
Lecture 6 – Dynamic Symbolic Execution (DSE)
AAA705: Software Testing and Quality Assurance

Jihyeok Park

2024 Spring

AAA705 @ Korea University Lecture 6 - DSE March 25, 2024 1 / 90

Recall – Search Based Software Engineering (SBSE)
• Search Based Software Engineering (SBSE)

• Fitness Landscape
• Local Search

• Hill Climbing
• Simulated Annealing
• Tabu Search

• Genetic Algorithms
• Selection Strategies
• Crossover Operators
• Mutation Operators

• Bio-inspired Algorithms
• Particle Swarm Optimization (PSO)
• Ant Colony Optimization (ACO)

• Search Based Software Testing (SBST)
• Alternating Variable Method (AVM)

AAA705 @ Korea University Lecture 6 - DSE March 25, 2024 2 / 90

Recall – White-Box (Structural) Testing
Sometimes called structural testing because it uses the internal
structure of the program to derive test cases.

• Coverage Criteria
• The adequacy of a test suite is measured in terms of the coverage of

the program’s internal structure.

• Search Based Software Testing (SBST)
• A technique that uses meta-heuristic search algorithms to

maximize/minimize a certain fitness function.

• Dynamic Symbolic Execution (DSE)
• A technique that systematically explores the input space using

symbolic execution with dynamic analysis.

Let’s focus on the Dynamic Symbolic Execution (DSE) technique.

AAA705 @ Korea University Lecture 6 - DSE March 25, 2024 3 / 90

Contents

1. Symbolic Execution
Basic Idea
Satisfiability Modulo Theories (SMT)
Limitations of Symbolic Execution

2. Dynamic Symbolic Execution (DSE)
Search Heuristics
Example – Hash Function
Example – Loops
Example – Data Structures
Realistic Implementation
Other Hybrid Analysis Techniques

AAA705 @ Korea University Lecture 6 - DSE March 25, 2024 4 / 90

Contents

1. Symbolic Execution
Basic Idea
Satisfiability Modulo Theories (SMT)
Limitations of Symbolic Execution

2. Dynamic Symbolic Execution (DSE)
Search Heuristics
Example – Hash Function
Example – Loops
Example – Data Structures
Realistic Implementation
Other Hybrid Analysis Techniques

AAA705 @ Korea University Lecture 6 - DSE March 25, 2024 5 / 90

Limitations of Random Testing
• Random testing has a limitation that it sometimes fails or takes a

long time to find bugs if they can only be triggered under specific
conditions.

• For example, consider the following program.

void testme (int x) {
if (x == 93589) {

ERROR
}

}

• The bug can only be triggered when the input is x = 93589.
• It means that the probability of triggering the bug is as follows when

the integer input is randomly generated:

1
232 ≈ 0.00000000023283%

AAA705 @ Korea University Lecture 6 - DSE March 25, 2024 6 / 90

Symbolic Execution
• Symbolic execution is a program analysis technique that explores

the paths of a program with symbolic values as inputs and collects
constraints on the inputs.

• 1976 – A system to generate test data and symbolically execute
programs (Lori Clarke).

• 1977 – Symbolic execution and program testing (James King).

• 2005 to present – Practical symbolic execution
• Using advanced constraint solvers (SMT solvers)
• Heuristics to control exponential path explosion
• Heap modeling and reasoning about complex data structures
• Environment modeling
• Dealing with solver limitations

AAA705 @ Korea University Lecture 6 - DSE March 25, 2024 7 / 90

Symbolic Execution – Basic Idea
1 Execute the program on symbolic values Ω.

2 A symbolic state σ ∈ S = X fin−→ Ω is a finite mapping from variables
X to symbolic values Ω.

3 A path condition Φ = ϕ1 ∧ . . . ∧ ϕn is a quantifier-free formula over
the symbolic inputs that encodes all branch decisions taken so far.

4 All paths in the program form its execution tree, in which some
paths are feasible and some are infeasible.

AAA705 @ Korea University Lecture 6 - DSE March 25, 2024 8 / 90

Symbolic Execution – Basic Idea

void f(int x, int y) {
/* 1 */
int z = 2 * x;
/* 2 */
if (z == y) {

z = y - x;
/* 3 */
if (x < z) {

/* 4 */
ERROR;

} else {
/* 5 */

}
} else {

/* 6 */
}

}

x 7→ α
y 7→ β
Φ = true

1:

x 7→ α
y 7→ β
z 7→ 2α
Φ = true

2:

z == y

x 7→ α
y 7→ β
z 7→ β − α
Φ = (2α = β)

3:

#t

x < z

x 7→ α
y 7→ β
z 7→ β − α
Φ = (2α = β) ∧ (α < β − α)

4:

#t

INVALID

x 7→ α
y 7→ β
z 7→ β − α
Φ = (2α = β) ∧ (α ≥ β − α)

5:

#f

VALID: (x,y)=(0,0)

test #1: (x,y)=(0,0)

x 7→ α
y 7→ β
z 7→ β − α
Φ = (2α ̸= β)

6:

#f

VALID: (x,y)=(0,1)

test #2: (x,y)=(0,1)

AAA705 @ Korea University Lecture 6 - DSE March 25, 2024 9 / 90

Satisfiability Modulo Theories (SMT)
• Then, how to check the satisfiability of a path condition Φ?

• Most symbolic execution tools use Satisfiability Modulo Theories
(SMT) solvers (e.g., Z3, CVC4) to check it.

• An SMT solver takes a first-order logic formula and returns whether
it is satisfiable or not using various background theories, such as
arithmetic, arrays, bit-vectors, algebraic data types, etc.

AAA705 @ Korea University Lecture 6 - DSE March 25, 2024 10 / 90

Satisfiability Modulo Theories (SMT) – Example
• Check the satisfiability of the following formula using an SMT solver.

b + 2 = c ∧ f (read(write(a, b, 3), c − 2)) ̸= f (c − b + 1)

• Substitute c by b + 2 in the second part of the formula.

b + 2 = c ∧ f (read(write(a, b, b + 2 − 2), b)) ̸= f (b + 2 − b + 1)

• Arithmetic simplification of the formula.

b + 2 = c ∧ f (read(write(a, b, 3), b)) ̸= f (3)

• Applying array theory axiom – ∀a, i , v . read(write(a, i , v), i) = v .

b + 2 = c ∧ f (3) ̸= f (3) (UNSAT)

AAA705 @ Korea University Lecture 6 - DSE March 25, 2024 11 / 90

Satisfiability Modulo Theories (SMT) – Example
Z31 is one of the most popular SMT solvers developed by Microsoft
Research and used in many symbolic execution tools.
For example, the following Z3 script returns unsat.
(declare-const a (Array Int Int))
(declare-const b Int)
(declare-const c Int)
(declare-fun f (Int) Int)
(assert (= (+ b 2) c))
(assert (not (= (f (select (store a b 3) (- c 2))) (f (+ (- c b) 1)))))
(check-sat) ; => unsat

Or, the following script returns a satisfying assignment x = 0 and y = 0.
(declare-const x Int)
(declare-const y Int)
(assert (and (= (* 2 x) y) (>= x (- y x))))
(check-sat) ; => sat
(get-model) ; => (x, y) = (0, 0)

1https://github.com/Z3Prover/z3
AAA705 @ Korea University Lecture 6 - DSE March 25, 2024 12 / 90

https://github.com/Z3Prover/z3

Limitations of Symbolic Execution

void f(int x, int y) {
/* 1 */
int z = hash(x);
/* 2 */
if (z == y) {

z = y - x;
/* 3 */
if (x < z) {

/* 4 */
ERROR;

} else {
/* 5 */

}
} else {

/* 6 */
}

}

We cannot solve path condition Φ containing
the hash function using SMT solver.

x 7→ α
y 7→ β
Φ = true

1:

x 7→ α
y 7→ β
z 7→ hash(α)
Φ = true

2:

z == y

x 7→ α
y 7→ β
z 7→ hash(α)
Φ = (hash(α) = β)

3:

#t

UNKNWON

x 7→ α
y 7→ β
z 7→ hash(α)
Φ = (hash(α) ̸= β)

6:

#f

UNKNWON

AAA705 @ Korea University Lecture 6 - DSE March 25, 2024 13 / 90

Contents

1. Symbolic Execution
Basic Idea
Satisfiability Modulo Theories (SMT)
Limitations of Symbolic Execution

2. Dynamic Symbolic Execution (DSE)
Search Heuristics
Example – Hash Function
Example – Loops
Example – Data Structures
Realistic Implementation
Other Hybrid Analysis Techniques

AAA705 @ Korea University Lecture 6 - DSE March 25, 2024 14 / 90

Dynamic Symbolic Execution (DSE)
• Dynamic Symbolic Execution (DSE) is a technique that combines

concrete execution with symbolic execution to overcome the
limitations of symbolic execution.

• It is sometimes called concolic testing because it combines both
concrete and symbolic execution to generate test cases.

• It stores both the concrete values and the symbolic values during
the execution of the program, and solves the path condition to guide
execution at branch points.

• The concrete values are used to simplify the path condition.

AAA705 @ Korea University Lecture 6 - DSE March 25, 2024 15 / 90

Dynamic Symbolic Execution (DSE) – Example

void f(int x, int y) {
/* 1 */
int z = 2 * x;
/* 2 */
if (z == y) {

z = y - x;
/* 3 */
if (x < z) {

/* 4 */
ERROR;

} else {
/* 5 */

}
} else {

/* 6 */
}

}

x 7→ 3 | α
y 7→ 7 | β
Φ = true

1:test #1: (x,y)=(3,7)

x 7→ 3 | α
y 7→ 7 | β
z 7→ 6 | 2α
Φ = true

2:

z == y

x 7→ 3 | α
y 7→ 7 | β
z 7→ 6 | β − α
Φ = (2α ̸= β)

6:

#fz == y

Solve (2α = β)

#t

VALID: (x,y)=(2,4)

AAA705 @ Korea University Lecture 6 - DSE March 25, 2024 16 / 90

Dynamic Symbolic Execution (DSE) – Example

void f(int x, int y) {
/* 1 */
int z = 2 * x;
/* 2 */
if (z == y) {

z = y - x;
/* 3 */
if (x < z) {

/* 4 */
ERROR;

} else {
/* 5 */

}
} else {

/* 6 */
}

}

x 7→ 2 | α
y 7→ 4 | β
Φ = true

1:test #1: (x,y)=(3,7)

test #2: (x,y)=(2,4)
x 7→ 2 | α
y 7→ 4 | β
z 7→ 4 | 2α
Φ = true

2:

z == y

x 7→ 2 | α
y 7→ 4 | β
z 7→ 2 | β − α
Φ = (2α = β)

3:

#t

x < z

x 7→ 2 | α
y 7→ 4 | β
z 7→ 2 | β − α
Φ = (2α = β) ∧ (α ≥ β − α)

5:

#fx < z

Solve (2α = β) ∧ (α < β − α)

#t

INVALID

AAA705 @ Korea University Lecture 6 - DSE March 25, 2024 17 / 90

Dynamic Symbolic Execution (DSE)

Algorithm 1 presents a generic concolic testing algo-
rithm.3 The algorithm takes a program P , an initial input
vector v0, and a testing budget N (i.e., the number of execu-
tions of the program). The algorithm maintains the execu-
tion tree T of the program, which is the list of previously
explored path conditions; note that an efficient implementa-
tion for the execution tree is to use a tree, but we represent
the execution tree as a list for simplicity of Algorithm 1. The
execution tree T and input vector v are initially empty and
the initial input vector, respectively (lines 1 and 2). At line 4,
the program P is executed with the input v, resulting in the
current execution path Fm explored. The path condition is
appended to T (line 5). In lines 6–8, the Choose function
takes T as input,4 and chooses a branch to negate; more pre-
cisely, the function first chooses a path condition F from T ,
then selects a branch, i.e., fi, from F. Once a branch fi is
chosen, the algorithm generates the new path condition
F0 ¼ ð

V
j< i fjÞ ^ :fi. If F

0 is satisfiable, the next input vec-
tor is computed (line 9), where SATðFÞ returns true iff
F is satisfiable and modelðFÞ finds an input vector v which
is a model of F, i.e., v $ F. Otherwise, if F0 is unsatisfiable,
the algorithm repeatedly tries to negate another branch until
a satisfiable path condition is found; as an exception, if the
algorithm totally fails to find any satisfiable conditions in F,
it escapes the inner loop at lines 6–8, and then executes the
program with a random input at line 4. We omitted this
exception handling in Algorithm 1 for its simplicity. Algo-
rithm 1 repeats for the given budgetN and the final number
of covered branches jBranchesðT Þj is returned.

Algorithm 1. Concolic Testing

Input : Program P , budget N , initial input v0
Output : The number of branches covered
1: T hi
2: v v0
3: form ¼ 1 to N do
4: Fm RunProgramðP; vÞ
5: T T %Fm

6: repeat
7: ðF; fiÞ ChooseðT Þ ðF ¼ f1 ^ % % % ^ fn)
8: until SATð

V
j< i fj ^ :fiÞ

9: v modelð
V

j< i fj ^ :fiÞ
10: return jBranchesðT Þj

2.1.2 Search Heuristic

The performance of Algorithm 1 varies depending on the
choice of the function Choose, namely a search heuristic.
Since the number of execution paths in a program is usually
exponential in the number of branches, exploring all possi-
ble execution paths is infeasible. To address this problem,
concolic testing relies on the search heuristic that steers the

execution in a way to maximize code coverage in a given
limited time budget [19]. In prior work, the search heuristic
was developed manually. Below, we describe three search
heuristics [20], [23], which are known to perform compara-
tively better than others.

The most simple search heuristic, called Random Branch
Search (Random) [20], is to randomly select a branch from
the last execution path. That is, the Choose function in Algo-
rithm 1 is defined as follows:

ChooseðhF1F2 . . .FmiÞ ¼ ðFm;fiÞ;

where fi is a randomly chosen branch from Fm ¼
f1 ^ % % % ^ fn. Although very simple, the Random heuristic is
typically a better choice than simple deterministic heuristics
such as DFS and BFS [20]. In our experiments, the Random
heuristic was sometimes better than sophisticated techni-
ques (Fig. 3).

Control-Flow Directed Search (CFDS) [20] is based on the
natural intuition that uncovered branches near the current
execution path would be easier to be exercised in the next
execution. This heuristic first picks the last path condition
Fm, then selects a branch whose opposite branch is the near-
est from any of the unseen branches. The distance between
two branches is calculated by the number of branches on
the path from the source to the destination. To calculate the
distance, CFDS uses control flow graph of the program,
which is statically constructed before the testing.

Algorithm 2. Execution-Generated Testing

Input : Program P , budget N
Output : The number of branches covered
1: States fðinstr0;M0; trueÞg
2: T ;
3: repeat
4: ðinstr;M;FÞ ChooseðStatesÞ
5: States States n fðinstr;M;FÞg
6: ðinstr0;M 0;FÞ Executeððinstr;M;FÞÞ
7: if instr0 = (if (e) then s1 else s2) then
8: if SATðF ^ eÞ then
9: States States [fðs1;M 0;F ^ eÞg
10: if SATðF ^ :eÞ then
11: States States [fðs2;M 0;F ^ :eÞg
12: else if instr0 = halt then
13: T T [modelðFÞ
14: until budget N expires or States ¼ ;
15:
16: for all ðinstr;M;FÞ 2 States do
17: T T [modelðFÞ
18: return jCoverageðT Þj

Context-Guided Search (CGS) [23] performs the breath-
first search (BFS) on the execution tree, while reducing the
search space by excluding branches whose “contexts” are
already explored. Given an execution path, the context of a
branch in the path is defined as a sequence of preceding
branches. During search, it gathers candidate branches at
depth d from the execution tree, picks a branch from the
candidates, and the context of the branch is calculated. If
the context has been already considered, CGS skips that
branch and continues to pick the next one. Otherwise, the

3. Although Algorithm 1 generalizes existing search heuristics (e.g.,
CGS [23], CFDS [20]) but it does not cover some algorithm such as one
implemented in SAGE [21]. Incorporating SAGE into Algorithm 1
makes the algorithm unnecessarily complicated.

4. For simplicity, though some search heuristics require additional
arguments, we assumed they are passed to Choose implicitly. For exam-
ple, when Choose corresponds to the CFDS heuristic, it additionally
takes a control-flow graph as input; when corresponding to the CGS
heuristic, it takes a dominator tree as input.

3642 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 9, SEPTEMBER 2022

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on December 26,2022 at 01:42:47 UTC from IEEE Xplore. Restrictions apply.

AAA705 @ Korea University Lecture 6 - DSE March 25, 2024 18 / 90

Dynamic Symbolic Execution (DSE)
In each iteration, DSE chooses a path to explore based on the path
condition Φ using a specific search heuristic.

• Random Search – Randomly selects a branch from the most recently
visited execution path.

• Control-Flow Directed Search (CFDS) – Selects the uncovered
branch closest to the last branch in the current execution path.

• Context-Guided Search (CGS) – Performs a breadth-first search
(BFS) on the execution tree by excluding branches whose contexts
(i.e., the last d preceding branches) are already explored.

• Depth-First Search (DFS)

• etc.

AAA705 @ Korea University Lecture 6 - DSE March 25, 2024 19 / 90

Search Heuristics in DSE
This is the control-flow directed search (CFDS) heuristic.

#t

#f

#f

VALID x1

<latexit sha1_base64="d4uns8NjJzJP/lNz6uW6BkJ9B+E=">AAACFXicbVDLSgMxFM34rPVVdekmWARXZUakuiy6cVnBPqAdSiaTaWOTzJDcEcbSf3An+i/uxK1rf8WVaTsL23rgwuGce3NzT5AIbsB1v52V1bX1jc3CVnF7Z3dvv3Rw2DRxqilr0FjEuh0QwwRXrAEcBGsnmhEZCNYKhjcTv/XItOGxuocsYb4kfcUjTglYqdmtD3jP65XKbsWdAi8TLydllKPeK/10w5imkimgghjT8dwE/BHRwKlg42I3NSwhdEj6rGOpIpIZfzT97RifWiXEUaxtKcBT9e/EiEhjMhnYTklgYBa9ifivZ0ASnelwYT9EV/6IqyQFpuhsfZQKDDGeBIJDrhkFkVlCqOb2AkwHRBMKNra594EPn8ZFG5a3GM0yaZ5XvGqlendRrl3nsRXQMTpBZ8hDl6iGblEdNRBFD+gZvaI358V5dz6cz1nripPPHKE5OF+/aRSf5A==</latexit>

�1

ϕ2

ϕ3

ϕ1

AAA705 @ Korea University Lecture 6 - DSE March 25, 2024 20 / 90

Search Heuristics in DSE
This is the control-flow directed search (CFDS) heuristic.

#t

#f

#f

VALID x1

<latexit sha1_base64="d4uns8NjJzJP/lNz6uW6BkJ9B+E=">AAACFXicbVDLSgMxFM34rPVVdekmWARXZUakuiy6cVnBPqAdSiaTaWOTzJDcEcbSf3An+i/uxK1rf8WVaTsL23rgwuGce3NzT5AIbsB1v52V1bX1jc3CVnF7Z3dvv3Rw2DRxqilr0FjEuh0QwwRXrAEcBGsnmhEZCNYKhjcTv/XItOGxuocsYb4kfcUjTglYqdmtD3jP65XKbsWdAi8TLydllKPeK/10w5imkimgghjT8dwE/BHRwKlg42I3NSwhdEj6rGOpIpIZfzT97RifWiXEUaxtKcBT9e/EiEhjMhnYTklgYBa9ifivZ0ASnelwYT9EV/6IqyQFpuhsfZQKDDGeBIJDrhkFkVlCqOb2AkwHRBMKNra594EPn8ZFG5a3GM0yaZ5XvGqlendRrl3nsRXQMTpBZ8hDl6iGblEdNRBFD+gZvaI358V5dz6cz1nripPPHKE5OF+/aRSf5A==</latexit>

�1

ϕ2

ϕ3

ϕ1

AAA705 @ Korea University Lecture 6 - DSE March 25, 2024 21 / 90

Search Heuristics in DSE
This is the control-flow directed search (CFDS) heuristic.

#t

#f

#f Solve
<latexit sha1_base64="h6ar+OndsJBJdY9necwTbtlp3eQ=">AAACNnicbVDLSgMxFM34rPU16tJNsBRclZkq1WXRjcsK9gGdoWQyaRuayQzJHaEO/QK/xp3ol7hxJ25duzJ9CLb1QODknPvgniARXIPjvFkrq2vrG5u5rfz2zu7evn1w2NBxqiir01jEqhUQzQSXrA4cBGslipEoEKwZDK7HfvOeKc1jeQfDhPkR6Une5ZSAkTp20Uv6vONiTxAZYk+yHp4o5V9l/Dnr2AWn5EyAl4k7IwU0Q61jf3thTNOISaCCaN12nQT8jCjgVLBR3ks1SwgdkB5rGypJxLSfTc4Z4aJRQtyNlXkS8ET925GRSOthFJjKiEBfL3pj8V9PQ0TUUIUL+6F76WdcJikwSafru6nAEONxYjjkilEQQ0MIVdxcgGmfKELB5Do3H/jgYZQ3YbmL0SyTRrnkVkqV2/NC9WoWWw4doxN0ilx0garoBtVQHVH0iJ7QC3q1nq1368P6nJauWLOeIzQH6+sHHlOr9A==</latexit>

�1 ^ ¬�2 ^ �3

VALID x1

<latexit sha1_base64="d4uns8NjJzJP/lNz6uW6BkJ9B+E=">AAACFXicbVDLSgMxFM34rPVVdekmWARXZUakuiy6cVnBPqAdSiaTaWOTzJDcEcbSf3An+i/uxK1rf8WVaTsL23rgwuGce3NzT5AIbsB1v52V1bX1jc3CVnF7Z3dvv3Rw2DRxqilr0FjEuh0QwwRXrAEcBGsnmhEZCNYKhjcTv/XItOGxuocsYb4kfcUjTglYqdmtD3jP65XKbsWdAi8TLydllKPeK/10w5imkimgghjT8dwE/BHRwKlg42I3NSwhdEj6rGOpIpIZfzT97RifWiXEUaxtKcBT9e/EiEhjMhnYTklgYBa9ifivZ0ASnelwYT9EV/6IqyQFpuhsfZQKDDGeBIJDrhkFkVlCqOb2AkwHRBMKNra594EPn8ZFG5a3GM0yaZ5XvGqlendRrl3nsRXQMTpBZ8hDl6iGblEdNRBFD+gZvaI358V5dz6cz1nripPPHKE5OF+/aRSf5A==</latexit>

�1

ϕ2

ϕ3

ϕ1

AAA705 @ Korea University Lecture 6 - DSE March 25, 2024 22 / 90

Search Heuristics in DSE
This is the control-flow directed search (CFDS) heuristic.

#t

#f

#f

VALID x2

Solve
<latexit sha1_base64="h6ar+OndsJBJdY9necwTbtlp3eQ=">AAACNnicbVDLSgMxFM34rPU16tJNsBRclZkq1WXRjcsK9gGdoWQyaRuayQzJHaEO/QK/xp3ol7hxJ25duzJ9CLb1QODknPvgniARXIPjvFkrq2vrG5u5rfz2zu7evn1w2NBxqiir01jEqhUQzQSXrA4cBGslipEoEKwZDK7HfvOeKc1jeQfDhPkR6Une5ZSAkTp20Uv6vONiTxAZYk+yHp4o5V9l/Dnr2AWn5EyAl4k7IwU0Q61jf3thTNOISaCCaN12nQT8jCjgVLBR3ks1SwgdkB5rGypJxLSfTc4Z4aJRQtyNlXkS8ET925GRSOthFJjKiEBfL3pj8V9PQ0TUUIUL+6F76WdcJikwSafru6nAEONxYjjkilEQQ0MIVdxcgGmfKELB5Do3H/jgYZQ3YbmL0SyTRrnkVkqV2/NC9WoWWw4doxN0ilx0garoBtVQHVH0iJ7QC3q1nq1368P6nJauWLOeIzQH6+sHHlOr9A==</latexit>

�1 ^ ¬�2 ^ �3

VALID x1

<latexit sha1_base64="d4uns8NjJzJP/lNz6uW6BkJ9B+E=">AAACFXicbVDLSgMxFM34rPVVdekmWARXZUakuiy6cVnBPqAdSiaTaWOTzJDcEcbSf3An+i/uxK1rf8WVaTsL23rgwuGce3NzT5AIbsB1v52V1bX1jc3CVnF7Z3dvv3Rw2DRxqilr0FjEuh0QwwRXrAEcBGsnmhEZCNYKhjcTv/XItOGxuocsYb4kfcUjTglYqdmtD3jP65XKbsWdAi8TLydllKPeK/10w5imkimgghjT8dwE/BHRwKlg42I3NSwhdEj6rGOpIpIZfzT97RifWiXEUaxtKcBT9e/EiEhjMhnYTklgYBa9ifivZ0ASnelwYT9EV/6IqyQFpuhsfZQKDDGeBIJDrhkFkVlCqOb2AkwHRBMKNra594EPn8ZFG5a3GM0yaZ5XvGqlendRrl3nsRXQMTpBZ8hDl6iGblEdNRBFD+gZvaI358V5dz6cz1nripPPHKE5OF+/aRSf5A==</latexit>

�1

ϕ2

ϕ3

ϕ1

AAA705 @ Korea University Lecture 6 - DSE March 25, 2024 23 / 90

Search Heuristics in DSE
This is the control-flow directed search (CFDS) heuristic.

#t

#f

#t #f

VALID x2 VALID x1

<latexit sha1_base64="ujZ1s3//SHpeCnoczfuXfyFZq74=">AAACFXicbVC7TsMwFHXKq5RXgZHFokJiqpIKFcYKFsYi0YfURpXjOK2pnUT2DVKI+g9sCP6FDbEy8ytMuG0G2nKkKx2dc6+v7/FiwTXY9rdVWFvf2Nwqbpd2dvf2D8qHR20dJYqyFo1EpLoe0UzwkLWAg2DdWDEiPcE63vhm6ncemdI8Cu8hjZkryTDkAacEjNTuN0d8UBuUK3bVngGvEicnFZSjOSj/9P2IJpKFQAXRuufYMbgZUcCpYJNSP9EsJnRMhqxnaEgk0242++0EnxnFx0GkTIWAZ+rfiYxIrVPpmU5JYKSXvan4r6dBEpUqf2k/BFduxsM4ARbS+fogERgiPA0E+1wxCiI1hFDFzQWYjogiFExsC+8DHz9NSiYsZzmaVdKuVZ16tX53UWlc57EV0Qk6RefIQZeogW5RE7UQRQ/oGb2iN+vFerc+rM95a8HKZ47RAqyvX2rAn+U=</latexit>

�2
<latexit sha1_base64="d4uns8NjJzJP/lNz6uW6BkJ9B+E=">AAACFXicbVDLSgMxFM34rPVVdekmWARXZUakuiy6cVnBPqAdSiaTaWOTzJDcEcbSf3An+i/uxK1rf8WVaTsL23rgwuGce3NzT5AIbsB1v52V1bX1jc3CVnF7Z3dvv3Rw2DRxqilr0FjEuh0QwwRXrAEcBGsnmhEZCNYKhjcTv/XItOGxuocsYb4kfcUjTglYqdmtD3jP65XKbsWdAi8TLydllKPeK/10w5imkimgghjT8dwE/BHRwKlg42I3NSwhdEj6rGOpIpIZfzT97RifWiXEUaxtKcBT9e/EiEhjMhnYTklgYBa9ifivZ0ASnelwYT9EV/6IqyQFpuhsfZQKDDGeBIJDrhkFkVlCqOb2AkwHRBMKNra594EPn8ZFG5a3GM0yaZ5XvGqlendRrl3nsRXQMTpBZ8hDl6iGblEdNRBFD+gZvaI358V5dz6cz1nripPPHKE5OF+/aRSf5A==</latexit>

�1

ϕ2

ϕ3

ϕ1

AAA705 @ Korea University Lecture 6 - DSE March 25, 2024 24 / 90

Search Heuristics in DSE
This is the control-flow directed search (CFDS) heuristic.

#t

#f

#t #f

VALID x2 VALID x1VALID x2 VALID x1

<latexit sha1_base64="ujZ1s3//SHpeCnoczfuXfyFZq74=">AAACFXicbVC7TsMwFHXKq5RXgZHFokJiqpIKFcYKFsYi0YfURpXjOK2pnUT2DVKI+g9sCP6FDbEy8ytMuG0G2nKkKx2dc6+v7/FiwTXY9rdVWFvf2Nwqbpd2dvf2D8qHR20dJYqyFo1EpLoe0UzwkLWAg2DdWDEiPcE63vhm6ncemdI8Cu8hjZkryTDkAacEjNTuN0d8UBuUK3bVngGvEicnFZSjOSj/9P2IJpKFQAXRuufYMbgZUcCpYJNSP9EsJnRMhqxnaEgk0242++0EnxnFx0GkTIWAZ+rfiYxIrVPpmU5JYKSXvan4r6dBEpUqf2k/BFduxsM4ARbS+fogERgiPA0E+1wxCiI1hFDFzQWYjogiFExsC+8DHz9NSiYsZzmaVdKuVZ16tX53UWlc57EV0Qk6RefIQZeogW5RE7UQRQ/oGb2iN+vFerc+rM95a8HKZ47RAqyvX2rAn+U=</latexit>

�2
<latexit sha1_base64="d4uns8NjJzJP/lNz6uW6BkJ9B+E=">AAACFXicbVDLSgMxFM34rPVVdekmWARXZUakuiy6cVnBPqAdSiaTaWOTzJDcEcbSf3An+i/uxK1rf8WVaTsL23rgwuGce3NzT5AIbsB1v52V1bX1jc3CVnF7Z3dvv3Rw2DRxqilr0FjEuh0QwwRXrAEcBGsnmhEZCNYKhjcTv/XItOGxuocsYb4kfcUjTglYqdmtD3jP65XKbsWdAi8TLydllKPeK/10w5imkimgghjT8dwE/BHRwKlg42I3NSwhdEj6rGOpIpIZfzT97RifWiXEUaxtKcBT9e/EiEhjMhnYTklgYBa9ifivZ0ASnelwYT9EV/6IqyQFpuhsfZQKDDGeBIJDrhkFkVlCqOb2AkwHRBMKNra594EPn8ZFG5a3GM0yaZ5XvGqlendRrl3nsRXQMTpBZ8hDl6iGblEdNRBFD+gZvaI358V5dz6cz1nripPPHKE5OF+/aRSf5A==</latexit>

�1

ϕ2

ϕ3

ϕ1

AAA705 @ Korea University Lecture 6 - DSE March 25, 2024 25 / 90

Search Heuristics in DSE
This is the control-flow directed search (CFDS) heuristic.

#t

#f

#t #f

Solve
<latexit sha1_base64="skwMMAwGugGbWvPwXyUn1uCcwLo=">AAACJHicbVC7TsMwFHXKq5RXoSOLRYXEVCUVKowVLIxFog+piSrHcVurjhPZN0gh6rewIfgXNsTAwocw4aYdaMuRLB2fcx/28WPBNdj2l1XY2Nza3inulvb2Dw6PyscnHR0lirI2jUSkej7RTHDJ2sBBsF6sGAl9wbr+5Hbmdx+Z0jySD5DGzAvJSPIhpwSMNChX3HjMBw52BZEBzi/1Qblq1+wceJ04C1JFC7QG5R83iGgSMglUEK37jh2DlxEFnAo2LbmJZjGhEzJifUMlCZn2svzxU3xulAAPI2WOBJyrfzsyEmqdhr6pDAmM9ao3E//1NIREpSpY2Q/Day/jMk6ASTpfP0wEhgjP8sEBV4yCSA0hVHHzA0zHRBEKJsWl+cAnT9OSCctZjWaddOo1p1Fr3F9WmzeL2IroFJ2hC+SgK9REd6iF2oiiFD2jV/RmvVjv1of1OS8tWIueClqC9f0LlTilIA==</latexit>

�1 ^ �2

VALID x2 VALID x1VALID x2 VALID x1

<latexit sha1_base64="ujZ1s3//SHpeCnoczfuXfyFZq74=">AAACFXicbVC7TsMwFHXKq5RXgZHFokJiqpIKFcYKFsYi0YfURpXjOK2pnUT2DVKI+g9sCP6FDbEy8ytMuG0G2nKkKx2dc6+v7/FiwTXY9rdVWFvf2Nwqbpd2dvf2D8qHR20dJYqyFo1EpLoe0UzwkLWAg2DdWDEiPcE63vhm6ncemdI8Cu8hjZkryTDkAacEjNTuN0d8UBuUK3bVngGvEicnFZSjOSj/9P2IJpKFQAXRuufYMbgZUcCpYJNSP9EsJnRMhqxnaEgk0242++0EnxnFx0GkTIWAZ+rfiYxIrVPpmU5JYKSXvan4r6dBEpUqf2k/BFduxsM4ARbS+fogERgiPA0E+1wxCiI1hFDFzQWYjogiFExsC+8DHz9NSiYsZzmaVdKuVZ16tX53UWlc57EV0Qk6RefIQZeogW5RE7UQRQ/oGb2iN+vFerc+rM95a8HKZ47RAqyvX2rAn+U=</latexit>

�2
<latexit sha1_base64="d4uns8NjJzJP/lNz6uW6BkJ9B+E=">AAACFXicbVDLSgMxFM34rPVVdekmWARXZUakuiy6cVnBPqAdSiaTaWOTzJDcEcbSf3An+i/uxK1rf8WVaTsL23rgwuGce3NzT5AIbsB1v52V1bX1jc3CVnF7Z3dvv3Rw2DRxqilr0FjEuh0QwwRXrAEcBGsnmhEZCNYKhjcTv/XItOGxuocsYb4kfcUjTglYqdmtD3jP65XKbsWdAi8TLydllKPeK/10w5imkimgghjT8dwE/BHRwKlg42I3NSwhdEj6rGOpIpIZfzT97RifWiXEUaxtKcBT9e/EiEhjMhnYTklgYBa9ifivZ0ASnelwYT9EV/6IqyQFpuhsfZQKDDGeBIJDrhkFkVlCqOb2AkwHRBMKNra594EPn8ZFG5a3GM0yaZ5XvGqlendRrl3nsRXQMTpBZ8hDl6iGblEdNRBFD+gZvaI358V5dz6cz1nripPPHKE5OF+/aRSf5A==</latexit>

�1

ϕ2

ϕ3

ϕ1

AAA705 @ Korea University Lecture 6 - DSE March 25, 2024 26 / 90

Search Heuristics in DSE
This is the control-flow directed search (CFDS) heuristic.

#t

#f

#t #f

INVALID

Solve
<latexit sha1_base64="skwMMAwGugGbWvPwXyUn1uCcwLo=">AAACJHicbVC7TsMwFHXKq5RXoSOLRYXEVCUVKowVLIxFog+piSrHcVurjhPZN0gh6rewIfgXNsTAwocw4aYdaMuRLB2fcx/28WPBNdj2l1XY2Nza3inulvb2Dw6PyscnHR0lirI2jUSkej7RTHDJ2sBBsF6sGAl9wbr+5Hbmdx+Z0jySD5DGzAvJSPIhpwSMNChX3HjMBw52BZEBzi/1Qblq1+wceJ04C1JFC7QG5R83iGgSMglUEK37jh2DlxEFnAo2LbmJZjGhEzJifUMlCZn2svzxU3xulAAPI2WOBJyrfzsyEmqdhr6pDAmM9ao3E//1NIREpSpY2Q/Day/jMk6ASTpfP0wEhgjP8sEBV4yCSA0hVHHzA0zHRBEKJsWl+cAnT9OSCctZjWaddOo1p1Fr3F9WmzeL2IroFJ2hC+SgK9REd6iF2oiiFD2jV/RmvVjv1of1OS8tWIueClqC9f0LlTilIA==</latexit>

�1 ^ �2

VALID x2 VALID x1VALID x2 VALID x1

<latexit sha1_base64="ujZ1s3//SHpeCnoczfuXfyFZq74=">AAACFXicbVC7TsMwFHXKq5RXgZHFokJiqpIKFcYKFsYi0YfURpXjOK2pnUT2DVKI+g9sCP6FDbEy8ytMuG0G2nKkKx2dc6+v7/FiwTXY9rdVWFvf2Nwqbpd2dvf2D8qHR20dJYqyFo1EpLoe0UzwkLWAg2DdWDEiPcE63vhm6ncemdI8Cu8hjZkryTDkAacEjNTuN0d8UBuUK3bVngGvEicnFZSjOSj/9P2IJpKFQAXRuufYMbgZUcCpYJNSP9EsJnRMhqxnaEgk0242++0EnxnFx0GkTIWAZ+rfiYxIrVPpmU5JYKSXvan4r6dBEpUqf2k/BFduxsM4ARbS+fogERgiPA0E+1wxCiI1hFDFzQWYjogiFExsC+8DHz9NSiYsZzmaVdKuVZ16tX53UWlc57EV0Qk6RefIQZeogW5RE7UQRQ/oGb2iN+vFerc+rM95a8HKZ47RAqyvX2rAn+U=</latexit>

�2
<latexit sha1_base64="d4uns8NjJzJP/lNz6uW6BkJ9B+E=">AAACFXicbVDLSgMxFM34rPVVdekmWARXZUakuiy6cVnBPqAdSiaTaWOTzJDcEcbSf3An+i/uxK1rf8WVaTsL23rgwuGce3NzT5AIbsB1v52V1bX1jc3CVnF7Z3dvv3Rw2DRxqilr0FjEuh0QwwRXrAEcBGsnmhEZCNYKhjcTv/XItOGxuocsYb4kfcUjTglYqdmtD3jP65XKbsWdAi8TLydllKPeK/10w5imkimgghjT8dwE/BHRwKlg42I3NSwhdEj6rGOpIpIZfzT97RifWiXEUaxtKcBT9e/EiEhjMhnYTklgYBa9ifivZ0ASnelwYT9EV/6IqyQFpuhsfZQKDDGeBIJDrhkFkVlCqOb2AkwHRBMKNra594EPn8ZFG5a3GM0yaZ5XvGqlendRrl3nsRXQMTpBZ8hDl6iGblEdNRBFD+gZvaI358V5dz6cz1nripPPHKE5OF+/aRSf5A==</latexit>

�1

ϕ2

ϕ3

ϕ1

AAA705 @ Korea University Lecture 6 - DSE March 25, 2024 27 / 90

Search Heuristics in DSE
This is the control-flow directed search (CFDS) heuristic.

#t

#f

#t #f

#t

INVALID VALID x2 VALID x1

<latexit sha1_base64="ujZ1s3//SHpeCnoczfuXfyFZq74=">AAACFXicbVC7TsMwFHXKq5RXgZHFokJiqpIKFcYKFsYi0YfURpXjOK2pnUT2DVKI+g9sCP6FDbEy8ytMuG0G2nKkKx2dc6+v7/FiwTXY9rdVWFvf2Nwqbpd2dvf2D8qHR20dJYqyFo1EpLoe0UzwkLWAg2DdWDEiPcE63vhm6ncemdI8Cu8hjZkryTDkAacEjNTuN0d8UBuUK3bVngGvEicnFZSjOSj/9P2IJpKFQAXRuufYMbgZUcCpYJNSP9EsJnRMhqxnaEgk0242++0EnxnFx0GkTIWAZ+rfiYxIrVPpmU5JYKSXvan4r6dBEpUqf2k/BFduxsM4ARbS+fogERgiPA0E+1wxCiI1hFDFzQWYjogiFExsC+8DHz9NSiYsZzmaVdKuVZ16tX53UWlc57EV0Qk6RefIQZeogW5RE7UQRQ/oGb2iN+vFerc+rM95a8HKZ47RAqyvX2rAn+U=</latexit>

�2
<latexit sha1_base64="oRPguouqWilQAHLYyelF0J2aLl0=">AAACFXicbVC7TsMwFHXKq5RXgZElokJiqhJAhbGChbFI9CG1UeU4TmtqO5F9gxSi/gMbgn9hQ6zM/AoTbpuBthzpSkfn3Ovre/yYMw2O820VVlbX1jeKm6Wt7Z3dvfL+QUtHiSK0SSIeqY6PNeVM0iYw4LQTK4qFz2nbH91M/PYjVZpF8h7SmHoCDyQLGcFgpFavMWT983654lSdKexl4uakgnI0+uWfXhCRRFAJhGOtu64Tg5dhBYxwOi71Ek1jTEZ4QLuGSiyo9rLpb8f2iVECO4yUKQn2VP07kWGhdSp80ykwDPWiNxH/9TQIrFIVLOyH8MrLmIwToJLM1ocJtyGyJ4HYAVOUAE8NwUQxc4FNhlhhAia2ufeBjZ7GJROWuxjNMmmdVd1atXZ3Ualf57EV0RE6RqfIRZeojm5RAzURQQ/oGb2iN+vFerc+rM9Za8HKZw7RHKyvX2xsn+Y=</latexit>

�3
<latexit sha1_base64="d4uns8NjJzJP/lNz6uW6BkJ9B+E=">AAACFXicbVDLSgMxFM34rPVVdekmWARXZUakuiy6cVnBPqAdSiaTaWOTzJDcEcbSf3An+i/uxK1rf8WVaTsL23rgwuGce3NzT5AIbsB1v52V1bX1jc3CVnF7Z3dvv3Rw2DRxqilr0FjEuh0QwwRXrAEcBGsnmhEZCNYKhjcTv/XItOGxuocsYb4kfcUjTglYqdmtD3jP65XKbsWdAi8TLydllKPeK/10w5imkimgghjT8dwE/BHRwKlg42I3NSwhdEj6rGOpIpIZfzT97RifWiXEUaxtKcBT9e/EiEhjMhnYTklgYBa9ifivZ0ASnelwYT9EV/6IqyQFpuhsfZQKDDGeBIJDrhkFkVlCqOb2AkwHRBMKNra594EPn8ZFG5a3GM0yaZ5XvGqlendRrl3nsRXQMTpBZ8hDl6iGblEdNRBFD+gZvaI358V5dz6cz1nripPPHKE5OF+/aRSf5A==</latexit>

�1

ϕ2

ϕ3

ϕ1

AAA705 @ Korea University Lecture 6 - DSE March 25, 2024 28 / 90

Search Heuristics in DSE
This is the control-flow directed search (CFDS) heuristic.

#t

#f

#t #f

Solve
<latexit sha1_base64="EREXmqzFqzOA/ebv+q8P8Ew3SyM=">AAACGnicbVDLSsNAFJ3UV62vqks3g0VwVRKR6rLoxmUF+4AmlMlk0g6dTMLMjRBDP8Od6L+4E7du/BVXTtssbOuBC4dz7p079/iJ4Bps+9sqra1vbG6Vtys7u3v7B9XDo46OU0VZm8YiVj2faCa4ZG3gIFgvUYxEvmBdf3w79buPTGkeywfIEuZFZCh5yCkBI/VdyYbYTUZ84AyqNbtuz4BXiVOQGirQGlR/3CCmacQkUEG07jt2Al5OFHAq2KTippolhI7JkPUNlSRi2stnX57gM6MEOIyVKQl4pv6dyEmkdRb5pjMiMNLL3lT819MQEZWpYGk/hNdezmWSApN0vj5MBYYYT1PBAVeMgsgMIVRxcwGmI6IIBZPdwvvAx0+TignLWY5mlXQu6k6j3ri/rDVvitjK6ASdonPkoCvURHeohdqIohg9o1f0Zr1Y79aH9TlvLVnFzDFagPX1C0NJoew=</latexit>¬�1

#t

INVALID VALID x2 VALID x1

<latexit sha1_base64="ujZ1s3//SHpeCnoczfuXfyFZq74=">AAACFXicbVC7TsMwFHXKq5RXgZHFokJiqpIKFcYKFsYi0YfURpXjOK2pnUT2DVKI+g9sCP6FDbEy8ytMuG0G2nKkKx2dc6+v7/FiwTXY9rdVWFvf2Nwqbpd2dvf2D8qHR20dJYqyFo1EpLoe0UzwkLWAg2DdWDEiPcE63vhm6ncemdI8Cu8hjZkryTDkAacEjNTuN0d8UBuUK3bVngGvEicnFZSjOSj/9P2IJpKFQAXRuufYMbgZUcCpYJNSP9EsJnRMhqxnaEgk0242++0EnxnFx0GkTIWAZ+rfiYxIrVPpmU5JYKSXvan4r6dBEpUqf2k/BFduxsM4ARbS+fogERgiPA0E+1wxCiI1hFDFzQWYjogiFExsC+8DHz9NSiYsZzmaVdKuVZ16tX53UWlc57EV0Qk6RefIQZeogW5RE7UQRQ/oGb2iN+vFerc+rM95a8HKZ47RAqyvX2rAn+U=</latexit>

�2
<latexit sha1_base64="oRPguouqWilQAHLYyelF0J2aLl0=">AAACFXicbVC7TsMwFHXKq5RXgZElokJiqhJAhbGChbFI9CG1UeU4TmtqO5F9gxSi/gMbgn9hQ6zM/AoTbpuBthzpSkfn3Ovre/yYMw2O820VVlbX1jeKm6Wt7Z3dvfL+QUtHiSK0SSIeqY6PNeVM0iYw4LQTK4qFz2nbH91M/PYjVZpF8h7SmHoCDyQLGcFgpFavMWT983654lSdKexl4uakgnI0+uWfXhCRRFAJhGOtu64Tg5dhBYxwOi71Ek1jTEZ4QLuGSiyo9rLpb8f2iVECO4yUKQn2VP07kWGhdSp80ykwDPWiNxH/9TQIrFIVLOyH8MrLmIwToJLM1ocJtyGyJ4HYAVOUAE8NwUQxc4FNhlhhAia2ufeBjZ7GJROWuxjNMmmdVd1atXZ3Ualf57EV0RE6RqfIRZeojm5RAzURQQ/oGb2iN+vFerc+rM9Za8HKZw7RHKyvX2xsn+Y=</latexit>

�3
<latexit sha1_base64="d4uns8NjJzJP/lNz6uW6BkJ9B+E=">AAACFXicbVDLSgMxFM34rPVVdekmWARXZUakuiy6cVnBPqAdSiaTaWOTzJDcEcbSf3An+i/uxK1rf8WVaTsL23rgwuGce3NzT5AIbsB1v52V1bX1jc3CVnF7Z3dvv3Rw2DRxqilr0FjEuh0QwwRXrAEcBGsnmhEZCNYKhjcTv/XItOGxuocsYb4kfcUjTglYqdmtD3jP65XKbsWdAi8TLydllKPeK/10w5imkimgghjT8dwE/BHRwKlg42I3NSwhdEj6rGOpIpIZfzT97RifWiXEUaxtKcBT9e/EiEhjMhnYTklgYBa9ifivZ0ASnelwYT9EV/6IqyQFpuhsfZQKDDGeBIJDrhkFkVlCqOb2AkwHRBMKNra594EPn8ZFG5a3GM0yaZ5XvGqlendRrl3nsRXQMTpBZ8hDl6iGblEdNRBFD+gZvaI358V5dz6cz1nripPPHKE5OF+/aRSf5A==</latexit>

�1

ϕ2

ϕ3

ϕ1

AAA705 @ Korea University Lecture 6 - DSE March 25, 2024 29 / 90

Search Heuristics in DSE
This is the control-flow directed search (CFDS) heuristic.

#t

#f

#t #f

VALID x3

Solve
<latexit sha1_base64="EREXmqzFqzOA/ebv+q8P8Ew3SyM=">AAACGnicbVDLSsNAFJ3UV62vqks3g0VwVRKR6rLoxmUF+4AmlMlk0g6dTMLMjRBDP8Od6L+4E7du/BVXTtssbOuBC4dz7p079/iJ4Bps+9sqra1vbG6Vtys7u3v7B9XDo46OU0VZm8YiVj2faCa4ZG3gIFgvUYxEvmBdf3w79buPTGkeywfIEuZFZCh5yCkBI/VdyYbYTUZ84AyqNbtuz4BXiVOQGirQGlR/3CCmacQkUEG07jt2Al5OFHAq2KTippolhI7JkPUNlSRi2stnX57gM6MEOIyVKQl4pv6dyEmkdRb5pjMiMNLL3lT819MQEZWpYGk/hNdezmWSApN0vj5MBYYYT1PBAVeMgsgMIVRxcwGmI6IIBZPdwvvAx0+TignLWY5mlXQu6k6j3ri/rDVvitjK6ASdonPkoCvURHeohdqIohg9o1f0Zr1Y79aH9TlvLVnFzDFagPX1C0NJoew=</latexit>¬�1

#t

INVALID VALID x2 VALID x1

<latexit sha1_base64="ujZ1s3//SHpeCnoczfuXfyFZq74=">AAACFXicbVC7TsMwFHXKq5RXgZHFokJiqpIKFcYKFsYi0YfURpXjOK2pnUT2DVKI+g9sCP6FDbEy8ytMuG0G2nKkKx2dc6+v7/FiwTXY9rdVWFvf2Nwqbpd2dvf2D8qHR20dJYqyFo1EpLoe0UzwkLWAg2DdWDEiPcE63vhm6ncemdI8Cu8hjZkryTDkAacEjNTuN0d8UBuUK3bVngGvEicnFZSjOSj/9P2IJpKFQAXRuufYMbgZUcCpYJNSP9EsJnRMhqxnaEgk0242++0EnxnFx0GkTIWAZ+rfiYxIrVPpmU5JYKSXvan4r6dBEpUqf2k/BFduxsM4ARbS+fogERgiPA0E+1wxCiI1hFDFzQWYjogiFExsC+8DHz9NSiYsZzmaVdKuVZ16tX53UWlc57EV0Qk6RefIQZeogW5RE7UQRQ/oGb2iN+vFerc+rM95a8HKZ47RAqyvX2rAn+U=</latexit>

�2
<latexit sha1_base64="oRPguouqWilQAHLYyelF0J2aLl0=">AAACFXicbVC7TsMwFHXKq5RXgZElokJiqhJAhbGChbFI9CG1UeU4TmtqO5F9gxSi/gMbgn9hQ6zM/AoTbpuBthzpSkfn3Ovre/yYMw2O820VVlbX1jeKm6Wt7Z3dvfL+QUtHiSK0SSIeqY6PNeVM0iYw4LQTK4qFz2nbH91M/PYjVZpF8h7SmHoCDyQLGcFgpFavMWT983654lSdKexl4uakgnI0+uWfXhCRRFAJhGOtu64Tg5dhBYxwOi71Ek1jTEZ4QLuGSiyo9rLpb8f2iVECO4yUKQn2VP07kWGhdSp80ykwDPWiNxH/9TQIrFIVLOyH8MrLmIwToJLM1ocJtyGyJ4HYAVOUAE8NwUQxc4FNhlhhAia2ufeBjZ7GJROWuxjNMmmdVd1atXZ3Ualf57EV0RE6RqfIRZeojm5RAzURQQ/oGb2iN+vFerc+rM9Za8HKZw7RHKyvX2xsn+Y=</latexit>

�3
<latexit sha1_base64="d4uns8NjJzJP/lNz6uW6BkJ9B+E=">AAACFXicbVDLSgMxFM34rPVVdekmWARXZUakuiy6cVnBPqAdSiaTaWOTzJDcEcbSf3An+i/uxK1rf8WVaTsL23rgwuGce3NzT5AIbsB1v52V1bX1jc3CVnF7Z3dvv3Rw2DRxqilr0FjEuh0QwwRXrAEcBGsnmhEZCNYKhjcTv/XItOGxuocsYb4kfcUjTglYqdmtD3jP65XKbsWdAi8TLydllKPeK/10w5imkimgghjT8dwE/BHRwKlg42I3NSwhdEj6rGOpIpIZfzT97RifWiXEUaxtKcBT9e/EiEhjMhnYTklgYBa9ifivZ0ASnelwYT9EV/6IqyQFpuhsfZQKDDGeBIJDrhkFkVlCqOb2AkwHRBMKNra594EPn8ZFG5a3GM0yaZ5XvGqlendRrl3nsRXQMTpBZ8hDl6iGblEdNRBFD+gZvaI358V5dz6cz1nripPPHKE5OF+/aRSf5A==</latexit>

�1

ϕ2

ϕ3

ϕ1

AAA705 @ Korea University Lecture 6 - DSE March 25, 2024 30 / 90

Search Heuristics in DSE
This is the control-flow directed search (CFDS) heuristic.

ϕ1

ϕ2

ϕ3

#t

#f

#t #f

#t

INVALID VALID x2 VALID x1

ϕ4

ϕ5

#f

#f

#t

VALID x3

<latexit sha1_base64="ujZ1s3//SHpeCnoczfuXfyFZq74=">AAACFXicbVC7TsMwFHXKq5RXgZHFokJiqpIKFcYKFsYi0YfURpXjOK2pnUT2DVKI+g9sCP6FDbEy8ytMuG0G2nKkKx2dc6+v7/FiwTXY9rdVWFvf2Nwqbpd2dvf2D8qHR20dJYqyFo1EpLoe0UzwkLWAg2DdWDEiPcE63vhm6ncemdI8Cu8hjZkryTDkAacEjNTuN0d8UBuUK3bVngGvEicnFZSjOSj/9P2IJpKFQAXRuufYMbgZUcCpYJNSP9EsJnRMhqxnaEgk0242++0EnxnFx0GkTIWAZ+rfiYxIrVPpmU5JYKSXvan4r6dBEpUqf2k/BFduxsM4ARbS+fogERgiPA0E+1wxCiI1hFDFzQWYjogiFExsC+8DHz9NSiYsZzmaVdKuVZ16tX53UWlc57EV0Qk6RefIQZeogW5RE7UQRQ/oGb2iN+vFerc+rM95a8HKZ47RAqyvX2rAn+U=</latexit>

�2
<latexit sha1_base64="oRPguouqWilQAHLYyelF0J2aLl0=">AAACFXicbVC7TsMwFHXKq5RXgZElokJiqhJAhbGChbFI9CG1UeU4TmtqO5F9gxSi/gMbgn9hQ6zM/AoTbpuBthzpSkfn3Ovre/yYMw2O820VVlbX1jeKm6Wt7Z3dvfL+QUtHiSK0SSIeqY6PNeVM0iYw4LQTK4qFz2nbH91M/PYjVZpF8h7SmHoCDyQLGcFgpFavMWT983654lSdKexl4uakgnI0+uWfXhCRRFAJhGOtu64Tg5dhBYxwOi71Ek1jTEZ4QLuGSiyo9rLpb8f2iVECO4yUKQn2VP07kWGhdSp80ykwDPWiNxH/9TQIrFIVLOyH8MrLmIwToJLM1ocJtyGyJ4HYAVOUAE8NwUQxc4FNhlhhAia2ufeBjZ7GJROWuxjNMmmdVd1atXZ3Ualf57EV0RE6RqfIRZeojm5RAzURQQ/oGb2iN+vFerc+rM9Za8HKZw7RHKyvX2xsn+Y=</latexit>

�3
<latexit sha1_base64="YhUyZp0LUWhFBcs0EsBPeGz7E4E=">AAACFXicbVC7TsMwFHXKq5RXgZHFokJiqhJUFcYKFsYi0YfURpXjOK2pnUT2DVKI+g9sCP6FDbEy8ytMuG0G2nKkKx2dc6+v7/FiwTXY9rdVWFvf2Nwqbpd2dvf2D8qHR20dJYqyFo1EpLoe0UzwkLWAg2DdWDEiPcE63vhm6ncemdI8Cu8hjZkryTDkAacEjNTuN0d8UBuUK3bVngGvEicnFZSjOSj/9P2IJpKFQAXRuufYMbgZUcCpYJNSP9EsJnRMhqxnaEgk0242++0EnxnFx0GkTIWAZ+rfiYxIrVPpmU5JYKSXvan4r6dBEpUqf2k/BFduxsM4ARbS+fogERgiPA0E+1wxCiI1hFDFzQWYjogiFExsC+8DHz9NSiYsZzmaVdK+qDr1av2uVmlc57EV0Qk6RefIQZeogW5RE7UQRQ/oGb2iN+vFerc+rM95a8HKZ47RAqyvX24Yn+c=</latexit>

�4
<latexit sha1_base64="d4uns8NjJzJP/lNz6uW6BkJ9B+E=">AAACFXicbVDLSgMxFM34rPVVdekmWARXZUakuiy6cVnBPqAdSiaTaWOTzJDcEcbSf3An+i/uxK1rf8WVaTsL23rgwuGce3NzT5AIbsB1v52V1bX1jc3CVnF7Z3dvv3Rw2DRxqilr0FjEuh0QwwRXrAEcBGsnmhEZCNYKhjcTv/XItOGxuocsYb4kfcUjTglYqdmtD3jP65XKbsWdAi8TLydllKPeK/10w5imkimgghjT8dwE/BHRwKlg42I3NSwhdEj6rGOpIpIZfzT97RifWiXEUaxtKcBT9e/EiEhjMhnYTklgYBa9ifivZ0ASnelwYT9EV/6IqyQFpuhsfZQKDDGeBIJDrhkFkVlCqOb2AkwHRBMKNra594EPn8ZFG5a3GM0yaZ5XvGqlendRrl3nsRXQMTpBZ8hDl6iGblEdNRBFD+gZvaI358V5dz6cz1nripPPHKE5OF+/aRSf5A==</latexit>

�1

AAA705 @ Korea University Lecture 6 - DSE March 25, 2024 31 / 90

Learning Search Heuristics in DSE
[ICSE’18] S. Cha et al., “Automatically Generating Search Heuristics for
Concolic Testing”

Chooseθ(⟨Φ1, . . . , Φm⟩) = (Φm, argmax
ϕj ∈Φm

scoreθ(ϕj))

Followings are 12 static and 28 dynamic branch features used for learning.

Automatically Generating Search Heuristics for Concolic Testing ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

heuristics is that they are unstable and their e�ectiveness signi�-
cantly varies depending on the target programs. For example, CGS
outperforms other existing heuristics for several benchmarks: e.g.,
expat-2.1.0 and grep-2.2 (Figure 1). However, we found that the
CGS heuristic is sometimes inferior even to the random heuristic
(e.g., tree-1.6.0). That is, the key feature, contexts, of CGS is not
appropriate for some programs.

Besides their sub-optimality, another key limitation of existing
approaches is that developing a good search heuristic requires a
huge amount of engineering e�ort and expertise. Given that the
e�ectiveness of concolic testing depends heavily on the search
heuristic, ordinary developers cannot fully bene�t from concolic
testing. These observations motivated us to develop a technique
that automatically generates search heuristics.

3 OUR TECHNIQUE
In this section, we present our technique for automatically gen-
erating search heuristics for concolic testing. We de�ne a family
of search heuristics, namely parameterized search heuristics (Sec-
tion 3.1), and present an algorithm to choose the best heuristic from
the family for a given subject program (Section 3.2).

3.1 Parameterized Search Heuristic
Let P 2 Program be a subject program under test. Recall that a
search heuristic, the Choose function in Algorithm 1, is a function
from execution trees to pairs of a path condition and a branch:

Choose 2 SearchHeuristic = ExecutionTree! PathCond ⇥ Branch

where ExecutionTree is the set of all execution trees of the program,
PathCond the set of all path conditions in the trees, Branch the set
of all branches in P .

We de�ne a family H ✓ SearchHeuristic of search heuristics as a
parameterized heuristic Choose� , where � is the parameter which is
a k-dimensional vector of real numbers: H = {Choose� | � 2 Rk }.
Given an execution tree T = h�1�2 · · ·�mi, our parameterized
search heuristic is de�ned as follows:

Choose� (h�1 · · ·�mi) = (�m , argmax
� j 2�m

score� (� j))

Intuitively, the heuristic �rst chooses the last path condition �m
from the execution tree T , then selects a branch � j from �m that
gets the highest score among all branches in that path. Except for
the CGS heuristic, all existing search heuristics choose a branch
from the last path condition. In this work, we follow this common
strategy but our method can be generalized to consider the entire
execution tree as well. We explain how we score each branch � in
�m with respect to a given parameter � :

(1) We represent the branch by a feature vector. We designed 40
boolean features describing properties of branches in con-
colic testing. A feature �i is a boolean predicate on branches:
�i : Branch! {0, 1}. For instance, one of the features checks
whether the branch is located in the main function or not.
Given a set of k features � = {�1, . . . ,�k }, where k is the
length of the parameter � , a branch � is represented by a
boolean vector as follows:

� (�) = h�1(�),�2(�), . . . ,�k (�)i.

Table 1: Branch features for concolic testing. Features 1–12
are static, and Features 13–40 are dynamic.

Description
1 branch in the main function
2 true branch of a loop
3 false branch of a loop
4 nested branch
5 branch containing external function calls
6 branch containing integer expressions
7 branch containing constant strings
8 branch containing pointer expressions
9 branch containing local variables

10 branch inside a loop body
11 true branch of a case statement
12 false branch of a case statement
13 �rst 10% branches of a path
14 last 10% branches of a path
15 branch appearing most frequently in a path
16 branch appearing least frequently in a path
17 branch newly covered in the previous execution
18 branch located right after the just-negated branch
19 branch whose context (k = 1) is already visited
20 branch whose context (k = 2) is already visited
21 branch whose context (k = 3) is already visited
22 branch whose context (k = 4) is already visited
23 branch whose context (k = 5) is already visited
24 branch negated more than 10 times
25 branch negated more than 20 times
26 branch negated more than 30 times
27 branch near the just-negated branch
28 branch failed to be negated more than 10 times
29 the opposite branch failed to be negated more than 10 times
30 the opposite branch is uncovered (depth 0)
31 the opposite branch is uncovered (depth 1)
32 branch negated in the last 10 executions
33 branch negated in the last 20 executions
34 branch negated in the last 30 executions
35 branch in the function that has the largest number of uncov-

ered branches
36 the opposite branch belongs to unreached functions (top 10%

of the largest func.)
37 the opposite branch belongs to unreached functions (top 20%

of the largest func.)
38 the opposite branch belongs to unreached functions (top 30%

of the largest func.)
39 the opposite branch belongs to unreached functions (# of

branches > 10)
40 branch inside the most recently reached function

(2) Next we compute the score of the branch. In our method,
the dimension k of the parameter � equals to the number
of branch features. We use the simple linear combination of
the feature vector and the parameter to calculate the branch:

score� (�) = � (�) · � .

(3) Finally, we choose the branch with the highest score. That is,
among the branches �1, . . . ,�n in �m , we choose the branch
� j such that score� (� j) � score� (�k) for all k .

AAA705 @ Korea University Lecture 6 - DSE March 25, 2024 32 / 90

Learning Search Heuristics in DSE
[ICSE’18] S. Cha et al., “Automatically Generating Search Heuristics for
Concolic Testing”

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Sooyoung Cha, Seongjoon Hong, Junhee Lee, and Hakjoo Oh

Figure 2: Average branch coverage over execution time

Table 6: Time for generating the heuristics

Benchmarks # Sample # Iteration Total times
vim-5.7 300 5 24h 17min
expat-2.1.0 1,000 6 10h 25min
gawk-3.0.3 1,000 4 6h 28min
grep-2.2 1,000 5 5h 26min
sed-1.17 1,000 4 8h 55min
tree-1.6.0 1,000 4 3h 17min

Table 7: E�ectiveness in the training phase

OURS CFDS CGS Random Gen DFS
vim 14,003 13,706 7,934 13,835 7,290 2,646
expat 2,455 2,339 2,157 1,325 2,116 2,036
gawk 3,473 3,382 3,261 3,367 3,302 1,905
grep 2,167 2,024 2,016 2,066 1,965 1,478
sed 1,019 1,041 1,042 1,007 979 937
tree 808 800 737 796 730 665

we ran the optimization algorithm (Algorithm 2) in parallel using
20 cores. Speci�cally, in the �rst phase (‘Find’) of the algorithm,
we sampled 1,000 parameters, where each core is responsible for
evaluating 50 parameters. For vim, we set the sample size to 300 as
executing vim is expensive. The results show that our algorithm
converges within 4–6 iterations of the outer loop of Algorithm 2,
taking 3–24 hours depending on the size of the subject program.

Our approach requires training e�ort but it is rewarding because
1) our approach enables e�ective concolic testing even in the train-
ing phase; and 2) the learned heuristic can be reused multiple times
as the subject program evolves.

E�ectiveness in the training phase. Note that running Al-
gorithm 2 is essentially running concolic testing on the subject
program. We compared the number of branches covered during
this training phase with the branches covered by other search
heuristics given the same time budget reported in Table 6. Table 7
compares the results: except for sed, running Algorithm 2 achieves
greater branch coverage than others. To obtain the results for other

heuristics, we ran concolic testing (with N = 4, 000) repeatedly
using the same number of cores and amount of time. For instance,
in 24 hours, Algorithm 2 covered 14,003 branches of vim while
concolic testing with the CFDS and CGS heuristics covered 13,706
and 7,934 branches, respectively.

Reusability over program evolution. More interestingly, the
learned heuristic can be reused over multiple subsequent program
variations. To validate this hypothesis, we trained a search heuristic
on gawk-3.0.3 and applied the learned heuristic to the subsequent
versions until gawk-3.1.0. We also trained a heuristic on sed-1.17
and applied it to later versions. Figure 4 shows that the learned
heuristics manage to achieve the highest branch coverage over
the evolution of the programs. For example, ours covered at least
90 more branches than the second best heuristic (CFDS) in all
variations between gawk-3.0.3 and gawk-3.1.0. The e�ectiveness
lasted for at least 4 years for gawk and 1 year for sed.

4.3 E�cacy of Optimization Algorithm
We compared the performance of our optimization algorithm (Algo-
rithm 2) with a naive approach based on random sampling. Because
both approaches involve randomness, we statistically compare the
qualities of parameters found by our algorithm and the random
sampling method.

Figure 4 shows the distributions of �nal coverages achieved by
those two algorithms on grep-2.2 and sed-1.17. In the exper-
iments, our algorithm required a total of 1,100 trials of concolic
testing to complete a single re�nement task: 100 trials for the Check
phase to select top 2 parameters and the rest for the Find phase
to evaluate the parameters generated from the re�ned space. We
compared the distributions throughout each iteration (I1, I2, ..., IN)
where 1,100 trials were given as budget for �nding parameters.
The �rst re�nement task of our algorithm begins with the initial
samples in the �rst iteration I1, which are prepared by random
sampling method.

The result shows that our algorithm is much superior to random
sampling method: the median of the samples increases while the
variance decreases, as the re�nement task in our algorithm goes
on. The median value (the band inside a box) of the samples found
by our algorithm increases as the re�nement task continues, while
random sampling has no noticeable changes. The increase of median
indicates that the probability to �nd a good parameter grows as
the tasks repeat. In addition, the variance (the height of the box, in
simple) in our algorithm decreases gradually, which implies that
the mix of Check and Re�ne tasks was e�ective.

We remark that use of our optimization algorithm was critical;
the heuristics generated by random sampling failed to surpass the
existing heuristics. For instance, for grep, our algorithm (Algo-
rithm 2) succeeded in generating a heuristic which covered 1,701
branches on average. However, the best one by random sampling
covered 1,600 branches only, lagging behind CGS (the second best)
by 83 branches.

4.4 Important Features
Winning Features. We discuss the relative importance of fea-

tures by analyzing the learned parameters � for each benchmark
program. Intuitively, when the i-th component � i has a negative

AAA705 @ Korea University Lecture 6 - DSE March 25, 2024 33 / 90

Example – Hash Function

void f(int x, int y) {
*

int z = hash(x);

if (z == y) {
z = y - x;

if (x < z) {

ERROR;
} else {

}
} else {

}
}

X V Ω
x 3 α
y 7 β
z
Φ true

AAA705 @ Korea University Lecture 6 - DSE March 25, 2024 34 / 90

Example – Hash Function

void f(int x, int y) {

int z = hash(x);
*

if (z == y) {
z = y - x;

if (x < z) {

ERROR;
} else {

}
} else {

}
}

X V Ω
x 3 α
y 7 β
z 182039482 hash(α)
Φ true

z == y

AAA705 @ Korea University Lecture 6 - DSE March 25, 2024 35 / 90

Example – Hash Function

void f(int x, int y) {

int z = hash(x);

if (z == y) {
z = y - x;

if (x < z) {

ERROR;
} else {

}
} else {

*
}

}

X V Ω
x 3 α
y 7 β
z 182039482 hash(α)
Φ (hash(α) ̸= β)

z == y

(3, 7)

#f

AAA705 @ Korea University Lecture 6 - DSE March 25, 2024 36 / 90

Example – Hash Function

void f(int x, int y) {

int z = hash(x);

if (z == y) {
z = y - x;

if (x < z) {

ERROR;
} else {

}
} else {

*
}

}

X V Ω
x 3 α
y 7 β
z 182039482 hash(α)
Φ (hash(α) ̸= β)

z == y

(3, 7)

#f

We can utilize the current concrete values.
(hash(α) = β) is SAT

when (x, y) = (3, 182039482).

AAA705 @ Korea University Lecture 6 - DSE March 25, 2024 37 / 90

Example – Hash Function

void f(int x, int y) {
*

int z = hash(x);

if (z == y) {
z = y - x;

if (x < z) {

ERROR;
} else {

}
} else {

}
}

X V Ω
x 3 α
y 182039482 β
z
Φ true

z == y

(3, 7)

#f

AAA705 @ Korea University Lecture 6 - DSE March 25, 2024 38 / 90

Example – Hash Function

void f(int x, int y) {

int z = hash(x);
*

if (z == y) {
z = y - x;

if (x < z) {

ERROR;
} else {

}
} else {

}
}

X V Ω
x 3 α
y 182039482 β
z 182039482 hash(α)
Φ true

z == y

(3, 7)

#f

AAA705 @ Korea University Lecture 6 - DSE March 25, 2024 39 / 90

Example – Hash Function

void f(int x, int y) {

int z = hash(x);

if (z == y) {
z = y - x;
*

if (x < z) {

ERROR;
} else {

}
} else {

}
}

X V Ω
x 3 α
y 182039482 β
z 182039479 β − α

Φ (hash(α) = β)

z == y

(3, 7)

#f

x < z

#t

AAA705 @ Korea University Lecture 6 - DSE March 25, 2024 40 / 90

Example – Hash Function

void f(int x, int y) {

int z = hash(x);

if (z == y) {
z = y - x;

if (x < z) {
*

ERROR;
} else {

}
} else {

}
}

X V Ω
x 3 α
y 182039482 β
z 182039479 β − α

Φ (hash(α) = β) ∧ (α < β − α)

z == y

(3, 7)

#f

x < z

#t

(3, 182039482)

#t

We found an error!

AAA705 @ Korea University Lecture 6 - DSE March 25, 2024 41 / 90

Example – Hash Function

void f(int x, int y) {

int z = hash(x);

if (z == y) {
z = y - x;

if (x < z) {
*

ERROR;
} else {

}
} else {

}
}

X V Ω
x 3 α
y 182039482 β
z 182039479 β − α

Φ (hash(α) = β) ∧ (α < β − α)

z == y

(3, 7)

#f

x < z

#t

(3, 182039482)

#t

Unfortunately,
(hash(α) = β) ∧ (α ≥ β − α) is

UNKNOWN.

AAA705 @ Korea University Lecture 6 - DSE March 25, 2024 42 / 90

Example – Loops

void f(int x) {
*

int arr[] = {3, 7, 2};
int i = 0;

while (i < 3) {

if (arr[i] == x) break;
i++;

}

return i;
}

X V Ω
x 0 α

arr
i
Φ true

AAA705 @ Korea University Lecture 6 - DSE March 25, 2024 43 / 90

Example – Loops

void f(int x) {

int arr[] = {3, 7, 2};
int i = 0;
*

while (i < 3) {

if (arr[i] == x) break;
i++;

}

return i;
}

X V Ω
x 0 α

arr {3, 7, 2}
i 0
Φ true

AAA705 @ Korea University Lecture 6 - DSE March 25, 2024 44 / 90

Example – Loops

void f(int x) {

int arr[] = {3, 7, 2};
int i = 0;

while (i < 3) {
*

if (arr[i] == x) break;
i++;

}

return i;
}

X V Ω
x 0 α

arr {3, 7, 2}
i 0
Φ true

AAA705 @ Korea University Lecture 6 - DSE March 25, 2024 45 / 90

Example – Loops

void f(int x) {

int arr[] = {3, 7, 2};
int i = 0;

while (i < 3) {

if (arr[i] == x) break;
i++;
*

}

return i;
}

X V Ω
x 0 α

arr {3, 7, 2}
i 1
Φ (α ̸= 3)

α = 3 #f

AAA705 @ Korea University Lecture 6 - DSE March 25, 2024 46 / 90

Example – Loops

void f(int x) {

int arr[] = {3, 7, 2};
int i = 0;

while (i < 3) {
*

if (arr[i] == x) break;
i++;

}

return i;
}

X V Ω
x 0 α

arr {3, 7, 2}
i 1
Φ (α ̸= 3)

α = 3 #f

AAA705 @ Korea University Lecture 6 - DSE March 25, 2024 47 / 90

Example – Loops

void f(int x) {

int arr[] = {3, 7, 2};
int i = 0;

while (i < 3) {

if (arr[i] == x) break;
i++;
*

}

return i;
}

X V Ω
x 0 α

arr {3, 7, 2}
i 2
Φ (α ̸= 3) ∧ (α ̸= 7)

α = 3

α = 7

#f

#f

AAA705 @ Korea University Lecture 6 - DSE March 25, 2024 48 / 90

Example – Loops

void f(int x) {

int arr[] = {3, 7, 2};
int i = 0;

while (i < 3) {
*

if (arr[i] == x) break;
i++;

}

return i;
}

X V Ω
x 0 α

arr {3, 7, 2}
i 2
Φ (α ̸= 3) ∧ (α ̸= 7)

α = 3

α = 7

#f

#f

AAA705 @ Korea University Lecture 6 - DSE March 25, 2024 49 / 90

Example – Loops

void f(int x) {

int arr[] = {3, 7, 2};
int i = 0;

while (i < 3) {

if (arr[i] == x) break;
i++;
*

}

return i;
}

X V Ω
x 0 α

arr {3, 7, 2}
i 3
Φ (α ̸= 3) ∧ (α ̸= 7) ∧ (α ̸= 2)

α = 3

α = 7

#f

α = 2

#f

0

#f

AAA705 @ Korea University Lecture 6 - DSE March 25, 2024 50 / 90

Example – Loops

void f(int x) {

int arr[] = {3, 7, 2};
int i = 0;

while (i < 3) {

if (arr[i] == x) break;
i++;

}
*

return i;
}

X V Ω
x 0 α

arr {3, 7, 2}
i 3
Φ (α ̸= 3) ∧ (α ̸= 7) ∧ (α ̸= 2)

α = 3

α = 7

#f

α = 2

#f

0

#f

AAA705 @ Korea University Lecture 6 - DSE March 25, 2024 51 / 90

Example – Loops

void f(int x) {

int arr[] = {3, 7, 2};
int i = 0;

while (i < 3) {

if (arr[i] == x) break;
i++;

}
*

return i;
}

X V Ω
x 0 α

arr {3, 7, 2}
i 3
Φ (α ̸= 3) ∧ (α ̸= 7) ∧ (α ̸= 2)

α = 3

α = 7

#f

α = 2

#f

0

#f

(α ̸= 3) ∧ (α ̸= 7) ∧ (α = 2) is SAT
when x = 2

AAA705 @ Korea University Lecture 6 - DSE March 25, 2024 52 / 90

Example – Loops

void f(int x) {
*

int arr[] = {3, 7, 2};
int i = 0;

while (i < 3) {

if (arr[i] == x) break;
i++;

}

return i;
}

X V Ω
x 2 α

arr
i
Φ true

α = 3

α = 7

#f

α = 2

#f

0

#f

AAA705 @ Korea University Lecture 6 - DSE March 25, 2024 53 / 90

Example – Loops

void f(int x) {

int arr[] = {3, 7, 2};
int i = 0;

while (i < 3) {

if (arr[i] == x) break;
i++;

}
*

return i;
}

X V Ω
x 2 α

arr {3, 7, 2}
i 2
Φ (α ̸= 3) ∧ (α ̸= 7) ∧ (α = 2)

α = 3

α = 7

#f

α = 2

#f

0

#f

2

#t

AAA705 @ Korea University Lecture 6 - DSE March 25, 2024 54 / 90

Example – Loops

void f(int x) {

int arr[] = {3, 7, 2};
int i = 0;

while (i < 3) {

if (arr[i] == x) break;
i++;

}
*

return i;
}

X V Ω
x 2 α

arr {3, 7, 2}
i 2
Φ (α ̸= 3) ∧ (α ̸= 7) ∧ (α = 2)

α = 3

α = 7

#f

α = 2

#f

0

#f

2

#t

(α ̸= 3) ∧ (α = 7) is SAT
when x = 7

AAA705 @ Korea University Lecture 6 - DSE March 25, 2024 55 / 90

Example – Loops

void f(int x) {
*

int arr[] = {3, 7, 2};
int i = 0;

while (i < 3) {

if (arr[i] == x) break;
i++;

}

return i;
}

X V Ω
x 7 α

arr
i
Φ true

α = 3

α = 7

#f

α = 2

#f

0

#f

2

#t

AAA705 @ Korea University Lecture 6 - DSE March 25, 2024 56 / 90

Example – Loops

void f(int x) {

int arr[] = {3, 7, 2};
int i = 0;

while (i < 3) {

if (arr[i] == x) break;
i++;

}
*

return i;
}

X V Ω
x 7 α

arr {3, 7, 2}
i 1
Φ (α ̸= 3) ∧ (α = 7)

α = 3

α = 7

#f

α = 2

#f

0

#f

2

#t7

#t

AAA705 @ Korea University Lecture 6 - DSE March 25, 2024 57 / 90

Example – Loops

void f(int x) {

int arr[] = {3, 7, 2};
int i = 0;

while (i < 3) {

if (arr[i] == x) break;
i++;

}
*

return i;
}

X V Ω
x 7 α

arr {3, 7, 2}
i 1
Φ (α ̸= 3) ∧ (α = 7)

α = 3

α = 7

#f

α = 2

#f

0

#f

2

#t7

#t

(α = 3) is SAT
when x = 3

AAA705 @ Korea University Lecture 6 - DSE March 25, 2024 58 / 90

Example – Loops

void f(int x) {
*

int arr[] = {3, 7, 2};
int i = 0;

while (i < 3) {

if (arr[i] == x) break;
i++;

}

return i;
}

X V Ω
x 3 α

arr
i
Φ true

α = 3

α = 7

#f

α = 2

#f

0

#f

2

#t7

#t

AAA705 @ Korea University Lecture 6 - DSE March 25, 2024 59 / 90

Example – Loops

void f(int x) {

int arr[] = {3, 7, 2};
int i = 0;

while (i < 3) {

if (arr[i] == x) break;
i++;

}
*

return i;
}

X V Ω
x 3 α

arr {3, 7, 2}
i 0
Φ (α = 3)

α = 3

α = 7

#f

α = 2

#f

0

#f

2

#t7

#t3

#t

AAA705 @ Korea University Lecture 6 - DSE March 25, 2024 60 / 90

Example – Data Structures

class Node {
int data;
Node* next;

};

void f(int x, Node *p) {
*

if (x > 0)

if (p != NULL)

if (x*2+1 == p->data)

if (p->next == p)

ERROR;

return 0;
}

X V Ω
x 0 α
p NULL β

Φ true

AAA705 @ Korea University Lecture 6 - DSE March 25, 2024 61 / 90

Example – Data Structures

class Node {
int data;
Node* next;

};

void f(int x, Node *p) {

if (x > 0)

if (p != NULL)

if (x*2+1 == p->data)

if (p->next == p)

ERROR;
*

return 0;
}

X V Ω
x 0 α
p NULL β

Φ (α ≤ 0)

α > 0

(0, NULL)

#f

AAA705 @ Korea University Lecture 6 - DSE March 25, 2024 62 / 90

Example – Data Structures

class Node {
int data;
Node* next;

};

void f(int x, Node *p) {

if (x > 0)

if (p != NULL)

if (x*2+1 == p->data)

if (p->next == p)

ERROR;
*

return 0;
}

X V Ω
x 0 α
p NULL β

Φ (α ≤ 0)

α > 0

(0, NULL)

#f

(α > 0) is SAT
when (x , p) = (42, NULL)

AAA705 @ Korea University Lecture 6 - DSE March 25, 2024 63 / 90

Example – Data Structures

class Node {
int data;
Node* next;

};

void f(int x, Node *p) {
*

if (x > 0)

if (p != NULL)

if (x*2+1 == p->data)

if (p->next == p)

ERROR;

return 0;
}

X V Ω
x 42 α
p NULL β

Φ true

α > 0

(0, NULL)

#f

AAA705 @ Korea University Lecture 6 - DSE March 25, 2024 64 / 90

Example – Data Structures

class Node {
int data;
Node* next;

};

void f(int x, Node *p) {

if (x > 0)
*

if (p != NULL)

if (x*2+1 == p->data)

if (p->next == p)

ERROR;

return 0;
}

X V Ω
x 42 α
p NULL β

Φ (α > 0)

α > 0

(0, NULL)

#f#t

AAA705 @ Korea University Lecture 6 - DSE March 25, 2024 65 / 90

Example – Data Structures

class Node {
int data;
Node* next;

};

void f(int x, Node *p) {

if (x > 0)

if (p != NULL)

if (x*2+1 == p->data)

if (p->next == p)

ERROR;
*

return 0;
}

X V Ω
x 42 α
p NULL β

Φ (α > 0) ∧ (β = NULL)

α > 0

(0, NULL)

#f

β ̸= NULL

#t

(42, NULL)

#f

AAA705 @ Korea University Lecture 6 - DSE March 25, 2024 66 / 90

Example – Data Structures

class Node {
int data;
Node* next;

};

void f(int x, Node *p) {

if (x > 0)

if (p != NULL)

if (x*2+1 == p->data)

if (p->next == p)

ERROR;
*

return 0;
}

X V Ω
x 42 α
p NULL β

Φ (α > 0) ∧ (β = NULL)

α > 0

(0, NULL)

#f

β ̸= NULL

#t

(42, NULL)

#f

(α > 0) ∧ (β ̸= NULL) is SAT
when (x , p) = (42, 0xA0BF : 0 NULL)

AAA705 @ Korea University Lecture 6 - DSE March 25, 2024 67 / 90

Example – Data Structures

class Node {
int data;
Node* next;

};

void f(int x, Node *p) {
*

if (x > 0)

if (p != NULL)

if (x*2+1 == p->data)

if (p->next == p)

ERROR;

return 0;
}

X V Ω
x 42 α
p 0xA0BF : 0 NULL β

Φ true

α > 0

(0, NULL)

#f

β ̸= NULL

#t

(42, NULL)

#f

AAA705 @ Korea University Lecture 6 - DSE March 25, 2024 68 / 90

Example – Data Structures

class Node {
int data;
Node* next;

};

void f(int x, Node *p) {

if (x > 0)

if (p != NULL)
*

if (x*2+1 == p->data)

if (p->next == p)

ERROR;

return 0;
}

X V Ω
x 42 α
p 0xA0BF : 0 NULL β

Φ (α > 0) ∧ (β ̸= NULL)

α > 0

(0, NULL)

#f

β ̸= NULL

#t

(42, NULL)

#f#t

AAA705 @ Korea University Lecture 6 - DSE March 25, 2024 69 / 90

Example – Data Structures

class Node {
int data;
Node* next;

};

void f(int x, Node *p) {

if (x > 0)

if (p != NULL)

if (x*2+1 == p->data)

if (p->next == p)

ERROR;
*

return 0;
}

X V Ω
x 42 α
p 0xA0BF : 0 NULL β

Φ (α > 0) ∧ (β ̸= NULL)∧
(2α + 1 ̸= β.data)

α > 0

(0, NULL)

#f

β ̸= NULL

#t

(42, NULL)

#f

2α + 1 = β.data

#t

(42, 0xA0BF: 0 NULL)

#f

AAA705 @ Korea University Lecture 6 - DSE March 25, 2024 70 / 90

Example – Data Structures

class Node {
int data;
Node* next;

};

void f(int x, Node *p) {

if (x > 0)

if (p != NULL)

if (x*2+1 == p->data)

if (p->next == p)

ERROR;
*

return 0;
}

X V Ω
x 42 α
p 0xA0BF : 0 NULL β

Φ (α > 0) ∧ (β ̸= NULL)∧
(2α + 1 ̸= β.data)

α > 0

(0, NULL)

#f

β ̸= NULL

#t

(42, NULL)

#f

2α + 1 = β.data

#t

(42, 0xA0BF: 0 NULL)

#f

(α > 0) ∧ (β ̸= NULL)
∧(2α + 1 = β.data) is SAT

when (x , p) = (1, 0xA0BF : 3 NULL)
AAA705 @ Korea University Lecture 6 - DSE March 25, 2024 71 / 90

Example – Data Structures

class Node {
int data;
Node* next;

};

void f(int x, Node *p) {
*

if (x > 0)

if (p != NULL)

if (x*2+1 == p->data)

if (p->next == p)

ERROR;

return 0;
}

X V Ω
x 1 α
p 0xA0BF : 3 NULL β

Φ true

α > 0

(0, NULL)

#f

β ̸= NULL

#t

(42, NULL)

#f

2α + 1 = β.data

#t

(42, 0xA0BF: 0 NULL)

#f

AAA705 @ Korea University Lecture 6 - DSE March 25, 2024 72 / 90

Example – Data Structures

class Node {
int data;
Node* next;

};

void f(int x, Node *p) {

if (x > 0)

if (p != NULL)

if (x*2+1 == p->data)
*

if (p->next == p)

ERROR;

return 0;
}

X V Ω
x 1 α
p 0xA0BF : 3 NULL β

Φ (α > 0) ∧ (β ̸= NULL)∧
(2α + 1 = β.data)

α > 0

(0, NULL)

#f

β ̸= NULL

#t

(42, NULL)

#f

2α + 1 = β.data

#t

(42, 0xA0BF: 0 NULL)

#f#t

AAA705 @ Korea University Lecture 6 - DSE March 25, 2024 73 / 90

Example – Data Structures

class Node {
int data;
Node* next;

};

void f(int x, Node *p) {

if (x > 0)

if (p != NULL)

if (x*2+1 == p->data)

if (p->next == p)

ERROR;
*

return 0;
}

X V Ω
x 1 α
p 0xA0BF : 3 NULL β

Φ (α > 0) ∧ (β ̸= NULL)∧
(2α + 1 = β.data) ∧ (β.next ̸= β)

α > 0

(0, NULL)

#f

β ̸= NULL

#t

(42, NULL)

#f

2α + 1 = β.data

#t

(42, 0xA0BF: 0 NULL)

#f

β.next = β

#t

(1, 0xA0BF: 3 NULL)

#f

AAA705 @ Korea University Lecture 6 - DSE March 25, 2024 74 / 90

Example – Data Structures

class Node {
int data;
Node* next;

};

void f(int x, Node *p) {

if (x > 0)

if (p != NULL)

if (x*2+1 == p->data)

if (p->next == p)

ERROR;
*

return 0;
}

X V Ω
x 1 α
p 0xA0BF : 3 NULL β

Φ (α > 0) ∧ (β ̸= NULL)∧
(2α + 1 = β.data) ∧ (β.next ̸= β)

α > 0

(0, NULL)

#f

β ̸= NULL

#t

(42, NULL)

#f

2α + 1 = β.data

#t

(42, 0xA0BF: 0 NULL)

#f

β.next = β

#t

(1, 0xA0BF: 3 NULL)

#f

(α > 0) ∧ (β ̸= NULL)
∧(2α + 1 = β.data) is SAT

when (x , p) = (1, 0xA0BF : 3 0xA0BF)
AAA705 @ Korea University Lecture 6 - DSE March 25, 2024 75 / 90

Example – Data Structures

class Node {
int data;
Node* next;

};

void f(int x, Node *p) {
*

if (x > 0)

if (p != NULL)

if (x*2+1 == p->data)

if (p->next == p)

ERROR;

return 0;
}

X V Ω
x 1 α
p 0xA0BF : 3 0xA0BF β

Φ true

α > 0

(0, NULL)

#f

β ̸= NULL

#t

(42, NULL)

#f

2α + 1 = β.data

#t

(42, 0xA0BF: 0 NULL)

#f

β.next = β

#t

(1, 0xA0BF: 3 NULL)

#f

AAA705 @ Korea University Lecture 6 - DSE March 25, 2024 76 / 90

Example – Data Structures

class Node {
int data;
Node* next;

};

void f(int x, Node *p) {

if (x > 0)

if (p != NULL)

if (x*2+1 == p->data)

if (p->next == p)
*

ERROR;

return 0;
}

X V Ω
x 1 α
p 0xA0BF : 3 0xA0BF β

Φ (α > 0) ∧ (β ̸= NULL)∧
(2α + 1 = β.data) ∧ (β.next = β)

α > 0

(0, NULL)

#f

β ̸= NULL

#t

(42, NULL)

#f

2α + 1 = β.data

#t

(42, 0xA0BF: 0 NULL)

#f

β.next = β

#t

(1, 0xA0BF: 3 NULL)

#f

(1, 0xA0BF: 3 0xA0BF)

#t

AAA705 @ Korea University Lecture 6 - DSE March 25, 2024 77 / 90

Example – Data Structures

α > 0

(0, NULL)

#f

β ̸= NULL

#t

(42, NULL)

#f

2α + 1 = β.data

#t

(42, 0xA0BF: 0 NULL)

#f

β.next = β

#t

(1, 0xA0BF: 3 NULL)

#f

(1, 0xA0BF: 3 0xA0BF)

#t

AAA705 @ Korea University Lecture 6 - DSE March 25, 2024 78 / 90

Realistic Implementation
• KLEE – LLVM based DSE engine.

• Jalangi2 – JavaScript dynamic analysis framework by Samsung.

• S2E – Platform for symbolic execution of binary code (x86, ARM).

• CutEr – Concolic unit testing tool for Erlang.

AAA705 @ Korea University Lecture 6 - DSE March 25, 2024 79 / 90

https://klee-se.org/
https://github.com/Samsung/jalangi2
https://s2e.systems/docs/
https://github.com/cuter-testing/cuter

Other Hybrid Analysis Techniques
• Many efforts have combined dynamic and static analysis, yielding

blended or hybrid analysis techniques.

• Some hybrid analyses use information recorded during dynamic
executions of the program to improve the static-analysis precision.
However, they are generally unsound because they rely on
incomplete information.

• Some recent hybrid analyses have been proposed a combined
interpretation to address the unsoundness issue, and it interchanges
between concrete and abstract interpretations to improve the
precision.

AAA705 @ Korea University Lecture 6 - DSE March 25, 2024 80 / 90

Blended Analysis
[ISSTA’07] Dufour et al., “Blended analysis for performance understanding
of framework-based applications”

• Escape Analysis – A static analysis technique that determines
whether an object can escape the scope of the method or a thread.

public class ListExample {
static Node global_node;

public static Node find(Node head, Data data) {
for (Node n = head; n != null;) {

if (n.payload.equals(data)) return n;
n = n.next;

}
return null;

}

public static Node makeList(char[] data) {...}

public static Node makeList(int[] data) {
if (data == null) { return null; }

Node head = null;
for (int i = data.length - 1; i >= 0; i--) {

S1: Data d = new IntData(data[i]);
S2: head = new Node(d, head);

}
return head;

}

public static void main(String[] args) {
Node list; Data key;

if (args.length == 0) {
S3: list = makeList(new int[] {0,1,2,3,4,5});
S4: key = new IntData(3);

} else {
S5: list = makeList(new char[] {’a’, ’b’, ’c’});
S6: key = new CharData(’a’);

}
global_node = find(list, key);

}}

interface Data { }
class IntData implements Data {...}
class CharData implements Data {...}
class Node {...}

Figure 1: Code listing for escape analysis example

ListExample
makeList(char[])

CharData(char) Node(Data,Node)

Object
getClass()Object()

IntData(int)

ListExample
makeList(int[])

ListExample
main(String[])

ListExample
find(Node,Data)

IntData
equals(Object)

CharData
equals(Object)

Figure 2: Call graph for ListExample

cape state of S3 does not have to be updated. The connection graph
for makeList(char[]) is merged similarly.
The return value of each call to makeList is a reference to a Node

that itself is used as an actual argument in the call to find in main,
(i.e., S2, S2’). After processing the call to find, the analysis merges
the connection graph of find with that of main. This results in an
edge between the global node field and each of the return values
from the calls to makeList. The processing of the call to find cre-
ates the cross edges between the two payload fields and their as-
sociated S1 objects, because the algorithm is not context-sensitive,
and therefore, cannot separate effects which occur on different calls
to find [22].
For ease of implementation, all static fields of classes referenced

are treated as instance fields of the singleton global objectG, shown

Arg escape

S1: IntData

S2: Node

payload next

P1: int[]

datareturn

Figure 3: Connection graph for makeList(int[])method

Global escape Captured Arg escape

G

global_node

S2: Node

payload next

S1: IntData

S2’: Node

payload next

S1’: CharData

S3: int[]

S4: char[]

S5: IntData

S6: CharData

P3: String[]

args

Figure 4: Connection graph for mainmethod

as a phantom node. The G object is initially marked as globally es-
caping; after propagation, all objects reachable from the global no-
de field are marked as globally escaping as well.

3. BLENDED ANALYSIS
This section describes blended analysis, a new analysis paradigm

that performs an interprocedural static analysis on a calling struc-
ture obtained through dynamic analysis, thus capturing properties
of a single execution. There are practical uses for an analysis of
even a single execution. When confronted with poor performance
in an execution, we need to know more about that particular exe-
cution to understand which performance problems have occurred.
When debugging, we are concerned with the specific execution that
resulted in an error.
The goal of a blended analysis is to achieve the precision of a

fully dynamic analysis (to understand a particular execution) for
much less cost. Often, obtaining all needed information dynami-
cally is prohibitively expensive or impossible. For example, com-
puting escape analysis information dynamically would require track-
ing all object allocations and pointer updates. Studies such as [15]
have shown that obtaining such information precisely can slow down
the execution of a program by as much as two orders of magnitude.
Limits on the amount of overhead that can be tolerated while profil-
ing a deployed application in a production environment make this
approach impossible to use in practice. Blended analysis offers an
alternative by allowing a static analyses to be performed off-line to
gather the needed information, based on an easy to collect record of
the execution. The rest of this section discusses the blended anal-

121

ysis paradigm, its novel aspects as well as the new challenges it
raises.
Calling structure. Interprocedural static analysis requires infor-

mation about the possible callees at each analyzed call site. In tra-
ditional analysis, this information is usually computed in the form
of a call graph. Call graphs can be built with varying degrees of
precision (e.g., [13]). In a blended analysis, the calling structure
is obtained from an execution trace; therefore, virtual dispatch can
be resolved exactly. The execution trace is often represented as a
tree structure in which each edge represents a call. Call trees are
typically very large even for relatively short program runs, but for-
tunately, such detailed traces contain more information than may
be required. Smaller calling structures such as call graphs or Call-
ing Context Trees (CCTs) [2] can be easily obtained by aggregating
nodes in the call tree. Techniques also exist to collect CCTs di-
rectly at runtime (e.g., [26]). Sometimes, a problematic transaction
or a scenario (i.e., a partial transaction with specific functionality)
is identified in advance and the execution trace is limited to that part
of the application. In this case, the calling structure is restricted to
that part of the program to be examined by the analysis.
A dynamically obtained calling structure must be modified to be-

come amenable to static analysis. For instance, calls to static class
initializers appear in the trace as part of the class loading mecha-
nism. We represent them in the call graph as program entry points,
as in static analysis. In contrast, calls to run-time support code
such as the class loader or garbage collector are seen explicitly in
dynamic traces, but have no associated call site in bytecode. They
are currently discarded from the calling structure used in blended
analysis.8
As discussed above, when tracing a scenario, the full calling

structure for the execution is not known, and the analysis has to
be performed on a partial calling structure that often does not in-
clude all natural entry points for the application (e.g., main). The
analysis therefore must be started from arbitrary methods that often
have reference parameters. While it is possible to ignore such pa-
rameters and model them as phantom object references (i.e., refer-
ences to objects created outside of the scope of the entry methods),
it is more desirable to handle such objects in a more precise way.
Therefore, a root method is artificially created and used to invoke
other non-natural entry point methods with appropriate parameters.
Declared types are not sufficient to appropriately synthesize param-
eters, since they often correspond to non-instantiatable types (e.g.,
interfaces and abstract classes). Therefore, dynamic information
from the execution trace is used to compute a set of types for each
parameter, from which we synthesize its corresponding objects.
Dynamic language features. Dynamic class loading and reflec-

tion are typically difficult problems for a traditional static analy-
sis. A common approach to handling them is to require user input
specifying the set of all possible classes that can be loaded at run-
time and the set of all possible targets at each reflective call site.
Blended analysis does not require this effort, because at runtime
the set of loaded classes can be recorded. Even dynamically gen-
erated classes that do not exist statically (e.g., those generated by
the Java Virtual Machine to handle certain reflective features such
as proxy classes) can be recorded. The static analysis component
of the blended analysis therefore has access to all loaded classes.
Similarly, targets of reflective calls can be recorded.
Limitations. Since the dynamic calling structure represents only

calls that occur during a single execution (or set of executions) of a
given application, the analysis is safe only for that given execution,
rather than all possible executions as in traditional static analysis.
8This is an area for future exploration. In some applications, we
have observed costly object churn hidden in class loaders.

Global escape Captured Arg escape

G

global_node

S2: Node

payload next

S1: IntData

S3: int[]

S4: char[]

S5: IntData

S6: CharData

P3: String[]

args

Figure 5: Connection graph for main with dynamic call graph

In addition, we make the common assumption of software testing,
that the execution is deterministic and thus, repeatable, so that what
we learn from this execution can be used to predict what will occur
on subsequent executions with the same input.

4. BLENDED ESCAPE ANALYSIS
In this section we present a specific instance of the blended anal-

ysis paradigm, blended escape analysis, and describe its implemen-
tation framework and its limitations. We defined and implemented
a blended version of the escape analysis by Choi et al. [8]. As
mentioned in Section 2, this analysis associates escape information
with abstract objects. In order to be able to study how objects es-
cape in addition to which objects escape, we modified the analysis
to keep track of a distinct escape state for each object at each node
in the calling structure, rather than keeping only one escape state
per abstract object. Thus, the escape states of an abstract object
can be examined along a path in the calling structure; especially in
layered applications, it may be valuable to know that an abstract
object escapes on one path in the calling structure but is captured
on another path.
Example. If the code from Figure 1 is invoked without any com-

mand line arguments, it can be easily observed that the else part of
the branch in main is not executed. Therefore, the call graph for the
application will be the same as the one presented in Figure 2 with
the exception of the char-related nodes (shown in dashed boxes).
Figure 5 shows the corresponding connection graph obtained by

a blended analysis for the main method. The global node field
now only points to a list of IntData objects. Note that objects
S5 and S6 are present in the connection graph because the else
branch of the if statement still is analyzed even though it was not
executed.9
Implementation. We implemented a blended escape analysis

comprised of two components: one for dynamic analysis and the
other for static analysis. The dynamic analysis component is a
modified version of Jinsight, a software visualization tool based
on the Java Virtual Machine Profiling Interface (JVMPI), extended
to export aggregated calling structures from execution traces. We
turn off the just-in-time compiler (JIT) for the profiled application,
in order to avoid confusion in the dynamic call graph, for exam-
ple, caused by method inlining.10 While a more efficient tracing
9As future work we plan to explore pruning control flow graphs
using dynamic knowledge of the calls that were executed.
10We plan to explore relaxing this requirement in future work.

122

AAA705 @ Korea University Lecture 6 - DSE March 25, 2024 81 / 90

Heap Snapshots
[OOPSLA’17] Grech et al., “Heaps Don’t Lie: Countering Unsoundness
with Heap Snapshots”

• Heap Snapshots – A technique that records the whole-heap
snapshots during program execution and then uses them to guide the
static analysis. (especially for Android and JVM applications)68:4 Neville Grech, George Fourtounis, Adrian Francalanza, and Yannis Smaragdakis

Context, etc.

(Optional)

Standard

JVM/Android

HeapDL

heap enricher

(optional,

JVM only)

Heap objects

& references Heap values,

Call graphs

+context, etc.

Application

(apk/jar)

HeapDL analyzer

Whole program

static analyzer

R
u

n Load

Analyze

dynamic

 code

Dump

Fig. 1. Design of HeapDL

framework implements basic processing of Android XML layout files. Yet such support is
always vastly incomplete (as will also be apparent in our experimental evaluation) due to the
complexity and ever-changing nature of modern frameworks.● Even with the limited size of the JVM instruction set, static analyses do not fully support it.
Java 7 introduced a new bytecode opcode, invokedynamic [Rose 2009], together with an API
(for “method handles”) around it, that can offer the programmer the capability to completely
customize dynamic program behavior. The invokedynamic functionality is used to implement
dynamic languages on the JVM and also a growing number of dynamic features of Java (e.g.,
lambdas [Oracle 2014b], string concatenation [Oracle 2017], or generics specialization[Goetz
2016]). To this date, support for invokedynamic in static analysis frameworks has been, at
best, incomplete.

All the above instances result in unsoundness; the static analysis fails to capture actual dynamic
behavior. This unsoundness is quantified as reduced coverage of program behavior. HeapDL com-
pensates by adding dynamic information to static analysis. Semantic effects, captured by the heap
state and dynamic call-graph of the application, are extracted from a heap dump and used to
supplement a static analysis. Figure 1 shows the main components, schematically. HeapDL relies
on profiling capabilities of the target runtime. Both major Java-based platforms, Android and the
JVM, provide multiple memory profiling and heap dumping solutions. With an enriching agent
(Section 3) we can make a heap dump encode even more information that is of direct value to static
analysis.

The dynamic information is output in a form suitable to import in a static analysis. HeapDL
explicitly targets whole-program analyses, rather than local static analyses. It is, for instance,
much better suited for points-to analysis, heap shape analysis, or call-graph construction, rather

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 68. Publication date: October 2017.

AAA705 @ Korea University Lecture 6 - DSE March 25, 2024 82 / 90

Just-in-time Static Type Checking
[PLDI’16] Briana M. Ren and Jeffrey S. Foster, “Just-in-time Static Type
Checking for Dynamic Languages”

• Just-in-time Static Type Checking – A technique that type checks
Ruby code even in the presence of meta-programming.

• It dynamically gathers method type signatures and utilizes them
in static type checking of their body when they are invoked.

dynamic system, and we can soundly reason about all possi-
ble execution paths within type checked methods. (Section 2
shows how several examples of metaprogramming are han-
dled by Hummingbird.)

To ensure our approach to type checking is correct, we
formalize Hummingbird using a core, Ruby-like language in
which method creation and method type annotation can oc-
cur at arbitrary points during execution. We provide a flow-
sensitive type checking system and a dynamic semantics that
invokes the type system at method entry, caching the result-
ing typing proof. Portions of the cache may be invalidated
as new methods are defined or type annotations are changed.
We prove soundness for our type system. (Section 3 presents
the formalism.)

Our implementation of Hummingbird piggybacks on two
prior systems we developed. We use the Ruby Intermediate
Language [8, 13] to parse input Ruby files and translate them
to simplified control-flow graphs. We use RDL [26, 34], a
Ruby contract system, to intercept method calls and to rep-
resent and store method type signatures at run time. Hum-
mingbird supports an extensive set of typing features, includ-
ing union types, intersection types, code blocks (anonymous
functions), generics, modules, and type casts, among others.
(Section 4 describes our implementation.)

We evaluated Hummingbird by applying it to six Ruby
apps. Three use Ruby on Rails (just “Rails” below), a pop-
ular, sophisticated web app framework that uses metapro-
gramming heavily both to make Rails code more compact
and expressive and to support “convention over configura-
tion.” We should emphasize that Rails’s use of metaprogram-
ming makes static analysis of it very challenging [17]. Two
apps use other styles of metaprogramming, and the last app
does not use metaprogramming, as a baseline.

We found that all of our subject apps type check success-
fully using Hummingbird, and that dynamically generated
types are essential for the apps that use metaprogramming.
We also found that Hummingbird’s performance overhead
ranges from 19% to 469%, which is much better than prior
approaches [18, 28], and that caching is essential to achiev-
ing this performance. For one Rails app, we ran type check-
ing on many prior versions, and we found a total of six type
errors that had been introduced and then later fixed. We also
ran the app in Rails development mode, which reloads files
as they are edited, to demonstrate how Hummingbird type
check caching behaves in the presence of modified methods.
(Section 5 reports on our results.)

In summary, we believe Hummingbird is an important
step forward in our ability to bring the benefits of static
typing to dynamic languages while still supporting flexible
and powerful metaprogramming features.

2. Overview
We begin our presentation by showing some uses of metapro-
gramming in Ruby and the corresponding Hummingbird

1 class Talk < ActiveRecord::Base
2 belongs to :owner, :class name) ”User”
3
4 type :owner?, ”(User) ! %bool”
5 def owner?(user)
6 return owner == user
7 end end
8

9 module ActiveRecord:: Associations :: ClassMethods
10 pre (: belongs to) do |⇤args |
11 hmi = args[0]
12 options = args[1]
13 hm = hmi.to s
14 cn = options [: class name] if options
15 hmu = cn ? cn : hm. singularize . camelize
16 type hm. singularize , ”() ! #{hmu}”
17 type ”#{hm.singularize}=”,
18 ”(#{hmu}) !#{hmu}”
19 true
20 end end

Figure 1. Ruby on Rails Metaprogramming.

type checking process. The examples below are from the
experiments in Section 5.

Rails Associations. The top of Figure 1 shows an excerpt
from the Talks Rails app. This code defines a class Talk that
is a model in Rails, meaning an instance of Talk represents a
row in the talks database table. The change in case and plu-
ralization here is not an accident—Rails favors “convention
over configuration,” meaning many relationships that would
otherwise be specified via configuration are instead implic-
itly expressed by using similar or the same name for things.

In this app, every talk is owned by a user, which in
implementation terms means a Talk instance has a foreign
key owner id indicating the owner, which is an instance of
class User (not shown). The existence of that relationship
is defined on line 2. Here it may look like belongs to is
a keyword, but in fact it is simply a method call. The call
passes the symbol (an interned string) :owner as the first
argument, and the second argument is a hash that maps
symbol :class name to string ”User”.

Now consider the owner? method, defined on line 5. Just
before the method, we introduce a type annotation indicating
the method takes a User and returns a boolean. Given such
an annotation, Hummingbird’s goal is to check whether the
method body has the indicated type.2 This should be quite
simple in this case, as the body of owner? just calls no-
argument method owner and checks whether the result is
equal to user.

However, if we examine the remaining code of Talk (not
shown), we discover that owner is not defined anywhere in

2 In practice type takes another argument to tell Hummingbird to type check
the body, in contrast to library and framework methods whose types are
trusted. We elide this detail for simplicity.

463

AAA705 @ Korea University Lecture 6 - DSE March 25, 2024 83 / 90

Combined Interpretation
[POPL’18] J. Toman and D. Grossman, “Concerto: a framework for
combined concrete and abstract interpretation”Concerto: A Framework for Combined Concrete and Abstract Interpretation 43:5

main s

g h

dispatch

f i

(a) Sound but Imprecise Call-Graph

main s

g h

dispatch

(b) Unsound Call-Graph

main s

g h

dispatch

f i

dispatch

(c) Call-Graph with Concerto

Fig. 3. Call graphs produced by different analysis schemes. In (a), calls from dispatch to main and s can be ruled
out by matching argument arities. In (c), procedures executed (mostly-)concretely are given a dashed outline.

defined interfaces to communicate with the application. Together, these facts suggest that modern
Java framework implementations are a natural fit for our state separation hypothesis.

Concerto exploits this state separation to thread abstract values produced by the abstract inter-
preter through concrete interpretation and the abstract interpretation may do the same for concrete
values produced by concrete interpretation. (Concerto also includes support for the rare cases
where this hypothesis does not apply, see Section 8.4.) Section 3.1 formalizes a type-based state
separation that is natural in languages like Java.

Without additional knowledge about the program in Fig. 2, a standard abstract interpretation
not integrated with Concerto must make worst-case assumptions about read, and thus use an
extremely imprecise abstraction of the framework state in m. As a result, analysis of dispatch would
conclude that invoke may call any procedure. Thus, plain abstract interpretation cannot rule out
that a negative argument may flow from h through dispatch to f and that the error() statement is
reachable. On the other hand, ignoring invoke as though it is a no-op ignores important application
behavior. These two situations are illustrated in Figs. 3a and 3b, respectively.

Suppose now that we have the following domain knowledge about our program:
(1) The contents of the file config are available at analysis time and will not change between

analysis time and program runtime.
(2) config has the contents shown in Fig. 2

This information ensures that error() is never executed: dispatch will always call f with the positive
argument passed to it by g. However, even if an abstract interpretation has this information,
verifying that error() is unreachable requires an extremely precise semantics and representation
for maps. This can be achieved in this simple language, but, in practice, frameworks use much
more complicated data structures and abstractions, making precise analysis via pure abstract
interpretation unlikely. In contrast, Concerto integrated with a simple signedness analysis can
prove that the error() statement is unreachable, using a process we briefly sketch below.

2.1 Analyzing the Example
Concerto begins analysis of the program by concretely executing main(). Due to the domain-specific
knowledge described above, the initialization loop is statically executable. Thus, Concerto opens
the file "config" and runs the loop to completion. When the loop terminates, m holds the map ["b" !→
"f", "a" !→ "i"]. We stress that Concerto uses no application- or analysis-specific logic here:
Concerto simply performs concrete interpretation, opening the listed file and executing the loop.

At the call to the application entry point s on line 11, Concerto switches to abstract interpre-
tation, in this example a signedness analysis. A key assumption of Concerto is that framework

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 43. Publication date: January 2019.

Concerto: A Framework for Combined Concrete and Abstract Interpretation 43:5

main s

g h

dispatch

f i

(a) Sound but Imprecise Call-Graph

main s

g h

dispatch

(b) Unsound Call-Graph

main s

g h

dispatch

f i

dispatch

(c) Call-Graph with Concerto

Fig. 3. Call graphs produced by different analysis schemes. In (a), calls from dispatch to main and s can be ruled
out by matching argument arities. In (c), procedures executed (mostly-)concretely are given a dashed outline.

defined interfaces to communicate with the application. Together, these facts suggest that modern
Java framework implementations are a natural fit for our state separation hypothesis.

Concerto exploits this state separation to thread abstract values produced by the abstract inter-
preter through concrete interpretation and the abstract interpretation may do the same for concrete
values produced by concrete interpretation. (Concerto also includes support for the rare cases
where this hypothesis does not apply, see Section 8.4.) Section 3.1 formalizes a type-based state
separation that is natural in languages like Java.

Without additional knowledge about the program in Fig. 2, a standard abstract interpretation
not integrated with Concerto must make worst-case assumptions about read, and thus use an
extremely imprecise abstraction of the framework state in m. As a result, analysis of dispatch would
conclude that invoke may call any procedure. Thus, plain abstract interpretation cannot rule out
that a negative argument may flow from h through dispatch to f and that the error() statement is
reachable. On the other hand, ignoring invoke as though it is a no-op ignores important application
behavior. These two situations are illustrated in Figs. 3a and 3b, respectively.

Suppose now that we have the following domain knowledge about our program:
(1) The contents of the file config are available at analysis time and will not change between

analysis time and program runtime.
(2) config has the contents shown in Fig. 2

This information ensures that error() is never executed: dispatch will always call f with the positive
argument passed to it by g. However, even if an abstract interpretation has this information,
verifying that error() is unreachable requires an extremely precise semantics and representation
for maps. This can be achieved in this simple language, but, in practice, frameworks use much
more complicated data structures and abstractions, making precise analysis via pure abstract
interpretation unlikely. In contrast, Concerto integrated with a simple signedness analysis can
prove that the error() statement is unreachable, using a process we briefly sketch below.

2.1 Analyzing the Example
Concerto begins analysis of the program by concretely executing main(). Due to the domain-specific
knowledge described above, the initialization loop is statically executable. Thus, Concerto opens
the file "config" and runs the loop to completion. When the loop terminates, m holds the map ["b" !→
"f", "a" !→ "i"]. We stress that Concerto uses no application- or analysis-specific logic here:
Concerto simply performs concrete interpretation, opening the listed file and executing the loop.

At the call to the application entry point s on line 11, Concerto switches to abstract interpre-
tation, in this example a signedness analysis. A key assumption of Concerto is that framework

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 43. Publication date: January 2019.

AAA705 @ Korea University Lecture 6 - DSE March 25, 2024 84 / 90

Dynamic Shortcuts
[ESEC/FSE’21] J. Park et al., “Accelerating JavaScript Static Analysis via
Dynamic Shortcuts”

• Dynamic Shortcuts – A technique to perform sealed execution
(dynamic analysis) during the static analysis to accelerate and
increase the precision of the analysis without losing soundness.

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Joonyoung Park, Jihyeok Park, Dongjun Youn, and Sukyoung Ryu

•l0 if (x ≥ 0) •l1 x = x;
else •l2 x = −x;

•l3 x = −x; •l4

Figure 4: Negation of the absolute value of x

3.1 Concrete Semantics
We define a program P as a state transition system (S,!, Sι). A
program starts with an initial state in Sι and the transition relation
!⊆ S × S describes how states are transformed to other states. A
collecting semantics !P" = {σ ∈ S | σι ∈ Sι ∧ σι !∗ σ } consists
of reachable states from initial states of the program P . We can
compute it using a transfer function F : D→ D as follows:

!P" = lim
n→∞F

n (dι) F (d) = d ⊔ step(d)

where the concrete domain D = P(S) is a complete lattice with ∪,
∩, and ⊆ as its join(⊔), meet(⊓), and partial order(⊑) operators. The
set of states dι denotes the initial states Sι . The one-step execution
step : D → D transforms states using the transition relation !:
step(d) = {σ ′ | σ ∈ d ∧ σ ! σ ′}.

For example, the code in Figure 4 is a simple program that calcu-
lates the negation of the absolute value of the variable x. States are
pairs of labels and integers stored in x: S = L ×N. Assume that the
initial states are Sι = {(l0,−42)}, which denotes that the program
starts at l0 with the variable x of value −42. Then, it executes with
the following trace:

(l0,−42) ! (l2,−42) ! (l3, 42) ! (l4,−42)

3.2 Abstract Interpretation
Abstract interpretation [13, 14] over-approximates the transfer func-
tion F as an abstract transfer function F # : D# → D# to get an
abstract semantics !P"# in finite iterations as follows:

!P"# = lim
n→∞(F

#)n (d#
ι)

We define a state abstraction D −−−→←−−−α

γ
D# as a Galois connection

between the concrete domain D and an abstract domain D# with a
concretization function γ and an abstraction function α . The initial
abstract state d#

ι ∈ D# represents an abstraction of the initial state
set: dι ⊆ γ (d#

ι). The abstract transfer function F # : D# → D#

is defined as F #(d#) = d# ⊔ step#(d#) with an abstract one-step
execution step# : D# → D#. For a sound state abstraction, the join
operator and the abstract one-step execution should satisfy the
following conditions:

∀d#
0,d

#
1 ∈ D#. γ (d#

0) ∪ γ (d#
1) ⊆ γ (d#

0 ⊔ d#
1) (1)

∀d# ∈ D#. step ◦ γ (d#) ⊆ γ ◦ step#(d#) (2)

A simple example abstract domain is D#± = P({−,+, 0}) with
set operators as domain operators; − denotes negative integers,
+ positive integers, and 0 zero. Assume that we analyze the code
in Figure 4 with the abstract domain and the initial abstract state
d#

ι = {−}. Then, the analysis result is {−,+} because x can have
a positive value by executing x = −x but there is no way for x to
have 0 in this program.

3.3 Analysis Sensitivity
Abstract interpretation is often defined with analysis sensitivity to
increase the precision of static analysis. A sensitive abstract domain
D#

δ : Π → D# is defined with a view abstraction δ : Π → D that
provides multiple points of views for reachable states during static
analysis. It maps a finite number of views Π to sets of statesD. Each
view π ∈ Π represents a set of states δ (π) and each state is included
in a unique view: ∀σ ∈ S. σ ∈ δ (π)⇒ ∀π ′ ∈ Π.σ ∈ δ (π ′)⇒ π =

π ′. A sensitive state abstraction D −−−−→←−−−−αδ

γδ
D#

δ is a Galois connection
between the concrete domain D and the sensitive abstract domain
D#

δ with the following concretization function:

γδ (d#
δ) =

⋃
π ∈Π

δ (π) ∩ γ ◦ d#
δ (π)

With analysis sensitivities, the abstract one-step execution step#
δ :

D#
δ → D#

δ is defined as follows:

step#
δ (d#

δ) = λπ ∈ Π.
⊔

π ′ ∈Π
!π ′ → π"# ◦ d#

δ (π ′)

where !π ′ → π"# : D# → D# is an abstract semantics of a view
transition from a view π ′ to another view π . It should satisfy the
following condition for the soundness of the analysis:

∀d# ∈ D#. step(γ (d#) ∩ δ (π ′)) ∩ δ (π) ⊆ γ ◦ !π ′ → π"#(d#)
One of the most widely-used analysis sensitivity is flow sensi-

tivity defined with a flow-sensitive view abstraction δFS : L → D
where:

∀l ∈ L. δFS(l) = {σ | σ = (l , _)}
If we apply the flow sensitivity for the above example with the initial
abstract state [l0 4→ {−, 0,+}], the analysis result is as follows:

L l0 l1 l2 l3 l4
D#± −, 0,+ 0,+ − 0,+ −, 0

3.4 Sealed Execution
We define sealed execution by extending the transition relation
! as a sealed transition relation !ω on sealed states. First, we
extend concrete states S to sealed states Sω by extending values V
with sealed values Ω. We also define the sealed transition relation
!ω ⊆ Sω × Sω . We use the notation!k

ω for k repetition of!ω ,
and write σω!ω⊥ when σω does not have any sealed transitions
to other sealed states. We define the validity of sealed execution as
follows:

Definition 3.1 (Validity). The sealed transition relation is valid
when the following condition is satisfied for any sealed states σω
and σ ′ω :

σω!ωσ
′
ω ⇔ ∀m ∈ M. {σ ′ | σω |m ! σ ′} = {σ ′ω |m }

whereM : Ω → V represent instantiation maps from sealed values
to concrete values, and σω |m denotes a state produced by replacing
each sealed value ω in σω with its corresponding valuem(ω) using
the instantiation mapm ∈ M.

Sealed execution is different from traditional symbolic execu-
tion [22] in that it supports only sealed values instead of symbolic
expressions and path constraints. For example, the following trace

1132

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Joonyoung Park, Jihyeok Park, Dongjun Youn, and Sukyoung Ryu

(a) Notations (b) x = 0 (c) x > 0 (d) x ∈ N

Figure 5: Abstract interpretation using a combined domain for the running example with different initial values for x.

3.6 Examples
Now, we show examples of abstract interpretation with a combined
domain. Figure 5 depicts the flow of analysis for the running ex-
ample in Figure 4 with three different initial sets of values for the
variable x. In this example, we use the abstract domain {−, 0,+} for
integers stored in x as introduced in Section 3.2, and the flow sensi-
tivity that utilizes the labels of states as their views as introduced
in Section 3.3. For brevity, we use concatenation of abstract values
so that −0 denotes the set {−, 0}.

Figure 5(a) presents notations used in each graph. A solid box
denotes an analysis element that is a pair of a label l and an abstract
state d#. A pair enclosed by angle brackets denotes an analysis
element that is a pair of an abstract instantiation map m# and a
sealed state σω . In fact, the sealed state part (right) of each pair in
graphs contains only the value of the variable of x without its label.
For brevity, we represent its label by locating it next to a node with
its label. A solid line is a view transition !l → l ′"# from a label l
to another one l ′. A dotted line is a sealed transition!ω . Three
solid lines with circled labels denote two converters τ #, τω and the
join operator ⊔.

Figure 5(b) shows the analysis with the combined domain when
the initial value of x is 0. First, in the reform step, the converter τω
converts the analysis element (l0, 0) to another analysis element
⟨', 0⟩ with the label l0. It does not introduce any sealed values
because the value represents only a single value. Until the end of the
program, the sealed execution from ⟨', 0⟩ successfully continues.
Because there is no more possible sealed transition for the sealed
state ⟨', 0⟩ with l4, it is converted to (l4, 0) via the converter τ #.

Instead of a single value, assume that the initial value of x is
one of any positive integers. Figure 5(c) describes the analysis flow
for the case. The initial abstract value at the label l0 is + and it
is impossible to convert it to any sealed values because the next
program statement requires the actual value stored in the variable
x for the branch condition x ≥ 0. Thus, it performs view transition
!l0 → l1"# from the label l0 to another one l1 for the abstract value
+ and the result is also +. Now, the analysis element (l1,+) can be
converted to ⟨ω *→ +,ω⟩ with the label l1. This sealed execution
step terminates in the label l3 because the next statement is x =
−x and the negation operator requires the actual value of x. It is
converted to (l3,+) via τ #, performs the view transition, and results
in (l4,−).

For the last case, we assume that all integers are possible for
the initial value of the variable x as described in Figure 5(d). While

it reaches the false branch in the label l2 unlike previous cases, it
cannot perform dynamic shortcuts because the statement in the
false branch is x = −x, which requires the actual value of x. At the
label l3, there are two analysis elements: 1) (l3,+) introduced by
the view transition from the label l2 with −, and 2) ⟨ω *→ 0+,ω⟩
with l3 introduced by sealed execution started at l1. Since it is not
possible to perform sealed execution for both elements, the second
one is converted to (l3, 0+) and merged with + at l3 via the join
operator ⊔. Finally, the view transition !l3 → l4"# from l3 to l4 is
performed to the merged abstract state 0+ and the result is −0.

3.7 Soundness and Termination
The converter τω and the sealed transition!ω are keys to config-
ure the introduction and termination of sealed execution. To ensure
the soundness and termination of an abstract interpretation defined
with a combined domain of a sensitive abstract domain and a sealed
domain, the following conditions should hold.

Theorem 3.8 (Soundness and Termination). An abstract in-
terpretation with dynamic shortcuts is sound and terminates in a
finite time if:

• the abstract transfer function F # is sound,
• the sensitive abstract domain D#

δ has a finite height,
• the sealed transition!ω is valid, and
• there exists N < ∞ such that

∀ϵ ∈ E. τω (ϵ) = (m#,σω)⇒ σω!k
ω⊥ ∧ 1 < k ≤ N

For soundness proof, we should prove two conditions presented
in Section 3.2: (1) for the join operator ⊔ and (2) for the combined
one-step execution. The core idea of the proof is to use Lemma 3.9
and Lemma 3.10 for the sealed one-step execution stepω and the
reform function, respectively.

Lemma 3.9. Assume that the following condition holds:

∀(m#,σω) ∈ dω . ∃σ ′ω ∈ Sω . σω!ωσ
′
ω

then the following property holds:

step ◦ γω (dω) ⊆ γω ◦ stepω (dω)
Lemma 3.10. For a given combined state d̃ ∈ D̃, the reform function

satisfies the following two properties:

• γ̃ (d̃) ⊆ γ̃ ◦ reform(d̃)
• ∀(m#,σω) ∈ dω . ∃σ ′ω ∈ Sω . σω!ωσ

′
ω

where (d#
δ ,dω) = reform(d̃)

1134

AAA705 @ Korea University Lecture 6 - DSE March 25, 2024 85 / 90

Dynamic Shortcuts
[ESEC/FSE’21] J. Park et al., “Accelerating JavaScript Static Analysis via
Dynamic Shortcuts”

• Dynamic Shortcuts – A technique to perform sealed execution
(dynamic analysis) during the static analysis to accelerate and
increase the precision of the analysis without losing soundness.

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Joonyoung Park, Jihyeok Park, Dongjun Youn, and Sukyoung Ryu

•l0 if (x ≥ 0) •l1 x = x;
else •l2 x = −x;

•l3 x = −x; •l4

Figure 4: Negation of the absolute value of x

3.1 Concrete Semantics
We define a program P as a state transition system (S,!, Sι). A
program starts with an initial state in Sι and the transition relation
!⊆ S × S describes how states are transformed to other states. A
collecting semantics !P" = {σ ∈ S | σι ∈ Sι ∧ σι !∗ σ } consists
of reachable states from initial states of the program P . We can
compute it using a transfer function F : D→ D as follows:

!P" = lim
n→∞F

n (dι) F (d) = d ⊔ step(d)

where the concrete domain D = P(S) is a complete lattice with ∪,
∩, and ⊆ as its join(⊔), meet(⊓), and partial order(⊑) operators. The
set of states dι denotes the initial states Sι . The one-step execution
step : D → D transforms states using the transition relation !:
step(d) = {σ ′ | σ ∈ d ∧ σ ! σ ′}.

For example, the code in Figure 4 is a simple program that calcu-
lates the negation of the absolute value of the variable x. States are
pairs of labels and integers stored in x: S = L ×N. Assume that the
initial states are Sι = {(l0,−42)}, which denotes that the program
starts at l0 with the variable x of value −42. Then, it executes with
the following trace:

(l0,−42) ! (l2,−42) ! (l3, 42) ! (l4,−42)

3.2 Abstract Interpretation
Abstract interpretation [13, 14] over-approximates the transfer func-
tion F as an abstract transfer function F # : D# → D# to get an
abstract semantics !P"# in finite iterations as follows:

!P"# = lim
n→∞(F

#)n (d#
ι)

We define a state abstraction D −−−→←−−−α

γ
D# as a Galois connection

between the concrete domain D and an abstract domain D# with a
concretization function γ and an abstraction function α . The initial
abstract state d#

ι ∈ D# represents an abstraction of the initial state
set: dι ⊆ γ (d#

ι). The abstract transfer function F # : D# → D#

is defined as F #(d#) = d# ⊔ step#(d#) with an abstract one-step
execution step# : D# → D#. For a sound state abstraction, the join
operator and the abstract one-step execution should satisfy the
following conditions:

∀d#
0,d

#
1 ∈ D#. γ (d#

0) ∪ γ (d#
1) ⊆ γ (d#

0 ⊔ d#
1) (1)

∀d# ∈ D#. step ◦ γ (d#) ⊆ γ ◦ step#(d#) (2)

A simple example abstract domain is D#± = P({−,+, 0}) with
set operators as domain operators; − denotes negative integers,
+ positive integers, and 0 zero. Assume that we analyze the code
in Figure 4 with the abstract domain and the initial abstract state
d#

ι = {−}. Then, the analysis result is {−,+} because x can have
a positive value by executing x = −x but there is no way for x to
have 0 in this program.

3.3 Analysis Sensitivity
Abstract interpretation is often defined with analysis sensitivity to
increase the precision of static analysis. A sensitive abstract domain
D#

δ : Π → D# is defined with a view abstraction δ : Π → D that
provides multiple points of views for reachable states during static
analysis. It maps a finite number of views Π to sets of statesD. Each
view π ∈ Π represents a set of states δ (π) and each state is included
in a unique view: ∀σ ∈ S. σ ∈ δ (π)⇒ ∀π ′ ∈ Π.σ ∈ δ (π ′)⇒ π =

π ′. A sensitive state abstraction D −−−−→←−−−−αδ

γδ
D#

δ is a Galois connection
between the concrete domain D and the sensitive abstract domain
D#

δ with the following concretization function:

γδ (d#
δ) =

⋃
π ∈Π

δ (π) ∩ γ ◦ d#
δ (π)

With analysis sensitivities, the abstract one-step execution step#
δ :

D#
δ → D#

δ is defined as follows:

step#
δ (d#

δ) = λπ ∈ Π.
⊔

π ′ ∈Π
!π ′ → π"# ◦ d#

δ (π ′)

where !π ′ → π"# : D# → D# is an abstract semantics of a view
transition from a view π ′ to another view π . It should satisfy the
following condition for the soundness of the analysis:

∀d# ∈ D#. step(γ (d#) ∩ δ (π ′)) ∩ δ (π) ⊆ γ ◦ !π ′ → π"#(d#)
One of the most widely-used analysis sensitivity is flow sensi-

tivity defined with a flow-sensitive view abstraction δFS : L → D
where:

∀l ∈ L. δFS(l) = {σ | σ = (l , _)}
If we apply the flow sensitivity for the above example with the initial
abstract state [l0 4→ {−, 0,+}], the analysis result is as follows:

L l0 l1 l2 l3 l4
D#± −, 0,+ 0,+ − 0,+ −, 0

3.4 Sealed Execution
We define sealed execution by extending the transition relation
! as a sealed transition relation !ω on sealed states. First, we
extend concrete states S to sealed states Sω by extending values V
with sealed values Ω. We also define the sealed transition relation
!ω ⊆ Sω × Sω . We use the notation!k

ω for k repetition of!ω ,
and write σω!ω⊥ when σω does not have any sealed transitions
to other sealed states. We define the validity of sealed execution as
follows:

Definition 3.1 (Validity). The sealed transition relation is valid
when the following condition is satisfied for any sealed states σω
and σ ′ω :

σω!ωσ
′
ω ⇔ ∀m ∈ M. {σ ′ | σω |m ! σ ′} = {σ ′ω |m }

whereM : Ω → V represent instantiation maps from sealed values
to concrete values, and σω |m denotes a state produced by replacing
each sealed value ω in σω with its corresponding valuem(ω) using
the instantiation mapm ∈ M.

Sealed execution is different from traditional symbolic execu-
tion [22] in that it supports only sealed values instead of symbolic
expressions and path constraints. For example, the following trace

1132

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Joonyoung Park, Jihyeok Park, Dongjun Youn, and Sukyoung Ryu

(a) Notations (b) x = 0 (c) x > 0 (d) x ∈ N

Figure 5: Abstract interpretation using a combined domain for the running example with different initial values for x.

3.6 Examples
Now, we show examples of abstract interpretation with a combined
domain. Figure 5 depicts the flow of analysis for the running ex-
ample in Figure 4 with three different initial sets of values for the
variable x. In this example, we use the abstract domain {−, 0,+} for
integers stored in x as introduced in Section 3.2, and the flow sensi-
tivity that utilizes the labels of states as their views as introduced
in Section 3.3. For brevity, we use concatenation of abstract values
so that −0 denotes the set {−, 0}.

Figure 5(a) presents notations used in each graph. A solid box
denotes an analysis element that is a pair of a label l and an abstract
state d#. A pair enclosed by angle brackets denotes an analysis
element that is a pair of an abstract instantiation map m# and a
sealed state σω . In fact, the sealed state part (right) of each pair in
graphs contains only the value of the variable of x without its label.
For brevity, we represent its label by locating it next to a node with
its label. A solid line is a view transition !l → l ′"# from a label l
to another one l ′. A dotted line is a sealed transition!ω . Three
solid lines with circled labels denote two converters τ #, τω and the
join operator ⊔.

Figure 5(b) shows the analysis with the combined domain when
the initial value of x is 0. First, in the reform step, the converter τω
converts the analysis element (l0, 0) to another analysis element
⟨', 0⟩ with the label l0. It does not introduce any sealed values
because the value represents only a single value. Until the end of the
program, the sealed execution from ⟨', 0⟩ successfully continues.
Because there is no more possible sealed transition for the sealed
state ⟨', 0⟩ with l4, it is converted to (l4, 0) via the converter τ #.

Instead of a single value, assume that the initial value of x is
one of any positive integers. Figure 5(c) describes the analysis flow
for the case. The initial abstract value at the label l0 is + and it
is impossible to convert it to any sealed values because the next
program statement requires the actual value stored in the variable
x for the branch condition x ≥ 0. Thus, it performs view transition
!l0 → l1"# from the label l0 to another one l1 for the abstract value
+ and the result is also +. Now, the analysis element (l1,+) can be
converted to ⟨ω *→ +,ω⟩ with the label l1. This sealed execution
step terminates in the label l3 because the next statement is x =
−x and the negation operator requires the actual value of x. It is
converted to (l3,+) via τ #, performs the view transition, and results
in (l4,−).

For the last case, we assume that all integers are possible for
the initial value of the variable x as described in Figure 5(d). While

it reaches the false branch in the label l2 unlike previous cases, it
cannot perform dynamic shortcuts because the statement in the
false branch is x = −x, which requires the actual value of x. At the
label l3, there are two analysis elements: 1) (l3,+) introduced by
the view transition from the label l2 with −, and 2) ⟨ω *→ 0+,ω⟩
with l3 introduced by sealed execution started at l1. Since it is not
possible to perform sealed execution for both elements, the second
one is converted to (l3, 0+) and merged with + at l3 via the join
operator ⊔. Finally, the view transition !l3 → l4"# from l3 to l4 is
performed to the merged abstract state 0+ and the result is −0.

3.7 Soundness and Termination
The converter τω and the sealed transition!ω are keys to config-
ure the introduction and termination of sealed execution. To ensure
the soundness and termination of an abstract interpretation defined
with a combined domain of a sensitive abstract domain and a sealed
domain, the following conditions should hold.

Theorem 3.8 (Soundness and Termination). An abstract in-
terpretation with dynamic shortcuts is sound and terminates in a
finite time if:

• the abstract transfer function F # is sound,
• the sensitive abstract domain D#

δ has a finite height,
• the sealed transition!ω is valid, and
• there exists N < ∞ such that

∀ϵ ∈ E. τω (ϵ) = (m#,σω)⇒ σω!k
ω⊥ ∧ 1 < k ≤ N

For soundness proof, we should prove two conditions presented
in Section 3.2: (1) for the join operator ⊔ and (2) for the combined
one-step execution. The core idea of the proof is to use Lemma 3.9
and Lemma 3.10 for the sealed one-step execution stepω and the
reform function, respectively.

Lemma 3.9. Assume that the following condition holds:

∀(m#,σω) ∈ dω . ∃σ ′ω ∈ Sω . σω!ωσ
′
ω

then the following property holds:

step ◦ γω (dω) ⊆ γω ◦ stepω (dω)
Lemma 3.10. For a given combined state d̃ ∈ D̃, the reform function

satisfies the following two properties:

• γ̃ (d̃) ⊆ γ̃ ◦ reform(d̃)
• ∀(m#,σω) ∈ dω . ∃σ ′ω ∈ Sω . σω!ωσ

′
ω

where (d#
δ ,dω) = reform(d̃)

1134

AAA705 @ Korea University Lecture 6 - DSE March 25, 2024 86 / 90

Dynamic Shortcuts
[ESEC/FSE’21] J. Park et al., “Accelerating JavaScript Static Analysis via
Dynamic Shortcuts”

• Dynamic Shortcuts – A technique to perform sealed execution
(dynamic analysis) during the static analysis to accelerate and
increase the precision of the analysis without losing soundness.

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Joonyoung Park, Jihyeok Park, Dongjun Youn, and Sukyoung Ryu

•l0 if (x ≥ 0) •l1 x = x;
else •l2 x = −x;

•l3 x = −x; •l4

Figure 4: Negation of the absolute value of x

3.1 Concrete Semantics
We define a program P as a state transition system (S,!, Sι). A
program starts with an initial state in Sι and the transition relation
!⊆ S × S describes how states are transformed to other states. A
collecting semantics !P" = {σ ∈ S | σι ∈ Sι ∧ σι !∗ σ } consists
of reachable states from initial states of the program P . We can
compute it using a transfer function F : D→ D as follows:

!P" = lim
n→∞F

n (dι) F (d) = d ⊔ step(d)

where the concrete domain D = P(S) is a complete lattice with ∪,
∩, and ⊆ as its join(⊔), meet(⊓), and partial order(⊑) operators. The
set of states dι denotes the initial states Sι . The one-step execution
step : D → D transforms states using the transition relation !:
step(d) = {σ ′ | σ ∈ d ∧ σ ! σ ′}.

For example, the code in Figure 4 is a simple program that calcu-
lates the negation of the absolute value of the variable x. States are
pairs of labels and integers stored in x: S = L ×N. Assume that the
initial states are Sι = {(l0,−42)}, which denotes that the program
starts at l0 with the variable x of value −42. Then, it executes with
the following trace:

(l0,−42) ! (l2,−42) ! (l3, 42) ! (l4,−42)

3.2 Abstract Interpretation
Abstract interpretation [13, 14] over-approximates the transfer func-
tion F as an abstract transfer function F # : D# → D# to get an
abstract semantics !P"# in finite iterations as follows:

!P"# = lim
n→∞(F

#)n (d#
ι)

We define a state abstraction D −−−→←−−−α

γ
D# as a Galois connection

between the concrete domain D and an abstract domain D# with a
concretization function γ and an abstraction function α . The initial
abstract state d#

ι ∈ D# represents an abstraction of the initial state
set: dι ⊆ γ (d#

ι). The abstract transfer function F # : D# → D#

is defined as F #(d#) = d# ⊔ step#(d#) with an abstract one-step
execution step# : D# → D#. For a sound state abstraction, the join
operator and the abstract one-step execution should satisfy the
following conditions:

∀d#
0,d

#
1 ∈ D#. γ (d#

0) ∪ γ (d#
1) ⊆ γ (d#

0 ⊔ d#
1) (1)

∀d# ∈ D#. step ◦ γ (d#) ⊆ γ ◦ step#(d#) (2)

A simple example abstract domain is D#± = P({−,+, 0}) with
set operators as domain operators; − denotes negative integers,
+ positive integers, and 0 zero. Assume that we analyze the code
in Figure 4 with the abstract domain and the initial abstract state
d#

ι = {−}. Then, the analysis result is {−,+} because x can have
a positive value by executing x = −x but there is no way for x to
have 0 in this program.

3.3 Analysis Sensitivity
Abstract interpretation is often defined with analysis sensitivity to
increase the precision of static analysis. A sensitive abstract domain
D#

δ : Π → D# is defined with a view abstraction δ : Π → D that
provides multiple points of views for reachable states during static
analysis. It maps a finite number of views Π to sets of statesD. Each
view π ∈ Π represents a set of states δ (π) and each state is included
in a unique view: ∀σ ∈ S. σ ∈ δ (π)⇒ ∀π ′ ∈ Π.σ ∈ δ (π ′)⇒ π =

π ′. A sensitive state abstraction D −−−−→←−−−−αδ

γδ
D#

δ is a Galois connection
between the concrete domain D and the sensitive abstract domain
D#

δ with the following concretization function:

γδ (d#
δ) =

⋃
π ∈Π

δ (π) ∩ γ ◦ d#
δ (π)

With analysis sensitivities, the abstract one-step execution step#
δ :

D#
δ → D#

δ is defined as follows:

step#
δ (d#

δ) = λπ ∈ Π.
⊔

π ′ ∈Π
!π ′ → π"# ◦ d#

δ (π ′)

where !π ′ → π"# : D# → D# is an abstract semantics of a view
transition from a view π ′ to another view π . It should satisfy the
following condition for the soundness of the analysis:

∀d# ∈ D#. step(γ (d#) ∩ δ (π ′)) ∩ δ (π) ⊆ γ ◦ !π ′ → π"#(d#)
One of the most widely-used analysis sensitivity is flow sensi-

tivity defined with a flow-sensitive view abstraction δFS : L → D
where:

∀l ∈ L. δFS(l) = {σ | σ = (l , _)}
If we apply the flow sensitivity for the above example with the initial
abstract state [l0 4→ {−, 0,+}], the analysis result is as follows:

L l0 l1 l2 l3 l4
D#± −, 0,+ 0,+ − 0,+ −, 0

3.4 Sealed Execution
We define sealed execution by extending the transition relation
! as a sealed transition relation !ω on sealed states. First, we
extend concrete states S to sealed states Sω by extending values V
with sealed values Ω. We also define the sealed transition relation
!ω ⊆ Sω × Sω . We use the notation!k

ω for k repetition of!ω ,
and write σω!ω⊥ when σω does not have any sealed transitions
to other sealed states. We define the validity of sealed execution as
follows:

Definition 3.1 (Validity). The sealed transition relation is valid
when the following condition is satisfied for any sealed states σω
and σ ′ω :

σω!ωσ
′
ω ⇔ ∀m ∈ M. {σ ′ | σω |m ! σ ′} = {σ ′ω |m }

whereM : Ω → V represent instantiation maps from sealed values
to concrete values, and σω |m denotes a state produced by replacing
each sealed value ω in σω with its corresponding valuem(ω) using
the instantiation mapm ∈ M.

Sealed execution is different from traditional symbolic execu-
tion [22] in that it supports only sealed values instead of symbolic
expressions and path constraints. For example, the following trace

1132

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Joonyoung Park, Jihyeok Park, Dongjun Youn, and Sukyoung Ryu

(a) Notations (b) x = 0 (c) x > 0 (d) x ∈ N

Figure 5: Abstract interpretation using a combined domain for the running example with different initial values for x.

3.6 Examples
Now, we show examples of abstract interpretation with a combined
domain. Figure 5 depicts the flow of analysis for the running ex-
ample in Figure 4 with three different initial sets of values for the
variable x. In this example, we use the abstract domain {−, 0,+} for
integers stored in x as introduced in Section 3.2, and the flow sensi-
tivity that utilizes the labels of states as their views as introduced
in Section 3.3. For brevity, we use concatenation of abstract values
so that −0 denotes the set {−, 0}.

Figure 5(a) presents notations used in each graph. A solid box
denotes an analysis element that is a pair of a label l and an abstract
state d#. A pair enclosed by angle brackets denotes an analysis
element that is a pair of an abstract instantiation map m# and a
sealed state σω . In fact, the sealed state part (right) of each pair in
graphs contains only the value of the variable of x without its label.
For brevity, we represent its label by locating it next to a node with
its label. A solid line is a view transition !l → l ′"# from a label l
to another one l ′. A dotted line is a sealed transition!ω . Three
solid lines with circled labels denote two converters τ #, τω and the
join operator ⊔.

Figure 5(b) shows the analysis with the combined domain when
the initial value of x is 0. First, in the reform step, the converter τω
converts the analysis element (l0, 0) to another analysis element
⟨', 0⟩ with the label l0. It does not introduce any sealed values
because the value represents only a single value. Until the end of the
program, the sealed execution from ⟨', 0⟩ successfully continues.
Because there is no more possible sealed transition for the sealed
state ⟨', 0⟩ with l4, it is converted to (l4, 0) via the converter τ #.

Instead of a single value, assume that the initial value of x is
one of any positive integers. Figure 5(c) describes the analysis flow
for the case. The initial abstract value at the label l0 is + and it
is impossible to convert it to any sealed values because the next
program statement requires the actual value stored in the variable
x for the branch condition x ≥ 0. Thus, it performs view transition
!l0 → l1"# from the label l0 to another one l1 for the abstract value
+ and the result is also +. Now, the analysis element (l1,+) can be
converted to ⟨ω *→ +,ω⟩ with the label l1. This sealed execution
step terminates in the label l3 because the next statement is x =
−x and the negation operator requires the actual value of x. It is
converted to (l3,+) via τ #, performs the view transition, and results
in (l4,−).

For the last case, we assume that all integers are possible for
the initial value of the variable x as described in Figure 5(d). While

it reaches the false branch in the label l2 unlike previous cases, it
cannot perform dynamic shortcuts because the statement in the
false branch is x = −x, which requires the actual value of x. At the
label l3, there are two analysis elements: 1) (l3,+) introduced by
the view transition from the label l2 with −, and 2) ⟨ω *→ 0+,ω⟩
with l3 introduced by sealed execution started at l1. Since it is not
possible to perform sealed execution for both elements, the second
one is converted to (l3, 0+) and merged with + at l3 via the join
operator ⊔. Finally, the view transition !l3 → l4"# from l3 to l4 is
performed to the merged abstract state 0+ and the result is −0.

3.7 Soundness and Termination
The converter τω and the sealed transition!ω are keys to config-
ure the introduction and termination of sealed execution. To ensure
the soundness and termination of an abstract interpretation defined
with a combined domain of a sensitive abstract domain and a sealed
domain, the following conditions should hold.

Theorem 3.8 (Soundness and Termination). An abstract in-
terpretation with dynamic shortcuts is sound and terminates in a
finite time if:

• the abstract transfer function F # is sound,
• the sensitive abstract domain D#

δ has a finite height,
• the sealed transition!ω is valid, and
• there exists N < ∞ such that

∀ϵ ∈ E. τω (ϵ) = (m#,σω)⇒ σω!k
ω⊥ ∧ 1 < k ≤ N

For soundness proof, we should prove two conditions presented
in Section 3.2: (1) for the join operator ⊔ and (2) for the combined
one-step execution. The core idea of the proof is to use Lemma 3.9
and Lemma 3.10 for the sealed one-step execution stepω and the
reform function, respectively.

Lemma 3.9. Assume that the following condition holds:

∀(m#,σω) ∈ dω . ∃σ ′ω ∈ Sω . σω!ωσ
′
ω

then the following property holds:

step ◦ γω (dω) ⊆ γω ◦ stepω (dω)
Lemma 3.10. For a given combined state d̃ ∈ D̃, the reform function

satisfies the following two properties:

• γ̃ (d̃) ⊆ γ̃ ◦ reform(d̃)
• ∀(m#,σω) ∈ dω . ∃σ ′ω ∈ Sω . σω!ωσ

′
ω

where (d#
δ ,dω) = reform(d̃)

1134

AAA705 @ Korea University Lecture 6 - DSE March 25, 2024 87 / 90

Summary

1. Symbolic Execution
Basic Idea
Satisfiability Modulo Theories (SMT)
Limitations of Symbolic Execution

2. Dynamic Symbolic Execution (DSE)
Search Heuristics
Example – Hash Function
Example – Loops
Example – Data Structures
Realistic Implementation
Other Hybrid Analysis Techniques

AAA705 @ Korea University Lecture 6 - DSE March 25, 2024 88 / 90

References
• Lecture for Dynamic Symbolic Execution by Prof. Mayur Naik at

UPenn CIS.

https://software-analysis-class.org/lectures/lecture14

• [CSUR’18] Baldoni et al., “A Survey of Symbolic Execution
Techniques“

https://dl.acm.org/doi/abs/10.1145/3182657

AAA705 @ Korea University Lecture 6 - DSE March 25, 2024 89 / 90

https://software-analysis-class.org/lectures/lecture14
https://dl.acm.org/doi/abs/10.1145/3182657

Next Lecture
• Mutation Testing

Jihyeok Park
jihyeok park@korea.ac.kr

https://plrg.korea.ac.kr

AAA705 @ Korea University Lecture 6 - DSE March 25, 2024 90 / 90

https://plrg.korea.ac.kr

	Symbolic Execution
	Basic Idea
	Satisfiability Modulo Theories (SMT)
	Limitations of Symbolic Execution

	Dynamic Symbolic Execution (DSE)
	Search Heuristics
	Example – Hash Function
	Example – Loops
	Example – Data Structures
	Realistic Implementation
	Other Hybrid Analysis Techniques

