Lecture 6 – Dynamic Symbolic Execution (DSE) AAA705: Software Testing and Quality Assurance

Jihyeok Park

PLRG

2024 Spring

Recall – Search Based Software Engineering (SBSE) PLRG

• Search Based Software Engineering (SBSE)

- Fitness Landscape
- Local Search
 - Hill Climbing
 - Simulated Annealing
 - Tabu Search
- Genetic Algorithms
 - Selection Strategies
 - Crossover Operators
 - Mutation Operators
- Bio-inspired Algorithms
 - Particle Swarm Optimization (PSO)
 - Ant Colony Optimization (ACO)

• Search Based Software Testing (SBST)

• Alternating Variable Method (AVM)

Recall – White-Box (Structural) Testing

Sometimes called **structural testing** because it uses the **internal structure** of the program to derive test cases.

• Coverage Criteria

- The adequacy of a test suite is measured in terms of the **coverage** of the program's internal structure.
- Search Based Software Testing (SBST)
 - A technique that uses **meta-heuristic search** algorithms to maximize/minimize a certain **fitness function**.
- Dynamic Symbolic Execution (DSE)
 - A technique that systematically explores the input space using **symbolic execution** with **dynamic analysis**.

Let's focus on the Dynamic Symbolic Execution (DSE) technique.

Contents

1. Symbolic Execution

Basic Idea Satisfiability Modulo Theories (SMT) Limitations of Symbolic Execution

2. Dynamic Symbolic Execution (DSE)

Search Heuristics Example – Hash Function Example – Loops Example – Data Structures Realistic Implementation Other Hybrid Analysis Techniques

Contents

1. Symbolic Execution

Basic Idea Satisfiability Modulo Theories (SMT) Limitations of Symbolic Execution

2. Dynamic Symbolic Execution (DSE)

Search Heuristics Example – Hash Function Example – Loops Example – Data Structures Realistic Implementation Other Hybrid Analysis Techniques

Limitations of Random Testing

- Random testing has a **limitation** that it sometimes fails or takes a long time to find bugs if they can only be triggered **under specific conditions**.
- For example, consider the following program.

```
void testme (int x) {
    if (x == 93589) {
        ERROR
    }
}
```

- The bug can only be triggered when the input is x = 93589.
- It means that the probability of triggering the bug is as follows when the integer input is randomly generated:

$$\frac{1}{2^{32}}\approx 0.000000023283\%$$

Symbolic Execution

- Symbolic execution is a program analysis technique that explores the paths of a program with symbolic values as inputs and collects constraints on the inputs.
- 1976 A system to generate test data and symbolically execute programs (Lori Clarke).
- **1977** Symbolic execution and program testing (James King).
- 2005 to present Practical symbolic execution
 - Using advanced constraint solvers (SMT solvers)
 - Heuristics to control exponential path explosion
 - Heap modeling and reasoning about complex data structures
 - Environment modeling
 - Dealing with solver limitations

Symbolic Execution – Basic Idea

- **1** Execute the program on symbolic values Ω .
- 2 A symbolic state σ ∈ S = X → Ω is a finite mapping from variables X to symbolic values Ω.

3 A **path condition** $\Phi = \phi_1 \land \ldots \land \phi_n$ is a quantifier-free formula over the symbolic inputs that encodes all branch decisions taken so far.

④ All paths in the program form its execution tree, in which some paths are feasible and some are infeasible.

Symbolic Execution – Basic Idea

AAA705 @ Korea University

Lecture 6 - DSE

9/90

Satisfiability Modulo Theories (SMT)

• Then, how to check the **satisfiability** of a path condition Φ?

 Most symbolic execution tools use Satisfiability Modulo Theories (SMT) solvers (e.g., Z3, CVC4) to check it.

• An SMT solver takes a **first-order logic formula** and returns whether it is **satisfiable** or not using various background theories, such as arithmetic, arrays, bit-vectors, algebraic data types, etc.

Satisfiability Modulo Theories (SMT) – Example

• Check the satisfiability of the following formula using an SMT solver.

$$b+2 = c \wedge f(read(write(a, b, 3), c-2)) \neq f(c-b+1)$$

• **Substitute** c by b + 2 in the second part of the formula.

 $b + 2 = c \land f(read(write(a, b, b + 2 - 2), b)) \neq f(b + 2 - b + 1)$

• Arithmetic simplification of the formula.

$$b + 2 = c \wedge f(read(write(a, b, 3), b)) \neq f(3)$$

• Applying array theory axiom $- \forall a, i, v. read(write(a, i, v), i) = v.$

$$b+2=c\wedge f(3)\neq f(3)$$
 (UNSAT)

Satisfiability Modulo Theories (SMT) – Example

Z3¹ is one of the most popular SMT solvers developed by Microsoft Research and used in many symbolic execution tools.

For example, the following Z3 script returns unsat.

```
(declare-const a (Array Int Int))
(declare-const b Int)
(declare-const c Int)
(declare-fun f (Int) Int)
(assert (= (+ b 2) c))
(assert (not (= (f (select (store a b 3) (- c 2))) (f (+ (- c b) 1)))))
(check-sat) ; => unsat
```

Or, the following script returns a satisfying assignment x = 0 and y = 0.

```
(declare-const x Int)
(declare-const y Int)
(assert (and (= (* 2 x) y) (>= x (- y x))))
(check-sat) ; => sat
(get-model) ; => (x, y) = (0, 0)
```

¹https://github.com/Z3Prover/z3 AAA705 @ Korea University Lect

Limitations of Symbolic Execution

We cannot solve path condition Φ containing the hash function using SMT solver.

Contents

1. Symbolic Execution

Basic Idea Satisfiability Modulo Theories (SMT) Limitations of Symbolic Execution

2. Dynamic Symbolic Execution (DSE)

Search Heuristics Example – Hash Function Example – Loops Example – Data Structures Realistic Implementation Other Hybrid Analysis Techniques

Dynamic Symbolic Execution (DSE)

- Dynamic Symbolic Execution (DSE) is a technique that combines concrete execution with symbolic execution to overcome the limitations of symbolic execution.
- It is sometimes called concolic testing because it combines both concrete and symbolic execution to generate test cases.
- It stores both the **concrete** values and the **symbolic** values during the execution of the program, and solves the path condition to **guide execution** at branch points.
- The concrete values are used to **simplify** the path condition.

Dynamic Symbolic Execution (DSE) – Example

test #1: (x,y)=(3,7)

Dynamic Symbolic Execution (DSE) – Example

Dynamic Symbolic Execution (DSE)

Algorithm 1. Concolic Testing

Input : Program P, budget N, initial input v_0 Output : The number of branches covered 1: $T \leftarrow \langle \rangle$ 2: $v \leftarrow v_0$ 3: for m = 1 to N do 4: $\Phi_m \leftarrow \mathsf{RunProgram}(P, v)$ 5: $T \leftarrow T \cdot \Phi_m$ 6: repeat 7: $(\Phi, \phi_i) \leftarrow \mathsf{Choose}(T)$ $(\Phi = \phi_1 \land \cdots \land \phi_n)$ 8: **until** SAT $(\bigwedge_{j < i} \phi_j \land \neg \phi_i)$ $v \leftarrow \mathsf{model}(\bigwedge_{i < i} \phi_i \land \neg \phi_i)$ 9: 10: return |Branches(T)|

Dynamic Symbolic Execution (DSE)

In each iteration, DSE **chooses** a path to explore based on the path condition Φ using a specific **search heuristic**.

- **Random Search** Randomly selects a branch from the most recently visited execution path.
- **Control-Flow Directed Search (CFDS)** Selects the uncovered branch **closest** to the last branch in the current execution path.
- Context-Guided Search (CGS) Performs a breadth-first search (BFS) on the execution tree by excluding branches whose contexts (i.e., the last *d* preceding branches) are already explored.
- Depth-First Search (DFS)
- etc.

This is the control-flow directed search (CFDS) heuristic.

Solve $\phi_1 \wedge \neg \phi_2 \wedge \phi_3$

This is the control-flow directed search (CFDS) heuristic.

Solve $\phi_1 \wedge \phi_2$

This is the control-flow directed search (CFDS) heuristic.

INVALID

This is the control-flow directed search (CFDS) heuristic.

Solve $\neg \phi_1$

This is the control-flow directed search (CFDS) heuristic.

Solve $\neg \phi_1$

VALID X3

Learning Search Heuristics in DSE

[ICSE'18] S. Cha et al., "Automatically Generating Search Heuristics for Concolic Testing"

$$Choose_{\theta}(\langle \Phi_1, \dots, \Phi_m \rangle) = (\Phi_m, \operatorname*{argmax}_{\phi_j \in \Phi_m} score_{\theta}(\phi_j))$$

Followings are 12 static and 28 dynamic branch features used for learning.

#	Description
1	branch in the main function
2	true branch of a loop
3	false branch of a loop
4	nested branch
5	branch containing external function calls
6	branch containing integer expressions
7	branch containing constant strings
8	branch containing pointer expressions
9	branch containing local variables
10	branch inside a loop body
11	true branch of a case statement
12	false branch of a case statement
13	first 10% branches of a path
14	last 10% branches of a path
15	branch appearing most frequently in a path

Lecture 6 - DSE

Learning Search Heuristics in DSE

[ICSE'18] S. Cha et al., "Automatically Generating Search Heuristics for Concolic Testing"

AAA705 @ Korea University

March 25, 2024

Example – Hash Function

X	\mathbb{V}	Ω
X	3	α
y	7	β
Ζ		
φ	true	

Example – Hash Function

X	\mathbb{V}	Ω	
X	3	α	
y	7	β	
Ζ	182039482	hash(lpha)	
Φ	true		

Example – Hash Function

X	V	Ω	
X	3	α	
у	7	β	
Ζ	182039482	$\mathit{hash}(lpha)$	
φ	(hash(lpha) eq eta)		

X	\mathbb{V}	Ω
X	3	α
у	7	β
Ζ	182039482	$\mathit{hash}(lpha)$
Φ	$(\mathit{hash}(lpha) eq eta)$	

We can utilize the current concrete values. $(hash(\alpha)=\beta) \text{ is } \textbf{SAT}$ when (x, y) = (3, 182039482).

X	V	Ω
x	3	α
у	182039482	β
Ζ		
φ	true	

X	\mathbb{V}	Ω
X	3	α
у	182039482	β
Ζ	182039482	hash(α)
Φ	true	

X	\mathbb{V}	Ω
X	3	α
у	182039482	β
Ζ	182039479	$\beta - \alpha$
Φ	$(\mathit{hash}(lpha)=eta)$	

X	\mathbb{V}	Ω
X	3	α
у	182039482	β
Ζ	182039479	$\beta - \alpha$
Φ	$(\mathit{hash}(lpha)=eta)\wedge(lpha$	

We found an error!

X	V	Ω
X	3	α
у	182039482	β
Z	182039479	$\beta - \alpha$
Φ	$(\mathit{hash}(lpha)=eta)\wedge(lpha$	

Unfortunately, $(hash(\alpha) = \beta) \land (\alpha \ge \beta - \alpha)$ is UNKNOWN.


```
void f(int x) {
   *
  int arr[] = {3, 7, 2};
  int i = 0;
  while (i < 3) {</pre>
    if (arr[i] == x) break;
    i++;
  }
  return i;
}
```

X	\mathbb{V}	Ω
X	0	α
arr		
i		
Φ	true	


```
void f(int x) {
  int arr[] = {3, 7, 2};
  int i = 0;
   *
  while (i < 3) {
    if (arr[i] == x) break;
    i++;
  }
  return i;
}
```

X	\mathbb{V}	Ω
X	0	α
arr	$\{3, 7, 2\}$	
i	0	
Φ	true	


```
void f(int x) {
  int arr[] = {3, 7, 2};
  int i = 0;
  while (i < 3) {</pre>
     *
    if (arr[i] == x) break;
    i++;
  }
  return i;
}
```

X	\mathbb{V}	Ω
X	0	α
arr	$\{3, 7, 2\}$	
i	0	
Φ	true	

void f(int x) { int arr[] = {3, 7, 2}; **int** i = 0; while (i < 3) {</pre> if (arr[i] == x) break; i++; * } return i; }

X	\mathbb{V}	Ω
x	0	α
arr	$\{3, 7, 2\}$	
i	1	
Φ	(lpha eq 3)	


```
void f(int x) {
  int arr[] = {3, 7, 2};
  int i = 0;
  while (i < 3) {</pre>
     *
    if (arr[i] == x) break;
    i++;
  }
  return i;
}
```

X	\mathbb{V}	Ω
X	0	α
arr	$\{3, 7, 2\}$	
i	1	
Φ	(lpha eq 3)	

void f(int x) { int arr[] = {3, 7, 2}; **int** i = 0; while (i < 3) {</pre> if (arr[i] == x) break; i++; * } return i; }

X	\mathbb{V}	Ω
x	0	α
arr	$\{3, 7, 2\}$	
i	2	
Φ	$(\alpha \neq 3)$	$) \land (\alpha \neq 7)$


```
void f(int x) {
  int arr[] = {3, 7, 2};
  int i = 0;
  while (i < 3) {</pre>
    *
    if (arr[i] == x) break;
    i++;
  }
  return i;
}
```

X	\mathbb{V}	Ω
X	0	α
arr	$\{3, 7, 2\}$	
i	2	
Φ	$(\alpha \neq 3)$	$) \land (\alpha \neq 7)$

void f(int x) { int arr[] = {3, 7, 2}; **int** i = 0; while (i < 3) {</pre> if (arr[i] == x) break; i++; * } return i; }

X	\mathbb{V}	Ω
x	0	α
arr	$\{3, 7, 2\}$	
i	3	
Φ	$(\alpha \neq 3) \land (\alpha$	$\alpha \neq$ 7) \land ($\alpha \neq$ 2)

void f(int x) { int arr[] = {3, 7, 2}; **int** i = 0; while (i < 3) {</pre> if (arr[i] == x) break; i++; } * return i; }

X	\mathbb{V}	Ω
X	0	α
arr	$\{3, 7, 2\}$	
i	3	
Φ	$(\alpha \neq 3) \land (\alpha$	$(\alpha \neq 7) \land (\alpha \neq 2)$

void f(int x) { int arr[] = {3, 7, 2}; int i = 0;while (i < 3) { if (arr[i] == x) break; i++; } return i; }

X	\mathbb{V}	Ω
X	0	α
arr	$\{3, 7, 2\}$	
i	3	
Φ	$(\alpha \neq 3) \land (\alpha$	$\alpha \neq 7) \land (\alpha \neq 2)$


```
void f(int x) {
   *
  int arr[] = {3, 7, 2};
  int i = 0;
  while (i < 3) {</pre>
    if (arr[i] == x) break;
    i++;
  }
  return i;
}
```

X	\mathbb{V}	Ω
X	2	α
arr		
i		
Φ		true

void f(int x) { int arr[] = {3, 7, 2}; **int** i = 0; while (i < 3) {</pre> if (arr[i] == x) break; i++; } * return i; }

X	\mathbb{V}	Ω
X	2	α
arr	$\{3, 7, 2\}$	
i	2	
Φ	$(\alpha \neq 3) \land (\alpha$	$a \neq 7) \land (\alpha = 2)$

void f(int x) { int arr[] = {3, 7, 2}; int i = 0;while (i < 3) {</pre> if (arr[i] == x) break; i++; } return i; }

X	\mathbb{V}	Ω
X	2	α
arr	$\{3, 7, 2\}$	
i	2	
Φ	$(\alpha \neq 3) \land (\alpha$	$\alpha \neq 7) \land (\alpha = 2)$

<pre>void f(int x) {</pre>	
*	
<pre>int arr[] = {3, 7,</pre>	2};
<pre>int i = 0;</pre>	
while (i < 3) {	
<pre>if (arr[i] == x) i++;</pre>	break;
}	
<pre>return i; }</pre>	

X	\mathbb{V}	Ω
X	7	α
arr		
i		
Φ		true

void f(int x) { int arr[] = {3, 7, 2}; **int** i = 0; while (i < 3) {</pre> if (arr[i] == x) break; i++; } * return i; }

X	\mathbb{V}	Ω
x	7	α
arr	$\{3, 7, 2\}$	
i	1	
Φ	$(\alpha \neq 3)$	$) \wedge (\alpha = 7)$

void f(int x) { int arr[] = {3, 7, 2}; **int** i = 0; while (i < 3) {</pre> if (arr[i] == x) break; i++; } return i; }

X	\mathbb{V}	Ω
x	7	α
arr	$\{3, 7, 2\}$	
i	1	
Φ	$(\alpha \neq 3)$	$) \wedge (\alpha = 7)$

<pre>void f(int x) {</pre>	
* int arr[] = {3, 7,	2};
int i = 0;	
while (i < 3) {	
<pre>if (arr[i] == x) i++;</pre>	break;
}	
<pre>return i; }</pre>	

X	\mathbb{V}	Ω
X	3	α
arr		
i		
Φ		true

void f(int x) { int arr[] = {3, 7, 2}; **int** i = 0; while (i < 3) {</pre> if (arr[i] == x) break; i++; } * return i; }

X	V	Ω
X	0	α
р	NULL	β
Φ	true	

X	$\mathbb V$	Ω
X	0	α
р	NULL	β
Φ	$(lpha \leq 0)$	

X	V	Ω
X	0	α
р	NULL	β
Φ	$(lpha \leq 0)$	

 $(\alpha > 0)$ is **SAT** when (x, p) = (42, NULL)

X	V	Ω
X	42	α
р	NULL	β
Φ	true	

X	V	Ω
X	42	α
р	NULL	β
Φ	(lpha > 0)	

X	V	Ω
x	42	α
р	NULL	β
Φ	$(lpha > 0) \land (eta = \textit{NULL})$	

X	V	Ω
x	42	α
р	NULL	β
Φ	$(lpha > 0) \land (eta = \textit{NULL})$	

 $(\alpha > 0) \land (\beta \neq NULL)$ is **SAT** when $(x, p) = (42, 0 \times A0BF : 0 NULL)$

PLRG

```
class Node {
  int data;
  Node* next;
};
void f(int x, Node *p) {
   *
  if (x > 0)
    if (p != NULL)
      if (x*2+1 == p->data)
         if (p \rightarrow next == p)
           ERROR;
  return 0;
}
```

X	V	Ω
x	42	α
р	0×A0BF : 0 NULL	β
Φ	true	

<pre>class Node { int data;</pre>
Node* next; };
<pre>void f(int x, Node *p) {</pre>
if (x > 0)
<pre>if (p != NULL) * if (x*2+1 == p->data)</pre>
<pre>if (p->next == p)</pre>
ERROR;
<pre>return 0; }</pre>

X	V	Ω
X	42	α
р	0xA0BF : 0 NULL	β
Φ	$(\alpha > 0) \land (\beta \neq NULL)$	

X	\mathbb{V}	Ω
X	42	α
р	0xA0BF : 0 NULL	β
Φ	$(lpha > 0) \land (eta eq \textit{NUL}) \ (2lpha + 1 eq eta.data)$	L)∧)
20	#t $\alpha > 0$ #t $\beta \neq NULL$ #f (42, NULL (42, NULL (42, OXAOBF: 0 NULL)	<pre>>#f (0, NULL))])</pre>

X	V	Ω		
X	42	α		
р	0xA0BF : 0 NULL	β		
Φ	$(lpha > 0) \land (eta eq \textit{NULL}) \land \ (2lpha + 1 eq eta.data)$			
$\begin{array}{c} \texttt{#t} \qquad \alpha > 0 \qquad \texttt{#f} \\ \texttt{#t} \qquad \beta \neq NULL \qquad \texttt{#f} \qquad (0, \text{ NULL}) \\ \texttt{2}\alpha + 1 = \beta.data \qquad \texttt{(42, NULL)} \\ \texttt{(42, OXAOBF: 0 NULL}) \\ \texttt{(42, OXAOBF: 0 NULL}) \\ \texttt{(\alpha > 0)} \land (\beta \neq NULL) \end{array}$				
$\wedge (2\alpha + 1 = \beta.data)$ is SAT				
when	when $(x, p) = (1, 0 \times A0BF : 3 NULL)$			

X	\mathbb{V}	Ω
x	1	α
р	0xA0BF : 3 NULL	β
Φ	true	

X	\mathbb{V}	Ω	
X	1	α	
р	0xA0BF: 3 NULL	β	
φ	$egin{array}{l} (lpha > 0) \land (eta eq \textit{NULL}) \land \ (2lpha + 1 = eta.\textit{data}) \end{array}$		

#f

X	V	Ω	
X	1	α	
р	0xA0BF : 3 0xA0E	βF β	
φ	true		

Realistic Implementation

• **KLEE** – LLVM based DSE engine.

• Jalangi2 – JavaScript dynamic analysis framework by Samsung.

• <u>S2E</u> – Platform for symbolic execution of binary code (x86, ARM).

• <u>CutEr</u> – Concolic unit testing tool for Erlang.

Other Hybrid Analysis Techniques

- Many efforts have combined dynamic and static analysis, yielding **blended** or **hybrid** analysis techniques.
- Some hybrid analyses use information recorded during dynamic executions of the program to improve the static-analysis precision. However, they are **generally unsound** because they rely on incomplete information.
- Some recent hybrid analyses have been proposed a **combined interpretation** to address the unsoundness issue, and it interchanges between **concrete** and **abstract interpretations** to improve the precision.

Blended Analysis

[ISSTA'07] Dufour et al., "Blended analysis for performance understanding of framework-based applications"

• Escape Analysis – A static analysis technique that determines whether an object can escape the scope of the method or a thread.

Heap Snapshots

[OOPSLA'17] Grech et al., "Heaps Don't Lie: Countering Unsoundness with Heap Snapshots"

• Heap Snapshots – A technique that records the whole-heap snapshots during program execution and then uses them to guide the static analysis. (especially for Android and JVM applications)

Just-in-time Static Type Checking

[PLDI'16] Briana M. Ren and Jeffrey S. Foster, "Just-in-time Static Type Checking for Dynamic Languages"

- Just-in-time Static Type Checking A technique that type checks Ruby code even in the presence of meta-programming.
- It dynamically gathers method type signatures and utilizes them in static type checking of their body when they are invoked.

```
class Talk < ActiveRecord::Base
belongs_to :owner, :class_name ⇒ "User"
....
type :owner?, "(User) → %bool"
def owner?(user)
return owner == user
end end
```

Combined Interpretation

[POPL'18] J. Toman and D. Grossman, "Concerto: a framework for combined concrete and abstract interpretation"

(a) Sound but Imprecise Call-Graph

(b) Unsound Call-Graph

(c) Call-Graph with Concerto

Lecture 6 - DSE

84 / 90

Dynamic Shortcuts

[ESEC/FSE'21] J. Park et al., "Accelerating JavaScript Static Analysis via Dynamic Shortcuts"

• **Dynamic Shortcuts** – A technique to perform **sealed execution** (dynamic analysis) during the static analysis to accelerate and increase the precision of the analysis without losing soundness.

Dynamic Shortcuts

[ESEC/FSE'21] J. Park et al., "Accelerating JavaScript Static Analysis via Dynamic Shortcuts"

• **Dynamic Shortcuts** – A technique to perform **sealed execution** (dynamic analysis) during the static analysis to accelerate and increase the precision of the analysis without losing soundness.

Dynamic Shortcuts

[ESEC/FSE'21] J. Park et al., "Accelerating JavaScript Static Analysis via Dynamic Shortcuts"

• **Dynamic Shortcuts** – A technique to perform **sealed execution** (dynamic analysis) during the static analysis to accelerate and increase the precision of the analysis without losing soundness.

Summary

1. Symbolic Execution

Basic Idea Satisfiability Modulo Theories (SMT) Limitations of Symbolic Execution

2. Dynamic Symbolic Execution (DSE)

Search Heuristics Example – Hash Function Example – Loops Example – Data Structures Realistic Implementation Other Hybrid Analysis Techniques

References

• Lecture for Dynamic Symbolic Execution by Prof. Mayur Naik at UPenn CIS.

https://software-analysis-class.org/lectures/lecture14

• [CSUR'18] Baldoni et al., "A Survey of Symbolic Execution Techniques"

https://dl.acm.org/doi/abs/10.1145/3182657

Next Lecture

Mutation Testing

Jihyeok Park jihyeok_park@korea.ac.kr https://plrg.korea.ac.kr