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Recall ’VNPLRG
¢ Equivalence Partitioning (EP)
® Boundary Value Analysis (BVA)
e Category Partition Method (CPM)

e Combinatorial Testing (CT)

® Covering Array (CA)
® Fault Detection Effectiveness
® Greedy Algorithm — IPOG Strategy

® Greedy vs. Meta-heuristic
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Random Testing 7NPLRG

¢ We need to sample the test input from the vast and possibly infinite
input space.
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Random Testing 7NPLRG

¢ We need to sample the test input from the vast and possibly infinite
input space.

® \What happens if we just sample the input randomly?

® Since developers has their own mental model of the software, they
often have a biased view of the input space.

® Random testing can help to ignore this bias.
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Random Testing 7NPLRG

e SUT: Software Under Test
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Random Testing 7NPLRG

e SUT: Software Under Test
e S: Set of all possible test inputs for SUT

® f[: asubset of S — a set of all failing test inputs

Failure Rate t = —
S|

(The probability that a randomly sampled test input is fail when we
sample uniformly at random from S)
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Random Testing — Example 7VPLRG

/*x C x/
int abs(int x) {
if (x < 0) return x; // should be -x

else return x;

}

® Fajlure Rate t ~ 0.5
® QOracle

® assertEqual(abs(-5), 5)
® assertEqual(abs(5), 5)

AAAT705 @ Korea University
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How Random Can We Get? 7VNPLRG

¢ Pseudo-random number generators (PRNGs)

'https://bugs.php.net/bug.php?id=75170
*https://github.com/php/php-src/commit/a0724d
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How Random Can We Get? 7VNPLRG

¢ Pseudo-random number generators (PRNGs)

® Middle Square Method - Initial algorithm by John von Neumann
® Linear Congruential Generator — Most popular

® Mersenne Twister (1997) — C++ 11 / PHP 7.1 - a bias bug?!?

'https://bugs.php.net/bug.php?id=75170
https://github. com/php/php-src/commit/a0724d
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¢ Pseudo-random number generators (PRNGs)

® Middle Square Method - Initial algorithm by John von Neumann
® Linear Congruential Generator — Most popular
® Mersenne Twister (1997) — C++ 11 / PHP 7.1 - a bias bug?!?

® Xorshift — Fast but fail some tests / variants (xorshift+, xoshiro, etc.)
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How Random Can We Get? 7VNPLRG

¢ Pseudo-random number generators (PRNGs)
® Middle Square Method - Initial algorithm by John von Neumann
® Linear Congruential Generator — Most popular
* Mersenne Twister (1997) — C++ 11 / PHP 7.1 — a bias bug?!?

® Xorshift — Fast but fail some tests / variants (xorshift+, xoshiro, etc.)
¢ True-random number generators (TRNGs) — expensive

® Atmospheric noise — https://random. org

® Quantum random number generator (QRNG) -
https://qrng.anu.edu.au

® Lava lamps — Cloudflare

'https://bugs.php.net/bug.php?id=75170
https://github. com/php/php-src/commit/a0724d
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How Random Can We Get? 7VNPLRG

Galaxy Quantum4

eoe

The new Galaxy Quantum 4 is equipped with the world’s smallest (width
2.5mm x length 2.5mm) Quantum Random Number Generator

(QRNG) chipset, enabling trusted authentication and encryption of
information.

AAAT705 @ Korea University Lecture 2 — Random Testing March 11, 2024



Probabilistic Analysis 7NPLRG

Failure Rate p = E
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Probabilistic Analysis 7NPLRG

F
Failure Rate p = E

® Given a failure rate p, how many test inputs do we need to sample to
find the first failure?

e Given n random test inputs, what is the probability of finding at
least one failure?
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Probabilistic Analysis — Geometric Distribution ’VPLRG

® The geometric distribution models the first occurrence of a success
in a sequence of n independent (Bernoulli) trials with the same
probability p.
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® The geometric distribution models the first occurrence of a success

in a sequence of n independent (Bernoulli) trials with the same
probability p.

® The most popular example is the coin flipping.
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Probabilistic Analysis — Geometric Distribution ’VPLRG

® The geometric distribution models the first occurrence of a success
in a sequence of n independent (Bernoulli) trials with the same
probability p.

® The most popular example is the coin flipping.

¢ The probability mass function (PMF) of the geometric distribution:
Pr(X =k)=(1-p)'p

It is the probability that the first success occurs on the n-th trial.
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Probabilistic Analysis — Geometric Distribution ’VPLRG

® Given a failure rate p, how many test inputs do we need to sample to
find the first failure?
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Probabilistic Analysis — Geometric Distribution ’VPLRG

® Given a failure rate p, how many test inputs do we need to sample to
find the first failure?

E(X) = i k- Pr(X = k)
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Probabilistic Analysis — Geometric Distribution ’VPLRG

® Given a failure rate p, how many test inputs do we need to sample to
find the first failure?

E(X) = i k- Pr(X = k)
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Probabilistic Analysis — Geometric Distribution ’VPLRG

® Given a failure rate p, how many test inputs do we need to sample to
find the first failure?

E(X) = i k- Pr(X = k)
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Probabilistic Analysis — Geometric Distribution ’VPLRG

® Given a failure rate p, how many test inputs do we need to sample to
find the first failure?

E(X) = i k- Pr(X = k)

k=1
=Y k- (L-p)p
k=1
=pY k-(1—p)!
k=1
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Probabilistic Analysis — Geometric Distribution ’VPLRG

® Given a failure rate p, how many test inputs do we need to sample to
find the first failure?

k=1
= k-(1-p)'p
k=1
=py k- (1-p)?
k=1
=p<Z(1 PYTHE Y (L=p) Ty (1= p) T )
k=1 k=2 k=3
_ _ 2
32T )
=1+(1-p)+(1-p7+
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Probabilistic Analysis — Geometric Distribution ’VPLRG

® Given a failure rate p, how many test inputs do we need to sample to
find the first failure?

k=1
=Y k- (1-p)p
k=1
=p> k-(1-p)!
k=1
:P<Z(1 PY D (A=) Ty (1) )
k=1 k=2 k=3
_ _ 2
SRS
—1+(1-p)+ (1= pP 4 =
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Probabilistic Analysis — Geometric Distribution ’VPLRG

® Given a failure rate p, how many test inputs do we need to sample to
find the first failure?

® Mean (If p = 0.01, the average test inputs = 100)
1

p

¢ Median (If p = 0.01, the median test inputs ~ 69)

el
log,(1 — p)
¢ Variance (If p = 0.01, the variance = 9900)

1-p
p2
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Probabilistic Analysis — Geometric Distribution ’VPLRG

e Given n random test inputs, what is the probability of finding at
least one failure?
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Probabilistic Analysis — Geometric Distribution ’VPLRG

e Given n random test inputs, what is the probability of finding at
least one failure?

3
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Probabilistic Analysis — Geometric Distribution ’VPLRG

e Given n random test inputs, what is the probability of finding at
least one failure?

k=1
=) (1-p"p
k=1
_ 1-(-p)
P p)
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Probabilistic Analysis — Geometric Distribution ’VPLRG

e Given n random test inputs, what is the probability of finding at
least one failure?
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Probabilistic Analysis — Geometric Distribution VPLRG
e If we test n = 100 random test inputs, the probability of finding at
least one failure is 1 — (1 —0.01)!% = 63.76%.
e If we test n = 200 random test inputs, the probability of finding at
least one failure is 1 — (1 — 0.01)%%° = 86.74%.
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Probabilistic Analysis — Geometric Distribution ’VPLRG

e Unfortunately, failure rate p is unknown in practice.

e But, we can estimate p in various ways:
® Previous versions of the software
® Similar software

® |iterature

March 11, 2024
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Weaknesses of Random Testing 'V PLRG

® Random testing provides no guidance; it is the needle in a
haystack problem — the probability of finding a failure is low.

/*x C x/ # Python
void foo(int x) { def foo(x):
if (x == 0) { # e.g., x = 2840
/* faulty code here */ if (x * 7919 ¥, 5711 == 42):
} # faulty code here
} }
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Weaknesses of Random Testing 'V PLRG

® Random testing provides no guidance; it is the needle in a
haystack problem — the probability of finding a failure is low.

/*x C x/ # Python
void foo(int x) { def foo(x):
if (x == 0) { # e.g., x = 2840
/* faulty code here */ if (x * 7919 ¥, 5711 == 42):
} # faulty code here
} }

® \We need biased random testing with predefined probability:
® Special values (-0, null, 7, ...)
® Extracted values from code (e.g., constants, literals)

® Previously successful values
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Examples ’NPLRG

e Apple (1983) - “Monkey" for random events (e.g., mouse clicks, key
presses, etc.) to test the robustness of the MacWrite and MacPaint
applications.

AAAT705 @ Korea University Lecture 2 — Random Testing March 11, 2024 18 /45


https://github.com/netflix/chaosmonkey

Examples ’NPLRG

e Apple (1983) - “Monkey" for random events (e.g., mouse clicks, key
presses, etc.) to test the robustness of the MacWrite and MacPaint
applications.

® Amazon (2003) - “Game day” for website reliability

AAAT705 @ Korea University Lecture 2 — Random Testing March 11, 2024 18 /45


https://github.com/netflix/chaosmonkey

Examples ’NPLRG

e Apple (1983) - “Monkey" for random events (e.g., mouse clicks, key
presses, etc.) to test the robustness of the MacWrite and MacPaint
applications.

® Amazon (2003) - “Game day” for website reliability

® Google (2006) - “DiRT"" for Site Reliability Engineering (SRE)

AAAT705 @ Korea University Lecture 2 — Random Testing March 11, 2024 18 /45


https://github.com/netflix/chaosmonkey

Examples ’NPLRG

e Apple (1983) - “Monkey" for random events (e.g., mouse clicks, key
presses, etc.) to test the robustness of the MacWrite and MacPaint
applications.

® Amazon (2003) - “Game day” for website reliability
® Google (2006) - “DiRT"" for Site Reliability Engineering (SRE)

¢ Netflix (2011) — “Chaos Monkey” that randomly terminates AWS
instances to test the fault tolerance of the Netflix infrastructure.
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Contents ’VNPLRG

2. Adaptive Random Testing (ART)
Levenshtein (Edit) Distance
Distance Comparison Target
Complexity of ART
Quasi-Random Strategy for ART
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Adaptive Random Testing (ART) "V PLRG

¢ Insight — failing test inputs often cluster in the input space.
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Adaptive Random Testing (ART) "V PLRG

¢ Insight — failing test inputs often cluster in the input space.
® Consider the fault under the condition x >= 0 && x < 100.

® \We call such clustered reasons faulty regions.
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Adaptive Random Testing (ART) "V PLRG

¢ Insight — failing test inputs often cluster in the input space.
e Consider the fault under the condition x >= 0 && x < 100.
® \We call such clustered reasons faulty regions.

e Without knowing the faulty regions, what is the best way to sample
the test inputs?
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Adaptive Random Testing (ART)

Faulty region

’VNPLRG

Faulty region

® A more diverse set of test inputs is more likely to find a failure.
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Adaptive Random Testing (ART) "V PLRG

Faulty region

Faulty region

® A more diverse set of test inputs is more likely to find a failure.

® Diversity is depending on the distance between test inputs.
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Adaptive Random Testing (ART) "V PLRG

. . Faulty region Faulty region
[ J [ J

® A more diverse set of test inputs is more likely to find a failure.
® Diversity is depending on the distance between test inputs.
e |f input data is numeric, we can use the Euclidean distance.

d((X17X27 cee 7Xn)7 (y17y27 o 7yn)) =
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Adaptive Random Testing (ART) "V PLRG

. . Faulty region Faulty region
[ J [ J

® A more diverse set of test inputs is more likely to find a failure.
® Diversity is depending on the distance between test inputs.
e |f input data is numeric, we can use the Euclidean distance.

d((X17X27 cee 7Xn)7 (y17y27 o 7yn)) =

® Then, how to measure the distance between complex data types?
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Levenshtein (Edit) Distance VPLRG

® The Levenshtein distance is a measure of the similarity between two
strings.
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Levenshtein (Edit) Distance VPLRG

® The Levenshtein distance is a measure of the similarity between two
strings.

® |t is the minimum number of single-character edits (insertions,
deletions, or substitutions) required to change one word into the
other.
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Levenshtein (Edit) Distance VPLRG

® The Levenshtein distance is a measure of the similarity between two
strings.

® |t is the minimum number of single-character edits (insertions,
deletions, or substitutions) required to change one word into the
other.

® For example, the distance between “kitten” and “sitting” is 3:

Wl ipy. n Substitut » substitut " t
kitten w ‘sitten” 22T, “sittin % sitting”
k—s e—i
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Levenshtein (Edit) Distance VPLRG

® The Levenshtein distance is a measure of the similarity between two
strings.

® |t is the minimum number of single-character edits (insertions,
deletions, or substitutions) required to change one word into the
other.

® For example, the distance between “kitten” and “sitting” is 3:

wy. " bstitut: " bstitut " t
kitten w ‘sitten” 22T, “sittin % ‘sitting”

k—s e—vi

® and the distance between “uninformed” and “uniform” is 3:

» delete . delete . » delete . "
“uninformed —> “uniformed —> “uniformd —> “uniform
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Levenshtein (Edit) Distance VPLRG

® The formal definition of the Levenshtein distance is as follows:

|al if |b] =0
b if ]a| =0
lev(a, b) = lev(tail(a), tail(b)) if head(a) = head(b)
’ lev (tail(a), b) (insert)
1+ min < lev(a, tail(b)) (delete) otherwise
lev(tail(a), tail(b)) (substitute)
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Levenshtein (Edit) Distance "M PLRG

® The formal definition of the Levenshtein distance is as follows:

|al if |b] =0
|b| if ]a| =0
lev(a, b) = lev(tail(a), tail(b)) if head(a) = head(b)
’ lev (tail(a), b) (insert)
1+ min < lev(a, tail(b)) (delete) otherwise
lev(tail(a), tail(b)) (substitute)

® |t is usually extended into a parameterized version with a set of
allowed edit operations (e.g., transposition) with different costs.
® Wagner-Fischer algorithm (1967) — O(mn) time complexity

® Indyk and Backurs (2015) proved that the problem of finding the edit
distance cannot be solved in less than quadratic time. (We
cannot do better than the Wagner-Fischer algorithm.)

AAAT705 @ Korea University Lecture 2 — Random Testing March 11, 2024



Adaptive Random Testing (ART) "V PLRG

® The diversity of a test suite is defined as the sum of distances
between all pairs of test inputs.

diversity(T) = Z d(t1, t2)
(t1,t2)€TXT
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Adaptive Random Testing (ART) "V PLRG

® The diversity of a test suite is defined as the sum of distances
between all pairs of test inputs.

diversity(T) = Z d(t1, t2)
(t1,t2)€TXT

® We will sample multiple Z test inputs and measure the distance
between existing test inputs and the new test input.
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Adaptive Random Testing (ART) "V PLRG

® The diversity of a test suite is defined as the sum of distances
between all pairs of test inputs.

diversity(T) = Z d(t1, t2)
(t1,t2)€TXT

® We will sample multiple Z test inputs and measure the distance
between existing test inputs and the new test input.

® Choose the test input that has the maximum distance from the
existing test inputs.
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Adaptive Random Testing (ART) "V PLRG

® The diversity of a test suite is defined as the sum of distances
between all pairs of test inputs.

diversity(T) = Z d(t1, t2)
(t1,t)eTXT

® We will sample multiple Z test inputs and measure the distance
between existing test inputs and the new test input.

® Choose the test input that has the maximum distance from the
existing test inputs.

¢ Add the chosen new test input to the set of existing test inputs.
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Adaptive Random Testing (ART) "V PLRG

® The diversity of a test suite is defined as the sum of distances
between all pairs of test inputs.

diversity(T) = Z d(t1, t2)
(t1,t)eTXT

We will sample multiple Z test inputs and measure the distance
between existing test inputs and the new test input.

Choose the test input that has the maximum distance from the
existing test inputs.

Add the chosen new test input to the set of existing test inputs.

Iterate the process until the stopping criterion is met.
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Adaptive Random Testing (ART) "V PLRG

. Existing Input

. New Sample Batch

Chosen

® |t samples Z = 3 new test inputs and chooses the one with the
maximum distance from the existing test inputs.
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Distance Comparison Target 'V PLRG

® For each new test case t, we need to choose the target for
comparison in the existing test suite T.3

}[CSUR’19] R. Huang et al. “A survey on adaptive random testing.”
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Distance Comparison Target 'V PLRG

® For each new test case t, we need to choose the target for
comparison in the existing test suite T.3

® Minimum-Distance

fitness(t, T) = mir}d(t, t')
t'e

}[CSUR’19] R. Huang et al. “A survey on adaptive random testing.”
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Distance Comparison Target 'V PLRG

® For each new test case t, we need to choose the target for
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comparison in the existing test suite T.3

® Minimum-Distance

fitness(t, T) = tmln d(t,t")
'eT

® Average-Distance

fitness(t, T) \T| Z d(t,t)
reT
e Maximum-Distance e

fitness(t, T) = max d(t,t)
t'eT
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Distance Comparison Target 'V PLRG

® For each new test case t, we need to choose the target for
comparison in the existing test suite T.3

® Minimum-Distance

fitness(t, T) = min d(t, t')
t'eT
® Average-Distance

fitness(t, T) \T| Z d(t,t)

] ) t'eT
e Maximum-Distance

fitness(t, T) = max d(t,t)
t'eT

® Centroid-Distance

fitness(t, T) = d(t,1/|T| Y _ t')
}[CSUR’19] R. Huang et al. “A survey on adaptive raridorh testing.”
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Complexity 7NPLRG

e |f we use Z sample points and get ART test suite of k test cases, how
many distance calculations do we need?
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e |f we use Z sample points and get ART test suite of k test cases, how
many distance calculations do we need?
k(k —1)

0+ Z+2Z+3Z+ -+ (k=1)Z ==

Z

® O(k?Z) time complexity — this could be expensive.
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Complexity 7NPLRG

e |f we use Z sample points and get ART test suite of k test cases, how
many distance calculations do we need?

k(k —1)

V4
2

0+ Z+2Z+3Z+-+(k-1)Z=

® O(k?Z) time complexity — this could be expensive.

® |t may be difficult to choose the meaningful distance metric for
complex data types.
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Quasi-Random Strategy for ART

® What if we can randomly sample the test inputs having diversity

(i.e., low discrepancy)?
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Quasi-Random Strategy for ART ’VPLRG

® What if we can randomly sample the test inputs having diversity
(i.e., low discrepancy)?

¢ Quasi-random sequences could be a good choice.
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Quasi-Random Strategy for ART ’VPLRG
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® What if we can randomly sample the test inputs having diversity
(i.e., low discrepancy)?

¢ Quasi-random sequences could be a good choice.

® |et's learn Halton sequence, one of the representative quasi-random
sequences.

AAAT705 @ Korea University
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Quasi-Random Strategy for ART — Halton Sequenc@YPLRG

® The halton sequence is constructed in a deterministic way using
co-prime numbers.
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Quasi-Random Strategy for ART — Halton Sequenc@YPLRG

® The halton sequence is constructed in a deterministic way using
co-prime numbers.

® For example, generate the sequence of numbers in the range [0,1] by
recursively splitting the range into 2 or 3 subintervals.

N[ =
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Quasi-Random Strategy for ART — Halton Sequenc@YPLRG

® The halton sequence is constructed in a deterministic way using
co-prime numbers.

® For example, generate the sequence of numbers in the range [0,1] by
recursively splitting the range into 2 or 3 subintervals.

A= N
W
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Quasi-Random Strategy for ART — Halton Sequenc@YPLRG

® The halton sequence is constructed in a deterministic way using
co-prime numbers.

® For example, generate the sequence of numbers in the range [0,1] by
recursively splitting the range into 2 or 3 subintervals.

Q= A= N
[oo][&; I NTeN)

lw
oo~
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Quasi-Random Strategy for ART — Halton Sequenc@YPLRG

® The halton sequence is constructed in a deterministic way using
co-prime numbers.

® For example, generate the sequence of numbers in the range [0,1] by
recursively splitting the range into 2 or 3 subintervals.

oolor MW

;‘r—l Ol Bl= N[
oolw
oo~
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Quasi-Random Strategy for ART — Halton Sequenc@YPLRG

® The halton sequence is constructed in a deterministic way using
co-prime numbers.

® For example, generate the sequence of numbers in the range [0,1] by
recursively splitting the range into 2 or 3 subintervals.

Ol Wl
Ol WIN
ol
OIN
ellé)]
elfee)

oolor MW

;‘r—l Ol Bl= N[
oolw
oo~
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Quasi-Random Strategy for ART — Halton Sequenc@YPLRG

® The halton sequence is constructed in a deterministic way using
co-prime numbers.

® For example, generate the sequence of numbers in the range [0,1] by
recursively splitting the range into 2 or 3 subintervals.

[oo] [, IENEN]
Ol Wl
Ol WIN
ol
OIN
ellé)]
elfee)

;‘r—l Ol Bl= N[
oolw
oo~

e Generate a sequence of pairs of numbers (x, y) by combining above
sequences.

11,12 31, .14 57 ,32 ,75 ,1 8
(333 ok le o) () (g 9) (g g0 g )
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Quasi-Random Strategy for ART ’VPLRG

We can utilize other quasi-random sequences for ART:*

¢ Halton Sequence

w

op(i) =D ih !

j=0
® Sobol Sequence

SObO/(i) = XO/‘_\’J':1727... ,w(fj5j)

where

Br0j—k 0j—k
6] = XORk:l,Z"'J < o ) ® ST

¢ Niederreiter Sequence

*[CSUR’19] R. Huang et al. “A survey on adaptive random testing.”
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Adaptive Random Testing (ART) — Summary 7VPLRG

¢ Application Domains

® Numeric Programs

® Object-Oriented Programs

Configurable Systems

Web Services and Applications

Embedded Systems

Simulations and Models
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¢ Application Domains

® Numeric Programs

® Object-Oriented Programs

Configurable Systems

Web Services and Applications

Embedded Systems

® Simulations and Models

¢ Faulty regions may not apply to all types of faults.
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Adaptive Random Testing (ART) — Summary 7VPLRG

¢ Application Domains

® Numeric Programs

® Object-Oriented Programs

Configurable Systems

Web Services and Applications

Embedded Systems
® Simulations and Models
¢ Faulty regions may not apply to all types of faults.
® ART is still mostly an academic idea, with debates going on:

® [ISSTA'11] A. Arcuri et al. “Adaptive random testing: an illusion of
effectiveness?”

® [CSUR’19] R. Huang et al. “A survey on adaptive random testing.”
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Contents ’VNPLRG

3. Fuzz Testing
Pre-process
Input Generation — Mutation-Based Fuzzing
Input Generation — Generation-Based Fuzzing
Test Oracles (Sanitizers)
De-duplication
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Fuzz Testing 7NPLRG

MONKEY TACOS!
\ YEAH,
™M S0 ME TOO.
RaNpOM.
\ (

https://xkcd.com/1210/

AAAT705 @ Korea University Lecture 2 — Random Testing March 11, 2024


https://xkcd.com/1210/

Fuzz Testing 7NPLRG

* [CACM’90] B. P. Miller et al. “An empirical study of the reliability of
UNIX utilities.”

“On a dark and stormy night one of the authors was logged on
to his workstation on a dial-up line from home and the rain had
affected the phone lines; there were frequent spurious characters
on the line. The author had to race to see if he could type a sensible
sequence of characters before the noise scrambled the command.
This line noise was not surprising; but we were surprised that these
spurious characters were causing programs to crash.”

*https://alastairreid.github.io/RelatedWork/papers/miller:cacm: 1990/
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Fuzz Testing 7NPLRG

WO[4@!$j2V Execute 9
/dev/random n

® Fuzz testing is a random testing technique to find exceptional
outcomes (e.g., crashes, exceptions, freezes, etc.) of a software
system.
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Fuzz Testing 7NPLRG

WO[4@!$j2V Execute 9
/dev/random n

® Fuzz testing is a random testing technique to find exceptional
outcomes (e.g., crashes, exceptions, freezes, etc.) of a software
system.

® 1990 study found crashes in: adb, as, bc, cb, col, diction, emacs,
eqn, ftp, indent, lex, look, m4, make, nroff, plot, prolog, ptx,
refer!, spell, style, tsort, uniq, vgrind, vi
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Fuzz Testing — Overview 7NPLRG

Mutation-based
Fuzzing

: De-duplication

Pre-process Input Generation Test Test Oracles Buas
i P Inputs (Sanitizers) 9

Generation-based
Fuzzing

® Pre-process — prepare the SUT for fuzz testing
¢ Input Generation — generate test inputs

® Mutation-Based Fuzzing — modify existing test inputs
® Generation-Based Fuzzing — generate new test inputs

® Test Oracles (Sanitizers) — detect exceptional outcomes

¢ De-duplication — remove duplicate test inputs
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Pre-process ’NPLRG

¢ |nstrumentation — source-level or binary-level modification of the
SUT to collect information about the execution in compile time
(static) or runtime (dynamic).

AAAT705 @ Korea University Lecture 2 — Random Testing March 11, 2024 37/45



Pre-process ’NPLRG

¢ |nstrumentation — source-level or binary-level modification of the
SUT to collect information about the execution in compile time
(static) or runtime (dynamic).

® Execution Feedback — collect execution information including
node/branch coverage.
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¢ |nstrumentation — source-level or binary-level modification of the
SUT to collect information about the execution in compile time
(static) or runtime (dynamic).
® Execution Feedback — collect execution information including
node/branch coverage.

® Thread Scheduling — control how threads are scheduled to to
trigger different non-deterministic behaviors.
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¢ |nstrumentation — source-level or binary-level modification of the
SUT to collect information about the execution in compile time
(static) or runtime (dynamic).
® Execution Feedback — collect execution information including
node/branch coverage.
® Thread Scheduling — control how threads are scheduled to to
trigger different non-deterministic behaviors.
® In-Memory Fuzzing — take a memory snapshot and restore it before
writing the new new test case directly into memory and executing it. It
can skip over unnecessary startup costs.
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¢ |nstrumentation — source-level or binary-level modification of the
SUT to collect information about the execution in compile time
(static) or runtime (dynamic).
® Execution Feedback — collect execution information including
node/branch coverage.
® Thread Scheduling — control how threads are scheduled to to
trigger different non-deterministic behaviors.
® In-Memory Fuzzing — take a memory snapshot and restore it before
writing the new new test case directly into memory and executing it. It
can skip over unnecessary startup costs.

® Preparing a Driver Application — we need to prepare for a driver
program when it is difficult to directly fuzz the SUT.
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Pre-process ’NPLRG

¢ |nstrumentation — source-level or binary-level modification of the
SUT to collect information about the execution in compile time
(static) or runtime (dynamic).
® Execution Feedback — collect execution information including
node/branch coverage.

® Thread Scheduling — control how threads are scheduled to to
trigger different non-deterministic behaviors.

® In-Memory Fuzzing — take a memory snapshot and restore it before
writing the new new test case directly into memory and executing it. It
can skip over unnecessary startup costs.

® Preparing a Driver Application — we need to prepare for a driver
program when it is difficult to directly fuzz the SUT.
® Libraries — a driver program that calls functions in the library
® Kernels — may fuzz user-land applications to test kernels

® loT devices — a driver communicate with the corresponding
smartphone application.
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Input Generation — Mutation-Based Fuzzing IPLRG

Initial __  Seed Seed Selection Seeds
Seeds Pool
N

A4

Interesting Seed Mutation
Seeds
N
Seed Trimming New Seeds

® |n the mutation-based fuzzing, a seed is a test input that is used to
generate new test inputs.
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Input Generation — Mutation-Based Fuzzing IPLRG

Initial __  Seed Seed Selection Seeds
Seeds Pool
N

A4

Interesting Seed Mutation
Seeds
N
Seed Trimming New Seeds

® |n the mutation-based fuzzing, a seed is a test input that is used to
generate new test inputs.

¢ Mutation-Based Fuzzing first initializes seed pool with the initial
seeds, and then mutates them to generate new test inputs and
updates the seed pool when a new test input is interesting.
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Input Generation — Mutation-Based Fuzzing IPLRG

e Initial Seeds — from the existing test suite, manually crafted,
inferred from the SUT or specification.

°[ICSE’21] J. Park et al. “JEST: N+I-version Differential Testing of Both
JavaScript Engines and Specification.”
AAAT705 @ Korea University Lecture 2 — Random Testing March 11, 2024 39 /45
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Input Generation — Mutation-Based Fuzzing IPLRG

e Initial Seeds — from the existing test suite, manually crafted,
inferred from the SUT or specification.

¢ Seed Selection — random or guided selection (e.g., coverage-based,
distance-based, etc.) of the seed from the seed pool.

°[ICSE’21] J. Park et al. “JEST: N+I-version Differential Testing of Both
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Input Generation — Mutation-Based Fuzzing IPLRG

e Initial Seeds — from the existing test suite, manually crafted,
inferred from the SUT or specification.

¢ Seed Selection — random or guided selection (e.g., coverage-based,
distance-based, etc.) of the seed from the seed pool.

e Seed Mutation — mutate the seed to generate new test inputs.

® Bit-Flip — flip a random bit in the seed
® Arithmetic Mutation — add, subtract, multiply, divide, etc.
Block-based Mutation — mutate a block of bits

® Dictionary-Based Mutation — replace a value with a predefined value

® Semantic-aware Mutation® — mutate seeds using spec. of SUT

°[ICSE’21] J. Park et al. “JEST: N+I-version Differential Testing of Both

JavaScript Engines and Specification.”
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Input Generation — Mutation-Based Fuzzing IPLRG

e Initial Seeds — from the existing test suite, manually crafted,
inferred from the SUT or specification.

¢ Seed Selection — random or guided selection (e.g., coverage-based,
distance-based, etc.) of the seed from the seed pool.

e Seed Mutation — mutate the seed to generate new test inputs.
® Bit-Flip — flip a random bit in the seed
® Arithmetic Mutation — add, subtract, multiply, divide, etc.
® Block-based Mutation — mutate a block of bits
® Dictionary-Based Mutation — replace a value with a predefined value

® Semantic-aware Mutation® — mutate seeds using spec. of SUT

® Seed Trimming — filter out the uninteresting test inputs (e.g., no
coverage increase).

°[ICSE’21] J. Park et al. “JEST: N+I-version Differential Testing of Both

JavaScript Engines and Specification.”
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Input Generation — Generation-Based Fuzzing VPLRG

Generation-Based Fuzzing generates new test inputs from a model that
represents the input space of the SUT.
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Input Generation — Generation-Based Fuzzing VPLRG

Generation-Based Fuzzing generates new test inputs from a model that
represents the input space of the SUT.

® Predefined Model — a model that is manually crafted
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Input Generation — Generation-Based Fuzzing VPLRG

Generation-Based Fuzzing generates new test inputs from a model that
represents the input space of the SUT.

® Predefined Model — a model that is manually crafted

® Simple Specification — e.g., a range of values, a set of values, etc.
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Generation-Based Fuzzing generates new test inputs from a model that
represents the input space of the SUT.

® Predefined Model — a model that is manually crafted

® Simple Specification — e.g., a range of values, a set of values, etc.

® Grammar-Based Model - inputs are generated from a input grammar
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Input Generation — Generation-Based Fuzzing VPLRG

Generation-Based Fuzzing generates new test inputs from a model that
represents the input space of the SUT.

® Predefined Model — a model that is manually crafted

® Simple Specification — e.g., a range of values, a set of values, etc.

® Grammar-Based Model - inputs are generated from a input grammar

¢ Inferred Model — a model that is inferred from previous executions
of the SUT or existing test suite.

® Probabilistic Grammar
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Input Generation — Generation-Based Fuzzing VPLRG

Generation-Based Fuzzing generates new test inputs from a model that
represents the input space of the SUT.

® Predefined Model — a model that is manually crafted

® Simple Specification — e.g., a range of values, a set of values, etc.

® Grammar-Based Model - inputs are generated from a input grammar

¢ Inferred Model — a model that is inferred from previous executions
of the SUT or existing test suite.

® Probabilistic Grammar

® Call Sequence Model
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Input Generation — Generation-Based Fuzzing VPLRG

Generation-Based Fuzzing generates new test inputs from a model that
represents the input space of the SUT.
® Predefined Model — a model that is manually crafted
® Simple Specification — e.g., a range of values, a set of values, etc.

® Grammar-Based Model - inputs are generated from a input grammar

¢ Inferred Model — a model that is inferred from previous executions
of the SUT or existing test suite.

® Probabilistic Grammar
® Call Sequence Model
® Code Bricks
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Generation-Based Fuzzing generates new test inputs from a model that
represents the input space of the SUT.
® Predefined Model — a model that is manually crafted
® Simple Specification — e.g., a range of values, a set of values, etc.

® Grammar-Based Model - inputs are generated from a input grammar

¢ Inferred Model — a model that is inferred from previous executions
of the SUT or existing test suite.
® Probabilistic Grammar
® Call Sequence Model
® Code Bricks
® State Machines

AAAT705 @ Korea University Lecture 2 — Random Testing March 11, 2024 40 /45



Input Generation — Generation-Based Fuzzing VPLRG

Generation-Based Fuzzing generates new test inputs from a model that
represents the input space of the SUT.
® Predefined Model — a model that is manually crafted
® Simple Specification — e.g., a range of values, a set of values, etc.
® Grammar-Based Model - inputs are generated from a input grammar
¢ Inferred Model — a model that is inferred from previous executions
of the SUT or existing test suite.
® Probabilistic Grammar
® Call Sequence Model
® Code Bricks

® State Machines

® Encoder Model — generates test inputs for decoder programs (e.g.,
image decoders, audio decoders, etc.) using the corresponding
encoder programs.
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Test Oracles (Sanitizers) "N PLRG

¢ Test Oracles (Sanitizers) — a mechanism to detect exceptional
outcomes (e.g., crashes, exceptions, freezes, etc.) of the SUT.
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Test Oracles (Sanitizers) "N PLRG

¢ Test Oracles (Sanitizers) — a mechanism to detect exceptional
outcomes (e.g., crashes, exceptions, freezes, etc.) of the SUT.

® ASAN (Address Sanitizer) — finds memory corruption bugs (e.g.,
buffer overflows, use-after-free, etc.)

AAAT705 @ Korea University Lecture 2 — Random Testing March 11, 2024 41/45



Test Oracles (Sanitizers) "N PLRG

¢ Test Oracles (Sanitizers) — a mechanism to detect exceptional
outcomes (e.g., crashes, exceptions, freezes, etc.) of the SUT.

® ASAN (Address Sanitizer) — finds memory corruption bugs (e.g.,
buffer overflows, use-after-free, etc.)

® MSAN (Memory Sanitizer) — finds uninitialized memory bugs
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Test Oracles (Sanitizers) "N PLRG

¢ Test Oracles (Sanitizers) — a mechanism to detect exceptional
outcomes (e.g., crashes, exceptions, freezes, etc.) of the SUT.

® ASAN (Address Sanitizer) — finds memory corruption bugs (e.g.,
buffer overflows, use-after-free, etc.)

® MSAN (Memory Sanitizer) — finds uninitialized memory bugs

* UBSAN (Undefined Behavior Sanitizer) — finds undefined
behavior bugs
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Test Oracles (Sanitizers) "N PLRG

¢ Test Oracles (Sanitizers) — a mechanism to detect exceptional
outcomes (e.g., crashes, exceptions, freezes, etc.) of the SUT.

® ASAN (Address Sanitizer) — finds memory corruption bugs (e.g.,
buffer overflows, use-after-free, etc.)
® MSAN (Memory Sanitizer) — finds uninitialized memory bugs

* UBSAN (Undefined Behavior Sanitizer) — finds undefined
behavior bugs

® CFISAN (Control Flow Integrity Sanitizer) — finds control flow
integrity bugs
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¢ Test Oracles (Sanitizers) — a mechanism to detect exceptional
outcomes (e.g., crashes, exceptions, freezes, etc.) of the SUT.

® ASAN (Address Sanitizer) — finds memory corruption bugs (e.g.,
buffer overflows, use-after-free, etc.)
® MSAN (Memory Sanitizer) — finds uninitialized memory bugs

* UBSAN (Undefined Behavior Sanitizer) — finds undefined
behavior bugs

® CFISAN (Control Flow Integrity Sanitizer) — finds control flow
integrity bugs

® TSAN (Thread Sanitizer) — finds thread race conditions
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Test Oracles (Sanitizers) "N PLRG

¢ Test Oracles (Sanitizers) — a mechanism to detect exceptional
outcomes (e.g., crashes, exceptions, freezes, etc.) of the SUT.

ASAN (Address Sanitizer) — finds memory corruption bugs (e.g.,
buffer overflows, use-after-free, etc.)

MSAN (Memory Sanitizer) — finds uninitialized memory bugs

UBSAN (Undefined Behavior Sanitizer) — finds undefined
behavior bugs

CFISAN (Control Flow Integrity Sanitizer) — finds control flow
integrity bugs

TSAN (Thread Sanitizer) — finds thread race conditions
LSAN (Leak Sanitizer) — finds memory leaks
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Test Oracles (Sanitizers) "N PLRG

¢ Test Oracles (Sanitizers) — a mechanism to detect exceptional
outcomes (e.g., crashes, exceptions, freezes, etc.) of the SUT.

® ASAN (Address Sanitizer) — finds memory corruption bugs (e.g.,
buffer overflows, use-after-free, etc.)

® MSAN (Memory Sanitizer) — finds uninitialized memory bugs

* UBSAN (Undefined Behavior Sanitizer) — finds undefined
behavior bugs

® CFISAN (Control Flow Integrity Sanitizer) — finds control flow
integrity bugs

® TSAN (Thread Sanitizer) — finds thread race conditions
® LSAN (Leak Sanitizer) — finds memory leaks
® They are usually instrumented into the SUT to collect information

about the execution in compile time (static) or runtime (dynamic)
with runtime overhead.
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De-duplication ’NPLRG

¢ De-duplication removes duplicate test inputs triggering the
exceptional outcomes depending on the their equivalence criteria.
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¢ De-duplication removes duplicate test inputs triggering the
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® Stack Backtrace Hashing — hash the (limited) stack backtrace of
the exceptional outcome and compare the hash values
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¢ De-duplication removes duplicate test inputs triggering the
exceptional outcomes depending on the their equivalence criteria.

® Stack Backtrace Hashing — hash the (limited) stack backtrace of
the exceptional outcome and compare the hash values

foo X
bar y
g g
h h
foo (crashed) foo (crashed)

(e.g., both are the same with the stack backtrace hashing with n = 3)
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¢ De-duplication removes duplicate test inputs triggering the
exceptional outcomes depending on the their equivalence criteria.

® Stack Backtrace Hashing — hash the (limited) stack backtrace of
the exceptional outcome and compare the hash values

foo X
bar y
g g
h h
foo (crashed) foo (crashed)

(e.g., both are the same with the stack backtrace hashing with n = 3)

® Coverage-based De-duplication — compare the coverage of the test
inputs (e.g., node, branch, grammar, semantics, etc.)
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De-duplication ’NPLRG

¢ De-duplication removes duplicate test inputs triggering the
exceptional outcomes depending on the their equivalence criteria.

® Stack Backtrace Hashing — hash the (limited) stack backtrace of
the exceptional outcome and compare the hash values

foo X
bar y
g g
h h
foo (crashed) foo (crashed)

(e.g., both are the same with the stack backtrace hashing with n = 3)

® Coverage-based De-duplication — compare the coverage of the test
inputs (e.g., node, branch, grammar, semantics, etc.)

® Semantic-aware De-duplication — compare the semantics of the test
inputs (e.g., backward data-flow analysis for blaming)
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Fuzz Testing 7NPLRG

If you are interested in further more details about fuzz testing, please refer
to the following resources:

e [TSE’19] V. Manés et al. “The Art, Science, and Engineering of
Fuzzing: A Survey”
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Fuzz Testing 7NPLRG

If you are interested in further more details about fuzz testing, please refer
to the following resources:
e [TSE’19] V. Manés et al. “The Art, Science, and Engineering of
Fuzzing: A Survey”
e [CSUR’22] X. Zhu et al. “Fuzzing: a survey for roadmap”
¢ The Fuzzing Book by Andreas Zeller et al.

https://www.fuzzingbook.org/
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Fuzz Testing 7NPLRG

If you are interested in further more details about fuzz testing, please refer
to the following resources:
e [TSE’19] V. Manés et al. “The Art, Science, and Engineering of
Fuzzing: A Survey”
e [CSUR’22] X. Zhu et al. “Fuzzing: a survey for roadmap”
¢ The Fuzzing Book by Andreas Zeller et al.

https://www.fuzzingbook.org/

¢ AFL++ (American Fuzzy Lop Plus Plus)

https://aflplus.plus/
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Fuzz Testing 7NPLRG

If you are interested in further more details about fuzz testing, please refer
to the following resources:
e [TSE’19] V. Manés et al. “The Art, Science, and Engineering of
Fuzzing: A Survey”
e [CSUR’22] X. Zhu et al. “Fuzzing: a survey for roadmap”
¢ The Fuzzing Book by Andreas Zeller et al.

https://www.fuzzingbook.org/

¢ AFL++ (American Fuzzy Lop Plus Plus)

https://aflplus.plus/

® ClusterFuzz developed by Google

https://google.github.io/clusterfuzz
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Summary ’VPLRG

1. Random Testing (RT)
Probabilistic Analysis
Weaknesses of Random Testing
Examples

2. Adaptive Random Testing (ART)
Levenshtein (Edit) Distance
Distance Comparison Target
Complexity of ART
Quasi-Random Strategy for ART

3. Fuzz Testing
Pre-process
Input Generation — Mutation-Based Fuzzing
Input Generation — Generation-Based Fuzzing
Test Oracles (Sanitizers)
De-duplication
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e Coverage Criteria
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