
Lecture 10 – Mutable Data Structures
COSE212: Programming Languages

Jihyeok Park

2023 Fall

COSE212 @ Korea University Lecture 10 – Mutable Data Structures October 9, 2023 1 / 35



Recall
• Recursion

• Recursion in F1VAE and FVAE
• mkRec helper function
• RFAE – FAE with recursion and conditionals

• In this lecture, we will learn mutable data structures (boxes)

• BFAE – FAE with mutable boxes
• Concrete and Abstract Syntax
• Interpreter and Natural Semantics

COSE212 @ Korea University Lecture 10 – Mutable Data Structures October 9, 2023 2 / 35



Recall
• Recursion

• Recursion in F1VAE and FVAE
• mkRec helper function
• RFAE – FAE with recursion and conditionals

• In this lecture, we will learn mutable data structures (boxes)

• BFAE – FAE with mutable boxes
• Concrete and Abstract Syntax
• Interpreter and Natural Semantics

COSE212 @ Korea University Lecture 10 – Mutable Data Structures October 9, 2023 2 / 35



Recall
• Recursion

• Recursion in F1VAE and FVAE
• mkRec helper function
• RFAE – FAE with recursion and conditionals

• In this lecture, we will learn mutable data structures (boxes)

• BFAE – FAE with mutable boxes
• Concrete and Abstract Syntax
• Interpreter and Natural Semantics

COSE212 @ Korea University Lecture 10 – Mutable Data Structures October 9, 2023 2 / 35



Contents

1. Mutable Data Structures

2. BFAE – FAE with Mutable Boxes
Concrete Syntax
Abstract Syntax

3. Interpreter and Natural Semantics for BFAE
Evaluation with Memories
Interpreter and Natural Semantics
Addition
Box Creation
Box Content Getter
Box Content Setter
Sequence

COSE212 @ Korea University Lecture 10 – Mutable Data Structures October 9, 2023 3 / 35



Contents

1. Mutable Data Structures

2. BFAE – FAE with Mutable Boxes
Concrete Syntax
Abstract Syntax

3. Interpreter and Natural Semantics for BFAE
Evaluation with Memories
Interpreter and Natural Semantics
Addition
Box Creation
Box Content Getter
Box Content Setter
Sequence

COSE212 @ Korea University Lecture 10 – Mutable Data Structures October 9, 2023 4 / 35



Mutable Data Structures
So far, our languages are purely functional:

• All functions are pure (no side effects)
• All data structures and variables are immutable (no mutation)

However, mutation is widely used in practice, especially in imperative
languages (e.g., C, C++, Java, Python, etc.).

Mutation makes it possible to update the contents of a data structure or
a variable after its creation.

• Mutable data structures (e.g., mutable.Map in Scala)
• Mutable variables (e.g., var in Scala)

While mutation helps us write more efficient programs, it also makes
programs harder to reason about and error-prone.

In this lecture, we will learn mutable data structures.

COSE212 @ Korea University Lecture 10 – Mutable Data Structures October 9, 2023 5 / 35



Mutable Data Structures
So far, our languages are purely functional:

• All functions are pure (no side effects)
• All data structures and variables are immutable (no mutation)

However, mutation is widely used in practice, especially in imperative
languages (e.g., C, C++, Java, Python, etc.).

Mutation makes it possible to update the contents of a data structure or
a variable after its creation.

• Mutable data structures (e.g., mutable.Map in Scala)
• Mutable variables (e.g., var in Scala)

While mutation helps us write more efficient programs, it also makes
programs harder to reason about and error-prone.

In this lecture, we will learn mutable data structures.

COSE212 @ Korea University Lecture 10 – Mutable Data Structures October 9, 2023 5 / 35



Mutable Data Structures
So far, our languages are purely functional:

• All functions are pure (no side effects)
• All data structures and variables are immutable (no mutation)

However, mutation is widely used in practice, especially in imperative
languages (e.g., C, C++, Java, Python, etc.).

Mutation makes it possible to update the contents of a data structure or
a variable after its creation.

• Mutable data structures (e.g., mutable.Map in Scala)
• Mutable variables (e.g., var in Scala)

While mutation helps us write more efficient programs, it also makes
programs harder to reason about and error-prone.

In this lecture, we will learn mutable data structures.

COSE212 @ Korea University Lecture 10 – Mutable Data Structures October 9, 2023 5 / 35



Mutable Data Structures
So far, our languages are purely functional:

• All functions are pure (no side effects)
• All data structures and variables are immutable (no mutation)

However, mutation is widely used in practice, especially in imperative
languages (e.g., C, C++, Java, Python, etc.).

Mutation makes it possible to update the contents of a data structure or
a variable after its creation.

• Mutable data structures (e.g., mutable.Map in Scala)
• Mutable variables (e.g., var in Scala)

While mutation helps us write more efficient programs, it also makes
programs harder to reason about and error-prone.

In this lecture, we will learn mutable data structures.

COSE212 @ Korea University Lecture 10 – Mutable Data Structures October 9, 2023 5 / 35



Mutable Data Structures
So far, our languages are purely functional:

• All functions are pure (no side effects)
• All data structures and variables are immutable (no mutation)

However, mutation is widely used in practice, especially in imperative
languages (e.g., C, C++, Java, Python, etc.).

Mutation makes it possible to update the contents of a data structure or
a variable after its creation.

• Mutable data structures (e.g., mutable.Map in Scala)
• Mutable variables (e.g., var in Scala)

While mutation helps us write more efficient programs, it also makes
programs harder to reason about and error-prone.

In this lecture, we will learn mutable data structures.
COSE212 @ Korea University Lecture 10 – Mutable Data Structures October 9, 2023 5 / 35



Mutable Data Structures
A mutable data structure is a data structure whose contents can be
modified after its creation.

Let’s define them in Scala:

// immutable map
val imap = Map("x" -> 1, "y" -> 2)
imap + ("x" -> 3) // Map(x -> 3, y -> 2)
imap // Map(x -> 1, y -> 2)

// mutable map
import scala.collection.*
val mmap = mutable.Map("x" -> 1, "y" -> 2)
mmap.update("x", 3)
mmap // mutable.Map(x -> 3, y -> 2)

// mutable box
case class Box(var content: Int)
val box = Box(5)
box.content // 5
box.content = 8
box.content // 8

COSE212 @ Korea University Lecture 10 – Mutable Data Structures October 9, 2023 6 / 35



Mutable Data Structures
A mutable data structure is a data structure whose contents can be
modified after its creation. Let’s define them in Scala:

// immutable map
val imap = Map("x" -> 1, "y" -> 2)
imap + ("x" -> 3) // Map(x -> 3, y -> 2)
imap // Map(x -> 1, y -> 2)

// mutable map
import scala.collection.*
val mmap = mutable.Map("x" -> 1, "y" -> 2)
mmap.update("x", 3)
mmap // mutable.Map(x -> 3, y -> 2)

// mutable box
case class Box(var content: Int)
val box = Box(5)
box.content // 5
box.content = 8
box.content // 8

COSE212 @ Korea University Lecture 10 – Mutable Data Structures October 9, 2023 6 / 35



Contents

1. Mutable Data Structures

2. BFAE – FAE with Mutable Boxes
Concrete Syntax
Abstract Syntax

3. Interpreter and Natural Semantics for BFAE
Evaluation with Memories
Interpreter and Natural Semantics
Addition
Box Creation
Box Content Getter
Box Content Setter
Sequence

COSE212 @ Korea University Lecture 10 – Mutable Data Structures October 9, 2023 7 / 35



BFAE – FAE with Mutable Boxes
Now, let’s extend FAE into BFAE to support mutable boxes.

/* BFAE */
val box = Box(5);
box.get; // 5
box.set(8);
box.get // 8

/* BFAE */
val box = Box(1);
val f = x => x + box.get;
f(3); // 3 + 1 = 4
box.set(2);
f(3); // 3 + 2 = 5

(We support variable definitions (val) as syntactic sugar.)

For BFAE, we need to extend expressions of FAE with

1 box creation

2 box operations: content getter and setter

3 sequence of expressions

COSE212 @ Korea University Lecture 10 – Mutable Data Structures October 9, 2023 8 / 35



BFAE – FAE with Mutable Boxes
Now, let’s extend FAE into BFAE to support mutable boxes.

/* BFAE */
val box = Box(5);
box.get; // 5
box.set(8);
box.get // 8

/* BFAE */
val box = Box(1);
val f = x => x + box.get;
f(3); // 3 + 1 = 4
box.set(2);
f(3); // 3 + 2 = 5

(We support variable definitions (val) as syntactic sugar.)

For BFAE, we need to extend expressions of FAE with

1 box creation

2 box operations: content getter and setter

3 sequence of expressions

COSE212 @ Korea University Lecture 10 – Mutable Data Structures October 9, 2023 8 / 35



Concrete Syntax

// expressions
<expr> ::= ...

| "Box" "(" <expr> ")"
| <expr> "." "get"
| <expr> "." "set" "(" <expr> ")"
| <expr> ";" <expr>

For BFAE, we need to extend expressions of FAE with

1 box creation

2 box operations: get and set

3 sequence of expressions

COSE212 @ Korea University Lecture 10 – Mutable Data Structures October 9, 2023 9 / 35



Abstract Syntax
Let’s define the abstract syntax of BFAE in BNF:

Expressions E ∋ e ::= . . .
| Box(e) (NewBox)
| e.get (GetBox)
| e.set(e) (SetBox)
| e; e (Seq)

enum Expr:
...
// box creation
case NewBox(expr: Expr)
// box content getter
case GetBox(box: Expr)
// box content setter
case SetBox(box: Expr, expr: Expr)
// sequence
case Seq(left: Expr, right: Expr)

COSE212 @ Korea University Lecture 10 – Mutable Data Structures October 9, 2023 10 / 35



Contents

1. Mutable Data Structures

2. BFAE – FAE with Mutable Boxes
Concrete Syntax
Abstract Syntax

3. Interpreter and Natural Semantics for BFAE
Evaluation with Memories
Interpreter and Natural Semantics
Addition
Box Creation
Box Content Getter
Box Content Setter
Sequence

COSE212 @ Korea University Lecture 10 – Mutable Data Structures October 9, 2023 11 / 35



Evaluation with Memories
How to evaluate the following BFAE expression?

/* BFAE */
val box = Box(5);
box.get; // 5
box.set(8);
box.get // 8

Let’s evaluate it with a memory M, which is a mapping from addresses
to values.

M ∈ A fin−→ V

A box allocates a memory cell to store a value in the memory.
• box creation allocates a memory cell and stores the value
• box content getter reads the value from the memory cell
• box content setter writes the value to the memory cell

COSE212 @ Korea University Lecture 10 – Mutable Data Structures October 9, 2023 12 / 35



Evaluation with Memories
How to evaluate the following BFAE expression?

/* BFAE */
val box = Box(5);
box.get; // 5
box.set(8);
box.get // 8

Let’s evaluate it with a memory M, which is a mapping from addresses
to values.

M ∈ A fin−→ V

A box allocates a memory cell to store a value in the memory.
• box creation allocates a memory cell and stores the value
• box content getter reads the value from the memory cell
• box content setter writes the value to the memory cell

COSE212 @ Korea University Lecture 10 – Mutable Data Structures October 9, 2023 12 / 35



Evaluation with Memories
How to evaluate the following BFAE expression?

/* BFAE */ *
val box = Box(5);
box.get;
box.set(8);
box.get

σ = [

]

A : a0 a1 a2 . . .

M = . . .

Let’s evaluate it with a memory M, which is a mapping from addresses
to values.

M ∈ A → V

A box allocates a memory cell to store a value in the memory.
• box creation allocates a memory cell and stores the value
• box content getter reads the value from the memory cell
• box content setter writes the value to the memory cell

COSE212 @ Korea University Lecture 10 – Mutable Data Structures October 9, 2023 13 / 35



Evaluation with Memories
How to evaluate the following BFAE expression?

/* BFAE */
val box = Box(5); *
box.get;
box.set(8);
box.get

σ = [
box 7→ a0

]

A : a0 a1 a2 . . .

M = 5 . . .

Let’s evaluate it with a memory M, which is a mapping from addresses
to values.

M ∈ A → V

A box allocates a memory cell to store a value in the memory.
• box creation allocates a memory cell and stores the value
• box content getter reads the value from the memory cell
• box content setter writes the value to the memory cell

COSE212 @ Korea University Lecture 10 – Mutable Data Structures October 9, 2023 14 / 35



Evaluation with Memories
How to evaluate the following BFAE expression?

/* BFAE */
val box = Box(5);
box.get; /* 5 */ *
box.set(8);
box.get

σ = [
box 7→ a0

]

A : a0 a1 a2 . . .

M = 5 . . .

Let’s evaluate it with a memory M, which is a mapping from addresses
to values.

M ∈ A → V

A box allocates a memory cell to store a value in the memory.
• box creation allocates a memory cell and stores the value
• box content getter reads the value from the memory cell
• box content setter writes the value to the memory cell

COSE212 @ Korea University Lecture 10 – Mutable Data Structures October 9, 2023 15 / 35



Evaluation with Memories
How to evaluate the following BFAE expression?

/* BFAE */
val box = Box(5);
box.get; /* 5 */
box.set(8); *
box.get

σ = [
box 7→ a0

]

A : a0 a1 a2 . . .

M = 8 . . .

Let’s evaluate it with a memory M, which is a mapping from addresses
to values.

M ∈ A → V

A box allocates a memory cell to store a value in the memory.
• box creation allocates a memory cell and stores the value
• box content getter reads the value from the memory cell
• box content setter writes the value to the memory cell

COSE212 @ Korea University Lecture 10 – Mutable Data Structures October 9, 2023 16 / 35



Evaluation with Memories
How to evaluate the following BFAE expression?

/* BFAE */
val box = Box(5);
box.get; /* 5 */
box.set(8);
box.get /* 8 */ *

σ = [
box 7→ a0

]

A : a0 a1 a2 . . .

M = 8 . . .

Let’s evaluate it with a memory M, which is a mapping from addresses
to values.

M ∈ A → V

A box allocates a memory cell to store a value in the memory.
• box creation allocates a memory cell and stores the value
• box content getter reads the value from the memory cell
• box content setter writes the value to the memory cell

COSE212 @ Korea University Lecture 10 – Mutable Data Structures October 9, 2023 17 / 35



Evaluation with Memories
Here is another BFAE expression:

/* BFAE */ *
val a = Box(1);
val f = x => x + a.get;
f(5);

a.set(2);
f(5);

val b = Box(a);
b.get.set(3);
f(5);

σ = [

]

A : a0 a1 a2 . . .

M = . . .

COSE212 @ Korea University Lecture 10 – Mutable Data Structures October 9, 2023 18 / 35



Evaluation with Memories
Here is another BFAE expression:

/* BFAE */
val a = Box(1); *
val f = x => x + a.get;
f(5);

a.set(2);
f(5);

val b = Box(a);
b.get.set(3);
f(5);

σ = [
a 7→ a0

]

A : a0 a1 a2 . . .

M = 1 . . .

COSE212 @ Korea University Lecture 10 – Mutable Data Structures October 9, 2023 19 / 35



Evaluation with Memories
Here is another BFAE expression:

/* BFAE */
val a = Box(1);
val f = x => x + a.get; *
f(5);

a.set(2);
f(5);

val b = Box(a);
b.get.set(3);
f(5);

σ = [
a 7→ a0
f 7→ ⟨λx .(x + a.get), [a 7→ a0]⟩

]

A : a0 a1 a2 . . .

M = 1 . . .

COSE212 @ Korea University Lecture 10 – Mutable Data Structures October 9, 2023 20 / 35



Evaluation with Memories
Here is another BFAE expression:

/* BFAE */
val a = Box(1);
val f = x => x + a.get;
f(5); /* 5 + 1 = 6 */ *

a.set(2);
f(5);

val b = Box(a);
b.get.set(3);
f(5);

σ = [
a 7→ a0
f 7→ ⟨λx .(x + a.get), [a 7→ a0]⟩

]

A : a0 a1 a2 . . .

M = 1 . . .

COSE212 @ Korea University Lecture 10 – Mutable Data Structures October 9, 2023 21 / 35



Evaluation with Memories
Here is another BFAE expression:

/* BFAE */
val a = Box(1);
val f = x => x + a.get;
f(5); /* 5 + 1 = 6 */

a.set(2); *
f(5);

val b = Box(a);
b.get.set(3);
f(5);

σ = [
a 7→ a0
f 7→ ⟨λx .(x + a.get), [a 7→ a0]⟩

]

A : a0 a1 a2 . . .

M = 2 . . .

COSE212 @ Korea University Lecture 10 – Mutable Data Structures October 9, 2023 22 / 35



Evaluation with Memories
Here is another BFAE expression:

/* BFAE */
val a = Box(1);
val f = x => x + a.get;
f(5); /* 5 + 1 = 6 */

a.set(2);
f(5); /* 5 + 2 = 7 */ *

val b = Box(a);
b.get.set(3);
f(5);

σ = [
a 7→ a0
f 7→ ⟨λx .(x + a.get), [a 7→ a0]⟩

]

A : a0 a1 a2 . . .

M = 2 . . .

COSE212 @ Korea University Lecture 10 – Mutable Data Structures October 9, 2023 23 / 35



Evaluation with Memories
Here is another BFAE expression:

/* BFAE */
val a = Box(1);
val f = x => x + a.get;
f(5); /* 5 + 1 = 6 */

a.set(2);
f(5); /* 5 + 2 = 7 */

val b = Box(a); *
b.get.set(3);
f(5);

σ = [
a 7→ a0
f 7→ ⟨λx .(x + a.get), [a 7→ a0]⟩
b 7→ a1

]

A : a0 a1 a2 . . .

M = 2 a0 . . .

COSE212 @ Korea University Lecture 10 – Mutable Data Structures October 9, 2023 24 / 35



Evaluation with Memories
Here is another BFAE expression:

/* BFAE */
val a = Box(1);
val f = x => x + a.get;
f(5); /* 5 + 1 = 6 */

a.set(2);
f(5); /* 5 + 2 = 7 */

val b = Box(a);
b.get.set(3); *
f(5);

σ = [
a 7→ a0
f 7→ ⟨λx .(x + a.get), [a 7→ a0]⟩
b 7→ a1

]

A : a0 a1 a2 . . .

M = 3 a0 . . .

COSE212 @ Korea University Lecture 10 – Mutable Data Structures October 9, 2023 25 / 35



Evaluation with Memories
Here is another BFAE expression:

/* BFAE */
val a = Box(1);
val f = x => x + a.get;
f(5); /* 5 + 1 = 6 */

a.set(2);
f(5); /* 5 + 2 = 7 */

val b = Box(a);
b.get.set(3);
f(5); /* 5 + 3 = 8 */ *

σ = [
a 7→ a0
f 7→ ⟨λx .(x + a.get), [a 7→ a0]⟩
b 7→ a1

]

A : a0 a1 a2 . . .

M = 3 a0 . . .

COSE212 @ Korea University Lecture 10 – Mutable Data Structures October 9, 2023 26 / 35



Interpreter and Natural Semantics
For BFAE, we need to 1) implement the interpreter with environments
and memories by passing the updated memory in the result:

def interp(expr: Expr, env: Env, mem: Mem): (Value, Mem) = ???

type Addr = Int
type Mem = Map[Addr, Value]
enum Value:

...
case BoxV(addr: Addr)

and 2) define the natural semantics with environments and memories by
passing the updated memory in the result:

σ, M ⊢ e ⇒ v , M

Addresses a ∈ A (Addr)
Memories M ∈ A fin−→ V (Mem)
Values V ∋ v ::= . . . | a (BoxV)

COSE212 @ Korea University Lecture 10 – Mutable Data Structures October 9, 2023 27 / 35



Interpreter and Natural Semantics
For BFAE, we need to 1) implement the interpreter with environments
and memories by passing the updated memory in the result:

def interp(expr: Expr, env: Env, mem: Mem): (Value, Mem) = ???

type Addr = Int
type Mem = Map[Addr, Value]
enum Value:

...
case BoxV(addr: Addr)

and 2) define the natural semantics with environments and memories by
passing the updated memory in the result:

σ, M ⊢ e ⇒ v , M

Addresses a ∈ A (Addr)
Memories M ∈ A fin−→ V (Mem)
Values V ∋ v ::= . . . | a (BoxV)

COSE212 @ Korea University Lecture 10 – Mutable Data Structures October 9, 2023 27 / 35



Addition

def interp(expr: Expr, env: Env, mem: Mem): (Value, Mem) = expr match
...
case Add(l, r) =>

val (lv, lmem) = interp(l, env, mem)
val (rv, rmem) = interp(r, env, lmem)
(numAdd(lv, rv), rmem)

σ, M ⊢ e ⇒ v , M

Add
σ, M ⊢ e1 ⇒ n1, M1 σ, M1 ⊢ e2 ⇒ n2, M2

σ, M ⊢ e1 + e2 ⇒ n1 + n2, M2

/* BFAE */
val a = Box(5);
{ a.set(8); 2 } + a.get; // 2 + 8 = 10 -- NOT 2 + 5 = 7

COSE212 @ Korea University Lecture 10 – Mutable Data Structures October 9, 2023 28 / 35



Addition

def interp(expr: Expr, env: Env, mem: Mem): (Value, Mem) = expr match
...
case Add(l, r) =>

val (lv, lmem) = interp(l, env, mem)
val (rv, rmem) = interp(r, env, lmem)
(numAdd(lv, rv), rmem)

σ, M ⊢ e ⇒ v , M

Add
σ, M ⊢ e1 ⇒ n1, M1 σ, M1 ⊢ e2 ⇒ n2, M2

σ, M ⊢ e1 + e2 ⇒ n1 + n2, M2

/* BFAE */
val a = Box(5);
{ a.set(8); 2 } + a.get; // 2 + 8 = 10 -- NOT 2 + 5 = 7

COSE212 @ Korea University Lecture 10 – Mutable Data Structures October 9, 2023 28 / 35



Box Creation

def interp(expr: Expr, env: Env, mem: Mem): (Value, Mem) = expr match
...
case NewBox(c) =>

val (cv, cmem) = interp(c, env, mem)
val addr = malloc(cmem)
(BoxV(addr), cmem + (addr -> cv))

σ, M ⊢ e ⇒ v , M

NewBox
σ, M ⊢ e ⇒ v , M1 a /∈ Domain(M1)

σ, M ⊢ Box(e) ⇒ a, M1[a 7→ v ]

One way to implement malloc is to find the maximum address in the
memory and increment it by one, 0 if the memory is empty:

def malloc(mem: Mem): Addr = mem.keySet.maxOption.fold(0)(_ + 1)

COSE212 @ Korea University Lecture 10 – Mutable Data Structures October 9, 2023 29 / 35



Box Creation

def interp(expr: Expr, env: Env, mem: Mem): (Value, Mem) = expr match
...
case NewBox(c) =>

val (cv, cmem) = interp(c, env, mem)
val addr = malloc(cmem)
(BoxV(addr), cmem + (addr -> cv))

σ, M ⊢ e ⇒ v , M

NewBox
σ, M ⊢ e ⇒ v , M1 a /∈ Domain(M1)

σ, M ⊢ Box(e) ⇒ a, M1[a 7→ v ]

One way to implement malloc is to find the maximum address in the
memory and increment it by one, 0 if the memory is empty:

def malloc(mem: Mem): Addr = mem.keySet.maxOption.fold(0)(_ + 1)

COSE212 @ Korea University Lecture 10 – Mutable Data Structures October 9, 2023 29 / 35



Box Content Getter

def interp(expr: Expr, env: Env, mem: Mem): (Value, Mem) = expr match
...
case GetBox(b) =>

val (bv, bmem) = interp(b, env, mem)
bv match

case BoxV(addr) =>
(bmem(addr), bmem)

case _ =>
error(s"not a box: ${bv.str}")

σ, M ⊢ e ⇒ v , M

GetBox
σ, M ⊢ e ⇒ a, M1

σ, M ⊢ e.get ⇒ M1(a), M1

COSE212 @ Korea University Lecture 10 – Mutable Data Structures October 9, 2023 30 / 35



Box Content Setter

def interp(expr: Expr, env: Env, mem: Mem): (Value, Mem) = expr match
...
case SetBox(b, c) =>

val (bv, bmem) = interp(b, env, mem)
bv match

case BoxV(addr) =>
val (cv, cmem) = interp(c, env, bmem)
(cv, cmem + (addr -> cv))

case _ =>
error(s"not a box: ${bv.str}")

σ, M ⊢ e ⇒ v , M

GetBox
σ, M ⊢ e1 ⇒ a, M1 σ, M1 ⊢ e2 ⇒ v , M2

σ, M ⊢ e1.set(e2) ⇒ v , M2[a 7→ v ]

COSE212 @ Korea University Lecture 10 – Mutable Data Structures October 9, 2023 31 / 35



Sequence

def interp(expr: Expr, env: Env, mem: Mem): (Value, Mem) = expr match
...
case Seq(l, r) =>

val (_, lmem) = interp(l, env, mem)
interp(r, env, lmem)

σ, M ⊢ e ⇒ v , M

GetBox
σ, M ⊢ e1 ⇒ , M1 σ, M1 ⊢ e2 ⇒ v2, M2

σ, M ⊢ e1; e2 ⇒ v2, M2

COSE212 @ Korea University Lecture 10 – Mutable Data Structures October 9, 2023 32 / 35



Summary

1. Mutable Data Structures

2. BFAE – FAE with Mutable Boxes
Concrete Syntax
Abstract Syntax

3. Interpreter and Natural Semantics for BFAE
Evaluation with Memories
Interpreter and Natural Semantics
Addition
Box Creation
Box Content Getter
Box Content Setter
Sequence

COSE212 @ Korea University Lecture 10 – Mutable Data Structures October 9, 2023 33 / 35



Homework #2
• Please see this document1 on GitHub.
• The due date is Oct. 27 (Fri.).
• Please only submit Implementation.scala file to Blackboard.

1https://github.com/ku-plrg-classroom/docs/tree/main/cose212/cobalt.
COSE212 @ Korea University Lecture 10 – Mutable Data Structures October 9, 2023 34 / 35

https://kulms.korea.ac.kr/
https://github.com/ku-plrg-classroom/docs/tree/main/cose212/cobalt


Next Lecture
• Mutable Variables

Jihyeok Park
jihyeok park@korea.ac.kr

https://plrg.korea.ac.kr

COSE212 @ Korea University Lecture 10 – Mutable Data Structures October 9, 2023 35 / 35

https://plrg.korea.ac.kr

	Mutable Data Structures
	BFAE – FAE with Mutable Boxes
	Concrete Syntax
	Abstract Syntax

	Interpreter and Natural Semantics for BFAE
	Evaluation with Memories
	Interpreter and Natural Semantics
	Addition
	Box Creation
	Box Content Getter
	Box Content Setter
	Sequence


