Lecture 12 – Course Review AAA705: Software Testing and Quality Assurance

Jihyeok Park

PLRG

2024 Spring

AAA705 @ Korea University

Lecture 12 - Course Review

April 17, 2024

- 1. Black-box Testing
- 2. Coverage
- 3. White-box Testing
- 4. Testing Adequacy Criteria
- 5. Regression Testing
- 6. Fault Localization
- 7. Testing Oracle
- 8. Course Project

- 1. Black-box Testing
- 2. Coverage
- 3. White-box Testing
- 4. Testing Adequacy Criteria
- 5. Regression Testing
- 6. Fault Localization
- 7. Testing Oracle
- 8. Course Project

Black-box Testing – Combinatorial Testing

- Combinatorial testing (CT) or combinatorial interaction testing (CIT) constructs test cases by considering the interactions between the parameters.
- We need to find a **covering array** to ensure that all interactions are covered (e.g., constraint mixed covering array (CMCA) as follows).

PLRG

Black-box Testing – Adaptive Random Testing

• The **diversity** of a test suite is defined as the **sum of distances** between all pairs of test inputs.

$$diversity(T) = \sum_{(t_1, t_2) \in T \times T} d(t_1, t_2)$$

Lecture 12 - Course Review

Black/White-box Testing – Fuzz Testing

- Pre-process prepare the SUT for fuzz testing
- Input Generation generate test inputs
 - Mutation-Based Fuzzing modify existing test inputs
 - Generation-Based Fuzzing generate new test inputs
- Test Oracles (Sanitizers) detect exceptional outcomes
- **De-duplication** remove duplicate test inputs

PLRG

1. Black-box Testing

2. Coverage

- 3. White-box Testing
- 4. Testing Adequacy Criteria
- 5. Regression Testing
- 6. Fault Localization
- 7. Testing Oracle
- 8. Course Project

Coverage – Graph Coverage

Coverage – Logic Coverage

Coverage – Neuron Coverage

$$NC(T,t) = \frac{|\{n \mid \exists x \in T. f_{\theta}(n,x) > t\}|}{|N|}$$
$$KMNC = \frac{\sum_{n \in N} |\{S_m^n \mid \exists x \in T. f_{\theta}(n,x) \in S_m^n\}|}{|N|}$$
$$UNC = \frac{|\{n \mid \exists x \in T. f_{\theta}(n,x) > up_n\}|}{|N|} \quad LNC = \frac{|\{n \mid \exists x \in T. f_{\theta}(n,x) < low_n\}|}{|N|}$$
$$TKNC = \frac{|\bigcup_{x \in T} \bigcup_{1 \le l \le L} top_k(x,l)|}{|N|}$$

AAA705 @ Korea University

- 1. Black-box Testing
- 2. Coverage
- 3. White-box Testing
- 4. Testing Adequacy Criteria
- 5. Regression Testing
- 6. Fault Localization
- 7. Testing Oracle
- 8. Course Project

Search-Based Software Testing – Local Search

- **Simulated Annealing** introduce a temperature and gradually decrease it to reduce the probability of accepting worse solutions.
- **Tabu Search** keep track of the last few moves and avoid revisiting them.

Search-Based Software Testing – Genetic Algorithm PLRG

Search-Based Software Testing – Bio-Inspired

Particle Swarm Optimization (PSO)

Search-Based Software Testing – Bio-Inspired

Ant Colony Optimization (ACO)

Dynamic Symbolic Execution (DSE)

X	V	Ω	
X	1	α	
р	0xA0BF : 3 0 <i>xA</i> 0 <i>BF</i>	β	
Φ	$(lpha > 0) \land (eta eq NUL)$ $(2lpha + 1 = eta.data) \land (eta.r)$	$LL) \land$ next = β)	
# (1, 0xA0BF	$\begin{array}{c} \texttt{"t}\\ \texttt{"t}\\ \texttt{$\beta \neq Nl}\\ \texttt{μ}\\ $\mu$$	$\begin{array}{c} \alpha > 0 \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$] ^{#f} NULL)

- 1. Black-box Testing
- 2. Coverage
- 3. White-box Testing
- 4. Testing Adequacy Criteria
- 5. Regression Testing
- 6. Fault Localization
- 7. Testing Oracle
- 8. Course Project

Testing Adequacy Criteria – Mutation Testing

Testing Adequacy Criteria – Flakiness

"The State of Continuous Integration Testing at Google", John Micco, ICST 2017 Keynote (https://research.google/pubs/pub45880/)

AAA705 @ Korea University

Lecture 12 - Course Review

PLRG

- 1. Black-box Testing
- 2. Coverage
- 3. White-box Testing
- 4. Testing Adequacy Criteria
- 5. Regression Testing
- 6. Fault Localization
- 7. Testing Oracle
- 8. Course Project

Regression Testing - Test Suite Minimization

- 1: function GREEDYMINIMIZATION(T, R)
- 2: $T' \leftarrow \emptyset$
- 3: while true do

4:
$$t \leftarrow \operatorname{argmax}_{t \in \mathcal{T}} \frac{|R \cap \mathsf{TR}(t)|}{\mathsf{Time}(t)}$$

5: if $|R \cap \mathsf{TR}(t)| = 0$ then

break

- 7: $T' \leftarrow T' \cup \{t\}$
- 8: $R \leftarrow R \setminus \mathsf{TR}(t)$
- 9: **return** *T'*

6:

ТС	<i>r</i> ₁	<i>r</i> ₂	<i>r</i> 3	<i>r</i> 4	Time	T' = arnothing	$R = \{r_1, r_2, r_3, r_4\}$
t_1	\checkmark	\checkmark			3	$T' = \{t_i\}$	$R = \{r_0, r_1\}$
t ₂		\checkmark		\checkmark	5	$I = \{i_1\}$	$N = \{13, 14\}$
t ₃		\checkmark	\checkmark	\checkmark	10	$T' = \{t_1, t_4\}$	$R = \{r_4\}$
t4			\checkmark		2	(_/ .)	
t5			\checkmark	\checkmark	8	$T' = \{t_1, t_4, t_2\}$	$R = \emptyset$

AAA705 @ Korea University

Regression Testing – Test Case Selection

- Most of the modern software are developed using the version control system (e.g., Git, SVN, etc.).
- The most easiest way is to use the **diff** command provided by the version control system to know the **changed parts** of the program.

191	def codeUnit: AbsCodeUnit	194	def codeUnit: AbsCodeUnit
192	def const: AbsConst	195	def const: AbsConst
193	def math: AbsMath	196	def math: AbsMath
		197	+ def infinity: AbsInfinity
194	<pre>def simpleValue: AbsSimpleValue</pre>	198	def simpleValue: AbsSimpleValue
195	def number: AbsNumber	199	def number: AbsNumber
196	def bigInt: AbsBigInt	200	def bigInt: AbsBigInt
·····			
~	"" 203 SFC/main/scala/esmeta/analyz	er/doma	in/value/value/ypepomain.scala
			□ Viewed 🖓 …
. <u>↑</u> .	@@ -4,7 +4,8 @@ import esmeta.analyzer.	*	□ Viewed
<u>.</u>	@@ -4,7 +4,8 @@ import esmeta.analyzer. import esmeta.analyzer.domain.*	* 4	Viewed 🖵 …
. <u>†</u> . 4 5	<pre>@@ -4,7 +4,8 @@ import esmeta.analyzer. import esmeta.analyzer.domain.∗ import esmeta.cfg.Func</pre>	* 4 5	Viewed Viewed · · · · · · · · · · · · · · · · · · ·
. <u>↑</u> . 4 5 6	<pre>@@ -4,7 +4,8 @@ import esmeta.analyzer. import esmeta.analyzer.domain.* import esmeta.cfg.Func import esmeta.es.*</pre>	* 4 5 6	<pre> Viewed ···· import esmeta.analyzer.domain.* import esmeta.cfg.Func import esmeta.cs.*</pre>
<u>↑</u> 4 5 6 7	<pre>@@ -4,7 +4,8 @@ import esmeta.analyzer. import esmeta.analyzer.domain.* import esmeta.ef.* import esmeta.ef.* - import esmeta.ir.{COp, Name, VOp,</pre>	* 4 5 6 7	<pre> Viewed</pre>
. <u>↑</u> . 4 5 6 7	<pre>@@ -4,7 +4,8 @@ import esmeta.analyzer. import esmeta.analyzer.domain.* import esmeta.cfg.Func import esmeta.es.* - import esmeta.ir.{COp, Name, VOp, MOp}</pre>	* 4 5 6 7	<pre>Viewed </pre>
. <u>↑</u> . 4 5 6 7	<pre>@@ -4,7 +4,8 @@ import esmeta.analyzer. import esmeta.analyzer.domain.* import esmeta.cfg.Func import esmeta.es.* - import esmeta.ir.{COp, Name, VOp, MOp}</pre>	* 4 5 6 7 8	<pre> Viewed import esmeta.analyzer.domain.* import esmeta.cfg.Func import esmeta.s.* + import esmeta.ir.{COp, Name, VOp, MOp, UOp} + import esmeta.interpreter.Interpreter</pre>
. <u>↑</u> . 4 5 6 7	<pre>@@ -4,7 +4,8 @@ import esmeta.analyzer. import esmeta.analyzer.domain.* import esmeta.cfg.Func import esmeta.es.* - import esmeta.ir.{COp, Name, VOp, MOp} import esmeta.parser.ESValueParser</pre>	* 4 5 6 7 8 9	<pre> Viewed □ … import esmeta.analyzer.domain.* import esmeta.cfg.runc import esmeta.es.* + import esmeta.ir.{COp, Name, VOp, NOp, VOp} + import esmeta.interpreter.Interpreter import esmeta.parser.ESValueParser</pre>
. <u>↑</u> . 4 5 6 7 8 9	<pre>@@ -4,7 +4,8 @@ import esmeta.analyzer. import esmeta.analyzer.domain.* import esmeta.cfg.Func import esmeta.es.* = import esmeta.ir.{COp, Name, VOp, NOp} import esmeta.parser.ESValueParser import esmeta.state.*</pre>	* 4 5 6 7 8 9 10	<pre>Viewed </pre>

Regression Testing – Test Prioritization

- We can measure the effectiveness of the test case prioritization based on the **average percentage of faults detected** (APFD).
- Intuitively, APFD evaluates the effectiveness of the test case based on the **area** under the curve of the **fault detection rate**.

- 1. Black-box Testing
- 2. Coverage
- 3. White-box Testing
- 4. Testing Adequacy Criteria
- 5. Regression Testing
- 6. Fault Localization
- 7. Testing Oracle
- 8. Course Project

Fault Localization – Delta Debugging

AAA705 @ Korea University

April 17, 2024

25 / 35

- Term-Frequency Inverse Document Frequency (Tf-ldf) is a numerical statistic that reflects how important a term is to a document in a collection or corpus.
- Term Frequency (tf)

$$tf(t,d) = \frac{f_{t,d}}{|d|}$$

• Inverse Document Frequency (idf)

$$\mathit{idf}(t,D) = \log\left(rac{|D|}{|\{d \in D \mid t \in d\}|}
ight)$$

Fault Localization – Spectrum-Based

Fault Localization – Mutation-Based

Proportion of test cases that mutant *m* turns from fail to pass

$$\mu(s) = \frac{1}{|mut(s)|} \sum_{m \in mut(s)} \left(\frac{1}{2} \int_{0}^{\infty} \frac{1}{|mut(s)|} \int_{0}^{\infty} \frac{1}{|mut(s$$

$$\frac{|f_P(s) \cap p_m|}{|f_P|} - \alpha$$

$$\frac{|p_P(s) \cap f_m|}{|p_P|}$$

Proportion of test cases that mutant *m* turns from pass to fail Proportion of test cases that mutant *m* turns from pass to fail

where α is the **balancing factor**:

$$\alpha = \frac{f2p}{|mut(P)| \cdot |f_P|} \cdot \frac{|mut(P)| \cdot |p_P|}{p2f}$$

- 1. Black-box Testing
- 2. Coverage
- 3. White-box Testing
- 4. Testing Adequacy Criteria
- 5. Regression Testing
- 6. Fault Localization
- 7. Testing Oracle
- 8. Course Project

Testing Oracle – Metamorphic Testing

Definition (Metamorphic Relationship)

A program $p: X \to Y$ has a **metamorphic relationship** $f: X \to X$ with a relation $R \subseteq Y \times Y$ if and only if:

 $\forall x \in X. (p(x), p \circ f(x)) \in R$

For example, the sin function has the following metamorphic relationships:

f	Relationship R
$f(x) = \pi - x$	$\sin(x) = \sin(\pi - x)$
$f(x) = x + \pi$	$\sin(x) = -\sin(x+\pi)$
$f(x) = x + \frac{\pi}{2}$	$\sin^2(x) + \sin^2(x + \frac{\pi}{2}) = 1$

PLRG

Testing Oracle – Differential Testing

Testing Oracle - Property-based Testing

• A traditional example-based oracle requires **input-output pairs**.

def abs(x): if x < 0: return -x return x def test_abs(): assert abs(0) == 0 assert abs(1) == 1 assert abs(-1) == 1 • A property-based oracle requires the properties of a given input.

<pre>def abs(x): if x < 0:</pre>
return -x
return x
def test_abs(x): assert abs(x) >= 0
assert $abs(x) = abs(-x)$
assert $abs(abs(x)) == abs(x)$

- 1. Black-box Testing
- 2. Coverage
- 3. White-box Testing
- 4. Testing Adequacy Criteria
- 5. Regression Testing
- 6. Fault Localization
- 7. Testing Oracle
- 8. Course Project

Course Project

The last part of the course is the course project (Due: 05/20).

There are two presentation sessions:

- 05/20 (Mon.) Project Presentation I
- 05/22 (Wed.) Project Presentation II

The grading criteria are as follows:

- 30% Topic Selection
- 30% Results
- 40% Presentation

Let's decide the **topic** of the course project!

Please send me an email with the GitHub repository link for your project.

• I hope you enjoyed the class!

Jihyeok Park jihyeok_park@korea.ac.kr https://plrg.korea.ac.kr