Lecture 11 — Testing Oracles

AAATO05: Software Testing and Quality Assurance

Jihyeok Park

7VPLRG

2024 Spring

AAAT705 @ Korea University Lecture 11 — Testing Oracles April 15, 2024

Recall ’VNPLRG

e Delta Debugging (DD)

Recursive Delta Debugging — ddmin
Hierarchical Delta Debugging
Probabilistic Delta Debugging (ProbDD)
Delta Debugging for Program Debloating

® Information Retrieval based Fault Localization (IRFL)

Vector Space Model (VSM)

Tf-1df

Cleansing Bug Reports and Source Code
VSM and Similarity

® Spectrum-based Fault Localization (SBFL)

Genetic Algorithm for SBFL
Theoretical Analysis
Method-level Aggregation
Hybrid SBFL

AAAT705 @ Korea University Lecture 11 — Testing Oracles April 15, 2024 2/66

Contents ’VNPLRG

1. Non-Testable Programs
Types of Non-Testable Programs

2. Metamorphic Testing
Examples: SMT Solvers
Examples: Web Browser Debugger
Examples: Compilers
Examples: Deep Neural Networks
Examples: Object Detection
Learning Metamorphic Relationships

3. Differential Testing
Examples: Nezha
Examples: Binary Lifters
Examples: JIT Compilers
N+1-version Differential Testing

4. Property-based Testing

AAAT705 @ Korea University Lecture 11 — Testing Oracles April 15, 2024 3/66

Contents ’VNPLRG

1. Non-Testable Programs
Types of Non-Testable Programs

AAAT705 @ Korea University Lecture 11 — Testing Oracles April 15, 2024 4/66

History of m 7NPLRG

How to calculate the value of 77
e BC 2000, Babylonia — Just approximate it to 3+ 1/8 = 3.125

e BC 250, Archimedes — First calculation of 7 using polygons:

DN | =

1
H3< 1 <34TR 6| —
(\/3)

AAAT705 @ Korea University Lecture 11 — Testing Oracles April 15, 2024 5/66

History of m 7NPLRG

How to calculate the value of 77
e BC 2000, Babylonia — Just approximate it to 3+ 1/8 = 3.125

e BC 250, Archimedes — First calculation of 7 using polygons:

B (a) 1—cosa co(a) 1+ cosa tan(a) 1—cosa
SIN(—) = sS(=) = 5)=
S 2 "2 2 2" V1tcosa

AAAT705 @ Korea University Lecture 11 — Testing Oracles April 15, 2024 6 /66

History of m 7NPLRG

How to calculate the value of 77
e BC 2000, Babylonia — Just approximate it to 3+ 1/8 = 3.125

e BC 250, Archimedes — First calculation of 7 using polygons:

1 1 2—+/3 2—43
6-— =13 <m<347 6(—) 12 V3 3.10 < < 3.220~ 12 v3
2 3 2 V2+3
1—cosa « 14 cosa « 1 —cosa
—) = S{—) = t -) =
sin(3) 2 cos(3) 2 (3) =\ 1T cosa

AAAT705 @ Korea University Lecture 11 — Testing Oracles April 15, 2024 7/66

History of m 7NPLRG
e BC 250, Archimedes — First calculation of 7 using 96-gon:

223/71 = 3.140845 < 7 < 3.142857 = 22/7 (2 digits)

’ n | Cn = nsin (%) ‘ Approx. | C, = ntan (%) ‘ Approx. ‘
6 3 3 2V3 3.46410161
12 12. Y23 3.10582854 12. @ﬁ 3.21530031

2+vV3
24 24 - \/2% y2rvs 3.13262861 0. V22 s 3.15965994
244/2+v/3

\/27 244/24/3
48 3.13935020 48 - Y—ornreee—— 3.14608622

\/ -\ 2+V2+3
48—

\/2—\/ 244/ 241/ 24+V3
96 - 5

\/2— 244/ 24/ 24+V3
96 3.14103195 | 96 - 3.14271460

AAAT705 @ Korea University Lecture 11 — Testing Oracles April 15, 2024 8/66

History of m 7NPLRG

e BC 250, Archimedes — First calculation of 7 using 96-gon:
223/71 = 3.140845 < 7 < 3.142857 = 22/7 (2 digits)

e AD 263, Liu Hui — First calculation of 7 using areas of 96-gon:

3.141024 < 7 < 3.142074 (3 digits)

e AD 480, Zu Chongzhi — Liu Hui's method with 12288-gon:
3.1415926 < 7 < 3.1415927 (7 digits)

e AD 1400, Madhava of Sangamagrama — First calculation of 7 using
infinite series:

- 1 1 1 © (~1)7 »
T s T4..= 10 digit
4 3757 77" ngoznﬂ (10 digits)

AAAT705 @ Korea University Lecture 11 — Testing Oracles April 15, 2024

History of m 7NPLRG

e AD 1596, Ludolph van Ceulen — Calculation of 7 using 2%2-gon:

35 digits (by spending 25 years)

e AD 1706, William Jones — First use of the Greek letter 7.
e AD 1775, Euler — Popularized the use of 7 by using it in his book.
e AD 1910, Srinivasa Ramanujan — Rapidly converging infinite series:

1 2V2 & (4K)!(1103 + 26390k)

- Z k
7w 9801 prd (k1)*3964

e AD 1995, Bailey, Borwein, and Plouffe (BBP) Formula is discovered:

W‘i[1<4—2—1—1>}
116K \8k+1 8k+4 B8k+5 8k+6

e AD 1997, Fabrice Bellard’s Formula (43% faster than BBP).

AAAT705 @ Korea University Lecture 11 — Testing Oracles April 15, 2024 10/ 66

History of m 7NPLRG

Number of decimal digits

Record approximations of 7

10
1013
1012
1011
1010
10°
108
107
109
10°
104
10°
100
10

%OCOE ég%480 1400 1450 1500 1550 1600 1650 1700 1750 1800 1850 1900 1950 2000

Year

AAAT705 @ Korea University Lecture 11 — Testing Oracles April 15, 2024

Computing 7 7NPLRG
® How to write a program that computes 77
® Then, how to test the program that actually computes 77
® Some programs do not have a test oracle to compare the output.
® We call such programs as non-testable programs.

® Then, how to test such non-testable programs?

AAAT705 @ Korea University Lecture 11 — Testing Oracles April 15, 2024 12 /66

Types of Non-Testable Programs 7NPLRG

® Type 1: Programs was written to determine the answer to a problem
we have not yet solved. (If we knew the oracle, we would not need the
program.)

e Type 2: Programs produce so much output that it is impractical to
verify all of it.

e Type 3: Programs for which the tester has a misconception.

AAAT705 @ Korea University Lecture 11 — Testing Oracles April 15, 2024 13 /66

Types of Non-Testable Programs 7NPLRG
From our point of view, type 1 programs are the most interesting.

® Type 1: Most scientific computation, certain branches of Artificial
Intelligence or Machine Learning, etc.

® \What is the correct value of 77
® \What is the correct result of the sin, cos, and tan functions?

® What is the correct way to play a video game, if you are applying
reinforcement learning?

® What is the correct way to classify an image, if you are applying deep
learning?

® What is the correct way to translate a sentence, if you are applying
machine translation?

AAAT705 @ Korea University Lecture 11 — Testing Oracles April 15, 2024

Implementing sin 7NPLRG

® |et's assume that you implemented the sin function.

® How to test the sin function?

® \We can test it using the known values of the sin function.

® sin(0) =0
® sin(r/2) =1
® sin(r) =0

® sin(37/2) = -1

® sin(2r) =0

AAAT705 @ Korea University Lecture 11 — Testing Oracles April 15, 2024

Implementing sin

A

’VNPLRG
However, a wrong implementation of the sin function can pass all of them:
1 ——

CEIEEE 2
3
w
3
Vv

2
-1+

Let's utilize a domain knowledge to test the sin function:
® sin(x) = sin(m — x)

® sin(x) = —sin(x +)
e sin?(x) +sin(x+ Z) =1

AAAT705 @ Korea University

Lecture 11 — Testing Oracles

April 15, 2024

Contents ’VNPLRG

2. Metamorphic Testing
Examples: SMT Solvers
Examples: Web Browser Debugger
Examples: Compilers
Examples: Deep Neural Networks
Examples: Object Detection
Learning Metamorphic Relationships

AAAT705 @ Korea University Lecture 11 — Testing Oracles April 15, 2024 17 / 66

Metamorphic Relationship 7VPLRG

Definition (Metamorphic Relationship)

A program p : X — Y has a metamorphic relationship f : X — X with
a relation R C Y x Y if and only if:

Vx € X. (p(x),pof(x)) € R

For example, the sin function has the following metamorphic relationships:

f Relationship R

f(x) =m—x | sin(x) = sin(m — x)

7 | sin(x) = —sin(x +)

+
f(x) =x+ 5 | sin®(x) +sin*(x + 3) =1

AAAT705 @ Korea University Lecture 11 — Testing Oracles April 15, 2024 18 /66

Metamorphic Testing 7NPLRG

® Metamorphic Testing is a testing technique that is based on the
metamorphic relationships of the program.

® However, manual identification of metamorphic relationships is labor
intensive and error-prone.

e Can we automatically learn metamorphic relationships?

AAAT705 @ Korea University Lecture 11 — Testing Oracles April 15, 2024

Examples: SMT Solvers 7NPLRG

D. Winterer, C. Zhang, and Z. Su. Validating SMT Solvers via Semantic
Fusion, PLDI 2020.

p1=x>0N x >1

2=y <0Ay<l1

Peoncat = (x > 0N x >1DA(y <0Ay<1)
<Pfused=(x>0/\ z-y >DA(z—-x <0Ay<1)

® Formula Concatenation — Concatenate two formulas ¢1 and ¢»
using conjunction (A) or disjunction (V).

® Variable Fusion — Create fresh variables to connect the variable sets
of ¢1 and ¢, using fusion functions.

©® Variable Inversion — Substitute some occurrences of the chosen
variables in ¢; and ¢, using inversion functions.

AAAT705 @ Korea University Lecture 11 — Testing Oracles April 15, 2024 20 /66

Examples: SMT Solvers
D. Winterer, C. Zhang, and Z. Su. Validating SMT Solvers via Semantic

Fusion, PLDI 2020.

7VNPLRG

Type Fusion Function Variable Inversion Functions
Iy ry
Int x+y z—y z—x
X+c+y z—c—y z—c—x
X*y zdivy zdiv x
cpkx+cz*y+c3 (z—caxy—c3)divey (z—c1*xx—c3)divey
Real x+y z—y z—x
X+c+y z-c—-y z—c—-x
X*y z/y z/x
crxx+czxy+oes (z-c2xy—c3)/a1 (z—c1%x—c3)/ca
String X Str++y str.substr z 0 (str.lenx) str.substr z (str.len x) (str.len y)
X str++y str.substr z 0 (str.lenx) str.replace z x "

X str++ ¢ str++ y

str.substr z 0 (str.len x)

str.replace (str.replace z x "") ¢

Above fusion functions and inversion functions are used to generate the
metamorphic transformations to test the SMT solvers.

AAAT705 @ Korea University

Lecture 11 — Testing Oracles

April 15, 2024 21 /66

Examples: Datalog Engines 7VPLRG

M. N. Mansur, M. Christakis, and V. Wiistholz. Metamorphic Testing of
Datalog Engines, ESEC/FSE 2021.

X > X > X
Y > Y > Y
z/
0 o
Q p(X) = a(X,Y), a(Y,X).
R Voo
o’ p(X) :- a(X,Y), a(Y,X), a(zZ,X).
o N
0 p(X) := a(X,Y), a(Y,X).

Metamorphic transformation for Datalog engines using containment
mapping (e.g., ADDEQU — addition (ADD) for equivalence (EQU)).

AAAT705 @ Korea University Lecture 11 — Testing Oracles April 15, 2024 22 /66

Examples: Web Browser Debugger

S. Tolksdorf, D. Lehmann, and M. Pradel. Interactive Metamorphic

Testing of Debuggers, ISSTA 2019.

It defines the metamorphic transformations for the 1) debugger
actions and 2) input programs to test the web browser debugger.

~

var
var
var
var

g s wN =
o0
N

~
~

var
var
var
var

g s w N =

In the upper case, a breakpoint is originally set at line 3, but debugger

/ Original input:

a = 5; // (i) pauses --> continue
slideOverMe;

C = class{};// (ii) pauses --> continue
b = 42; //(iii) pauses --> continue

Transformed input:

a = 5; // (i) pauses --> continue
slideOverMe;

C = class{};// (no pausing)

b = 42; // (ii) pauses

’VNPLRG

slides it to line 4. In the lower case, a breakpoint is directly set at line 4.

AAAT705 @ Korea University

Lecture 11 — Testing Oracles April 15, 2024

23 /66

Examples: Compilers 7NPLRG

V. Le, M. Afshari, and Z. Su. Compiler Validation via Equivalence Modulo
Inputs, PLDI 2014.

Two programs P,Q € ¥ are equivalent modulo inputs (EMI) w.r.t.
an input set / common to P and Q (i.e., I C dom(P) Ndom(Q)) iff

viel [P](i) = [Q]().

It measures the code coverage for given inputs and generates variants of
the program by randomly pruning the unexecuted statements.

def prune_visit(prog, statement, coverage_set):
if statement not in coverage_set and flip_coin(statement):
prog.delete(statement)
else for child in statement.children:
prune_visit(prog, child, coverage_set)
def gen_variant(prog, coverage_set):
emi_variant = clone(prog)
for statement in emi_variant:
prune_visit(emi_variant, statement, coverage_set)
return emi_variant

AAAT705 @ Korea University Lecture 11 — Testing Oracles April 15, 2024

Examples: Compilers 7NPLRG

struct tiny { char c; char d; char e; };

f(int n, struct tiny x, struct tiny y, struct tiny z, long 1) {
if (x.c != 10) abort(); if (x.d != 20) abort(); if (x.e != 30) abort();
if (y.c != 11) abort(); if (y.d != 21) abort(); if (y.e != 31) abort();
if (z.c != 12) abort(); if (z.d !'= 22) abort(); if (z.e != 32) abort();
if (1 !'= 123) abort(); }

main() {
struct tiny x[3]; x[0].c = 10; x[1].c = 11; x[2].c = 12; x[0].d = 20;
x[1].d = 21; x[2].d = 22; x[0].e = 30; x[1].e = 31; x[2].e = 32;
£(3, x[0], x[1], x[2], (long)123); exit(0); }

struct tiny { char c; char d; char e; };

f(int n, struct tiny x, struct tiny y, struct tiny z, long 1) {
if (x.c !'= 10) /* X */; if (x.d !'= 20) abort(); if (x.e != 30) /* X */;
if (y.c != 11) abort(); if (y.d != 21) abort(); if (y.e != 31) /* X */;
if (z.c != 12) abort(); if (z.d !'= 22) /* X */; if (z.e !'= 32) abort();
if (1 '= 123) /* X */; }

main() {
struct tiny x[3]; x[0].c = 10; x[1].c = 11; x[2].c = 12; x[0].d = 20;
x[1].d = 21; x[2].d = 22; x[0].e = 30; x[1].e = 31; x[2].e = 32;
£(3, x[0], x[1], x[2], (long)123); exit(0); }

AAAT705 @ Korea University Lecture 11 — Testing Oracles April 15, 2024

Examples: Compilers 7NPLRG

C. Sun, V. Le, and Z. Su. Finding Compiler Bugs via Live Code Mutation,
OOPSLA 2016.

Two programs P,Q € . are equivalent modulo inputs (EMI) w.r.t.
an input set / common to P and Q (i.e., I C dom(P) Ndom(Q)) iff

viel [P](i) = [Q]().

It defines EMI mutation operators not only for dead code but also for
live code by profiling the valuations of live variables.

¢ Always False Conditional Block (FCB) — Generate an if/while
statement, whose body is not empty and condition is always false.

e Always True Guard (TG) — Generate an if statement, whose
condition is always true and guard an existing executed statement.

¢ Always True Conditional Block (TCB) — Synthesize an if
statement, whose body has side effects but reverts them at the end.

AAAT705 @ Korea University Lecture 11 — Testing Oracles April 15, 2024

Examples: Deep Neural Networks 7VPLRG

I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing
adversarial examples, ICLR 2015.

+.007 x =
i P Vel 0 20) - csign(v,.1(6,3.)
“panda” “nematode” “gibbon”
57.7% confidence 8.2% confidence 99.3 % confidence

Adversarial examples are the inputs that are designed to intentionally
mislead the result of the deep neural networks.

AAAT705 @ Korea University Lecture 11 — Testing Oracles April 15, 2024

Examples: Deep Neural Networks 7VPLRG

X. Huang, M. Kwiatkowska, S. Wang, and M. Wu. Safety verification of
deep neural networks, CAV 2017.

£ i

automobile to bird automobile to frog automobile to airplane automobile to horse

Fig. 1. Automobile images (classified correctly) and their perturbed images (classified
wrongly)

It uses SMT solvers to find the adversarial examples as
counterexamples or to verify the safety of the deep neural networks.

Metamorphic testing is a surprisingly effective concept for testing deep
neural networks (at least so far).

AAAT705 @ Korea University Lecture 11 — Testing Oracles April 15, 2024

Examples: Object Detection 7V PLRG

S. Wang and Z. Su. Metamorphic Object Insertion for Testing Object
Detection Systems. ASE 2020.

pick one background image
| Imagey

imageDataset T T T g - —— \

Object Pool

1 1
|
w ﬂ n | Objects of “bird” Objects of “

Objects of “Person” 1 Object

Object
— — |—' Refinement& —— + — ¢
I- ﬁ-l St i Selection Insertion
! 1 Paste
IEHM' ! -
[

______ L _______;_____ |

what to insert where to insert

Figure 5: Workflow of METAOD.

MetaOD utilizes a metamorphic transformation that pastes objects
collected from the original images into the given image.

AAAT705 @ Korea University Lecture 11 — Testing Oracles

April 15, 2024

Examples: Object Detection ’VPLRG

S TN
" Wiy
_ IIII"\I

Y
\
Wi,
LT

y
WA

N

iy
'
lr.l]h

Missing vehicles and bicycle riders Missing a frisbee

The inserted objects are pointed by blue arrows, and the inserted objects
are resized to the average size of existing objects of the same category.

AAAT705 @ Korea University Lecture 11 — Testing Oracles April 15, 2024

Learning Metamorphic Relationships 7V PLRG

J. Zhang, J. Chen, D. Hao, Y. Xiong, B. Xie, L. Zhang, and H. Mei.
Search-based inference of polynomial metamorphic relations, ASE 2014.

e Consider a linear metamorphic relationship for program p: X — Y-
f(x)=ax+p ay+oay +d=0

where y = p(x) and y’' = p(f(x)).

® For example, sin(x) = sin(m — x) is a linear metamorphic relationship
witha=-1,0=m,caa=1,c=-1,d=0.

® Then, the learning problem is to find the coefficients «, 3, c1, ¢, d
that satisfy the linear metamorphic relationship.

® The key idea is a search-based approach to find the coefficients
using a particle swarm optimization (PSO) algorithm.

AAAT705 @ Korea University Lecture 11 — Testing Oracles April 15, 2024 31/66

Recall: Particle Swarm Optimization (PSO) IPLRG

Xl_t+1 _ Xit + Vit

virl = @D wvf + @ a(pi — xt) + @ c2(g — xF)

® x! — position of the i-th particle at time t
® vl — velocity of the i-th particle at time t
® p; — best position of the i-th particle (local best)
® g — best position of the entire flock (global best)

It follows the three rules of the flock of birds.
@ Each bird has an inertia to keep flying in the same direction.

® Each bird remembers and has a tendency to return to the best
position it has ever visited by itself (local best).

© Each bird has a tendency to follow the known global best position
in the flock by communicating with other birds. (global best)

AAAT705 @ Korea University Lecture 11 — Testing Oracles April 15, 2024 32 /66

’NPLRG

Recall: Particle Swarm Optimization (PSO)

April 15, 2024

0
i
]
o
o
o0
&
=]
3
=
|
—
—
9
=
=1
9]
]
-

AAAT705 @ Korea University

https://upload.wikimedia.org/wikipedia/commons/e/ec/ParticleSwarmArrowsAnimation.gif

Learning Metamorphic Relationships 7V PLRG

J. Zhang, J. Chen, D. Hao, Y. Xiong, B. Xie, L. Zhang, and H. Mei.
Search-based inference of polynomial metamorphic relations, ASE 2014.
e [t defines the fitness function for the PSO algorithm as the number
of inputs that satisfy the formula with the coefficients with n inputs:

n
fitness = > (c1yi + coy] + d = 0)
i=1
where x; is the i-th input and y; = p(x;), y/ = p(f(x:)).
® When c; and ¢, are between [—¢, ¢] with a small threshold ¢, the

algorithm resets them to a new random value to prevent producing
the degenerate solutions.

® We can extend it into a quadratic metamorphic relationship:
fx)=ax+B ay’+ay +ay’+diy+dy +e=0

where y = p(x) and y’ = p(f(x)).

AAAT705 @ Korea University Lecture 11 — Testing Oracles April 15, 2024 34 /66

Contents ’VNPLRG

3. Differential Testing
Examples: Nezha
Examples: Binary Lifters
Examples: JIT Compilers
N+1-version Differential Testing

AAAT705 @ Korea University Lecture 11 — Testing Oracles April 15, 2024 35 /66

Differential Testing 7NPLRG

¢ Differential Testing is a testing technique that compares the
outputs of two or more similar programs (or different
implementations of same specification) for the same inputs.

¢ Unlike the metamorphic testing, differential testing does not
require the metamorphic relationships.

® The key idea is to compare the outputs of the programs and report
the differences as the potential bugs.

® Thus, it utilizes the cross-reference oracle, which means that the
majority of the outputs has a higher probability of being correct.

AAAT705 @ Korea University Lecture 11 — Testing Oracles April 15, 2024 36 /66

Differential Testing 7NPLRG

Program 1

42 — 7
Input Input

Program 2

[3

Input

Program 3

AAAT705 @ Korea University Lecture 11 — Testing Oracles April 15, 2024 37 /66

Differential Testing

42

Input

AAAT705 @ Korea University

7VNPLRG

%

7

Input

7

Input

Majority

Program 1
Program 2
Program 3

Lecture 11 — Testing Oracles

3

Input

April 15, 2024

38/66

Differential Testing

7VNPLRG

7

Input

7

Input

Majority

3

Input

Minority

Program 1
InPUt %
Program 2
Program 3
AAAT705 @ Korea University Lecture 11 — Testing Oracles

April 15, 2024

39/ 66

Examples: Nezha ’NPLRG

T. Petsios, A. Tang, S. Stolfo, A. Keromytis, and S. Jana. Nezha: Efficient
Domain-independent Differential Testing. S&P 2017.

. NEZHA Runtime
Instrumentation >
Module Programs Dynamic Program
A (Instrugmented) Coverage Return
Information Values
J
(N
Programs
(Original) Differential Execution Discrepancy
Logging

*

Input Mutation NEZHA Core

f

Corpus Refinement

Initial
Seeds

Input Corpora

Guidance
Engines

AAAT705 @ Korea University Lecture 11 — Testing Oracles April 15, 2024

Examples: Binary Lifters 7VPLRG

S. Kim, M. Faerevaag, M. Jung, S. Jung, D. Oh, J. Lee, and S. Cha.
Testing Intermediate Representations of Binary Analysis. ASE 2017.

arch @ insn UIR
axeh

VEX

BINSEC

Binary lifters translate a binary executable into a high-level
intermediate representation (IR) as a primary step in binary analysis.

MeanDiff performs a differential testing on the IRs generated by the
binary lifters to find the lifting bugs.

AAAT705 @ Korea University Lecture 11 — Testing Oracles April 15, 2024 41/66

Examples: JIT Compilers 7VPLRG

L. Bernhard, T. Scharnowski, M. Schloegel, T. Blazytko, and T. Holz.
JIT-Picking: Differential Testing of JavaScript Engines. CCS 2022.

Fuzzer

execution hash’

[Source]l)[Binary]

Just-in-time (JIT) compilation is compilation during program execution
to improve the performance and many JavaScript engines support it.

JIT-Picking performs a differential testing between the results of
programs with and without JIT compilation to find the JIT bugs.

AAAT705 @ Korea University Lecture 11 — Testing Oracles April 15, 2024 42 /66

N—+1-version Differential Testing ’VNPLRG

J. Park, S. An, and S. Ryu. JEST: N+1-version Differential Testing of
Both JavaScript Engines and Specification. ICSE 2021.

AAAT705 @ Korea University Lecture 11 — Testing Oracles April 15, 2024 43 /66

N—+1-version Differential Testing ’VNPLRG

J. Park, S. An, and S. Ryu. JEST: N+1-version Differential Testing of
Both JavaScript Engines and Specification. ICSE 2021.

AAAT705 @ Korea University Lecture 11 — Testing Oracles April 15, 2024 44 / 66

N—+1-version Differential Testing ’VNPLRG

J. Park, S. An, and S. Ryu. JEST: N+1-version Differential Testing of
Both JavaScript Engines and Specification. ICSE 2021.

AAAT705 @ Korea University Lecture 11 — Testing Oracles April 15, 2024

N—+1-version Differential Testing ’VNPLRG

J. Park, S. An, and S. Ryu. JEST: N+1-version Differential Testing of
Both JavaScript Engines and Specification. ICSE 2021.

AAAT705 @ Korea University Lecture 11 — Testing Oracles April 15, 2024 46 / 66

N—+1-version Differential Testing ’VNPLRG

J. Park, S. An, and S. Ryu. JEST: N+1-version Differential Testing of
Both JavaScript Engines and Specification. ICSE 2021.

g ~ A4
. . Graal
Test262 NEREIND (,ick)s

[Eoddabte

JavaScript
Engines

AAAT705 @ Korea University Lecture 11 — Testing Oracles April 15, 2024 47 / 66

N—+1-version Differential Testing ’VNPLRG

J. Park, S. An, and S. Ryu. JEST: N+1-version Differential Testing of
Both JavaScript Engines and Specification. ICSE 2021.

g ~ A4
. . Graal
Test262 NEREIND (,ick)s

[Eoddabte

JavaScript
Engines

AAAT705 @ Korea University Lecture 11 — Testing Oracles April 15, 2024 48 / 66

N—+1-version Differential Testing ’VNPLRG

J. Park, S. An, and S. Ryu. JEST: N+1-version Differential Testing of
Both JavaScript Engines and Specification. ICSE 2021.

g 2 \:4
' . Graal
Test262 MEKEI gy ickJs

< no conformance checking ; [Eoddabte
: JavaScript
Engines

AAAT705 @ Korea University Lecture 11 — Testing Oracles April 15, 2024

N—+1-version Differential Testing ’VNPLRG

J. Park, S. An, and S. Ryu. JEST: N+1-version Differential Testing of
Both JavaScript Engines and Specification. ICSE 2021.

AAAT705 @ Korea University Lecture 11 — Testing Oracles April 15, 2024 50 /66

N—+1-version Differential Testing ’VNPLRG

J. Park, S. An, and S. Ryu. JEST: N+1-version Differential Testing of
Both JavaScript Engines and Specification. ICSE 2021.

AAAT705 @ Korea University Lecture 11 — Testing Oracles April 15, 2024 51 /66

N—+1-version Differential Testing ’VNPLRG

J. Park, S. An, and S. Ryu. JEST: N+1-version Differential Testing of
Both JavaScript Engines and Specification. ICSE 2021.

AAAT705 @ Korea University Lecture 11 — Testing Oracles April 15, 2024 52 /66

N—+1-version Differential Testing ’VNPLRG

J. Park, S. An, and S. Ryu. JEST: N+1-version Differential Testing of
Both JavaScript Engines and Specification. ICSE 2021.

) Test

AAAT705 @ Korea University Lecture 11 — Testing Oracles April 15, 2024 53 /66

N—+1-version Differential Testing ’VNPLRG

J. Park, S. An, and S. Ryu. JEST: N+1-version Differential Testing of
Both JavaScript Engines and Specification. ICSE 2021.

ey [Test

AAAT705 @ Korea University Lecture 11 — Testing Oracles April 15, 2024 54 / 66

N+-1-version Differential Testing

J. Park, S. An, and S. Ryu. JEST: N+1-version Differential Testing of
Both JavaScript Engines and Specification. ICSE 2021.

ey [Test

A specification bug in ECMAScript

AAAT705 @ Korea University

Lecture 11 — Testing Oracles

7VNPLRG

April 15, 2024

55 /66

N+-1-version Differential Testing

J. Park, S. An, and S. Ryu. JEST: N+1-version Differential Testing of
Both JavaScript Engines and Specification. ICSE 2021.

ey [Test

A specification bug in ECMAScript
An engine bug in Graal

AAAT705 @ Korea University

Lecture 11 — Testing Oracles

7VNPLRG

April 15, 2024

56 / 66

N—+1-version Differential Testing ’VNPLRG

J. Park, S. An, and S. Ryu. JEST: N+1-version Differential Testing of
Both JavaScript Engines and Specification. ICSE 2021.

ECMAScript

Engine-1

N
J|SET P L L GLEE T \
. : Spectrum Based !
i Fault Localization (SBFL)’ Spec. Bugs
: with ER1 pformula

..... A =
. 0 o iy
Mechamzed Synthe3|zer Localizer
Tests Engine-N Engine Bugs

Spec.

AAAT705 @ Korea University Lecture 11 — Testing Oracles April 15, 2024 57 / 66

N—+1-version Differential Testing ’VNPLRG

J. Park, S. An, and S. Ryu. JEST: N+1-version Differential Testing of
Both JavaScript Engines and Specification. ICSE 2021.

ECMAScript
l Engine-1 AN
JISET Frmeseermocesesoeaees .
. : Spectrum Based !
i Fault Localization (SBFL)’ Spec. Bugs
with ER1b formula

..... /> =
. Ly Big iy

Mechanized Synthe3|zer Localizer
Tests Engine-N Engine Bugs

Spec.

AAAT705 @ Korea University Lecture 11 — Testing Oracles April 15, 2024 58 /66

N—+1-version Differential Testing ’VNPLRG

J. Park, S. An, and S. Ryu. JEST: N+1-version Differential Testing of
Both JavaScript Engines and Specification. ICSE 2021.

Test Synthesizer

()

=

Target Mutator Mutated

Program Program
/> /> />
Seed . . 3 Assemon .

Mechanized Generator Selector In]ector

Seed Programs Tests

Spec.

AAAT705 @ Korea University Lecture 11 — Testing Oracles April 15, 2024 59 /66

Contents ’VNPLRG

4. Property-based Testing

AAAT705 @ Korea University Lecture 11 — Testing Oracles April 15, 2024

Property-based Testing 7NPLRG

® Property-based Testing is a testing technique that tests the
programs by specifying the properties that the programs should
satisfy.

® The key idea is originally from the QuickCheck tool for the Haskell
programming language.

® K. Claessen and J. Hughes. QuickCheck: A Lightweight Tool for
Random Testing of Haskell Programs. ICFP 2000.

® |t requires property-based oracles, instead of the input-output pair
oracles, to test the programs.

AAAT705 @ Korea University Lecture 11 — Testing Oracles April 15, 2024 61 /66

Property-based Testing

e A traditional example-based

oracle requires input-output
pairs.

’VNPLRG

® A property-based oracle
requires the properties of a

return -x
return x

def test_abs():
assert abs(0) == 0
assert abs(1l) ==
assert abs(-1) ==

given input.
def abs(x): def abs(x):
if x < 0: if x < 0:

return -x
return x

def test_abs(x):
assert abs(x) >= 0
assert abs(x) == abs(-x)
assert abs(abs(x)) == abs(x)

AAAT705 @ Korea University

Lecture 11 — Testing Oracles

April 15, 2024 62 /66

Tool — Hypothesis for Python ’VNPLRG

¢ Hypotbhesis (link) is a property-based testing tool for the Python (or
Ruby and Java) programming language.

® |t generates the random inputs for the programs and tests the
programs with the properties that the programs should satisfy.

e |t is a powerful tool for testing the programs with the complex
properties.

® |t is a lightweight tool that can be easily integrated into the existing
testing frameworks.

AAAT705 @ Korea University Lecture 11 — Testing Oracles April 15, 2024 63 /66

https://github.com/HypothesisWorks/hypothesis

Tool — Hypothesis for Python 7NPLRG
from hypothesis import given, settings, Verbosity
from hypothesis import strategies as st
import unittest
def abs(x):
if x < O:
return -x
return x
@given(x = st.integers())
O@settings(verbosity=Verbosity.verbose)
def test_abs(x):
assert abs(x) >= 0
assert abs(x) == abs(-x)
assert abs(abs(x)) == abs(x)
test_abs()
AAAT705 @ Korea University Lecture 11 — Testing Oracles April 15, 2024 64 / 66

Summary ’VPLRG

1. Non-Testable Programs
Types of Non-Testable Programs

2. Metamorphic Testing
Examples: SMT Solvers
Examples: Web Browser Debugger
Examples: Compilers
Examples: Deep Neural Networks
Examples: Object Detection
Learning Metamorphic Relationships

3. Differential Testing
Examples: Nezha
Examples: Binary Lifters
Examples: JIT Compilers
N+1-version Differential Testing

4. Property-based Testing

AAAT705 @ Korea University Lecture 11 — Testing Oracles April 15, 2024 65 / 66

Next Lecture

® Course Review

AAAT705 @ Korea University

’VNPLRG

Jihyeok Park
jihyeok _park@korea.ac.kr
https://plrg.korea.ac.kr

Lecture 11 — Testing Oracles April 15, 2024

https://plrg.korea.ac.kr

	Non-Testable Programs
	Types of Non-Testable Programs

	Metamorphic Testing
	Examples: SMT Solvers
	Examples: Web Browser Debugger
	Examples: Compilers
	Examples: Deep Neural Networks
	Examples: Object Detection
	Learning Metamorphic Relationships

	Differential Testing
	Examples: Nezha
	Examples: Binary Lifters
	Examples: JIT Compilers
	N+1-version Differential Testing

	Property-based Testing

