
Lecture 2 – Random Testing
AAA705: Software Testing and Quality Assurance

Jihyeok Park

2024 Spring

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 1 / 45

Recall
• Equivalence Partitioning (EP)

• Boundary Value Analysis (BVA)

• Category Partition Method (CPM)

• Combinatorial Testing (CT)

• Covering Array (CA)

• Fault Detection Effectiveness

• Greedy Algorithm – IPOG Strategy

• Greedy vs. Meta-heuristic

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 2 / 45

Contents
1. Random Testing (RT)

Probabilistic Analysis
Weaknesses of Random Testing
Examples

2. Adaptive Random Testing (ART)
Levenshtein (Edit) Distance
Distance Comparison Target
Complexity of ART
Quasi-Random Strategy for ART

3. Fuzz Testing
Pre-process
Input Generation – Mutation-Based Fuzzing
Input Generation – Generation-Based Fuzzing
Test Oracles (Sanitizers)
De-duplication

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 3 / 45

Contents
1. Random Testing (RT)

Probabilistic Analysis
Weaknesses of Random Testing
Examples

2. Adaptive Random Testing (ART)
Levenshtein (Edit) Distance
Distance Comparison Target
Complexity of ART
Quasi-Random Strategy for ART

3. Fuzz Testing
Pre-process
Input Generation – Mutation-Based Fuzzing
Input Generation – Generation-Based Fuzzing
Test Oracles (Sanitizers)
De-duplication

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 4 / 45

Random Testing

• We need to sample the test input from the vast and possibly infinite
input space.

• What happens if we just sample the input randomly?

• Since developers has their own mental model of the software, they
often have a biased view of the input space.

• Random testing can help to ignore this bias.

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 5 / 45

Random Testing

• We need to sample the test input from the vast and possibly infinite
input space.

• What happens if we just sample the input randomly?

• Since developers has their own mental model of the software, they
often have a biased view of the input space.

• Random testing can help to ignore this bias.

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 5 / 45

Random Testing

• We need to sample the test input from the vast and possibly infinite
input space.

• What happens if we just sample the input randomly?

• Since developers has their own mental model of the software, they
often have a biased view of the input space.

• Random testing can help to ignore this bias.

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 5 / 45

Random Testing

• We need to sample the test input from the vast and possibly infinite
input space.

• What happens if we just sample the input randomly?

• Since developers has their own mental model of the software, they
often have a biased view of the input space.

• Random testing can help to ignore this bias.

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 5 / 45

Random Testing

• SUT: Software Under Test

• S: Set of all possible test inputs for SUT

• F : a subset of S – a set of all failing test inputs

Failure Rate t = |F |
|S|

(The probability that a randomly sampled test input is fail when we
sample uniformly at random from S)

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 6 / 45

Random Testing

• SUT: Software Under Test

• S: Set of all possible test inputs for SUT

• F : a subset of S – a set of all failing test inputs

Failure Rate t = |F |
|S|

(The probability that a randomly sampled test input is fail when we
sample uniformly at random from S)

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 6 / 45

Random Testing

• SUT: Software Under Test

• S: Set of all possible test inputs for SUT

• F : a subset of S – a set of all failing test inputs

Failure Rate t = |F |
|S|

(The probability that a randomly sampled test input is fail when we
sample uniformly at random from S)

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 6 / 45

Random Testing

• SUT: Software Under Test

• S: Set of all possible test inputs for SUT

• F : a subset of S – a set of all failing test inputs

Failure Rate t = |F |
|S|

(The probability that a randomly sampled test input is fail when we
sample uniformly at random from S)

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 6 / 45

Random Testing – Example

/* C */
int abs(int x) {

if (x < 0) return x; // should be -x
else return x;

}

• Failure Rate t ≈ 0.5
• Oracle

• assertEqual(abs(-5), 5)
• assertEqual(abs(5), 5)

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 7 / 45

How Random Can We Get?
• Pseudo-random number generators (PRNGs)

• Middle Square Method – Initial algorithm by John von Neumann

• Linear Congruential Generator – Most popular

• Mersenne Twister (1997) – C++ 11 / PHP 7.1 – a bias bug12

• Xorshift – Fast but fail some tests / variants (xorshift+, xoshiro, etc.)

• True-random number generators (TRNGs) – expensive

• Atmospheric noise – https://random.org

• Quantum random number generator (QRNG) –
https://qrng.anu.edu.au

• Lava lamps – Cloudflare

1https://bugs.php.net/bug.php?id=75170
2https://github.com/php/php-src/commit/a0724d
AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 8 / 45

https://random.org
https://qrng.anu.edu.au
https://blog.cloudflare.com/lavarand-in-production-the-nitty-gritty-technical-details/
https://bugs.php.net/bug.php?id=75170
https://github.com/php/php-src/commit/a0724d

How Random Can We Get?
• Pseudo-random number generators (PRNGs)

• Middle Square Method – Initial algorithm by John von Neumann

• Linear Congruential Generator – Most popular

• Mersenne Twister (1997) – C++ 11 / PHP 7.1 – a bias bug12

• Xorshift – Fast but fail some tests / variants (xorshift+, xoshiro, etc.)

• True-random number generators (TRNGs) – expensive

• Atmospheric noise – https://random.org

• Quantum random number generator (QRNG) –
https://qrng.anu.edu.au

• Lava lamps – Cloudflare

1https://bugs.php.net/bug.php?id=75170
2https://github.com/php/php-src/commit/a0724d
AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 8 / 45

https://random.org
https://qrng.anu.edu.au
https://blog.cloudflare.com/lavarand-in-production-the-nitty-gritty-technical-details/
https://bugs.php.net/bug.php?id=75170
https://github.com/php/php-src/commit/a0724d

How Random Can We Get?
• Pseudo-random number generators (PRNGs)

• Middle Square Method – Initial algorithm by John von Neumann

• Linear Congruential Generator – Most popular

• Mersenne Twister (1997) – C++ 11 / PHP 7.1 – a bias bug12

• Xorshift – Fast but fail some tests / variants (xorshift+, xoshiro, etc.)

• True-random number generators (TRNGs) – expensive

• Atmospheric noise – https://random.org

• Quantum random number generator (QRNG) –
https://qrng.anu.edu.au

• Lava lamps – Cloudflare

1https://bugs.php.net/bug.php?id=75170
2https://github.com/php/php-src/commit/a0724d
AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 8 / 45

https://random.org
https://qrng.anu.edu.au
https://blog.cloudflare.com/lavarand-in-production-the-nitty-gritty-technical-details/
https://bugs.php.net/bug.php?id=75170
https://github.com/php/php-src/commit/a0724d

How Random Can We Get?
• Pseudo-random number generators (PRNGs)

• Middle Square Method – Initial algorithm by John von Neumann

• Linear Congruential Generator – Most popular

• Mersenne Twister (1997) – C++ 11 / PHP 7.1 – a bias bug12

• Xorshift – Fast but fail some tests / variants (xorshift+, xoshiro, etc.)

• True-random number generators (TRNGs) – expensive

• Atmospheric noise – https://random.org

• Quantum random number generator (QRNG) –
https://qrng.anu.edu.au

• Lava lamps – Cloudflare

1https://bugs.php.net/bug.php?id=75170
2https://github.com/php/php-src/commit/a0724d
AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 8 / 45

https://random.org
https://qrng.anu.edu.au
https://blog.cloudflare.com/lavarand-in-production-the-nitty-gritty-technical-details/
https://bugs.php.net/bug.php?id=75170
https://github.com/php/php-src/commit/a0724d

How Random Can We Get?
• Pseudo-random number generators (PRNGs)

• Middle Square Method – Initial algorithm by John von Neumann

• Linear Congruential Generator – Most popular

• Mersenne Twister (1997) – C++ 11 / PHP 7.1 – a bias bug12

• Xorshift – Fast but fail some tests / variants (xorshift+, xoshiro, etc.)

• True-random number generators (TRNGs) – expensive

• Atmospheric noise – https://random.org

• Quantum random number generator (QRNG) –
https://qrng.anu.edu.au

• Lava lamps – Cloudflare

1https://bugs.php.net/bug.php?id=75170
2https://github.com/php/php-src/commit/a0724d
AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 8 / 45

https://random.org
https://qrng.anu.edu.au
https://blog.cloudflare.com/lavarand-in-production-the-nitty-gritty-technical-details/
https://bugs.php.net/bug.php?id=75170
https://github.com/php/php-src/commit/a0724d

How Random Can We Get?
• Pseudo-random number generators (PRNGs)

• Middle Square Method – Initial algorithm by John von Neumann

• Linear Congruential Generator – Most popular

• Mersenne Twister (1997) – C++ 11 / PHP 7.1 – a bias bug12

• Xorshift – Fast but fail some tests / variants (xorshift+, xoshiro, etc.)

• True-random number generators (TRNGs) – expensive

• Atmospheric noise – https://random.org

• Quantum random number generator (QRNG) –
https://qrng.anu.edu.au

• Lava lamps – Cloudflare

1https://bugs.php.net/bug.php?id=75170
2https://github.com/php/php-src/commit/a0724d
AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 8 / 45

https://random.org
https://qrng.anu.edu.au
https://blog.cloudflare.com/lavarand-in-production-the-nitty-gritty-technical-details/
https://bugs.php.net/bug.php?id=75170
https://github.com/php/php-src/commit/a0724d

How Random Can We Get?

The new Galaxy Quantum 4 is equipped with the world’s smallest (width
2.5mm x length 2.5mm) Quantum Random Number Generator
(QRNG) chipset, enabling trusted authentication and encryption of
information.

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 9 / 45

Probabilistic Analysis

Failure Rate p = |F |
|S|

• Given a failure rate p, how many test inputs do we need to sample to
find the first failure?

• Given n random test inputs, what is the probability of finding at
least one failure?

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 10 / 45

Probabilistic Analysis

Failure Rate p = |F |
|S|

• Given a failure rate p, how many test inputs do we need to sample to
find the first failure?

• Given n random test inputs, what is the probability of finding at
least one failure?

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 10 / 45

Probabilistic Analysis

Failure Rate p = |F |
|S|

• Given a failure rate p, how many test inputs do we need to sample to
find the first failure?

• Given n random test inputs, what is the probability of finding at
least one failure?

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 10 / 45

Probabilistic Analysis – Geometric Distribution

• The geometric distribution models the first occurrence of a success
in a sequence of n independent (Bernoulli) trials with the same
probability p.

• The most popular example is the coin flipping.

• The probability mass function (PMF) of the geometric distribution:

Pr(X = k) = (1 − p)k−1p

It is the probability that the first success occurs on the n-th trial.

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 11 / 45

Probabilistic Analysis – Geometric Distribution

• The geometric distribution models the first occurrence of a success
in a sequence of n independent (Bernoulli) trials with the same
probability p.

• The most popular example is the coin flipping.

• The probability mass function (PMF) of the geometric distribution:

Pr(X = k) = (1 − p)k−1p

It is the probability that the first success occurs on the n-th trial.

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 11 / 45

Probabilistic Analysis – Geometric Distribution

• The geometric distribution models the first occurrence of a success
in a sequence of n independent (Bernoulli) trials with the same
probability p.

• The most popular example is the coin flipping.

• The probability mass function (PMF) of the geometric distribution:

Pr(X = k) = (1 − p)k−1p

It is the probability that the first success occurs on the n-th trial.

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 11 / 45

Probabilistic Analysis – Geometric Distribution
• Given a failure rate p, how many test inputs do we need to sample to

find the first failure?

E (X) =
∞∑

k=1
k · Pr(X = k)

=
∞∑

k=1
k · (1 − p)k−1p

= p
∞∑

k=1
k · (1 − p)k−1

= p
(∞∑

k=1
(1 − p)k−1 +

∞∑
k=2

(1 − p)k−1 + · · ·
∞∑

k=3
(1 − p)k−1 + · · ·

)

= p
(

1
p + 1 − p

p + (1 − p)2

p + · · ·
)

= 1 + (1 − p) + (1 − p)2 + · · · = 1
p

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 12 / 45

Probabilistic Analysis – Geometric Distribution
• Given a failure rate p, how many test inputs do we need to sample to

find the first failure?

E (X) =
∞∑

k=1
k · Pr(X = k)

=
∞∑

k=1
k · (1 − p)k−1p

= p
∞∑

k=1
k · (1 − p)k−1

= p
(∞∑

k=1
(1 − p)k−1 +

∞∑
k=2

(1 − p)k−1 + · · ·
∞∑

k=3
(1 − p)k−1 + · · ·

)

= p
(

1
p + 1 − p

p + (1 − p)2

p + · · ·
)

= 1 + (1 − p) + (1 − p)2 + · · · = 1
p

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 12 / 45

Probabilistic Analysis – Geometric Distribution
• Given a failure rate p, how many test inputs do we need to sample to

find the first failure?

E (X) =
∞∑

k=1
k · Pr(X = k)

=
∞∑

k=1
k · (1 − p)k−1p

= p
∞∑

k=1
k · (1 − p)k−1

= p
(∞∑

k=1
(1 − p)k−1 +

∞∑
k=2

(1 − p)k−1 + · · ·
∞∑

k=3
(1 − p)k−1 + · · ·

)

= p
(

1
p + 1 − p

p + (1 − p)2

p + · · ·
)

= 1 + (1 − p) + (1 − p)2 + · · · = 1
p

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 12 / 45

Probabilistic Analysis – Geometric Distribution
• Given a failure rate p, how many test inputs do we need to sample to

find the first failure?

E (X) =
∞∑

k=1
k · Pr(X = k)

=
∞∑

k=1
k · (1 − p)k−1p

= p
∞∑

k=1
k · (1 − p)k−1

= p
(∞∑

k=1
(1 − p)k−1 +

∞∑
k=2

(1 − p)k−1 + · · ·
∞∑

k=3
(1 − p)k−1 + · · ·

)

= p
(

1
p + 1 − p

p + (1 − p)2

p + · · ·
)

= 1 + (1 − p) + (1 − p)2 + · · · = 1
p

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 12 / 45

Probabilistic Analysis – Geometric Distribution
• Given a failure rate p, how many test inputs do we need to sample to

find the first failure?

E (X) =
∞∑

k=1
k · Pr(X = k)

=
∞∑

k=1
k · (1 − p)k−1p

= p
∞∑

k=1
k · (1 − p)k−1

= p
(∞∑

k=1
(1 − p)k−1 +

∞∑
k=2

(1 − p)k−1 + · · ·
∞∑

k=3
(1 − p)k−1 + · · ·

)

= p
(

1
p + 1 − p

p + (1 − p)2

p + · · ·
)

= 1 + (1 − p) + (1 − p)2 + · · · = 1
p

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 12 / 45

Probabilistic Analysis – Geometric Distribution
• Given a failure rate p, how many test inputs do we need to sample to

find the first failure?

E (X) =
∞∑

k=1
k · Pr(X = k)

=
∞∑

k=1
k · (1 − p)k−1p

= p
∞∑

k=1
k · (1 − p)k−1

= p
(∞∑

k=1
(1 − p)k−1 +

∞∑
k=2

(1 − p)k−1 + · · ·
∞∑

k=3
(1 − p)k−1 + · · ·

)

= p
(

1
p + 1 − p

p + (1 − p)2

p + · · ·
)

= 1 + (1 − p) + (1 − p)2 + · · ·

= 1
p

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 12 / 45

Probabilistic Analysis – Geometric Distribution
• Given a failure rate p, how many test inputs do we need to sample to

find the first failure?

E (X) =
∞∑

k=1
k · Pr(X = k)

=
∞∑

k=1
k · (1 − p)k−1p

= p
∞∑

k=1
k · (1 − p)k−1

= p
(∞∑

k=1
(1 − p)k−1 +

∞∑
k=2

(1 − p)k−1 + · · ·
∞∑

k=3
(1 − p)k−1 + · · ·

)

= p
(

1
p + 1 − p

p + (1 − p)2

p + · · ·
)

= 1 + (1 − p) + (1 − p)2 + · · · = 1
p

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 12 / 45

Probabilistic Analysis – Geometric Distribution
• Given a failure rate p, how many test inputs do we need to sample to

find the first failure?
• Mean (If p = 0.01, the average test inputs = 100)

1
p

• Median (If p = 0.01, the median test inputs ≈ 69)⌈ −1
log2(1 − p)

⌉
• Variance (If p = 0.01, the variance = 9900)

1 − p
p2

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 13 / 45

Probabilistic Analysis – Geometric Distribution

• Given n random test inputs, what is the probability of finding at
least one failure?

P(X ≤ n) =
n∑

k=1
·Pr(X = k)

=
n∑

k=1
·(1 − p)k−1p

= p 1 − (1 − p)n

1 − (1 − p)
= 1 − (1 − p)n

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 14 / 45

Probabilistic Analysis – Geometric Distribution

• Given n random test inputs, what is the probability of finding at
least one failure?

P(X ≤ n) =
n∑

k=1
·Pr(X = k)

=
n∑

k=1
·(1 − p)k−1p

= p 1 − (1 − p)n

1 − (1 − p)
= 1 − (1 − p)n

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 14 / 45

Probabilistic Analysis – Geometric Distribution

• Given n random test inputs, what is the probability of finding at
least one failure?

P(X ≤ n) =
n∑

k=1
·Pr(X = k)

=
n∑

k=1
·(1 − p)k−1p

= p 1 − (1 − p)n

1 − (1 − p)
= 1 − (1 − p)n

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 14 / 45

Probabilistic Analysis – Geometric Distribution

• Given n random test inputs, what is the probability of finding at
least one failure?

P(X ≤ n) =
n∑

k=1
·Pr(X = k)

=
n∑

k=1
·(1 − p)k−1p

= p 1 − (1 − p)n

1 − (1 − p)

= 1 − (1 − p)n

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 14 / 45

Probabilistic Analysis – Geometric Distribution

• Given n random test inputs, what is the probability of finding at
least one failure?

P(X ≤ n) =
n∑

k=1
·Pr(X = k)

=
n∑

k=1
·(1 − p)k−1p

= p 1 − (1 − p)n

1 − (1 − p)
= 1 − (1 − p)n

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 14 / 45

Probabilistic Analysis – Geometric Distribution
• If we test n = 100 random test inputs, the probability of finding at

least one failure is 1 − (1 − 0.01)100 = 63.76%.
• If we test n = 200 random test inputs, the probability of finding at

least one failure is 1 − (1 − 0.01)200 = 86.74%.

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 15 / 45

Probabilistic Analysis – Geometric Distribution

• Unfortunately, failure rate p is unknown in practice.

• But, we can estimate p in various ways:

• Previous versions of the software

• Similar software

• Literature

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 16 / 45

Weaknesses of Random Testing

• Random testing provides no guidance; it is the needle in a
haystack problem – the probability of finding a failure is low.

/* C */
void foo(int x) {

if (x == 0) {
/* faulty code here */

}
}

Python
def foo(x):

e.g., x = 2840
if (x * 7919 % 5711 == 42):

faulty code here
}

• We need biased random testing with predefined probability:

• Special values (-0, null, π, . . .)

• Extracted values from code (e.g., constants, literals)

• Previously successful values

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 17 / 45

Weaknesses of Random Testing

• Random testing provides no guidance; it is the needle in a
haystack problem – the probability of finding a failure is low.

/* C */
void foo(int x) {

if (x == 0) {
/* faulty code here */

}
}

Python
def foo(x):

e.g., x = 2840
if (x * 7919 % 5711 == 42):

faulty code here
}

• We need biased random testing with predefined probability:

• Special values (-0, null, π, . . .)

• Extracted values from code (e.g., constants, literals)

• Previously successful values

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 17 / 45

Examples

• Apple (1983) - “Monkey” for random events (e.g., mouse clicks, key
presses, etc.) to test the robustness of the MacWrite and MacPaint
applications.

• Amazon (2003) - “Game day” for website reliability

• Google (2006) - “DiRT”’ for Site Reliability Engineering (SRE)

• Netflix (2011) – “Chaos Monkey” that randomly terminates AWS
instances to test the fault tolerance of the Netflix infrastructure.

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 18 / 45

https://github.com/netflix/chaosmonkey

Examples

• Apple (1983) - “Monkey” for random events (e.g., mouse clicks, key
presses, etc.) to test the robustness of the MacWrite and MacPaint
applications.

• Amazon (2003) - “Game day” for website reliability

• Google (2006) - “DiRT”’ for Site Reliability Engineering (SRE)

• Netflix (2011) – “Chaos Monkey” that randomly terminates AWS
instances to test the fault tolerance of the Netflix infrastructure.

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 18 / 45

https://github.com/netflix/chaosmonkey

Examples

• Apple (1983) - “Monkey” for random events (e.g., mouse clicks, key
presses, etc.) to test the robustness of the MacWrite and MacPaint
applications.

• Amazon (2003) - “Game day” for website reliability

• Google (2006) - “DiRT”’ for Site Reliability Engineering (SRE)

• Netflix (2011) – “Chaos Monkey” that randomly terminates AWS
instances to test the fault tolerance of the Netflix infrastructure.

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 18 / 45

https://github.com/netflix/chaosmonkey

Examples

• Apple (1983) - “Monkey” for random events (e.g., mouse clicks, key
presses, etc.) to test the robustness of the MacWrite and MacPaint
applications.

• Amazon (2003) - “Game day” for website reliability

• Google (2006) - “DiRT”’ for Site Reliability Engineering (SRE)

• Netflix (2011) – “Chaos Monkey” that randomly terminates AWS
instances to test the fault tolerance of the Netflix infrastructure.

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 18 / 45

https://github.com/netflix/chaosmonkey

Contents
1. Random Testing (RT)

Probabilistic Analysis
Weaknesses of Random Testing
Examples

2. Adaptive Random Testing (ART)
Levenshtein (Edit) Distance
Distance Comparison Target
Complexity of ART
Quasi-Random Strategy for ART

3. Fuzz Testing
Pre-process
Input Generation – Mutation-Based Fuzzing
Input Generation – Generation-Based Fuzzing
Test Oracles (Sanitizers)
De-duplication

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 19 / 45

Adaptive Random Testing (ART)

• Insight – failing test inputs often cluster in the input space.

• Consider the fault under the condition x >= 0 && x < 100.

• We call such clustered reasons faulty regions.

• Without knowing the faulty regions, what is the best way to sample
the test inputs?

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 20 / 45

Adaptive Random Testing (ART)

• Insight – failing test inputs often cluster in the input space.

• Consider the fault under the condition x >= 0 && x < 100.

• We call such clustered reasons faulty regions.

• Without knowing the faulty regions, what is the best way to sample
the test inputs?

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 20 / 45

Adaptive Random Testing (ART)

• Insight – failing test inputs often cluster in the input space.

• Consider the fault under the condition x >= 0 && x < 100.

• We call such clustered reasons faulty regions.

• Without knowing the faulty regions, what is the best way to sample
the test inputs?

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 20 / 45

Adaptive Random Testing (ART)

• Insight – failing test inputs often cluster in the input space.

• Consider the fault under the condition x >= 0 && x < 100.

• We call such clustered reasons faulty regions.

• Without knowing the faulty regions, what is the best way to sample
the test inputs?

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 20 / 45

Adaptive Random Testing (ART)
Diversity

A more diverse set of inputs will have a higher

probability of hitting the faulty region

Faulty region Faulty region

• A more diverse set of test inputs is more likely to find a failure.

• Diversity is depending on the distance between test inputs.
• If input data is numeric, we can use the Euclidean distance.

d((x1, x2, . . . , xn), (y1, y2, . . . , yn)) =

√√√√ n∑
i=1

(xi − yi)2

• Then, how to measure the distance between complex data types?

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 21 / 45

Adaptive Random Testing (ART)
Diversity

A more diverse set of inputs will have a higher

probability of hitting the faulty region

Faulty region Faulty region

• A more diverse set of test inputs is more likely to find a failure.
• Diversity is depending on the distance between test inputs.

• If input data is numeric, we can use the Euclidean distance.

d((x1, x2, . . . , xn), (y1, y2, . . . , yn)) =

√√√√ n∑
i=1

(xi − yi)2

• Then, how to measure the distance between complex data types?

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 21 / 45

Adaptive Random Testing (ART)
Diversity

A more diverse set of inputs will have a higher

probability of hitting the faulty region

Faulty region Faulty region

• A more diverse set of test inputs is more likely to find a failure.
• Diversity is depending on the distance between test inputs.
• If input data is numeric, we can use the Euclidean distance.

d((x1, x2, . . . , xn), (y1, y2, . . . , yn)) =

√√√√ n∑
i=1

(xi − yi)2

• Then, how to measure the distance between complex data types?

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 21 / 45

Adaptive Random Testing (ART)
Diversity

A more diverse set of inputs will have a higher

probability of hitting the faulty region

Faulty region Faulty region

• A more diverse set of test inputs is more likely to find a failure.
• Diversity is depending on the distance between test inputs.
• If input data is numeric, we can use the Euclidean distance.

d((x1, x2, . . . , xn), (y1, y2, . . . , yn)) =

√√√√ n∑
i=1

(xi − yi)2

• Then, how to measure the distance between complex data types?
AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 21 / 45

Levenshtein (Edit) Distance
• The Levenshtein distance is a measure of the similarity between two

strings.

• It is the minimum number of single-character edits (insertions,
deletions, or substitutions) required to change one word into the
other.

• For example, the distance between “kitten” and “sitting” is 3:

“kitten” substitute−−−−−→
k→s

“sitten” substitute−−−−−→
e→i

“sittin” insert−−−→
i

“sitting”

• and the distance between “uninformed” and “uniform” is 3:

“uninformed” delete−−−→
n

“uniformed” delete−−−→
e

“uniformd” delete−−−→
d

“uniform”

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 22 / 45

Levenshtein (Edit) Distance
• The Levenshtein distance is a measure of the similarity between two

strings.

• It is the minimum number of single-character edits (insertions,
deletions, or substitutions) required to change one word into the
other.

• For example, the distance between “kitten” and “sitting” is 3:

“kitten” substitute−−−−−→
k→s

“sitten” substitute−−−−−→
e→i

“sittin” insert−−−→
i

“sitting”

• and the distance between “uninformed” and “uniform” is 3:

“uninformed” delete−−−→
n

“uniformed” delete−−−→
e

“uniformd” delete−−−→
d

“uniform”

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 22 / 45

Levenshtein (Edit) Distance
• The Levenshtein distance is a measure of the similarity between two

strings.

• It is the minimum number of single-character edits (insertions,
deletions, or substitutions) required to change one word into the
other.

• For example, the distance between “kitten” and “sitting” is 3:

“kitten” substitute−−−−−→
k→s

“sitten” substitute−−−−−→
e→i

“sittin” insert−−−→
i

“sitting”

• and the distance between “uninformed” and “uniform” is 3:

“uninformed” delete−−−→
n

“uniformed” delete−−−→
e

“uniformd” delete−−−→
d

“uniform”

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 22 / 45

Levenshtein (Edit) Distance
• The Levenshtein distance is a measure of the similarity between two

strings.

• It is the minimum number of single-character edits (insertions,
deletions, or substitutions) required to change one word into the
other.

• For example, the distance between “kitten” and “sitting” is 3:

“kitten” substitute−−−−−→
k→s

“sitten” substitute−−−−−→
e→i

“sittin” insert−−−→
i

“sitting”

• and the distance between “uninformed” and “uniform” is 3:

“uninformed” delete−−−→
n

“uniformed” delete−−−→
e

“uniformd” delete−−−→
d

“uniform”

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 22 / 45

Levenshtein (Edit) Distance
• The formal definition of the Levenshtein distance is as follows:

lev(a, b) =

|a| if |b| = 0
|b| if |a| = 0
lev(tail(a), tail(b)) if head(a) = head(b)

1 + min

lev(tail(a), b) (insert)
lev(a, tail(b)) (delete)
lev(tail(a), tail(b)) (substitute)

otherwise

• It is usually extended into a parameterized version with a set of
allowed edit operations (e.g., transposition) with different costs.

• Wagner-Fischer algorithm (1967) – O(mn) time complexity
• Indyk and Bačkurs (2015) proved that the problem of finding the edit

distance cannot be solved in less than quadratic time. (We
cannot do better than the Wagner-Fischer algorithm.)

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 23 / 45

Levenshtein (Edit) Distance
• The formal definition of the Levenshtein distance is as follows:

lev(a, b) =

|a| if |b| = 0
|b| if |a| = 0
lev(tail(a), tail(b)) if head(a) = head(b)

1 + min

lev(tail(a), b) (insert)
lev(a, tail(b)) (delete)
lev(tail(a), tail(b)) (substitute)

otherwise

• It is usually extended into a parameterized version with a set of
allowed edit operations (e.g., transposition) with different costs.

• Wagner-Fischer algorithm (1967) – O(mn) time complexity
• Indyk and Bačkurs (2015) proved that the problem of finding the edit

distance cannot be solved in less than quadratic time. (We
cannot do better than the Wagner-Fischer algorithm.)

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 23 / 45

Levenshtein (Edit) Distance
• The formal definition of the Levenshtein distance is as follows:

lev(a, b) =

|a| if |b| = 0
|b| if |a| = 0
lev(tail(a), tail(b)) if head(a) = head(b)

1 + min

lev(tail(a), b) (insert)
lev(a, tail(b)) (delete)
lev(tail(a), tail(b)) (substitute)

otherwise

• It is usually extended into a parameterized version with a set of
allowed edit operations (e.g., transposition) with different costs.

• Wagner-Fischer algorithm (1967) – O(mn) time complexity

• Indyk and Bačkurs (2015) proved that the problem of finding the edit
distance cannot be solved in less than quadratic time. (We
cannot do better than the Wagner-Fischer algorithm.)

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 23 / 45

Levenshtein (Edit) Distance
• The formal definition of the Levenshtein distance is as follows:

lev(a, b) =

|a| if |b| = 0
|b| if |a| = 0
lev(tail(a), tail(b)) if head(a) = head(b)

1 + min

lev(tail(a), b) (insert)
lev(a, tail(b)) (delete)
lev(tail(a), tail(b)) (substitute)

otherwise

• It is usually extended into a parameterized version with a set of
allowed edit operations (e.g., transposition) with different costs.

• Wagner-Fischer algorithm (1967) – O(mn) time complexity
• Indyk and Bačkurs (2015) proved that the problem of finding the edit

distance cannot be solved in less than quadratic time. (We
cannot do better than the Wagner-Fischer algorithm.)

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 23 / 45

Adaptive Random Testing (ART)
• The diversity of a test suite is defined as the sum of distances

between all pairs of test inputs.

diversity(T) =
∑

(t1,t2)∈T×T
d(t1, t2)

• We will sample multiple Z test inputs and measure the distance
between existing test inputs and the new test input.

• Choose the test input that has the maximum distance from the
existing test inputs.

• Add the chosen new test input to the set of existing test inputs.

• Iterate the process until the stopping criterion is met.

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 24 / 45

Adaptive Random Testing (ART)
• The diversity of a test suite is defined as the sum of distances

between all pairs of test inputs.

diversity(T) =
∑

(t1,t2)∈T×T
d(t1, t2)

• We will sample multiple Z test inputs and measure the distance
between existing test inputs and the new test input.

• Choose the test input that has the maximum distance from the
existing test inputs.

• Add the chosen new test input to the set of existing test inputs.

• Iterate the process until the stopping criterion is met.

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 24 / 45

Adaptive Random Testing (ART)
• The diversity of a test suite is defined as the sum of distances

between all pairs of test inputs.

diversity(T) =
∑

(t1,t2)∈T×T
d(t1, t2)

• We will sample multiple Z test inputs and measure the distance
between existing test inputs and the new test input.

• Choose the test input that has the maximum distance from the
existing test inputs.

• Add the chosen new test input to the set of existing test inputs.

• Iterate the process until the stopping criterion is met.

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 24 / 45

Adaptive Random Testing (ART)
• The diversity of a test suite is defined as the sum of distances

between all pairs of test inputs.

diversity(T) =
∑

(t1,t2)∈T×T
d(t1, t2)

• We will sample multiple Z test inputs and measure the distance
between existing test inputs and the new test input.

• Choose the test input that has the maximum distance from the
existing test inputs.

• Add the chosen new test input to the set of existing test inputs.

• Iterate the process until the stopping criterion is met.

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 24 / 45

Adaptive Random Testing (ART)
• The diversity of a test suite is defined as the sum of distances

between all pairs of test inputs.

diversity(T) =
∑

(t1,t2)∈T×T
d(t1, t2)

• We will sample multiple Z test inputs and measure the distance
between existing test inputs and the new test input.

• Choose the test input that has the maximum distance from the
existing test inputs.

• Add the chosen new test input to the set of existing test inputs.

• Iterate the process until the stopping criterion is met.

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 24 / 45

Adaptive Random Testing (ART)

Adaptive Diversity

Existing Input

New Sample Batch

Chosen

• It samples Z = 3 new test inputs and chooses the one with the
maximum distance from the existing test inputs.

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 25 / 45

Distance Comparison Target
• For each new test case t, we need to choose the target for

comparison in the existing test suite T .3

• Minimum-Distance

fitness(t, T) = min
t′∈T

d(t, t ′)
• Average-Distance

fitness(t, T) = 1
|T |

∑
t′∈T

d(t, t ′)

• Maximum-Distance

fitness(t, T) = max
t′∈T

d(t, t ′)
• Centroid-Distance

fitness(t, T) = d(t, 1/|T |
∑
t′∈T

t ′)

3[CSUR’19] R. Huang et al. “A survey on adaptive random testing.”
AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 26 / 45

Distance Comparison Target
• For each new test case t, we need to choose the target for

comparison in the existing test suite T .3

• Minimum-Distance

fitness(t, T) = min
t′∈T

d(t, t ′)

• Average-Distance

fitness(t, T) = 1
|T |

∑
t′∈T

d(t, t ′)

• Maximum-Distance

fitness(t, T) = max
t′∈T

d(t, t ′)
• Centroid-Distance

fitness(t, T) = d(t, 1/|T |
∑
t′∈T

t ′)

3[CSUR’19] R. Huang et al. “A survey on adaptive random testing.”
AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 26 / 45

Distance Comparison Target
• For each new test case t, we need to choose the target for

comparison in the existing test suite T .3

• Minimum-Distance

fitness(t, T) = min
t′∈T

d(t, t ′)
• Average-Distance

fitness(t, T) = 1
|T |

∑
t′∈T

d(t, t ′)

• Maximum-Distance

fitness(t, T) = max
t′∈T

d(t, t ′)
• Centroid-Distance

fitness(t, T) = d(t, 1/|T |
∑
t′∈T

t ′)

3[CSUR’19] R. Huang et al. “A survey on adaptive random testing.”
AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 26 / 45

Distance Comparison Target
• For each new test case t, we need to choose the target for

comparison in the existing test suite T .3

• Minimum-Distance

fitness(t, T) = min
t′∈T

d(t, t ′)
• Average-Distance

fitness(t, T) = 1
|T |

∑
t′∈T

d(t, t ′)

• Maximum-Distance

fitness(t, T) = max
t′∈T

d(t, t ′)

• Centroid-Distance

fitness(t, T) = d(t, 1/|T |
∑
t′∈T

t ′)

3[CSUR’19] R. Huang et al. “A survey on adaptive random testing.”
AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 26 / 45

Distance Comparison Target
• For each new test case t, we need to choose the target for

comparison in the existing test suite T .3

• Minimum-Distance

fitness(t, T) = min
t′∈T

d(t, t ′)
• Average-Distance

fitness(t, T) = 1
|T |

∑
t′∈T

d(t, t ′)

• Maximum-Distance

fitness(t, T) = max
t′∈T

d(t, t ′)
• Centroid-Distance

fitness(t, T) = d(t, 1/|T |
∑
t′∈T

t ′)
3[CSUR’19] R. Huang et al. “A survey on adaptive random testing.”
AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 26 / 45

Complexity

• If we use Z sample points and get ART test suite of k test cases, how
many distance calculations do we need?

0 + Z + 2Z + 3Z + · · · + (k − 1)Z = k(k − 1)
2 Z

• O(k2Z) time complexity – this could be expensive.

• It may be difficult to choose the meaningful distance metric for
complex data types.

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 27 / 45

Complexity

• If we use Z sample points and get ART test suite of k test cases, how
many distance calculations do we need?

0 + Z + 2Z + 3Z + · · · + (k − 1)Z = k(k − 1)
2 Z

• O(k2Z) time complexity – this could be expensive.

• It may be difficult to choose the meaningful distance metric for
complex data types.

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 27 / 45

Complexity

• If we use Z sample points and get ART test suite of k test cases, how
many distance calculations do we need?

0 + Z + 2Z + 3Z + · · · + (k − 1)Z = k(k − 1)
2 Z

• O(k2Z) time complexity – this could be expensive.

• It may be difficult to choose the meaningful distance metric for
complex data types.

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 27 / 45

Complexity

• If we use Z sample points and get ART test suite of k test cases, how
many distance calculations do we need?

0 + Z + 2Z + 3Z + · · · + (k − 1)Z = k(k − 1)
2 Z

• O(k2Z) time complexity – this could be expensive.

• It may be difficult to choose the meaningful distance metric for
complex data types.

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 27 / 45

Quasi-Random Strategy for ART

⇒

• What if we can randomly sample the test inputs having diversity
(i.e., low discrepancy)?

• Quasi-random sequences could be a good choice.

• Let’s learn Halton sequence, one of the representative quasi-random
sequences.

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 28 / 45

Quasi-Random Strategy for ART

⇒

• What if we can randomly sample the test inputs having diversity
(i.e., low discrepancy)?

• Quasi-random sequences could be a good choice.

• Let’s learn Halton sequence, one of the representative quasi-random
sequences.

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 28 / 45

Quasi-Random Strategy for ART

⇒

• What if we can randomly sample the test inputs having diversity
(i.e., low discrepancy)?

• Quasi-random sequences could be a good choice.

• Let’s learn Halton sequence, one of the representative quasi-random
sequences.

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 28 / 45

Quasi-Random Strategy for ART – Halton Sequence
• The halton sequence is constructed in a deterministic way using

co-prime numbers.

• For example, generate the sequence of numbers in the range [0, 1] by
recursively splitting the range into 2 or 3 subintervals.

1
2
1
4

3
4

1
8

5
8

3
8

7
8

1
16 · · ·

1
3

2
3

1
9

4
9

7
9

2
9

5
9

8
9

· · ·

• Generate a sequence of pairs of numbers (x , y) by combining above
sequences.

(1
2 ,

1
3), (1

4 ,
2
3), (3

4 ,
1
9), (1

8 ,
4
9), (5

8 ,
7
9), (3

8 ,
2
9), (7

8 ,
5
9), (1

16 ,
8
9), · · ·

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 29 / 45

Quasi-Random Strategy for ART – Halton Sequence
• The halton sequence is constructed in a deterministic way using

co-prime numbers.
• For example, generate the sequence of numbers in the range [0, 1] by

recursively splitting the range into 2 or 3 subintervals.

1
2

1
4

3
4

1
8

5
8

3
8

7
8

1
16 · · ·

1
3

2
3

1
9

4
9

7
9

2
9

5
9

8
9

· · ·

• Generate a sequence of pairs of numbers (x , y) by combining above
sequences.

(1
2 ,

1
3), (1

4 ,
2
3), (3

4 ,
1
9), (1

8 ,
4
9), (5

8 ,
7
9), (3

8 ,
2
9), (7

8 ,
5
9), (1

16 ,
8
9), · · ·

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 29 / 45

Quasi-Random Strategy for ART – Halton Sequence
• The halton sequence is constructed in a deterministic way using

co-prime numbers.
• For example, generate the sequence of numbers in the range [0, 1] by

recursively splitting the range into 2 or 3 subintervals.

1
2
1
4

3
4

1
8

5
8

3
8

7
8

1
16 · · ·

1
3

2
3

1
9

4
9

7
9

2
9

5
9

8
9

· · ·

• Generate a sequence of pairs of numbers (x , y) by combining above
sequences.

(1
2 ,

1
3), (1

4 ,
2
3), (3

4 ,
1
9), (1

8 ,
4
9), (5

8 ,
7
9), (3

8 ,
2
9), (7

8 ,
5
9), (1

16 ,
8
9), · · ·

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 29 / 45

Quasi-Random Strategy for ART – Halton Sequence
• The halton sequence is constructed in a deterministic way using

co-prime numbers.
• For example, generate the sequence of numbers in the range [0, 1] by

recursively splitting the range into 2 or 3 subintervals.

1
2
1
4

3
4

1
8

5
8

3
8

7
8

1
16 · · ·

1
3

2
3

1
9

4
9

7
9

2
9

5
9

8
9

· · ·

• Generate a sequence of pairs of numbers (x , y) by combining above
sequences.

(1
2 ,

1
3), (1

4 ,
2
3), (3

4 ,
1
9), (1

8 ,
4
9), (5

8 ,
7
9), (3

8 ,
2
9), (7

8 ,
5
9), (1

16 ,
8
9), · · ·

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 29 / 45

Quasi-Random Strategy for ART – Halton Sequence
• The halton sequence is constructed in a deterministic way using

co-prime numbers.
• For example, generate the sequence of numbers in the range [0, 1] by

recursively splitting the range into 2 or 3 subintervals.

1
2
1
4

3
4

1
8

5
8

3
8

7
8

1
16 · · ·

1
3

2
3

1
9

4
9

7
9

2
9

5
9

8
9

· · ·

• Generate a sequence of pairs of numbers (x , y) by combining above
sequences.

(1
2 ,

1
3), (1

4 ,
2
3), (3

4 ,
1
9), (1

8 ,
4
9), (5

8 ,
7
9), (3

8 ,
2
9), (7

8 ,
5
9), (1

16 ,
8
9), · · ·

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 29 / 45

Quasi-Random Strategy for ART – Halton Sequence
• The halton sequence is constructed in a deterministic way using

co-prime numbers.
• For example, generate the sequence of numbers in the range [0, 1] by

recursively splitting the range into 2 or 3 subintervals.

1
2
1
4

3
4

1
8

5
8

3
8

7
8

1
16 · · ·

1
3

2
3

1
9

4
9

7
9

2
9

5
9

8
9

· · ·

• Generate a sequence of pairs of numbers (x , y) by combining above
sequences.

(1
2 ,

1
3), (1

4 ,
2
3), (3

4 ,
1
9), (1

8 ,
4
9), (5

8 ,
7
9), (3

8 ,
2
9), (7

8 ,
5
9), (1

16 ,
8
9), · · ·

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 29 / 45

Quasi-Random Strategy for ART – Halton Sequence
• The halton sequence is constructed in a deterministic way using

co-prime numbers.
• For example, generate the sequence of numbers in the range [0, 1] by

recursively splitting the range into 2 or 3 subintervals.

1
2
1
4

3
4

1
8

5
8

3
8

7
8

1
16 · · ·

1
3

2
3

1
9

4
9

7
9

2
9

5
9

8
9

· · ·

• Generate a sequence of pairs of numbers (x , y) by combining above
sequences.

(1
2 ,

1
3), (1

4 ,
2
3), (3

4 ,
1
9), (1

8 ,
4
9), (5

8 ,
7
9), (3

8 ,
2
9), (7

8 ,
5
9), (1

16 ,
8
9), · · ·

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 29 / 45

Quasi-Random Strategy for ART

We can utilize other quasi-random sequences for ART:4

• Halton Sequence

ϕb(i) =
ω∑

j=0
ijb−j−1

• Sobol Sequence

Sobol(i) = XORj=1,2,··· ,ω(ijδj)

where
δj = XORk=1,2,··· ,r

(
βkδj−k

2j

)
⊕ δj−k

2j+r

• Niederreiter Sequence

4[CSUR’19] R. Huang et al. “A survey on adaptive random testing.”
AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 30 / 45

Adaptive Random Testing (ART) – Summary
• Application Domains

• Numeric Programs
• Object-Oriented Programs
• Configurable Systems
• Web Services and Applications
• Embedded Systems
• Simulations and Models

• Faulty regions may not apply to all types of faults.

• ART is still mostly an academic idea, with debates going on:
• [ISSTA’11] A. Arcuri et al. “Adaptive random testing: an illusion of

effectiveness?”
• [CSUR’19] R. Huang et al. “A survey on adaptive random testing.”

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 31 / 45

Adaptive Random Testing (ART) – Summary
• Application Domains

• Numeric Programs
• Object-Oriented Programs
• Configurable Systems
• Web Services and Applications
• Embedded Systems
• Simulations and Models

• Faulty regions may not apply to all types of faults.

• ART is still mostly an academic idea, with debates going on:
• [ISSTA’11] A. Arcuri et al. “Adaptive random testing: an illusion of

effectiveness?”
• [CSUR’19] R. Huang et al. “A survey on adaptive random testing.”

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 31 / 45

Adaptive Random Testing (ART) – Summary
• Application Domains

• Numeric Programs
• Object-Oriented Programs
• Configurable Systems
• Web Services and Applications
• Embedded Systems
• Simulations and Models

• Faulty regions may not apply to all types of faults.

• ART is still mostly an academic idea, with debates going on:
• [ISSTA’11] A. Arcuri et al. “Adaptive random testing: an illusion of

effectiveness?”
• [CSUR’19] R. Huang et al. “A survey on adaptive random testing.”

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 31 / 45

Contents
1. Random Testing (RT)

Probabilistic Analysis
Weaknesses of Random Testing
Examples

2. Adaptive Random Testing (ART)
Levenshtein (Edit) Distance
Distance Comparison Target
Complexity of ART
Quasi-Random Strategy for ART

3. Fuzz Testing
Pre-process
Input Generation – Mutation-Based Fuzzing
Input Generation – Generation-Based Fuzzing
Test Oracles (Sanitizers)
De-duplication

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 32 / 45

Fuzz Testing

https://xkcd.com/1210/

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 33 / 45

https://xkcd.com/1210/

Fuzz Testing

• [CACM’90] B. P. Miller et al. “An empirical study of the reliability of
UNIX utilities.”5

“On a dark and stormy night one of the authors was logged on
to his workstation on a dial-up line from home and the rain had
affected the phone lines; there were frequent spurious characters
on the line. The author had to race to see if he could type a sensible
sequence of characters before the noise scrambled the command.
This line noise was not surprising; but we were surprised that these
spurious characters were causing programs to crash.”

5https://alastairreid.github.io/RelatedWork/papers/miller:cacm:1990/
AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 34 / 45

https://alastairreid.github.io/RelatedWork/papers/miller:cacm:1990/

Fuzz Testing

Software/dev/random
wO[4@!$j2V^ Execute

• Fuzz testing is a random testing technique to find exceptional
outcomes (e.g., crashes, exceptions, freezes, etc.) of a software
system.

• 1990 study found crashes in: adb, as, bc, cb, col, diction, emacs,
eqn, ftp, indent, lex, look, m4, make, nroff, plot, prolog, ptx,
refer!, spell, style, tsort, uniq, vgrind, vi

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 35 / 45

Fuzz Testing

Software/dev/random
wO[4@!$j2V^ Execute

• Fuzz testing is a random testing technique to find exceptional
outcomes (e.g., crashes, exceptions, freezes, etc.) of a software
system.

• 1990 study found crashes in: adb, as, bc, cb, col, diction, emacs,
eqn, ftp, indent, lex, look, m4, make, nroff, plot, prolog, ptx,
refer!, spell, style, tsort, uniq, vgrind, vi

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 35 / 45

Fuzz Testing – Overview

Input GenerationPre-process Test Oracles
(Sanitizers)

De-duplication

Test
Inputs Bugs

Mutation-based
Fuzzing

Generation-based
Fuzzing

• Pre-process – prepare the SUT for fuzz testing
• Input Generation – generate test inputs

• Mutation-Based Fuzzing – modify existing test inputs
• Generation-Based Fuzzing – generate new test inputs

• Test Oracles (Sanitizers) – detect exceptional outcomes
• De-duplication – remove duplicate test inputs

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 36 / 45

Pre-process
• Instrumentation – source-level or binary-level modification of the

SUT to collect information about the execution in compile time
(static) or runtime (dynamic).

• Execution Feedback – collect execution information including
node/branch coverage.

• Thread Scheduling – control how threads are scheduled to to
trigger different non-deterministic behaviors.

• In-Memory Fuzzing – take a memory snapshot and restore it before
writing the new new test case directly into memory and executing it. It
can skip over unnecessary startup costs.

• Preparing a Driver Application – we need to prepare for a driver
program when it is difficult to directly fuzz the SUT.

• Libraries – a driver program that calls functions in the library
• Kernels – may fuzz user-land applications to test kernels
• IoT devices – a driver communicate with the corresponding

smartphone application.

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 37 / 45

Pre-process
• Instrumentation – source-level or binary-level modification of the

SUT to collect information about the execution in compile time
(static) or runtime (dynamic).

• Execution Feedback – collect execution information including
node/branch coverage.

• Thread Scheduling – control how threads are scheduled to to
trigger different non-deterministic behaviors.

• In-Memory Fuzzing – take a memory snapshot and restore it before
writing the new new test case directly into memory and executing it. It
can skip over unnecessary startup costs.

• Preparing a Driver Application – we need to prepare for a driver
program when it is difficult to directly fuzz the SUT.

• Libraries – a driver program that calls functions in the library
• Kernels – may fuzz user-land applications to test kernels
• IoT devices – a driver communicate with the corresponding

smartphone application.

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 37 / 45

Pre-process
• Instrumentation – source-level or binary-level modification of the

SUT to collect information about the execution in compile time
(static) or runtime (dynamic).

• Execution Feedback – collect execution information including
node/branch coverage.

• Thread Scheduling – control how threads are scheduled to to
trigger different non-deterministic behaviors.

• In-Memory Fuzzing – take a memory snapshot and restore it before
writing the new new test case directly into memory and executing it. It
can skip over unnecessary startup costs.

• Preparing a Driver Application – we need to prepare for a driver
program when it is difficult to directly fuzz the SUT.

• Libraries – a driver program that calls functions in the library
• Kernels – may fuzz user-land applications to test kernels
• IoT devices – a driver communicate with the corresponding

smartphone application.

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 37 / 45

Pre-process
• Instrumentation – source-level or binary-level modification of the

SUT to collect information about the execution in compile time
(static) or runtime (dynamic).

• Execution Feedback – collect execution information including
node/branch coverage.

• Thread Scheduling – control how threads are scheduled to to
trigger different non-deterministic behaviors.

• In-Memory Fuzzing – take a memory snapshot and restore it before
writing the new new test case directly into memory and executing it. It
can skip over unnecessary startup costs.

• Preparing a Driver Application – we need to prepare for a driver
program when it is difficult to directly fuzz the SUT.

• Libraries – a driver program that calls functions in the library
• Kernels – may fuzz user-land applications to test kernels
• IoT devices – a driver communicate with the corresponding

smartphone application.

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 37 / 45

Pre-process
• Instrumentation – source-level or binary-level modification of the

SUT to collect information about the execution in compile time
(static) or runtime (dynamic).

• Execution Feedback – collect execution information including
node/branch coverage.

• Thread Scheduling – control how threads are scheduled to to
trigger different non-deterministic behaviors.

• In-Memory Fuzzing – take a memory snapshot and restore it before
writing the new new test case directly into memory and executing it. It
can skip over unnecessary startup costs.

• Preparing a Driver Application – we need to prepare for a driver
program when it is difficult to directly fuzz the SUT.

• Libraries – a driver program that calls functions in the library
• Kernels – may fuzz user-land applications to test kernels
• IoT devices – a driver communicate with the corresponding

smartphone application.

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 37 / 45

Pre-process
• Instrumentation – source-level or binary-level modification of the

SUT to collect information about the execution in compile time
(static) or runtime (dynamic).

• Execution Feedback – collect execution information including
node/branch coverage.

• Thread Scheduling – control how threads are scheduled to to
trigger different non-deterministic behaviors.

• In-Memory Fuzzing – take a memory snapshot and restore it before
writing the new new test case directly into memory and executing it. It
can skip over unnecessary startup costs.

• Preparing a Driver Application – we need to prepare for a driver
program when it is difficult to directly fuzz the SUT.

• Libraries – a driver program that calls functions in the library
• Kernels – may fuzz user-land applications to test kernels
• IoT devices – a driver communicate with the corresponding

smartphone application.

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 37 / 45

Input Generation – Mutation-Based Fuzzing

Seed Mutation

Seed
Pool Seeds

New Seeds

Interesting
Seeds

Seed Trimming

Seed SelectionInitial
Seeds

• In the mutation-based fuzzing, a seed is a test input that is used to
generate new test inputs.

• Mutation-Based Fuzzing first initializes seed pool with the initial
seeds, and then mutates them to generate new test inputs and
updates the seed pool when a new test input is interesting.

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 38 / 45

Input Generation – Mutation-Based Fuzzing

Seed Mutation

Seed
Pool Seeds

New Seeds

Interesting
Seeds

Seed Trimming

Seed SelectionInitial
Seeds

• In the mutation-based fuzzing, a seed is a test input that is used to
generate new test inputs.

• Mutation-Based Fuzzing first initializes seed pool with the initial
seeds, and then mutates them to generate new test inputs and
updates the seed pool when a new test input is interesting.

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 38 / 45

Input Generation – Mutation-Based Fuzzing
• Initial Seeds – from the existing test suite, manually crafted,

inferred from the SUT or specification.

• Seed Selection – random or guided selection (e.g., coverage-based,
distance-based, etc.) of the seed from the seed pool.

• Seed Mutation – mutate the seed to generate new test inputs.
• Bit-Flip – flip a random bit in the seed
• Arithmetic Mutation – add, subtract, multiply, divide, etc.
• Block-based Mutation – mutate a block of bits
• Dictionary-Based Mutation – replace a value with a predefined value
• Semantic-aware Mutation6 – mutate seeds using spec. of SUT

• Seed Trimming – filter out the uninteresting test inputs (e.g., no
coverage increase).

6[ICSE’21] J. Park et al. “JEST: N+1-version Differential Testing of Both
JavaScript Engines and Specification.”

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 39 / 45

https://plrg.korea.ac.kr/assets/data/publication/icse21-park-jest.pdf
https://plrg.korea.ac.kr/assets/data/publication/icse21-park-jest.pdf

Input Generation – Mutation-Based Fuzzing
• Initial Seeds – from the existing test suite, manually crafted,

inferred from the SUT or specification.

• Seed Selection – random or guided selection (e.g., coverage-based,
distance-based, etc.) of the seed from the seed pool.

• Seed Mutation – mutate the seed to generate new test inputs.
• Bit-Flip – flip a random bit in the seed
• Arithmetic Mutation – add, subtract, multiply, divide, etc.
• Block-based Mutation – mutate a block of bits
• Dictionary-Based Mutation – replace a value with a predefined value
• Semantic-aware Mutation6 – mutate seeds using spec. of SUT

• Seed Trimming – filter out the uninteresting test inputs (e.g., no
coverage increase).

6[ICSE’21] J. Park et al. “JEST: N+1-version Differential Testing of Both
JavaScript Engines and Specification.”

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 39 / 45

https://plrg.korea.ac.kr/assets/data/publication/icse21-park-jest.pdf
https://plrg.korea.ac.kr/assets/data/publication/icse21-park-jest.pdf

Input Generation – Mutation-Based Fuzzing
• Initial Seeds – from the existing test suite, manually crafted,

inferred from the SUT or specification.

• Seed Selection – random or guided selection (e.g., coverage-based,
distance-based, etc.) of the seed from the seed pool.

• Seed Mutation – mutate the seed to generate new test inputs.
• Bit-Flip – flip a random bit in the seed
• Arithmetic Mutation – add, subtract, multiply, divide, etc.
• Block-based Mutation – mutate a block of bits
• Dictionary-Based Mutation – replace a value with a predefined value
• Semantic-aware Mutation6 – mutate seeds using spec. of SUT

• Seed Trimming – filter out the uninteresting test inputs (e.g., no
coverage increase).

6[ICSE’21] J. Park et al. “JEST: N+1-version Differential Testing of Both
JavaScript Engines and Specification.”

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 39 / 45

https://plrg.korea.ac.kr/assets/data/publication/icse21-park-jest.pdf
https://plrg.korea.ac.kr/assets/data/publication/icse21-park-jest.pdf

Input Generation – Mutation-Based Fuzzing
• Initial Seeds – from the existing test suite, manually crafted,

inferred from the SUT or specification.

• Seed Selection – random or guided selection (e.g., coverage-based,
distance-based, etc.) of the seed from the seed pool.

• Seed Mutation – mutate the seed to generate new test inputs.
• Bit-Flip – flip a random bit in the seed
• Arithmetic Mutation – add, subtract, multiply, divide, etc.
• Block-based Mutation – mutate a block of bits
• Dictionary-Based Mutation – replace a value with a predefined value
• Semantic-aware Mutation6 – mutate seeds using spec. of SUT

• Seed Trimming – filter out the uninteresting test inputs (e.g., no
coverage increase).

6[ICSE’21] J. Park et al. “JEST: N+1-version Differential Testing of Both
JavaScript Engines and Specification.”

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 39 / 45

https://plrg.korea.ac.kr/assets/data/publication/icse21-park-jest.pdf
https://plrg.korea.ac.kr/assets/data/publication/icse21-park-jest.pdf

Input Generation – Generation-Based Fuzzing
Generation-Based Fuzzing generates new test inputs from a model that
represents the input space of the SUT.

• Predefined Model – a model that is manually crafted
• Simple Specification – e.g., a range of values, a set of values, etc.
• Grammar-Based Model – inputs are generated from a input grammar

• Inferred Model – a model that is inferred from previous executions
of the SUT or existing test suite.

• Probabilistic Grammar
• Call Sequence Model
• Code Bricks
• State Machines

• Encoder Model – generates test inputs for decoder programs (e.g.,
image decoders, audio decoders, etc.) using the corresponding
encoder programs.

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 40 / 45

Input Generation – Generation-Based Fuzzing
Generation-Based Fuzzing generates new test inputs from a model that
represents the input space of the SUT.

• Predefined Model – a model that is manually crafted

• Simple Specification – e.g., a range of values, a set of values, etc.
• Grammar-Based Model – inputs are generated from a input grammar

• Inferred Model – a model that is inferred from previous executions
of the SUT or existing test suite.

• Probabilistic Grammar
• Call Sequence Model
• Code Bricks
• State Machines

• Encoder Model – generates test inputs for decoder programs (e.g.,
image decoders, audio decoders, etc.) using the corresponding
encoder programs.

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 40 / 45

Input Generation – Generation-Based Fuzzing
Generation-Based Fuzzing generates new test inputs from a model that
represents the input space of the SUT.

• Predefined Model – a model that is manually crafted
• Simple Specification – e.g., a range of values, a set of values, etc.

• Grammar-Based Model – inputs are generated from a input grammar
• Inferred Model – a model that is inferred from previous executions

of the SUT or existing test suite.
• Probabilistic Grammar
• Call Sequence Model
• Code Bricks
• State Machines

• Encoder Model – generates test inputs for decoder programs (e.g.,
image decoders, audio decoders, etc.) using the corresponding
encoder programs.

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 40 / 45

Input Generation – Generation-Based Fuzzing
Generation-Based Fuzzing generates new test inputs from a model that
represents the input space of the SUT.

• Predefined Model – a model that is manually crafted
• Simple Specification – e.g., a range of values, a set of values, etc.
• Grammar-Based Model – inputs are generated from a input grammar

• Inferred Model – a model that is inferred from previous executions
of the SUT or existing test suite.

• Probabilistic Grammar
• Call Sequence Model
• Code Bricks
• State Machines

• Encoder Model – generates test inputs for decoder programs (e.g.,
image decoders, audio decoders, etc.) using the corresponding
encoder programs.

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 40 / 45

Input Generation – Generation-Based Fuzzing
Generation-Based Fuzzing generates new test inputs from a model that
represents the input space of the SUT.

• Predefined Model – a model that is manually crafted
• Simple Specification – e.g., a range of values, a set of values, etc.
• Grammar-Based Model – inputs are generated from a input grammar

• Inferred Model – a model that is inferred from previous executions
of the SUT or existing test suite.

• Probabilistic Grammar

• Call Sequence Model
• Code Bricks
• State Machines

• Encoder Model – generates test inputs for decoder programs (e.g.,
image decoders, audio decoders, etc.) using the corresponding
encoder programs.

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 40 / 45

Input Generation – Generation-Based Fuzzing
Generation-Based Fuzzing generates new test inputs from a model that
represents the input space of the SUT.

• Predefined Model – a model that is manually crafted
• Simple Specification – e.g., a range of values, a set of values, etc.
• Grammar-Based Model – inputs are generated from a input grammar

• Inferred Model – a model that is inferred from previous executions
of the SUT or existing test suite.

• Probabilistic Grammar
• Call Sequence Model

• Code Bricks
• State Machines

• Encoder Model – generates test inputs for decoder programs (e.g.,
image decoders, audio decoders, etc.) using the corresponding
encoder programs.

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 40 / 45

Input Generation – Generation-Based Fuzzing
Generation-Based Fuzzing generates new test inputs from a model that
represents the input space of the SUT.

• Predefined Model – a model that is manually crafted
• Simple Specification – e.g., a range of values, a set of values, etc.
• Grammar-Based Model – inputs are generated from a input grammar

• Inferred Model – a model that is inferred from previous executions
of the SUT or existing test suite.

• Probabilistic Grammar
• Call Sequence Model
• Code Bricks

• State Machines

• Encoder Model – generates test inputs for decoder programs (e.g.,
image decoders, audio decoders, etc.) using the corresponding
encoder programs.

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 40 / 45

Input Generation – Generation-Based Fuzzing
Generation-Based Fuzzing generates new test inputs from a model that
represents the input space of the SUT.

• Predefined Model – a model that is manually crafted
• Simple Specification – e.g., a range of values, a set of values, etc.
• Grammar-Based Model – inputs are generated from a input grammar

• Inferred Model – a model that is inferred from previous executions
of the SUT or existing test suite.

• Probabilistic Grammar
• Call Sequence Model
• Code Bricks
• State Machines

• Encoder Model – generates test inputs for decoder programs (e.g.,
image decoders, audio decoders, etc.) using the corresponding
encoder programs.

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 40 / 45

Input Generation – Generation-Based Fuzzing
Generation-Based Fuzzing generates new test inputs from a model that
represents the input space of the SUT.

• Predefined Model – a model that is manually crafted
• Simple Specification – e.g., a range of values, a set of values, etc.
• Grammar-Based Model – inputs are generated from a input grammar

• Inferred Model – a model that is inferred from previous executions
of the SUT or existing test suite.

• Probabilistic Grammar
• Call Sequence Model
• Code Bricks
• State Machines

• Encoder Model – generates test inputs for decoder programs (e.g.,
image decoders, audio decoders, etc.) using the corresponding
encoder programs.

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 40 / 45

Test Oracles (Sanitizers)
• Test Oracles (Sanitizers) – a mechanism to detect exceptional

outcomes (e.g., crashes, exceptions, freezes, etc.) of the SUT.

• ASAN (Address Sanitizer) – finds memory corruption bugs (e.g.,
buffer overflows, use-after-free, etc.)

• MSAN (Memory Sanitizer) – finds uninitialized memory bugs
• UBSAN (Undefined Behavior Sanitizer) – finds undefined

behavior bugs
• CFISAN (Control Flow Integrity Sanitizer) – finds control flow

integrity bugs
• TSAN (Thread Sanitizer) – finds thread race conditions
• LSAN (Leak Sanitizer) – finds memory leaks

• They are usually instrumented into the SUT to collect information
about the execution in compile time (static) or runtime (dynamic)
with runtime overhead.

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 41 / 45

Test Oracles (Sanitizers)
• Test Oracles (Sanitizers) – a mechanism to detect exceptional

outcomes (e.g., crashes, exceptions, freezes, etc.) of the SUT.
• ASAN (Address Sanitizer) – finds memory corruption bugs (e.g.,

buffer overflows, use-after-free, etc.)

• MSAN (Memory Sanitizer) – finds uninitialized memory bugs
• UBSAN (Undefined Behavior Sanitizer) – finds undefined

behavior bugs
• CFISAN (Control Flow Integrity Sanitizer) – finds control flow

integrity bugs
• TSAN (Thread Sanitizer) – finds thread race conditions
• LSAN (Leak Sanitizer) – finds memory leaks

• They are usually instrumented into the SUT to collect information
about the execution in compile time (static) or runtime (dynamic)
with runtime overhead.

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 41 / 45

Test Oracles (Sanitizers)
• Test Oracles (Sanitizers) – a mechanism to detect exceptional

outcomes (e.g., crashes, exceptions, freezes, etc.) of the SUT.
• ASAN (Address Sanitizer) – finds memory corruption bugs (e.g.,

buffer overflows, use-after-free, etc.)
• MSAN (Memory Sanitizer) – finds uninitialized memory bugs

• UBSAN (Undefined Behavior Sanitizer) – finds undefined
behavior bugs

• CFISAN (Control Flow Integrity Sanitizer) – finds control flow
integrity bugs

• TSAN (Thread Sanitizer) – finds thread race conditions
• LSAN (Leak Sanitizer) – finds memory leaks

• They are usually instrumented into the SUT to collect information
about the execution in compile time (static) or runtime (dynamic)
with runtime overhead.

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 41 / 45

Test Oracles (Sanitizers)
• Test Oracles (Sanitizers) – a mechanism to detect exceptional

outcomes (e.g., crashes, exceptions, freezes, etc.) of the SUT.
• ASAN (Address Sanitizer) – finds memory corruption bugs (e.g.,

buffer overflows, use-after-free, etc.)
• MSAN (Memory Sanitizer) – finds uninitialized memory bugs
• UBSAN (Undefined Behavior Sanitizer) – finds undefined

behavior bugs

• CFISAN (Control Flow Integrity Sanitizer) – finds control flow
integrity bugs

• TSAN (Thread Sanitizer) – finds thread race conditions
• LSAN (Leak Sanitizer) – finds memory leaks

• They are usually instrumented into the SUT to collect information
about the execution in compile time (static) or runtime (dynamic)
with runtime overhead.

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 41 / 45

Test Oracles (Sanitizers)
• Test Oracles (Sanitizers) – a mechanism to detect exceptional

outcomes (e.g., crashes, exceptions, freezes, etc.) of the SUT.
• ASAN (Address Sanitizer) – finds memory corruption bugs (e.g.,

buffer overflows, use-after-free, etc.)
• MSAN (Memory Sanitizer) – finds uninitialized memory bugs
• UBSAN (Undefined Behavior Sanitizer) – finds undefined

behavior bugs
• CFISAN (Control Flow Integrity Sanitizer) – finds control flow

integrity bugs

• TSAN (Thread Sanitizer) – finds thread race conditions
• LSAN (Leak Sanitizer) – finds memory leaks

• They are usually instrumented into the SUT to collect information
about the execution in compile time (static) or runtime (dynamic)
with runtime overhead.

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 41 / 45

Test Oracles (Sanitizers)
• Test Oracles (Sanitizers) – a mechanism to detect exceptional

outcomes (e.g., crashes, exceptions, freezes, etc.) of the SUT.
• ASAN (Address Sanitizer) – finds memory corruption bugs (e.g.,

buffer overflows, use-after-free, etc.)
• MSAN (Memory Sanitizer) – finds uninitialized memory bugs
• UBSAN (Undefined Behavior Sanitizer) – finds undefined

behavior bugs
• CFISAN (Control Flow Integrity Sanitizer) – finds control flow

integrity bugs
• TSAN (Thread Sanitizer) – finds thread race conditions

• LSAN (Leak Sanitizer) – finds memory leaks

• They are usually instrumented into the SUT to collect information
about the execution in compile time (static) or runtime (dynamic)
with runtime overhead.

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 41 / 45

Test Oracles (Sanitizers)
• Test Oracles (Sanitizers) – a mechanism to detect exceptional

outcomes (e.g., crashes, exceptions, freezes, etc.) of the SUT.
• ASAN (Address Sanitizer) – finds memory corruption bugs (e.g.,

buffer overflows, use-after-free, etc.)
• MSAN (Memory Sanitizer) – finds uninitialized memory bugs
• UBSAN (Undefined Behavior Sanitizer) – finds undefined

behavior bugs
• CFISAN (Control Flow Integrity Sanitizer) – finds control flow

integrity bugs
• TSAN (Thread Sanitizer) – finds thread race conditions
• LSAN (Leak Sanitizer) – finds memory leaks

• They are usually instrumented into the SUT to collect information
about the execution in compile time (static) or runtime (dynamic)
with runtime overhead.

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 41 / 45

Test Oracles (Sanitizers)
• Test Oracles (Sanitizers) – a mechanism to detect exceptional

outcomes (e.g., crashes, exceptions, freezes, etc.) of the SUT.
• ASAN (Address Sanitizer) – finds memory corruption bugs (e.g.,

buffer overflows, use-after-free, etc.)
• MSAN (Memory Sanitizer) – finds uninitialized memory bugs
• UBSAN (Undefined Behavior Sanitizer) – finds undefined

behavior bugs
• CFISAN (Control Flow Integrity Sanitizer) – finds control flow

integrity bugs
• TSAN (Thread Sanitizer) – finds thread race conditions
• LSAN (Leak Sanitizer) – finds memory leaks

• They are usually instrumented into the SUT to collect information
about the execution in compile time (static) or runtime (dynamic)
with runtime overhead.

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 41 / 45

De-duplication
• De-duplication removes duplicate test inputs triggering the

exceptional outcomes depending on the their equivalence criteria.

• Stack Backtrace Hashing – hash the (limited) stack backtrace of
the exceptional outcome and compare the hash values

foo
bar
g
h

foo (crashed)

x
y
g
h

foo (crashed)
(e.g., both are the same with the stack backtrace hashing with n = 3)

• Coverage-based De-duplication – compare the coverage of the test
inputs (e.g., node, branch, grammar, semantics, etc.)

• Semantic-aware De-duplication – compare the semantics of the test
inputs (e.g., backward data-flow analysis for blaming)

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 42 / 45

De-duplication
• De-duplication removes duplicate test inputs triggering the

exceptional outcomes depending on the their equivalence criteria.

• Stack Backtrace Hashing – hash the (limited) stack backtrace of
the exceptional outcome and compare the hash values

foo
bar
g
h

foo (crashed)

x
y
g
h

foo (crashed)
(e.g., both are the same with the stack backtrace hashing with n = 3)

• Coverage-based De-duplication – compare the coverage of the test
inputs (e.g., node, branch, grammar, semantics, etc.)

• Semantic-aware De-duplication – compare the semantics of the test
inputs (e.g., backward data-flow analysis for blaming)

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 42 / 45

De-duplication
• De-duplication removes duplicate test inputs triggering the

exceptional outcomes depending on the their equivalence criteria.

• Stack Backtrace Hashing – hash the (limited) stack backtrace of
the exceptional outcome and compare the hash values

foo
bar
g
h

foo (crashed)

x
y
g
h

foo (crashed)
(e.g., both are the same with the stack backtrace hashing with n = 3)

• Coverage-based De-duplication – compare the coverage of the test
inputs (e.g., node, branch, grammar, semantics, etc.)

• Semantic-aware De-duplication – compare the semantics of the test
inputs (e.g., backward data-flow analysis for blaming)

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 42 / 45

De-duplication
• De-duplication removes duplicate test inputs triggering the

exceptional outcomes depending on the their equivalence criteria.

• Stack Backtrace Hashing – hash the (limited) stack backtrace of
the exceptional outcome and compare the hash values

foo
bar
g
h

foo (crashed)

x
y
g
h

foo (crashed)
(e.g., both are the same with the stack backtrace hashing with n = 3)

• Coverage-based De-duplication – compare the coverage of the test
inputs (e.g., node, branch, grammar, semantics, etc.)

• Semantic-aware De-duplication – compare the semantics of the test
inputs (e.g., backward data-flow analysis for blaming)

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 42 / 45

De-duplication
• De-duplication removes duplicate test inputs triggering the

exceptional outcomes depending on the their equivalence criteria.

• Stack Backtrace Hashing – hash the (limited) stack backtrace of
the exceptional outcome and compare the hash values

foo
bar
g
h

foo (crashed)

x
y
g
h

foo (crashed)
(e.g., both are the same with the stack backtrace hashing with n = 3)

• Coverage-based De-duplication – compare the coverage of the test
inputs (e.g., node, branch, grammar, semantics, etc.)

• Semantic-aware De-duplication – compare the semantics of the test
inputs (e.g., backward data-flow analysis for blaming)

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 42 / 45

Fuzz Testing
If you are interested in further more details about fuzz testing, please refer
to the following resources:

• [TSE’19] V. Manès et al. “The Art, Science, and Engineering of
Fuzzing: A Survey”

• [CSUR’22] X. Zhu et al. “Fuzzing: a survey for roadmap”
• The Fuzzing Book by Andreas Zeller et al.

https://www.fuzzingbook.org/

• AFL++ (American Fuzzy Lop Plus Plus)

https://aflplus.plus/

• ClusterFuzz developed by Google

https://google.github.io/clusterfuzz

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 43 / 45

https://andreas-zeller.info/
https://www.fuzzingbook.org/
https://aflplus.plus/
https://google.github.io/clusterfuzz

Fuzz Testing
If you are interested in further more details about fuzz testing, please refer
to the following resources:

• [TSE’19] V. Manès et al. “The Art, Science, and Engineering of
Fuzzing: A Survey”

• [CSUR’22] X. Zhu et al. “Fuzzing: a survey for roadmap”

• The Fuzzing Book by Andreas Zeller et al.

https://www.fuzzingbook.org/

• AFL++ (American Fuzzy Lop Plus Plus)

https://aflplus.plus/

• ClusterFuzz developed by Google

https://google.github.io/clusterfuzz

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 43 / 45

https://andreas-zeller.info/
https://www.fuzzingbook.org/
https://aflplus.plus/
https://google.github.io/clusterfuzz

Fuzz Testing
If you are interested in further more details about fuzz testing, please refer
to the following resources:

• [TSE’19] V. Manès et al. “The Art, Science, and Engineering of
Fuzzing: A Survey”

• [CSUR’22] X. Zhu et al. “Fuzzing: a survey for roadmap”
• The Fuzzing Book by Andreas Zeller et al.

https://www.fuzzingbook.org/

• AFL++ (American Fuzzy Lop Plus Plus)

https://aflplus.plus/

• ClusterFuzz developed by Google

https://google.github.io/clusterfuzz

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 43 / 45

https://andreas-zeller.info/
https://www.fuzzingbook.org/
https://aflplus.plus/
https://google.github.io/clusterfuzz

Fuzz Testing
If you are interested in further more details about fuzz testing, please refer
to the following resources:

• [TSE’19] V. Manès et al. “The Art, Science, and Engineering of
Fuzzing: A Survey”

• [CSUR’22] X. Zhu et al. “Fuzzing: a survey for roadmap”
• The Fuzzing Book by Andreas Zeller et al.

https://www.fuzzingbook.org/

• AFL++ (American Fuzzy Lop Plus Plus)

https://aflplus.plus/

• ClusterFuzz developed by Google

https://google.github.io/clusterfuzz

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 43 / 45

https://andreas-zeller.info/
https://www.fuzzingbook.org/
https://aflplus.plus/
https://google.github.io/clusterfuzz

Fuzz Testing
If you are interested in further more details about fuzz testing, please refer
to the following resources:

• [TSE’19] V. Manès et al. “The Art, Science, and Engineering of
Fuzzing: A Survey”

• [CSUR’22] X. Zhu et al. “Fuzzing: a survey for roadmap”
• The Fuzzing Book by Andreas Zeller et al.

https://www.fuzzingbook.org/

• AFL++ (American Fuzzy Lop Plus Plus)

https://aflplus.plus/

• ClusterFuzz developed by Google

https://google.github.io/clusterfuzz

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 43 / 45

https://andreas-zeller.info/
https://www.fuzzingbook.org/
https://aflplus.plus/
https://google.github.io/clusterfuzz

Summary
1. Random Testing (RT)

Probabilistic Analysis
Weaknesses of Random Testing
Examples

2. Adaptive Random Testing (ART)
Levenshtein (Edit) Distance
Distance Comparison Target
Complexity of ART
Quasi-Random Strategy for ART

3. Fuzz Testing
Pre-process
Input Generation – Mutation-Based Fuzzing
Input Generation – Generation-Based Fuzzing
Test Oracles (Sanitizers)
De-duplication

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 44 / 45

Next Lecture
• Coverage Criteria

Jihyeok Park
jihyeok park@korea.ac.kr

https://plrg.korea.ac.kr

AAA705 @ Korea University Lecture 2 – Random Testing March 11, 2024 45 / 45

https://plrg.korea.ac.kr

	Random Testing (RT)
	Probabilistic Analysis
	Weaknesses of Random Testing
	Examples

	Adaptive Random Testing (ART)
	Levenshtein (Edit) Distance
	Distance Comparison Target
	Complexity of ART
	Quasi-Random Strategy for ART

	Fuzz Testing
	Pre-process
	Input Generation – Mutation-Based Fuzzing
	Input Generation – Generation-Based Fuzzing
	Test Oracles (Sanitizers)
	De-duplication

