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Regression Fault

https://support.google.com/chrome/thread/218644651/
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Regression Fault

https://discussions.apple.com/thread/255162058
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Regression Fault

• Regression fault is a fault that occurs when a change in the
software introduces a new defect or reactivates a defect that had been
previously fixed.

• The term regression refers to the fact that the software has
regressed (gone backwards) to an earlier bad state.
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Regression Testing

• You are realizing a new version of your software.

• You have tried to thoroughly test the new features.

• You want to check if you have created any regression faults.

• How would you do that?
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Regression Testing – Retest All

• The simplest way is to retest all the test cases.

• You need to run all tests not only for the new features but also for
the old existing features.

• Its main disadvantage is that it is time-consuming to run all the test
cases for every new version.

• It is critical in the modern software development process because
software is continuously and rapidly changing.
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Regression Testing – Retest All

“For example, one of our industrial collaborators reports that
for one of its products of about 20,000 lines of code, the
entire test suite requires seven weeks to run.”

– G.Rothermel, R.H. Untch & M.J. Harrold, Prioritizing Test Cases
for Regression Testing, TSE’21

The test suite becomes larger and larger as the software evolves with the
following factors:

• Long Product History

• Different Configurations

• Types of Test Cases
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Regression Testing Techniques

Many techniques have been developed in order to cope with the high cost
of retesting all test cases. They can be categorized into:

• Test Suite Minimization

• Test Case Selection

• Test Case Prioritization
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Test Suite Minimization

• Problem – Regression test suite is too large

• Idea – There might be some test cases that are redundant

• Solution – Minimize regression test suite by removing all the
redundant test cases

• Then, what is the definition of a redundant test case?
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Test Suite Minimization

One possible way is to use the coverage information.

(e.g., Statements, MC/DC, All-DU-Paths, etc.)

TC r1 r2 r3 · · ·
t1 ✓ ✓ · · ·
t2 ✓ · · ·
t3 ✓ ✓ · · ·
t4 ✓ · · ·
...

...
...

... . . .

How to minimize the test suite as much as possible while preserving the
coverage information (the set of covered test requirements)?
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Test Suite Minimization

5

4

2 3

1 • We can model the test suite
minimization problem as a set
cover problem.
• Unfortunately, the set cover problem

is NP-complete, meaning that
there is no known polynomial-time
algorithm to solve it.
• However, there are many heuristic

algorithms that can be used to solve
the test suite minimization problem.
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Greedy Minimization
Algorithm Greedy Minimization
1: function GreedyMinimization(T , R)
2: T ′ ← ∅
3: while true do
4: t ← argmaxt∈T |R ∩ TR(t)|
5: if |R ∩ TR(t)| = 0 then
6: break
7: T ′ ← T ′ ∪ {t}
8: R ← R \ TR(t)
9: return T ′

TC r1 r2 r3 r4

t1 ✓ ✓
t2 ✓ ✓
t3 ✓ ✓ ✓
t4 ✓
t5 ✓ ✓

T ′ = ∅
R = {r1, r2, r3, r4}

T ′ = {t3}
R = {r3}

T ′ = {t3, t1}
R = ∅
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Greedy Minimization with Cost

• However, in fact, test cases have different costs to run.

• Is it still {t3, t1} the best solution?

TC r1 r2 r3 r4 Time
t1 ✓ ✓ 3
t2 ✓ ✓ 5
t3 ✓ ✓ ✓ 10
t4 ✓ 2
t5 ✓ ✓ 8
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Greedy Minimization with Cost
Algorithm Greedy Minimization with Cost
1: function GreedyMinimization(T , R)
2: T ′ ← ∅
3: while true do
4: t ← argmaxt∈T

|R∩TR(t)|
Time(t)

5: if |R ∩ TR(t)| = 0 then
6: break
7: T ′ ← T ′ ∪ {t}
8: R ← R \ TR(t)
9: return T ′

TC r1 r2 r3 r4 Time
t1 ✓ ✓ 3
t2 ✓ ✓ 5
t3 ✓ ✓ ✓ 10
t4 ✓ 2
t5 ✓ ✓ 8

T ′ = ∅ R = {r1, r2, r3, r4}

T ′ = {t1} R = {r3, r4}

T ′ = {t1, t4} R = {r4}

T ′ = {t1, t4, t2} R = ∅
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Greedy Minimization with Score

• Another possible approach is to use the score information and keep
the best test case for each test requirement according to the score.

• The score of each test case can be defined in various ways.

• For example, consider conformance test suite for a JavaScript
engines, and each test case is a JavaScript program with assertions.

• Then, which test case is better to keep?

• We can define the score of each test case based on the complexity of
the test case (e.g., size of the program, etc.) because a simpler test
case is more understandable and maintainable.
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Greedy Minimization with Score

Algorithm Greedy Minimization with Score
1: function GreedyMinimization(T , R)
2: M ← ∅
3: for t ∈ T do
4: for r ∈ TR(t) do
5: if r ̸∈ M ∨ Score(t) > Score(M[r ]) then
6: M[r ]← t
7: T ′ ← {t | (r , t) ∈ M}
8: return T ′

TC r1 r2 r3 r4 Score
t1 ✓ ✓ 4
t2 ✓ ✓ 3
t3 ✓ ✓ ✓ 2
t4 ✓ 9
t5 ✓ ✓ 5

M =


r1 7→ t1
r2 7→ t1
r3 7→ t4
r4 7→ t5


T ′ = {t1, t4, t5}
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Greedy Minimization with Score

We can minimize the test suite even during the test case generation.

[ICSE’21] J. Park et al., “JEST: N+1-version Differential Testing of Both
JavaScript Engines and Specification”
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Greedy Minimization with Score

We can minimize the test suite even during the test case generation.

[ICSE’21] J. Park et al., “JEST: N+1-version Differential Testing of Both
JavaScript Engines and Specification”

AAA705 @ Korea University Lecture 9 – Regression Testing April 3, 2024 21 / 49



Multi-Objective Problem

What if the test suite minimization problem has multiple objectives?

• “I have only 5 hours as a deadline to run the test suite.”

• “I need to cover more than one coverage criterion.”

• “I want to consider the fault detection capability of the test suite.”

(
1− # Faults Detected by the Minimized Test Suite

# Faults Detected by the Original Test Suite

)
× 100%
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Multi-Objective Problem
• Let’s consider the Pareto efficiency of the test suite minimization.

• And, we can consider the weighted sum of the objectives.

o′ = α1 × o1 + α2 × o2 + · · ·αn × on

where αi is the weight of the i-th objective such that
∑

1≤i≤n αi = 1,
and oi is the value of the i-th objective.
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Multi-Objective Problem

Test 
Case

Program Blocks Time
1 2 3 4 5 6 7 8 9 10

T1 x x x x x x x x 4
T2 x x x x x x x x x 5
T3 x x x x 3
T4 x x x x x 3

Single Objective

Choose test case with highest block 
per time ratio as the next one

1) T1 (ratio = 2.0)
2) T2 (ratio = 2 / 5 = 0.4)

∴ {T1, T2} (takes 9 hours)

“But we only have 7 hours...?”

Multi Objective

0 2 4 6 8 10

Execution Time

0

20

40

60

80

100
C

o
v
e

ra
g

e
(%

)

Additional Greedy

Pareto Frontier

AAA705 @ Korea University Lecture 9 – Regression Testing April 3, 2024 24 / 49



Multi-Objective Problem
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Multi-Objective Problem
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Test Case Selection

• Problem – Regression test suite is too large

• Idea – Not all tests are related to the recent changes in the software.

• Solution – Precisely select the test cases that actually execute the
changed parts of the software.

• Then, how can we know which test cases are related to the recent
changes?
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Test Case Selection

• We have the original program P and the updated program P ′.

• We need to keep track of the execution trace of the test cases in the
original program P to know which parts of the program are executed
by each test case.

• Then, we should know the which parts of the program are changed
in the updated program P ′ compared to the original program P.
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Test Case Selection – Textual Diff
• Most of the modern software are developed using the version control

system (e.g., Git, SVN, etc.).
• The most easiest way is to use the diff command provided by the

version control system to know the changed parts of the program.
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Test Case Selection – Control Flow Graph

However, the textual diff is not enough to precisely know the changed
parts of the program.

P

function foo(x) {
if (x >= 0) {

return -x;
} else {

return x;
}

}

P ′

function foo(x) {
if (x <= 0) {

return -x;
} else {

return +x;
}

}

Test Suite
• t1 : x = 0
• t2 : x = 1

Which test case should be selected?
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Test Case Selection – Safe Selection

• Selection techniques do not consider the cost of tests. Why?

• It is due to that they focus on safety (i.e., not missing any tests that
are related to the recent modification to avoid regression faults)

• Realistically, we only consider whether each part of the program is
executed by the test cases or not to check the safety according to
their execution traces.
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Test Case Selection – Difficulties

• Data Collection – Collecting the execution traces of the test cases
is not easy. Especially, when the software is large and complex, and
some programs are written in multiple languages.

• Non-executable modifications – Some modifications are not
executable (e.g., configuration changes, etc.)

• Safety can be expensive What if safe selection is still too
expensive to run all the selected test cases?
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Test Case Prioritization

• Problem – Regression test suite is too large

• Idea – Execute tests following the order of their importance.

• Solution – Prioritize the test suite so that you get the most out of
your regression testing whenever it gets stopped.

• Then, how to define the importance of each test case?
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Simple Approach

Without using any complicated techniques, we can simply prioritize the
test using the following criteria:

• Backwards – Newer faults are more likely to be detected by newer
tests.

• Random – Randomly select the test cases without any bias.

If we want to prioritize test cases in a smarter way, what should we
consider?
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Test Case Prioritization

• Suppose we knew about all the faults in advance and we have the
information about the fault detection capability of each test case.
(Impossible but let’s pretend)

• Which test should we run first if we knew this? What next?

TC f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

t1 ✓ ✓
t2 ✓ ✓ ✓ ✓
t3 ✓ ✓ ✓ ✓ ✓ ✓ ✓
t4 ✓
t5 ✓ ✓ ✓

• Obviously, we need to run t3 first and then run t5 as the next.
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Test Case Prioritization – Surrogate
• Since we cannot know about the faults in advance, we can use a

surrogate for the fault detection capability (e.g., coverage, etc.)
• Let’s consider the coverage information as a surrogate for the fault

detection capability.
TC r1 r2 r3 r4 r5 r6 r7 r8 r9 r10

t1 ✓ ✓
t2 ✓ ✓ ✓ ✓
t3 ✓ ✓ ✓ ✓ ✓ ✓ ✓
t4 ✓
t5 ✓ ✓ ✓

• We still need to run t3 first and then run t5 as the next.
• However, since the full coverage does not guarantee full fault

detection, we still need to run remaining test cases after resetting
the coverage information after running t3 and t5.
• So, we need to run them in the order of t2, t1, and t4.
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Average Percentage of Faults Detected (APFD)
• We can measure the effectiveness of the test case prioritization based

on the average percentage of faults detected (APFD).
• Intuitively, APFD evaluates the effectiveness of the test case based on

the area under the curve of the fault detection rate.

Faults may reside on the non-imperative artifacts (such as XPath 
and WSDL) in a service-oriented business application. To the best of 
our knowledge, however, prioritization techniques to effectively find 
test cases to reveal such implementation problems earlier during 
maintenance has not been studied. This paper tackles the problem.  

Following our previous work [12], we model an XPath query (in 
the presence of a WSDL specification) as an XPath Rewriting Graph 
(XRG). An XRG represents potential scenarios of content selections 
from XML messages. Each content selection scenario is captured as 
an XRG branch (see Section 2.2.2). We note that XRG branches for 
different XML messages that the XPath expression is querying on 
may be different. To account for the WSDL artifact, we say that a test 
case t has covered a WSDL element e if t contains an XML message 
m as input, or t causes the application to generate an XML message m, 
such that m has e as its entity tag. In a changing business application, 
every artifact (workflow, XPath, or WSDL) may be modified. As a 
result, fault(s) may be introduced to the artifacts. The use of 
workflow coverage data to prioritize test cases may be effective for 
detecting faults in the workflow program, such as wrong predicates. 
However, such prioritizations may be ineffective for handling faults 
in other artifacts. More examples will be given in Section 3.  

We propose a multilevel coverage model to capture the coverage 
requirements of these artifacts. Level 1 covers only the workflow, 
level 2 covers both workflow and XPath, and level 3 covers 
workflow, XPath, and WSDL. Through the level-by-level use of 
coverage data for test cases, we propose a new family of test case 
prioritization techniques. 

To handle multiple types of artifact in the family of test case 
prioritization techniques, we use two strategies. The first strategy is 
to treat different artifacts homogenously, which is akin to enlarging 
the coverage space from pure workflow-oriented coverage space to a 
space linked up to the coverage space of other artifact types. We call 
it a summation strategy. On the other hand, we appreciate that such a 
homogenous treatment of artifacts may not reflect the different roles 
of these artifacts in a service-oriented business application. For 
instance, from the perspective of process engineers who write such 
applications, a workflow program is more important than XPath 
expressions or WSDL specifications. Therefore, we propose another 
strategy called a refinement strategy. This strategy would refer to 
another type of artifact (such as WSDL) only if using the artifacts 
already referred to (such as workflow and XPath) cannot help a 
prioritization technique to select a test case. 

We develop a family of techniques using the above model and 
strategies. With the inclusion of more artifacts, our techniques can 
intuitively be more effective in detecting faults residing across 
various artifacts. Our experiment further shows that the family of 
techniques is effective to reveal regression faults in modified 
programs, and the techniques at a higher level is generally more 
effective than those at a lower level.  

The main contribution of this paper is threefold. (i) Through a 
multilevel coverage model, we propose a family of test case prioriti-
zation techniques that consider imperative and non-imperative 
artifacts (including workflow, XPath, and WSDL) in 
service-oriented business applications. (ii) We analyze the proposed 
prioritization techniques and present a hierarchy to capture their 
relations. To our best knowledge, this is the first logical hierarchy to 
relate test case prioritization techniques in the literature. (iii) We 
report an experimental study to verify the effectiveness of our 
proposal. 

The rest of the paper is organized as follows: Section 2 gives the 
preliminaries. Section 3 shows a motivating example to discuss the 
challenges. Section 4 presents our prioritization techniques. Section 5 
presents an experiment to validate our proposal, followed by 

discussions and related work in Sections 6 and 7, respectively. Finally, 
Section 8 concludes the paper. 

2. PRELIMINARIES 
2.1 Test Case Prioritization 

Test case prioritization [5][19] is an important kind of regression 
testing technique [9][18]. With the information gained in the 
previous software evaluation, we may design techniques to run the 
test cases to achieve a certain goal in the regression testing. For 
example, proper test case prioritization techniques increase the fault 
detection rate of a test suite and the chance of executing test cases 
with higher rates of fault detection earlier [5]. We adopt the test case 
permutation problem from [19] as follows: 

Given: T, a test suite; PT, the set of permutations of T; and f, a 
function from PT to real numbers. (For example, f may calculate the 
fault detection rate of a permutation of T.) 

Problem: To find T’∈PT such that, 
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Average Percentage of Faults Detected (APFD)
• APFDc (by Elbaum et al., 2001) is a variant of APFD that considers

the cost of the test cases.

APFDc (Elbaum et al., 2001)

• C achieves 70% coverage in 7 minutes.


• E achieves 30% coverage in 30 seconds.


• As a result, executing E first gives higher APFDc.
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Figure 3: Examples illustrating the APFDC metric.

the test case order that reveals the more severe fault earlier (A–B–C–D–E), under the assumption that the

severity value assigned to each of faults 2–10 is 1 and the severity value assigned to fault 1 is 2. The pair of

graphs in Figure 3.C, corresponding to Example 3, show how the new metric distinguishes test case orders

involving a high-cost test case C: instead of undervaluing order E–C–B–A–D, the metric now assigns it

greater value than order C–E–B–A–D. Finally, the pair of graphs in Figure 3.D, corresponding to Example

4, show how the new metric distinguishes between test case orders when both test costs and fault severities

are non-uniform, under the assumptions that test case B has cost 2 while each other test case has cost 1, and

that faults 6 and 7 each have severity 3 while each other fault has severity 1. In this case, the new metric

assigns a greater value to order B–A–C–D–E than to order A–B–C–D–E.

The APFDC metric can be quantitatively described as follows. (Here, the formula for APFDC is

given; its derivation is presented in Appendix A.) Let T be a test suite containing n test cases with costs

t1, t2, . . . , tn. Let F be a set of m faults revealed by T , and let f1, f2, . . . , fm be the severities of those faults.

Let TFi be the first test case in an ordering T ′ of T that reveals fault i. The (cost-cognizant) weighted

average percentage of faults detected during the execution of test suite T ′ is given by the equation:

APFDC =

∑m
i=1 (fi × (

∑n
j=TFi

tj − 1
2 tTFi

))∑n
j=1 tj × ∑m

i=1 fi
(2)
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Figure 3: Examples illustrating the APFDC metric.

the test case order that reveals the more severe fault earlier (A–B–C–D–E), under the assumption that the

severity value assigned to each of faults 2–10 is 1 and the severity value assigned to fault 1 is 2. The pair of

graphs in Figure 3.C, corresponding to Example 3, show how the new metric distinguishes test case orders

involving a high-cost test case C: instead of undervaluing order E–C–B–A–D, the metric now assigns it

greater value than order C–E–B–A–D. Finally, the pair of graphs in Figure 3.D, corresponding to Example

4, show how the new metric distinguishes between test case orders when both test costs and fault severities

are non-uniform, under the assumptions that test case B has cost 2 while each other test case has cost 1, and

that faults 6 and 7 each have severity 3 while each other fault has severity 1. In this case, the new metric

assigns a greater value to order B–A–C–D–E than to order A–B–C–D–E.

The APFDC metric can be quantitatively described as follows. (Here, the formula for APFDC is

given; its derivation is presented in Appendix A.) Let T be a test suite containing n test cases with costs

t1, t2, . . . , tn. Let F be a set of m faults revealed by T , and let f1, f2, . . . , fm be the severities of those faults.

Let TFi be the first test case in an ordering T ′ of T that reveals fault i. The (cost-cognizant) weighted

average percentage of faults detected during the execution of test suite T ′ is given by the equation:

APFDC =

∑m
i=1 (fi × (

∑n
j=TFi

tj − 1
2 tTFi

))∑n
j=1 tj × ∑m

i=1 fi
(2)

10

Cost-Cognisant Test Case Prioritisation, ICSE, Malishevsky et al., 2006
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Test Case Prioritization – Clustering
• A technique that groups objects such that objects in the same group

are the most similar to each other.
• Reduces the conceptual size of test suites by clustering test cases

that are similar to each other.
• Provides insights into what is the most common behavior of the

test cases.
• We can define a distance function between test cases based on

diverse properties (e.g., coverage, etc.) and visualize the clustering
results.

Diversity Based Prioritization
Leon & Podgurski, ISSRE 2003

• Given a distance metric that can 
quantify distances between test 
executions, you can both cluster and 
visualize the diversity within a test 
suite
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Test Case Prioritization – Clustering
[ISSTA’09] Yoo et al., “Clustering Test Cases to Achieve Effective &
Scalable Prioritisation Incorporating Expert Knowledge”

in test case management is new. The results of the empiri-
cal study show that AHP-based prioritisation can outperform
coverage-based prioritisation.

3. The paper presents a more realistic model of human behaviour
by introducing an error model. Using the error model, we
analyse the threshold consistency level required for human
testers. The results show that our approach is robust. As the
paper demonstrates, the technique can also provide guide-
lines on whether AHP-based prioritisation is appropriate for
a testing project or not.

4. The paper presents an automated process that can determine
whether the cluster-based prioritisation approach will be ef-
fective against a specific pair of SUT and test suite. Using
this automated process, the human tester can decide whether
committing human effort would be worthwhile for a particu-
lar testing task.

The rest of the paper is organised as follows. Section 2 intro-
duces the cluster-based prioritisation technique used in the paper.
Section 3 describes the Analytic Hierarchy Process and analyses
the impact on cost that clustering can bring about. Section 4 ex-
plains the details of the empirical study, the results of which are
presented in Section 5. Section 6 presents related work and Sec-
tion 7 concludes.

2. CLUSTERING BASED PRIORITISATION

2.1 Motivation
A pair-wise comparison approach for prioritisation requires O(n2)

comparisons. While redundancy may make pair-wise comparison
very robust, the high cost has prevented it from being applied to test
case prioritisation. For example, AHP has been well studied in the
Requirements Engineering field. The maximum number of com-
parisons a human can make consistently is approximately 100 [1];
above this threshold, inconsistency grows significantly, leading to
reduced effectiveness.

In order to require less than 100 pair-wise comparisons, the test
suite could contain no more than 14 test cases. Considering the
scale of real world testing projects, the scalability issue presents
a significant challenge. For example, suppose there are 1,000 test
cases to prioritise; the total number of required pair-wise compar-
isons would be 499,500. It is clearly unrealistic to expect a human
tester to provide reliable responses for such a large number of com-
parisons.

This paper aims to reduce the number of comparisons required
for the pair-wise comparison approach through the use of cluster-
ing. Instead of prioritising individual test cases, clusters of test
cases are prioritised using techniques such as AHP. From the pri-
oritised clusters, the ordering between individual test cases is then
generated.

2.2 Clustering Criterion
The clustering process partitions objects into different subsets so

that objects in each group share common properties. The clustering
criterion determines which properties are used to measure the com-
monality. When considering test case prioritisation, the ideal clus-
tering criterion would be the similarity between the faults detected
by each test case. However, this information is inherently unavail-
able before the testing task is finished. Therefore, it is necessary
to find a surrogate for this, in the same way as existing coverage-
based prioritisation techniques turn to surrogates for fault-detection
capabilities.

In this paper we utilise dynamic execution traces of each test
case as a surrogate for the similarity between features tested. Ex-
ecution of each test case is represented by a binary string. Each
bit corresponds to a statement in the source code. If the statement
has been executed by the test case, the digit is 1; otherwise it is 0.
The similarity between two test cases is measured by the distance
between two binary strings using Hamming distance.

2.3 Clustering Method
We use a simple agglomerative hierarchical clustering technique.

Its pseudo-code is described in Algorithm 1 below:
Algorithm 1: Agglomerative Hierarchical Clustering
Input: A set of n test cases, T
Output: A dendrogram, D, representing the clusters
(1) Form n clusters, each with one test case
(2) C ← {}
(3) Add clusters to C
(4) Insert n clusters as leaf node into D
(5) while there is more than one cluster
(6) Find a pair of clusters with minimum distance
(7) Merge the pair into a new cluster, cnew

(8) Remove the pair of test cases from C
(9) Add cnew to C
(10) Insert cnew as a parent node of the pair into D
(11) return D

The resulting dendrogram is a tree structure that represents the
arrangement of clusters. Figure 1 shows an example dendrogram.
It is possible to generate k clusters for any k in [1, n] by cutting the
tree at different heights.

Figure 1: An example dendrogram from agglomerative hierar-
chical clustering. Cutting the tree at different height produces
different number of clusters.

2.4 Interleaved Clusters Prioritisation
Prioritisation of a clustered test suite is a different problem from

the traditional test case prioritisation problem. Two separate lay-
ers of prioritisation are required in order to prioritise a clustered
test suite. Intra-cluster prioritisation is prioritisation of test cases
that belong to the same cluster, whereas inter-cluster prioritisation
is prioritisation of clusters. This paper introduces the Interleaved
Clusters Prioritisation (ICP) process that uses both layers of priori-
tisation.

It would be more advantageous to interleave clusters of test cases
than to execute an entire cluster before executing the next. The lat-
ter approach would result in repeatedly executing similar parts of

202
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Test Case Prioritization – Clustering
[ISSTA’09] Yoo et al., “Clustering Test Cases to Achieve Effective &
Scalable Prioritisation Incorporating Expert Knowledge”

in test case management is new. The results of the empiri-
cal study show that AHP-based prioritisation can outperform
coverage-based prioritisation.

3. The paper presents a more realistic model of human behaviour
by introducing an error model. Using the error model, we
analyse the threshold consistency level required for human
testers. The results show that our approach is robust. As the
paper demonstrates, the technique can also provide guide-
lines on whether AHP-based prioritisation is appropriate for
a testing project or not.

4. The paper presents an automated process that can determine
whether the cluster-based prioritisation approach will be ef-
fective against a specific pair of SUT and test suite. Using
this automated process, the human tester can decide whether
committing human effort would be worthwhile for a particu-
lar testing task.

The rest of the paper is organised as follows. Section 2 intro-
duces the cluster-based prioritisation technique used in the paper.
Section 3 describes the Analytic Hierarchy Process and analyses
the impact on cost that clustering can bring about. Section 4 ex-
plains the details of the empirical study, the results of which are
presented in Section 5. Section 6 presents related work and Sec-
tion 7 concludes.

2. CLUSTERING BASED PRIORITISATION

2.1 Motivation
A pair-wise comparison approach for prioritisation requires O(n2)

comparisons. While redundancy may make pair-wise comparison
very robust, the high cost has prevented it from being applied to test
case prioritisation. For example, AHP has been well studied in the
Requirements Engineering field. The maximum number of com-
parisons a human can make consistently is approximately 100 [1];
above this threshold, inconsistency grows significantly, leading to
reduced effectiveness.

In order to require less than 100 pair-wise comparisons, the test
suite could contain no more than 14 test cases. Considering the
scale of real world testing projects, the scalability issue presents
a significant challenge. For example, suppose there are 1,000 test
cases to prioritise; the total number of required pair-wise compar-
isons would be 499,500. It is clearly unrealistic to expect a human
tester to provide reliable responses for such a large number of com-
parisons.

This paper aims to reduce the number of comparisons required
for the pair-wise comparison approach through the use of cluster-
ing. Instead of prioritising individual test cases, clusters of test
cases are prioritised using techniques such as AHP. From the pri-
oritised clusters, the ordering between individual test cases is then
generated.

2.2 Clustering Criterion
The clustering process partitions objects into different subsets so

that objects in each group share common properties. The clustering
criterion determines which properties are used to measure the com-
monality. When considering test case prioritisation, the ideal clus-
tering criterion would be the similarity between the faults detected
by each test case. However, this information is inherently unavail-
able before the testing task is finished. Therefore, it is necessary
to find a surrogate for this, in the same way as existing coverage-
based prioritisation techniques turn to surrogates for fault-detection
capabilities.

In this paper we utilise dynamic execution traces of each test
case as a surrogate for the similarity between features tested. Ex-
ecution of each test case is represented by a binary string. Each
bit corresponds to a statement in the source code. If the statement
has been executed by the test case, the digit is 1; otherwise it is 0.
The similarity between two test cases is measured by the distance
between two binary strings using Hamming distance.

2.3 Clustering Method
We use a simple agglomerative hierarchical clustering technique.

Its pseudo-code is described in Algorithm 1 below:
Algorithm 1: Agglomerative Hierarchical Clustering
Input: A set of n test cases, T
Output: A dendrogram, D, representing the clusters
(1) Form n clusters, each with one test case
(2) C ← {}
(3) Add clusters to C
(4) Insert n clusters as leaf node into D
(5) while there is more than one cluster
(6) Find a pair of clusters with minimum distance
(7) Merge the pair into a new cluster, cnew

(8) Remove the pair of test cases from C
(9) Add cnew to C
(10) Insert cnew as a parent node of the pair into D
(11) return D

The resulting dendrogram is a tree structure that represents the
arrangement of clusters. Figure 1 shows an example dendrogram.
It is possible to generate k clusters for any k in [1, n] by cutting the
tree at different heights.

Figure 1: An example dendrogram from agglomerative hierar-
chical clustering. Cutting the tree at different height produces
different number of clusters.

2.4 Interleaved Clusters Prioritisation
Prioritisation of a clustered test suite is a different problem from

the traditional test case prioritisation problem. Two separate lay-
ers of prioritisation are required in order to prioritise a clustered
test suite. Intra-cluster prioritisation is prioritisation of test cases
that belong to the same cluster, whereas inter-cluster prioritisation
is prioritisation of clusters. This paper introduces the Interleaved
Clusters Prioritisation (ICP) process that uses both layers of priori-
tisation.

It would be more advantageous to interleave clusters of test cases
than to execute an entire cluster before executing the next. The lat-
ter approach would result in repeatedly executing similar parts of
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Test Case Prioritization – Clustering

[ISSTA’09] Yoo et al., “Clustering Test Cases to Achieve Effective &
Scalable Prioritisation Incorporating Expert Knowledge”

SUT before the prioritisation technique chooses the next cluster; if
these test cases reveal similar sets of faults, the rate of fault detec-
tion would be less than ideal because the prioritisation technique
will reveal a similar set of faults repeatedly. The former approach
will avoid this by switching clusters whenever it chooses the next
test case.

In ICP, intra-cluster prioritisation is performed first. Based on the
results of intra-cluster prioritisation, each cluster is assigned a test
case that represents the cluster. Using these representatives, ICP
performs inter-cluster prioritisation. The final step is to interleave
prioritised clusters using the results of both intra- and inter-cluster
prioritisation.

More formally, suppose a test suite T S is clustered into k clus-
ters, C1, . . . ,Ck. After intra-cluster prioritisation, we obtain ordered
sets of test cases, OC1, . . . ,OCk. Let OCi( j) be the jth test case in
cluster OCi. Each ordered set OCi is then represented by OCi(1) in
the inter-cluster prioritisation, which will produce OOC, an ordered
set of OCi(1 ≤ i ≤ k). Let OOCi be the ith cluster in OOC. The
interleaving process is described in pseudo-code in Algorithm 2.

Algorithm 2: Interleaved Clusters Prioritisation
Input: An ordered set of k ordered clusters, OOC
Output: An ordered set of test cases, OTC
(1) OTC =<>
(2) i← 1
(3) while OOC is not empty
(4) Append OOCi(1) to OTC
(5) Remove OOCi(1) from OOCi

(6) if OOCi is empty then Remove OOCi from OOC
(7) i← (i + 1) mod k
(8) return OOC

For example, given OOC =<< t3, t1 >,< t4, t2 >, < t5 >>, the re-
sult of Algorithm 2 will be a sequence of test cases, < t3, t4, t5, t1, t2 >.
Note that ICP does not presume any specific choice of prioritisa-
tion technique. Any existing test case prioritisation technique can
be used for either intra-cluster or inter-cluster prioritisation.

Figure 2: Plot of average number of pair-wise comparisons re-
quired for k cluster-based prioritisation of 100 test cases.

2.5 Cost of Pair-wise Comparisons
Since pair-wise comparisons require human intervention, the cost

of any pair-wise comparison approach largely depends on the num-
ber of comparisons required. When the pair-wise comparison ap-
proach is used both for intra- and inter-cluster prioritisation, the
number of comparisons required for ICP is the sum of the cost of

intra-cluster prioritisation and inter-cluster prioritisation. Given a
test suite of size n clustered into k clusters, each cluster contains
n
k test cases on average. The average number of comparisons for
intra-cluster prioritisation is k · 1

2
n
k ( n

k − 1). The number of com-
parisons of inter-cluster prioritisation is computed simply as k(k−1)

2 .
Therefore, the average total cost of pair-wise ICP for a test suite of
size n and k clusters, C(n, k), is k(k−1)

2 + k ·
n
k ( n

k −1)
2 .

For all positive n, there exists a specific value of k that minimises
C(n, k). Figure 2 illustrates C(n, k) when n = 100 and 1 ≤ k ≤
n. The maximum cost, with no clustering, is 4,950 comparisons.
With clustering, the minimum cost is 381 when k = 17. While the
reduction is by an order of magnitude, the minimum cost of 381 is
still too expensive for a human tester to consider.

To further reduce the cost, ICP used in the paper is hybridised so
that intra-cluster prioritisation uses the traditional coverage-based
greedy prioritisation algorithm. The human tester is only involved
with inter-cluster prioritisation. The cost of hybrid approach is,
therefore, only the number of comparisons required for inter-cluster
prioritisation, which is C(n, k) = k(k−1)

2 . To ensure that fewer than
100 comparisons are required, we use hybrid-ICP with k = 14
throughout the paper, which results in 91 comparisons.

2.6 Suitability Test
ICP is most effective when the result of clustering is semantically

significant, i.e. test cases that execute similar parts of SUT belong
to the same cluster. As k decreases, the semantic significance of
clustering is also diminished, since eventually the clustering algo-
rithm will start to place semantically different test cases in the same
cluster. Therefore, hybrid ICP with k = 14 may not work well with
every test suite/SUT combination.

Since any form of human involvement in test case prioritisation
is a significant commitment, applying hybrid ICP to a combina-
tion of test suite and SUT that is not suitable would be a waste of
resources. A decision is required as to whether it is worth apply-
ing the hybrid ICP. To support this decision making process, we
propose an automated suitability test that does not require human
judgement. The test is an automated ICP, fully based on structural
coverage. Both intra- and inter-cluster prioritisation is performed
based on structural coverage. It also uses fault detection informa-
tion using faults that belong to the AR (Already Revealed) fault
set. If the result of the test is not worse than traditional coverage-
based prioritisation techniques, it would confirm that clustering is
not detrimental to the performance of ICP, in which case replacing
inter-cluster prioritisation with the pair-wise comparison approach
is likely to have a positive impact on the rate of fault detection with
the unknown faults that belong to the TBR (To Be Revealed) fault
set.

3. ANALYTIC HIERARCHY PROCESS

3.1 Definition
In order to prioritise n items, AHP requires all possible pair-wise

comparisons between n items. Comparisons are represented using
the scale of preference described in Table 1.

Note that the preference relation is not necessarily transitive. The
decision maker is entitled to give answers such as A ≻ B, B ≻ C and
C ≻ A. In other words, pik is not necessarily equal to pi j · pjk. This
lack of transitivity in the preference relation allows AHP to cope
with inconsistencies given by the decision maker. However, these
inconsistencies are mitigated by the high redundancy available due
to multiple comparisons. By definition, the scale is a ratio-based
measurement. That is, given pi j, pji is defined as 1

pi j
.
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Test Case Prioritization – Similarity
Clustering makes sense if we can measure similarity between test cases.

[ICSE’19] Cruciani et al., “Scalable Approaches for Test Suite Reduction”
motivated by considerations of scalability and practical ap-
plicability. In this perspective, our approach is more closely
related to few recent works based on coarse-grained heuristics,
clustering, and similarity.

In recent years some collaborative efforts between academic
and industrial researchers start to appear that develop coarse-
grained approaches trading precision with efficiency/scalabil-
ity. Strictly speaking such works focus on test case selec-
tion and not test suite reduction, in that the choice of tests
to execute is modification-aware. For example, Knauss and
coauthors [24] use a statistical model that relates the changed
code fragments (or churns) with test outcomes on Ericsson
systems; considering a continuous integration development
environment, Elbaum and coauthors [15] propose a strategy
apt for Google testing process, which combines test case
selection during pre-submit testing and test case prioritization
in post-submit testing. Both selection and prioritization apply
heuristics based on failure history and execution windows. By
relying on very efficient algorithms, our FAST -R approaches
can scale up to large industrial systems as the above works,
while not sacrificing much of precision in deriving a represen-
tative subset of the test cases.

Our similarity-based approach is related to several tech-
niques that exploit the diversity among test cases for guiding
selection. Some techniques build on the notion of adaptive
random testing (ART) [10] that, in a few words, first selects
a random set of test cases and then filters them based on
their distance from the already selected test cases. Several
variants instantiations of ART have been proposed, including
ART-D [20] and ART-F [36] that we use as competitors to
FAST -R and that are further described in Section IV.

Some black-box approaches use similarity to reduce model-
based test suites. Both test case reduction [2] and test case
selection [9], [17] techniques have been proposed. These
techniques have been conceived for industrial use: For example
Hemmati and coauthors [17] pursue as a main goal a selection
of test cases adjusted to the available testing budget. However,
all such model-based approaches rely on the assumption that
a formal model of program behavior, e.g., a LTS, is available.
In contrast, FAST -R does not need to assume anything else
beyond the test cases themselves.

A few works have proposed to leverage clustering of test
cases as we do here, e.g., [11], [30]. However they calculate
the similarity between two test cases based on code coverage
information, which as said already could be too expensive at
the testing scale we aim.

III. THE APPROACHES

Given a test suite T and some fixed budget B ≤ |T |, the
goal of similarity-based test suite reduction is to select B
evenly spread test cases out of the test suite. If we model
each test case as a point in some D-dimensional space, then
the problem could be thought of as that of finding the central
points of B clusters. The problem of clustering is NP -hard,
but we are able to perform scalable similarity-based test suite

t1: grep -e 'foo' file

2. Vector Space Model (Term Frequency)

grep -e -v -F 'foo' 'bar' file

t1

t2

t3

3. Random Projection

Comp1 Comp2 Comp3

t1

t2

t3

1. Test Suite

t2: grep -v -e 'foo' file

t3: grep -F 'bar' file 

Fig. 1: Visual representation of FAST-R preparation phase.

reduction by borrowing a technique from the big data domain
and using it in combination with some efficient heuristics.

We consider an Euclidean space, a metric space where the
distance between any two points is expressed by the Euclidean
distance – what one could think of as the straight line connect-
ing them. Let x, y ∈ RD be two points; the Euclidean distance
between them is defined as d(x, y) =

√∑D
i=1(xi − yi)2.

In the preparation phase of our approaches (Fig. 1) we
transform test cases into points in the Euclidean space via the
vector-space model: The textual representation of each test
case, e.g., test source code or command line input (Fig. 1.1),
is mapped into an n-dimensional point where each dimension
corresponds to a different term of the source code and n is
equal to the total number of terms used in the whole test suite.
The components are weighted according to term-frequency
scheme, i.e., the weights are equal to the frequency of the
corresponding terms (Fig. 1.2).

The computation of the Euclidean distance between any
two n-dimensional points can be expensive when n is large.
To overcome this problem we exploit a dimensionality reduc-
tion technique called random projection. Roughly speaking,
random projection works because of Johnson-Lindenstrauss
Lemma [21], which states that a set of points in a high-
dimensional space can be projected into a much lower-
dimensional space in a way that pairwise distances are nearly
preserved. In particular we use sparse random projection [1],
[26], an efficient implementation of the technique that is
suitable for database applications (Fig. 1.3).

We model the clustering problem as a k-means problem,
with k = B. Given n points in a metric space, the goal of k-
means is to find a k-partition P = {P1, . . . , Pk} of the points
that minimizes the sum of the squared Euclidean distances
between each point to its closest center of one partition.
Formally, the goal is to find arg minP

∑k
i=1

∑
x∈Pi

d(x, µi)
2,

where µi is the center of the points belonging to partition Pi.
There exist efficient techniques that are able to find an

approximate solution to k-means. One is k-means++ [4],

State of the art methods are still largely based on syntactic measures
(e.g., code coverage, etc.)

Can we define a semantic measure of similarity between test cases?
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Regression Testing in Practice

• A DevOps concept popularized by Google, more commonly and also
known as: Continuous Integration and Deployment (CI/CD)
• Newest version of software is automatically deployed whenever all

tests pass.
• Developers usually ensure that their commits are correct by executing

test cases that are directly relevant at their local machines. This is
sometimes called pre-commit testing.
• Once changes are merged, the CI system automatically executes all

relevant test cases, to ensure that individual changes correctly work
with each other. This is sometimes called post-commit testing.
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Regression Testing in Practice
• All regression testing techniques are limited by the cost of running

the test cases.

• In practice, we execute test cases in a distributed manner to
minimize the cost of running the test cases.

• Then, the testing time is only limited by the slowest test case.

Single Testing Machine

Elastic Cloud Resource / 
Parallel Instances
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Redefining Prioritization

• In very large development environments, the CI (Continuous
Integration) pipeline is easily flooded with commits.

• Amazon engineers conduct 136,000 system deployments per day: one
in every 12 seconds.

• Google engineers have to wait up to 9 hours to receive test results from
the CI pipeline.

• Prioritising test cases within test suites makes little impact at this
scale.

• Instead, prioritising commits to test has been proposed.

AAA705 @ Korea University Lecture 9 – Regression Testing April 3, 2024 46 / 49



Redefining Prioritization

• The proposed technique is essentially history based prioritisation:
commits relevant to test cases that have recently failed are given
higher priority. If tests really fail, this ensures quicker feedback to
the responsible developers.

• Assumptions

• Commits are independent from each other. In high volume
environment, this is not unrealistic.

• Relationships between code and test cases are known in advance (i.e.,
which test covers which parts of the code).
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Summary

• Minimization: Keyword is redundancy – Minimize test suite by
removing redundant test cases according to the definition of
redundancy.

• Selection: Keyword is safety – Select test cases that are related to
the recent changes conservatively to avoid possible regression faults.

• Prioritization: Keyword is surrogate – Prioritize test cases based on
the surrogate for the fault detection capability to maximize the fault
detection rate early.
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Next Lecture
• Fault Localization

Jihyeok Park
jihyeok park@korea.ac.kr

https://plrg.korea.ac.kr
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