Lecture 7 — Mutation Testing

AAATO05: Software Testing and Quality Assurance

Jihyeok Park

7VPLRG

2024 Spring

AAAT705 @ Korea University Lecture 7 — Mutation Testing March 27, 2024

Recall ’VNPLRG

e Symbolic Execution
® Basic Idea
e Satisfiability Modulo Theories (SMT)
® Limitations of Symbolic Execution

* Dynamic Symbolic Execution (DSE)

® Search Heuristics

® Example — Hash Function
® Example — Loops

® Example — Data Structures

® Realistic Implementation

e Other Hybrid Analysis Techniques

AAAT705 @ Korea University Lecture 7 — Mutation Testing March 27, 2024 2/62

Contents ’VNPLRG

1. Mutation Testing
Fundamental Hypotheses
Overall Process
Mutation Generation
Kill vs Alive
Equivalent Mutants
How to Kill A Mutant
Scalability
Higher Order Mutants
Tools

2. Test Flakiness

AAAT705 @ Korea University Lecture 7 — Mutation Testing March 27, 2024 3/62

Contents ’VNPLRG

1. Mutation Testing
Fundamental Hypotheses
Overall Process
Mutation Generation
Kill vs Alive
Equivalent Mutants
How to Kill A Mutant
Scalability
Higher Order Mutants
Tools

AAAT705 @ Korea University Lecture 7 — Mutation Testing March 27, 2024 4/62

Mutation Testing 7NPLRG

e Mutation testing is a white-box and fault-based testing technique.

¢ Inverts the testing adequacy criterion: the goal is to access the
effectiveness of the existing test suite in terms of its fault detection
capabilities.

® Test suites test programs

® Mutants test test suites

® The most widely used adequacy score is mutation score: it measures
the quality of the given test suite as the percentage of injected
faults that you can detect.

AAAT705 @ Korea University Lecture 7 — Mutation Testing March 27, 2024

Mutation Testing 7NPLRG

80

=
=)

| | | R2=0.88697

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
Year

publications
(1% 9 P W f=2)
(=) (=) (=) (=) (=)

S

0

Figure 1: Number of mutation testing publications per year (years: 2008-2017).

M. Papadakis, M. Kintis, J. Zhang, Y. Jia, Y. Le Traon, M. Harman, Mutation Testing
Advances: An Analysis and Survey, Advances in Computers, 2017.

AAAT705 @ Korea University Lecture 7 — Mutation Testing March 27, 2024

Mutation Testing 7NPLRG

Which environment is better test environment for car? Why?

AAAT705 @ Korea University Lecture 7 — Mutation Testing March 27, 2024

Mutation Testing 7NPLRG

Let's sabotage the car! In the bendy road, the car will crash!

AAAT705 @ Korea University Lecture 7 — Mutation Testing March 27, 2024

Mutation Testing 7NPLRG

e Testing is a sampling process: without a priori knowledge of faults, it
is difficult to access how well a technique samples.

¢ Mutation testing: the quality of a test suite can be indirectly
measured by artificially injecting faults and checking how well the
test suite can detect them.

® Seed the original implementations with faults (the seeded version are
called mutants

® Execute the given test suite

® |If we get different test results, the introduced faults (the mutant) has
been identified (i.e., the mutant is killed). If not, the mutant is still
alive.

AAAT705 @ Korea University Lecture 7 — Mutation Testing March 27, 2024

Fundamental Hypotheses 7VPLRG

¢ Mutation testing is based on two fundamental hypotheses:

@ Competent Programmer Hypothesis

® Coupling Effect Hypothesis

AAAT705 @ Korea University Lecture 7 — Mutation Testing March 27, 2024

(1) Competent Programmer Hypothesis ’VPLRG

What do the programmers and the monkeys have in common when they
write programs?

They both write buggy code!

AAAT705 @ Korea University Lecture 7 — Mutation Testing March 27, 2024

(1) Competent Programmer Hypothesis ’VPLRG

On average, programmers are competent (they write almost correct

programs). A faulty program source code is different from the correct one
only in a few, minor detail.

AAAT705 @ Korea University Lecture 7 — Mutation Testing March 27, 2024

(2) Coupling Effect Hypothesis ") PLRG

e |f a test suite detects all small syntactic faults, it will also detect
larger, semantics faults: especially if those semantic faults are
coupled with the small faults.

® Richard A. DeMillo and Richard J. Lipton and Frederick Gerald
Sayward, Hints on Test Data Selection: Help for the Practicing
Programmer, Computer, 11(4), 1978.

® A. Jefferson Offutt, Investigations of the Software Testing Coupling
Effect , ACM Transactions on Software Engineering and Methodology,
1(1), January 1992.

AAAT705 @ Korea University Lecture 7 — Mutation Testing March 27, 2024

Fundamental Hypotheses 7VPLRG

¢ Mutation testing is based on two fundamental hypotheses:

@ Competent Programmer Hypothesis: programmers are likely to
make simple faults.

® Coupling Effect Hypothesis: if we catch all the simple faults, we will
be able to catch more complicated faults.

® |et's artificially inject simple faults!

AAAT705 @ Korea University Lecture 7 — Mutation Testing March 27, 2024

Overall Process

7
v
v/

Test Suite

&«

~

3

Bug

Program

/ \ Mutants

Same Results Different Results
(Alive) (Killed)

’VNPLRG

AAAT705 @ Korea University Lecture 7 — Mutation Testing March 27, 2024

Mutation Generation ’VNPLRG

Program P Mutant P’

e P’ differs from P by a simple mutation.

® Mutation: a typical simple error programmers are likely to make —
off-by-one errors, typo, mistaken identity, etc.

AAAT705 @ Korea University Lecture 7 — Mutation Testing March 27, 2024

Mutation Operator ’VPLRG

An atomic rule that is used to generate a mutant

ABS: Absolute Value Insertion

x = 4 * abs(y);
x =4 *y; » x = 4 % -abs(y);
x = 4 x failOnZero(y);

A Fortran Language System for Mutation-Based Software Testing, Kim N. King and Jeff
Offutt. Software Practice and Experience, 21(7):686-718, July 1991

AAAT705 @ Korea University Lecture 7 — Mutation Testing March 27, 2024

Mutation Operator ’VPLRG

An atomic rule that is used to generate a mutant

AOR: Arithmetic Operator Replacement

o]
|

X =y % z;
x=y+z m) -z
x=y/ z;

A Fortran Language System for Mutation-Based Software Testing, Kim N. King and Jeff
Offutt. Software Practice and Experience, 21(7):686-718, July 1991

AAAT705 @ Korea University Lecture 7 — Mutation Testing March 27, 2024

Mutation Operator ’VPLRG

An atomic rule that is used to generate a mutant

ROR: Relational Operator Replacement

if (x > y)

if (x >=y) » 1; Ez :=y§)

if (x !=y)

A Fortran Language System for Mutation-Based Software Testing, Kim N. King and Jeff
Offutt. Software Practice and Experience, 21(7):686-718, July 1991

AAAT705 @ Korea University Lecture 7 — Mutation Testing March 27, 2024

Mutation Operator ’VPLRG

An atomic rule that is used to generate a mutant

COR: Conditional Operator Replacement

if (x |1y

if (x && y) » if (x & y)
if (x| y)

A Fortran Language System for Mutation-Based Software Testing, Kim N. King and Jeff
Offutt. Software Practice and Experience, 21(7):686-718, July 1991

AAAT705 @ Korea University Lecture 7 — Mutation Testing March 27, 2024

Mutation Operator ’VPLRG

An atomic rule that is used to generate a mutant

SDL: Statement Deletion

x = 3; x = 3;
y=x+s; =)
z zZ =X -75;

X -y

A Fortran Language System for Mutation-Based Software Testing, Kim N. King and Jeff
Offutt. Software Practice and Experience, 21(7):686-718, July 1991

AAAT705 @ Korea University Lecture 7 — Mutation Testing March 27, 2024

Mutation Operator ’VPLRG

® Any systematic and syntactic change operator can be considered.

e For C: 71 Mutation Operators — Statement 15, Operator 46,
Variable 7, Constant 3

® Design of Mutant Operators for the C Programming Language by
Hiralal Agrawal, Richard A DeMillo, R Hathaway,William Hsu,Wynne
Hsu, Edward W Krauser, Rhonda J Martin, Aditya P Mathur, Eugene
H Spafford, technical report, Purdue University, 1989

e For Java: 24 Mutation Operators — Access Control 1, Inheritance
7, Polymorphism 4, Overloading 4, Java-Specific Features 4,
Common Programming Mistakes 4

® Y.-S. Ma, Y.-R. Kwon, and J. Offutt. Inter-class mutation operators for
java. In Proceedings of the 13th International Symposium on Software
Reliability Engineering, ISSRE '02, pages 352—, Washington, DC, USA,
2002. IEEE Computer Society.
¢ For Spreadsheets

® R. Abraham and M. Erwig. Mutation operators for spreadsheets. IEEE
Transactions on Software Engineering, 35(1):94-108, 2009.

AAAT705 @ Korea University Lecture 7 — Mutation Testing March 27, 2024 22 /62

Mutation Operator — Java 7NPLRG

For Java — 1 mutation for Information Hiding (Access Control)

AMC: Access Modifier Change

private Stack s;
public Stack s; » protected Stack s;
Stack s;

Y.-S. Ma, Y.-R. Kwon, and J. Offutt. Inter-class mutation operators for java. In
Proceedings of the 13th International Symposium on Software Reliability Engineering,
ISSRE '02, pages 352—, Washington, DC, USA, 2002. IEEE Computer Society.

AAAT705 @ Korea University Lecture 7 — Mutation Testing March 27, 2024

Mutation Operator — Java

For Java — 7 mutations for Inheritance

’VNPLRG

IHD: Hiding Variable Deletion

class List {
int size;

}
class Stack extends List {
int size;

=)

class List {
int size;

}

class Stack extends List {

Y.-S. Ma, Y.-R. Kwon, and J. Offutt. Inter-class mutation operators for java. In

Proceedings of the 13th International Symposium on Software Reliability Engineering,
ISSRE '02, pages 352—, Washington, DC, USA, 2002. IEEE Computer Society.

AAAT705 @ Korea University

Lecture 7 — Mutation Testing

March 27, 2024

Mutation Operator — Java

For Java — 7 mutations for Inheritance

’VNPLRG

IHI: Hiding Variable Insertion

class List {
int size;

}

class Stack extends List {

=)

class List {
int size;

}
class Stack extends List {
int size;

Y.-S. Ma, Y.-R. Kwon, and J. Offutt. Inter-class mutation operators for java. In

Proceedings of the 13th International Symposium on Software Reliability Engineering,
ISSRE '02, pages 352—, Washington, DC, USA, 2002. IEEE Computer Society.

AAAT705 @ Korea University

Lecture 7 — Mutation Testing

March 27, 2024

Mutation Operator — Java 7VPLRG

For Java — 7 mutations for Inheritance

10D: Overriding Method Deletion

class List { class List {
Push (int a) { ... } Push (int a) { ... }

} }

class Stack extends List { class Stack extends List {
Push (int a) { ... }

} }

Y.-S. Ma, Y.-R. Kwon, and J. Offutt. Inter-class mutation operators for java. In

Proceedings of the 13th International Symposium on Software Reliability Engineering,
ISSRE '02, pages 352—, Washington, DC, USA, 2002. IEEE Computer Society.

AAAT705 @ Korea University Lecture 7 — Mutation Testing

March 27, 2024

Mutation Operator — Java

For Java — 7 mutations for Inheritance

IOP: Overriden Method Calling Position Change

class List {
void SetEnv() {
size = 5; ... }

}
class Stack extends List {
void SetEnv() {
super.SetEnv() ;
size = 10;

}

-)

7VNPLRG

class List {
void SetEnv() {
size = 5; ... }

}
class Stack extends List {
void SetEnv() {
size = 10;
super.SetEnv () ;
}

Y.-S. Ma, Y.-R. Kwon, and J. Offutt. Inter-class mutation operators for java. In

Proceedings of the 13th International Symposium on Software Reliability Engineering,
ISSRE '02, pages 352—, Washington, DC, USA, 2002. IEEE Computer Society.

AAAT705 @ Korea University

Lecture 7 — Mutation Testing

March 27, 2024 27 /62

Mutation Operator — Java 7NPLRG

For Java — 4 mutations for Polymorphism
For Java — 4 mutations for Overloading

For Java — 4 mutations for Java-Specific Features

® (e.g., this, static, member variable initialization, default
constructor)

For Java — 4 mutations for Common Programming Mistakes

Y.-S. Ma, Y.-R. Kwon, and J. Offutt. Inter-class mutation operators for java. In
Proceedings of the 13th International Symposium on Software Reliability Engineering,
ISSRE '02, pages 352—, Washington, DC, USA, 2002. IEEE Computer Society.

AAAT705 @ Korea University Lecture 7 — Mutation Testing March 27, 2024

Mutation Operator — Spreadsheets ’MPLRG

® Any systematic and syntactic change operator can be considered.
e For spreadsheets’:

® RCR (Reference for Constant Replacement)

® FRC (Formula Replacement with Constants)

CRE (Contiguous Range Expansion)

CRS (Contiguous Range Shrinking)

® etc.

'R. Abraham and M. Erwig. Mutation operators for spreadsheets. IEEE Transactions
on Software Engineering, 35(1):94-108, 2009.

AAAT705 @ Korea University Lecture 7 — Mutation Testing March 27, 2024

Kill vs Alive ’VNPLRG

Program P Mutant P’

Test: (y, z) = (2, 2) 4 4 Alive

Test: (y, z) = (3, 1) 4 3 Kill

AAAT705 @ Korea University Lecture 7 — Mutation Testing March 27, 2024

Kill vs Alive ’VNPLRG

Program P Mutant P’

Test:y =2 4 4 Alive

Test:y =3 6 6 Alive

AAAT705 @ Korea University Lecture 7 — Mutation Testing March 27, 2024 31/62

Equivalent Mutants

7VNPLRG

e What if a mutant has the same behavior as the original program?

® For example, consider the following program and its mutant:

Xx=yty;

-)

X =y * 2;

® Checking whether an arbitrary mutant is equivalent or not is

undecidable.

e This is one of the major obstacles to the mainstream adoption of

mutation testing.

® My mutation score is 70%. Is my test suite bad, or are there too
many equivalent mutants?

AAAT705 @ Korea University

Lecture 7 — Mutation Testing

March 27, 2024

Equivalent Mutants ’NPLRG

MS — (# of killed mutants)
~ (# of non-equivalent mutants)

(# of killed mutants)
(# of all mutants)

MS =

AAAT705 @ Korea University Lecture 7 — Mutation Testing March 27, 2024

How to Kill A Mutant ’VNPLRG
Three conditions need to be satisfied to kill a mutant:

® Reachability: your test execution needs to reach (i.e., cover) the
mutant.

® Infection: the mutated code should infect the program state (i.e., the
value of the mutated expression differs from the value of the original
expression).

® Propagation: the infected state should propagate to the observable
state.

We categorize the kill conditions into two types: weak and strong.

* (Weak Kill) = Reachability + Infection
(i.e., we stop after confirming infection, do not check the propagation
to the outside world)

¢ (Strong Kill) = Reachability + Infection + Propagation
(i.e., the kill can be observed from the outside world)

AAAT705 @ Korea University Lecture 7 — Mutation Testing March 27, 2024 34 /62

How to Kill A Mutant ’VNPLRG

i <y 4 e Reachability Condition:
if (z<y) { x <y
J/if (z <y + 1) {
if (x < z) { ® Infection Condition:
result = z;
} else { (z<y) !l=(z<y+1)
) result = x; e Weak Kill Condition:
} else { (x<y) & ((z<y) !=(z<y+ 1))
result = y; or simply (x < y) & (z == y)
}
}else { ® Propagation Condition:
result = 0;
} y=z
[]

Strong Kill Condition:
(x<y) & (z ==y) && (y !'= 2)

AAAT705 @ Korea University Lecture 7 — Mutation Testing March 27, 2024

Scalability ’VPLRG

¢ Normal testing: 1 program x 100 test cases

¢ Mutation testing: 1 program x 10000 mutants (including
compilation!) x 100 test cases

® We tend to get a large number of mutants:

® No prior knowledge of which mutation operator is the most effective
(w.r.t. improving the test suite quality): the default is to apply
everything

® Programs are large!

AAAT705 @ Korea University Lecture 7 — Mutation Testing March 27, 2024

Scalability — Do Fewer ’VPLRG

® Mutation Sampling — generate a large number of mutants, but use
only a subset of them (natural question: how to do we select?)

e Subsuming Mutant — a mutant P’ subsumes another mutant P” if
and only if killing P" implies killing P”.

® True subsumption relationship is undecidable.
® Dynamic subsumption is defined w.r.t. a given test suite.

® Static subsumption is defined with results of static analysis.

e Selective Mutation — apply only a subset of mutation operators.

AAAT705 @ Korea University Lecture 7 — Mutation Testing March 27, 2024 37/62

Scalability — Do Smarter ’VPLRG

e Super-mutant — compile all mutants into a single program, then,
activate a specific subset at the runtime (saves the compilation time).

® Weak mutation testing — relax the kill criterion to weak kills
(requires instrumentation for the embedded oracle).

¢ Parallel/distributed mutation testing — obvious.

AAAT705 @ Korea University Lecture 7 — Mutation Testing March 27, 2024

Scalability — Trivial Compiler Equivalence (TCE) #¥PLRG

e Trivial Compiler Equivalence (TCE)?- a mutant is trivially
equivalent if the binary code of the mutant is same as the binary
code of the original program after the compilation (thanks to the
compiler optimization).

e A large scale empirical study showed that TCE can detect 7% of the
mutants to be equivalent; more importantly, 21% of all mutants
were duplicates (i.e., not equivalent to the original program, but
identical to another non-equivalent mutant).

2M. Papadakis, Y. Jia, M. Harman, and Y. Le Traon. Trivial compiler equivalence: A
large scale empirical study of a simple, fast and effective equivalent mutant detection
technique. In Proceedings of the 37th International Conference on Software
Engineering-Volume 1, pages 936-946. |IEEE Press, 2015.

AAAT705 @ Korea University Lecture 7 — Mutation Testing March 27, 2024 39/62

Higher Order Mutants ’NPLRG

¢ First Order Mutants (FOM) — a single mutation operator is applied
to the original program.

® Higher Order Mutants (HOM) — multiple mutation operators are
applied to the original program.

® Some studies claim that, while most of the FOMs are trivial to kill,
few of them are coupled with real faults.

® \We can search for a combination of FOMs that results in a
hard-to-kill HOM.

AAAT705 @ Korea University Lecture 7 — Mutation Testing March 27, 2024 40 /62

Tools ’VNPLRG
Diverse mutation testing tools are available:

¢ Fortran — Mothra (a long-lasting impact on the mutation testing)

e C/C++ — Proteum, MiLU, MUSIC

e Java — mulJava, Major, Javalanche, PIT

e JavaScript — Stryker

¢ Ruby — Heckle

¢ Python — Mutatest

AAAT705 @ Korea University Lecture 7 — Mutation Testing March 27, 2024 41/62

Contents ’VNPLRG

2. Test Flakiness

AAAT705 @ Korea University Lecture 7 — Mutation Testing March 27, 2024

Push On Green ’NPLRG

T

P e

e A DevOps concept popularized by Google, more commonly and also
known as: Continuous Integration and Deployment (Cl/CD)

e Newest version of software is automatically deployed whenever all
tests pass.

® Test results are critical
® False Negative (i.e., test passes even though there is a bug): you end
up releasing a buggy software
® False Positive (i.e., test fails even though there is no bug): slows down
the development process

AAAT705 @ Korea University Lecture 7 — Mutation Testing March 27, 2024

Push On Green ’NPLRG

Making Push On
Green a Reality

Daniel V. Klein, Google

Making “Push On Green" a Reality: Issues and Actions Involved in
Maintaining a Production Service3

(LISA stands for Large Installation System Administration Conference)

3A USENIX LISA 2014 presentation given by Daniel Klein, Google:

https://www.usenix.org/conference/lisal4/conference-program/presentation/klein

AAAT705 @ Korea University Lecture 7 — Mutation Testing March 27, 2024

https://www.usenix.org/conference/lisa14/conference-program/presentation/klein

Test Flakiness ’VNPLRG

® \We call a test case to be flaky if it changes outcome against the
same codebase.

e This creates a huge problem for Pass on Green philosophy: when a
test transitions from pass to fail, is it flaky or is it actually a real
problem?

AAAT705 @ Korea University Lecture 7 — Mutation Testing March 27, 2024 45 /62

Test Flakiness ’VNPLRG

Analysis of Test Results at Google ‘j

e Analysis of a large sample of tests (1 month) showed: ‘;ﬁ

o 84% of ransitions from Pass -> Fail are from "flaky" tests ?@&Pmﬁ%&gm
Only 1.23% of tests ever found a breakage
Frequently changed files more likely to cause a breakage
3 or more developers changing a file is more likely to cause a breakage
Changes "closer" in the dependency graph more likely to cause a breakage
Certain people / automation more likely to cause breakages (oops!)
Certain languages more likely to cause breakages (sorry)

(LL‘

O 0O 0O 0O O O

See: prior dec about Goagle Gl System, See this pper about piper and CLs

Google
T —

“The State of Continuous Integration Testing at Google”, John Micco,
ICST 2017 Keynote (https://research.google/pubs/pub4d5880/)

AAAT705 @ Korea University Lecture 7 — Mutation Testing March 27, 2024

https://research.google/pubs/pub45880/

Test Flakiness ’VNPLRG

Flaky Tests

e Test Flakiness is a huge problem

e Flakiness is a test that is observed to both Pass and Fail with the same code

e Almost 16% of our 4.2M tests have some level of flak;ness

° nT“aky failures frequently block and delay releases

e Developers ignore flaky tests when submitting - sometimes incorrectly

e We spend between 2 and 16% of our compute resources re-running flaky tests
vanuu‘uumgggﬂuu.n . cle L1 me 1
“é'j'ﬂ"ggﬁh. “, i g : :

Google ! .:‘_ 2 :E i; Eue 578 _:' a B ‘_"'?
T

“The State of Continuous Integration Testing at Google”, John Micco,
ICST 2017 Keynote (https://research.google/pubs/pub4d5880/)

AAAT705 @ Korea University Lecture 7 — Mutation Testing March 27, 2024

https://research.google/pubs/pub45880/

Sources of Flakiness ’NPLRG

e Parallelism — tests are run in parallel
® Timeouts — tests that take too long to run
[]

State Management — tests that depend on the state of the system

e Data Management — tests that depend on the data

Algorithm — Non-deterministic algorithms

AAAT705 @ Korea University Lecture 7 — Mutation Testing March 27, 2024 48 /62

Solutions? 7V PLRG

Better Synchonization

Thread-safe code + independent execution environment

Break-down long sequences + step-wise synchronization

Explicit pre-condition setup for both state and data + avoid
dependencies between test executions

Fixed seed for random number generation

AAAT705 @ Korea University Lecture 7 — Mutation Testing March 27, 2024

Your Tests Aren't Flaky 7NPLRG

e A talk given by Alister Scott (Automattic) at GTAC 2015
(GTAC — Google Test Automation Conference)

® https://www.youtube.com/watch?v=hmk1h40shaE

® Here is the slide

e "That test is falky” is not a get out of jail free card

® A re-run culture is toxic

AAAT705 @ Korea University Lecture 7 — Mutation Testing March 27, 2024

https://www.youtube.com/watch?v=hmk1h40shaE
https://docs.google.com/presentation/d/1L9hGYqCAgjZyXE9ch4Toh4ziuYYkB2OiMCdFpgfTko0/pub?slide=id.gd8d3f5279_0_0

Research on Test Flakiness ’MPLRG

® Detection — is this test failure real, or a result of flakiness?

¢ Prediction — how likely is this test case to be flaky?

® Repair — automatically remove flakiness? (Most ambitious goal)

AAAT705 @ Korea University Lecture 7 — Mutation Testing March 27, 2024 51/62

Detection of Flaky Tests 7VPLRG

® A test fails. How do you determine whether it is flaky or not?

® A test case that transitions from pass to fail but does not cover any

of the changed part is likely to be flaky! (because the changed
behavior is caused by the changed code)

® DeFlaker: Automatically Detecting Flaky Tests, Jonathan Bell;

Owolabi Legunsen; Michael Hilton; Lamyaa Eloussi; Tifany Yung;
Darko Marinov, ICSE 2018

(https://ieeexplore.ieee.org/abstract/document/8453104)

Current version
Current commit: of code @
overage
Instrumenter
public) 5 N
class| |
) (AN N
Version Magic DeFlaker Coverage Coverage Recorder Magic DeFlaker Reporter TestMa
C 1 Analyzer java: gic.mag|
(i) T a5 icTest
System Builder | Diff Tool Test Outcome Differential coverage reports, Listof ikely
Monitor/Rerunner one per test flaky tests
Magic { . 4.5 -
Previous versiom of code List of changes to momitor

AAAT705 @ Korea University

Lecture 7 — Mutation Testing March 27, 2024

https://ieeexplore.ieee.org/abstract/document/8453104

Detection of Flaky Tests

Detected 4,846 flaky tests in 26 open-source projects

AAA

Table 1: Number of flaky tests found by re-running 5,966 builds of 26 open-source projects. We consider only new test failures
where a test passed on the previous commit, and report flakes reported by each phase of our RERUN strategies. DEFLAKER found more flaky

tests than the Surefire or Fork rerun strategies: only the very costly Reboot strategy found more flaky tests than DEFLAKER.

Test Methods Total Confirmed flaky by DEFLAKER labeled as:
in Project New RERUN strategy Flaky Not Flaky
Project #SHAs Total Failing Failures | Surefire +Fork ++Reboot ‘ Confirmed Unconf. | Confirmed Unconf.
achilles 227 337 77 242 13 14 230 225 4 5 8
ambari 500 896 7 75 52 71 74 74 0 0 1
assertj-core 29 6,261 2 3 2 2 2 2 0 0 1
checkstyle 500 1,787 1 1 0 0 0 0 0 0 1
cloudera.oryx 332 275 23 29 5 5 5 5 20 0 4
commons-exec 70 89 2 22 22 22 22 21 0 1 0
dropwizard 298 428 1 60 60 60 60 55 0 5 0
hadoop 298 2,361 365 1,081 284 865 1,054 1,028 25 26 2
handlebars 27 712 7 9 3 7 7 6 2 1 0
hbase 127 431 106 406 62 242 390 383 12 7 4
hector 159 142 12 87 0 74 79 72 4 7 4
httpcore 34 712 2 2 2 2 2 1 0 1 0
jackrabbit-oak 500 4,035 26 34 10 33 34 32 0 2 0
jimfs 164 628 7 21 21 21 21 15 0 6 0
logback 50 964 1 18 18 18 18 18 0 0 0
ninja 317 307 37 122 37 77 110 9 2 16 10
okhttp 500 1,778 129 333 296 305 310 231 0 79 23
oozie 113 1,025 1,065 2,246 42 2,032 2,244 2,234 0 10 2
orbit 227 86 9 86 84 85 85 73 0 12 1
oryx 212 200 38 46 14 14 46 14 0 32 0
spring-boot 111 2,002 67 140 73 107 135 135 3 0 2
tachyon 500 470 4 5 3 5 5 5 0 0 0
togglz 140 227 21 28 5 14 28 28 0 0 0
undertow 7 340 0 0 0 0 0 0 0 0 0
wrodj 306 1,160 114 217 39 96 99 80 8 19 110
2xing 218 415 2 15 15 15 15 15 0 0 0
26 Total 5,966 28,068 2,135 5328| 1,162 4,18 5,075 | 4,846 80 229 173
@© Korea Universit Lecture 7 — Mutation Testi 27, 2024

PLRG

53 /62

Prediction of Flaky Tests 7VPLRG

e Can we build a predictive model that can tell us whether a test case is
likely to be flaky?

® One possible approach is to collect features of known flaky tests and
perform supervised learning to predict flakiness.

e “FlakeFlagger: Predicting Flakiness Without Rerunning Tests”,
Abdulrahman Alshammari, Christopher Morris, Michael Hilton, and
Jonathan Bell, ICSE 2021

(https://ieeexplore.ieee.org/abstract/document/9402098)

Current version
Current commit: of code @
overage
Instrumenter
public Y 5 N
class |
) (AN N
Version Magic DeFlaker Coverage Coverage Recorder Magic DeFlaker Reporter TestMa
C 1 Analyzer java: gic.mag|
(i) T a5 icTest
System Builder | D Tool Test Outcome Differential coverage reports, Listoflikely
Monitor/Rerunner one per test flaky tests
Magic { . 4.5 =
[Previous version of code List of changes to monitor

AAAT705 @ Korea University Lecture 7 — Mutation Testing March 27, 2024

https://ieeexplore.ieee.org/abstract/document/9402098

Prediction of Flaky Tests

’VNPLRG

It utilizes the following features for supervised learning:

| Feature

Description

Indirect Testing
Eager Testing

True if the test interacts with the object under test via an intermediary [24]
True if the test exercises more than one method of the tested object [24]

Covered Lines Churn

% Test Run War True if the test allocates a file or resource which might be used by other tests [24]
£ Conditional Logic True if the test has a conditional if-statement within the test method body [25]
f Fire and Forget True if the test launches background threads or tasks. [26]
é Mystery Guest True if the test accesses external resources [24]
Assertion Roulette True if the test has multiple assertions [24]
Resources Optimism True if the test accesses external resources without checking their availability [24]
Test Lines of Code Number of lines of code in the test method body
§ Number of Assertions Number of assertions checked by the test
% Execution Time Running time for the test execution
2 Source Covered Lines Number of lines covered by each test, counting only production code
2 Covered Lines Total number of lines of code covered by the test
g Source Covered Classes Total number of production classes covered by each test
2 External Libraries Number of external libraries used by the test

h-index capturing churn of covered lines in past 5, 10, 25, 50, 75, 100, 500, and 10,000
commits. Each value A indicates that at least h lines were modified at least h times
in that period.

AAAT705 @ Korea University

Lecture 7 — Mutation Testing March 27, 2024

Prediction of Flaky Tests

It has 86% prediction accuracy for flaky tests on 23 projects

Flaky by| FlakeFlagger | Vocabulary-Based Approach [12] | Combined Approach

Project Tests Reruns‘ TP FN FP T™N Pr R F‘ TP FN FP TN Pr R F‘ TP FN FP T™N Pr R F
spring-boot 2,108 160[139 21 15 1933 90% 87% 89%|134 26 703 1245 16% 84% 27%|143 17 18 1930 89% 89% 89%
hbase 431 145|129 16 32 254 80% 89% 84%| 89 56 152 134 37% 61% 46%|130 15 33 253 80% 90% 84%
alluxio 187 116|116 0 0 71 100% 100% 100% (108 8 11 60 91% 93% 92%|116 0 0O 71 100% 100% 100%
okhttp 810 100| 52 48 159 551 25% 52% 33%| 79 21 444 266 15% 79% 25%| 46 54 104 606 31% 46% 37%
ambari 324 52147 5 3 269 94% 90% 92%| 36 16 121 151 23% 69% 34%| 47 5 3 269 94% 90% 92%
hector 142 33130 3 8 101 79% 91% 85%| 13 20 23 86 36% 39% 38%| 25 8 11 98 69% 16% T2%
activiti 2,043 32| 10 22 43 1,968 19% 31% 24%| 12 20 531 1480 2% 38% 4%| 7 25 34 1977 17% 22% 19%
java-websocket 145 23|19 4 1 121 95% 83% 88%| 23 0 74 48 24% 100% 38%| 19 4 4 118 83% 83% 83%
wildfly 1,023 23| 11 12 27 973 29% 48% 36%| 20 3 554 446 3% 87% T%| 17 6 24 976 41% 74% 53%
httpcore 712 22| 14 8 23 667 38% 64% 47%| 16 6 375 315 4% 73% 8%| 15 7 24 666 38% 68% 49%
logback 805 22| 3 19 17 766 15% 14% 14%| 10 12 259 524 4% 45% 7%| 5 17 11 772 31% 23% 26%
incubator-dubbo 2,174 19| 8 11 35 2,120 19% 42% 26%| 11 8 813 1342 1% 58% 3%| 13 6 23 2,132 36% 68% 47%
http-request 163 18 12 6 6 139 67% 67% 67%| 16 2 84 61 16% 89% 271%| 12 6 6 139 67% 61% 67%
wrodj 1,135 16| 4 12 2 1,117 67% 25% 36%| 2 14 101 1,018 2% 12% 3%| 0 16 1 1118 0% 0% 0%
orbit 86 711 6 8 71 11% 14% 12%| 6 1 32 47 16% 86% 27%| 1 6 7 72 12% 14% 13%
undertow 183 71 2 5 8 168 20% 29% 24%| 6 1 63 113 9% 86% 16%| 3 4 8 168 27% 43% 33%
achi 1,317 4 2 2 3 1310 40% 50% 44%| 0 4 0 1313 0% 0% 0%| 0 4 0 1313 0% 0% 0%

2 j 558 3 0 3 0 55 0% 0% 0% 0 3 34 521 0% 0% 0%| 1 2 0 555100% 33% 50%
zxing 345 200 2 2 341 0% 0% 0% 1 1 144 199 1% 50% 1%| 0 2 2 341 0% 0% 0%
assertj-core 6,261 1l 0 1 5625 0% 0% 0% 0 1 6 6254 0% 0% 0% 0 1 0 6260 0% 0% 0%
commons-exec 55 o 1 1 5 0% 0% 0% 1 0 18 36 5% 100% 10%| 0 1 1 5 0% 0% 0%
handlebars.java 420 1l 0 1 5 414 0% 0% 0% 0 1 91 328 0% 0% 0%| O 1 0 419 0% 0% 0%
ninja 307 1 0 1 3 303 0% 0% 0% 0 1 50 256 0% 0% 0%| 0 1 0 306 0% 0% 0%
Total 21,734 808‘599 209 406 20,520 60% 74% 66%‘583 225 4,683 16,243 11% 72% 19%‘600 208 314 20,612 66% 74% 86%
AUC (Average per fold) | 86% | 75% | 86%

AAAT705 @ Korea Universi Lecture 7 — Mutation Testin, March 27, 2024

Prediction of Flaky Tests 7VPLRG

® Another way to statically predict flakiness is to use lexical analysis
on the test case to extract specific lexical patterns on flaky tests for
limited domain (network related latency, external resources not ready,

file 1/0, etc.)

e G. Pinto, B. Miranda, S. Dissanayake, M. d’Amorim, C. Treude, and
A. Bertolino. What is the vocabulary of flaky tests? MSR 2020, pages
492-502

e Static flaky test prediction essentially becomes text classification

AAAT705 @ Korea University Lecture 7 — Mutation Testing March 27, 2024

Prediction of Flaky Tests 7VPLRG

@Test
public void testCodingEmptySrcBuffer() throws Exception {

final WritableByteChannelMock channel = new ritableByteChannelMock(64);
final SessionOutputBuffer outbuf = new SessionOutputBufferImpl(1024, 128);
final BasicHttpTransportMetrics metrics = new BasicHttpTransportMetrics();
final IdentityEncoder encoder = new IdentityEncoder(channel, outbuf, metrics);
encoder.write(CodecTestUtils.wrap("stuff"));

final ByteBuffer empty = ByteBuffer.allocate(100);

empty.flip();

encoder.write(empty);

encoder.write(null);

encoder.complete();

outbuf. flush(channel);

final String s = channel.dump(StandardCharsets.US_ASCII);
Assert.assertTrue(encoder.isCompleted());

Assert.assertEquals("stuff", s);

}

U

pty src buffer codec test utils standard charsets
channel assert equals encoder byte buffer empty test
coding empty assert allocate flush outbuf metrics
dump complete wrap write flip stuff completed

rea Universi Lecture 7 — Mutation Testing March 27, 2024

Prediction of Flaky Tests 7VPLRG

@Test
public void testCodingEmptySrcBuffer() throws Exception {

final WritableByteChannelMock channel = new ritableByteChannelMock(64);
final SessionOutputBuffer outbuf = new SessionOutputBufferImpl(1024, 128);
final BasicHttpTransportMetrics metrics = new BasicHttpTransportMetrics();
final IdentityEncoder encoder = new IdentityEncoder(channel, outbuf, metrics);
encoder.write(CodecTestUtils.wrap("stuff"));

final ByteBuffer empty = ByteBuffer.allocate(100);

empty.flip();

encoder.write(empty);

encoder.write(null);

encoder.complete();

outbuf. flush(channel);

final String s = channel.dump(StandardCharsets.US_ASCII);
Assert.assertTrue(encoder.isCompleted());

Assert.assertEquals("stuff", s);

}

U

pty src buffer codec test utils standard charsets
channel assert equals encoder byte buffer empty test
coding empty assert allocate flush outbuf metrics
dump complete wrap write flip stuff completed

AAAT705 @ Korea University Lecture 7 — Mutation Testing March 27, 2024

Prediction of Flaky Tests 7VPLRG

It achieves an F-measure of 0.95 for the prediction of flaky tests.

Table 3: Classifier performance

algorithm |precision recall F; MCC AUC
Random Forest 0.99 0.91 0.95 0.90 0.98
Decision Tree 0.89 0.88 0.89 0.77 0.91
Naive Bayes 093 0.80 0.86 0.74 0.93
Support Vector 0.93 0.92 093 0.85 0.93
Nearest Neighbour 0.97 0.88 0.92 0.85 0.93

AAAT705 @ Korea University

Lecture 7 — Mutation Testing March 27, 2024

Summary ’VPLRG

1. Mutation Testing
Fundamental Hypotheses
Overall Process
Mutation Generation
Kill vs Alive
Equivalent Mutants
How to Kill A Mutant
Scalability
Higher Order Mutants
Tools

2. Test Flakiness

AAAT705 @ Korea University Lecture 7 — Mutation Testing March 27, 2024 61 /62

Next Lecture ’VNPLRG

e Mutation Testing (Homework)

Jihyeok Park
jihyeok_park@korea.ac.kr
https://plrg.korea.ac.kr

AAAT705 @ Korea University Lecture 7 — Mutation Testing March 27, 2024

https://plrg.korea.ac.kr

	Mutation Testing
	Fundamental Hypotheses
	Overall Process
	Mutation Generation
	Kill vs Alive
	Equivalent Mutants
	How to Kill A Mutant
	Scalability
	Higher Order Mutants
	Tools

	Test Flakiness

