
Lecture 5 – Search Based Software Testing (SBST)
AAA705: Software Testing and Quality Assurance

Jihyeok Park

2024 Spring

AAA705 @ Korea University Lecture 5 – SBST March 20, 2024 1 / 72

Recall – White-Box (Structural) Testing
Sometimes called structural testing because it uses the internal
structure of the program to derive test cases.

• Coverage Criteria
• The adequacy of a test suite is measured in terms of the coverage of

the program’s internal structure.

• Search Based Software Testing (SBST)
• A technique that uses meta-heuristic search algorithms to

maximize/minimize a certain fitness function.

• Dynamic Symbolic Execution (DSE)
• A technique that systematically explores the input space using

symbolic execution with dynamic analysis.

Let’s focus on the SBST in this lecture, and start from search-based
software engineering (SBSE)!

AAA705 @ Korea University Lecture 5 – SBST March 20, 2024 2 / 72

Contents
1. Search Based Software Engineering (SBSE)
2. Fitness Landscape
3. Local Search

Hill Climbing
Simulated Annealing
Tabu Search

4. Genetic Algorithms
Selection Strategies
Crossover Operators
Mutation Operators

5. Bio-inspired Algorithms
Particle Swarm Optimization (PSO)
Ant Colony Optimization (ACO)

6. Search Based Software Testing (SBST)
Alternating Variable Method (AVM)

AAA705 @ Korea University Lecture 5 – SBST March 20, 2024 3 / 72

Contents
1. Search Based Software Engineering (SBSE)
2. Fitness Landscape
3. Local Search

Hill Climbing
Simulated Annealing
Tabu Search

4. Genetic Algorithms
Selection Strategies
Crossover Operators
Mutation Operators

5. Bio-inspired Algorithms
Particle Swarm Optimization (PSO)
Ant Colony Optimization (ACO)

6. Search Based Software Testing (SBST)
Alternating Variable Method (AVM)

AAA705 @ Korea University Lecture 5 – SBST March 20, 2024 4 / 72

Search Based Software Engineering (SBSE)
• The search-based software engineering (SBSE) is a large

movement that seeks to apply various optimization techniques to
software engineering problems.

• Meta-heuristic and computational intelligence techniques are
found increasingly in SE research.

• Two major conferences (ICSE and ESEC/FSE) now tend to have
whole sessions dedicated to SBSE.

• Dedicated international conference (e.g., SSBSE) and many other
workshops.

AAA705 @ Korea University Lecture 5 – SBST March 20, 2024 5 / 72

Meta-heuristic
• Strategies that guide the search process to find acceptable

solutions

• Approximate and usually non-deterministic

• General and not problem-specific

• Iterative improvement by exploring the search space

AAA705 @ Korea University Lecture 5 – SBST March 20, 2024 6 / 72

Search Space

How to find the best or at least an acceptable solution?

f = x cos x+ .5y cos yx,y
1

Try and automatically learn from the experience for the next trial.

AAA705 @ Korea University Lecture 5 – SBST March 20, 2024 7 / 72

Key Ingredients
• Representation – What are we going to try this time?

• Operators – How to change the representation for search?

• Fitness Function – How well are we doing?

• Constraints, etc.

AAA705 @ Korea University Lecture 5 – SBST March 20, 2024 8 / 72

Example: Travelling Salesman Problem (TSP)

• Assume that you are a salesman.

• You want to visit all the cities and return to the starting city with
the minimum cost (e.g., distance, time, etc.).

• Unfortunately, the TSP is a NP-hard problem. It means that there is
no known algorithm that can solve it in polynomial time.

AAA705 @ Korea University Lecture 5 – SBST March 20, 2024 9 / 72

Example: Travelling Salesman Problem (TSP)

• Representation: A sequence of cities

• Operators: Swap two cities

• Fitness Function: Total distance

AAA705 @ Korea University Lecture 5 – SBST March 20, 2024 10 / 72

Exploitation vs. Exploration

• Exploitation: If we have found a good solution, we should try to
search around it or do something similar.

• Exploration: Unexplored search space may contain much better
solutions.

• How to balance these two is a key to the success of SBSE.

AAA705 @ Korea University Lecture 5 – SBST March 20, 2024 11 / 72

Key Topics

• Fitness Landscape

• Local Search

• Genetic Algorithms

• Bio-inspired Algorithms

AAA705 @ Korea University Lecture 5 – SBST March 20, 2024 12 / 72

Contents
1. Search Based Software Engineering (SBSE)
2. Fitness Landscape
3. Local Search

Hill Climbing
Simulated Annealing
Tabu Search

4. Genetic Algorithms
Selection Strategies
Crossover Operators
Mutation Operators

5. Bio-inspired Algorithms
Particle Swarm Optimization (PSO)
Ant Colony Optimization (ACO)

6. Search Based Software Testing (SBST)
Alternating Variable Method (AVM)

AAA705 @ Korea University Lecture 5 – SBST March 20, 2024 13 / 72

Fitness Landscape
Let’s consider a fake problem: Find the pair (x , y) such that x + y = 10
for 0 ≤ x ≤ 10 and 0 ≤ y ≤ 10.

0 2 4 6 8 10

0
2

4
6

8
10

Solution Space

x

y

AAA705 @ Korea University Lecture 5 – SBST March 20, 2024 14 / 72

Fitness Landscape
Let’s consider a fake problem: Find the pair (x , y) such that x + y = 10
for 0 ≤ x ≤ 10 and 0 ≤ y ≤ 10.

A single point in fitness landscape

 0 1 2 3 4 5 6 7 8 9 10
 0

 1
 2

 3
 4

 5
 6

 7
 8

 9
10

x

yfit
ne
ss

AAA705 @ Korea University Lecture 5 – SBST March 20, 2024 15 / 72

Fitness Landscape

• For each representation (x , y), how to know how good it is?

• We need to solve the problem x + y = 10.

• We can change the problem into a minimization problem:

f (x , y) = |10 − (x + y)|

AAA705 @ Korea University Lecture 5 – SBST March 20, 2024 16 / 72

Fitness Landscape

x
y

z

0

2

4

6

8

10

AAA705 @ Korea University Lecture 5 – SBST March 20, 2024 17 / 72

Fitness Landscape – Plateau

It is difficult to escape from the large and flat region (i.e., plateau) in the
fitness landscape

x
y

z

0.0

0.5

1.0

1.5

2.0

Plateau

• Large, flat region that does
now exhibit any gradient.

• Suppose current solution as
well as others generated by
operators all fall in a plateau.

• There is no guidance; hard to
escape.

AAA705 @ Korea University Lecture 5 – SBST March 20, 2024 18 / 72

Fitness Landscape – Needle in a Haystack
If the fitness landscape has a small region of high fitness surrounded by a
large region of low fitness, it is called a needle in a haystack, and it is
the worst case for search algorithms. We need to find a way to change the
landscape into a more favorable one.

Needle in the Haystack

• Worst landscape to search.

• Can be avoided by
transforming the problem and/
or designing better fitness
functions

• To search for (x, y) = (15, 15):

• f1(x, y) = (x==15 &&
y == 15) ? 0 : 10 x

y

z

0

2

4

6

8

10

Needle in the Haystack

• f2(x, y) = |a-15| + |
b-15|

x
y

z

0

5

10

15

20

25

30

AAA705 @ Korea University Lecture 5 – SBST March 20, 2024 19 / 72

Fitness Landscape – Ruggedness
If the fitness landscape has many local optima, it is called a rugged
landscape. In this case, the search algorithm may get stuck in one of the
many local optima and fail to find the global optimum.Ruggedness

x
y

z

0

2

4

6

8

10

12

14

16

x
y

z

0

2

4

6

8

10

12

14

16

Easy to get stuck
in one of many local optima Smooth descentAAA705 @ Korea University Lecture 5 – SBST March 20, 2024 20 / 72

Contents
1. Search Based Software Engineering (SBSE)
2. Fitness Landscape
3. Local Search

Hill Climbing
Simulated Annealing
Tabu Search

4. Genetic Algorithms
Selection Strategies
Crossover Operators
Mutation Operators

5. Bio-inspired Algorithms
Particle Swarm Optimization (PSO)
Ant Colony Optimization (ACO)

6. Search Based Software Testing (SBST)
Alternating Variable Method (AVM)

AAA705 @ Korea University Lecture 5 – SBST March 20, 2024 21 / 72

Local Search

• Local search is one of the simplest and most widely used
meta-heuristic algorithms.

• It starts from a random solution.

• Consider multiple neighboring solutions.

• Move to one of better solutions according to the fitness function.

• Repeat the process until no better solution is found.

AAA705 @ Korea University Lecture 5 – SBST March 20, 2024 22 / 72

Local Search
Local Search

Random start

AAA705 @ Korea University Lecture 5 – SBST March 20, 2024 23 / 72

Local Search – Hill Climbing (Steepest Ascent)

The most popular local search algorithm is the hill climbing algorithm
with the steepest ascent strategy.

Hill Climbing Algorithm

Steepest Ascent First Ascent

HillClimbing()
(1) climb True
(2) s GetRandom()
(3) while climb
(4) N GetNeighbours(s)
(5) climb False
(6) foreach n 2 N
(7) if Fitness(n) > Fitness(s)
(8) climb True
(9) s n
(10) break
(11) return s

HillClimbing()
(1) climb True
(2) s GetRandom()
(3) while climb
(4) N GetNeighbours(s)
(5) climb False
(6) foreach n 2 N
(7) if Fitness(n) > Fitness(s)
(8) climb True
(9) s n
(10) return s

AAA705 @ Korea University Lecture 5 – SBST March 20, 2024 24 / 72

Local Search – Hill Climbing (First Ascent)

One of variations of the hill climbing algorithm is the first ascent strategy
by selecting the first better solution.

Hill Climbing Algorithm

Steepest Ascent First Ascent

HillClimbing()
(1) climb True
(2) s GetRandom()
(3) while climb
(4) N GetNeighbours(s)
(5) climb False
(6) foreach n 2 N
(7) if Fitness(n) > Fitness(s)
(8) climb True
(9) s n
(10) break
(11) return s

HillClimbing()
(1) climb True
(2) s GetRandom()
(3) while climb
(4) N GetNeighbours(s)
(5) climb False
(6) foreach n 2 N
(7) if Fitness(n) > Fitness(s)
(8) climb True
(9) s n
(10) return s

AAA705 @ Korea University Lecture 5 – SBST March 20, 2024 25 / 72

Local Search – Hill Climbing (Random)

Or, we can randomly select a solution among the better neighboring
solutions in the hill climbing algorithm.

Hill Climbing Algorithm

First Ascent

HillClimbing()
(1) s GetRandom()
(2) while True
(3) N GetNeighbours(s)
(4) N 0 {n 2 N |Fitness(n) > Fitness(s)}
(5) if |N 0| > 0
(6) s RandomPick(N 0)
(7) else
(8) break
(9) return s

HillClimbing()
(1) climb True
(2) s GetRandom()
(3) while climb
(4) N GetNeighbours(s)
(5) climb False
(6) foreach n 2 N
(7) if Fitness(n) > Fitness(s)
(8) climb True
(9) s n
(10) break
(11) return s

Random Ascent
AAA705 @ Korea University Lecture 5 – SBST March 20, 2024 26 / 72

Local Search – Stuck in Local Optima
Local Search

Random start

AAA705 @ Korea University Lecture 5 – SBST March 20, 2024 27 / 72

Local Search – Stuck in Local Optima

• The local search algorithm may get stuck in a local optima.

• Then, how to escape from the local optima?

• There are many strategies to escape from the local optima.

AAA705 @ Korea University Lecture 5 – SBST March 20, 2024 28 / 72

Local Search – Simulated Annealing

• Let’s mimic the process of annealing in metallurgy.
• We introduce a temperature parameter that controls the probability

of accepting a worse solution for exploration purposes.
• The temperature is gradually decreased to reduce the probability of

accepting a worse solution.
AAA705 @ Korea University Lecture 5 – SBST March 20, 2024 29 / 72

Local Search – Simulated AnnealingSimulated Annealing
SimulatedAnnealing()
(1) s = s0

(2) T T0

(3) for k = 0 to n
(4) snew GetRandomNeighbour(s)
(5) if P (F(s),F(snew), T) � random(0, 1) then s

snew

(6) T Cool(T)
(7) return s

P(F (s),F (snew), T)
(1) if F (snew) > F (s) then return 1.0

(2) else return e
F (snew)�F (s)

T

Simulated Annealing
SimulatedAnnealing()
(1) s = s0

(2) T T0

(3) for k = 0 to n
(4) snew GetRandomNeighbour(s)
(5) if P (F(s),F(snew), T) � random(0, 1) then s

snew

(6) T Cool(T)
(7) return s

P(F (s),F (snew), T)
(1) if F (snew) > F (s) then return 1.0

(2) else return e
F (snew)�F (s)

T

Simulated Annealing
SimulatedAnnealing()
(1) s = s0

(2) T T0

(3) for k = 0 to n
(4) snew GetRandomNeighbour(s)
(5) if P (F(s),F(snew), T) � random(0, 1) then s

snew

(6) T Cool(T)
(7) return s

P(F (s),F (snew), T)
(1) if F (snew) > F (s) then return 1.0

(2) else return e
F (snew)�F (s)

T

Simulated Annealing
SimulatedAnnealing()
(1) s = s0

(2) T T0

(3) for k = 0 to n
(4) snew GetRandomNeighbour(s)
(5) if P (F(s),F(snew), T) � random(0, 1) then s

snew

(6) T Cool(T)
(7) return s

P(F (s),F (snew), T)
(1) if F (snew) > F (s) then return 1.0

(2) else return e
F (snew)�F (s)

T

AAA705 @ Korea University Lecture 5 – SBST March 20, 2024 30 / 72

Local Search – Simulated Annealing
There are several strategies to decrease the temperature (cooling):

• Linear cooling
T (t) = T0 − αt

• Exponential cooling

T (t) = T0 · αt(0 < α < 1)

• Logarithmic cooling
T (t) = c

log(t + d)

• With large c, slow cooling
• Surprisingly, there exists a proof that says that the logarithmic cooling

will find the global optimum in infinite time.
• Theoretically interesting, but not practical.

AAA705 @ Korea University Lecture 5 – SBST March 20, 2024 31 / 72

Local Search – Tabu Search

• Tabu search is another approach to escape from the local optima.

• Two main ideas:

• Memory: Keep track of recently visited solutions and avoid them.

• Diversification: Introduce randomness to explore the search space.

AAA705 @ Korea University Lecture 5 – SBST March 20, 2024 32 / 72

Local Search – Tabu SearchTabu Search
TabuSearch()
(1) s s0

(2) sbest s
(3) T [] // tabu list
(4) while not stoppingCondition()
(5) cbest null
(6) foreach c 2 GetNeighbours(s)
(7) if (c /2 T) ^ (F (c) > F (cbest)) then cbest c
(8) s cbest

(9) if F (cbest) > F (sbest) then sbest cbest

(10) append(T , cbest)
(11) if |T | > maxTabuSize then removeAt(T , 0)
(12) return sBest

Tabu list is a FIFO queue: with the maxTabuSize
we can control the memory span of the search.

Tabu list stores the recently visited solutions using a FIFO queue, and
we can control the size of the tabu list.

AAA705 @ Korea University Lecture 5 – SBST March 20, 2024 33 / 72

Local Search – Random Restart

• In common situations, we have a search budget (e.g., time, # of
fitness evaluations, etc.) for the local search algorithm.

• What if the local search algorithm stops but the budget still
remains?

• We can restart the local search algorithm from a new random
solution to keep searching for the global optimum.

AAA705 @ Korea University Lecture 5 – SBST March 20, 2024 34 / 72

Local Search – Search Radius

• The effectiveness of the local search algorithm depends on the
search radius rather than the size of the search space.

• Search radius is the maximum number of moves required to go
across the search space.

• For example, consider the TSP problem with 20 cities.

• Search Space: N! = 20! ≈ 2.4 × 1018

• Search Radius: N(N−1)
2 = 20×19

2 = 190

• It means that the local search algorithm can find the global optimum
within 190 moves in a good situation.

AAA705 @ Korea University Lecture 5 – SBST March 20, 2024 35 / 72

Contents
1. Search Based Software Engineering (SBSE)
2. Fitness Landscape
3. Local Search

Hill Climbing
Simulated Annealing
Tabu Search

4. Genetic Algorithms
Selection Strategies
Crossover Operators
Mutation Operators

5. Bio-inspired Algorithms
Particle Swarm Optimization (PSO)
Ant Colony Optimization (ACO)

6. Search Based Software Testing (SBST)
Alternating Variable Method (AVM)

AAA705 @ Korea University Lecture 5 – SBST March 20, 2024 36 / 72

Genetic Algorithms

AAA705 @ Korea University Lecture 5 – SBST March 20, 2024 37 / 72

Genetic Algorithms

• Let’s mimic the process of natural selection in biology.

• We will keep multiple solutions as a population.

• In each generation, we apply selection pressure to evolve the
population of solutions towards better fitness values.

• Remember: exploration and exploitation

• If too much pressure, the search converges to a local optimum.

• If too little pressure, the search goes nowhere.

AAA705 @ Korea University Lecture 5 – SBST March 20, 2024 38 / 72

Genetic Algorithms

Initial Population

Evaluate Fitness
Of Population

Select Parents

Mutate Offsprings

Crossover Parents

New Population

Stopping Criterion
Met

AAA705 @ Korea University Lecture 5 – SBST March 20, 2024 39 / 72

Genetic Algorithms – Selection Strategies

• We need to select two parent individuals to produce a new offspring.

• This is one of two places where we apply the selection pressure.

• The better individuals selected as parents, the more selection
pressure is applied.

AAA705 @ Korea University Lecture 5 – SBST March 20, 2024 40 / 72

Genetic Algorithms – Selection Strategies
Fitness Proportional Selection (FPS): The probability of selecting an
individual is proportional to its fitness value.

PFPS(i) = f (i)∑µ
j=1 f (j)

where i is an individual, f (i) its fitness value, and µ the population size.

If there is an outstanding individual, it will quickly dominate the
population (premature convergence). To avoid this, we can do:

• Windowing – At each generation, fitness is transformed by
subtracting the minimum fitness of the current population:
β(t) = mini∈P f (i)

• Sigma scaling – The fitness is transformed by subtracting the mean
fitness and dividing by the standard deviation of the fitness values.

f ′(i) = max(1 + f (i) − f̄
2σ

, 0.1)

AAA705 @ Korea University Lecture 5 – SBST March 20, 2024 41 / 72

Genetic Algorithms – Selection Strategies
Ranking Selection – Individuals are ranked by their fitness values and
selected according to their ranks (best = µ − 1, worst = 0).

There are different ways to utilize ranks to select individuals:
• Linear ranking – parameterizes by 1 ≤ s ≤ 2

Plinear(i) = 2 − s
µ

+ i(s − 1)∑µ
j=1 j

• Exponential ranking – more selection pressure than linear ranking

Pexp(i) = 1 − e−i∑µ
j=1(1 − e−j)

Individual Fitness Rank PFPS Plinear(s = 1.5) Plinear(s = 2) Pexp
A 1 0 0.10 0.17 0.00 0.00
B 4 1 0.40 0.33 0.33 0.42
C 5 2 0.50 0.50 0.67 0.58

AAA705 @ Korea University Lecture 5 – SBST March 20, 2024 42 / 72

Genetic Algorithms – Selection Strategies

There are many other selection strategies:

• Roulette Wheel Selection

• Stochastic Universal Sampling (SUS)

• Tournament Selection

• Over-Selection

• etc.

AAA705 @ Korea University Lecture 5 – SBST March 20, 2024 43 / 72

Genetic Algorithms – Crossover OperatorsCrossover Operators

(from “Bio-inspired Artificial Intelligence: Theories, Methods, and Technologies”
by Dario Floreano and Claudio Mattiussi)

AAA705 @ Korea University Lecture 5 – SBST March 20, 2024 44 / 72

Genetic Algorithms – Mutation Operators

• The mutation operator makes small changes to the representation of
an individual.

• This is, usually, the only way new genetic material is introduced
into the population.

• Without mutation, all we can do is recombine the genetic material
that is already present in the initial population.

• The effective way to define the mutation operator is highly
dependent on the problem domain.

AAA705 @ Korea University Lecture 5 – SBST March 20, 2024 45 / 72

Genetic Algorithms

Initial Population

Evaluate Fitness
Of Population

Select Parents

Mutate Offsprings

Crossover Parents

New Population

Stopping Criterion
Met

AAA705 @ Korea University Lecture 5 – SBST March 20, 2024 46 / 72

Genetic Algorithms – Example
One interesting example of GA is to learn how to ride a swing.

https://www.youtube.com/watch?v=Yr_nRnqeDp0

Let’s split one cycle of the swing into 32 time steps and define 32-bit
representation for the solution (1 for standing and 0 for sitting).

AAA705 @ Korea University Lecture 5 – SBST March 20, 2024 47 / 72

https://www.youtube.com/watch?v=Yr_nRnqeDp0

Genetic Algorithms – Example
• Knapsack Problem – NP-hard problem

• Travelling Salesman Problem (TSP) – NP-hard problem

• Program Synthesis – Automatically generate programs

• Program Repair – Automatically repair buggy programs

• Automotive Design – Optimize the design of a car

• Robotics – Optimize the motion of a robot

• Molecular structure optimization

• Protein folding prediction

• etc.

AAA705 @ Korea University Lecture 5 – SBST March 20, 2024 48 / 72

Contents
1. Search Based Software Engineering (SBSE)
2. Fitness Landscape
3. Local Search

Hill Climbing
Simulated Annealing
Tabu Search

4. Genetic Algorithms
Selection Strategies
Crossover Operators
Mutation Operators

5. Bio-inspired Algorithms
Particle Swarm Optimization (PSO)
Ant Colony Optimization (ACO)

6. Search Based Software Testing (SBST)
Alternating Variable Method (AVM)

AAA705 @ Korea University Lecture 5 – SBST March 20, 2024 49 / 72

Bio-inspired Algorithms

Biomimicry

Imitation of the models, systems, and elements of nature for the purpose
of solving complex human problems.

• Morpho Butterfly
• Structural coloration for the blue color
• Mirasol display technology from Qualcomm is based on this

• Burrs
• Swiss electrical engineer, George de Mestral, Had to remove burdock

burrs (seeds) from his cloths and his dog’s furs whenever he returned
from walks in Alps.

• Eventually, he invented Velcro hooks in 1951.

Let’s apply the same idea to solve software engineering problems.

AAA705 @ Korea University Lecture 5 – SBST March 20, 2024 50 / 72

Bio-inspired – Particle Swarm Optimization (PSO)

• Let’s mimic the behavior of a flock of birds!

• Each bird is a particle in the search space.

• The goal is to find the best position (maximum food source) in the
search space by communicating with other birds.

1 Each bird has an inertia to keep flying in the same direction.

2 Each bird remembers and has a tendency to return to the local best
position it has ever visited by itself.

3 Each bird has a tendency to follow the known global best position in
the flock by communicating with other birds.

• GA is competitive vs. PSO is cooperative.

AAA705 @ Korea University Lecture 5 – SBST March 20, 2024 51 / 72

Bio-inspired – Particle Swarm Optimization (PSO)

x t+1
i = x t

i + v t
i

v t+1
i = 1 wv t

i + 2 c1(pi − x t
i) + 3 c2(g − x t

i)

• x t
i – position of the i-th particle at time t

• v t
i – velocity of the i-th particle at time t

• pi – best position of the i-th particle (local best)
• g – best position of the entire flock (global best)

It follows the three rules of the flock of birds.
1 Each bird has an inertia to keep flying in the same direction.
2 Each bird remembers and has a tendency to return to the best

position it has ever visited by itself (local best).
3 Each bird has a tendency to follow the known global best position

in the flock by communicating with other birds. (global best)
AAA705 @ Korea University Lecture 5 – SBST March 20, 2024 52 / 72

Bio-inspired – Particle Swarm Optimization (PSO)

Link

AAA705 @ Korea University Lecture 5 – SBST March 20, 2024 53 / 72

https://upload.wikimedia.org/wikipedia/commons/e/ec/ParticleSwarmArrowsAnimation.gif

Bio-inspired – Ant Colony Optimization (ACO)

Can we mimic the behavior of an ant colony?

AAA705 @ Korea University Lecture 5 – SBST March 20, 2024 54 / 72

Bio-inspired – Ant Colony Optimization (ACO)
Ant colony utilizes a pheromone to communicate with other ants to find
the shortest path to the food source.

AAA705 @ Korea University Lecture 5 – SBST March 20, 2024 55 / 72

Bio-inspired – Ant Colony Optimization (ACO)
Ant colony utilizes a pheromone to communicate with other ants to find
the shortest path to the food source.

AAA705 @ Korea University Lecture 5 – SBST March 20, 2024 56 / 72

Bio-inspired – Ant Colony Optimization (ACO)
The ant colony optimization (ACO) algorithm is a meta-heuristic
algorithm that is inspired by the foraging behavior of ants.

Let’s consider the TSP problem.

1 For initialization, we drop ants on random nodes on the graph, and
deposit small amount of pheromone on all edges uniformly.

2 Ants choose which edge to cross by considering the 1) amount of
pheromone and 2) the length of the edge.

3 When ants finish a tour, the amount of pheromone on each edge is
updated inversely proportional to the length of the tour.

4 The amount of pheromone is slightly evaporated at each iteration.

5 By repeating the process, ants converge to the shortest path.

AAA705 @ Korea University Lecture 5 – SBST March 20, 2024 57 / 72

Bio-inspired – Ant Colony Optimization (ACO)
• Probability of ant k choosing edge (i , j):

pk
i ,j = (τi ,j)α · (ηi ,j)β∑

h∈Jk (τi ,h)α · (ηi ,h)β

where τi ,j is the amount of pheromone on edge (i , j), ηi ,j = 1
di,j

is
the inverse of the length of edge (i , j), and α and β are the
parameters to control the importance of pheromone and the
length of the edge. Jk is the set of nodes not yet visited by ant
1 ≤ k ≤ m.

• Pheromone update: ∆τi ,j = Q
Lk

, where Q is the constant, and Lk is
the length of the tour of ant k.

• Evaluation: τi ,j = (1 − ρ)τi ,j +
∑m

k=1 ∆τk
i ,j , where ρ is the

evaporation rate.

AAA705 @ Korea University Lecture 5 – SBST March 20, 2024 58 / 72

Bio-inspired – Ant Colony Optimization (ACO)

Link

AAA705 @ Korea University Lecture 5 – SBST March 20, 2024 59 / 72

https://youtu.be/eVKAIufSrHs?si=Kt3j08B80V5sxS6d&t=19

Bio-inspired – Ant Colony Optimization (ACO)
• When the graph changes, the ACO algorithm can adapt with the

second-best solution by reusing the pheromone.Strength of ACO

• Edge selection is probabilistic: a small number of ants will
traverse paths that are not shortest.

• When the graph changes, ACO can adapts with second-
best partial solutions.

Dario Floreano and Claudio Mattiussi, Bio-inspired Artificial Intelligence, MIT Press

Dario Floreano and Claudio Mattiussi, Bio-inspired Artificial Intelligence, MIT Press

AAA705 @ Korea University Lecture 5 – SBST March 20, 2024 60 / 72

Bio-inspired
There are many other bio-inspired algorithms:

• Artificial Immune System (AIS) – Inspired by the human immune
system to detect and eliminate vulnerabilities in computer systems.

• Artificial Neural Network (ANN) – Inspired by the human brain to
solve complex problems.

• Co-evolutionary Algorithms – Inspired by the co-evolution of
species in nature.

Specification
for Human

Program
for Execution

Test Suite
for Testing

Coevolution

AAA705 @ Korea University Lecture 5 – SBST March 20, 2024 61 / 72

Contents
1. Search Based Software Engineering (SBSE)
2. Fitness Landscape
3. Local Search

Hill Climbing
Simulated Annealing
Tabu Search

4. Genetic Algorithms
Selection Strategies
Crossover Operators
Mutation Operators

5. Bio-inspired Algorithms
Particle Swarm Optimization (PSO)
Ant Colony Optimization (ACO)

6. Search Based Software Testing (SBST)
Alternating Variable Method (AVM)

AAA705 @ Korea University Lecture 5 – SBST March 20, 2024 62 / 72

Search Based Software Testing (SBST)

int foo(int x, int y, int w) {
int z = 0;
if (y > 13) { x = 1; }
else { x = 2; }
y = 50;
if (w == 4) z = 1;
else {

while (z < x) { z = z + 1; }
}
return x + z;

}
return x + z;

y > 13

x = 1

#t #f

x = 2

w == 4

y = 50

z < x

#f#t

z = 1
#f

z = z + 1

return x + z

• Our goal is to automatically generate test cases to maximize the
coverage of the software under test.

• Let’s apply the search-based approach to software testing!

AAA705 @ Korea University Lecture 5 – SBST March 20, 2024 63 / 72

Search Based Software Testing (SBST)
• Convert path conditions into a mathematical fitness function.

• Use meta-heuristic algorithms to maximize/minimize fitness
function.

• When the goal is met, you have your test case.

• For example, we can define a fitness function for branch coverage as:

[Approach Level] + normalize([Branch Distance])

• Approach Level – The number of un-penetrated nesting levels
surrounding the target branch.

• Branch Distance – How close the input came to satisfying the
condition of the target branch. For example, if the condition is
x + y == 10, the branch distance is |10 − (x + y)|.

AAA705 @ Korea University Lecture 5 – SBST March 20, 2024 64 / 72

Example – Alternating Variable Method (AVM)

• The alternating variable method (AVM) is meta-heuristic
algorithm to search for test input vectors that maximize/minimum a
given fitness function.

• Based on the known empirical results, AVM is one of the most
effective algorithm for achieving C/C++ structural coverage.

• It has two operation modes:

1 Exploratory Move – Decide which direction results in fitter solutions
by exploring neighboring solutions.

2 Pattern Move – Accelerate the search in the selected direction.

AAA705 @ Korea University Lecture 5 – SBST March 20, 2024 65 / 72

Example – Alternating Variable Method (AVM)
(0, 0)

Starting from(6, 2), we want to
search for the red dot at (22, 34).
We can measure the distance to

the goal.

First we try exploratory move for
x: make the smallest change, and

see which direction results in
reduced distance. The initial

distance is 35.77.

-1: (5, 2) Increased (36.23). X

+1: (7, 2) Decreased (35.34) O

Consequently, x needs to be
increased at the moment.

AVM: Exploratory Move

Our goal is to minimize the
fitness function.

(x , y) ∆ f (x , y) ▲/▼
(5, 2) (−1, 0) 36.23 ▲
(7, 2) (1, 0) 35.34 ▼

Exploratory Move – x ↑

AAA705 @ Korea University Lecture 5 – SBST March 20, 2024 66 / 72

Example – Alternating Variable Method (AVM)

Now that we decided to increase
x, try doubling the difference as
long as the distance continues to
decrease. At the beginning of the
pattern move, x is equal to 7.

x = 9 (Δx=2): decrease (34.53)

x = 13 (Δx=4): decrease (33.24)

x = 21 (Δx=8): decrease (32.01)

x = 37?(Δx=16): increase (35.34)

With increment of 16, the
distance starts to grow: this is
called overshooting. In this case,
we cancel the last pattern move,
and start the exploratory move for
the next variable, y.

AVM: Pattern Move
(0, 0)

Our goal is to minimize the
fitness function.

(x , y) ∆ f (x , y) ▲/▼
(7, 2) (1, 0) 35.34 ▼
(9, 2) (2, 0) 34.53 ▼
(13, 2) (4, 0) 33.24 ▼
(21, 2) (8, 0) 32.01 ▼
(37, 2) (16, 0) 35.34 ▲

Pattern Move – x ↑

AAA705 @ Korea University Lecture 5 – SBST March 20, 2024 67 / 72

Example – Alternating Variable Method (AVM)

We now change y by 1 and decide
the direction. The distance from
the last location, (21, 2), is 32.01.

So y needs to be increased.

-1: (21, 1) increase (33.01). X
+1: (21, 3) decrease (31.01) O

AVM: Exploratory Move
(0, 0)

Our goal is to minimize the
fitness function.

(x , y) ∆ f (x , y) ▲/▼
(21, 1) (0, −1) 33.01 ▲
(21, 3) (0, 1) 31.01 ▼

Exploratory Move – y ↑

AAA705 @ Korea University Lecture 5 – SBST March 20, 2024 68 / 72

Example – Alternating Variable Method (AVM)

We increase the variable y with
pattern moves now. Initially y
is 3.

y = 5 (Δy=2): decrease (29.01)

y = 9 (Δy=4): decrease (25.01)

y = 17 (Δy=8): decrease (17.02)

y = 33(Δy=16): decrease (1.41)

y = 65(Δy=32): Overshooting!

AVM: Pattern Move
(0, 0)

Our goal is to minimize the
fitness function.

(x , y) ∆ f (x , y) ▲/▼
(21, 5) (0, 2) 29.01 ▼
(21, 9) (0, 4) 25.01 ▼
(21, 17) (0, 8) 17.02 ▼
(21, 33) (0, 16) 1.41 ▼
(21, 65) (0, 32) 26.03 ▲

Pattern Move – y ↑

AAA705 @ Korea University Lecture 5 – SBST March 20, 2024 69 / 72

Example – Alternating Variable Method (AVM)

After overshooting of y, we start
the exploratory move for x. We
decide to increase, but as soon as
we try +2, it overshoots. After
cancellation of this, we have the
correct x.

After one more exploratory move
for y, we reach the goal.

(0, 0)

AVM: Exploratory Move

Our goal is to minimize the
fitness function.

After one or two more iterations,
we can find the optimal solution.

(x , y) = (22, 34)

AAA705 @ Korea University Lecture 5 – SBST March 20, 2024 70 / 72

Summary
1. Search Based Software Engineering (SBSE)
2. Fitness Landscape
3. Local Search

Hill Climbing
Simulated Annealing
Tabu Search

4. Genetic Algorithms
Selection Strategies
Crossover Operators
Mutation Operators

5. Bio-inspired Algorithms
Particle Swarm Optimization (PSO)
Ant Colony Optimization (ACO)

6. Search Based Software Testing (SBST)
Alternating Variable Method (AVM)

AAA705 @ Korea University Lecture 5 – SBST March 20, 2024 71 / 72

Next Lecture
• Dynamic Symbolic Execution (DSE)

Jihyeok Park
jihyeok park@korea.ac.kr

https://plrg.korea.ac.kr

AAA705 @ Korea University Lecture 5 – SBST March 20, 2024 72 / 72

https://plrg.korea.ac.kr

	Search Based Software Engineering (SBSE)
	Fitness Landscape
	Local Search
	Hill Climbing
	Simulated Annealing
	Tabu Search

	Genetic Algorithms
	Selection Strategies
	Crossover Operators
	Mutation Operators

	Bio-inspired Algorithms
	Particle Swarm Optimization (PSO)
	Ant Colony Optimization (ACO)

	Search Based Software Testing (SBST)
	Alternating Variable Method (AVM)

