
Lecture 12 – Course Review
AAA705: Software Testing and Quality Assurance

Jihyeok Park

2024 Spring

AAA705 @ Korea University Lecture 12 – Course Review April 17, 2024 1 / 35

Contents

1. Black-box Testing

2. Coverage

3. White-box Testing

4. Testing Adequacy Criteria

5. Regression Testing

6. Fault Localization

7. Testing Oracle

8. Course Project

AAA705 @ Korea University Lecture 12 – Course Review April 17, 2024 2 / 35

Contents

1. Black-box Testing

2. Coverage

3. White-box Testing

4. Testing Adequacy Criteria

5. Regression Testing

6. Fault Localization

7. Testing Oracle

8. Course Project

AAA705 @ Korea University Lecture 12 – Course Review April 17, 2024 3 / 35

Black-box Testing – Combinatorial Testing
• Combinatorial testing (CT) or combinatorial interaction testing

(CIT) constructs test cases by considering the interactions between
the parameters.
• We need to find a covering array to ensure that all interactions are

covered (e.g., constraint mixed covering array (CMCA) as follows).

A B C
0 0 0
1 1 1

2

P(x , y) = x + y > 0

⇒

CA(N = 5; t = 2, k = 3, v = (2, 2, 3), P)
A B C
0 1 1
1 0 2
1 1 0
1 0 1
0 1 2

AAA705 @ Korea University Lecture 12 – Course Review April 17, 2024 4 / 35

Black-box Testing – Adaptive Random Testing
• The diversity of a test suite is defined as the sum of distances

between all pairs of test inputs.

diversity(T) =
∑

(t1,t2)∈T×T
d(t1, t2)

Adaptive Diversity

Existing Input

New Sample Batch

Chosen

AAA705 @ Korea University Lecture 12 – Course Review April 17, 2024 5 / 35

Black/White-box Testing – Fuzz Testing

Input GenerationPre-process Test Oracles
(Sanitizers)

De-duplication

Test
Inputs Bugs

Mutation-based
Fuzzing

Generation-based
Fuzzing

• Pre-process – prepare the SUT for fuzz testing
• Input Generation – generate test inputs

• Mutation-Based Fuzzing – modify existing test inputs
• Generation-Based Fuzzing – generate new test inputs

• Test Oracles (Sanitizers) – detect exceptional outcomes
• De-duplication – remove duplicate test inputs
AAA705 @ Korea University Lecture 12 – Course Review April 17, 2024 6 / 35

Contents

1. Black-box Testing

2. Coverage

3. White-box Testing

4. Testing Adequacy Criteria

5. Regression Testing

6. Fault Localization

7. Testing Oracle

8. Course Project

AAA705 @ Korea University Lecture 12 – Course Review April 17, 2024 7 / 35

Coverage – Graph Coverage

Node
Coverage

NC

Edge
Coverage

EC

Edge-Pair
Coverage

EPC

Complete Path
Coverage

CPC

Prime Path
Coverage

PPC

All-DU-Paths
Coverage

ADUPC

All-Uses
Coverage

AUC

All-Defs
Coverage

ADC

Complete Round
Trip Coverage

CRTC

Simple Round
Trip Coverage

SRTC

AAA705 @ Korea University Lecture 12 – Course Review April 17, 2024 8 / 35

Coverage – Logic Coverage

Clause
Coverage

CC

General Active
Clause Coverage

GACC

Correlated Active
Clause Coverage

CACC

Combinatorial
Clause Coverage

CoC

Restricted Active
Clause Coverage

RACC

General Inactive
Clause Coverage

GICC

Predicate
Coverage

PC

Restricted Inactive
Clause Coverage

RICC

AAA705 @ Korea University Lecture 12 – Course Review April 17, 2024 9 / 35

Coverage – Neuron Coverage

1

2

3

...

... ...

...

NC(T , t) = |{n | ∃x ∈ T . fθ(n, x) > t}|
|N|

KMNC =
∑

n∈N |{Sn
m | ∃x ∈ T . fθ(n, x) ∈ Sn

m}|
|N|

UNC = |{n | ∃x ∈ T . fθ(n, x) > upn}|
|N| LNC = |{n | ∃x ∈ T . fθ(n, x) < lown}|

|N|

TKNC =
|
⋃

x∈T
⋃

1≤l≤L topk(x , l)|
|N|

AAA705 @ Korea University Lecture 12 – Course Review April 17, 2024 10 / 35

Contents

1. Black-box Testing

2. Coverage

3. White-box Testing

4. Testing Adequacy Criteria

5. Regression Testing

6. Fault Localization

7. Testing Oracle

8. Course Project

AAA705 @ Korea University Lecture 12 – Course Review April 17, 2024 11 / 35

Search-Based Software Testing – Local Search

Local Search

Random start

• Simulated Annealing – introduce a temperature and gradually
decrease it to reduce the probability of accepting worse solutions.

• Tabu Search – keep track of the last few moves and avoid revisiting
them.

AAA705 @ Korea University Lecture 12 – Course Review April 17, 2024 12 / 35

Search-Based Software Testing – Genetic Algorithm

Initial Population

Evaluate Fitness
Of Population

Select Parents

Mutate Offsprings

Crossover Parents

New Population

Stopping Criterion
Met

AAA705 @ Korea University Lecture 12 – Course Review April 17, 2024 13 / 35

Search-Based Software Testing – Bio-Inspired

Particle Swarm Optimization (PSO)

AAA705 @ Korea University Lecture 12 – Course Review April 17, 2024 14 / 35

Search-Based Software Testing – Bio-Inspired

Ant Colony Optimization (ACO)

AAA705 @ Korea University Lecture 12 – Course Review April 17, 2024 15 / 35

Dynamic Symbolic Execution (DSE)

class Node {
int data;
Node* next;

};

void f(int x, Node *p) {

if (x > 0)

if (p != NULL)

if (x*2+1 == p->data)

if (p->next == p)
*

ERROR;

return 0;
}

X V Ω
x 1 α
p 0xA0BF : 3 0xA0BF β

Φ (α > 0) ∧ (β ̸= NULL)∧
(2α + 1 = β.data) ∧ (β.next = β)

α > 0

(0, NULL)

#f

β ̸= NULL

#t

(42, NULL)

#f

2α + 1 = β.data

#t

(42, 0xA0BF: 0 NULL)

#f

β.next = β

#t

(1, 0xA0BF: 3 NULL)

#f

(1, 0xA0BF: 3 0xA0BF)

#t

AAA705 @ Korea University Lecture 12 – Course Review April 17, 2024 16 / 35

Contents

1. Black-box Testing

2. Coverage

3. White-box Testing

4. Testing Adequacy Criteria

5. Regression Testing

6. Fault Localization

7. Testing Oracle

8. Course Project

AAA705 @ Korea University Lecture 12 – Course Review April 17, 2024 17 / 35

Testing Adequacy Criteria – Mutation Testing

Test Suite

Program
Mutants

Bug

Same Results
(Alive)

Different Results
(Killed)

AAA705 @ Korea University Lecture 12 – Course Review April 17, 2024 18 / 35

Testing Adequacy Criteria – Flakiness

“The State of Continuous Integration Testing at Google”, John Micco,
ICST 2017 Keynote (https://research.google/pubs/pub45880/)

AAA705 @ Korea University Lecture 12 – Course Review April 17, 2024 19 / 35

https://research.google/pubs/pub45880/

Contents

1. Black-box Testing

2. Coverage

3. White-box Testing

4. Testing Adequacy Criteria

5. Regression Testing

6. Fault Localization

7. Testing Oracle

8. Course Project

AAA705 @ Korea University Lecture 12 – Course Review April 17, 2024 20 / 35

Regression Testing – Test Suite Minimization
Algorithm Greedy Minimization with Cost
1: function GreedyMinimization(T , R)
2: T ′ ← ∅
3: while true do
4: t ← argmaxt∈T

|R∩TR(t)|
Time(t)

5: if |R ∩ TR(t)| = 0 then
6: break
7: T ′ ← T ′ ∪ {t}
8: R ← R \ TR(t)
9: return T ′

TC r1 r2 r3 r4 Time
t1 ✓ ✓ 3
t2 ✓ ✓ 5
t3 ✓ ✓ ✓ 10
t4 ✓ 2
t5 ✓ ✓ 8

T ′ = ∅ R = {r1, r2, r3, r4}

T ′ = {t1} R = {r3, r4}

T ′ = {t1, t4} R = {r4}

T ′ = {t1, t4, t2} R = ∅
AAA705 @ Korea University Lecture 12 – Course Review April 17, 2024 21 / 35

Regression Testing – Test Case Selection
• Most of the modern software are developed using the version control

system (e.g., Git, SVN, etc.).
• The most easiest way is to use the diff command provided by the

version control system to know the changed parts of the program.

AAA705 @ Korea University Lecture 12 – Course Review April 17, 2024 22 / 35

Regression Testing – Test Prioritization
• We can measure the effectiveness of the test case prioritization based

on the average percentage of faults detected (APFD).
• Intuitively, APFD evaluates the effectiveness of the test case based on

the area under the curve of the fault detection rate.

Faults may reside on the non-imperative artifacts (such as XPath
and WSDL) in a service-oriented business application. To the best of
our knowledge, however, prioritization techniques to effectively find
test cases to reveal such implementation problems earlier during
maintenance has not been studied. This paper tackles the problem.

Following our previous work [12], we model an XPath query (in
the presence of a WSDL specification) as an XPath Rewriting Graph
(XRG). An XRG represents potential scenarios of content selections
from XML messages. Each content selection scenario is captured as
an XRG branch (see Section 2.2.2). We note that XRG branches for
different XML messages that the XPath expression is querying on
may be different. To account for the WSDL artifact, we say that a test
case t has covered a WSDL element e if t contains an XML message
m as input, or t causes the application to generate an XML message m,
such that m has e as its entity tag. In a changing business application,
every artifact (workflow, XPath, or WSDL) may be modified. As a
result, fault(s) may be introduced to the artifacts. The use of
workflow coverage data to prioritize test cases may be effective for
detecting faults in the workflow program, such as wrong predicates.
However, such prioritizations may be ineffective for handling faults
in other artifacts. More examples will be given in Section 3.

We propose a multilevel coverage model to capture the coverage
requirements of these artifacts. Level 1 covers only the workflow,
level 2 covers both workflow and XPath, and level 3 covers
workflow, XPath, and WSDL. Through the level-by-level use of
coverage data for test cases, we propose a new family of test case
prioritization techniques.

To handle multiple types of artifact in the family of test case
prioritization techniques, we use two strategies. The first strategy is
to treat different artifacts homogenously, which is akin to enlarging
the coverage space from pure workflow-oriented coverage space to a
space linked up to the coverage space of other artifact types. We call
it a summation strategy. On the other hand, we appreciate that such a
homogenous treatment of artifacts may not reflect the different roles
of these artifacts in a service-oriented business application. For
instance, from the perspective of process engineers who write such
applications, a workflow program is more important than XPath
expressions or WSDL specifications. Therefore, we propose another
strategy called a refinement strategy. This strategy would refer to
another type of artifact (such as WSDL) only if using the artifacts
already referred to (such as workflow and XPath) cannot help a
prioritization technique to select a test case.

We develop a family of techniques using the above model and
strategies. With the inclusion of more artifacts, our techniques can
intuitively be more effective in detecting faults residing across
various artifacts. Our experiment further shows that the family of
techniques is effective to reveal regression faults in modified
programs, and the techniques at a higher level is generally more
effective than those at a lower level.

The main contribution of this paper is threefold. (i) Through a
multilevel coverage model, we propose a family of test case prioriti-
zation techniques that consider imperative and non-imperative
artifacts (including workflow, XPath, and WSDL) in
service-oriented business applications. (ii) We analyze the proposed
prioritization techniques and present a hierarchy to capture their
relations. To our best knowledge, this is the first logical hierarchy to
relate test case prioritization techniques in the literature. (iii) We
report an experimental study to verify the effectiveness of our
proposal.

The rest of the paper is organized as follows: Section 2 gives the
preliminaries. Section 3 shows a motivating example to discuss the
challenges. Section 4 presents our prioritization techniques. Section 5
presents an experiment to validate our proposal, followed by

discussions and related work in Sections 6 and 7, respectively. Finally,
Section 8 concludes the paper.

2. PRELIMINARIES
2.1 Test Case Prioritization

Test case prioritization [5][19] is an important kind of regression
testing technique [9][18]. With the information gained in the
previous software evaluation, we may design techniques to run the
test cases to achieve a certain goal in the regression testing. For
example, proper test case prioritization techniques increase the fault
detection rate of a test suite and the chance of executing test cases
with higher rates of fault detection earlier [5]. We adopt the test case
permutation problem from [19] as follows:

Given: T, a test suite; PT, the set of permutations of T; and f, a
function from PT to real numbers. (For example, f may calculate the
fault detection rate of a permutation of T.)

Problem: To find T’∈PT such that,

AAA705 @ Korea University Lecture 12 – Course Review April 17, 2024 23 / 35

Contents

1. Black-box Testing

2. Coverage

3. White-box Testing

4. Testing Adequacy Criteria

5. Regression Testing

6. Fault Localization

7. Testing Oracle

8. Course Project

AAA705 @ Korea University Lecture 12 – Course Review April 17, 2024 24 / 35

Fault Localization – Delta Debugging

✗
✓
✓
✗
✓
✓
✗
✓
✗
✗

...
✗

AAA705 @ Korea University Lecture 12 – Course Review April 17, 2024 25 / 35

Fault Localization – Information Retrieval

• Term-Frequency Inverse Document Frequency (Tf-Idf) is a
numerical statistic that reflects how important a term is to a
document in a collection or corpus.
• Term Frequency (tf)

tf (t, d) = ft,d
|d |

• Inverse Document Frequency (idf)

idf (t, D) = log
(|D|
|{d ∈ D | t ∈ d}|

)

AAA705 @ Korea University Lecture 12 – Course Review April 17, 2024 26 / 35

Fault Localization – Spectrum-Based

Program Spectrum

Test Suite

<latexit sha1_base64="oqc571UY9sukKT8P3T5cuk9wFnE=">AAACMHicbVBNS8NAEN3Ur1q/oh49uFgEQSyJiHoUvXisYKtgS9hsJ7p0swm7E6GGHP013kT/i57Eqz/Bk9uPg7Y+2OHx3swO88JUCoOe9+6UpqZnZufK85WFxaXlFXd1rWmSTHNo8EQm+jpkBqRQ0ECBEq5TDSwOJVyF3bO+f3UP2ohEXWIvhXbMbpWIBGdopcDdhCCie7QVacZzCNKiX+guVYPqF4Fb9WreAHSS+CNSJSPUA/e71Ul4FoNCLpkxN76XYjtnGgWXUFRamYGU8S67hRtLFYvBtPPBIQXdtkqHRom2TyEdqL8nchYb04tD2xkzvDPjXl/81zMYM93TnbH9GB23c6HSDEHx4fookxQT2s+KdoQGjrJnCeNa2Asov2M2KbSJ/vkfRfehqNiw/PFoJklzv+Yf1g4vDqonp6PYymSDbJEd4pMjckLOSZ00CCeP5Im8kFfn2XlzPpzPYWvJGc2skz9wvn4AtYepLQ==</latexit>

ef � ep

ep + np + 1

Risk Evaluation Formula

Ranking

AAA705 @ Korea University Lecture 12 – Course Review April 17, 2024 27 / 35

Fault Localization – Mutation-Based

<latexit sha1_base64="zJ2dMg2EQrghN8PffBz3K6vHLpU=">AAAC3nicbVFNj9MwEHXC11K+Chy5WFRI3QNVA2jZC9IKLhyLRHcX1VFwHKe1ajuWPVlUrFy5Ia78KX4Af4UTThOJbpeRLD29N29G85wbKRxMp7+j+Nr1GzdvHdwe3Ll77/6D4cNHp66qLeNzVsnKnufUcSk0n4MAyc+N5VTlkp/l63etfnbBrROV/ggbw1NFl1qUglEIVDb8RTT/wiqlqC480ZVVzSJJPZHBBH6UNMS2qBkQVY/dIX6DSWkp80nTdXtVQ+CbBhNXq8wrTITGPYmJ5CWMO0fXXmazdgxh1GCTqab5x4cZzzGh0qxo0IsK8K7R7BjLHaPZGokVyxUcZsPRdDLdFr4Kkh6MUF+zbPiHFBWrFdfAJHVukUwNpJ5aEEzycHXtuKFsTZd8EaCmirvUb2Nv8LPAFLisbHga8JbddXiqnNuoPHQqCiu3r7XkfzUHitqNLfb2Q3mceqFNDVyzbn1ZSwwVbn8WF8JyBnITAGVWhAswW9GQIIT/vzQfxPprMwhhJfvRXAWnLybJ0eTow6vRyds+tgP0BD1FY5Sg1+gEvUczNEcsehl9ivKIxZ/jb/H3+EfXGke95zG6VPHPv0zt6dQ=</latexit>

µ(s) =
1

|mut(s)|
X

m2mut(s)

✓ |fP (s) \ pm|
|fP | � ↵ · |pP (s) \ fm|

|pP |

◆

Proportion of test
cases that mutant m

turns from fail to pass

Proportion of test
cases that mutant m

turns from pass to fail

Proportion of test
cases that mutant m

turns from pass to fail

where α is the balancing factor:

α = f 2p
|mut(P)| · |fP |

· |mut(P)| · |pP |
p2f

AAA705 @ Korea University Lecture 12 – Course Review April 17, 2024 28 / 35

Contents

1. Black-box Testing

2. Coverage

3. White-box Testing

4. Testing Adequacy Criteria

5. Regression Testing

6. Fault Localization

7. Testing Oracle

8. Course Project

AAA705 @ Korea University Lecture 12 – Course Review April 17, 2024 29 / 35

Testing Oracle – Metamorphic Testing

Definition (Metamorphic Relationship)
A program p : X → Y has a metamorphic relationship f : X → X with
a relation R ⊆ Y × Y if and only if:

∀x ∈ X . (p(x), p ◦ f (x)) ∈ R

For example, the sin function has the following metamorphic relationships:

f Relationship R

f (x) = π − x sin(x) = sin(π − x)

f (x) = x + π sin(x) = − sin(x + π)

f (x) = x + π
2 sin2(x) + sin2(x + π

2) = 1

AAA705 @ Korea University Lecture 12 – Course Review April 17, 2024 30 / 35

Testing Oracle – Differential Testing

Program 1

Program 2

Program 3

Input

42

Input

7

Input

7

Input

3

Majority

Minority

AAA705 @ Korea University Lecture 12 – Course Review April 17, 2024 31 / 35

Testing Oracle – Property-based Testing

• A traditional example-based
oracle requires input-output
pairs.

def abs(x):
if x < 0:

return -x
return x

def test_abs():
assert abs(0) == 0
assert abs(1) == 1
assert abs(-1) == 1

• A property-based oracle
requires the properties of a
given input.

def abs(x):
if x < 0:

return -x
return x

def test_abs(x):
assert abs(x) >= 0
assert abs(x) == abs(-x)
assert abs(abs(x)) == abs(x)

AAA705 @ Korea University Lecture 12 – Course Review April 17, 2024 32 / 35

Contents

1. Black-box Testing

2. Coverage

3. White-box Testing

4. Testing Adequacy Criteria

5. Regression Testing

6. Fault Localization

7. Testing Oracle

8. Course Project

AAA705 @ Korea University Lecture 12 – Course Review April 17, 2024 33 / 35

Course Project
The last part of the course is the course project (Due: 05/20).

There are two presentation sessions:

• 05/20 (Mon.) – Project Presentation I

• 05/22 (Wed.) – Project Presentation II

The grading criteria are as follows:

• 30% – Topic Selection

• 30% – Results

• 40% – Presentation

Let’s decide the topic of the course project!

Please send me an email with the GitHub repository link for your project.

AAA705 @ Korea University Lecture 12 – Course Review April 17, 2024 34 / 35

• I hope you enjoyed the class!

Jihyeok Park
jihyeok park@korea.ac.kr

https://plrg.korea.ac.kr

AAA705 @ Korea University Lecture 12 – Course Review April 17, 2024 35 / 35

https://plrg.korea.ac.kr

	Black-box Testing
	Coverage
	White-box Testing
	Testing Adequacy Criteria
	Regression Testing
	Fault Localization
	Testing Oracle
	Course Project

