. Section 3 formalizes our
Semantic Fusion approach and describes the implementation
of YinYang. Next, we give details on our extensive evaluation
(Section 4) and show sampled bugs to highlight the diverse
types of bugs that YinYang can �nd (Section 4.3). Finally, we
survey related work (Section 5) and conclude (Section 6).

2 Illustrative Examples
This section illustrates two instantiations of Semantic Fusion:
(1) SAT fusion fuses a pair of satis�able formulas into a satis-
�able formula, and, similarly, (2) UNSAT fusion fuses a pair
of unsatis�able formulas into an unsatis�able formula.

SMT-LIB Language. The SMT-LIB language is the cur-
rent standard input language for SMT solvers [4]. We fo-
cus on the following statements of the SMT-LIB language:
declare-fun, declare-const, define-fun, assert, check-sat.
Variables are declared as zero-valued functions. For example,
the statement "(declare-fun a () Real)" declares a variable
of type real. An assert statement speci�es constraints. The
predicates within the asserts can be of mixed types, e.g., the
assert "(assert (<= (/ x 4) (* 5 x)))" includes predicates of
real and boolean types. Operations are speci�ed in the pre�x
notation. Multiple asserts can be viewed as the conjunction
of the constraints in each individual assert statement. The
check-sat statement queries the solver to decide on the sat-
is�ability of a formula. If all constraints are satis�ed, the
formula is satis�able; otherwise, the formula is unsatis�able.

2.1 SAT Fusion
SAT fusion combines two satis�able formulas into a satis�-
able formula. SAT fusion can be described by the following
steps: (1) Formula Conjunction, (2) Variable Fusion, and (3)
Variable Inversion. Consider the formulas �1 and �2 in Fig-
ure 2. The SMT-LIB code represents the following formulas:

�1 ⌘ (x = �1) ^ (w = (x = �1)) ^w
�2 ⌘ (� = (� , �1)) ^ (� ! false) ^ (¬� ! (� = �1))

719

1 Formula Concatenation – Concatenate two formulas ϕ1 and ϕ2
using conjunction (∧) or disjunction (∨).

2 Variable Fusion – Create fresh variables to connect the variable sets
of ϕ1 and ϕ2 using fusion functions.

3 Variable Inversion – Substitute some occurrences of the chosen
variables in ϕ1 and ϕ2 using inversion functions.
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Examples: SMT Solvers
D. Winterer, C. Zhang, and Z. Su. Validating SMT Solvers via Semantic
Fusion, PLDI 2020.Validating SMT Solvers via Semantic Fusion PLDI ’20, June 15–20, 2020, London, UK

Type Fusion Function Variable Inversion Functions

rx r�

Int x + �
x + c + �
x ⇤ �
c1 ⇤ x + c2 ⇤ � + c3

z � �
z � c � �
z di� �
(z � c2 ⇤ � � c3) di� c1

z � x
z � c � x
z di� x
(z � c1 ⇤ x � c3) di� c2

Real x + �
x + c + �
x ⇤ �
c1 ⇤ x + c2 ⇤ � + c3

z � �
z � c � �
z/�
(z � c2 ⇤ � � c3)/c1

z � x
z � c � x
z/x
(z � c1 ⇤ x � c3)/c2

String x str++ �
x str++ �
x str++ c str++ �

str .substr z 0 (str .len x)
str .substr z 0 (str .len x)
str .substr z 0 (str .len x)

str .substr z (str .len x) (str .len �)
str .replace z x ""
str .replace (str .replace z x "") c ""

Figure 6. Variable fusion functions with their corresponding variable inversion functions categorized by types Int, Real and
String. The coe�cients c1, · · · , c3 are randomly chosen, and di� denotes integer division.

the assumption, i.e., the unsatis�ability of �1. The case for
�2[r� (x, z)/�]R ^ z = f (x,�) is symmetric. ⇤

Proposition 2 enables us to fuse two unsatis�able formu-
las into an unsatis�able formula and complements Proposi-
tion 1. We could also apply fusion to mixed formula pairs,
i.e., when �1 is satis�able and �2 is unsatis�able. We can
use �1[rx (�, z)/x] _ �2[r� (x, z)/�] for a satis�able fused for-
mula and �1[rx (x, z)/x] ^ �2[r� (x, z)/�] ^ z = �(x,�) for an
unsatis�able fused formula.

3.3 Fusion and Inversion Functions
We now give exemplary fusion and inversion functions (see
Figure 6) and explain the intuitions behind them. Let us
consider the Int and Real categories. The �rst two fusion
and inversion functions in these categories are based on
addition/subtraction and multiplication/division. When di-
vision and multiplication of variables are used as function
and inversion functions, a formula in linear logic might be-
come non-linear. This is because we replace free variables
occurrences by variable inversion functions that include the
division operator. Another inversion function for real and
integer arithmetic is c1 ⇤ x + c2 ⇤ � + c3. The intuition be-
hind c1 ⇤ x + c2 ⇤� + c3 is to synthesize arbitrary polynomial
combinations of the variables x and � since c1, · · · , c3 are
random coe�cients. Let us consider Strings next. In the �rst
row of the String category, we de�ne z as the concatenation
of the two strings x and �. Say x = "foo" and � = "bar", then
z = x str++ � = "foobar". We retrieve x by the substring
of z from 0 to |x |, for � the substring from |� | to the end of
z. Another way to retrieve � is to use the replace function
instead of substring. The expression str .replace z x "" denotes
the replacement of the �rst occurence of x in z by the empty
string "", which results in "bar".

In addition, we can insert a random string c into x str++ �
by x str++ c str++ � to make the fusion function more com-
plex, and then retrieve � by replacing x and c with "" sequen-
tially. We emphasize that Semantic Fusion is not restricted
to these fusion and inversion functions of Figure 6. A richer
set of fusion and inversion functions can be designed based
on the generic De�nitions 1 and 2.

3.4 YinYang
Based on Semantic Fusion, we have designed and engineered
the bug detection tool YinYang to stress-test SMT solvers.

Algorithm. Algorithm 1 presents a parameterized algo-
rithm of YinYang. The main procedure takes the oracle of
the seed formulas o 2 {sat, unsat}, SMT solver under test
S , and a set of seed formulas Φo as input. Each of the seeds
in Φo has the same satis�ability as the oracle o (either all
sat or all unsat). The sets of incorrects and crashes are sets
for collecting soundness and crash bugs, respectively, and
are both initialized to the empty set. The while loop body is
executed until a termination criterion is met, e.g., a timeout
or an interrupt by the user (Line 3). We �rst randomly choose
two formulas �1,�2 from Φo and pass them to the fuse func-
tion together with the oracle o. The fuse function returns
the fused formula �fused (Line 6). Then, we check whether
the SMT solver S has crashed on solving �fused . If so, we have
found a crash bug and will add �fused to crashes. Otherwise, if
S does not crash, we check whether S(�fused) is inconsistent
with the oracle o (Line 9). If so, we have observed a soundness
issue and will add �fused to the set incorrects.

Algorithm 2 presents the implementation of the fuse
function. It takes two seed formulas �1 and �2 as input
and retrieves the sets of their free variables vars(�1) and
vars(�2), respectively. Then, we create random tripletsT , for
(z, x,�) 2 T where x 2 vars(�1) and � 2 vars(�2), and z
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Above fusion functions and inversion functions are used to generate the
metamorphic transformations to test the SMT solvers.
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Examples: Datalog Engines
M. N. Mansur, M. Christakis, and V. Wüstholz. Metamorphic Testing of
Datalog Engines, ESEC/FSE 2021.
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(a) Containment mapping \ from &1 to &2.

&1 p(X) :- a(X,Y), a(Y,W), a(Z,W).

&2 p(X) :- a(X,Y), a(Y,X).

&1 p(X) :- a(X,Y), a(Y,W), a(Z,W).
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(b) Mapping of head and subgoals induced by \ .

Figure 6: Containment mapping \ from &1 to &2 induces a
mapping of subgoals. No mapping exists from &2 to &1.

In words, a containment mapping maps variables of &2 to variables
of &1 such that

(1) the head of &2 becomes the head of &1, and
(2) each subgoal of &2 becomes some subgoal of &1.

T������ 1. Let&1 and&2 be conjunctive queries.&2 is contained
in &1 (&2 ✓ &1) i� there exists a containment mapping from &1 to
&2.

As an example, consider the two CQs below (in Datalog syntax):

p(X) :- a(X,Y), a(Y,W), a(Z,W). // Q1

p(X) :- a(X,Y), a(Y,X). // Q2

&2 is contained in&1 (&2 ✓ &1) because there exists a containment
mapping \ from &1 to &2 (shown using solid arrows in Fig. 6a;
dotted arrows should be ignored for now). This is indeed a contain-
ment mapping because the head of &1 is the head of &2 and each
subgoal of &1 becomes a subgoal of &2 (shown using solid arrows
in Fig. 6b). On the other hand, &1 is not contained in &2 (&1 * &2)
because there does not exist a containment mapping from &2 to
&1, shown with dotted arrows in the �gure. If X and Y are mapped
to themselves (see Fig. 6a), then the head and �rst subgoal of &2
become the head and �rst subgoal of &1, but the second subgoal of
&2 cannot become any subgoal of&1 (see Fig. 6b; red dotted arrows
denote invalid subgoal mappings).

4 METAMORPHIC TRANSFORMATIONS
Using the equivalence and containment properties of CQs, we now
present their metamorphic transformations. Note that, in this sec-
tion, we keep the presentation simple by describing a single trans-
formation to a single conjunctive query. In practice however, our
approach can perform sequences of transformations to multiple,
more general queries (see Sects. 4.4 and 5 for more details).

Since any conjunctive query may be expressed as a Datalog rule,
we refer to CQs as rules in the following. Our metamorphic rule
transformations are categorized into three types:
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(a) Containment mapping\ from& to&0 and map-
ping f from &0 to & .

& p(X) :- a(X,Y), a(Y,X).

& 0 p(X) :- a(X,Y), a(Y,X), a(Z,X).

& p(X) :- a(X,Y), a(Y,X).
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(b) Mapping of head and subgoals induced by \ and f .

Figure 7: Example of A��E� transformation.

Addition (A��): Rule & is transformed into A��(&) = & 0 by
adding a subgoal.

Modi�cation (M��): Rule & is transformed into M��(&) =
& 0 by modifying a variable.

Removal (R��): Rule & is transformed into R��(&) = & 0 by
removing a subgoal.

Each of these transformation types may result in any of the
following three outcomes:

Expansion (E��): Original rule& is contained in transformed
rule & 0, i.e., & ✓ & 0.

Equivalence (E�): Original rule & is equivalent to trans-
formed rule & 0, i.e., & ⌘ & 0.

Contraction (C��): Transformed rule& 0 is contained in orig-
inal rule & , i.e., & 0 ✓ & .

We refer to these outcomes as oracles.
Based on the above, a rule transformation combines a transfor-

mation type with an oracle. For instance, A��C�� refers to adding
a subgoal to a rule & such that the resulting rule & 0 is contained in
& . Next, we describe these transformations in detail.

4.1 A�� Transformations
The A�� transformations add a subgoal '(E1, . . . , E=) to a rule & ,
where E1, . . . , E= are variables—we ignore constants for simplicity.

A��E��. The A��E�� transformation ensures that & is con-
tained in the resulting rule & 0, i.e., & ✓ & 0. However, note that it is
not possible to obtain a & 0 such that & ⇢ & 0 by adding a subgoal.
The reason is that, when adding a subgoal to & , there is always a
containment mapping from & to & 0, i.e., & 0 ✓ & . This is because
the head of & is the head of & 0, and each subgoal of & is in & 0.
Consequently, even if there existed a containment mapping in the
desirable direction, i.e., & ✓ & 0, then the two queries would be
equivalent, a case that is already covered by A��E�.

A��E�. Given that a containment mapping from & to & 0 al-
ways exists, the A��E� transformation guarantees that & ⌘ & 0
by ensuring there also exists a containment mapping from & 0 to & .
Intuitively, A��E� adds a new subgoal to & while avoiding intro-
ducing new joins among the existing subgoals, thus preserving the
original result. To ensure the existence of a containment mapping
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Using the equivalence and containment properties of CQs, we now
present their metamorphic transformations. Note that, in this sec-
tion, we keep the presentation simple by describing a single trans-
formation to a single conjunctive query. In practice however, our
approach can perform sequences of transformations to multiple,
more general queries (see Sects. 4.4 and 5 for more details).

Since any conjunctive query may be expressed as a Datalog rule,
we refer to CQs as rules in the following. Our metamorphic rule
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Addition (A��): Rule & is transformed into A��(&) = & 0 by
adding a subgoal.

Modi�cation (M��): Rule & is transformed into M��(&) =
& 0 by modifying a variable.

Removal (R��): Rule & is transformed into R��(&) = & 0 by
removing a subgoal.

Each of these transformation types may result in any of the
following three outcomes:

Expansion (E��): Original rule& is contained in transformed
rule & 0, i.e., & ✓ & 0.

Equivalence (E�): Original rule & is equivalent to trans-
formed rule & 0, i.e., & ⌘ & 0.

Contraction (C��): Transformed rule& 0 is contained in orig-
inal rule & , i.e., & 0 ✓ & .

We refer to these outcomes as oracles.
Based on the above, a rule transformation combines a transfor-

mation type with an oracle. For instance, A��C�� refers to adding
a subgoal to a rule & such that the resulting rule & 0 is contained in
& . Next, we describe these transformations in detail.

4.1 A�� Transformations
The A�� transformations add a subgoal '(E1, . . . , E=) to a rule & ,
where E1, . . . , E= are variables—we ignore constants for simplicity.

A��E��. The A��E�� transformation ensures that & is con-
tained in the resulting rule & 0, i.e., & ✓ & 0. However, note that it is
not possible to obtain a & 0 such that & ⇢ & 0 by adding a subgoal.
The reason is that, when adding a subgoal to & , there is always a
containment mapping from & to & 0, i.e., & 0 ✓ & . This is because
the head of & is the head of & 0, and each subgoal of & is in & 0.
Consequently, even if there existed a containment mapping in the
desirable direction, i.e., & ✓ & 0, then the two queries would be
equivalent, a case that is already covered by A��E�.

A��E�. Given that a containment mapping from & to & 0 al-
ways exists, the A��E� transformation guarantees that & ⌘ & 0
by ensuring there also exists a containment mapping from & 0 to & .
Intuitively, A��E� adds a new subgoal to & while avoiding intro-
ducing new joins among the existing subgoals, thus preserving the
original result. To ensure the existence of a containment mapping
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Metamorphic transformation for Datalog engines using containment
mapping (e.g., AddEqu – addition (Add) for equivalence (Equ)).
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Examples: Web Browser Debugger
S. Tolksdorf, D. Lehmann, and M. Pradel. Interactive Metamorphic
Testing of Debuggers, ISSTA 2019.

It defines the metamorphic transformations for the 1) debugger
actions and 2) input programs to test the web browser debugger.

ISSTA ’19, July 15–19, 2019, Beijing, China Sandro Tolksdorf, Daniel Lehmann, and Michael Pradel

5.1 Experimental Setup
We apply our tool to a total of 47,342 JavaScript �les. The vast
majority of them is from the test262 ECMAScript test suite3, which
contains thousands of short code snippets that test individual fea-
tures of JavaScript. We create multiple variants of the �les in the
test suite by running them in strict and non-strict mode, and by
concatenating multiple �les into larger test cases. In addition, we
also use �les from the Sunspider and Octane benchmark suites4

and a set of JavaScript code puzzles from a university course. For
all �les, we automatically replace non-deterministic API calls, e.g.,
to Date.now(), with deterministic code, to make our results repro-
ducible and to avoid spurious warnings.

Given the total of 47,342 JavaScript �les, we create an initial
sequence of debugging actions with DBDB, an existing approach
for automated debugger testing [19]. Each of these initial test cases
is executed twice, each time creating and executing a metamorphic
test, which yields a total of 94,684 test executions. We ignore a small
subset of these executions because they failed or reported incorrect
results due to bugs in our implementation.

We apply our tool to �nd bugs in the JavaScript debugger of the
widely used Chromium web browser. Unless otherwise noted in our
bug reports, all experiments use version 70.0.3538.102 of Chromium.
The experiments are conduced on two standard computers, an AMD
Phenom II 945 with 3GHz CPU and 8GB of RAM, and an Intel i7
CPU with 4.6GHz and 16GB of RAM. On these computers, we run
16 Debian-based virtual machines to parallelize our experiments.

5.2 E�ectiveness at Detecting Bugs
While generating and executing 94,684 metamorphic debugger tests,
our tool reports a total of 59 warnings. For each of them, the traces
obtained from the original and the transformed inputs are not in
the expected output relation. We manually inspected and classi�ed
them into true positives and false positives. A true positive is a vio-
lation of the equivalence relation that indeed points to a bug in the
tested debugger. We �nd 30 of the 59 warnings to be true positives.
The remaining 29 warnings are false positives, i.e., the result of
violating an assumption we make when designing the metamorphic
relations. Typically, such violations are due to corner-cases of the
JavaScript language. Sections 5.2.1 and 5.2.2 give examples of both
kinds of warnings. Overall, we believe a true positive rate of 51% is
acceptable for automatically detecting bugs in a tool (debuggers)
that is both di�cult to test and important for many developers.
Re�ning the metamorphic relations to avoid speci�c corner-cases
of JavaScript could further increase the true positive rate.

Through manual inspection, we identify a set of unique root
causes for the reported warnings. In the process of our evaluation,
we reported nine unique root causes as bugs to the Chromium
developers. Table 3 lists the bug reports, along with their status as
of June 1, 2019. Eight reports are currently “Assigned” to a developer,
which, as per the Chromium bug reporting guidelines5, means a
developer has inspected our report and con�rmed it as a bug. One
of the reported bugs is marked as release-blocking. Another one
of the reported bugs, which is about changed program behavior

3https://github.com/tc39/test262/
4https://webkit.org/perf/sunspider/sunspider.html, https://chromium.github.io/octane/
5https://www.chromium.org/for-testers/bug-reporting-guidelines

Table 3: Bugs reported to the Chromium developers.

Issue ID Description Status
862978 Cannot set breakpoint Assigned
889481 Debugger does not pause Assigned
892622 Debugger does not pause Assigned,

release-blocking
892653 Pauses at location without breakpoint Assigned
901811 Missing variable in scope Assigned
901814 Step-in does not enter function Assigned
901816 Missing variable in scope Assigned
901819 Debugger does not pause Assigned
908054 Debugging changes program behavior Won’t �x

1 // Original input:
2 var a = 5; // (i) pauses --> continue
3 var slideOverMe;
4 var C = class{};// (ii) pauses --> continue
5 var b = 42; //(iii) pauses --> continue

1 // Transformed input:
2 var a = 5; // (i) pauses --> continue
3 var slideOverMe;
4 var C = class{};// (no pausing)
5 var b = 42; // (ii) pauses

Figure 12: Bug that causes the debugger to not pause at a
breakpoint.

caused by debugging, has been marked as “Won’t �x”. Overall, our
experience reporting these bugs shows that our approach detects
relevant problems in complex, real-world software.

5.2.1 Examples of Detected Bugs.

Debugger does not pause at breakpoint. The following bug has
been reported as issue 889481. Figure 12 shows two JavaScript
code snippets along with their breakpoints. In the code on the top,
our tool sets three breakpoints at lines 2, 3, and 5, respectively.
Because the second breakpoint is on a variable declaration only, the
debugger slides it to line 4. When running the code, the debugger
pauses at all three breakpoints and moves on to the next breakpoint
when triggering the continue action. The code at the bottom is
the same, but the debugging actions di�er. Instead of setting a
breakpoint at line 3, which anyway slides to line 4, our tool now
sets the breakpoint directly at line 4. This supposedly harmless
di�erence causes the debugger to miss the breakpoint during the
execution. After pausing at line 2 and continuing the execution, the
debugger skips line 4 and only pauses again at line 5.

Such misbehavior is very misleading for developers because it
seems that a statement is not executed even though the underlying
JavaScript engine executes it. Our approach detects this bug by
applying two transformations in a row. In the �rst transformation,
it adds a breakpoint and a continue at line 3. In the second transfor-
mation, it eliminates breakpoint sliding by setting the breakpoint
directly at line 4 instead of line 3. The two code examples in Fig-
ure 12 shows the code before and after the second transformation.
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In the upper case, a breakpoint is originally set at line 3, but debugger
slides it to line 4. In the lower case, a breakpoint is directly set at line 4.
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Examples: Compilers
V. Le, M. Afshari, and Z. Su. Compiler Validation via Equivalence Modulo
Inputs, PLDI 2014.

b (for instance, increasing b before the assignment to e). The
expression “2147483647 - b” was thus determined not to be a
loop invariant and was not hoisted outside the inner loops. The
program ran as expected. On the other hand, since the innermost loop
was not executed, Orion could freely modify its body. It generated
some variants in which all statements mutating b were removed.
As explained earlier, in these variants, the expression became loop
invariant, and thus was hoisted out of the loop, which effectively
triggered the bug. The original program is quite complex, having
2,985 LOC; the EMI variant that exposed the bug has 2,015 LOC.

The two examples demonstrate that bugs can appear in both
small, and large, complex code bases, potentially resulting in hard-
to-detect errors, crashes, or security exploits, even in entirely cor-
rect, even verified, programs. They also highlight the difficulty of
correctly optimizing code. Not only each optimization pass can
introduce bugs directly, the interactions among different optimiza-
tions can also lead to latent bugs. EMI, being an end-to-end testing
methodology, detects bugs that occur across optimization passes, as
well as those that occur within an individual pass.

3. EMI and Orion’s Implementation
This section introduces equivalence modulo inputs (EMI) and
describes our realization of Orion.

3.1 Definitions and High-Level Approach
The concept of equivalence modulo inputs (EMI) that we have
outlined in Section 1 is simple and intuitive. The main goal of this
subsection is to provide more detailed and precise definitions.

Rather than formalizing EMI for a concrete programming lan-
guage, we operate on a generic programming language L with
deterministic3 semantics J·K, i.e., repeated executions of a program
P 2 L on the same input i always yield the same result JPK(i).

3.1.1 Equivalence Modulo Inputs
Two programs P,Q 2 L are equivalent modulo inputs (EMI) w.r.t.
an input set I common to P and Q (i.e., I ✓ dom(P)\dom(Q)) iff

8i 2 I JPK(i) = JQK(i).
We use JPK =I JQK to denote that P and Q are EMI w.r.t. input set I.

For the degenerate case where P and Q do not take inputs (i.e.,
they are closed programs), EMI reduces to semantic equivalence:

JPK = JQK.
Or more precisely, P and Q are EMI w.r.t. the input set {void},
where void denotes the usual “no argument”:

JPK(void) = JQK(void).
For example, the GCC test 931004-11.c and the output code from
Orion shown respectively in Figures 1a and 1b are EMI (w.r.t.
I = {void}).

Given a program P 2 L , any input set I ✓ dom(P) naturally
induces a collection of programs Q 2 L that are EMI (w.r.t. I) to P.
We call this collection P’s EMI variants.

Definition 3.1 (EMI Variants). A program P’s EMI variants w.r.t.
an input set I is given by:

{Q 2 L | JPK =I JQK}.

It is clear that EMI is a relaxed notion of semantic equivalence:

JPK = JQK =) JPK =I JQK.
3 Note that we may also force a non-deterministic language to assume
deterministic behavior.

3.1.2 Differential Testing with EMI Variants
At this point, it may not be clear yet what benefits our relaxed notion
of equivalence can provide, which we explain next.

Differential Testing: An Alternative View Our goal is to differen-
tially test [16] compilers. The traditional view of differential testing
is simple: If two programs (in our setting, compilers or compiler
versions) “act differently” on some input (i.e. source programs),
we have found a bug in one of the compilers (maybe also in both).
This is, for example, the view taken by Csmith [28] (assuming that
the input programs are well-behaving, e.g., they do not exhibit any
undefined behavior).

We adopt an alternative view: If an oracle can generate a program
P’s semantic equivalent variants, these variants can stress-test any
compiler Comp by checking whether Comp produces equivalent
code for these variants. This view is attractive because we can (1)
operate on existing code (or randomly generated, but valid code),
and (2) check a single compiler in isolation (e.g. where competing
compilers do not exist). However, we face two difficult challenges:
(1) How to generate semantic equivalent variants? and (2) How
to check equivalence of the produced code? Both have been long-
standing challenges in software analysis and verification.

The “Profile and Mutate” Strategy Our key insight is that EMI
provides a practical mechanism to realize our alternative view
for differential testing of compilers. Indeed, by relaxing semantic
equivalence w.r.t. an input set I, we reduce the second challenge to
the simple task of testing against I. As for the first challenge, note
that P’s executions on I yield a static slice of P and unexecuted “dead
code”. One may freely mutate the “dead code” without changing
P’s semantics on I, thus providing a potentially enormous number
of EMI variants to help stress-test compilers.

Once the EMI variants are generated, testing is straightforward.
Let Q = {Q1, . . . ,Qk} be a set of P’s EMI variants w.r.t. I. For each
Qi 2 Q, we verify the following:

8i 2 I Comp(Qi)(i) = Comp(P)(i).

Any deviant behavior indicates a miscompilation.
So far, we have not specified how to “mutate” the unexecuted

“dead code” w.r.t. I. Obvious mutations include pruning, insertion, or
modification. Our implementation, which we describe next, focuses
on pruning, and we show in evaluation that even such a simple
realization is extremely effective — it has detected 147 unique bugs
for GCC and LLVM alone in under a year. We leave as future work
to explore other mutation strategies.

3.2 Implementation of Orion
We now describe Orion, our practical realization of the EMI concept
targeting C compilers via the “profile and prune” strategy. At a high
level, Orion operates on a program’s abstract syntax tree (AST)
and contains two key steps: (1) extracting coverage information
(Section 3.2.1), and (2) generating EMI variants (Section 3.2.2).

One challenge for testing C compilers is to avoid programs with
undefined behavior because the C standard allows a compiler to do
anything with such programs. For example, one major, painstaking
contribution of Csmith is to generate valid test programs most of the
time. In this regard, Orion has a strong advantage. Indeed, the EMI
variants generated by Orion do not exhibit any undefined behavior
if the original program has no undefined behavior (since only dead
code is pruned from the original program). This advantage of Orion
helps to easily generate many valid variants from a single valid seed
program.

Algorithm 1 describes Orion’s main process. As its first step,
Orion profiles the test program P’s execution on the input set I to
collect (1) coverage information and (2) the expected output on each
input value i 2 I (lines 2–3). It then generates P’s EMI variants w.r.t.
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It measures the code coverage for given inputs and generates variants of
the program by randomly pruning the unexecuted statements.

def prune_visit(prog, statement, coverage_set):
if statement not in coverage_set and flip_coin(statement):

prog.delete(statement)
else for child in statement.children:

prune_visit(prog, child, coverage_set)
def gen_variant(prog, coverage_set):

emi_variant = clone(prog)
for statement in emi_variant:

prune_visit(emi_variant, statement, coverage_set)
return emi_variant
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Examples: Compilers
struct tiny { char c; char d; char e; };
f(int n, struct tiny x, struct tiny y, struct tiny z, long l) {

if (x.c != 10) abort(); if (x.d != 20) abort(); if (x.e != 30) abort();
if (y.c != 11) abort(); if (y.d != 21) abort(); if (y.e != 31) abort();
if (z.c != 12) abort(); if (z.d != 22) abort(); if (z.e != 32) abort();
if (l != 123) abort(); }

main() {
struct tiny x[3]; x[0].c = 10; x[1].c = 11; x[2].c = 12; x[0].d = 20;
x[1].d = 21; x[2].d = 22; x[0].e = 30; x[1].e = 31; x[2].e = 32;
f(3, x[0], x[1], x[2], (long)123); exit(0); }

struct tiny { char c; char d; char e; };
f(int n, struct tiny x, struct tiny y, struct tiny z, long l) {

if (x.c != 10) /* X */; if (x.d != 20) abort(); if (x.e != 30) /* X */;
if (y.c != 11) abort(); if (y.d != 21) abort(); if (y.e != 31) /* X */;
if (z.c != 12) abort(); if (z.d != 22) /* X */; if (z.e != 32) abort();
if (l != 123) /* X */; }

main() {
struct tiny x[3]; x[0].c = 10; x[1].c = 11; x[2].c = 12; x[0].d = 20;
x[1].d = 21; x[2].d = 22; x[0].e = 30; x[1].e = 31; x[2].e = 32;
f(3, x[0], x[1], x[2], (long)123); exit(0); }
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Examples: Compilers
C. Sun, V. Le, and Z. Su. Finding Compiler Bugs via Live Code Mutation,
OOPSLA 2016.

b (for instance, increasing b before the assignment to e). The
expression “2147483647 - b” was thus determined not to be a
loop invariant and was not hoisted outside the inner loops. The
program ran as expected. On the other hand, since the innermost loop
was not executed, Orion could freely modify its body. It generated
some variants in which all statements mutating b were removed.
As explained earlier, in these variants, the expression became loop
invariant, and thus was hoisted out of the loop, which effectively
triggered the bug. The original program is quite complex, having
2,985 LOC; the EMI variant that exposed the bug has 2,015 LOC.

The two examples demonstrate that bugs can appear in both
small, and large, complex code bases, potentially resulting in hard-
to-detect errors, crashes, or security exploits, even in entirely cor-
rect, even verified, programs. They also highlight the difficulty of
correctly optimizing code. Not only each optimization pass can
introduce bugs directly, the interactions among different optimiza-
tions can also lead to latent bugs. EMI, being an end-to-end testing
methodology, detects bugs that occur across optimization passes, as
well as those that occur within an individual pass.

3. EMI and Orion’s Implementation
This section introduces equivalence modulo inputs (EMI) and
describes our realization of Orion.

3.1 Definitions and High-Level Approach
The concept of equivalence modulo inputs (EMI) that we have
outlined in Section 1 is simple and intuitive. The main goal of this
subsection is to provide more detailed and precise definitions.

Rather than formalizing EMI for a concrete programming lan-
guage, we operate on a generic programming language L with
deterministic3 semantics J·K, i.e., repeated executions of a program
P 2 L on the same input i always yield the same result JPK(i).

3.1.1 Equivalence Modulo Inputs
Two programs P,Q 2 L are equivalent modulo inputs (EMI) w.r.t.
an input set I common to P and Q (i.e., I ✓ dom(P)\dom(Q)) iff

8i 2 I JPK(i) = JQK(i).
We use JPK =I JQK to denote that P and Q are EMI w.r.t. input set I.

For the degenerate case where P and Q do not take inputs (i.e.,
they are closed programs), EMI reduces to semantic equivalence:

JPK = JQK.
Or more precisely, P and Q are EMI w.r.t. the input set {void},
where void denotes the usual “no argument”:

JPK(void) = JQK(void).
For example, the GCC test 931004-11.c and the output code from
Orion shown respectively in Figures 1a and 1b are EMI (w.r.t.
I = {void}).

Given a program P 2 L , any input set I ✓ dom(P) naturally
induces a collection of programs Q 2 L that are EMI (w.r.t. I) to P.
We call this collection P’s EMI variants.

Definition 3.1 (EMI Variants). A program P’s EMI variants w.r.t.
an input set I is given by:

{Q 2 L | JPK =I JQK}.

It is clear that EMI is a relaxed notion of semantic equivalence:

JPK = JQK =) JPK =I JQK.
3 Note that we may also force a non-deterministic language to assume
deterministic behavior.

3.1.2 Differential Testing with EMI Variants
At this point, it may not be clear yet what benefits our relaxed notion
of equivalence can provide, which we explain next.

Differential Testing: An Alternative View Our goal is to differen-
tially test [16] compilers. The traditional view of differential testing
is simple: If two programs (in our setting, compilers or compiler
versions) “act differently” on some input (i.e. source programs),
we have found a bug in one of the compilers (maybe also in both).
This is, for example, the view taken by Csmith [28] (assuming that
the input programs are well-behaving, e.g., they do not exhibit any
undefined behavior).

We adopt an alternative view: If an oracle can generate a program
P’s semantic equivalent variants, these variants can stress-test any
compiler Comp by checking whether Comp produces equivalent
code for these variants. This view is attractive because we can (1)
operate on existing code (or randomly generated, but valid code),
and (2) check a single compiler in isolation (e.g. where competing
compilers do not exist). However, we face two difficult challenges:
(1) How to generate semantic equivalent variants? and (2) How
to check equivalence of the produced code? Both have been long-
standing challenges in software analysis and verification.

The “Profile and Mutate” Strategy Our key insight is that EMI
provides a practical mechanism to realize our alternative view
for differential testing of compilers. Indeed, by relaxing semantic
equivalence w.r.t. an input set I, we reduce the second challenge to
the simple task of testing against I. As for the first challenge, note
that P’s executions on I yield a static slice of P and unexecuted “dead
code”. One may freely mutate the “dead code” without changing
P’s semantics on I, thus providing a potentially enormous number
of EMI variants to help stress-test compilers.

Once the EMI variants are generated, testing is straightforward.
Let Q = {Q1, . . . ,Qk} be a set of P’s EMI variants w.r.t. I. For each
Qi 2 Q, we verify the following:

8i 2 I Comp(Qi)(i) = Comp(P)(i).

Any deviant behavior indicates a miscompilation.
So far, we have not specified how to “mutate” the unexecuted

“dead code” w.r.t. I. Obvious mutations include pruning, insertion, or
modification. Our implementation, which we describe next, focuses
on pruning, and we show in evaluation that even such a simple
realization is extremely effective — it has detected 147 unique bugs
for GCC and LLVM alone in under a year. We leave as future work
to explore other mutation strategies.

3.2 Implementation of Orion
We now describe Orion, our practical realization of the EMI concept
targeting C compilers via the “profile and prune” strategy. At a high
level, Orion operates on a program’s abstract syntax tree (AST)
and contains two key steps: (1) extracting coverage information
(Section 3.2.1), and (2) generating EMI variants (Section 3.2.2).

One challenge for testing C compilers is to avoid programs with
undefined behavior because the C standard allows a compiler to do
anything with such programs. For example, one major, painstaking
contribution of Csmith is to generate valid test programs most of the
time. In this regard, Orion has a strong advantage. Indeed, the EMI
variants generated by Orion do not exhibit any undefined behavior
if the original program has no undefined behavior (since only dead
code is pruned from the original program). This advantage of Orion
helps to easily generate many valid variants from a single valid seed
program.

Algorithm 1 describes Orion’s main process. As its first step,
Orion profiles the test program P’s execution on the input set I to
collect (1) coverage information and (2) the expected output on each
input value i 2 I (lines 2–3). It then generates P’s EMI variants w.r.t.

219

It defines EMI mutation operators not only for dead code but also for
live code by profiling the valuations of live variables.

• Always False Conditional Block (FCB) – Generate an if/while
statement, whose body is not empty and condition is always false.

• Always True Guard (TG) – Generate an if statement, whose
condition is always true and guard an existing executed statement.

• Always True Conditional Block (TCB) – Synthesize an if
statement, whose body has side effects but reverts them at the end.
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Examples: Deep Neural Networks

I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing
adversarial examples, ICLR 2015.

Published as a conference paper at ICLR 2015

+ .007⇥ =

x sign(rxJ(✓, x, y))
x +

✏sign(rxJ(✓, x, y))
“panda” “nematode” “gibbon”

57.7% confidence 8.2% confidence 99.3 % confidence

Figure 1: A demonstration of fast adversarial example generation applied to GoogLeNet (Szegedy
et al., 2014a) on ImageNet. By adding an imperceptibly small vector whose elements are equal to
the sign of the elements of the gradient of the cost function with respect to the input, we can change
GoogLeNet’s classification of the image. Here our ✏ of .007 corresponds to the magnitude of the
smallest bit of an 8 bit image encoding after GoogLeNet’s conversion to real numbers.

Let ✓ be the parameters of a model, x the input to the model, y the targets associated with x (for
machine learning tasks that have targets) and J(✓, x, y) be the cost used to train the neural network.
We can linearize the cost function around the current value of ✓, obtaining an optimal max-norm
constrained pertubation of

⌘ = ✏sign (rxJ(✓, x, y)) .

We refer to this as the “fast gradient sign method” of generating adversarial examples. Note that the
required gradient can be computed efficiently using backpropagation.

We find that this method reliably causes a wide variety of models to misclassify their input. See
Fig. 1 for a demonstration on ImageNet. We find that using ✏ = .25, we cause a shallow softmax
classifier to have an error rate of 99.9% with an average confidence of 79.3% on the MNIST (?) test
set1. In the same setting, a maxout network misclassifies 89.4% of our adversarial examples with
an average confidence of 97.6%. Similarly, using ✏ = .1, we obtain an error rate of 87.15% and
an average probability of 96.6% assigned to the incorrect labels when using a convolutional maxout
network on a preprocessed version of the CIFAR-10 (Krizhevsky & Hinton, 2009) test set2. Other
simple methods of generating adversarial examples are possible. For example, we also found that
rotating x by a small angle in the direction of the gradient reliably produces adversarial examples.

The fact that these simple, cheap algorithms are able to generate misclassified examples serves as
evidence in favor of our interpretation of adversarial examples as a result of linearity. The algorithms
are also useful as a way of speeding up adversarial training or even just analysis of trained networks.

5 ADVERSARIAL TRAINING OF LINEAR MODELS VERSUS WEIGHT DECAY

Perhaps the simplest possible model we can consider is logistic regression. In this case, the fast
gradient sign method is exact. We can use this case to gain some intuition for how adversarial
examples are generated in a simple setting. See Fig. 2 for instructive images.

If we train a single model to recognize labels y 2 {�1, 1} with P (y = 1) = �
�
w>x + b

�
where

�(z) is the logistic sigmoid function, then training consists of gradient descent on

Ex,y⇠pdata⇣(�y(w>x + b))

where ⇣(z) = log (1 + exp(z)) is the softplus function. We can derive a simple analytical form for
training on the worst-case adversarial perturbation of x rather than x itself, based on gradient sign

1This is using MNIST pixel values in the interval [0, 1]. MNIST data does contain values other than 0 or
1, but the images are essentially binary. Each pixel roughly encodes “ink” or “no ink”. This justifies expecting
the classifier to be able to handle perturbations within a range of width 0.5, and indeed human observers can
read such images without difficulty.

2 See https://github.com/lisa-lab/pylearn2/tree/master/pylearn2/scripts/
papers/maxout. for the preprocessing code, which yields a standard deviation of roughly 0.5.

3

Adversarial examples are the inputs that are designed to intentionally
mislead the result of the deep neural networks.
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Examples: Deep Neural Networks

X. Huang, M. Kwiatkowska, S. Wang, and M. Wu. Safety verification of
deep neural networks, CAV 2017.

Classifiers employed in vision tasks are typically multi-layer networks, which prop-
agate the input image through a series of linear and non-linear operators. They are
high-dimensional, often with millions of dimensions, non-linear and potentially dis-
continuous: even a small network, such as that trained to classify hand-written images
of digits 0-9, has over 60,000 real-valued parameters and 21,632 neurons (dimensions)
in its first layer. At the same time, the networks are trained on a finite data set and
expected to generalise to previously unseen images. To increase the probability of cor-
rectly classifying such an image, regularisation techniques such as dropout are typically
used, which improves the smoothness of the classifiers, in the sense that images that are
close (within ✏ distance) to a training point are assigned the same class label.

automobile to bird automobile to frog automobile to airplane automobile to horse

Fig. 1. Automobile images (classified correctly) and their perturbed images (classified
wrongly)

Unfortunately, it has been observed in [13,36] that deep neural networks, includ-
ing highly trained and smooth networks optimised for vision tasks, are unstable with
respect to so called adversarial perturbations. Such adversarial perturbations are (min-
imal) changes to the input image, often imperceptible to the human eye, that cause the
network to misclassify the image. Examples include not only artificially generated ran-
dom perturbations, but also (more worryingly) modifications of camera images [22] that
correspond to resizing, cropping or change in lighting conditions. They can be devised
without access to the training set [29] and are transferable [19], in the sense that an ex-
ample misclassified by one network is also misclassified by a network with a di↵erent
architecture, even if it is trained on di↵erent data. Figure 1 gives adversarial pertur-
bations of automobile images that are misclassified as a bird, frog, airplane or horse
by a highly trained state-of-the-art network. This obviously raises potential safety con-
cerns for applications such as autonomous driving and calls for automated verification
techniques that can verify the correctness of their decisions.

Safety of AI systems is receiving increasing attention, to mention [33,10], in view
of their potential to cause harm in safety-critical situations such as autonomous driving.
Typically, decision making in such systems is either solely based on machine learning,
through end-to-end controllers, or involves some combination of logic-based reasoning
and machine learning components, where an image classifier produces a classification,
say speed limit or a stop sign, that serves as input to a controller. A recent trend towards
“explainable AI” has led to approaches that learn not only how to assign the classifica-
tion labels, but also additional explanations of the model, which can take the form of
a justification explanation (why this decision has been reached, for example identify-
ing the features that supported the decision) [17,31]. In all these cases, the safety of a
decision can be reduced to ensuring the correct behaviour of a machine learning com-

It uses SMT solvers to find the adversarial examples as
counterexamples or to verify the safety of the deep neural networks.

Metamorphic testing is a surprisingly effective concept for testing deep
neural networks (at least so far).
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Examples: Object Detection

S. Wang and Z. Su. Metamorphic Object Insertion for Testing Object
Detection Systems. ASE 2020.

MetaOD utilizes a metamorphic transformation that pastes objects
collected from the original images into the given image.
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Examples: Object Detection

The inserted objects are pointed by blue arrows, and the inserted objects
are resized to the average size of existing objects of the same category.
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Learning Metamorphic Relationships
J. Zhang, J. Chen, D. Hao, Y. Xiong, B. Xie, L. Zhang, and H. Mei.
Search-based inference of polynomial metamorphic relations, ASE 2014.

• Consider a linear metamorphic relationship for program p : X → Y :

f (x) = αx + β c1y + c2y ′ + d = 0

where y = p(x) and y ′ = p(f (x)).

• For example, sin(x) = sin(π − x) is a linear metamorphic relationship
with α = −1, β = π, c1 = 1, c2 = −1, d = 0.

• Then, the learning problem is to find the coefficients α, β, c1, c2, d
that satisfy the linear metamorphic relationship.

• The key idea is a search-based approach to find the coefficients
using a particle swarm optimization (PSO) algorithm.
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Recall: Particle Swarm Optimization (PSO)

x t+1
i = x t

i + v t
i

v t+1
i = 1 wv t

i + 2 c1(pi − x t
i ) + 3 c2(g − x t

i )

• x t
i – position of the i-th particle at time t

• v t
i – velocity of the i-th particle at time t

• pi – best position of the i-th particle (local best)
• g – best position of the entire flock (global best)

It follows the three rules of the flock of birds.
1 Each bird has an inertia to keep flying in the same direction.
2 Each bird remembers and has a tendency to return to the best

position it has ever visited by itself (local best).
3 Each bird has a tendency to follow the known global best position

in the flock by communicating with other birds. (global best)
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Recall: Particle Swarm Optimization (PSO)

Link
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Learning Metamorphic Relationships
J. Zhang, J. Chen, D. Hao, Y. Xiong, B. Xie, L. Zhang, and H. Mei.
Search-based inference of polynomial metamorphic relations, ASE 2014.

• It defines the fitness function for the PSO algorithm as the number
of inputs that satisfy the formula with the coefficients with n inputs:

fitness =
n∑

i=1

(
c1yi + c2y ′

i + d = 0
)

where xi is the i-th input and yi = p(xi), y ′
i = p(f (xi)).

• When c1 and c2 are between [−ϕ, ϕ] with a small threshold ϕ, the
algorithm resets them to a new random value to prevent producing
the degenerate solutions.

• We can extend it into a quadratic metamorphic relationship:

f (x) = αx + β c1y2 + c2yy ′ + c3y ′2 + d1y + d2y ′ + e = 0

where y = p(x) and y ′ = p(f (x)).
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Differential Testing

• Differential Testing is a testing technique that compares the
outputs of two or more similar programs (or different
implementations of same specification) for the same inputs.

• Unlike the metamorphic testing, differential testing does not
require the metamorphic relationships.

• The key idea is to compare the outputs of the programs and report
the differences as the potential bugs.

• Thus, it utilizes the cross-reference oracle, which means that the
majority of the outputs has a higher probability of being correct.
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Examples: Nezha
T. Petsios, A. Tang, S. Stolfo, A. Keromytis, and S. Jana. Nezha: Efficient
Domain-independent Differential Testing. S&P 2017.

NEZHA Runtime
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Program 1Programs
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Program 1
Program 1Programs
(Original)
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Fig. 2: System architecture.

passes it to the core engine. The core engine then generates
new inputs through mutations, and updates the input corpus
based on its δ-diversity guidance.

We implemented NEZHA using Clang v3.8. Our implemen-
tation consists of a total of 1545 lines of C++ code, of which
1145 and 400 lines correspond to NEZHA’s core and runtime
components, respectively.

B. Instrumentation

To enable NEZHA’s gray-box guidance, the test programs
must be instrumented to gather information on the paths
executed for each test input. This can be achieved either
during compilation, using dynamic binary instrumentation, or
using binary rewriting. For our prototype, we instrument pro-
grams at compile-time, using Clang’s SanitizerCoverage [6].
SanitizerCoverage can be combined with one or more of
Clang’s sanitizers, namely AddressSanitizer (ASAN) [57], Un-
definedBehaviorSanitizer (UBSAN) [8], and MemorySanitizer
(MSAN) [60], to achieve memory error detection during test-
ing. In our implementation, we instrument the test programs
with Clang’s ASAN to reap the benefit of finding potential
memory corruption bugs in addition to discrepancies with a
nominal overhead. We note that ASAN is not strictly required
for us to find discrepancies in our experiments.

C. NEZHA Core Engine and Runtime

NEZHA’s core engine is responsible for driving the input
generation process using the guidance engines described in
Section III-A. We implement the core NEZHA engine by
adapting and modifying libFuzzer [4], a popular coverage-
guided evolutionary fuzzer that has been successful in finding
large numbers of non-semantic bugs in numerous large-scale,
real-world software. libFuzzer primarily focuses on library
fuzzing, however it can be adapted to fuzz whole applications,
passing the path and output information needed to guide
the generation of inputs as parameters to the main engine.
NEZHA’s δ-diversity engine is independent of the underlying
testing framework, and can be applied as-is to any existing

Process_i (Data)

NEZHA_TestStart

NEZHA_TestEnd

LLVMFuzzerNezhaPaths

LLVMFuzzerNezhaOutputs

LLVMTestOneInput

UpdateDiff

RunOne

libFuzzer backend NEZHA components 

NEZHA Engine

Tested Applications

1

3
4

5

7
2

8

6

Input corpus

Fig. 3: Example of how an input is processed through NEZHA.

fuzzer or differential testing engine, whether black-box or
white-box/gray-box. Our choice of extending libFuzzer is due
to its large adoption, as well as its modularity, which allows for
a real-world evaluation of NEZHA’s δ-diversity with a state-
of-the-art code coverage-based framework.

LibFuzzer provides API support for custom input mutations,
however it is not designed for differential testing nor does it
support modifications of its internal structures. With respect to
mutations, we do not customize libFuzzer’s engine so that we
can achieve a fair comparison of NEZHA’s δ-diversity with
the default coverage-based guidance of the fuzzer, keeping
all other components intact. Instead, NEZHA uses libFuzzer’s
built-in engine to apply up to a maximum of five of the
following mutation operators in random order: i) create a new
input by combining random substrings from different inputs,
ii) add/remove an existing byte from an input, iii) randomize
a bit/byte in the input, iv) randomly change the order of a
subset of the input bytes and, v) only randomize the bytes
whose value corresponds to the ASCII code of a digit character
(i.e., 0x30-0x39). Finally, besides adding support for NEZHA’s
δ-diversity to libFuzzer, we also extend its guidance engines
to support (global) code coverage guidance in the context of
differential testing. As we will demonstrate in Section V, δ-
diversity outperforms code coverage, even when the latter is
applied across all tested applications.

A NEZHA-instrumented program can be executed using
any of NEZHA’s guidance engines, as long as the binary
is invoked with the appropriate runtime flags. In libFuzzer,
customized test program invocation is achieved overriding
the LLVMFuzzerTestOneInput function. We override
this function to load NEZHA into a main driver program,
which then performs the differential testing across all ex-
amined applications. We also extend libFuzzer with two
additional API calls, LLVMFuzzerNezhaOutputs and
LLVMFuzzerNezhaPaths that provide interfaces for pass-
ing output values and path execution information between the
core NEZHA engine and the NEZHA library running as part of
the tested programs. Finally, the NEZHA runtime uses two API
calls, namely NEZHA_TestStart and NEZHA_TestEnd,

621
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Examples: Binary Lifters
S. Kim, M. Faerevaag, M. Jung, S. Jung, D. Oh, J. Lee, and S. Cha.
Testing Intermediate Representations of Binary Analysis. ASE 2017.

A. Instruction Stream Generation
MeanDiff checks the semantic equivalence per each instruc-

tion returned from STREAMGEN. Ideally, one can generate
every possible instruction of a given architecture in order to
completely test BBIRs. However, this is infeasible due to the
huge number of possible instructions to consider. For example,
there are more than 232 add instructions on x86 even though
we only consider the ones that have EAX as the destination
operand: “add eax, 0x0”, “add eax, 0x1”, . . . , “add
eax, 0xffffffff”, “add eax, eax”, “add eax,
ebx”, and so forth.

Notice, this naı̈ve approach already requires radically
few test cases compared to existing differential testing ap-
proaches [43], [44], because N -version IR testing does not
require employing test cases for all possible states of each
instruction. Particularly, a symbolic summary for a given IR
instance encapsulates the semantics of the instance for all
possible input values.

However, we can further reduce the number of test cases
to consider by exploiting the nature of symbolic evaluation.
Specifically, instructions with the same opcode, but with
different register names will end up having the symbolic
summaries that are syntactically similar: only the name of
the symbols are different. For example, both add eax, ebx
and add ecx, edx will produce two symbolic summaries
that produce the same result when applied to N -version IR
testing. With this intuition, MeanDiff generates test cases
for every combination of available operand types of a given
opcode as follows.

1) For operand type reg, reg, we generate two test
cases: one with the same register, another with different
registers for each operand.

2) For operand type reg, mem and mem, reg, we
generate single test case for every possible address-
ing mode. That is, we consider [reg], [reg +
reg], [reg + displacement], [reg + reg +
displacement], and so forth. We use an arbitrary
value for the displacement.

3) For operand type reg, imm and mem, imm, we pick
three constant values for the immediate operand to
generate test cases: 0, 42, and the maximum unsigned
value based on the bit width of the immediate. For ex-
ample, we consider the following three cases: add al,
0x0, add al, 0x42, and add al, 0xff. This is
to cover semantic errors that are triggered only when the
immediate has a specific value.

While generating test instructions, STREAMGEN removes re-
dundant instructions as different opcodes may be decoded
to the same instruction on x86. For example, 0x0118
and 0x011c20 are both add [eax], ebx on x86. In
our STREAMGEN implementation, it generates 323,928 and
1,161,430 valid instructions on x86 and x86-64 respectively.

B. IR Lifting and Translation
Obtaining BBIR instances from binary lifters requires vary-

ing amounts of manual effort. Some systems such as BAP [14]

STREAMGEN
arch

insn

LIFT TRANSLATE
BBIR

LIFT TRANSLATE
BBIR

LIFT TRANSLATE
BBIR

…

insn

insn

BAP

VEX

BINSEC

SUMMARIZE

SUMMARIZE

SUMMARIZE

UIR

UIR

UIR

TRIAGE

Symbolic
summary

Binary lifters translate a binary executable into a high-level
intermediate representation (IR) as a primary step in binary analysis.

MeanDiff performs a differential testing on the IRs generated by the
binary lifters to find the lifting bugs.
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Examples: JIT Compilers
L. Bernhard, T. Scharnowski, M. Schloegel, T. Blazytko, and T. Holz.
JIT-Picking: Differential Testing of JavaScript Engines. CCS 2022.J���P������: Di�erential Fuzzing of JavaScript Engines CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

behavior of di�erent JS engines to uncover bugs. The JS standard
leaves too much room for interpretation, hence di�erent implemen-
tations exhibit several di�erences in their behavior.

In contrast, we propose to compare a single JS engine against it-
self. Broadly speaking, a JS engine contains two implementations to
execute JS code with identical semantics: a JS interpreter evaluating
statement by statement and a JIT compiler producing aggressively
optimized, native machine code. Depending on the JS engine, one
or multiple intermediate JIT tiers [17] sit between the interpreter,
and the aggressively optimizing compiler. These tiers o�er a middle
ground between the low startup overhead of the interpreter and
the e�cient code execution of a fully optimizing JIT engine.

To uncover software faults in JS engines, we can compare the
execution of the interpreted code to the execution of code generated
by the JIT compiler. We can selectively allow all JIT tiers to run or
(optionally) individually disable them. If both executions perform
the same computation, we can ignore this test case. If, however, the
two executions di�er in their computation, we can use this as a �ne-
grained oracle to identify the test case as triggering a bug. A major
technical challenge is to implement such a comparison mechanism
in an e�ective way given the highly optimized nature of today’s JIT
engines. A naive implementation of such a comparison mechanism
would simply make all computations externally visible, e. g., by
printing the result to stdout. Unfortunately, this rather crude way
of observation signi�cantly interferes with the machinery of the JIT
engine. The mere fact that the result of some computation becomes
externally visible (e. g., by printing) suppresses dead-code elimina-
tion. Alongside dead-code elimination, optimizing JIT compilers
implement a whole range of classic optimizations (e. g., instruction
reordering, scalar replacement, and constant folding [1]) and JS-
speci�c passes (e. g., garbage-collector modeling). The applicability
of individual optimizations depends on the result of analysis passes
(e. g., alias analysis or type analysis [25]) and pro�tability assess-
ments. While all observation techniques incur some interference
w.r.t. optimization and analysis passes, a well-designed mechanism
minimizes its impact. Failing to reduce interferences sti�es opti-
mizations passes and consequently suppresses miscomputations.

With the optimizing nature of JIT engines in mind, let us revisit
the code snippet reproducing CVE-2020-9802 in Listing 3. Our goal
is to simplify the code such that diverging behavior becomes ap-
parent. Such a minimized snippet is actually shown in Listing 2,
the starting point of our discussion. It triggers the same miscompu-
tation, and the triggering code snippet is much easier for existing
fuzzing methods to generate. Unfortunately, current bug oracles
based on segmentation faults, sanitizers, or assertions are blind to
the mere fact that a miscomputation occurred. As a consequence,
these existing methods fail to correctly detect the bug. This moti-
vates our work for developing a more sensitive and e�ective bug
oracle, which allows us to detect subtle triggers of bugs in JS code.

4 DESIGN
Figure 1 shows a high-level overview of J���P�����, our di�erential
fuzzing approach to detect even subtle software faults in JS JIT en-
gines. With this approach, we aim to e�ciently �nd logic bugs and
miscomputations that have previously been hard to identify. At the
core of our approach, we perform two executions of fuzzing inputs,
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Figure 1: Overview of our design. Fuzzing inputs are passed to
both the interpreter and optimizing JIT-compiler; comparing
their internal state during execution (using probes injected
into the input) reveals miscomputations.

once with the JIT compiler enabled and once solely using the en-
gine’s interpreter. Side-by-side executions in the same engine allow
us to compare states with high �delity and detect miscomputations
even if no actual memory corruption has occurred.

To prepare fuzzing, the JS engine is compiled   with code in-
strumentation. The instrumentation emits runtime code coverage
information which assists the fuzzer in identifying interesting in-
puts. Then, the JS engine is instantiated twice. One instance À is
con�gured via command-line arguments such that JIT compilation
is prohibited. Hence, the engine has to fall back to interpreting the
JS code statement by statement. Note that this execution mode is
slower, albeit signi�cantly less likely to contain bugs given that
the interpreters are mature and have been extensively tested. The
second JS engine instance Ã is con�gured to eagerly JIT-compile
during execution. As an additional optimization, we selectively
enable/disable the various JIT-tiers, optimizations, and code genera-
tion parameters. Next, the fuzzer generates JS inputs Õ. J���P�����
now post-processes the generated inputs by injecting a probing
mechanism. This centerpiece Œ of our work extracts miscomputed
results with unprecedented sensitivity. After probe injection, each
input is executed œ by both instances of the JS engine. During both
executions in the respective JS engine instances, the injected probes
extract – a subset of computational results (e. g., value of a local
variable) and sends — them to the fuzzer. The fuzzer now compares
whether the extracted computations are identical. Deviations indi-
cate that one of the two instances su�ers from a miscomputation.
Inputs provoking such diverging behaviors are extracted and stored
for later analysis.

4.1 Key Components
After this overview, we now present some key components in more
detail while deferring the actual probing mechanism to Section 4.2.
First, we describe a way to instantiate the JIT engine Ã such that
miscomputations become more likely. We proceed with input gen-
eration Õ, the process of generating individual JS �les. Afterwards,
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Just-in-time (JIT) compilation is compilation during program execution
to improve the performance and many JavaScript engines support it.

JIT-Picking performs a differential testing between the results of
programs with and without JIT compilation to find the JIT bugs.

AAA705 @ Korea University Lecture 11 – Testing Oracles April 15, 2024 42 / 66



N+1-version Differential Testing
J. Park, S. An, and S. Ryu. JEST: N+1-version Differential Testing of
Both JavaScript Engines and Specification. ICSE 2021.

/ 15JEST: N+1-version Differential Testing of Both JavaScript Engines and Specification 

JavaScript Specification and Engines

4

Reference number 
ECMA-123:2009 

© Ecma International 2009 

ECMA-262 

AAA705 @ Korea University Lecture 11 – Testing Oracles April 15, 2024 43 / 66



N+1-version Differential Testing
J. Park, S. An, and S. Ryu. JEST: N+1-version Differential Testing of
Both JavaScript Engines and Specification. ICSE 2021.

/ 15JEST: N+1-version Differential Testing of Both JavaScript Engines and Specification 

JavaScript Specification and Engines

4

Reference number 
ECMA-123:2009 

© Ecma International 2009 

ECMA-262 

AAA705 @ Korea University Lecture 11 – Testing Oracles April 15, 2024 44 / 66



N+1-version Differential Testing
J. Park, S. An, and S. Ryu. JEST: N+1-version Differential Testing of
Both JavaScript Engines and Specification. ICSE 2021.

/ 15JEST: N+1-version Differential Testing of Both JavaScript Engines and Specification 

JavaScript Specification and Engines

4

Reference number 
ECMA-123:2009 

© Ecma International 2009 

ECMA-262 

AAA705 @ Korea University Lecture 11 – Testing Oracles April 15, 2024 45 / 66



N+1-version Differential Testing
J. Park, S. An, and S. Ryu. JEST: N+1-version Differential Testing of
Both JavaScript Engines and Specification. ICSE 2021.

/ 15JEST: N+1-version Differential Testing of Both JavaScript Engines and Specification 

JavaScript Specification and Engines

4

Reference number 
ECMA-123:2009 

© Ecma International 2009 

ECMA-262 

AAA705 @ Korea University Lecture 11 – Testing Oracles April 15, 2024 46 / 66



N+1-version Differential Testing
J. Park, S. An, and S. Ryu. JEST: N+1-version Differential Testing of
Both JavaScript Engines and Specification. ICSE 2021.

/ 15JEST: N+1-version Differential Testing of Both JavaScript Engines and Specification 

Test262: JavaScript Conformance Tests

5

JavaScript 
Engines

Test262 QuickJStest

Reference number 
ECMA-123:2009 

© Ecma International 2009 

ECMA-262 

AAA705 @ Korea University Lecture 11 – Testing Oracles April 15, 2024 47 / 66



N+1-version Differential Testing
J. Park, S. An, and S. Ryu. JEST: N+1-version Differential Testing of
Both JavaScript Engines and Specification. ICSE 2021.

/ 15JEST: N+1-version Differential Testing of Both JavaScript Engines and Specification 

Test262: JavaScript Conformance Tests

5

JavaScript 
Engines

Test262 QuickJStest

Reference number 
ECMA-123:2009 

© Ecma International 2009 

ECMA-262 

AAA705 @ Korea University Lecture 11 – Testing Oracles April 15, 2024 48 / 66



N+1-version Differential Testing
J. Park, S. An, and S. Ryu. JEST: N+1-version Differential Testing of
Both JavaScript Engines and Specification. ICSE 2021.

/ 15JEST: N+1-version Differential Testing of Both JavaScript Engines and Specification 

Test262: JavaScript Conformance Tests

5

JavaScript 
Engines

Test262 QuickJStest

no conformance checkingReference number 
ECMA-123:2009 

© Ecma International 2009 

ECMA-262 

AAA705 @ Korea University Lecture 11 – Testing Oracles April 15, 2024 49 / 66



N+1-version Differential Testing
J. Park, S. An, and S. Ryu. JEST: N+1-version Differential Testing of
Both JavaScript Engines and Specification. ICSE 2021.

/ 15JEST: N+1-version Differential Testing of Both JavaScript Engines and Specification 

N+1-version Differential Testing

6

Synthesize

Reference number 
ECMA-123:2009 

© Ecma International 2009 

ECMA-262 

AAA705 @ Korea University Lecture 11 – Testing Oracles April 15, 2024 50 / 66



N+1-version Differential Testing
J. Park, S. An, and S. Ryu. JEST: N+1-version Differential Testing of
Both JavaScript Engines and Specification. ICSE 2021.

/ 15JEST: N+1-version Differential Testing of Both JavaScript Engines and Specification 

N+1-version Differential Testing

6

Synthesize

Reference number 
ECMA-123:2009 

© Ecma International 2009 

ECMA-262 

AAA705 @ Korea University Lecture 11 – Testing Oracles April 15, 2024 51 / 66



N+1-version Differential Testing
J. Park, S. An, and S. Ryu. JEST: N+1-version Differential Testing of
Both JavaScript Engines and Specification. ICSE 2021.

/ 15JEST: N+1-version Differential Testing of Both JavaScript Engines and Specification 

N+1-version Differential Testing

6

Synthesize

Reference number 
ECMA-123:2009 

© Ecma International 2009 

ECMA-262 

AAA705 @ Korea University Lecture 11 – Testing Oracles April 15, 2024 52 / 66



N+1-version Differential Testing
J. Park, S. An, and S. Ryu. JEST: N+1-version Differential Testing of
Both JavaScript Engines and Specification. ICSE 2021.

/ 15JEST: N+1-version Differential Testing of Both JavaScript Engines and Specification 

N+1-version Differential Testing

7

TestSynthesize

Reference number 
ECMA-123:2009 

© Ecma International 2009 

ECMA-262 

AAA705 @ Korea University Lecture 11 – Testing Oracles April 15, 2024 53 / 66



N+1-version Differential Testing
J. Park, S. An, and S. Ryu. JEST: N+1-version Differential Testing of
Both JavaScript Engines and Specification. ICSE 2021.

/ 15JEST: N+1-version Differential Testing of Both JavaScript Engines and Specification 

N+1-version Differential Testing

7

TestSynthesize

Reference number 
ECMA-123:2009 

© Ecma International 2009 

ECMA-262 

AAA705 @ Korea University Lecture 11 – Testing Oracles April 15, 2024 54 / 66



N+1-version Differential Testing
J. Park, S. An, and S. Ryu. JEST: N+1-version Differential Testing of
Both JavaScript Engines and Specification. ICSE 2021.

/ 15JEST: N+1-version Differential Testing of Both JavaScript Engines and Specification 

A specification bug in ECMAScript

N+1-version Differential Testing

7

TestSynthesize

Reference number 
ECMA-123:2009 

© Ecma International 2009 

ECMA-262 

AAA705 @ Korea University Lecture 11 – Testing Oracles April 15, 2024 55 / 66



N+1-version Differential Testing
J. Park, S. An, and S. Ryu. JEST: N+1-version Differential Testing of
Both JavaScript Engines and Specification. ICSE 2021.

/ 15JEST: N+1-version Differential Testing of Both JavaScript Engines and Specification 

A specification bug in ECMAScriptA specification bug in ECMAScript 
An engine bug in

N+1-version Differential Testing

7

TestSynthesize

Reference number 
ECMA-123:2009 

© Ecma International 2009 

ECMA-262 

AAA705 @ Korea University Lecture 11 – Testing Oracles April 15, 2024 56 / 66



N+1-version Differential Testing
J. Park, S. An, and S. Ryu. JEST: N+1-version Differential Testing of
Both JavaScript Engines and Specification. ICSE 2021.

/ 15JEST: N+1-version Differential Testing of Both JavaScript Engines and Specification 

JEST

8

Test

SynthesizerMechanized  

Spec. Tests Engine-N

Bug

Localizer

Spec. Bugs

Engine-1

Engine Bugs

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

JavaScript Static Analysis with Evolving Engines and
Specification

Jihyeok Park
KAIST, South Korea

jhpark0223@kaist.ac.kr

ABSTRACT
JavaScript is one of the most dominating programming languages.
Despite its popularity, the highly dynamic nature of JavaScript
makes its semantics complex thus understanding and reasoning
about JavaScript programs are challenging tasks. Therefore, Re-
searchers have proposed JavaScript static analysis based on ab-
stract interpretation with the the abstract semantics conforming
to ECMAScript, the standard speci�cation for JavaScript. However,
all the existing abstract semantics are manually de�ned thus the
current approach is labor-intensive and error-prone. Moreover, in
late 2014, this problem becomes more critical because the Ecma
Technical Committee 39 announced that they will annually update
ECMAScript.

To alleviate the problem, we propose an approach to perform
JavaScript static analysis using the abstract semantics automatically
de�ned with both of JavaScript engines and speci�cation. Our main
idea is 1) to leverage the existing JavaScript engines as much as
possible, and 2) to utilize the formal semantics automatically ex-
tracted from ECMAScript for remaining parts. We believe that our
approach would be able to analyze JavaScript programs developed
with new language features as well as improve their quality.

KEYWORDS
JavaScript, mechanized speci�cation, static analysis, abstract inter-
pretation
ACM Reference Format:
Jihyeok Park. 2021. JavaScript Static Analysis with Evolving Engines and
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1 INTRODUCTION
JavaScript is one of the most dominating programming languages.
While JavaScript was initially designed for client-side programming
in web browsers, and it is now widely used in server-side program-
ming [6] and even in embedded systems [3, 5, 7]. According to
W3Techs1, 97.2% of websites use JavaScript as their client-side pro-
gramming language. The 2020 State of the Octoverse2, which is the
1https://w3techs.com/technologies/details/cp-javascript/all/all
2https://octoverse.github.com/
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annual report of GitHub, reports that JavaScript was the top-ranked
programming language in GitHub repositories since 2014 to 2020.

Researchers have proposed various static analyzers to under-
stand and reason about JavaScript programs. Despite its popularity,
JavaScript developers often su�er from its intricate and dynamic
language features, which may cause unexpected behaviors. For ex-
ample, the function declaration function f(x){ return x == !x }

may seem to always return false. Surprisingly, it returns true when
its argument is an empty array; f([]) = true. To correctly under-
stand and reason about such a complex behavior, researchers have
proposed various static analyzers for JavaScript programs, such as
TAJS [15], SAFE [20], JSAI [16], and WALA [26].

However, existing JavaScript static analyzers utilize manually
de�ned formal semantics, and this approach is labor-intensive and
error-prone. ECMAScript, which is a standard speci�cation for
JavaScript maintained by the Ecma Technical Committee 39 (TC39),
describes syntax and semantics of JavaScript in a structured na-
ture language. Based on the speci�cation, researchers have de�ned
various JavaScript formal semantics [8, 14, 21] or have modi�ed
them suitable for debuggers [9], veri�cation tools [12, 13], and
static analyzers [15, 16, 20, 26]. However, all of them are written
by hand thus the existing approach is tedious, labor-intensive, and
error-prone. Moreover, in late 2014, the TC39 announced the yearly
release cadence and open development process of ECMAScript to
quickly adapt to evolving development environments. Thus, there
are already six updates after ES5.1 and this problem becomes more
critical.

To alleviate this problem, we propose an approach to perform
JavaScript static analysis using the abstract semantics automatically
de�ned with both of JavaScript engines and speci�cation. Our main
idea is 1) to leverage the existing JavaScript engines as much as
possible, and 2) to utilize the formal semantics automatically ex-
tracted from ECMAScript for remaining parts. To lessen the burden
to manually de�ne the abstract semantics for evolving JavaScript
speci�cation, we present a technique to extract a formal semantics
from ECMAScript and de�ne an abstract semantics based on it.
However, the automatically extracted abstract semantics might be
much slower than highly optimized abstract semantics written by
hand. Thus, we also leverage existing JavaScript engines to de�ne
abstract semantics for better performance of static analysis. Our
approach consists of three steps with three di�erent tools; First,
JISET automatically extracts JavaScript formal semantics using rule-
based compilation from abstract algorithms to functions of IRES,
an Intermediate Representation that we designed for ECMAScript.
Based on the extracted semantics, JEST performs #+1-version dif-
ferential testing for existing JavaScript engines and ECMAScript to
check whether they conform to each other. Finally, JSAVER performs
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annual report of GitHub, reports that JavaScript was the top-ranked
programming language in GitHub repositories since 2014 to 2020.

Researchers have proposed various static analyzers to under-
stand and reason about JavaScript programs. Despite its popularity,
JavaScript developers often su�er from its intricate and dynamic
language features, which may cause unexpected behaviors. For ex-
ample, the function declaration function f(x){ return x == !x }

may seem to always return false. Surprisingly, it returns true when
its argument is an empty array; f([]) = true. To correctly under-
stand and reason about such a complex behavior, researchers have
proposed various static analyzers for JavaScript programs, such as
TAJS [15], SAFE [20], JSAI [16], and WALA [26].

However, existing JavaScript static analyzers utilize manually
de�ned formal semantics, and this approach is labor-intensive and
error-prone. ECMAScript, which is a standard speci�cation for
JavaScript maintained by the Ecma Technical Committee 39 (TC39),
describes syntax and semantics of JavaScript in a structured na-
ture language. Based on the speci�cation, researchers have de�ned
various JavaScript formal semantics [8, 14, 21] or have modi�ed
them suitable for debuggers [9], veri�cation tools [12, 13], and
static analyzers [15, 16, 20, 26]. However, all of them are written
by hand thus the existing approach is tedious, labor-intensive, and
error-prone. Moreover, in late 2014, the TC39 announced the yearly
release cadence and open development process of ECMAScript to
quickly adapt to evolving development environments. Thus, there
are already six updates after ES5.1 and this problem becomes more
critical.

To alleviate this problem, we propose an approach to perform
JavaScript static analysis using the abstract semantics automatically
de�ned with both of JavaScript engines and speci�cation. Our main
idea is 1) to leverage the existing JavaScript engines as much as
possible, and 2) to utilize the formal semantics automatically ex-
tracted from ECMAScript for remaining parts. To lessen the burden
to manually de�ne the abstract semantics for evolving JavaScript
speci�cation, we present a technique to extract a formal semantics
from ECMAScript and de�ne an abstract semantics based on it.
However, the automatically extracted abstract semantics might be
much slower than highly optimized abstract semantics written by
hand. Thus, we also leverage existing JavaScript engines to de�ne
abstract semantics for better performance of static analysis. Our
approach consists of three steps with three di�erent tools; First,
JISET automatically extracts JavaScript formal semantics using rule-
based compilation from abstract algorithms to functions of IRES,
an Intermediate Representation that we designed for ECMAScript.
Based on the extracted semantics, JEST performs #+1-version dif-
ferential testing for existing JavaScript engines and ECMAScript to
check whether they conform to each other. Finally, JSAVER performs
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Property-based Testing

• Property-based Testing is a testing technique that tests the
programs by specifying the properties that the programs should
satisfy.

• The key idea is originally from the QuickCheck tool for the Haskell
programming language.

• K. Claessen and J. Hughes. QuickCheck: A Lightweight Tool for
Random Testing of Haskell Programs. ICFP 2000.

• It requires property-based oracles, instead of the input-output pair
oracles, to test the programs.
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Property-based Testing

• A traditional example-based
oracle requires input-output
pairs.

def abs(x):
if x < 0:

return -x
return x

def test_abs():
assert abs(0) == 0
assert abs(1) == 1
assert abs(-1) == 1

• A property-based oracle
requires the properties of a
given input.

def abs(x):
if x < 0:

return -x
return x

def test_abs(x):
assert abs(x) >= 0
assert abs(x) == abs(-x)
assert abs(abs(x)) == abs(x)
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Tool – Hypothesis for Python

• Hypothesis (link) is a property-based testing tool for the Python (or
Ruby and Java) programming language.

• It generates the random inputs for the programs and tests the
programs with the properties that the programs should satisfy.

• It is a powerful tool for testing the programs with the complex
properties.

• It is a lightweight tool that can be easily integrated into the existing
testing frameworks.
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Tool – Hypothesis for Python

from hypothesis import given, settings, Verbosity
from hypothesis import strategies as st
import unittest

def abs(x):
if x < 0:

return -x
return x

@given(x = st.integers())
@settings(verbosity=Verbosity.verbose)
def test_abs(x):

assert abs(x) >= 0
assert abs(x) == abs(-x)
assert abs(abs(x)) == abs(x)

test_abs()
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Summary
1. Non-Testable Programs

Types of Non-Testable Programs
2. Metamorphic Testing

Examples: SMT Solvers
Examples: Web Browser Debugger
Examples: Compilers
Examples: Deep Neural Networks
Examples: Object Detection
Learning Metamorphic Relationships

3. Differential Testing
Examples: Nezha
Examples: Binary Lifters
Examples: JIT Compilers
N+1-version Differential Testing

4. Property-based Testing
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Next Lecture
• Course Review

Jihyeok Park
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