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Recall
• Symbolic Execution

• Basic Idea
• Satisfiability Modulo Theories (SMT)
• Limitations of Symbolic Execution

• Dynamic Symbolic Execution (DSE)

• Search Heuristics
• Example – Hash Function
• Example – Loops
• Example – Data Structures
• Realistic Implementation

• Other Hybrid Analysis Techniques
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Mutation Testing
• Mutation testing is a white-box and fault-based testing technique.

• Inverts the testing adequacy criterion: the goal is to access the
effectiveness of the existing test suite in terms of its fault detection
capabilities.

• Test suites test programs

• Mutants test test suites

• The most widely used adequacy score is mutation score: it measures
the quality of the given test suite as the percentage of injected
faults that you can detect.
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Mutation Testing
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Figure 1: Number of mutation testing publications per year (years: 2008-2017).

ity that accrue from such use of mutation testing and the experimental method-

ology for wider empirical studies of software testing. Therefore, the present

chapter also collects together advices on best practices, giving the reader a

‘mini-handbook’-style roadmap for the application of mutation testing as an

experimental methodology (in Section 9).

The present chapter surveys the advances related to mutation testing, i.e.,

using mutation analysis to detect faults. Thus, its focus is the techniques and

studies that are related to mutation-guided test process. The goal is to provide

a concise and easy to understand view of the advances that have been realised

and how they can be used. To achieve this, we categorise and present the

surveyed advances according to the stages of the mutation testing process that

they apply to. In other words, we use the mutation testing process steps as a

map for detailing the related advances. We believe that such an attempt will

help readers, especially those new to mutation testing, understand everything

they need in order to build modern mutation testing tools, understand the main

challenges in the area and perform e↵ective testing.

The survey was performed by collecting and analysing papers published in

4

M. Papadakis, M. Kintis, J. Zhang, Y. Jia, Y. Le Traon, M. Harman, Mutation Testing
Advances: An Analysis and Survey, Advances in Computers, 2017.
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Mutation Testing
Which environment is better test environment for car? Why?
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Mutation Testing
Let’s sabotage the car! In the bendy road, the car will crash!

How do you choose the 
ideal test data?

COMPGS03/COMPM023  Mutation Testing

How it works?

Sunday, 9 February 14COMPGS03/COMPM023  Mutation Testing

How it works?

Sunday, 9 February 14

Sabotage the car!
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Mutation Testing
• Testing is a sampling process: without a priori knowledge of faults, it

is difficult to access how well a technique samples.

• Mutation testing: the quality of a test suite can be indirectly
measured by artificially injecting faults and checking how well the
test suite can detect them.

• Seed the original implementations with faults (the seeded version are
called mutants

• Execute the given test suite

• If we get different test results, the introduced faults (the mutant) has
been identified (i.e., the mutant is killed). If not, the mutant is still
alive.
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Fundamental Hypotheses

• Mutation testing is based on two fundamental hypotheses:

1 Competent Programmer Hypothesis

2 Coupling Effect Hypothesis
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(1) Competent Programmer Hypothesis

What do the programmers and the monkeys have in common when they
write programs?

They both write buggy code!
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(1) Competent Programmer Hypothesis

On average, programmers are competent (they write almost correct
programs). A faulty program source code is different from the correct one
only in a few, minor detail.
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(2) Coupling Effect Hypothesis
• If a test suite detects all small syntactic faults, it will also detect

larger, semantics faults: especially if those semantic faults are
coupled with the small faults.

• Richard A. DeMillo and Richard J. Lipton and Frederick Gerald
Sayward, Hints on Test Data Selection: Help for the Practicing
Programmer, Computer, 11(4), 1978.

• A. Jefferson Offutt, Investigations of the Software Testing Coupling
Effect , ACM Transactions on Software Engineering and Methodology,
1(1), January 1992.
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Fundamental Hypotheses

• Mutation testing is based on two fundamental hypotheses:

1 Competent Programmer Hypothesis: programmers are likely to
make simple faults.

2 Coupling Effect Hypothesis: if we catch all the simple faults, we will
be able to catch more complicated faults.

• Let’s artificially inject simple faults!
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Overall Process

Test Suite

Program
Mutants

Bug

Same Results 
(Alive)

Different Results 
(Killed)
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Mutation Generation

Program P Mutant P’

• P ′ differs from P by a simple mutation.

• Mutation: a typical simple error programmers are likely to make –
off-by-one errors, typo, mistaken identity, etc.
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Mutation Operator
An atomic rule that is used to generate a mutant

ABS: Absolute Value Insertion

x = 4 * y;
x = 4 * abs(y);
x = 4 * -abs(y);
x = 4 * failOnZero(y);

A Fortran Language System for Mutation-Based Software Testing, Kim N. King and Jeff
Offutt. Software Practice and Experience, 21(7):686-718, July 1991
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Mutation Operator
An atomic rule that is used to generate a mutant

AOR: Arithmetic Operator Replacement

x = y + z;
x = y * z;
x = y - z;
x = y / z;

A Fortran Language System for Mutation-Based Software Testing, Kim N. King and Jeff
Offutt. Software Practice and Experience, 21(7):686-718, July 1991
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Mutation Operator
An atomic rule that is used to generate a mutant

ROR: Relational Operator Replacement

if (x >= y)

if (x > y)
if (x == y)
if (x < y)
if (x != y)

A Fortran Language System for Mutation-Based Software Testing, Kim N. King and Jeff
Offutt. Software Practice and Experience, 21(7):686-718, July 1991
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Mutation Operator
An atomic rule that is used to generate a mutant

COR: Conditional Operator Replacement

if (x && y)
if (x || y)
if (x & y)
if (x | y)

A Fortran Language System for Mutation-Based Software Testing, Kim N. King and Jeff
Offutt. Software Practice and Experience, 21(7):686-718, July 1991

AAA705 @ Korea University Lecture 7 – Mutation Testing March 27, 2024 20 / 62



Mutation Operator
An atomic rule that is used to generate a mutant

SDL: Statement Deletion

x = 3;
y = x + 5;
z = x - y;

x = 3;

z = x - y;

A Fortran Language System for Mutation-Based Software Testing, Kim N. King and Jeff
Offutt. Software Practice and Experience, 21(7):686-718, July 1991
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Mutation Operator
• Any systematic and syntactic change operator can be considered.
• For C: 71 Mutation Operators – Statement 15, Operator 46,

Variable 7, Constant 3
• Design of Mutant Operators for the C Programming Language by

Hiralal Agrawal, Richard A DeMillo, R Hathaway,William Hsu,Wynne
Hsu, Edward W Krauser, Rhonda J Martin, Aditya P Mathur, Eugene
H Spafford, technical report, Purdue University, 1989

• For Java: 24 Mutation Operators – Access Control 1, Inheritance
7, Polymorphism 4, Overloading 4, Java-Specific Features 4,
Common Programming Mistakes 4

• Y.-S. Ma, Y.-R. Kwon, and J. Offutt. Inter-class mutation operators for
java. In Proceedings of the 13th International Symposium on Software
Reliability Engineering, ISSRE ’02, pages 352–, Washington, DC, USA,
2002. IEEE Computer Society.

• For Spreadsheets
• R. Abraham and M. Erwig. Mutation operators for spreadsheets. IEEE

Transactions on Software Engineering, 35(1):94–108, 2009.
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Mutation Operator – Java
For Java – 1 mutation for Information Hiding (Access Control)

AMC: Access Modifier Change

public Stack s;
private Stack s;
protected Stack s;
Stack s;

Y.-S. Ma, Y.-R. Kwon, and J. Offutt. Inter-class mutation operators for java. In
Proceedings of the 13th International Symposium on Software Reliability Engineering,
ISSRE ’02, pages 352–, Washington, DC, USA, 2002. IEEE Computer Society.
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Mutation Operator – Java
For Java – 7 mutations for Inheritance

IHD: Hiding Variable Deletion

class List {
int size;
...

}
class Stack extends List {

int size;
...

}

class List {
int size;
...

}
class Stack extends List {

...
}

Y.-S. Ma, Y.-R. Kwon, and J. Offutt. Inter-class mutation operators for java. In
Proceedings of the 13th International Symposium on Software Reliability Engineering,
ISSRE ’02, pages 352–, Washington, DC, USA, 2002. IEEE Computer Society.

AAA705 @ Korea University Lecture 7 – Mutation Testing March 27, 2024 24 / 62



Mutation Operator – Java
For Java – 7 mutations for Inheritance

IHI: Hiding Variable Insertion

class List {
int size;
...

}
class Stack extends List {

...
}

class List {
int size;
...

}
class Stack extends List {

int size;
...

}

Y.-S. Ma, Y.-R. Kwon, and J. Offutt. Inter-class mutation operators for java. In
Proceedings of the 13th International Symposium on Software Reliability Engineering,
ISSRE ’02, pages 352–, Washington, DC, USA, 2002. IEEE Computer Society.
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Mutation Operator – Java
For Java – 7 mutations for Inheritance

IOD: Overriding Method Deletion

class List {
Push (int a) { ... }
...

}
class Stack extends List {

Push (int a) { ... }
...

}

class List {
Push (int a) { ... }
...

}
class Stack extends List {

...
}

Y.-S. Ma, Y.-R. Kwon, and J. Offutt. Inter-class mutation operators for java. In
Proceedings of the 13th International Symposium on Software Reliability Engineering,
ISSRE ’02, pages 352–, Washington, DC, USA, 2002. IEEE Computer Society.
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Mutation Operator – Java
For Java – 7 mutations for Inheritance

IOP: Overriden Method Calling Position Change

class List {
void SetEnv() {

size = 5; ... }
...

}
class Stack extends List {

void SetEnv() {
super.SetEnv();
size = 10;

}
...

}

class List {
void SetEnv() {

size = 5; ... }
...

}
class Stack extends List {

void SetEnv() {
size = 10;
super.SetEnv();

}
...

}

Y.-S. Ma, Y.-R. Kwon, and J. Offutt. Inter-class mutation operators for java. In
Proceedings of the 13th International Symposium on Software Reliability Engineering,
ISSRE ’02, pages 352–, Washington, DC, USA, 2002. IEEE Computer Society.
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Mutation Operator – Java
For Java – 4 mutations for Polymorphism

For Java – 4 mutations for Overloading

For Java – 4 mutations for Java-Specific Features

• (e.g., this, static, member variable initialization, default
constructor)

For Java – 4 mutations for Common Programming Mistakes

Y.-S. Ma, Y.-R. Kwon, and J. Offutt. Inter-class mutation operators for java. In
Proceedings of the 13th International Symposium on Software Reliability Engineering,
ISSRE ’02, pages 352–, Washington, DC, USA, 2002. IEEE Computer Society.
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Mutation Operator – Spreadsheets
• Any systematic and syntactic change operator can be considered.

• For spreadsheets1:

• RCR (Reference for Constant Replacement)

• FRC (Formula Replacement with Constants)

• CRE (Contiguous Range Expansion)

• CRS (Contiguous Range Shrinking)

• etc.

1R. Abraham and M. Erwig. Mutation operators for spreadsheets. IEEE Transactions
on Software Engineering, 35(1):94–108, 2009.
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Kill vs Alive

Program P

x = y + z 
… 

print(x);

Mutant P’

x = y * z 
… 

print(x);

Test: (y, z) = (2, 2) 4 4 Alive

Test: (y, z) = (3, 1) 4 3 Kill
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Kill vs Alive

Program P

x = y + y 
… 

print(x);

Mutant P’

x = y * 2 
… 

print(x);

Test: y = 2 4 4 Alive

Test: y = 3 6 6 Alive
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Equivalent Mutants

• What if a mutant has the same behavior as the original program?

• For example, consider the following program and its mutant:

x = y + y; x = y * 2;

• Checking whether an arbitrary mutant is equivalent or not is
undecidable.

• This is one of the major obstacles to the mainstream adoption of
mutation testing.

• My mutation score is 70%. Is my test suite bad, or are there too
many equivalent mutants?
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Equivalent Mutants

MS = (# of killed mutants)
(# of non-equivalent mutants)

MS = (# of killed mutants)
(# of all mutants)
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How to Kill A Mutant
Three conditions need to be satisfied to kill a mutant:

• Reachability: your test execution needs to reach (i.e., cover) the
mutant.

• Infection: the mutated code should infect the program state (i.e., the
value of the mutated expression differs from the value of the original
expression).

• Propagation: the infected state should propagate to the observable
state.

We categorize the kill conditions into two types: weak and strong.
• (Weak Kill) = Reachability + Infection

(i.e., we stop after confirming infection, do not check the propagation
to the outside world)

• (Strong Kill) = Reachability + Infection + Propagation
(i.e., the kill can be observed from the outside world)
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How to Kill A Mutant

if (x < y) {
if (z < y) {

//if (z < y + 1) {
if (x < z) {

result = z;
} else {

result = x;
}

} else {
result = y;

}
} else {

result = 0;
}

• Reachability Condition:

x < y

• Infection Condition:

(z < y) != (z < y + 1)

• Weak Kill Condition:
(x < y) && ((z < y) != (z < y + 1))

or simply (x < y) && (z == y)

• Propagation Condition:

y = z
• Strong Kill Condition:

(x < y) && (z == y) && (y != z)
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Scalability

• Normal testing: 1 program × 100 test cases

• Mutation testing: 1 program × 10000 mutants (including
compilation!) × 100 test cases

• We tend to get a large number of mutants:

• No prior knowledge of which mutation operator is the most effective
(w.r.t. improving the test suite quality): the default is to apply
everything

• Programs are large!
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Scalability – Do Fewer

• Mutation Sampling – generate a large number of mutants, but use
only a subset of them (natural question: how to do we select?)

• Subsuming Mutant – a mutant P ′ subsumes another mutant P ′′ if
and only if killing P ′ implies killing P ′′.

• True subsumption relationship is undecidable.

• Dynamic subsumption is defined w.r.t. a given test suite.

• Static subsumption is defined with results of static analysis.

• Selective Mutation – apply only a subset of mutation operators.
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Scalability – Do Smarter

• Super-mutant – compile all mutants into a single program, then,
activate a specific subset at the runtime (saves the compilation time).

• Weak mutation testing – relax the kill criterion to weak kills
(requires instrumentation for the embedded oracle).

• Parallel/distributed mutation testing – obvious.
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Scalability – Trivial Compiler Equivalence (TCE)

• Trivial Compiler Equivalence (TCE)2– a mutant is trivially
equivalent if the binary code of the mutant is same as the binary
code of the original program after the compilation (thanks to the
compiler optimization).

• A large scale empirical study showed that TCE can detect 7% of the
mutants to be equivalent; more importantly, 21% of all mutants
were duplicates (i.e., not equivalent to the original program, but
identical to another non-equivalent mutant).

2M. Papadakis, Y. Jia, M. Harman, and Y. Le Traon. Trivial compiler equivalence: A
large scale empirical study of a simple, fast and effective equivalent mutant detection
technique. In Proceedings of the 37th International Conference on Software
Engineering-Volume 1, pages 936–946. IEEE Press, 2015.
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Higher Order Mutants

• First Order Mutants (FOM) – a single mutation operator is applied
to the original program.

• Higher Order Mutants (HOM) – multiple mutation operators are
applied to the original program.

• Some studies claim that, while most of the FOMs are trivial to kill,
few of them are coupled with real faults.

• We can search for a combination of FOMs that results in a
hard-to-kill HOM.
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Tools

Diverse mutation testing tools are available:

• Fortran – Mothra (a long-lasting impact on the mutation testing)

• C/C++ – Proteum, MiLU, MUSIC

• Java – muJava, Major, Javalanche, PIT

• JavaScript – Stryker

• Ruby – Heckle

• Python – Mutatest
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Push On Green

• A DevOps concept popularized by Google, more commonly and also
known as: Continuous Integration and Deployment (CI/CD)

• Newest version of software is automatically deployed whenever all
tests pass.

• Test results are critical
• False Negative (i.e., test passes even though there is a bug): you end

up releasing a buggy software
• False Positive (i.e., test fails even though there is no bug): slows down

the development process
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Push On Green

Making “Push On Green” a Reality: Issues and Actions Involved in
Maintaining a Production Service3

(LISA stands for Large Installation System Administration Conference)
3A USENIX LISA 2014 presentation given by Daniel Klein, Google:

https://www.usenix.org/conference/lisa14/conference-program/presentation/klein
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Test Flakiness

• We call a test case to be flaky if it changes outcome against the
same codebase.

• This creates a huge problem for Pass on Green philosophy: when a
test transitions from pass to fail, is it flaky or is it actually a real
problem?
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Test Flakiness

“The State of Continuous Integration Testing at Google”, John Micco,
ICST 2017 Keynote (https://research.google/pubs/pub45880/)
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Test Flakiness

“The State of Continuous Integration Testing at Google”, John Micco,
ICST 2017 Keynote (https://research.google/pubs/pub45880/)
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Sources of Flakiness

• Parallelism – tests are run in parallel

• Timeouts – tests that take too long to run

• State Management – tests that depend on the state of the system

• Data Management – tests that depend on the data

• Algorithm – Non-deterministic algorithms
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Solutions?

• Better Synchonization

• Thread-safe code + independent execution environment

• Break-down long sequences + step-wise synchronization

• Explicit pre-condition setup for both state and data + avoid
dependencies between test executions

• Fixed seed for random number generation
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Your Tests Aren’t Flaky

• A talk given by Alister Scott (Automattic) at GTAC 2015
(GTAC – Google Test Automation Conference)

• https://www.youtube.com/watch?v=hmk1h40shaE

• Here is the slide

• “That test is falky” is not a get out of jail free card

• A re-run culture is toxic
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Research on Test Flakiness

• Detection – is this test failure real, or a result of flakiness?

• Prediction – how likely is this test case to be flaky?

• Repair – automatically remove flakiness? (Most ambitious goal)
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Detection of Flaky Tests
• A test fails. How do you determine whether it is flaky or not?
• A test case that transitions from pass to fail but does not cover any

of the changed part is likely to be flaky! (because the changed
behavior is caused by the changed code)

• DeFlaker: Automatically Detecting Flaky Tests, Jonathan Bell;
Owolabi Legunsen; Michael Hilton; Lamyaa Eloussi; Tifany Yung;
Darko Marinov, ICSE 2018
(https://ieeexplore.ieee.org/abstract/document/8453104)

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Bell et al.
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<>…<><>…<>public 
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<>…<><>…<>Magic
.java:
4,5
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one per test

Coverage 
Instrumenter

Coverage Recorder

Test Outcome 
Monitor/Rerunner

DeFlaker Reporter
<>…
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<>…
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flaky tests
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Detection of Flaky Tests
Detected 4,846 flaky tests in 26 open-source projectsICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Bell et al.

Table 1: Number of flaky tests found by re-running 5,966 builds of 26 open-source projects. We consider only new test failures,
where a test passed on the previous commit, and report flakes reported by each phase of our Rerun strategies. DeFlaker found more flaky
tests than the Surefire or Fork rerun strategies: only the very costly Reboot strategy found more flaky tests than DeFlaker.

DeFlaker labeled as:Test Methods
in Project

Confirmed flaky by
Rerun strategy Flaky Not Flaky

Project #SHAs Total Failing

Total
New

Failures Surefire +Fork ++Reboot Confirmed Unconf. Confirmed Unconf.

achilles 227 337 77 242 13 14 230 225 4 5 8
ambari 500 896 7 75 52 71 74 74 0 0 1
assertj-core 29 6, 261 2 3 2 2 2 2 0 0 1
checkstyle 500 1, 787 1 1 0 0 0 0 0 0 1
cloudera.oryx 332 275 23 29 5 5 5 5 20 0 4
commons-exec 70 89 2 22 22 22 22 21 0 1 0
dropwizard 298 428 1 60 60 60 60 55 0 5 0
hadoop 298 2, 361 365 1, 081 284 865 1, 054 1, 028 25 26 2
handlebars 27 712 7 9 3 7 7 6 2 1 0
hbase 127 431 106 406 62 242 390 383 12 7 4
hector 159 142 12 87 0 74 79 72 4 7 4
httpcore 34 712 2 2 2 2 2 1 0 1 0
jackrabbit-oak 500 4, 035 26 34 10 33 34 32 0 2 0
jimfs 164 628 7 21 21 21 21 15 0 6 0
logback 50 964 11 18 18 18 18 18 0 0 0
ninja 317 307 37 122 37 77 110 94 2 16 10
okhttp 500 1, 778 129 333 296 305 310 231 0 79 23
oozie 113 1, 025 1, 065 2, 246 42 2, 032 2, 244 2, 234 0 10 2
orbit 227 86 9 86 84 85 85 73 0 12 1
oryx 212 200 38 46 14 14 46 14 0 32 0
spring-boot 111 2, 002 67 140 73 107 135 135 3 0 2
tachyon 500 470 4 5 3 5 5 5 0 0 0
togglz 140 227 21 28 5 14 28 28 0 0 0
undertow 7 340 0 0 0 0 0 0 0 0 0
wro4j 306 1, 160 114 217 39 96 99 80 8 19 110
zxing 218 415 2 15 15 15 15 15 0 0 0
26 Total 5, 966 28, 068 2, 135 5, 328 1, 162 4, 186 5, 075 4, 846 80 229 173

five times, running a mvn clean between tests and rebooting the
machine between runs.

Table 1 shows the results of this study, including the number of
test failures confirmed as flaky by each Rerun strategy. Overall, we
observed 2, 135 tests that exhibited some potentially flaky behavior,
having new failures (passing on one commit, then failing on the
following commit). Collectively, these tests had a total of 5, 328 new
failures, with 1, 162 detected by the Surefire (same JVM) reruns,
4, 186 detected by the Surefire strategy or the Fork strategy, and
5, 075 detected by the Surefire, Fork, or Reboot strategy. This result
is striking: the existing flaky test detector in Maven only identified
23% of the flaky failures identified by all three strategies (including
the heavyweight Reboot strategy)!

It would be difficult to fairly state the cost of these various reruns,
as the cost of rerunning a test varies with many factors (how long
the test took to run the first time, how much shared state it might
need to setup, etc.). If all tests fail, then the cost of rerunning them all
once would be at least the cost of running the test suite the first time.
Even when (re)running fewer tests, any Rerun strategy aside from

Maven’s Rerun will incur the high computational cost of isolating
tests in their own JVM as documented by prior work [25], or more
if employing stronger isolation similar to our Reboot strategy [65].

Table 2 summarizes Rerun results by strategy, including the
number of reruns needed to witness the flake. From these results, we
may conclude that only one rerun is needed for each kind of rerun:
first run a failing test in the same JVM once, and if it fails, run in a
new JVM once, and if still fails, run after a reboot. Performing more
runs of the same kind increases the cost but does not substantially
increase the chance to obtain a pass. In other words, changing the
kind of rerun is more likely to help than just increasing the number
of reruns, and various testing frameworks [21, 42, 52, 63, 75, 77]
that support reruns and offer defaults such as 3, 5, or 10 reruns of
the same kind should rather offer new kinds of reruns. DeFlaker
allows Maven users to automatically have tests rerun in a new JVM.

3.2 RQ2: Finding Flaky Tests with DeFlaker
We evaluated DeFlaker’s efficacy in marking test failures as flaky
on the same test executions as in the previous section. That is,
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Prediction of Flaky Tests
• Can we build a predictive model that can tell us whether a test case is

likely to be flaky?
• One possible approach is to collect features of known flaky tests and

perform supervised learning to predict flakiness.
• “FlakeFlagger: Predicting Flakiness Without Rerunning Tests”,

Abdulrahman Alshammari, Christopher Morris, Michael Hilton, and
Jonathan Bell, ICSE 2021
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Prediction of Flaky Tests

It utilizes the following features for supervised learning:
TABLE II: Complete list of features captured for test flakiness prediction. The Covered Lines Churn feature is rep-
resented in multiple forms based on the h values (number of the past commits). In our evaluation, we considered
h = 5, 10, 25, 50, 75, 100, 500 and 10, 000

Feature Description
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Indirect Testing True if the test interacts with the object under test via an intermediary [24]
Eager Testing True if the test exercises more than one method of the tested object [24]
Test Run War True if the test allocates a file or resource which might be used by other tests [24]
Conditional Logic True if the test has a conditional if-statement within the test method body [25]
Fire and Forget True if the test launches background threads or tasks. [26]
Mystery Guest True if the test accesses external resources [24]
Assertion Roulette True if the test has multiple assertions [24]
Resources Optimism True if the test accesses external resources without checking their availability [24]
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Test Lines of Code Number of lines of code in the test method body
Number of Assertions Number of assertions checked by the test
Execution Time Running time for the test execution
Source Covered Lines Number of lines covered by each test, counting only production code
Covered Lines Total number of lines of code covered by the test
Source Covered Classes Total number of production classes covered by each test
External Libraries Number of external libraries used by the test
Covered Lines Churn h-index capturing churn of covered lines in past 5, 10, 25, 50, 75, 100, 500, and 10,000 commits. Each value h indicates that at least h lines

were modified at least h times in that period.

the candidate number of tests they need to investigate via re-
running or manual inspection.

By proactively identifying flaky tests, we may also help
developers understand why these tests are flaky. Prior work
has suggested different properties of tests that might make
them more likely to be flaky, and FlakeFlagger can report
which of these features are present in each test [4], [8]. In
practice, if a feature has a strong correlation with flakiness,
developers might choose to focus on this feature in their future
test maintenance and development activities.

Figure 1 shows a high-level overview of our approach
to detect flaky tests. First, we collect a series of features
describing each test in a project. In a developer’s scenario,
we would assume that some of these tests would be known to
be flaky, and the developers would be interested in detecting
other flaky tests. For instance, the developer might know the
flaky tests that exist in their test suite currently, and would like
to identify if a newly written test is flaky. We collect behavioral
features (such as API usage) of each test, and then construct
a classifier to predict which tests are flaky. In a controlled
experiment (with known flaky tests), we can perform cross-
validation, and generate a confusion matrix that describes the
performance of the classifier. In practice, without an oracle,
we would present a report to developers including a list of
likely flaky tests.

A. Prediction Features

To develop a list of features that may be predictive of
flakiness, we look to prior flaky test research [1], [4], [6],
[8]. Ahmed et al. [8] categorized 23 developer-reported factors
which affect test flakiness. These features are described by
practitioners at a high level, and include test case complexity,
hard-coded values and test smells. Eck et al. [4] interviewed
21 developers about flaky tests and tabulated the frequency
of different kinds of flaky tests as well as developers’ fixes
for those flaky tests. Whereas prior flakiness classification
approaches used static, code-level features (e.g. presence of
textual tokens in the body of each test method), these surveys
describe features that are more nuanced. For instance, Eck et

al. note that many flaky tests are flaky due to causes not in
the test method itself, but instead, in the production code that
is executed by that test [4].

Inspired by previous studies on test flakiness, we developed
a list of sixteen features, some of are based on general studies
on the causes of flaky tests [1], [8], while others are defined as
bad practices in writing unit tests [28]. Unfortunately, some of
these flaky test root cases are too complicated to detect without
human intervention, for instance, Eck et al’s “Too restrictive
range” (which effectively describes the case where an assertion
is wrong). Hence, we considered all of the features described
in the prior works, and then selected only those for which we
could write automated detectors. We implemented detectors
for each of the features shown in Table II.

While some of the features can be detected by inspecting
the test method statically (specifically, the conditional logic
smell and test line of code), the rest of the features require
more than static analysis. For instance: existing automated test
smell detectors have analyzed only the code that is present in a
test method [29]–[32], and hence can fail to label tests that are
smelly because they invoke a helper method, which in turn,
performs smelly behavior. For instance, the “Fire and Forget”
smell exists in tests that spawn background threads or tasks;
a smell detector that considered only direct calls to launch
threads in the test method body would not define a test as
smelly if it called a helper method to launch that background
thread. Since our goal is not to precisely detect test smells (as
identified by humans), but rather, to find features that may
be representative of flaky tests, we decided to expand our
definition of many of these smells to be inclusive of all code
executed by a test, rather than just the code contained in the
test method body itself.

We developed a hybrid static/dynamic framework to collect
the statement coverage of each test, and then statically analyze
the covered code in order to collect these behavioral features.
For instance, we determined that a test had the “fire and
forget” smell feature if, anytime during its execution (including
in the production code that is called by the test), that test
launched a background thread or task. We also collect a variety

TABLE II: Complete list of features captured for test flakiness prediction. The Covered Lines Churn feature is rep-
resented in multiple forms based on the h values (number of the past commits). In our evaluation, we considered
h = 5, 10, 25, 50, 75, 100, 500 and 10, 000

Feature Description
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Indirect Testing True if the test interacts with the object under test via an intermediary [24]
Eager Testing True if the test exercises more than one method of the tested object [24]
Test Run War True if the test allocates a file or resource which might be used by other tests [24]
Conditional Logic True if the test has a conditional if-statement within the test method body [25]
Fire and Forget True if the test launches background threads or tasks. [26]
Mystery Guest True if the test accesses external resources [24]
Assertion Roulette True if the test has multiple assertions [24]
Resources Optimism True if the test accesses external resources without checking their availability [24]
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Number of Assertions Number of assertions checked by the test
Execution Time Running time for the test execution
Source Covered Lines Number of lines covered by each test, counting only production code
Covered Lines Total number of lines of code covered by the test
Source Covered Classes Total number of production classes covered by each test
External Libraries Number of external libraries used by the test
Covered Lines Churn h-index capturing churn of covered lines in past 5, 10, 25, 50, 75, 100, 500, and 10,000 commits. Each value h indicates that at least h lines
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the candidate number of tests they need to investigate via re-
running or manual inspection.

By proactively identifying flaky tests, we may also help
developers understand why these tests are flaky. Prior work
has suggested different properties of tests that might make
them more likely to be flaky, and FlakeFlagger can report
which of these features are present in each test [4], [8]. In
practice, if a feature has a strong correlation with flakiness,
developers might choose to focus on this feature in their future
test maintenance and development activities.

Figure 1 shows a high-level overview of our approach
to detect flaky tests. First, we collect a series of features
describing each test in a project. In a developer’s scenario,
we would assume that some of these tests would be known to
be flaky, and the developers would be interested in detecting
other flaky tests. For instance, the developer might know the
flaky tests that exist in their test suite currently, and would like
to identify if a newly written test is flaky. We collect behavioral
features (such as API usage) of each test, and then construct
a classifier to predict which tests are flaky. In a controlled
experiment (with known flaky tests), we can perform cross-
validation, and generate a confusion matrix that describes the
performance of the classifier. In practice, without an oracle,
we would present a report to developers including a list of
likely flaky tests.

A. Prediction Features

To develop a list of features that may be predictive of
flakiness, we look to prior flaky test research [1], [4], [6],
[8]. Ahmed et al. [8] categorized 23 developer-reported factors
which affect test flakiness. These features are described by
practitioners at a high level, and include test case complexity,
hard-coded values and test smells. Eck et al. [4] interviewed
21 developers about flaky tests and tabulated the frequency
of different kinds of flaky tests as well as developers’ fixes
for those flaky tests. Whereas prior flakiness classification
approaches used static, code-level features (e.g. presence of
textual tokens in the body of each test method), these surveys
describe features that are more nuanced. For instance, Eck et

al. note that many flaky tests are flaky due to causes not in
the test method itself, but instead, in the production code that
is executed by that test [4].

Inspired by previous studies on test flakiness, we developed
a list of sixteen features, some of are based on general studies
on the causes of flaky tests [1], [8], while others are defined as
bad practices in writing unit tests [28]. Unfortunately, some of
these flaky test root cases are too complicated to detect without
human intervention, for instance, Eck et al’s “Too restrictive
range” (which effectively describes the case where an assertion
is wrong). Hence, we considered all of the features described
in the prior works, and then selected only those for which we
could write automated detectors. We implemented detectors
for each of the features shown in Table II.

While some of the features can be detected by inspecting
the test method statically (specifically, the conditional logic
smell and test line of code), the rest of the features require
more than static analysis. For instance: existing automated test
smell detectors have analyzed only the code that is present in a
test method [29]–[32], and hence can fail to label tests that are
smelly because they invoke a helper method, which in turn,
performs smelly behavior. For instance, the “Fire and Forget”
smell exists in tests that spawn background threads or tasks;
a smell detector that considered only direct calls to launch
threads in the test method body would not define a test as
smelly if it called a helper method to launch that background
thread. Since our goal is not to precisely detect test smells (as
identified by humans), but rather, to find features that may
be representative of flaky tests, we decided to expand our
definition of many of these smells to be inclusive of all code
executed by a test, rather than just the code contained in the
test method body itself.

We developed a hybrid static/dynamic framework to collect
the statement coverage of each test, and then statically analyze
the covered code in order to collect these behavioral features.
For instance, we determined that a test had the “fire and
forget” smell feature if, anytime during its execution (including
in the production code that is called by the test), that test
launched a background thread or task. We also collect a variety

TABLE II: Complete list of features captured for test flakiness prediction. The Covered Lines Churn feature is rep-
resented in multiple forms based on the h values (number of the past commits). In our evaluation, we considered
h = 5, 10, 25, 50, 75, 100, 500 and 10, 000

Feature Description
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Indirect Testing True if the test interacts with the object under test via an intermediary [24]
Eager Testing True if the test exercises more than one method of the tested object [24]
Test Run War True if the test allocates a file or resource which might be used by other tests [24]
Conditional Logic True if the test has a conditional if-statement within the test method body [25]
Fire and Forget True if the test launches background threads or tasks. [26]
Mystery Guest True if the test accesses external resources [24]
Assertion Roulette True if the test has multiple assertions [24]
Resources Optimism True if the test accesses external resources without checking their availability [24]
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Source Covered Classes Total number of production classes covered by each test
External Libraries Number of external libraries used by the test
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the candidate number of tests they need to investigate via re-
running or manual inspection.

By proactively identifying flaky tests, we may also help
developers understand why these tests are flaky. Prior work
has suggested different properties of tests that might make
them more likely to be flaky, and FlakeFlagger can report
which of these features are present in each test [4], [8]. In
practice, if a feature has a strong correlation with flakiness,
developers might choose to focus on this feature in their future
test maintenance and development activities.

Figure 1 shows a high-level overview of our approach
to detect flaky tests. First, we collect a series of features
describing each test in a project. In a developer’s scenario,
we would assume that some of these tests would be known to
be flaky, and the developers would be interested in detecting
other flaky tests. For instance, the developer might know the
flaky tests that exist in their test suite currently, and would like
to identify if a newly written test is flaky. We collect behavioral
features (such as API usage) of each test, and then construct
a classifier to predict which tests are flaky. In a controlled
experiment (with known flaky tests), we can perform cross-
validation, and generate a confusion matrix that describes the
performance of the classifier. In practice, without an oracle,
we would present a report to developers including a list of
likely flaky tests.

A. Prediction Features

To develop a list of features that may be predictive of
flakiness, we look to prior flaky test research [1], [4], [6],
[8]. Ahmed et al. [8] categorized 23 developer-reported factors
which affect test flakiness. These features are described by
practitioners at a high level, and include test case complexity,
hard-coded values and test smells. Eck et al. [4] interviewed
21 developers about flaky tests and tabulated the frequency
of different kinds of flaky tests as well as developers’ fixes
for those flaky tests. Whereas prior flakiness classification
approaches used static, code-level features (e.g. presence of
textual tokens in the body of each test method), these surveys
describe features that are more nuanced. For instance, Eck et

al. note that many flaky tests are flaky due to causes not in
the test method itself, but instead, in the production code that
is executed by that test [4].

Inspired by previous studies on test flakiness, we developed
a list of sixteen features, some of are based on general studies
on the causes of flaky tests [1], [8], while others are defined as
bad practices in writing unit tests [28]. Unfortunately, some of
these flaky test root cases are too complicated to detect without
human intervention, for instance, Eck et al’s “Too restrictive
range” (which effectively describes the case where an assertion
is wrong). Hence, we considered all of the features described
in the prior works, and then selected only those for which we
could write automated detectors. We implemented detectors
for each of the features shown in Table II.

While some of the features can be detected by inspecting
the test method statically (specifically, the conditional logic
smell and test line of code), the rest of the features require
more than static analysis. For instance: existing automated test
smell detectors have analyzed only the code that is present in a
test method [29]–[32], and hence can fail to label tests that are
smelly because they invoke a helper method, which in turn,
performs smelly behavior. For instance, the “Fire and Forget”
smell exists in tests that spawn background threads or tasks;
a smell detector that considered only direct calls to launch
threads in the test method body would not define a test as
smelly if it called a helper method to launch that background
thread. Since our goal is not to precisely detect test smells (as
identified by humans), but rather, to find features that may
be representative of flaky tests, we decided to expand our
definition of many of these smells to be inclusive of all code
executed by a test, rather than just the code contained in the
test method body itself.

We developed a hybrid static/dynamic framework to collect
the statement coverage of each test, and then statically analyze
the covered code in order to collect these behavioral features.
For instance, we determined that a test had the “fire and
forget” smell feature if, anytime during its execution (including
in the production code that is called by the test), that test
launched a background thread or task. We also collect a variety

TABLE II: Complete list of features captured for test flakiness prediction. The Covered Lines Churn feature is rep-
resented in multiple forms based on the h values (number of the past commits). In our evaluation, we considered
h = 5, 10, 25, 50, 75, 100, 500 and 10, 000

Feature Description
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Indirect Testing True if the test interacts with the object under test via an intermediary [24]
Eager Testing True if the test exercises more than one method of the tested object [24]
Test Run War True if the test allocates a file or resource which might be used by other tests [24]
Conditional Logic True if the test has a conditional if-statement within the test method body [25]
Fire and Forget True if the test launches background threads or tasks. [26]
Mystery Guest True if the test accesses external resources [24]
Assertion Roulette True if the test has multiple assertions [24]
Resources Optimism True if the test accesses external resources without checking their availability [24]
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the candidate number of tests they need to investigate via re-
running or manual inspection.

By proactively identifying flaky tests, we may also help
developers understand why these tests are flaky. Prior work
has suggested different properties of tests that might make
them more likely to be flaky, and FlakeFlagger can report
which of these features are present in each test [4], [8]. In
practice, if a feature has a strong correlation with flakiness,
developers might choose to focus on this feature in their future
test maintenance and development activities.

Figure 1 shows a high-level overview of our approach
to detect flaky tests. First, we collect a series of features
describing each test in a project. In a developer’s scenario,
we would assume that some of these tests would be known to
be flaky, and the developers would be interested in detecting
other flaky tests. For instance, the developer might know the
flaky tests that exist in their test suite currently, and would like
to identify if a newly written test is flaky. We collect behavioral
features (such as API usage) of each test, and then construct
a classifier to predict which tests are flaky. In a controlled
experiment (with known flaky tests), we can perform cross-
validation, and generate a confusion matrix that describes the
performance of the classifier. In practice, without an oracle,
we would present a report to developers including a list of
likely flaky tests.

A. Prediction Features

To develop a list of features that may be predictive of
flakiness, we look to prior flaky test research [1], [4], [6],
[8]. Ahmed et al. [8] categorized 23 developer-reported factors
which affect test flakiness. These features are described by
practitioners at a high level, and include test case complexity,
hard-coded values and test smells. Eck et al. [4] interviewed
21 developers about flaky tests and tabulated the frequency
of different kinds of flaky tests as well as developers’ fixes
for those flaky tests. Whereas prior flakiness classification
approaches used static, code-level features (e.g. presence of
textual tokens in the body of each test method), these surveys
describe features that are more nuanced. For instance, Eck et

al. note that many flaky tests are flaky due to causes not in
the test method itself, but instead, in the production code that
is executed by that test [4].

Inspired by previous studies on test flakiness, we developed
a list of sixteen features, some of are based on general studies
on the causes of flaky tests [1], [8], while others are defined as
bad practices in writing unit tests [28]. Unfortunately, some of
these flaky test root cases are too complicated to detect without
human intervention, for instance, Eck et al’s “Too restrictive
range” (which effectively describes the case where an assertion
is wrong). Hence, we considered all of the features described
in the prior works, and then selected only those for which we
could write automated detectors. We implemented detectors
for each of the features shown in Table II.

While some of the features can be detected by inspecting
the test method statically (specifically, the conditional logic
smell and test line of code), the rest of the features require
more than static analysis. For instance: existing automated test
smell detectors have analyzed only the code that is present in a
test method [29]–[32], and hence can fail to label tests that are
smelly because they invoke a helper method, which in turn,
performs smelly behavior. For instance, the “Fire and Forget”
smell exists in tests that spawn background threads or tasks;
a smell detector that considered only direct calls to launch
threads in the test method body would not define a test as
smelly if it called a helper method to launch that background
thread. Since our goal is not to precisely detect test smells (as
identified by humans), but rather, to find features that may
be representative of flaky tests, we decided to expand our
definition of many of these smells to be inclusive of all code
executed by a test, rather than just the code contained in the
test method body itself.

We developed a hybrid static/dynamic framework to collect
the statement coverage of each test, and then statically analyze
the covered code in order to collect these behavioral features.
For instance, we determined that a test had the “fire and
forget” smell feature if, anytime during its execution (including
in the production code that is called by the test), that test
launched a background thread or task. We also collect a variety

TABLE II: Complete list of features captured for test flakiness prediction. The Covered Lines Churn feature is rep-
resented in multiple forms based on the h values (number of the past commits). In our evaluation, we considered
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Indirect Testing True if the test interacts with the object under test via an intermediary [24]
Eager Testing True if the test exercises more than one method of the tested object [24]
Test Run War True if the test allocates a file or resource which might be used by other tests [24]
Conditional Logic True if the test has a conditional if-statement within the test method body [25]
Fire and Forget True if the test launches background threads or tasks. [26]
Mystery Guest True if the test accesses external resources [24]
Assertion Roulette True if the test has multiple assertions [24]
Resources Optimism True if the test accesses external resources without checking their availability [24]
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the candidate number of tests they need to investigate via re-
running or manual inspection.

By proactively identifying flaky tests, we may also help
developers understand why these tests are flaky. Prior work
has suggested different properties of tests that might make
them more likely to be flaky, and FlakeFlagger can report
which of these features are present in each test [4], [8]. In
practice, if a feature has a strong correlation with flakiness,
developers might choose to focus on this feature in their future
test maintenance and development activities.

Figure 1 shows a high-level overview of our approach
to detect flaky tests. First, we collect a series of features
describing each test in a project. In a developer’s scenario,
we would assume that some of these tests would be known to
be flaky, and the developers would be interested in detecting
other flaky tests. For instance, the developer might know the
flaky tests that exist in their test suite currently, and would like
to identify if a newly written test is flaky. We collect behavioral
features (such as API usage) of each test, and then construct
a classifier to predict which tests are flaky. In a controlled
experiment (with known flaky tests), we can perform cross-
validation, and generate a confusion matrix that describes the
performance of the classifier. In practice, without an oracle,
we would present a report to developers including a list of
likely flaky tests.

A. Prediction Features

To develop a list of features that may be predictive of
flakiness, we look to prior flaky test research [1], [4], [6],
[8]. Ahmed et al. [8] categorized 23 developer-reported factors
which affect test flakiness. These features are described by
practitioners at a high level, and include test case complexity,
hard-coded values and test smells. Eck et al. [4] interviewed
21 developers about flaky tests and tabulated the frequency
of different kinds of flaky tests as well as developers’ fixes
for those flaky tests. Whereas prior flakiness classification
approaches used static, code-level features (e.g. presence of
textual tokens in the body of each test method), these surveys
describe features that are more nuanced. For instance, Eck et

al. note that many flaky tests are flaky due to causes not in
the test method itself, but instead, in the production code that
is executed by that test [4].

Inspired by previous studies on test flakiness, we developed
a list of sixteen features, some of are based on general studies
on the causes of flaky tests [1], [8], while others are defined as
bad practices in writing unit tests [28]. Unfortunately, some of
these flaky test root cases are too complicated to detect without
human intervention, for instance, Eck et al’s “Too restrictive
range” (which effectively describes the case where an assertion
is wrong). Hence, we considered all of the features described
in the prior works, and then selected only those for which we
could write automated detectors. We implemented detectors
for each of the features shown in Table II.

While some of the features can be detected by inspecting
the test method statically (specifically, the conditional logic
smell and test line of code), the rest of the features require
more than static analysis. For instance: existing automated test
smell detectors have analyzed only the code that is present in a
test method [29]–[32], and hence can fail to label tests that are
smelly because they invoke a helper method, which in turn,
performs smelly behavior. For instance, the “Fire and Forget”
smell exists in tests that spawn background threads or tasks;
a smell detector that considered only direct calls to launch
threads in the test method body would not define a test as
smelly if it called a helper method to launch that background
thread. Since our goal is not to precisely detect test smells (as
identified by humans), but rather, to find features that may
be representative of flaky tests, we decided to expand our
definition of many of these smells to be inclusive of all code
executed by a test, rather than just the code contained in the
test method body itself.

We developed a hybrid static/dynamic framework to collect
the statement coverage of each test, and then statically analyze
the covered code in order to collect these behavioral features.
For instance, we determined that a test had the “fire and
forget” smell feature if, anytime during its execution (including
in the production code that is called by the test), that test
launched a background thread or task. We also collect a variety

TABLE II: Complete list of features captured for test flakiness prediction. The Covered Lines Churn feature is rep-
resented in multiple forms based on the h values (number of the past commits). In our evaluation, we considered
h = 5, 10, 25, 50, 75, 100, 500 and 10, 000

Feature Description

Te
st

Sm
el

ls

Indirect Testing True if the test interacts with the object under test via an intermediary [24]
Eager Testing True if the test exercises more than one method of the tested object [24]
Test Run War True if the test allocates a file or resource which might be used by other tests [24]
Conditional Logic True if the test has a conditional if-statement within the test method body [25]
Fire and Forget True if the test launches background threads or tasks. [26]
Mystery Guest True if the test accesses external resources [24]
Assertion Roulette True if the test has multiple assertions [24]
Resources Optimism True if the test accesses external resources without checking their availability [24]

N
um

er
ic

Fe
at

ur
es

Test Lines of Code Number of lines of code in the test method body
Number of Assertions Number of assertions checked by the test
Execution Time Running time for the test execution
Source Covered Lines Number of lines covered by each test, counting only production code
Covered Lines Total number of lines of code covered by the test
Source Covered Classes Total number of production classes covered by each test
External Libraries Number of external libraries used by the test
Covered Lines Churn h-index capturing churn of covered lines in past 5, 10, 25, 50, 75, 100, 500, and 10,000 commits. Each value h indicates that at least h lines

were modified at least h times in that period.

the candidate number of tests they need to investigate via re-
running or manual inspection.

By proactively identifying flaky tests, we may also help
developers understand why these tests are flaky. Prior work
has suggested different properties of tests that might make
them more likely to be flaky, and FlakeFlagger can report
which of these features are present in each test [4], [8]. In
practice, if a feature has a strong correlation with flakiness,
developers might choose to focus on this feature in their future
test maintenance and development activities.

Figure 1 shows a high-level overview of our approach
to detect flaky tests. First, we collect a series of features
describing each test in a project. In a developer’s scenario,
we would assume that some of these tests would be known to
be flaky, and the developers would be interested in detecting
other flaky tests. For instance, the developer might know the
flaky tests that exist in their test suite currently, and would like
to identify if a newly written test is flaky. We collect behavioral
features (such as API usage) of each test, and then construct
a classifier to predict which tests are flaky. In a controlled
experiment (with known flaky tests), we can perform cross-
validation, and generate a confusion matrix that describes the
performance of the classifier. In practice, without an oracle,
we would present a report to developers including a list of
likely flaky tests.

A. Prediction Features

To develop a list of features that may be predictive of
flakiness, we look to prior flaky test research [1], [4], [6],
[8]. Ahmed et al. [8] categorized 23 developer-reported factors
which affect test flakiness. These features are described by
practitioners at a high level, and include test case complexity,
hard-coded values and test smells. Eck et al. [4] interviewed
21 developers about flaky tests and tabulated the frequency
of different kinds of flaky tests as well as developers’ fixes
for those flaky tests. Whereas prior flakiness classification
approaches used static, code-level features (e.g. presence of
textual tokens in the body of each test method), these surveys
describe features that are more nuanced. For instance, Eck et

al. note that many flaky tests are flaky due to causes not in
the test method itself, but instead, in the production code that
is executed by that test [4].

Inspired by previous studies on test flakiness, we developed
a list of sixteen features, some of are based on general studies
on the causes of flaky tests [1], [8], while others are defined as
bad practices in writing unit tests [28]. Unfortunately, some of
these flaky test root cases are too complicated to detect without
human intervention, for instance, Eck et al’s “Too restrictive
range” (which effectively describes the case where an assertion
is wrong). Hence, we considered all of the features described
in the prior works, and then selected only those for which we
could write automated detectors. We implemented detectors
for each of the features shown in Table II.

While some of the features can be detected by inspecting
the test method statically (specifically, the conditional logic
smell and test line of code), the rest of the features require
more than static analysis. For instance: existing automated test
smell detectors have analyzed only the code that is present in a
test method [29]–[32], and hence can fail to label tests that are
smelly because they invoke a helper method, which in turn,
performs smelly behavior. For instance, the “Fire and Forget”
smell exists in tests that spawn background threads or tasks;
a smell detector that considered only direct calls to launch
threads in the test method body would not define a test as
smelly if it called a helper method to launch that background
thread. Since our goal is not to precisely detect test smells (as
identified by humans), but rather, to find features that may
be representative of flaky tests, we decided to expand our
definition of many of these smells to be inclusive of all code
executed by a test, rather than just the code contained in the
test method body itself.

We developed a hybrid static/dynamic framework to collect
the statement coverage of each test, and then statically analyze
the covered code in order to collect these behavioral features.
For instance, we determined that a test had the “fire and
forget” smell feature if, anytime during its execution (including
in the production code that is called by the test), that test
launched a background thread or task. We also collect a variety
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Prediction of Flaky Tests

It has 86% prediction accuracy for flaky tests on 23 projects

TABLE III: Prediction performance for FlakeFlagger, the vocabulary-based approach, and the hybrid combination of both. The
hybrid approach builds a model with both FlakeFlagger’s and the vocabulary-based approach’s features. We show the number
of True Positives, False Negatives, False Positives and True Negatives, Precision, Recall, and F1 scores per-project. The AUC
value is calculated after each fold where the reported value is the overall averages of AUC values after all folds. Projects with
zero F1 values have very low numbers of flaky tests (less than 3 per project), and illustrate known limitations of FlakeFlagger.

Flaky by FlakeFlagger Vocabulary-Based Approach [12] Combined Approach

Project Tests Reruns TP FN FP TN Pr R F TP FN FP TN Pr R F TP FN FP TN Pr R F

spring-boot 2,108 160 139 21 15 1,933 90% 87% 89% 134 26 703 1,245 16% 84% 27% 143 17 18 1,930 89% 89% 89%
hbase 431 145 129 16 32 254 80% 89% 84% 89 56 152 134 37% 61% 46% 130 15 33 253 80% 90% 84%
alluxio 187 116 116 0 0 71 100% 100% 100% 108 8 11 60 91% 93% 92% 116 0 0 71 100% 100% 100%
okhttp 810 100 52 48 159 551 25% 52% 33% 79 21 444 266 15% 79% 25% 46 54 104 606 31% 46% 37%
ambari 324 52 47 5 3 269 94% 90% 92% 36 16 121 151 23% 69% 34% 47 5 3 269 94% 90% 92%
hector 142 33 30 3 8 101 79% 91% 85% 13 20 23 86 36% 39% 38% 25 8 11 98 69% 76% 72%
activiti 2,043 32 10 22 43 1,968 19% 31% 24% 12 20 531 1,480 2% 38% 4% 7 25 34 1,977 17% 22% 19%
java-websocket 145 23 19 4 1 121 95% 83% 88% 23 0 74 48 24% 100% 38% 19 4 4 118 83% 83% 83%
wildfly 1,023 23 11 12 27 973 29% 48% 36% 20 3 554 446 3% 87% 7% 17 6 24 976 41% 74% 53%
httpcore 712 22 14 8 23 667 38% 64% 47% 16 6 375 315 4% 73% 8% 15 7 24 666 38% 68% 49%
logback 805 22 3 19 17 766 15% 14% 14% 10 12 259 524 4% 45% 7% 5 17 11 772 31% 23% 26%
incubator-dubbo 2,174 19 8 11 35 2,120 19% 42% 26% 11 8 813 1,342 1% 58% 3% 13 6 23 2,132 36% 68% 47%
http-request 163 18 12 6 6 139 67% 67% 67% 16 2 84 61 16% 89% 27% 12 6 6 139 67% 67% 67%
wro4j 1,135 16 4 12 2 1,117 67% 25% 36% 2 14 101 1,018 2% 12% 3% 0 16 1 1,118 0% 0% 0%
orbit 86 7 1 6 8 71 11% 14% 12% 6 1 32 47 16% 86% 27% 1 6 7 72 12% 14% 13%
undertow 183 7 2 5 8 168 20% 29% 24% 6 1 63 113 9% 86% 16% 3 4 8 168 27% 43% 33%
achilles 1,317 4 2 2 3 1,310 40% 50% 44% 0 4 0 1,313 0% 0% 0% 0 4 0 1,313 0% 0% 0%
elastic-job-lite 558 3 0 3 0 555 0% 0% 0% 0 3 34 521 0% 0% 0% 1 2 0 555 100% 33% 50%
zxing 345 2 0 2 2 341 0% 0% 0% 1 1 144 199 1% 50% 1% 0 2 2 341 0% 0% 0%
assertj-core 6,261 1 0 1 5 6,255 0% 0% 0% 0 1 6 6,254 0% 0% 0% 0 1 0 6,260 0% 0% 0%
commons-exec 55 1 0 1 1 53 0% 0% 0% 1 0 18 36 5% 100% 10% 0 1 1 53 0% 0% 0%
handlebars.java 420 1 0 1 5 414 0% 0% 0% 0 1 91 328 0% 0% 0% 0 1 0 419 0% 0% 0%
ninja 307 1 0 1 3 303 0% 0% 0% 0 1 50 256 0% 0% 0% 0 1 0 306 0% 0% 0%

Total 21,734 808 599 209 406 20,520 60% 74% 66% 583 225 4,683 16,243 11% 72% 19% 600 208 314 20,612 66% 74% 86%

AUC (Average per fold) 86% 75% 86%

needed to run such an experiment would vary dramatically
between the two models, since FlakeFlagger had far fewer
false positives (406 vs 4,683). Assuming that each test would
take a comparable amount of time to run flaky test detectors
on, our developer (or researcher) would be able to confirm
the flakiness of FlakeFlagger’s 1,005 reported flaky tests (599
TPs plus 406 FPs) in roughly 18% of the time that it would
take to confirm the flakiness of the 5,266 reported flaky by
the vocabulary-based approach (583 TPs plus 4,683 FPs).

We were initially surprised that the precision of the
vocabulary-based approach’s was so much lower than Flake-
Flagger’s, and indeed, lower than reported by the original
authors [12]. We found that the tokens used in Pinto et
al.’s bag-of-words model did indeed frequently occur in flaky
tests, but also occurred quite frequently in non-flaky tests. For
example, one of the most relevant tokens that the model relied
upon (both in our study, and in [12]) was the Java throws
keyword. However, when examining the entire corpus, we
discovered that this keyword is used quite frequently in both
flaky and non-flaky tests, and hence, is not a very good
predictor of flakiness.

FlakeFlagger’s performance varied across projects: on some
projects (e.g., alluxio), we had perfect precision and recall,
while on others (e.g., okhttp and activiti) the approach was less
successful. We investigated more closely the different factors
that could cause such a varied performance among different
projects. The first and most obvious factor is the size of the
training data: our model performed best on the two projects

which had the most known flaky tests (alluxio and spring-boot
each had more than 100). On projects with very few known
flaky tests (less than 4), FlakeFlagger did not classify any
of the flaky tests as flaky, resulting in F1 scores of 0. This
results from the lack of training data that are representative
of the flaky tests in these projects. However, note that even
on these projects with so few flaky tests (e.g., zxing with
only two known flaky tests, ninja with only one), even though
FlakeFlagger failed to identify the flaky tests (true positives),
it had far fewer false positives than the other approach.

More broadly speaking, we can attribute the variation of
prediction performance between projects to the relative gen-
erality of our features (such as test execution time, coverage
of recently changed lines, etc.). Each project has its own
environmental assumptions, development patterns, and other
unique characteristics that can make it difficult to create a
single general-purpose approach to classifying tests as flaky or
not. Another explanation for why performance varies across
projects may be that not all flaky tests have been labeled
correctly — no rerun-based technique can guarantee to find
all flaky tests (even after 10,000 reruns). That is: there may
be tests that are labeled as “not flaky” in our dataset that are
in fact flaky, but we simply did not observe any flaky failure
of those tests in our experiments.

The higher number of observed flaky tests in a single project
does not guarantee that FlakeFlagger performs well. Some
flaky failures are due to rare dependency conflicts and network
failures that are not captured well from our features described
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Prediction of Flaky Tests

• Another way to statically predict flakiness is to use lexical analysis
on the test case to extract specific lexical patterns on flaky tests for
limited domain (network related latency, external resources not ready,
file I/O, etc.)

• G. Pinto, B. Miranda, S. Dissanayake, M. d’Amorim, C. Treude, and
A. Bertolino. What is the vocabulary of flaky tests? MSR 2020, pages
492–502

• Static flaky test prediction essentially becomes text classification
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Prediction of Flaky Tests

@Test
public void testCodingEmptySrcBuffer() throws Exception {
final WritableByteChannelMock channel = new ritableByteChannelMock(64);
final SessionOutputBuffer outbuf = new SessionOutputBufferImpl(1024, 128);
final BasicHttpTransportMetrics metrics = new BasicHttpTransportMetrics();
final IdentityEncoder encoder = new IdentityEncoder(channel, outbuf, metrics);
encoder.write(CodecTestUtils.wrap("stuff"));
final ByteBuffer empty = ByteBuffer.allocate(100);
empty.flip();
encoder.write(empty);
encoder.write(null);
encoder.complete();
outbuf.flush(channel);
final String s = channel.dump(StandardCharsets.US_ASCII);
Assert.assertTrue(encoder.isCompleted());
Assert.assertEquals("stuff", s);
}

⇓
pty src buffer codec test utils standard charsets
channel assert equals encoder byte buffer empty test
coding empty assert allocate flush outbuf metrics
dump complete wrap write flip stuff completed

Figure 1: A selected test case and its tokenized result.

rerunning failed tests for a fixed number of times. Gambi et al. [9]
focus on one specific cause of flakiness that is test dependency,
which they propose to discover by flow analysis and iterative testing
of possible dependencies. The works in [13, 15] aim instead to build
a static predictor, as we also do here. The work in [13] develops
a machine learning approach that mines association rules among
individual test steps in tens of millions of false test alarms. In [15]
a Bayesian network is instead constructed. In contrast, our work
aims at developing a lightweight flakiness predictor that learns from
test code of flaky and non-flaky tests. We are aware of one only
recent approach that takes a similar standpoint as we do (i.e., [5]).
However, here, we derive a more comprehensive set of predictors
and build a vocabulary of tokens, which is out of their scope.

3 APPROACH
To understand the vocabulary of flaky tests, we extracted all identi-
fiers from the test cases in our data set. We first localized the file
declaring the test class and then processed that file to identify the
flaky test case and corresponding identifiers. After obtaining the
identifiers used in the test code, we split these identifiers using their
camel-case syntax, and converted all resulting tokens to lower case.
We removed stop words from the set of tokens for each test case.
As a concrete example, consider the code snippet appearing at the
top of Figure 1. This is a test case from the httpcore project1. The
tokens extracted from the test appear at the bottom of the figure.

We observed that, in some cases, a part of an identifier after split-
ting (i.e., a token) seemed to be an indicator of flakiness (e.g., “ser-
vices”), whereas, in other cases, the entire identifier was an indicator
of flakiness (e.g., “getstatus”), but not its constituents on their own
(e.g., “get”, “status”). Therefore, we used both the split identifiers
and the original identifiers (after lower-casing) as input for the text
classification. In other words, the identifier “getStatus” would be

1https://tini.to/52IC

represented using three features: “get”, “status”, and “getstatus”. We
evaluate the impact of this choice in our evaluation section.

In addition to the tokens obtained this way, we determined the
length of each test case in terms of lines of code and the number
of Java keywords contained in the test code, as a proxy for the
code’s complexity. Again, we separately evaluate the impact of
these choices as part of answering our third research question.

We then used the pre-processed flaky and non-flaky test cases
as input for machine learning algorithms. Each test case was repre-
sented using its features: the number of lines of code, the number
of Java keywords, and for each token the information whether or
not it contained this token. This approach creates one feature for
each distinct token found in tests cases. Consequently, our data set
includes a large number of features. Following previous work, we
used attribute selection to remove features with low information
gain: we used the same threshold of 0.02 as in previous work [26].

We evaluated the performance of five machine learning clas-
sifiers on our data set. We chose the same classifiers as used in
previous work on text classification in the context of software engi-
neering (e.g., [6, 26]): Random Forest, Decision Tree, Naive Bayes,
Support Vector Machine, and Nearest Neighbour. For all algorithms,
we relied on their implementation in the open source machine
learning software Weka [31].

To evaluate the performance, we split our data set into 80%
for training and 20% for testing. We choose to report the results
based on this split rather than x-fold cross-validation since cross-
validation would train a new model from scratch for each fold, thus
resulting in several models rather than a single one. Note that we
also ran our experiments with 10-fold cross-validation, with very
similar (slightly improved) performance numbers. We report the
standard metrics of precision (the number of correctly classified
flaky tests divided by the total number of tests that are classified as
flaky), recall (the number of correctly classified flaky tests divided
by the total number of actual flaky tests in the test set), and F1-score
(the harmonic mean of precision and recall). We also report MCC
(Matthews correlation coefficient) and AUC (area under the ROC
curve). MCC measures the correlation between predicted classes
(i.e., flaky vs. non-flaky) and ground truth, and AUC measures the
area under the curve which visualises the trade-off between true
positive rate and false positive rate. We focus our discussions on
the F1-score since we are more interested in correctly predicting
flakiness rather than non-flakiness.

4 OBJECTS OF ANALYSIS
This section describes the datasets we used to train and test our
prediction model. Machine learning algorithms use positive and
negative examples for learning. In our setting, positive examples cor-
respond to flaky test cases whereas negative examples correspond
to likely non-flaky test cases. Indeed, the diagnosis of non-flakiness
is an estimate—there is no guarantee a test is non-flaky with a given
number of runs.

We based the construction of our data set on the DeFlaker bench-
mark2. We took this decision based on the number of flaky test
cases it reports, with over 5K flaky tests3, which is, to the best of

2www.deflaker.org/icsecomp/
3http://www.deflaker.org/wp-content/uploads/2019/11/historical_rerun_flaky_tests.csv
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@Test
public void testCodingEmptySrcBuffer() throws Exception {
final WritableByteChannelMock channel = new ritableByteChannelMock(64);
final SessionOutputBuffer outbuf = new SessionOutputBufferImpl(1024, 128);
final BasicHttpTransportMetrics metrics = new BasicHttpTransportMetrics();
final IdentityEncoder encoder = new IdentityEncoder(channel, outbuf, metrics);
encoder.write(CodecTestUtils.wrap("stuff"));
final ByteBuffer empty = ByteBuffer.allocate(100);
empty.flip();
encoder.write(empty);
encoder.write(null);
encoder.complete();
outbuf.flush(channel);
final String s = channel.dump(StandardCharsets.US_ASCII);
Assert.assertTrue(encoder.isCompleted());
Assert.assertEquals("stuff", s);
}

⇓
pty src buffer codec test utils standard charsets
channel assert equals encoder byte buffer empty test
coding empty assert allocate flush outbuf metrics
dump complete wrap write flip stuff completed

Figure 1: A selected test case and its tokenized result.

rerunning failed tests for a fixed number of times. Gambi et al. [9]
focus on one specific cause of flakiness that is test dependency,
which they propose to discover by flow analysis and iterative testing
of possible dependencies. The works in [13, 15] aim instead to build
a static predictor, as we also do here. The work in [13] develops
a machine learning approach that mines association rules among
individual test steps in tens of millions of false test alarms. In [15]
a Bayesian network is instead constructed. In contrast, our work
aims at developing a lightweight flakiness predictor that learns from
test code of flaky and non-flaky tests. We are aware of one only
recent approach that takes a similar standpoint as we do (i.e., [5]).
However, here, we derive a more comprehensive set of predictors
and build a vocabulary of tokens, which is out of their scope.

3 APPROACH
To understand the vocabulary of flaky tests, we extracted all identi-
fiers from the test cases in our data set. We first localized the file
declaring the test class and then processed that file to identify the
flaky test case and corresponding identifiers. After obtaining the
identifiers used in the test code, we split these identifiers using their
camel-case syntax, and converted all resulting tokens to lower case.
We removed stop words from the set of tokens for each test case.
As a concrete example, consider the code snippet appearing at the
top of Figure 1. This is a test case from the httpcore project1. The
tokens extracted from the test appear at the bottom of the figure.

We observed that, in some cases, a part of an identifier after split-
ting (i.e., a token) seemed to be an indicator of flakiness (e.g., “ser-
vices”), whereas, in other cases, the entire identifier was an indicator
of flakiness (e.g., “getstatus”), but not its constituents on their own
(e.g., “get”, “status”). Therefore, we used both the split identifiers
and the original identifiers (after lower-casing) as input for the text
classification. In other words, the identifier “getStatus” would be

1https://tini.to/52IC

represented using three features: “get”, “status”, and “getstatus”. We
evaluate the impact of this choice in our evaluation section.

In addition to the tokens obtained this way, we determined the
length of each test case in terms of lines of code and the number
of Java keywords contained in the test code, as a proxy for the
code’s complexity. Again, we separately evaluate the impact of
these choices as part of answering our third research question.

We then used the pre-processed flaky and non-flaky test cases
as input for machine learning algorithms. Each test case was repre-
sented using its features: the number of lines of code, the number
of Java keywords, and for each token the information whether or
not it contained this token. This approach creates one feature for
each distinct token found in tests cases. Consequently, our data set
includes a large number of features. Following previous work, we
used attribute selection to remove features with low information
gain: we used the same threshold of 0.02 as in previous work [26].

We evaluated the performance of five machine learning clas-
sifiers on our data set. We chose the same classifiers as used in
previous work on text classification in the context of software engi-
neering (e.g., [6, 26]): Random Forest, Decision Tree, Naive Bayes,
Support Vector Machine, and Nearest Neighbour. For all algorithms,
we relied on their implementation in the open source machine
learning software Weka [31].

To evaluate the performance, we split our data set into 80%
for training and 20% for testing. We choose to report the results
based on this split rather than x-fold cross-validation since cross-
validation would train a new model from scratch for each fold, thus
resulting in several models rather than a single one. Note that we
also ran our experiments with 10-fold cross-validation, with very
similar (slightly improved) performance numbers. We report the
standard metrics of precision (the number of correctly classified
flaky tests divided by the total number of tests that are classified as
flaky), recall (the number of correctly classified flaky tests divided
by the total number of actual flaky tests in the test set), and F1-score
(the harmonic mean of precision and recall). We also report MCC
(Matthews correlation coefficient) and AUC (area under the ROC
curve). MCC measures the correlation between predicted classes
(i.e., flaky vs. non-flaky) and ground truth, and AUC measures the
area under the curve which visualises the trade-off between true
positive rate and false positive rate. We focus our discussions on
the F1-score since we are more interested in correctly predicting
flakiness rather than non-flakiness.

4 OBJECTS OF ANALYSIS
This section describes the datasets we used to train and test our
prediction model. Machine learning algorithms use positive and
negative examples for learning. In our setting, positive examples cor-
respond to flaky test cases whereas negative examples correspond
to likely non-flaky test cases. Indeed, the diagnosis of non-flakiness
is an estimate—there is no guarantee a test is non-flaky with a given
number of runs.

We based the construction of our data set on the DeFlaker bench-
mark2. We took this decision based on the number of flaky test
cases it reports, with over 5K flaky tests3, which is, to the best of

2www.deflaker.org/icsecomp/
3http://www.deflaker.org/wp-content/uploads/2019/11/historical_rerun_flaky_tests.csv
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Prediction of Flaky Tests

It achieves an F-measure of 0.95 for the prediction of flaky tests.
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Figure 2: Histogram of probability of a flaky test to pass.

the executions. For example, for 47 flaky tests (55%), the test passed
99 times (out of 100 repetitions) and produced a different result in
only one case. This result may indicate that more executions might
be needed to accurately identify flaky tests.

The histogram also shows that there are rare cases where the
probability of a flaky test to pass is low–only one flaky test passed in
less than 10% of the executions. For this case, the strategy adopted
by Continuous Integration (CI) systems to rerun the test for a
small number of times would unlikely identify the cause of failure
as flakiness. The probability of subsequent failures after the first
test execution fails is relatively high. Assuming for example that
the framework reruns a test three other times, after a failure, the
probability of flakiness going undetected would be 66% (=0.94), i.e.,
the probability of four failures in a row.

Results indicate that flakiness is a relatively common
problem in IO-related projects. Furthermore, detecting

flakiness with test reruns is challenging.

5.2 Answering RQ2: How accurately can we
predict test flakiness based on source code
identifiers in the test cases?

Table 3 shows the performance of five machine learning algorithms
on our data set in terms of standard metrics used in the literature,
namely: precision, recall, F1-score, MCC (Matthews correlation
coefficient), and AUC (area under the ROC curve). Numbers in bold
highlight the algorithm that performed best for a given metric.

Table 3: Classifier performance

algorithm precision recall F1 MCC AUC
Random Forest 0.99 0.91 0.95 0.90 0.98
Decision Tree 0.89 0.88 0.89 0.77 0.91
Naive Bayes 0.93 0.80 0.86 0.74 0.93
Support Vector 0.93 0.92 0.93 0.85 0.93
Nearest Neighbour 0.97 0.88 0.92 0.85 0.93

All classifiers achieved very good performance in distinguishing
flaky test cases from non-flaky test cases. While Random Forest
achieved the best precision (0.99), the Support Vector Machine

classifier slightly outperformed Random Forest in terms of recall
(0.92). Overall, in terms of F1-score, Random Forest achieved the
best performance, but all classifiers achieved an F1-score of at least
0.85. Results are consistent when considering Matthews correlation
coefficient and area under the ROC curve. In both cases, the Random
Forest classifier achieves the best performance, with values of 0.90
and 0.98, respectively.

As is common when using automated classifiers, we attempted
parameter tuning to see if it would impact the classifier performance.
In this case, we changed the ‘number of trees’ parameter of the
Random Forest algorithm from its default setting in Weka of 100.
Increasing the number of trees had no impact on the F1-score (we
tried values of 500 and 1,000) while reducing the number of trees led
to a decrease in F1-score to 0.91 for the values of 5 and 10. Reducing
the number of trees to 50 had no impact on the F1-score.

All classifiers performed very well on our data set.
Overall, Random Forest was the classifier that

performed best.

5.3 Answering RQ3: What value do different
features add to the classifier?

In this section, we investigate the impact of the different features
used in our classifiers on their performance. We focus the inves-
tigation on the two best-performing classifiers identified in the
previous section: Random Forest (best precision and F1-score) and
Support Vector Machine (best recall).

Tables 4a and 4b compare the performance of these two classi-
fiers to the performance of the same classifier without a particular
feature, including features of the text classification algorithm (e.g.,
stemming, stop word removal, etc.) and features describing the data
(e.g., number of lines of code, contains identifier "status", etc.).

For the Random Forest classifier (Table 4a), not all features in
our pipeline had a visible impact on the results: running the same
pipeline, but without stemming, without stop word removal or
without including the LOC metric had no impact on the F1-score, for
example, and it also made no difference whether we considered only
split identifiers as tokens (e.g., turning getId into two features get
and id instead of three features get, id, and getid). Lowercasing
had a negligible impact (without it, the F1-score would drop from
0.95 to 0.94), similar to not including Java keywords or not splitting
identifiers by camel case.

The only large impact was observed when we only included
Java keywords as tokens, but not identifier names. In this case, the
performance would drop from an F1-score of 0.95 to 0.79.

As Table 4b shows, the results for the Support Vector Machine
classifier are similar: the F1-score was not affected by stemming,
stop word removal, the LOC metric, and Java keywords, while the
effect of lowercasing was negligible. Not splitting identifiers re-
duced the F1-score from 0.93 to 0.89 and not considering identifiers
at all reduced it to 0.74.
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Summary

1. Mutation Testing
Fundamental Hypotheses
Overall Process
Mutation Generation
Kill vs Alive
Equivalent Mutants
How to Kill A Mutant
Scalability
Higher Order Mutants
Tools

2. Test Flakiness
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