Lecture 5 – Search Based Software Testing (SBST) AAA705: Software Testing and Quality Assurance

Jihyeok Park

PLRG

2024 Spring

Recall – White-Box (Structural) Testing

Sometimes called **structural testing** because it uses the **internal structure** of the program to derive test cases.

Coverage Criteria

• The adequacy of a test suite is measured in terms of the **coverage** of the program's internal structure.

• Search Based Software Testing (SBST)

• A technique that uses **meta-heuristic search** algorithms to maximize/minimize a certain **fitness function**.

• Dynamic Symbolic Execution (DSE)

• A technique that systematically explores the input space using symbolic execution with dynamic analysis.

Recall – White-Box (Structural) Testing

Sometimes called **structural testing** because it uses the **internal structure** of the program to derive test cases.

Coverage Criteria

• The adequacy of a test suite is measured in terms of the **coverage** of the program's internal structure.

• Search Based Software Testing (SBST)

• A technique that uses **meta-heuristic search** algorithms to maximize/minimize a certain **fitness function**.

• Dynamic Symbolic Execution (DSE)

• A technique that systematically explores the input space using symbolic execution with dynamic analysis.

Let's focus on the **SBST** in this lecture, and start from **search-based software engineering (SBSE)**!

Contents

- 1. Search Based Software Engineering (SBSE)
- 2. Fitness Landscape

3. Local Search

Hill Climbing Simulated Annealing Tabu Search

4. Genetic Algorithms

Selection Strategies Crossover Operators Mutation Operators

5. Bio-inspired Algorithms

Particle Swarm Optimization (PSO) Ant Colony Optimization (ACO)

6. Search Based Software Testing (SBST) Alternating Variable Method (AVM)

Contents

1. Search Based Software Engineering (SBSE)

2. Fitness Landscape

3. Local Search

Hill Climbing Simulated Annealing Tabu Search

4. Genetic Algorithms

Selection Strategies Crossover Operators Mutation Operators

5. Bio-inspired Algorithms

Particle Swarm Optimization (PSO) Ant Colony Optimization (ACO)

6. Search Based Software Testing (SBST) Alternating Variable Method (AVM)

• The search-based software engineering (SBSE) is a large **movement** that seeks to apply various **optimization** techniques to software engineering problems.

- The search-based software engineering (SBSE) is a large movement that seeks to apply various optimization techniques to software engineering problems.
- Meta-heuristic and computational intelligence techniques are found increasingly in SE research.

- The search-based software engineering (SBSE) is a large movement that seeks to apply various optimization techniques to software engineering problems.
- Meta-heuristic and computational intelligence techniques are found increasingly in SE research.
- Two major conferences (ICSE and ESEC/FSE) now tend to have whole sessions dedicated to SBSE.

- The search-based software engineering (SBSE) is a large movement that seeks to apply various optimization techniques to software engineering problems.
- Meta-heuristic and computational intelligence techniques are found increasingly in SE research.
- Two major conferences (ICSE and ESEC/FSE) now tend to have whole sessions dedicated to SBSE.
- Dedicated international conference (e.g., SSBSE) and many other workshops.

• Strategies that **guide** the search process to find **acceptable solutions**

• Strategies that **guide** the search process to find **acceptable solutions**

• Approximate and usually non-deterministic

• Strategies that **guide** the search process to find **acceptable solutions**

• Approximate and usually non-deterministic

• General and not problem-specific

• Strategies that **guide** the search process to find **acceptable solutions**

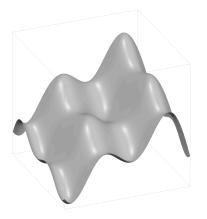
• Approximate and usually non-deterministic

• General and not problem-specific

• **Iterative** improvement by **exploring** the search space

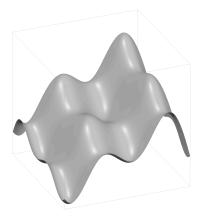
Search Space

How to find the **best** or at least an **acceptable** solution?



Search Space

How to find the **best** or at least an **acceptable** solution?



Try and automatically learn from the experience for the next trial.

• Representation – What are we going to try this time?

• Representation – What are we going to try this time?

• Operators – How to change the representation for search?

• Representation – What are we going to try this time?

• Operators – How to change the representation for search?

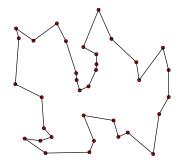
• Fitness Function – How well are we doing?

• Representation – What are we going to try this time?

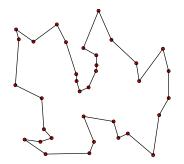
• Operators - How to change the representation for search?

• Fitness Function – How well are we doing?

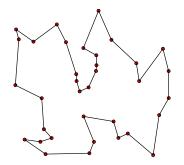
• Constraints, etc.



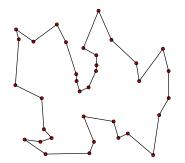
• Assume that you are a salesman.



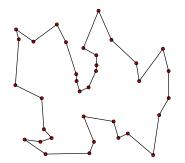
- Assume that you are a salesman.
- You want to **visit all** the cities and **return** to the starting city with the **minimum cost** (e.g., distance, time, etc.).



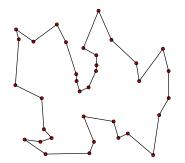
- Assume that you are a salesman.
- You want to **visit all** the cities and **return** to the starting city with the **minimum cost** (e.g., distance, time, etc.).
- Unfortunately, the TSP is a **NP-hard** problem. It means that there is **no known algorithm** that can solve it in **polynomial time**.



• Representation: A sequence of cities



- Representation: A sequence of cities
- Operators: Swap two cities



- Representation: A sequence of cities
- Operators: Swap two cities
- Fitness Function: Total distance

Exploitation vs. Exploration

• **Exploitation**: If we have found a good solution, we should try to search around it or do something similar.

Exploitation vs. Exploration

• **Exploitation**: If we have found a good solution, we should try to search around it or do something similar.

• **Exploration**: Unexplored search space may contain **much better** solutions.

Exploitation vs. Exploration

• **Exploitation**: If we have found a good solution, we should try to search around it or do something similar.

• **Exploration**: Unexplored search space may contain **much better** solutions.

• How to **balance** these two is a **key** to the success of SBSE.

Key Topics

• Fitness Landscape

• Local Search

• Genetic Algorithms

• Bio-inspired Algorithms

Contents

1. Search Based Software Engineering (SBSE)

2. Fitness Landscape

3. Local Search

Hill Climbing Simulated Annealing Tabu Search

4. Genetic Algorithms

Selection Strategies Crossover Operators Mutation Operators

5. Bio-inspired Algorithms

Particle Swarm Optimization (PSO) Ant Colony Optimization (ACO)

6. Search Based Software Testing (SBST) Alternating Variable Method (AVM)

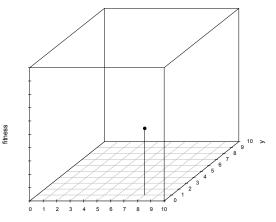
Let's consider a fake problem: Find the pair (x, y) such that x + y = 10 for $0 \le x \le 10$ and $0 \le y \le 10$.

	÷ -	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0		0	
	∞ –	0	0	0	0	0	0	0	0	0	0	
		0	0	0	o	o	o	0	0	0	0	
×	9 -	0	0	0	0	0	0	0	0	0	0	0
		0	0	0 0 0	o	o	o	0	0		0	
	4 -	0	0	0 0 0	0	0	0	0	0	0	0	
		0	0	0	0	0	0	0	0	0	0	0
	~ -	0	0	0	o	o	o	o	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0
	o -	0	0	0	o	0	o	0	0	0	0	0
		0		2		4		6		8		10

Solution Space

Let's consider a fake problem: Find the pair (x, y) such that x + y = 10 for $0 \le x \le 10$ and $0 \le y \le 10$.

A single point in fitness landscape



• For each **representation** (x, y), how to know **how good** it is?

• For each **representation** (*x*, *y*), how to know **how good** it is?

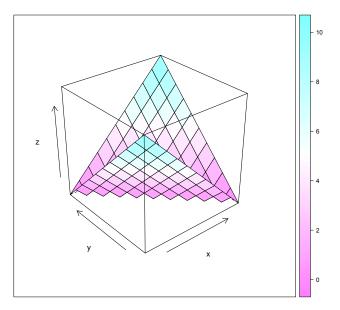
• We need to solve the problem x + y = 10.

• For each **representation** (x, y), how to know **how good** it is?

• We need to solve the problem x + y = 10.

• We can **change** the problem into a **minimization** problem:

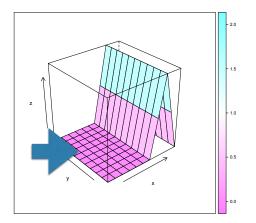
$$f(x,y) = |10 - (x + y)|$$



Lecture 5 - SBST

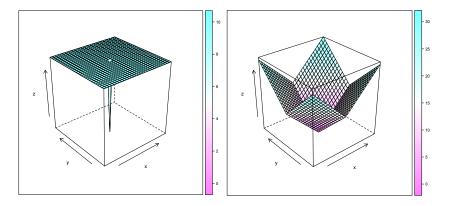
Fitness Landscape – Plateau

It is difficult to escape from the large and flat region (i.e., $\ensuremath{\textit{plateau}}\xspace)$ in the fitness landscape



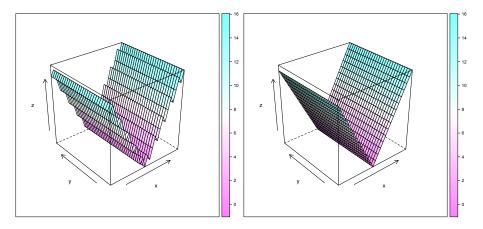
Fitness Landscape – Needle in a Haystack

If the fitness landscape has a small region of high fitness surrounded by a large region of low fitness, it is called a **needle in a haystack**, and it is the worst case for search algorithms. We need to find a way to change the landscape into a more favorable one.



Fitness Landscape – Ruggedness

If the fitness landscape has many local optima, it is called a **rugged** landscape. In this case, the search algorithm may get stuck in one of the many local optima and fail to find the global optimum.



Contents

- 1. Search Based Software Engineering (SBSE)
- 2. Fitness Landscape

3. Local Search

Hill Climbing Simulated Annealing Tabu Search

4. Genetic Algorithms

Selection Strategies Crossover Operators Mutation Operators

5. Bio-inspired Algorithms

Particle Swarm Optimization (PSO) Ant Colony Optimization (ACO)

6. Search Based Software Testing (SBST) Alternating Variable Method (AVM)

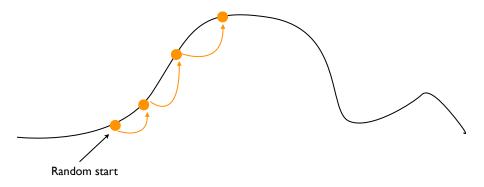
• Local search is one of the simplest and most widely used meta-heuristic algorithms.

- Local search is one of the simplest and most widely used meta-heuristic algorithms.
- It starts from a random solution.

- Local search is one of the simplest and most widely used meta-heuristic algorithms.
- It starts from a random solution.
- Consider multiple **neighboring** solutions.

- Local search is one of the simplest and most widely used meta-heuristic algorithms.
- It starts from a random solution.
- Consider multiple **neighboring** solutions.
- Move to one of better solutions according to the fitness function.

- Local search is one of the simplest and most widely used meta-heuristic algorithms.
- It starts from a random solution.
- Consider multiple **neighboring** solutions.
- Move to one of better solutions according to the fitness function.
- **Repeat** the process until **no better solution** is found.



Local Search – Hill Climbing (Steepest Ascent)

The most popular local search algorithm is the **hill climbing** algorithm with the **steepest ascent** strategy.

HILLCLIMBING()		
(1)	$climb \leftarrow True$	
(2)	$s \leftarrow \text{GetRandom}()$	
(3)	while <i>climb</i>	
(4)	$N \leftarrow \text{GetNeighbours}(s)$	
(5)	$climb \leftarrow False$	
(6)	foreach $n \in N$	
(7)	if $FITNESS(n) > FITNESS(s)$	
(8)	$climb \leftarrow True$	
(9)	$s \leftarrow n$	
(10)	$\mathbf{return} \ s$	

Local Search – Hill Climbing (First Ascent)

One of variations of the hill climbing algorithm is the **first ascent** strategy by selecting the first better solution.

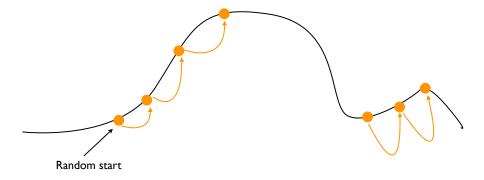
HILLCLIMBING()		
(1)	$climb \leftarrow True$	
(2)	$s \leftarrow \text{GetRandom}()$	
(3)	while <i>climb</i>	
(4)	$N \leftarrow \text{GetNeighbours}(s)$	
(5)	$climb \leftarrow False$	
(6)	foreach $n \in N$	
(7)	if $FITNESS(n) > FITNESS(s)$	
(8)	$climb \leftarrow True$	
(9)	$s \leftarrow n$	
(10)	break	
(11)	return s	

Local Search – Hill Climbing (Random)

Or, we can **randomly** select a solution among the better neighboring solutions in the hill climbing algorithm.

```
HILLCLIMBING()
(1)
          s \leftarrow \text{GetRandom}()
(2)
          while True
(3)
              N \leftarrow \text{GETNEIGHBOURS}(s)
(4)
              N' \leftarrow \{n \in N | \text{FITNESS}(n) > \text{FITNESS}(s)\}
(5)
              if |N'| > 0
(6)
                  s \leftarrow \text{RANDOMPICK}(N')
(7)
              else
(8)
                  break
(9)
          return s
```

Local Search – Stuck in Local Optima



Local Search - Stuck in Local Optima

• The local search algorithm may get stuck in a local optima.

Local Search - Stuck in Local Optima

• The local search algorithm may get stuck in a local optima.

• Then, how to escape from the local optima?

Local Search - Stuck in Local Optima

• The local search algorithm may get stuck in a local optima.

• Then, how to **escape** from the local optima?

• There are many strategies to **escape** from the local optima.

• Let's mimic the process of **annealing** in metallurgy.

- Let's mimic the process of **annealing** in metallurgy.
- We introduce a **temperature** parameter that controls the **probability** of accepting a **worse solution** for **exploration** purposes.

- Let's mimic the process of annealing in metallurgy.
- We introduce a **temperature** parameter that controls the **probability** of accepting a **worse solution** for **exploration** purposes.
- The temperature is **gradually decreased** to **reduce** the probability of accepting a worse solution.

AAA705 @ Korea University

Lecture 5 - SBST

SIMULATEDANNEALING()

(1)
$$s = s_0$$

(2) $T \leftarrow T_0$
(3) for $k = 0$ to n
(4) $s_{new} \leftarrow \text{GETRANDOMNEIGHBOUR}(s)$
(5) if $P(F(s), F(s_{new}), T) \ge random(0, 1)$ then $s \leftarrow s_{new}$
(6) $T \leftarrow \text{COOL}(T)$
(7) return s

$$P(F(s), F(s_{new}), T)$$
(1) if $F(s_{new}) > F(s)$ then return 1.0
(2) else return $e^{\frac{F(s_{new}) - F(s)}{T}}$

There are several strategies to **decrease** the temperature (**cooling**):

• Linear cooling

$$T(t)=T_0-\alpha t$$

There are several strategies to **decrease** the temperature (**cooling**):

Linear cooling

$$T(t)=T_0-\alpha t$$

• Exponential cooling

$$T(t) = T_0 \cdot \alpha^t (0 < \alpha < 1)$$

There are several strategies to **decrease** the temperature (**cooling**):

Linear cooling

$$T(t)=T_0-\alpha t$$

Exponential cooling

$$T(t) = T_0 \cdot \alpha^t (0 < \alpha < 1)$$

Logarithmic cooling

$$T(t) = \frac{c}{\log(t+d)}$$

- With large *c*, slow cooling
- Surprisingly, there exists a proof that says that the logarithmic cooling will find the global optimum in infinite time.
- Theoretically interesting, but not practical.

Local Search – Tabu Search

• Tabu search is another approach to escape from the local optima.

Local Search – Tabu Search

• Tabu search is another approach to escape from the local optima.

• Two main ideas:

• Memory: Keep track of recently visited solutions and avoid them.

• **Diversification**: Introduce randomness to **explore** the search space.

Local Search – Tabu Search

TABUSEARCH() (1) $s \leftarrow s_0$ (2) $s_{best} \leftarrow s$ (3) $T \leftarrow [] // \text{ tabu list}$ (4)while not stoppingCondition() (5) $c_{best} \leftarrow null$ (6)foreach $c \in \text{GETNEIGHBOURS}(s)$ (7)if $(c \notin T) \land (F(c) > F(c_{best}))$ then $c_{best} \leftarrow c$ (8) $s \leftarrow c_{best}$ (9)if $F(c_{best}) > F(s_{best})$ then $s_{best} \leftarrow c_{best}$ APPEND (T, c_{best}) (10)(11)if |T| > maxTabuSize then REMOVEAT(T, 0)(12)return sBest

Tabu list stores the **recently visited** solutions using a FIFO queue, and we can control the **size** of the tabu list.

Local Search – Random Restart

• In common situations, we have a **search budget** (e.g., time, # of fitness evaluations, etc.) for the local search algorithm.

Local Search – Random Restart

• In common situations, we have a **search budget** (e.g., time, # of fitness evaluations, etc.) for the local search algorithm.

• What if the local search algorithm **stops** but the **budget still remains**?

Local Search – Random Restart

• In common situations, we have a **search budget** (e.g., time, # of fitness evaluations, etc.) for the local search algorithm.

• What if the local search algorithm **stops** but the **budget still remains**?

• We can **restart** the local search algorithm from a **new random solution** to keep searching for the global optimum.

Local Search – Search Radius

• The effectiveness of the local search algorithm depends on the search radius rather than the size of the search space.

Local Search – Search Radius

- The effectiveness of the local search algorithm depends on the search radius rather than the size of the search space.
- Search radius is the **maximum number of moves** required to go **across** the search space.

Local Search – Search Radius

- The effectiveness of the local search algorithm depends on the search radius rather than the size of the search space.
- Search radius is the **maximum number of moves** required to go **across** the search space.
- For example, consider the **TSP problem** with **20 cities**.
 - Search Space: $N! = 20! \approx 2.4 \times 10^{18}$
 - Search Radius: $\frac{N(N-1)}{2} = \frac{20 \times 19}{2} = 190$
 - It means that the local search algorithm can find the global optimum within 190 moves in a good situation.

Contents

- 1. Search Based Software Engineering (SBSE
- 2. Fitness Landscape

3. Local Search

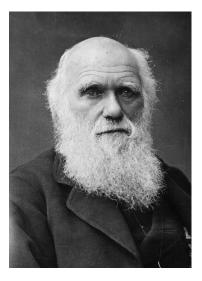
Hill Climbing Simulated Annealing Tabu Search

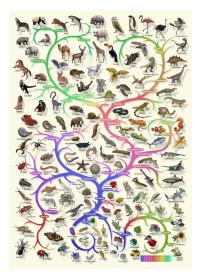
- 4. Genetic Algorithms Selection Strategies Crossover Operators Mutation Operators
- 5. Bio-inspired Algorithms

Particle Swarm Optimization (PSO) Ant Colony Optimization (ACO)

6. Search Based Software Testing (SBST) Alternating Variable Method (AVM)

Genetic Algorithms





AAA705 @ Korea University

Lecture 5 - SBST

37 / 72

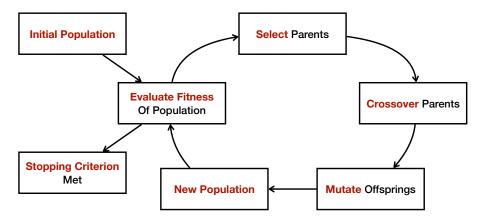
Genetic Algorithms

• Let's mimic the process of natural selection in biology.

- Let's **mimic** the process of **natural selection** in biology.
- We will keep multiple solutions as a **population**.

- Let's **mimic** the process of **natural selection** in biology.
- We will keep multiple solutions as a **population**.
- In each generation, we apply selection pressure to evolve the population of solutions towards better fitness values.

- Let's **mimic** the process of **natural selection** in biology.
- We will keep multiple solutions as a **population**.
- In each generation, we apply selection pressure to evolve the population of solutions towards better fitness values.
- Remember: **exploration** and **exploitation**
 - If too much pressure, the search converges to a local optimum.
 - If too little pressure, the search goes nowhere.



• We need to **select** two parent individuals to produce a new offspring.

• We need to **select** two parent individuals to produce a new offspring.

• This is one of two places where we apply the selection pressure.

• We need to **select** two parent individuals to produce a new offspring.

• This is one of two places where we apply the selection pressure.

• The **better** individuals selected as parents, the **more selection pressure** is applied.

Fitness Proportional Selection (FPS): The probability of selecting an individual is proportional to its fitness value.

$$P_{\mathsf{FPS}}(i) = \frac{f(i)}{\sum_{j=1}^{\mu} f(j)}$$

where *i* is an **individual**, f(i) its **fitness value**, and μ the **population size**.

Fitness Proportional Selection (FPS): The probability of selecting an individual is proportional to its fitness value.

$$P_{\mathsf{FPS}}(i) = \frac{f(i)}{\sum_{j=1}^{\mu} f(j)}$$

where *i* is an **individual**, f(i) its **fitness value**, and μ the **population size**.

If there is an **outstanding individual**, it will quickly dominate the population (**premature convergence**).

Fitness Proportional Selection (FPS): The probability of selecting an individual is proportional to its fitness value.

$$P_{\mathsf{FPS}}(i) = \frac{f(i)}{\sum_{j=1}^{\mu} f(j)}$$

where *i* is an **individual**, f(i) its **fitness value**, and μ the **population size**.

If there is an **outstanding individual**, it will quickly dominate the population (**premature convergence**). To avoid this, we can do:

Windowing – At each generation, fitness is transformed by subtracting the minimum fitness of the current population:
 β(t) = min_{i∈P} f(i)

Fitness Proportional Selection (FPS): The probability of selecting an individual is proportional to its fitness value.

$$P_{\mathsf{FPS}}(i) = \frac{f(i)}{\sum_{j=1}^{\mu} f(j)}$$

where *i* is an **individual**, f(i) its **fitness value**, and μ the **population size**.

If there is an **outstanding individual**, it will quickly dominate the population (**premature convergence**). To avoid this, we can do:

- Windowing At each generation, fitness is transformed by subtracting the minimum fitness of the current population:
 β(t) = min_{i∈P} f(i)
- **Sigma scaling** The fitness is transformed by subtracting the mean fitness and dividing by the standard deviation of the fitness values.

$$f'(i) = \max(1+rac{f(i)-ar{f}}{2\sigma},0.1)$$

Ranking Selection – Individuals are ranked by their fitness values and selected according to their ranks (best = μ – 1, worst = 0).

Ranking Selection – Individuals are ranked by their fitness values and selected according to their ranks (best = μ – 1, worst = 0).

There are different ways to utilize ranks to select individuals:

• Linear ranking – parameterizes by $1 \le s \le 2$

$$P_{ ext{linear}}(i) = rac{2-s}{\mu} + rac{i(s-1)}{\sum_{j=1}^{\mu} j}$$

Ranking Selection – Individuals are ranked by their fitness values and selected according to their ranks (best = μ – 1, worst = 0).

There are different ways to utilize ranks to select individuals:

• Linear ranking – parameterizes by $1 \le s \le 2$

$$P_{\text{linear}}(i) = \frac{2-s}{\mu} + \frac{i(s-1)}{\sum_{j=1}^{\mu} j}$$

• Exponential ranking - more selection pressure than linear ranking

$$P_{\exp}(i) = rac{1 - e^{-i}}{\sum_{j=1}^{\mu} (1 - e^{-j})}$$

Ranking Selection – Individuals are ranked by their fitness values and selected according to their ranks (best = μ – 1, worst = 0).

There are different ways to utilize ranks to select individuals:

• Linear ranking – parameterizes by $1 \le s \le 2$

$$P_{\text{linear}}(i) = \frac{2-s}{\mu} + \frac{i(s-1)}{\sum_{j=1}^{\mu} j}$$

• Exponential ranking – more selection pressure than linear ranking

$$P_{\mathsf{exp}}(i) = rac{1 - e^{-i}}{\sum_{j=1}^{\mu} (1 - e^{-j})}$$

Individual	Fitness	Rank	P _{FPS}	$P_{\text{linear}}(s=1.5)$	$P_{\text{linear}}(s=2)$	Pexp
A	1	0	0.10	0.17	0.00	0.00
В	4	1	0.40	0.33	0.33	0.42
С	5	2	0.50	0.50	0.67	0.58

42 / 72

There are many other selection strategies:

- Roulette Wheel Selection
- Stochastic Universal Sampling (SUS)
- Tournament Selection
- Over-Selection
- etc.

Genetic Algorithms – Crossover Operators

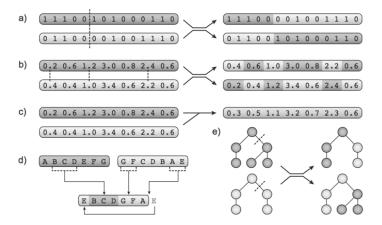


Figure 1.11 Examples of crossover operators. *a*) one-point; *b*) uniform; *c*) arithmetic; *d*) for sequences; *e*) for trees.

(from "Bio-inspired Artificial Intelligence: Theories, Methods, and Technologies" by Dario Floreano and Claudio Mattiussi)

```
PLRG
```

• The **mutation** operator makes small changes to the representation of an individual.

PLRG

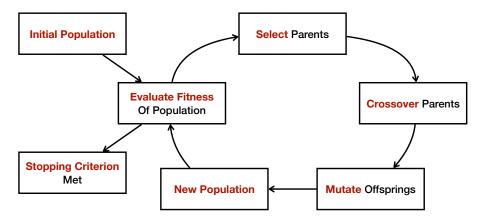
- The **mutation** operator makes small changes to the representation of an individual.
- This is, usually, the **only** way **new genetic material** is introduced into the population.

PLRG

- The **mutation** operator makes small changes to the representation of an individual.
- This is, usually, the **only** way **new genetic material** is introduced into the population.
- Without mutation, all we can do is recombine the genetic material that is already present in the initial population.

PLRG

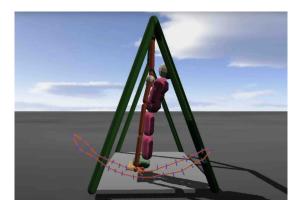
- The **mutation** operator makes small changes to the representation of an individual.
- This is, usually, the **only** way **new genetic material** is introduced into the population.
- Without mutation, all we can do is recombine the genetic material that is already present in the initial population.
- The effective way to define the mutation operator is highly **dependent on the problem domain**.



Genetic Algorithms – Example

One interesting example of GA is to learn how to ride a swing.

https://www.youtube.com/watch?v=Yr_nRnqeDp0



Let's split one cycle of the swing into 32 time steps and define 32-bit representation for the solution (1 for standing and 0 for sitting).

AAA705 @ Korea University

Lecture 5 - SBST

Genetic Algorithms – Example

- Knapsack Problem NP-hard problem
- Travelling Salesman Problem (TSP) NP-hard problem
- Program Synthesis Automatically generate programs
- **Program Repair** Automatically repair buggy programs
- Automotive Design Optimize the design of a car
- Robotics Optimize the motion of a robot
- Molecular structure optimization
- Protein folding prediction
- etc.

Contents

- 1. Search Based Software Engineering (SBSE
- 2. Fitness Landscape

3. Local Search

Hill Climbing Simulated Annealing Tabu Search

4. Genetic Algorithms

Selection Strategies Crossover Operators Mutation Operators

5. Bio-inspired Algorithms

Particle Swarm Optimization (PSO) Ant Colony Optimization (ACO)

6. Search Based Software Testing (SBST) Alternating Variable Method (AVM)

Biomimicry

Imitation of the models, systems, and elements of **nature** for the purpose of solving **complex human problems**.

Biomimicry

Imitation of the models, systems, and elements of **nature** for the purpose of solving **complex human problems**.

- Morpho Butterfly
 - Structural coloration for the blue color
 - Mirasol display technology from Qualcomm is based on this

Biomimicry

Imitation of the models, systems, and elements of **nature** for the purpose of solving **complex human problems**.

• Morpho Butterfly

- Structural coloration for the blue color
- Mirasol display technology from Qualcomm is based on this

Burrs

- Swiss electrical engineer, George de Mestral, Had to remove **burdock burrs** (seeds) from his cloths and his dog's furs whenever he returned from walks in Alps.
- Eventually, he invented Velcro hooks in 1951.

Let's apply the same idea to solve software engineering problems.

• Let's mimic the behavior of a flock of birds!

- Let's mimic the behavior of a flock of birds!
- Each bird is a **particle** in the search space.

- Let's mimic the behavior of a flock of birds!
- Each bird is a **particle** in the search space.
- The goal is to find the **best position** (maximum food source) in the search space by **communicating** with other birds.

- Let's mimic the behavior of a flock of birds!
- Each bird is a **particle** in the search space.
- The goal is to find the **best position** (maximum food source) in the search space by **communicating** with other birds.
 - **1** Each bird has an inertia to keep flying in the same direction.

- Let's mimic the behavior of a flock of birds!
- Each bird is a **particle** in the search space.
- The goal is to find the **best position** (maximum food source) in the search space by **communicating** with other birds.
 - **1** Each bird has an inertia to keep flying in the same direction.
 - 2 Each bird remembers and has a tendency to return to the local best position it has ever visited by itself.

- Let's mimic the behavior of a flock of birds!
- Each bird is a **particle** in the search space.
- The goal is to find the **best position** (maximum food source) in the search space by **communicating** with other birds.
 - **1** Each bird has an inertia to keep flying in the same direction.
 - 2 Each bird remembers and has a tendency to return to the local best position it has ever visited by itself.
 - 3 Each bird has a tendency to follow the known global best position in the flock by communicating with other birds.

- Let's mimic the behavior of a flock of birds!
- Each bird is a **particle** in the search space.
- The goal is to find the **best position** (maximum food source) in the search space by **communicating** with other birds.
 - **1** Each bird has an inertia to keep flying in the same direction.
 - 2 Each bird remembers and has a tendency to return to the local best position it has ever visited by itself.
 - 3 Each bird has a tendency to follow the known global best position in the flock by communicating with other birds.
- GA is competitive vs. PSO is cooperative.

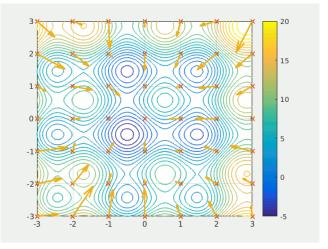
$$x_i^{t+1} = x_i^t + v_i^t$$
$$v_i^{t+1} = (1) wv_i^t + (2) c_1(p_i - x_i^t) + (3) c_2(g - x_i^t)$$

- x_i^t position of the *i*-th particle at time t
- v_i^t velocity of the *i*-th particle at time t
- p_i best position of the *i*-th particle (local best)
- g best position of the entire flock (global best)

It follows the three rules of the flock of birds.

- **1** Each bird has an inertia to keep flying in the same direction.
- ② Each bird remembers and has a tendency to return to the best position it has ever visited by itself (local best).
- Search bird has a tendency to follow the known global best position in the flock by communicating with other birds. (global best)

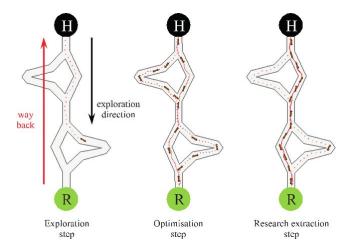
Bio-inspired – Particle Swarm Optimization (PSO)



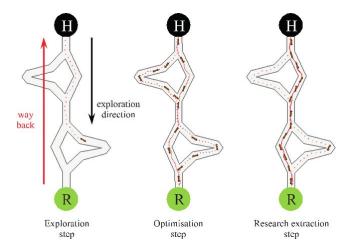
Link

Can we mimic the behavior of an ant colony?

Ant colony utilizes a **pheromone** to **communicate** with other ants to find the **shortest path** to the food source.



Ant colony utilizes a **pheromone** to **communicate** with other ants to find the **shortest path** to the food source.



The **ant colony optimization (ACO)** algorithm is a meta-heuristic algorithm that is inspired by the foraging behavior of ants.

The **ant colony optimization (ACO)** algorithm is a meta-heuristic algorithm that is inspired by the foraging behavior of ants.

The **ant colony optimization (ACO)** algorithm is a meta-heuristic algorithm that is inspired by the foraging behavior of ants.

Let's consider the **TSP problem**.

For initialization, we drop ants on random nodes on the graph, and deposit small amount of pheromone on all edges uniformly.

The **ant colony optimization (ACO)** algorithm is a meta-heuristic algorithm that is inspired by the foraging behavior of ants.

- For initialization, we drop ants on random nodes on the graph, and deposit small amount of pheromone on all edges uniformly.
- Ants choose which edge to cross by considering the 1) amount of pheromone and 2) the length of the edge.

The **ant colony optimization (ACO)** algorithm is a meta-heuristic algorithm that is inspired by the foraging behavior of ants.

- For initialization, we drop ants on random nodes on the graph, and deposit small amount of pheromone on all edges uniformly.
- Ants choose which edge to cross by considering the 1) amount of pheromone and 2) the length of the edge.
- When ants finish a tour, the amount of pheromone on each edge is updated inversely proportional to the length of the tour.

The **ant colony optimization (ACO)** algorithm is a meta-heuristic algorithm that is inspired by the foraging behavior of ants.

- For initialization, we drop ants on random nodes on the graph, and deposit small amount of pheromone on all edges uniformly.
- Ants choose which edge to cross by considering the 1) amount of pheromone and 2) the length of the edge.
- When ants finish a tour, the amount of pheromone on each edge is updated inversely proportional to the length of the tour.
- **4** The amount of pheromone is slightly **evaporated** at each iteration.

The **ant colony optimization (ACO)** algorithm is a meta-heuristic algorithm that is inspired by the foraging behavior of ants.

- For initialization, we drop ants on random nodes on the graph, and deposit small amount of pheromone on all edges uniformly.
- Ants choose which edge to cross by considering the 1) amount of pheromone and 2) the length of the edge.
- When ants finish a tour, the amount of pheromone on each edge is updated inversely proportional to the length of the tour.
- **4** The amount of pheromone is slightly **evaporated** at each iteration.
- **5** By repeating the process, ants converge to the **shortest path**.

• Probability of ant k choosing edge (i, j):

$$p_{i,j}^{k} = \frac{(\tau_{i,j})^{\alpha} \cdot (\eta_{i,j})^{\beta}}{\sum_{h \in J^{k}} (\tau_{i,h})^{\alpha} \cdot (\eta_{i,h})^{\beta}}$$

where $\tau_{i,j}$ is the **amount of pheromone** on edge (i, j), $\eta_{i,j} = \frac{1}{d_{i,j}}$ is the **inverse of the length** of edge (i, j), and α and β are the parameters to control the **importance of pheromone and the length** of the edge. J^k is the set of nodes **not yet visited** by ant $1 \le k \le m$.

• Probability of ant k choosing edge (i, j):

$$p_{i,j}^{k} = \frac{(\tau_{i,j})^{\alpha} \cdot (\eta_{i,j})^{\beta}}{\sum_{h \in J^{k}} (\tau_{i,h})^{\alpha} \cdot (\eta_{i,h})^{\beta}}$$

where $\tau_{i,j}$ is the **amount of pheromone** on edge (i, j), $\eta_{i,j} = \frac{1}{d_{i,j}}$ is the **inverse of the length** of edge (i, j), and α and β are the parameters to control the **importance of pheromone and the length** of the edge. J^k is the set of nodes **not yet visited** by ant $1 \le k \le m$.

• **Pheromone update**: $\Delta \tau_{i,j} = \frac{Q}{L_k}$, where Q is the constant, and L_k is the length of the tour of ant k.

PLRG

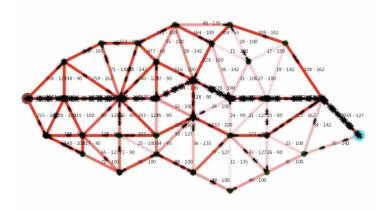
• Probability of ant k choosing edge (i, j):

$$p_{i,j}^{k} = \frac{(\tau_{i,j})^{\alpha} \cdot (\eta_{i,j})^{\beta}}{\sum_{h \in J^{k}} (\tau_{i,h})^{\alpha} \cdot (\eta_{i,h})^{\beta}}$$

where $\tau_{i,j}$ is the **amount of pheromone** on edge (i, j), $\eta_{i,j} = \frac{1}{d_{i,j}}$ is the **inverse of the length** of edge (i, j), and α and β are the parameters to control the **importance of pheromone and the length** of the edge. J^k is the set of nodes **not yet visited** by ant $1 \le k \le m$.

- **Pheromone update**: $\Delta \tau_{i,j} = \frac{Q}{L_k}$, where Q is the constant, and L_k is the length of the tour of ant k.
- Evaluation: $\tau_{i,j} = (1 \rho)\tau_{i,j} + \sum_{k=1}^{m} \Delta \tau_{i,j}^{k}$, where ρ is the evaporation rate.

PLRG



Link

• When the graph changes, the ACO algorithm can adapt with the second-best solution by reusing the pheromone.

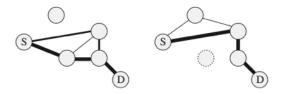


Figure 7.8 *Left*: Virtual ants maintain multiple paths between source and destination nodes. Shorter paths are traversed by more ants (thicker line). *Right*: If a node (or edge) fails, ants immediately use and reinforce the second shortest path available.

Dario Floreano and Claudio Mattiussi, Bio-inspired Artificial Intelligence, MIT Press

There are many other bio-inspired algorithms:

There are many other bio-inspired algorithms:

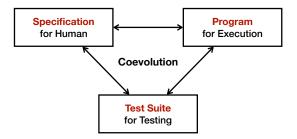
• Artificial Immune System (AIS) – Inspired by the human immune system to detect and eliminate vulnerabilities in computer systems.

There are many other bio-inspired algorithms:

- Artificial Immune System (AIS) Inspired by the human immune system to detect and eliminate vulnerabilities in computer systems.
- Artificial Neural Network (ANN) Inspired by the human brain to solve complex problems.

There are many other bio-inspired algorithms:

- Artificial Immune System (AIS) Inspired by the human immune system to detect and eliminate vulnerabilities in computer systems.
- Artificial Neural Network (ANN) Inspired by the human brain to solve complex problems.
- Co-evolutionary Algorithms Inspired by the co-evolution of species in nature.



Contents

- 1. Search Based Software Engineering (SBSE
- 2. Fitness Landscape

3. Local Search

Hill Climbing Simulated Annealing Tabu Search

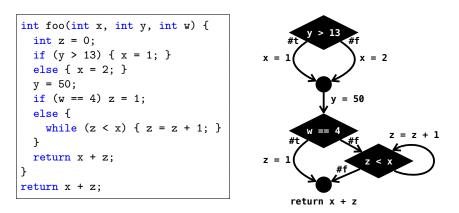
4. Genetic Algorithms

Selection Strategies Crossover Operators Mutation Operators

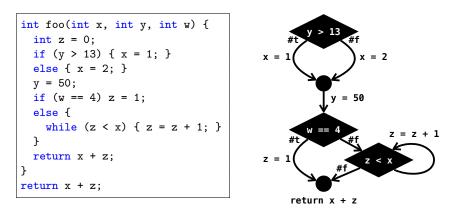
5. Bio-inspired Algorithms

Particle Swarm Optimization (PSO) Ant Colony Optimization (ACO)

6. Search Based Software Testing (SBST) Alternating Variable Method (AVM)



• Our goal is to **automatically generate test cases** to **maximize** the **coverage** of the software under test.



- Our goal is to **automatically generate test cases** to **maximize** the **coverage** of the software under test.
- Let's apply the **search-based** approach to **software testing**!

• Convert path conditions into a mathematical fitness function.

- Convert path conditions into a mathematical fitness function.
- Use meta-heuristic algorithms to **maximize/minimize** fitness function.

- Convert path conditions into a mathematical fitness function.
- Use meta-heuristic algorithms to **maximize/minimize** fitness function.
- When the goal is met, you have your **test case**.

- Convert path conditions into a mathematical fitness function.
- Use meta-heuristic algorithms to **maximize/minimize** fitness function.
- When the goal is met, you have your test case.
- For example, we can define a **fitness function** for branch coverage as:

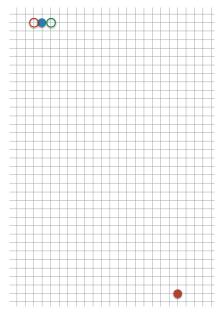
[Approach Level] + normalize([Branch Distance])

- **Approach Level** The number of un-penetrated **nesting levels** surrounding the target branch.
- Branch Distance How close the input came to satisfying the condition of the target branch. For example, if the condition is x + y == 10, the branch distance is |10 (x + y)|.

• The alternating variable method (AVM) is meta-heuristic algorithm to search for test input vectors that maximize/minimum a given fitness function.

- The alternating variable method (AVM) is meta-heuristic algorithm to search for test input vectors that maximize/minimum a given fitness function.
- Based on the known empirical results, AVM is one of the most effective algorithm for achieving C/C++ structural coverage.

- The alternating variable method (AVM) is meta-heuristic algorithm to search for test input vectors that maximize/minimum a given fitness function.
- Based on the known empirical results, AVM is one of the most effective algorithm for achieving C/C++ structural coverage.
- It has two operation modes:
 - Exploratory Move Decide which direction results in fitter solutions by exploring neighboring solutions.
 - **2** Pattern Move Accelerate the search in the selected direction.

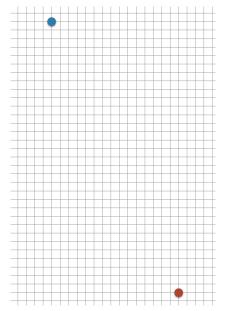


Our goal is to **minimize** the fitness function.

$$\begin{array}{c|cccc} (x,y) & \Delta & f(x,y) & \blacktriangle/ \\ \hline (5,2) & (-1,0) & 36.23 & \blacktriangle \\ (7,2) & (1,0) & 35.34 & \blacktriangledown \end{array}$$

Exploratory Move – $x \uparrow$

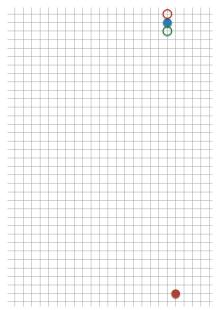
-



Our goal is to **minimize** the fitness function.

(x, y)	Δ	f(x, y)	▲/▼
(7,2)	(1, 0)	35.34	▼
(9,2)	(2, 0)	34.53	▼
(13, 2)	(4,0)	33.24	▼
(21 , 2)	(8,0)	32.01	▼
(37, 2)	(16, 0)	35.34	

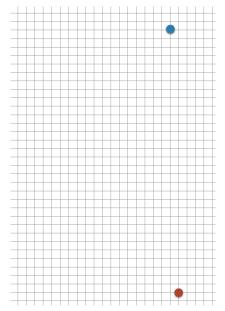
Pattern Move – $x \uparrow$



Our goal is to **minimize** the fitness function.

$$\begin{array}{c|cccc} (x,y) & \Delta & f(x,y) & \blacktriangle/ \\\hline (21,1) & (0,-1) & 33.01 & \blacktriangle \\ (21,3) & (0,1) & 31.01 & \checkmark \end{array}$$

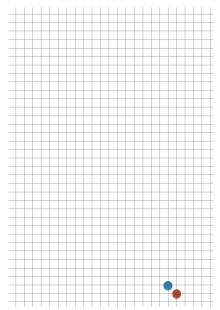
Exploratory Move – $y \uparrow$



Our goal is to **minimize** the fitness function.

(x, y)	Δ	f(x,y)	▲/▼
(21,5)	(0,2)	29.01	▼
(21, 9)	(0,4)	25.01	▼
(21, 17)	(0,8)	17.02	▼
(21, 33)	(0, 16)	1.41	▼
(21,65)	(0, 32)	26.03	

Pattern Move – $y \uparrow$



Our goal is to **minimize** the fitness function.

After one or two more iterations, we can find the **optimal solution**.

$$(x,y)=(22,34)$$

Summary

- 1. Search Based Software Engineering (SBSE)
- 2. Fitness Landscape

3. Local Search

Hill Climbing Simulated Annealing Tabu Search

4. Genetic Algorithms

Selection Strategies Crossover Operators Mutation Operators

5. Bio-inspired Algorithms

Particle Swarm Optimization (PSO) Ant Colony Optimization (ACO)

6. Search Based Software Testing (SBST) Alternating Variable Method (AVM)

Next Lecture

• Dynamic Symbolic Execution (DSE)

Jihyeok Park jihyeok_park@korea.ac.kr https://plrg.korea.ac.kr